Abstract: | The reactions involving fulvenes and its derivatives have received a great deal of attention over the years in synthetic organic chemistry. Functionalizations of fulvenes provide versatile and powerful approaches to various polycyclic systems and natural products. They serve as versatile intermediates in the construction of various ring systems through inter- as well as intramolecular cycloadditions. Compared to the rich literature on the cycloaddition reactions of pentafulvenes, much less attention has been paid to the synthetic utilization of their cycloadducts. Tactical manipulations on the chosen adduct offer the prospects for designing a variety of useful molecular skeletons. Addition of heterodienophiles to fulvenes offers an efficient strategy towards the synthesis of azabicyclic olefins. However, there have been no serious attempts to study the synthetic utility of these substrates. In this context and with the intention of utilizing pentafulvenes towards synthetically important molecules, author decided to explore the reactivity of pentafulvene derived azabicyclic olefins. Our attention was focused on the synthetic potential associated with the ring opening of fulvene derived bicyclic hydrazines under palladium catalysis. It was envisioned that the desymmetrization of these adducts using various soft nucleophiles will provide a novel access to synthetically and biologically important alkylidene cyclopentenes. The investigations along this line form the focal theme of this thesis entitled “PALLADIUM CATALYZED CARBONCARBON/ CARBON-HETEROATOM BOND FORMATION REACTIONS UTILIZING PENTAFULVENE DERIVED BICYCLIC HYDRAZINES |
Description: | Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/3536 |
Files | Size |
---|---|
Dyuthi-T1505.pdf | (2.395Mb) |
Abstract: | The discovery of the Photoacoustic (PA) effect was a remarkable achievement and was relegated to the scientific footnotes of the nineteenth century. However, after the advent of lasers and sophisticated electronics this effect was rediscovered and it has established itself as an important research and analytical tool in numerous areas, including physics, chemistry, biology and medicine. Quite recently, this phenomenon has made its impact in the field of laser technology for applications such as the developments of highly efficient active media for lasers, high quality optics and sensitive laser power monitoring devices. This thesis presents the work carried out by the author in this field during the past few years at the Department of Physics in Cochin University of Science and Technology. The studies discussed here are mostly based on the development of a sensitive PA laser power meter and its various applications using different laser systems available in the laboratory. This includes the development of a current regulated CW C0 laser and its application in material processing. The thesis contains seven chapters which by and large are self contained with separate abstracts and references. The first chapter which is divided into two parts presents an introduction to the PA effect and its present status. Part A reviews the basic theory of laser and gives a sum mary of various lasers and their applications. Part B presents a brief description of PA effect and its suitability as a spectroscopic tool followed by its applications to various branches of science and technology. |
Description: | Department of Physics, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/3388 |
Files | Size |
---|---|
Dyuthi-T1365.pdf | (4.026Mb) |
URI: | http://dyuthi.cusat.ac.in/purl/1705 |
Files | Size |
---|---|
Dyuthi-T0209.pdf | (5.253Mb) |
URI: | http://dyuthi.cusat.ac.in/purl/1700 |
Files | Size |
---|---|
Dyuthi-T0208.pdf | (5.832Mb) |
URI: | http://dyuthi.cusat.ac.in/purl/1118 |
Files | Size |
---|---|
Madhusoodanan K N 1989.pdf | (2.690Mb) |
Abstract: | This thesis work has mainly concentrated on the investigation of the ,optical and thermal properties of binary semiconducting chalcogenide glasses belonging to the AivB¥5x and AZBXEX families. The technique used for these studies is a relatively new one namely, the photoacoustic (PA) technique. This technique is based on the detection of acoustic signal produced in an enclosed volume when the sample is irradiated by an intensity modulated radiation. The signal produced depends upon the optical properties of the sample, and the thermal properties of the sample, backing material and the surrounding gas. For the present studies an efficient signal beam gas-microphone PA spectrometer, consisting of a high power Xenon lamp, monochromator, light beam chopper, PA cell with microphone and lock-in amplifier, has been set up. Two PA cells have been fabricated: one for room temperature measurements and another for measurements at high temperatures. With the high temperature PA cell measurements can be taken upto 250°C. Provisions are incorporated. in both the cells to change the volume and to use different backing materials for the sample. The cells have been calibrated by measuring the frequency response of the cells using carbon black as the sample |
