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Abstract

Nonlinear time series analysis is employed to study the complex behaviour exhibited by a coupled pair of Rossler systems.
Dimensional analysis with emphasis on the topological correlation dimension and the Kolmogorov entropy of the system is
carried out in the coupling parameter space. The regime of phase synchronization is identified and the extent of synchronization
between the systems constituting the coupled system is quantified by the phase synchronization index. The effect of noise on
the coupling between the systems is also investigated. An exhaustive study of the topological, dynamical and synchronization
properties of the nonlinear system under consideration in its characteristic parameter space is attempted. 2002 Elsevier
Science B.V. All rights reserved.

PACS: 05.45.+b

Keywords: Coupled oscillator; Correlation dimension; Kolmogorov entropy; Synchronization

1. Introduction

Collective dynamics displayed by arrays of oscilla-
tors is of great interest in numerous fields of science
and technology. In the present study the complex be-
haviour exhibited by a pair of coupled Rossler sys-
tems is investigated. The study reveals several inter-
esting results one of which is that an empirical rela-
tion apparently exists between parameters specifying
the topology and those associated with the synchro-
nization property of the coupled system. Also signifi-
cant is the observation that the regime of synchroniza-
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tion is crucially dependent on the coupling factors of
the system.

Interacting arrays of oscillators have innumerable
applications in diverse fields of science and technol-
ogy including chemistry [1], electronics [2,3], in engi-
neering in the form of multimode laser arrays [4], in
secure communications [5] and so on. Arrays of os-
cillators can also simulate the biological rhythms of
the heart [6], the intestines, pancreas and other bi-
ological systems [7]. In most of the studies of cou-
pled arrays of oscillators, however, the invariant pa-
rameters of the system including the generalized di-
mensionsDq or entropiesKq nor the synchronization
properties have been sufficiently focused on to derive
the wealth of information regarding the system con-
tained in these. The present work investigates the phe-
nomenon of phase synchronization or phase locking
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as a function of the coupling constants in the coupled
system. If we now assume the behaviour of a group
of neurons in the brain to be represented by an array
of nonlinear oscillators then the phase locking could
be identified as a pattern formation and that a persis-
tent phase locking could be understood as a long lived
pattern which ultimately results in the memory forma-
tions [8]. It has been shown that the formation of a per-
sistent pattern can be identified as the learning process
and the ultimate formation of a concept.

The basis of nonlinear analysis of chaotic systems
is the computation of invariant parameters of the at-
tractor of the system in its characteristic phase space.
The most widely studied topological parameters are
the correlation dimensionD2 and the Kolmogorov en-
tropy,K2. D2 refers to the degrees of freedom asso-
ciated with the system while the entropy is a mea-
sure of the information that is lost during evolution of
the system at a given instant [9]. Of late, besides the
topological parameters, another set of characterizing
parameters which deal with the synchronization phe-
nomenon have been of importance [10,12,14] in the
case of coupled systems. The current interest revolves
over the synchronization resulting from the cooper-
ative behaviour of oscillatory systems [10,11]. Syn-
chronization may in general be divided into a num-
ber of classes. The one in which even while the dy-
namics in time as represented by the amplitude of the
measured signal remains chaotic, the states of the dif-
ferent systems of the complex system coincide due to
interaction. This is termed as ‘complete synchroniza-
tion’ of the chaotic oscillators [12]. Another approach
is based on the overlap of power spectra of the signals
from the interacting systems [13]; an alternate recent
method is the ‘phase synchronization’ of chaotic sys-
tems which studies the correlation between the phases
of individual systems and an eventual phase locking
that leads to synchronization between them [14].

