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Preface

Observation of second harmonic generation (SHG) by P A Franken in 196 I marked

the birth of nonlinear optics as a new discipline of laser matter interaction. Nonlinear

optics is the study of phenomena that result from light induced modifications in the

optical properties of the materials. This branch of science explores the coherent

coupling of two or more electromagnetic fields in a nonlinear medium to generate

new frequencies that are sum or difference of coupling frequencies. Franken

attributed the new result to coherent mixing of two optical fields at 694 nm to

produce an optical field at 347 nm.

Since then nonlinear optics has been an important area of science and technology.

Interest in the study of nonlinear laser matter interactions arises because of two main

reasons: (I) it is an effective method of understanding the nonlinear optical (NLO)

properties of materials as well as spatial and temporal evolution of the non linearity

and (2) a number of technological application have been realized and many others

have been proposed using NLO effects. In this context investigation of NLO

properties of certain important photonic materials was chosen as the topic of research

outlined in the proposed thesis. Third order NLO effects are particularly interesting

partly because third order effects have greater technological relevance and partly

because third order effects are present, in varying degree of strength, in all .materials

irrespective of symmetry of materials. Organic materials, nanomaterials and photonic

band gap materials are among the NLO materials of recent interest. Phthalocyanines

(Pes) and naphthalocyanines (Ncs) are typical organic NLO materials. They form

one class of materials investigated here. The other type of material studied in this

work is silver nanosol, aqueous solution of silver nanoparticles, which may be

considered as a representative of nanomaterials. Origin and dynamics of linear as well

as nonlinear optical properties of nanoparticles are completely different from those of

organic compounds like Pes and thus two distinct class of materials have been



investigated. Degenerate four wave mixing and Z-scan were chosen as the

experimental techniques for the present investigation. The proposed thesis contains

seven chapters. The content of each chapter is described briefly.

Chapter 1: In this chapter, the basic concepts and salient features of nonlinear optics

are described. Some of the important nonlinear optical effects like optical limiting,

optical phase conjugation (OPC) and second harmonic generation (SHG) are

mentioned and a few applications of these phenomena in technology are explained. A

brief survey of important NLO materials such as organic materials, nanoparticles,

nanotubes, quantum wires, quantum dots, photonic band gap (PBG) materials is also

given. Emphasis is given to organic materials like Pes and metal nanoparticles, which

are the materials of present investigation. The motivation for the present work as well

as concise description important results obtained during this work is given at the end.

Chapter 2: This chapter contains the relevant theory and experimental details of the

degenerate four wave mixing (DFWM) and Z-scan techniques. Back scattering

geometry ofDFWM was used for the experiments. Variants ofZ-scan techniques and

other possible configurations of DFWM are mentioned. Specifications of excitation

sources and other instruments used for making the measurements are also given.

Chapter 3: This chapter contains the results obtained from open aperture Z-scan

experiments carried out in solutions of metal substituted phthalocyanines and

naphthalocyanines at a fixed wavelength (532nrn). Nonlinear absorption coefficient

was measured and optical limiting property of these samples was analyzed. All these

samples were found to exhibit reverse saturable absorption (RSA) at this wavelength.

Samples selected include metal mono phthalocyanines (LaPc, MoOPc) metal

subsituted naphthalocyanines (ZnNc, MgNc) ,metal substituted bis - phthalocyanines

[Eu(Pch, Sm(Pch, Nd(PC)2] and a bis- naphthalocyanine EU(NC)2' It may be noted

that the samples selected cover different structural variants of phthalocyanines.



Besides, metal ions are also different. Among (mono) MPcs, LaPc was found to be

better nonlinear absorber. Among bis-Pcs, Eu(Pc)z was found to be better nonlinear

absorbing material. Pes in solution form can exhibit negative nonlinear refraction due

to thermal lensing effect. Closed aperture measurements were taken in solutions of

Pes and exhibited thermal nonlinearity as expected.