Description: | Department of physics, Cochin University of Science And Technology |
URI: | http://dyuthi.cusat.ac.in/purl/3335 |
Files | Size |
---|---|
Dyuthi-T1299.pdf | (2.637Mb) |
URI: | http://dyuthi.cusat.ac.in/purl/1112 |
Files | Size |
---|---|
Satheesh Kumar M K 1988.pdf | (1.186Mb) |
Description: | Department of Applied Chemistry, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/xmlui/purl/1943 |
Files | Size |
---|---|
Dyuthi-T0438.pdf | (3.661Mb) |
Abstract: | Photoconductivity (PC) processes may be the most suitable technique for obtaining information about the states in the gap. It finds applications in photovoItaics, photo detection and radiation measurements. The main task in the area of photovoltaics, is to increase the efficiency of the device and also to develop new materials with good optoelectronic properties useful for energy conversion, keeping the idea of cost effectiveness. Photoconduction includes generation and recombination of carriers and their transport to the electrodes. So thermal relaxation process, charge carrier statistics, effects of electrodes and several mechanisms of recombination are involved in photoconductivity.A major effect of trapping is to make the experimentally observed decay time of photocurrent, longer than carrier lifetime. If no trapping centers are present, then observed photocurrent will decay in the same way as the density of free carriers and the observed decay time will be equal to carrier lifetime. If the density of free carriers is much less than density of trapped carriers, the entire decay of photocurrent is effectively dominated by the rate of trap emptying rather than by the rate of recombination.In the present study, the decay time of carriers was measured using photoconductive decay (PCD) technique. For the measurements, the film was loaded in a liquid Helium cryostat and the temperature was controlled using Lakshore Auto tuning temperature controller (Model 321). White light was used to illuminate the required area of the sample. Heat radiation from the light source was avoided by passing the light beam through a water filter. The decay current. after switching off the illumination. was measured using a Kiethely 2000 multi meter. Sets of PCD measurements were taken varying sample temperature, sample preparation temperature, thickness of the film, partial pressure of Oxygen and concentration of a particular element in a compound. Decay times were calculated using the rate window technique, which is a decay sampling technique particularly suited to computerized analysis. For PCD curves with two well-defined regions, two windows were chosen, one at the fast decay region and the other at the slow decay region. The curves in a particular window were exponentially fitted using Microsoft Excel 2000 programme. These decay times were plotted against sample temperature and sample preparation temperature to study the effect of various defects in the film. These studies were done in order to optimize conditions of preparation technique so as to get good photosensitive samples. useful for photovoltaic applications.Materials selected for the study were CdS, In2Se3, CuIn2Se3 and CuInS2• Photoconductivity studies done on these samples are organised in six chapters including introduction and conclusion. |
Description: | Department of Physics, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/2324 |
Files | Size |
---|---|
Dyuthi-T0598.pdf | (5.320Mb) |
URI: | http://dyuthi.cusat.ac.in/xmlui/purl/1979 |
Files | Size |
---|---|
Dyuthi-T0439.pdf | (8.882Mb) |
URI: | http://dyuthi.cusat.ac.in/purl/5222 |
Files | Size |
---|---|
Dyuthi T-2257.pdf | (81.59Mb) |
Abstract: | Determining the morphological parameters that describe galaxies has always been a challenging task. The studies on the correlations between different photometric as well as spectroscopic parameters of the galaxies help in understanding their structure, properties of the stars and gas which constitute the galaxy, the various physical and chemical processes which determine the properties, and galaxy formation and evolution. In the last few decades, the advent of Charge Coupled Devices (CCDs) and near infrared arrays ha\·e provided quick and reliable digitized data acquisition, in the optical and near infrared bands. This has provided an avalanche of data, which can be processed using sophisticated image analysis techniques to obtain information about the morphology of galaxies. The photometric analysis performed in this thesis involve the extraction of structural parameters of early type gala.xies imaged in the near infrared K (2.2ttm) band, obtaining correlations between these, parameters and using them to constrain the large scale properties of galaxi,~s. |
Description: | Department of Physics, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/3816 |