In the present work, the technique of nonlinear time
series analysis is applied to a pair of coupled Rossler
oscillators [15] in the chaotic regime to study the dy-
namical behaviour inherent in such a system. The sys-
tem behaviour when the oscillators are coupled uni-
directionally is inspected first and then the case of mu-
tual or bi-directional coupling is studied. The coupled
system in the case of uni-directional coupling contains
a coupling parameter,g, while there is a pair of cou-
pling factorsg1 andg2 in the mutually coupled sce-

nario. The parameterg1, which forms the feed forward
coupling, may be assumed to be an internal parame-
ter of the system whileg2 the feedback coupling fac-
tor is considered as the control parameter. In the pa-
rameter space of coupling factors the system dynam-
ics is studied by evaluating the correlation dimension
and Kolmogorov entropy. The synchronization exist-
ing between the subsystems is a measure of the coor-
dination present in the system. The phase synchroniza-
tion phenomenon exhibited by the system is studied in
detail and the empirical relation that may hold between
the parameters that characterize the dynamical and in-
teractive behaviour of the coupled system with respect
to the coupling parameters is inferred. As a final ob-
jective, effects of the presence of noise in the coupled
system are investigated with regard to the synchroniza-
tion phenomenon.

2. Model system and method of analysis

The system under consideration is the coupled
Rossler system [16] described by the flow equation

αẋi = a + xi(yi −µ),

αẏi = −xi −ωizi ,

(1)αżi = ωiyi + bzi + gj (zj − zi),

where

i, j = 1,2; i �= j,

ωi = 1, i = 1,

ωi = 1.1, i = 2,

α = 0.013, a = 0.2, b = 0.412,

µ= 5.7.

This nonlinear set of equations exhibits chaotic be-
haviour for the choice of parameters made in this
study. The mutually coupled Rossler systems exist as
independent systems in the chaotic regime in the un-
coupled state.

In the initial case of uni-directional coupling, only
the feed forward coupling is present and the systems
form a drive–response set and hence we haveg2 = 0
andg1 = g as the sole coupling factor. While consid-
ering bi-directional coupling, both the coupling para-
meters come into play. The equations are integrated
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by the fourth-order Runge–Kutta method with a step
of 0.0005. The variablesy1 and y2 are generated as
time series from the first and second systems for vary-
ing values of coupling parametersgi . It is well known
that any single parameter in a coupled set of equations
(i = 1 or i = 2) would represent the entire character-
istics of the whole system. That is the reason why we
choosey1 andy2 for the two distinctly different oscil-
lations. For convenience, we use the parlance of uni-
directionally coupled systems and name system 1 as
the drive and system 2 as the response bearing in mind
that in the study of the bi-directional case, the two sys-
tems are mutually coupled and each acts as a response
to the drive from the other. The generated time se-
ries after removal of transients are subjected to a time
delay embedding [17] and the technique of nonlinear
time series analysis is employed to evaluate the rele-
vant invariant parameters of the subsystems. The in-
variant parameters included in this study are the cor-
relation dimensionD2 that characterizes the dimen-
sionality of the attractor in the system and the Kol-
mogorov entropyK2, the dynamical parameter [17].
D2 andK2 of the systems are determined by adopting
the Grassberger–Procaccia algorithm [18].

In order to understand the coordination existing be-
tween the different units of the composite system, their
synchronization is studied. Phase synchronization in
the system may be defined as the appearance of phase
locking of interacting units even in the absence of ap-
parent amplitude entrainment [14]. The definition of
the phase of a chaotic system remains an ambiguous
concept to date. Nevertheless, following Rosenblum
et al., an analytic signal concept is made use of in this
case and the composite signal is taken as

(2)Ψ (t)= s(t)+ is̃(t),

wheres(t) is the actual signal and̃s(t) is the Hilbert
transform ofs(t) given as

(3)s̃(t)= P.V.
1

π

∞∫
0

s(τ )

t − τ
dτ,

where P.V. denotes the Cauchy principal value of the
integral.

Based on this, the phase is defined as

(4)φ(t)= arctan

(
s̃(t)

s(t)

)
.

A pair of chaotic systems(i, j) is said to be phase
locked in the ration :m if at any instant,

(5)
∣∣nφi(t)−mφj(t)

∣∣< ε,

ε being a small arbitrary constant. The 1: 1 case of
phase synchronization is investigated by considering
the relative phase distribution of a pair of correspond-
ing variables of the system. The phase synchronization
index is defined as

(6)Sp= Smax− S

Smax
,

where

(7)S = −
Nb∑
i=1

pi lnpi,

in which pi = Ni/N is the probability of occupancy
of the ith bin with Ni as the number of points in it
andN the total number of points. Hence we may write
Smax = lnNb as the normalizing factor [19].