Chapter 4: Studies on wavelength dependence of nonlinear absorption in bis-Pes are

too few. In this chapter, a comparative study of wavelength dependence of nonlinear

absorption in three bis - Pes viz. EU(PC)2, Sm(Pc)z and Nd(Pch in the blue side of

their Q-band is given. Objective of the work was to find out the upper wavelength

limit for reverse saturable absorption. Such studies help to know whether these

samples exhibit optical limiting property over a wide spectral range. Besides,

saturation intensity Is, nonlinear absorption coefficient p and imaginary part of third

order susceptibility Im[x(3)] were measured and resonant enhancement of Im[x(3)J was

also investigated. It was observed that magnitude of resonant enhancement is

different in these samples. Nd(Pc)z exhibited resonant enhancement of two orders of

magnitude but in other two samples, resonant enhancement was not as intense as in

the case of Nd(Pcb While Eu(Pc)z and Nd(Pc)z exhibited reverse saturable

absorption at 604nm, Sm(Pc)z exhibited a clear saturable absorption at this

wavelength. Since all these samples have similar structures, small but experimentally

observable differences between these samples might be arising from slightly varying

influence of these metal ions.

Chapter 5: This chapter contains the results of degenerate four wave mixing studies

carried out in solutions of metal substituted phthalocyanines and naphthalocyanines.

Polarizations of interacting beams were so chosen that formation of thermal grating is

prevented so that the response we get is entirely electronic. Third order susceptibility

X(3), figure of merit of third order nonlinearity F = x(3)/a and isotropically averaged

second hyperpolarizability (y) were measured. Samples selected include metal mono



phthaloeyanines (LaPe, MoOPe, FePc), metal subsituted naphthalocyanines (ZnNe,

MgNc, VoONc), metal substituted bis - phthalocyanines [Eu(Pch, Sm(Pc)Zl and a

bis- naphthalocyanine Eu(Nch. It may be noted that the samples selected covers

different structural variants of Pes with different levels of 11: electron conjugation.

Moreover metal substituents in these samples also vary. Level of 11: electron

conjugation, nature of metal substituent and dimensionality of the molecules

significantly influence the (y) values. The measurements were carried out with view

to exploring the combined influence of these factors on (y). The results obtained were

explained by taking in to account the level of 11: electron conjugation, nature of metal

substituent and dimensionality of the samples.

Chapter 6: The results of nonlinear absorption studies in silver nanosol using open

aperture Z-sean technique at selected wavelengths near plasmon band are included in

this chapter. Nanosol exhibited surface plasmon resonance (SPR) peak around

416nm. An interesting result of this investigation is that this material could act as a

reverse saturable absorber and a saturable absorber at the same wavelength,

depending entirely on the incident intensity. The results were explained in terms of

plausible effects of SPR bleach and photochemical change induced absorption.

Besides, closed aperture Z-scan experiments were also performed at 532nm, but

result was negative. Divided Z-scan curve did not reveal any sign of positive or

negative refraction. Possible reasons for this negative result are also mentioned.

Chapter 7: This chapter contains a brief description of future prospects along with

summary and conclusions.

Most of the results included in this thesis have been published / communicated for

publication, details of which are given below.
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1
Introduction

Nonlinear optics and nonlinear optical materials

Abstract

The fundamentals of nonlinear optics are introduced in this chapter. Physical origin of

optical nonlinearity and the concept of phase matching are explained. A few

important applications of nonlinear optical effects are also described briefly. An over

view of important nonlinear optical (NLO) materials is given. A few of the materials

investigated in this thesis viz., phthalocyanines, naphthalocyanines and nanoparticles,

are described in detail.



