Now showing items 1-5 of 5
Abstract: | Mesoporous silica nanoparticles provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. Additionally, mesoporous silica materials can be synthesized together with other nanomaterials to create new nanocomposites, opening up a wide variety of potential applications. The ready functionalization of silica materials makes them ideal candidates for bioapplications and catalysis. These properties of mesoporous silica like high surface areas, large pore volumes and ordered pore networks allow them for higher loading of drugs or biomolecules. Comparative studies have been made to evaluate the different procedures; much of the research to date has involved quick exploration of new methods and supports. Requirements for different enzymes may vary, and specific conditions may be needed for a particular application of an immobilized enzyme such as a highly rigid support. In this endeavor, mesoporous silica materials having different pore size were synthesized and easily modified with active functional groups and were evaluated for the immobilization of enzymes. In this work, Aspergillus niger glucoamylase, Bovine liver catalase, Candida rugosa lipase were immobilized onto support by adsorption and covalent binding. The structural properties of pure and immobilized supports are analyzed by various characterization techniques and are used for different reactions of industrial applications. |
Description: | Department of Applied Chemistry Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/4627 |
Files | Size |
---|---|
Dyuthi-T1819.pdf | (12.06Mb) |
Abstract: | Recently’ recognition cnf immobilization ‘technology for the rapid conversion of several substrates into metabolites and repeated reuse of the biocatalysts have drawn the attention of the fermentation scientists and technologists to try these new technologies for the rapid production of pnxkmt and enhancement of the efficiencies of the systems Hence in the present study rice was selected,as a substrate since it is a rich source of starch, available and cultivated throughout the year almost in all part of our country. Rice although known for its use as a staple food in many forms as rice, idli, dosai etc., has not been used in industry extensively. However, it ii; a potential resource for’ the production of alcohol, high protein food anui for sugar and sugar syrups as it is evidenced by the few reports mentioned in the review of literature. Of the several microorganisms available, Bacillus sp, is a known candidate for the production of amylases. Hence in the present study Bacillus sp, was desired for its known efficiencies in starch conversion |
Description: | Department of Applied Chemistry, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/3658 |
Files | Size |
---|---|
Dyuthi-T1578.pdf | (3.142Mb) |
URI: | http://dyuthi.cusat.ac.in/purl/2714 |
Files | Size |
---|---|
Dyuthi-T0761.pdf | (3.497Mb) |
Abstract: | The present study is about the Pseudomonas sp. BTMS-51 isolated from the marine sediments of Cochin Coast. In the present study, it is concluded that marine bacteria are ideal candidates for immobilization using either Ca-alginate entrapment or physical adsorption on to synthetic inert supports and the process of immobilization does not negatively influence them. Thus, Ca-alginate entrapment of the bacteria was found to be well suited for reuse of the biomass and extended operational stability during continuous operation. Adherence of the bacterium to inertsupports was observed to be strong and it imparted minimal stress on the immobilized bacterium and allowed detachment and relocation on the supports which enabled the formation of a dynamic equilibrium maintaining a stable cell loading. This is particularly desirable in the industry for extended operational stability and maintenance of consistently higher outputs. Marine Pseudomonas sp. BTMS-51 is ideal for industrial production of extra cellular L-glutaminase and immobilization on to synthetic inert support such as polyurethane foam could be an efficient technique, employing packed bed reactor for continuous production of the enzyme. Temperature and glutamine concentration had significant effects on enzyme production by cells immobilized on polyurethane foam (PUF). |
URI: | http://dyuthi.cusat.ac.in/purl/930 |
Files | Size |
---|---|
Dyuthi-T0194.pdf | (6.904Mb) |
Abstract: | This work was focused to study the immobilization of enzymes on polymers. A large range of polymer matrices have been employed as supports for enzyme immobilization. Here polyaniline (PAN!) and poly(0~toluidine) (POT) were used as supports. PANI and POT provides an excellent support for enzyme immobilization by virtue of its facile synthesis, superior chemical and physical stabilities, and large retention capacity. We selected industrially important starch hydrolyzing enzymes a-amylase and glucoamylase for the study. In this work the selected enzymes were immobilized via adsorption and covalent bonding methods.To optimize the catalytic efficiency and stability of the resulting biocatalysts, the attempt was made to understand the immobilization effects on enzymatic properties. The effect of pH of the immobilization medium, time of immobilization on the immobilization efficiency was observed. The starch hydrolyzing activity of free 0:-amylase and glucoamylase were compared with immobilized forms. Immobilization on solid supports changes the microenvironment of the enzyme there by influences the pH and temperature relationship on the enzymatic activity. Hence these parameters also optimized. The reusability and storage stability of immobilized enzymes an important aspect from an application standpoint, especially in industrial applications. Taking in to consideration of this, the reusability and the long tenn storage stability of the immobilized enzyme investigated. |
Description: | Department of Applied Chemistry, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/2846 |
Files | Size |
---|---|
Dyuthi-T0855.pdf | (4.593Mb) |
Now showing items 1-5 of 5
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.