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We study the period-doubling bifurcations to chaos in a logistic map with a nonlinearly modulated parameter and show that 
the bifurcation structure is modified significantly. Using the renormalisation method due to Derrida et al. we establish the uni- 
versal behaviour of the system at the onset of chaos. 

Simple deterministic nonlinear systems have at- 
tracted a lot of  attention during the last few years [ 1 ], 
not only because they are very rich in their dynam- 
ical behaviour but they also serve as effective math- 
ematical models to describe several physical systems 
[2]. Experimental studies on the chaotic behaviour 
were stimulated by Feigenbaum's discovery [3,4] 
that the systems show universal behaviour at the on- 
set o f  chaos. The universal constants predicted by 
Feigenbaum were measured in several experiments, 
thus enabling a quantitative analysis o f  the transi- 
tion to chaos. 

Several examples are known in which the system 
shows a period-doubling route to chaos, where the 
details of  the transition are represented by a bifur- 
cation structure. Recently, there has been an in- 
creased interest in the study of  different kinds of  laser 
systems by modulating one of  its physical parame- 
ters [ 5] and it has been shown that the output can 
be periodic as well as chaotic depending on the 
strength of  the modulat ion [ 6 ]. Moreover, the anal- 
ysis o f  the bifurcation structure by introducing a time 
dependence to the parameter has been a subject mat- 
ter for the last few years and it is known that this time 
dependence can induce dramatic changes in the bi- 
furcation diagram [ 7]. Recently, Kapral and Man- 
del [ 8 ] studied the bifurcation structure o f  a non- 
autonomous quadratic map in which the control pa- 
rameter is assumed to vary linearly in time, and 
showed that this time dependence delayed the onset 
o f  bifurcations in the system. 

In this Letter, we study the period-doubling bi- 
furcations to chaos in the following map: 

Xt+ I =4).tXt(1 --Xt) , 

2t+, =4 / z2 t (1 -2 , ) .  (1) 

That is, we have considered a situation where the 
value of  the parameter 2 at any instant is a simple 
nonlinear function of  its value in the previous in- 
stant. We now that map (1), which we call a "mod-  
ulated" logistic map, has a bifurcation structure 
which is interesting in many ways. The role o f  the 
control parameter is now played by p, which can be 
thought of  as the strength o f  the modulation. 

We know that for 0 < # < 0 . 7 5 ,  there is a single at- 
tracting fixed point for 2t and hence for x, also. 
Therefore, to compute the bifurcation structure, we 
start from a parameter value/z = 0.7 and increase it 
by steps o f  0.01, always using an initial condition for 
(xt, 2t) in the interval [0, 1 ], say (0.3, 0.3). The im- 
portant asymptotic values for ,~t, Xt and the corre- 
sponding parameter / t  are collected in table 1. 

When we plot these values against #, a three-di- 
mensional bifurcation diagram results. But the es- 
sential modification in the structure and the new 
features that appear due to the modulat ion o f  the pa- 
rameter can be clearly shown by taking a two-di- 
mensional projection o f  the diagram in the (xt, # )  
plane, which is shown in fig. 1. 

It is clear that even from the first bifurcation on- 
wards the behaviour is quite different from that o f  
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Table 1 
.Asymptotic values of 2, and x,. 

0.7 0 .6428571 0.61Ill11 
0 .74 0.6621622 0.6224488 
0.75 0 .6683250 0.6202936 

0.6649998 0.6296404 
0.78 0 .5475750 0.7489202 

0.7729381 0.4118614 
0.8 0 .5130444  0.7539450 

0.7994550 0.3807031 
0.84 0 .4623756 0.7534620 

0.8352432 0.3435580 
0.7534756 
0.3435452 

0.85 0 .4519632 0.7340323 
0.8421544 0.3529470 

0.7693097 
0.3208439 

0.87 0 .3950656 0.8688380 
0.8316804 0.1800840 
0.4871584 0.4912024 
0.8694256 0.4870072 

0.89 0.3488245 0.8894232 
0.8086390 0.1372268 
0.5508806 0.3829568 
0.8807835 0.5206940 
0.3738138 0.8792732 
0.8333148 0.1587240 
0.4944891 0.4450920 
0.8898920 0.4885256 

the logistic map. One novel aspect of the diagram is 
the crossing over of the inner  bifurcation branches 
in the 4-cycle region. Even though the branches ap- 
pear to cut each other, giving the appearance of a 3- 
cycle in the 4-cycle region, it is not so because we are 
only considering the projection of the three-dimen- 
sional diagram in a two-dimensional  plane. The 
crossing over of the bifurcation branches is the result 
of  a significant change in the asymptotic behaviour  
of the system from the normal  one, in a small range 
of the parameter, say /~=0.86 to 0.87, where the 
branches appear to be very steep. 