Chapter I. Introduction

t. Introduction

Observation of the second harmonic generation (SHG) by P A Franken in 1961

marked the birth of nonlinear optics as a new discipline in the area of laser-matter

interaction. Franken observed that light of 347.1 nm could be generated when a

quartz crystal was irradiated with light of 694.2 nm, obtained from a ruby laser. He

attributed this novel result to the coherent mixing of two optical fields at 694.1 nm in

the crystal to produce 347.1 nm [I]. Nonlinear optics is essentially concerned with the

study of phenomena that result from field induced modifications in the optical

properties of the materials. This branch of science explores the coherent coupling of

two or more electromagnetic fields in a nonlinear medium. During these coupling

processes, new frequencies can be generated that are the sum or the difference of the

coupling frequencies. Though the discovery of SHG marked the birth of nonlinear

optics as a new branch of experimental investigation, SHG was not the first nonlinear

optical (NLO) effect to be observed. Optical pumping is a nonlinear optical

phenomenon, which was known prior to the invention of laser [2]. A brief description

ofNLO interactions and NLO materials is given in the following sections.

2. Nonlinear polarization

Light is transverse electromagnetic (EM) wave. EM field is a vector field. Therefore,

in principle, when interaction of light with matter is formulated, the effect of both the

electric field (E) and magnetic field (B) as well as their directional nature must be

considered. Besides, spatial and temporal variation of E & B is also to be taken into

account [2]. However, light-matter interaction in nonmagnetic materials is described

in terms of E only. In non-magnetic materials, B is neglected [3]. Magnitude of B is

less than that of E. In fact, B is related to E through the velocity of light, c by the

relation

B= E/c (1.1)

3



Z-scan and DFWM studies in certain photonic materials

Based on the concept of harmonic oscillator, the basic physics of the light-matter

interaction can be summarized briefly as follows. E of light can interact with charged

particles in the matter, mainly electrons, and hence distort the equilibrium charge

distribution, which results in the separation of unlike charges to produce an electric

polarization. The polarization thus generated is related to externally applied electric

field through a characteristic property of the medium, called optical susceptibility [xl

[2]. It determines the magnitude as well as the direction of induced electric

polarization for a given field strength, at a particular wavelength. The magnitude of

optical susceptibility depends on various factors such as molecular and atomic

structure of the materials, wavelength of excitation and intensity of light [2]. It has

been found that when excitation intensity is increased, induced polarization becomes

a nonlinear function of applied electric field strength [2,4-6]. The consequence of the

nonlinear relationship between E and P is that, at very high values of intensity, a

number of new and interesting phenomena begin to manifest macroscopically.

In this context, it is highly desirable to examine the strength E associated with light

obtained from various sources used for optical excitation and compare the same with

interaton..c field. Eassociated with conventional light sources such as Xenon lamp

and Mercury lamp, which were mainly used to excite samples in the pre-laser era, is

very low in comparison with interatomic electric field. Because of its low electric

field strength, light from conventional sources cannot appreciably perturb the

molecular charge distribution. For instance, atomic field is of the order of 108 or 109

Vcm' [2,6, 7], whereas electric field strength associated with conventional sources is

102 _10 5 Vcm', Under the action of such a low electric field, electrons bound to the

nucleus are displaced only by about 10-18 m, which is very small in comparison with

interatomic distance, of the order of 10-10 m [4). Therefore, it can be said that this

small displacement is within the elastic limit and hence, there is no unharmonicity in

the oscillations of induced polarization. Hence, measurements using conventional

4



Chapter 1. Introduction

light sources gave a polarization P, which is linearly dependent on electric field

strength. P, in this case can be written as [6]

(1. 2)

where Eo is the susceptibility of vacuum. This domain of interaction of electric field

with matter is referred to as linear optics. Linear effects, also called first order effects,

include linear optical properties such as linear refractive index, linear absorption, and

birefringence.

With invention of lasers, which has high degree of spectral purity, coherence and

directionality, it has become possible to irradiate atoms and molecules with an E that

is comparable to interatomic field. This is because of the fact that lasers can be

focussed to a very small spot size, of the order of its wavelength, giving very large

intensity and consequently extremely high electric field strength, at the focal region.

