Now showing items 1-3 of 3
Abstract: | Linear alkylbenzene sulfonic acid, the largest-volume synthetic surfactant, in addition to its excellent performance , is important due to its biodegradable environmental friendliness, as it has a straight chain and is prepared by the sulphonation of linear alkylbenzenes (LAB). To ensure environmental protection, the commercial benzene alkylation catalysts HF or AICI3 are replaced and we have developed a clean LAB production process using a pillared clay catalyst capable of not only replacing the conventional homogeneous catalyst, but also having high selectivity for the best biodegradable 2-phenyl LAB isomer .Pillared clay catalysts having high Bronsted acidity show efficient conversion in gas phase alkylation of benzene with 1-octene with a good 2-phenyl octane selectivity. |
URI: | http://dyuthi.cusat.ac.in/xmlui/purl/1937 |
Files | Size |
---|---|
alkylation of Benzene...pdf | (306.7Kb) |
Abstract: | The heterogeneous photocatalytic degradation of methylorange over TiO2 is studied and is found to be cost effective. Effect of Zirconium metal incorporation over titania system is investigated. Photocatalytic degradation of methylorange using solar radiation is found to be highly economical when compared with the processes using artificial UV radiation, which require substantial electrical power input. The characterization of titania as well as modified zirconium metal doped titania systems are done using XRD, FTIR and EDAX measurements. The catalytic activities of different systems are also compared and is tried to correlate with the crystallite size and presence of dopant metal. |
URI: | http://dyuthi.cusat.ac.in/purl/2127 |
Files | Size |
---|---|
Photodegradation of methylorange...pdf | (127.3Kb) |
Abstract: | In situ polymerization of aniline is done inside the pillared clay matrix. The nonswellable pillared clay confined matrix allows efficient polymerization that leads to nanofibrous morphology. As a result high polymer order and crystallinity is attained and is evident from XRD patterns. The strong interaction between the clay layers and polyaniline (PANI) is understood from FTIR and DRS spectra. Additionally these analytical results suggest that the prepared PANI is in the doped state. The PANI/pillared clay nanocomposite formation gives additional thermal stability to the polymer backbone and is clear from the DTG curves. |
URI: | http://dyuthi.cusat.ac.in/xmlui/purl/1938 |
Files | Size |
---|---|
Polyaniline....pdf | (238.4Kb) |
Now showing items 1-3 of 3
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.