3. Analysis based on topological and
synchronization invariants

3.1. The uni-directionally coupled system

Two independent Rossler oscillators are coupled so
that there is a drive provided from the first to the sec-
ond system through a coupling as described in (1). The
strength of coupling is represented by the coupling
constantg, which is scanned through a range of values
and the corresponding system behaviour contained in
the invariant parametersD2, K2 and Sp is studied.

In determining the parameters, we have, as men-
tioned before adopted a time delay embedding tech-
nique and used the Grassberger–Procaccia algorithm.
In the time delay embedding undertaken here, the em-
bedding dimension was chosen on the basis of the
method of false nearest neighbours [17]. The aver-
age mutual information criterion [20] was used in the
choice of the appropriate time delay, which was found
to hold in each case of coupling. A modified version
of the Grassberger–Procaccia algorithm [21] was em-
ployed for the determination ofD2 andK2 for the sys-
tems. The coordination between the coupled systems
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Fig. 1. The variations inD2, K2 and Sp with the coupling factorg
for a uni-directionally coupled Rossler system. 1 refers to the drive
system and 2 to the response.

is reflected in the phase synchronization existing be-
tween them. This aspect of the coupled system is in-
vestigated and the synchronization property of the sys-
tem is quantified by a phase synchronization index, Sp,
as defined in (6).

The correlation dimension for the independent
Rossler system is determined to be 1.93. This is in
general agreement with the value determined in [22]
as 1.89 and the small discrepancy in the estimated and
reported values ofD2 arises from the finite length of
the data set used in the evaluation ofD2. Fig. 1 gives
the variations in correlation dimension, Kolmogorov
entropy and phase synchronization factor for the
different coupling values. TheD2 for the drive system
remains at a fixed value while that for the response
varies as a consequence of the coupling between the
two systems. For values of low feedback,g < 0.5,
D2 for the response system varies almost randomly
but beyond a critical feedback valueD2 for the drive
and response systems appear to coincide. A close look
at the plot of Sp vs.g reveals that this phenomenon
occurs at the value ofg where the subsystems begin
to synchronize. This establishes the underlying fact
that synchronization between the systems translated
into attractor space, is a convergence between the
individual attractors of the subsystems.

The Kolmogorov entropy,K2, exhibits a random
variation in the response system initially but beyond
a certain coupling it becomes identical with theK2

value of the drive system. This phenomenon seems
to suggest that flow of information from the coupled
systems occurs in an identical manner.

3.2. The bi-directionally coupled system

In the study concerning system dynamics of a pair
of bi-directionally coupled oscillators, the coupling
parameterg1 is kept fixed while the feedback factor
g2 is scanned through a range of values correspond-
ing to very weak feedback from the response to the
drive to that giving complete feedback, i.e.,g2 ∼ 0.1–
100% of magnitude. The whole procedure is repeated
after raisingg1 to the next higher order of magnitude.
The system behaviour in the parameter space of (g1,
g2) with g1 varying from 0.0001 to 1 is studied by an-
alyzing the variations inD2, K2 and Sp of the sub-
systems. The two systems are embedded in their re-
spective phase spaces and the topological parameters
corresponding to each of the systems is determined in
these spaces. In general, once the systems are synchro-
nized, any one of these spaces effectively acts as the
phase space for the coupled system [23]. However, in
this case, we are focusing on studying the evolution
of the subsystems in an independent manner, under
the effect of coupling. Hence, with an embedding di-
mension of 5, chosen on the basis of the false nearest
neighbourhood criterion [17], each of the subsystems
is embedded in the space of lagged coordinates andD2
andK2 are evaluated.