This results in a considerable distortion of the equilibrium charge distribution, which

gives rise to a large displacement of electrons with respect to their equilibrium

position. Consequently, vibration of the electrons becomes highly unharmonic. It is

also interesting to note that, when laser beam is tightly focussed photon density at the

focal region approaches atomic density. In such cases, the potential which electrons

experience cannot be approximated to a parabolic one. Consequence' of this

unharmonicity is that unlike in eq.(1.2), induced polarization becomes a function of

higher powers of electric field too, i.e. nonlinear dependence on electric field

strength. In such cases the polarization is expressed as a power series in the applied

field as [8]

5



Z-scan and DFWM studies in certain photonic materials

Here, X(2) and X(3) correspond to second order and third order susceptibilities

respectively. Dj, D2 etc. are related to degeneracy [8]. In the nonlinear optical regime,

a number of interesting phenomena that are conspicuous by their absence in linear

regime, emerge. One significant difference between linear and nonlinear optical

interactions is that unlike in the linear case, in nonlinear optical processes two light

beams can interact and exchange energy through induced nonlinear polarization of

the medium [2]. In the case of very intense laser beams, even air itself can act as

nonlinear medium. It is well known that femtosecond laser pulses get self-focussed in

air [9]. One of the best examples of nonlinear process is the generation of super

continuum (white light), which occurs when some materials are irradiated with terra

watts of power. Many of these nonlinear optical effects have important scientific and

technological relevance. Therefore, study of nonlinear effects is very important. It

helps us to understand the mechanism of nonlinearity as well as its spatial and

temporal evolution. Besides, detailed knowledge of NLO processes and their

dynamics is also essential for the implementation of these teclmiques in appropriate

areas of technology such as optical switching [10], optical communication [11],

passive optical power limiting [12-14], data storage [15] and design of logic gates

[16,17].

The wavelength at which nonlinear parameters are measured is also important. If the

wavelength of excitation is close to one, two or three-photon resonance, resonant

enhancement of nonlinearity will occur. At and near resonant frequencies, refractive

index becomes a complex quantity. If wavelength of the light interacting with matter

is at or near resonance, the power series expansion as in eq.(1.3) is not relevant. In the

case of resonant excitation [2] (one photon, two-photon or three-photon), the

nonlinear susceptibility term corresponding to resonant absorption can have

enormously large magnitude. Generally, resonant nonlinearity has large magnitude

but slow response, whereas non-resonant nonlinearity has very fast response but low

in magnitude. Usually, observed nonlinear susceptibility is due to the response of

6



Chapter 1. Introduction

weakly bound outer most electrons of atoms or molecules. If Ea is the average

electric field experienced by such electrons due to nucleus and neighboring electrons,

we can consider the expansion in eq.(1.3) in terms of a dimensionless quantity,

El Ea. If the wavelength of excitation is far away from resonance, order of magnitude

of nonlinear susceptibility terms can then be written as (X(2» ::::: <X(I»/Ea and <X(3» ::::

(x(I»/Ea
2 and so on [2]. However, if the wavelength of excitation is very close to any

of resonant frequency, magnitude of nonlinearity can be much higher. If the

expansion of nonlinear polarization as power series in electric field is valid, the

corresponding nonlinearity is called weak nonlinearity. On the other hand, if the

frequency of excitation is very close to resonance, power series expansion as in eq.

(1.3) is not correct. Such nonlinearity is called strong nonlinearity [2].

3. Some important nonlinear effects

All the nonlinear optical effects can be broadly classified into two categories; one is

concerned with frequency conversion and the other one is concerned with optical

modulation [18]. Examples of frequency conversion processes are sum and difference

frequency generations. Processes concerned with optical modulation include Kerr

effect, self phase modulation etc. In optical modulation processes, light modulates

some property of the medium like refractive index. Generation of new frequencies in

frequency conversion processes is due to the oscillations of induced nonlinear

polarization at appropriate frequency. Obviously, frequency conversion processes are

instantaneous and take place in a time scale as short as the inverse of the frequencies

involved (:::: v'), However, common practice is to broadly classify the NLO effects on

the basis of the susceptibility term involved like second order, third order etc.