Another impor tant  feature is that the bifurcations 
occur earlier than in the case of the logistic map from 
the second bifurcat ion onwards. Even though the 
difference becomes less pronounced as we go to the 
higher and higher bifurcations, it is clearly evident 
in the case of the 2-cycle, which becomes unstable 
somewhere around ~t=0.845. Comparing with the 
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Fig. 1. Bifurcation diagram of map (1). The branches cross over 
each other in the 4-cycle region resulting in a complete modifi- 
cation of the structure. Note also the asymmetry of the figure. 

results obtained by Kapral and Mandel  [8],  this 
shows that linear and nonl inear  variat ions of the pa- 
rameter can have an entirely different effect on the 
asymptotic behaviour of the system. 

Finally, we note a peculiar aspect of our bifurca- 
t ion diagram. It is easily seen that fig. 1 lacks the 
symmetry of the bifurcation structure of the logistic 
map. There is a marked difference in the bifurca- 
tions between the upper and lower arms of our bi- 
furcation tree. All the bifurcations of the upper 
branch appear to be asymmetric whereas that of the 
lower branch are somewhat symmetric. 

All these novel aspects of the diagram must  be 
considered as the effect of nonl inear  modula t ion  of 
the parameter. 

We now show that the system has universal be- 
haviour at the onset of chaos. For this, we make use 
of the renormalisat ion method due to Derrida et al. 
[9,10]. 

Let map (1) be represented as T~,(x, 2). We li- 
nearise the map T(',~ in the neighbourhood of the n- 
cycle. The resulting 2 X 2 matrix M is given by 

M =  f i  ( 4 2 , ( 1 0 2 x i )  4xi(1 - x , )  ] 
,=~ 4#(1 - 22,) } " (2) 
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In the first-order approximation we consider cycles 
of period 1 and 2. 

The stable 1-cycle of map (1) is given by 

( 3 # - 1  4 # - 1 )  (3) 
(x* ,2*)=  4--~-1' 4# " 

Evaluating M at the fixed point (x*, 2*) and taking 
the eigenvalue equation, we get: 

a 2 + 2f~ (U)a + ( 8 # + 2 / # - 8 )  = 0 ,  (4) 

where 

f~(#) = 2 # -  1/2#. (5) 

Take (x~, 2*) and (x~z, 2*) as the stable 2-cycle of 
map (1). By completely solving the four equations 
defining the 2-cycle, we get 

2*= 4#+1 [(4#+ 1)(4#--3)] 1/2 
8---g-- + 8#  ' ( 6 )  

( 5 # -  l)  1 ( ( 5 U -  1) 2 ~ =  
2 ( 4 # - 1 )  2 \ ( 4 # - 1 )  2 

8 # ( 4 # -  1 )(#2 - 4 # - -  1 )),/2 
+ 

(4#+ 1 ) (3# -  1)fl . ' (7) 

2*= (4#+1)  [ (4#+1)(4#--3) ]  '/2 
8# 8# ' ( 8 ) 

x~z= (4#+ l - # Z ) ( 4 # -  1) fix* (9) 
(4#+ 1)(3U- 1) 2 (4U-  l) ' 

where 

f l= (4#+ 1) + [(4#+ 1 ) (4# -3 ) ]  1/2 . (10) 

From eqs. (6) and (8) we see that the 2-values are 
symmetric whereas eqs. (7) and (9) suggest that x- 
values are asymmetric resulting in the asymmetry of 
fig. 1. 

As in the case of 1-cycle, evaluating M at the 2-cycle 
and taking the eigenvalue equation, we get: 

4#+ 1 (A 1/2 _# )  
f2(#) = ½(4#+ 1 ) ( 4 # - 3 )  2#2(4#_1 ) 

(4#+ 1 ) ( 6# -  1)fl [AV2 
- 4#2(4#_1)3 - - (5#--1)]  

( 4#+1- - #  z) (A,/2_3#) 1 
+ #2(3#_1)  - ~ ,  ( l l )  

where 

A= ( 5 # -  1) z 8 # ( 4 # -  1)3(4#+ 1 -U2) (12) 
(4#+ 1 ) (3 # -  1)fl 

It can easily be seen that 12f,(#)l is equal to 
I TrMI evaluated at the n-cycle, so that the n-cycle 
is stable when If,(#) I ~< 1. 

The basic idea of this renormalisation method is 
to try to associate at each value of#,  a value #' such 
that T u looks like --u'Tt2) • An approximate way to do 
so is to say that the linearisation of T~ n) around a 
point of cycle n is identical to the linearisation of 
Tt2~) around a point of cycle 2n. Therefore: 

f~(#) =f2,(# ')  • (13) 

This equation gives an approximate value of #~ 
which is the fixed point of renormalisation: 

f~(#~) --f2,(#~) • (14) 

In the first-order approximation, we have 

f ,  (u~) =A(#~)  . (15) 

From extensive numerical calculation, we obtain 

#~ =0.890..., (16) 

which is very close to the/too of the logistic map. 
The bifurcation ratio ~ is given by 

~ = du/d#' lu~ (17) 

Interestingly enough, we obtain ~ as 

~=4.4339741... ,  (18) 

which is in close agreement with Feigenbaum's con- 
stant, considering the fact that we are taking a first- 
order approximation. This establishes the universal 
behaviour of the system at the onset of chaos. 

One of the authors (KPH) is grateful to CSIR, New 
Delhi, for financial assistance. 
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