Fig. 2 depicts the variations inD2, K2 of the con-
stituent systems as well as changes in Sp of the com-
posite system asg2 is varied from 0 to 1 for fixed val-
ues ofg1. In Fig. 2, theg1 value increases steadily
form 0.0001 to 1. However, there is great deal of par-
allelism in the behaviour beyond a thresholdg2 value
of 0.5. The phase synchronization index, Sp becomes
saturated to a value around 0.9 and the saturation starts
for g2 ∼ 0.5. This implies that the systems get syn-
chronized almost perfectly beyondg2 ∼ 0.5. Further,
it may be noticed that as the value of forward coupling
g1 is steadily increased to higher orders of magnitude,
the parallelism between the constituent systems sets
in at earlier values of threshold feedback coupling.
This effect is noticeable when compared with the uni-
directional case as well in which synchronization is
decided by a single coupling factor. This is the cause
for the delay in the onset of synchronization in the
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(a) (b)

(c) (d)

(e)

Fig. 2. The plots exhibiting the variations in correlation dimensionD2, Kolmogorov entropyK2 and phase synchronization index Sp with
the feedback fraction represented byg2 for a mutually coupled system with gradually increasing feed forward coupling,g1. (a) g1 = 0.0001,
(b) g1 = 0.001, (c)g1 = 0.01, (d)g1 = 0.1 and (e)g1 = 1.
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uni-directional case. Moreover, once synchronization
is achieved the information loss seems to be identi-
cal for both systems. Hence, the crucial factor in a
mutually coupled set of Rossler oscillators, the syn-
chronization, is mainly determined by the feed for-
ward coupling percentage and the onset value of the
synchronization phenomenon gets reduced as the feed
forward parameter is increased. The individuality of
the attractors is increasingly lost as this parameter is
steadily increased. The lower values ofD2 imply that
the coupling in effect brings down the number of inde-
pendent variables required to modulate the dynamics
of the system. In the attractor space, the variation in
D2 may be pictured as an expansion or shrinkage of
the original attractor as the control parameters vary. In
general, weak coupling tends to lower the dimension-
ality of the system.

The point of interest is that while in cases withg1 ∼
0.001, while Sp becomes 0.6–0.7 at 0.3 � g2 � 0.4,
D2 andK2 values of the drive and the response coin-
cide only from aboutg2 ∼ 0.7. This also corresponds
to the region of strong phase synchronization as indi-
cated by high Sp value∼0.8–0.9. At higherg1 = 0.1,
Sp∼ 0.8 at g2 = 0.4 beyond which the variations in
the correlation dimension and Kolmogorov entropy for
the two systems follow identical variations. Thus the
coincidence of the topological parameters for the cou-
pled oscillators as well as strong phase entrainment be-
tween them sets in simultaneously at critical values of
the coupling parameters. While phase synchronization
by itself does not imply coincidence of topological pa-
rameters, at sufficient values of coupling, strong phase
synchronization is followed by an identical behaviour
of theD2 andK2 parameters of the coupled subsys-
tems.

3.3. Effect of noise on the behavior of the coupled
Rossler system

The study, as of now, has been concentrated on de-
riving the dynamical aspects of a coupled Rossler sys-
tem in its characteristic coupling parameter space de-
pending on whether it is a uni-directionally or mutu-
ally coupled system. Taking into account the fuzzy na-
ture of coupling factors, we incorporate noise at speci-
fied levels into the coupling. The effects on the behav-
iour caused by the randomness due to the presence of
noise in the system are analyzed. In this study, noise at

a pre-determined level, represented byk is introduced
into the system in the form of an additive term to the
coupling factorg in the uni-directional case. The ef-
fective coupling in such a situation isg+ krn, wherein
rn is the noise added to the system at a percentage
level k. An identical noise factor is added to the feed-
back coupling,g2, for the mutually coupled system.

We have considered for analysis three types of
noise—normally distributed noise (Nml.), uniformly
distributed noise of mean 0 (Unif.0.) and, as a spe-
cial case, uniformly distributed noise of finite mean
(Unif.). The system response in each case as contained
in the synchronization is studied.