All the nonlinear optical interactions consist of two successive processes; (1) intense

light beam induces a nonlinear response (i.e. nonlinear polarization) in the medium

and (2) the medium reacts on the light, which induced the nonlinear polarization, and

modifies the light in a nonlinear way [2,8]. The first process is governed by the

7



Z-scan and DFWM studies in certain photonic materials

constitutive equations, which are general relations between external field and induced

polarization, written in terms of optical susceptibility X(n>. The second process is

governed by MaxweIl's equations, which describe the generation of new frequencies

in presence of nonlinear polarization. It is to be noted that the nonlinear polarization

acts as a source term in Maxwell's equations [2,8].

All the nonlinear interactions should satisfy certain conditions called "phase matching

condition" for macroscopic manifestation of NLO effects [2]. Physically, this

corresponds to the necessary condition for the constructive interference of new waves

generated in the interaction length. Mathematically, phase matching condition can be

written as

(1.4)

i.e. change in wave vector must be zero. If this condition is not satisfied, we will not

be able to observe any nonlinear effects macroscopically, even if the medium is

nonlinear. Phase matching condition depends on a number of factors such as

polarization of the light, symmetry of the sample etc.

As indicated earlier, propagation of EM waves in a nonlinear medium is governed by

Maxwell's equation [2]

(1.5)

Here a, f.l and e are conductivity, magnetic permeability and susceptibility of the

medium respectively. It is interesting to point out here that while Maxwell's equation

explains how new frequencies are generated in a nonlinear medium in presence of

nonlinear polarization, it does not tell how a nonlinear polarization is generated. The

later part is described solely by constitutive equations.

8



Chapter 1. Introduction

3.1 Second order effects

Second order effects which are related to X(2), correspond to all three wave mixing

phenomena such as second harmonic generation (SHG) X(2)(2w; 00, (0), optical

rectification X(2)(O; 00, -(0), parametric mixing X(2)(WI ± 002; Wh ± (02), Pocket's effect

X2(w;w, 0) [8]. Constitutive equation for typical second order process, under dipole

approximation, is given by [5]

p?Ol) _ L d~:E ~Ol)E~Ol)

j,k=x,y,z
(1. 6)

Summation over repeated index is assumed. Centro symmetric materials posses

inversion symmetry Le. VCr) = V(-r). Eq. (1.6) can satisfy this requirement only if

d~~O) vanishes completely. Hence, second order effects appear only innon-centro

symmetric materials. The most popular second order effect is SHG. Efficiency of

SHG is proportional to phase mismatch ~k as given by the relation [5]

(1.7)

It is obvious that as ~k deviate from zero, the conversion efficiency steadily

decreases.

3.2 Third order effects

Third order effects involve all four wave-mixing phenomena. Some of the important

third order effects are third harmonic generation (THG) X(3)(3w; 00, 00, (0), non

degenerate four wave mixing X(3)( 001 + 002 ± 003; 00], 002, ± (03), Raman scattering X(3)

(00 ± Q; 00, -00,00 ± Q), instantaneous AC Kerr effect (degenerate four wave mixing)

Rex(3)( 00; 00,00, -(0), BriIlouin scattering X(3) (00 ± Q; 00, -00, 00 ± Q), DC Kerr effect

9
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Re X(3)( 00; 00, 0, 0), two photon absorption Im[x(3)( 00; 00, -00, 00)] and electric field

induced second harmonic generation X(3)(200; 00, 00, 0) [8].

Unlike X(2), X(3) is present in all the materials [2], irrespective of their symmetry.

Therefore, third order nonlinearity is the lowest order universally occurring

nonlinearity. Real part of third order nonlinearity is responsible for optical switching

applications while imaginary part is responsible for optical limiting or nonlinear

absorption. Therefore, third order nonlinear optical effects are very important in the

context of technological applications. The general constitutive equation for the third

order process can be written, neglecting nonlocal terms, as

1\(3)(r,t) = LX~j~(COa + COb +COe,COa,oob,coJE/ooa,r)Ek(COb,r)Ej(coe,r)
a.d,c

(1.8)

3.3. Cascaded nonlinearity

Cascaded nonlinearity refers to a situation where a few lower order effects occur in a

sample successively to produce an effective higher order nonlinear process. There are

many occasions where first order and second order effects or first order and third

order nonlinear effects occur successively. For example, in degenerate four-wave

mixing experiments (DFWM) if two-photon absorption (TPA) is present, the optical

phase conjugate (OPC) signal is related to pump beam intensity through its fifth

power, instead of normal cubic dependence [19,20]. Photorefractive effect is also an

example for cascaded nonlinear effect. In this case, initially linear absorption (first

order phenomenon) takes places in the sample, which is followed by the occurrence

of quadratic electro-optic effect, which is a second order phenomenon [21,22].

Therefore, it need to be ensured that in the experiments involving NLO effects, no

unintended cascaded nonlinear effects does interfere with measurements.

10
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3.4 Susceptibility tensor and hyperpolarizability

In isotropic materials, orientation of induced polarization Por electric induction

vector fi, given by eq. (1.9), [23]

(1.9)

is along the direction of external electric field. But in anisotropic materials, electric

induction vector is not oriented along the direction of inducing field alone, but it can

have components in other directions as well. Magnitude of different components is

usually different. Since refractive index (and hence velocity of light) is related to

polarization, non-parallelism between the cause (excitation) and the response

(polarization) gives rise to optical anisotropy. Therefore, susceptibility is generally a

tensor. Optical double refraction is the most familiar example of optical anisotropy.

In the case of solids, the origin of non-parallelism between the response and

excitation can be found in the crystalline nature of matter. In this type of materials,

the vectorial nature of light is very important [23].

The nth order susceptibility X(n) is a tensor of rank (n+l) with 3(n+l) components.
l] .. ]n

However, when symmetry conditions are applied, the number of independent

components may be reduced. In certain experiments, it is possible to select different

components by properly choosing the polarizations of interacting beams. The

susceptibility tensors satisfy symmetry relationship, as shown below [2]:

(l.IO)

11



Z-scan and DFWM studies in certain photonic materials

For isotropic non dissipative media, there are only three independent components as

is evident from following equations [2).

Xxxxx = Xyyyy = Xzzzz

Xyyzz = Xzzyy = Xzzxx = Xxxzz = Xxxyy = Xyyxx

Xyzyz = Xzyzy = Xzxzx = Xxzxz = Xxyxy = Xyxyx

Xyzzy = Xzyyz = Xzxxz = Xxzzx = Xxyyz = Xyxxy.

Xxx>;x = Xxxyy + X>;yxy + X>;yyx

(1.11)

Nonlinear susceptibility X(n) is a macroscopic quantity, which corresponds to the

response of bulk material. Corresponding microscopic quantity is the atomic

polarizability u(n}. In very dilute media, where dipole-dipole interaction can be

neglected, X(n) is related to u(n
j by the equation [2}

x(n) =Na(n) (1.12)

where, N is the number of molecules per unit volume. In presence of induced dipole­

dipole interaction

X(Il} =eNa(n) where L, the local field correction factor, is given by L= (0
2

+2)
3

(n is the refractive index)

4. Applications

As indicated earlier, there are a number of applications for NLO effects in various

fields of technology and basic research [10-17]. Hence, study of NLO effects is

highly relevant and desirable. Apart from the magnitude of nonlinearity, other

parameters relevant to the applications of NLO effects are its (1) sign, (2) response

time and (3) nature (real or imaginary) of the nonlinearity at the wavelength of

excitation. In this section, a few important NLO effects are described briefly.