The normally distributed noise with zero mean and
unit variance when introduced into the coupled sys-
tem is found not to affect the behaviour to any great
extent. To undertake a comparative study between the
noise free system and that with noise introduced, we
arbitrarily choose the threshold of phase synchroniza-
tion to be at Sp= 0.5. With this criterion, we may say
phase synchronization sets in at the coupling factorg

or, correspondingly, at thatg2 for specifiedg1 in bi-
directionally coupled case at which Sp tends to 0.5.
Moreover, in the evaluation of phase synchronization,
we have taken into account the random phase slips that
may be introduced by the strong noise added to the
system. We determine the distribution of the relative
phase as in [24,25] and find that in cases where there
is no phase entrainment between the systems the dis-
tribution is flat while phase entrainment gives rise to a
unimodal distribution. Fig. 3 exhibits plots of the rel-
ative phase distribution in the bi-directionally coupled
system at a noise level of 1% that produces no ap-
parent phase entrainment at low coupling parameters
as compared to that at a high noise level of 30% that
gives rise to significant phase entrainment even when
the systems are very weakly coupled. With a noise
level of k = 70%, normally distributed noise causes
the uni-directionally coupled systems to synchronize
aroundg = 0.25 which is theg value at which the
noise free system synchronizes as well. At lower val-
ues of coupling, the noise does not cause any signifi-
cant change in the system behaviour. Identical behav-
iour is observed in the presence of uniformly distrib-
uted noise with zero mean. Fig. 4 gives the plot of
Sp vs.g for the uni-directional system with various
types of noise added at the constant level ofk = 70%.
The plot reveals the interesting phenomenon of syn-
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(a)

(b)

Fig. 3. The distribution of the relative phase difference in the weakly
coupled system withg1 = 0.0001 andg2 = 0.001. The additive
noise of finite mean is added to a level of (a) 1% and (b) 30%.

chronization at low coupling values in the system in-
duced when uniformly distributed noise of finite mean
is added to it. It is observed that Sp∼ 0.65 occurs be-
tween the drive and response systems even when the
coupling between them is as low as 0.001. However,
once the systems synchronize, i.e., Sp beyond 0.5, the
noise seems to play no significant part in the system
dynamics. The behaviour exhibited by the system in

Fig. 4. The synchronization, Sp, versus coupling,g, for the
uni-directionally coupled system with various types of additive
noise in the coupling. The noise level,k, is 70% in each case. In
the figure, N.F. refers to noise free case, Unif. to additive uniform
noise of finite mean, Unif.0. to additive uniform noise of zero mean
and Nml. to normally distributed noise present in the system.

the absence and presence of noise beyond the onset of
synchronization is almost identical.

Fig. 5 gives the synchronization values against the
coupling for the mutually coupled system for a typi-
cal case with feed forward couplingg1 = 0.1. In this
case, too, the uniform noise of finite mean causes the
systems to synchronize even at weak coupling levels.
A probable reason for this is that at high enough noise
levelsk, the coupling g gets added to the mean noise
level to form a higher coupling in general, at which the
systems are in synchrony in the noise free state. This
is substantiated in Fig. 7, which shows the behaviour
of the system in the presence of uniform noise of fi-
nite mean at different noise levels. It is clearly seen
that the system synchronizes sooner at higher noise
levels and the noise level required to produce synchro-
nization is lower if the system synchronizes faster in
the noise free case itself. Nevertheless, the presence
of phase synchronization by itself does not ensure that
the dynamical parameters of the subsystems are coin-
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Fig. 5. The effect of different types of noise at levelk = 70% in
a mutually coupled Rossler system on the synchronization as a
function of the feedback coupling,g2, for a typical case of forward
coupling,g1 = 0.1.

cident. This is still critically dependent on the coupling
as evidenced in Fig. 6. Fig. 7(a) plots the variation
of synchronization for very weak forward coupling,
g1 = 0.0001, while Fig. 7(b) corresponds to a mod-
erately stronger coupling,g1 = 0.01. It is clear that in
the latter case, since synchronization occurs sooner in
the noise free state, a noise level of 30% is sufficient
to induce synchronization in it as compared to the case
with lower feed forward coupling.