12
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4.1 Frequency mixing

Highpower lasers in different spectral regions can be obtained by sum and difference

frequency generations. For example, lasers in the infrared region can be obtained by

difference frequency generation, whereas laser beams in the visible and UV regions

can be obtained from sum frequency generations. Frequency doubled YAG laser is

the most popular source of green light. Frequency tripled YAG laser is used for

fusion applications. Optical parametric oscillators, which work on the principle of

parametric wave mixing, are now used to get continuously tunable laser output from

400 nm to 2000 nm [24].

4.2 Optical short pulse generation and measurement

Optical pulses having pulse width less than nanosecond can be obtained only by using

nonlinear techniques. Picosecond pulses can be obtained by mode locking technique

[5]. Among different mode locking techniques, passive mode locking using nonlinear

saturable absorbers is preferred due to intrinsic speed limit of active mode locking

techniques using acousto-optic & electro-optic modulators [6]. Organic films, dye

jets, bulk semiconductor quantum wells ete are some of the nonlinear media used for

this purpose [25]. Pulse width of less than one picosecond is usually measured by

autocorrelation technique which utilizes SHG [5]. Frequency resolved optical grating

(FROG) is a nonlinear optical technique used for measuring the time dependant

intensity and phase of a femtosecond pulses [26]. Thus, generation and

characterization of ultra short pulses is possible only with appropriate tionlinear

processes.

4.3 Nonlinear optical effects in optical communications

The sign of the refractive nonlinearity determines whether self-focussing or self­

defocusing will occur in a medium when intense light propagates through it [2]. In

communication, Stimulated Brillioun Scattering, Stimulated Raman Scattering etc.

are detrimental effects, as they can cause optical loss and also frequency shift during

13
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propagation of laser beams through fibers. Fiber amplifiers are used to compensate

the attenuation. Stimulated Brillioun Scattering is particularly important in single

mode fibers. Self phase modulation is also an important nonlinear phenomenon in

optical fiber communications as it can effect pulse broadening. Today's fiber

communication employs optical! eletrical/optical converters at the transmitter and

receiver ends. The bandwidth of optical signal is very much higher than that of

electronics and therefore, the opticall eletrical/optical conversion processes act like a

bottleneck in the exploitation of full bandwidth of optics. This bottleneck can be

removed if all optical devices are fabricated using NLO effects [27,28].

4.4 Optical switching

Organic materials with large and fast nonlinearity are promising candidates for

optical switching [10]. The response time of the nonlinearity depends on the

mechanism of evolution of nonlinearity. Therefore, it determines the operating speed

of the devices. Refractive nonlinearity is responsible switching [29].

x

Kerr cell

t
Fig. 1. Working of an optical switch
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Schematic diagram of optical switching is shown in fig. I. Ultimate goal is the design

and fabrication of switches, wires, transistors and gates made of single field

responsive molecule connected by photonic wires [30]. The difference between an

electronic wire and a photonic wire is that the latter supports excited energy transfers

rather than electronlhole transfer process [31]. Absorption of a photon as input by a

chromophore at one end, causes emission of a photon at other end as out put. Optical

switching by third order effects (e.g. optical Kerr effect) has advantages over linear

electro-optic effect. The former has instantaneous response (response time around a

picosecond) while the latter's response time can be higher [4]. This is because of the

fact that electro-optic effects involve charge separation and hence the speed of

switching is determined by the mobility of carries [26]. All optical switching requires

a phase shift of more than 11: to be induced by light intensity through refractive index

modulation [29].

4.5 Optical limiting

Passive optical power limiters are used to protect sensors, including human eyes,

from intense laser light [12-14]. An ideal optical limiter (fig.2] will have a linear

transmission upto a threshold input fluence Ith value, which can vary for different

materials.

t,
Input fluence (J cm'2)

Fig. 2. Ideal optical limiting curve
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