On the whole, the coupled Rossler system appears
to be unaffected by noisy fluctuations in coupling.
The normal and uniform noise with zero mean seem
to produce no ill effects in the system with respect
to the synchronization. Besides, uniformly distributed
noise with finite mean apparently aids the system to
synchronize at weak coupling.

4. Discussion

In this Letter, we have considered the effects of
coupling on dimension and coordination of a pair of
coupled Rossler oscillators. Coupling two independent

Fig. 6. TheD2,K2 and Sp variations for the case of coupled system
with g1 = 0.0001 and with additive noise atk = 70%. The noise
added is uniform with finite mean, Unif.

systems produces a variety of phenomena that throw
light on the underlying dynamics of the system. The
coupled systems are termed the drive and response and
coupling is applied between the two systems through
suitable factors. The correlation dimension (D2) esti-
mation reveals the variation of the corresponding pa-
rameter for the two systems in a random manner about
the individual systemD2 value. Weak coupling in gen-
eral lowers the computed correlation dimensionD2 of
the response and drive systems in a bi-directionally
coupled scenario; thus minimizing the number of de-
grees of freedom required in specifying it. In the case
of the neural system, millions of neurons interact in
a complex manner at any instant to generate an out-
put. In spite of there being innumerable variables in
the system, a dimensional analysis reveals the dimen-
sionality of the brain to be around 8–12 [25,26]. This
agrees with the result obtained in the present case of
the coupled nonlinear oscillator that shows a lower di-
mensionality. This observation throws light on the pos-
sibility of modeling complex systems like the neural
system as a network of coupled nonlinear oscillators.
The main interest is in the synchronization effect pro-
duced by the coupling. For a particular range of cou-
pling parameters, we have identified a regime wherein
the phases are entrained strongly. The strengths of
coupling decide the point at which the systems lose
their independent nature and synchronize. The onset
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(a) (b)

Fig. 7. The dependence of phase synchronization on the coupling factorg2 in the presence of various noise levels,k, in the case of uniformly
distributed noise with finite mean for the mutually coupled systems at two feed forward coupling values. (a)g1 = 0.0001 and (b)g1 = 0.01.

of strong synchronization between the coupled units is
translated into a coincidence of the invariant parameter
D2 of the individual systems. Once the systems syn-
chronize, we may infer an overlap of the individual at-
tractors with respect to theD2 andK2 parameters. The
existence of a mathematical relation between the topo-
logical invariantD2 of the subsystems and the phase
synchronization index, Sp, that represents the coordi-
nation of the global systems suggests the underlying
interdependence of these seemingly different aspects
of the coupled systems. The time series data is only a
manifestation of a multitude of interdependent factors
giving rise to it. It has been proposed that interaction in
the human brain generates a large number of attractors
specified by various characteristic parameters such as
embedding dimensionεi , attractor basinBi , general-
ized metric dimensionDiq , generalized entropyKiq

and Lyapunov constantλiq/Lyapunov function [26],
wherei is the attractor index andq the generalization

index. This is a pointer to the fact that the interconnec-
tions between the neurons may be likened to a set of
coupled nonlinear oscillators and the behaviour may
be modeled based on these. The system behaviour in
the presence of noise suggests that the system is ro-
bust against the randomness that may be produced by
most types of noise with a flat spectrum. However, the
system responds favourably to uniform noise with a
finite mean in the sense that the noise induces the cou-
pled systems to synchronize even with weak coupling.
This does not mean a total coincidence of the topolog-
ical parameters of the individual systems at very weak
coupling. The coupled subsystems essentially act as
two independent systems albeit with a phase entrain-
ment. We propose to carry out a similar analysis with
stress on the amplitude synchronization and this in
turn would give the attractor locking due to the degree
of coherence. We also propose to continue this with an
array of van der Pol oscillators and then make a de-
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tailed study of the merits and demerits of the different
systems. This will be further applied to pattern forma-
tion in brain due to response from an input stimulus.
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