Files | Size |
---|---|
Dyuthi-T1747.pdf | (2.706Mb) |
Abstract: | This thesis presents in detail. the theoretical developments and calculations which are used for the simultaneous determination of thermal parameters, namely thermal diffusivity (a). thermal effusivity (e), thermal conductivity (K) and heat capacity (cr ) employing photopyroelectric technique. In our calculations. we have assumed that the pyroelectric detector is supported on a copper backing. so that there will be sufficient heat exchange between the heated pyroelectric detector and the backing so that the signal fluctuations are reduced to a minimum. Since the PPE signal depends on the properties of the detector that are also temperature dependent. a careful temperature calibration of the system need to be carried out. APPE cell has been fabricated for the measurements that can be used to measure the thermal properties of solid samples from ~ 90 K to ~ 350 K. The cell has been calibrated using standard samples and the accuracy of the technique is found to be of the order of± 1%.In this thesis, we have taken up work n photopyroelectric investigation of thermal parameters of ferroelectric crystals such as Glycine phosphite (NH3CH2COOH3P03), Triglycine sulfate and Thiourea as well as mixed valence perovskites samples such as Lead doped Lanthanum Manganate (Lal_xPb~Mn03) Calcium doped (Lal_xCaxMnOJ) and Nickel doped Lanthanum Stroncium Cobaltate (Lao~Sro5Ni,Col_x03).The three ferroelectric crystals are prepared by the slow evaporation technique and the mixed valence perovskites by solid state reaction technique.Mixed valence perovskites, with the general formula RI_xA~Mn03 (R = La. Nd or Pr and A = Ba, Ca, Sr or Pb) have been materials of intense experimental and theoretical studies over the past few years. These materials show . colossal magneloresis/ance' (CMR) in samples with 0.2 < x < 0.5 in such a doping region, resistivity exhibits a peak at T = T p' the metal - insulator transition temperature. The system exhibits metallic characteristics with d %T > Oabove Tp (wherep is the resistivity) and insulating characteristics with d % T < 0 above T p. Despite intensive investigations on the CMR phenomena and associated electrical properties. not much work has been done on the variation of thermal properties of these samples. We have been quite successful in finding out the nature of anomaly associated with thermal properties when the sample undergoes M-I transition.The ferroelectric crystal showing para-ferroelectric phase transitions - Glycine phosphite. Thiourea and Triglycine sulfate - are studied in detail in order to see how well the PPE technique enables one to measure the thermal parameters during phase transitions. It is seen that the phase transition gets clearly reflected in the variation of thermal parameters. The anisotropy in thermal transport along different crystallographic directions are explained in terms of the elastic anisotropy and lattice contribution to the thermal conductivity. Interesting new results have been obtained on the above samples and are presented in three different chapters of the thesis.In summary. we have carried investigations of the variations of the thermal parameters during phase transitions employing photopyroelectric technique. The results obtained on different systems are important not only in understanding the physics behind the transitions but also in establishing the potentiality of the PPE tool. The full potential of PPE technique for the investigation of optical and thermal properties of materials still remains to be taken advantage of by workers in this field. |
Description: | Department of Instrumentation, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/2484 |
Files | Size |
---|---|
Dyuthi-T0667.pdf | (7.710Mb) |
Abstract: | Material synthesizing and characterization has been one of the major areas of scientific research for the past few decades. Various techniques have been suggested for the preparation and characterization of thin films and bulk samples according to the industrial and scientific applications. Material characterization implies the determination of the electrical, magnetic, optical or thermal properties of the material under study. Though it is possible to study all these properties of a material, we concentrate on the thermal and optical properties of certain polymers. The thermal properties are detennined using photothermal beam deflection technique and the optical properties are obtained from various spectroscopic analyses. In addition, thermal properties of a class of semiconducting compounds, copper delafossites, arc determined by photoacoustic technique.Photothermal technique is one of the most powerful tools for non-destructive characterization of materials. This forms a broad class of technique, which includes laser calorimetry, pyroelectric technique, photoacollstics, photothermal radiometric technique, photothermal beam deflection technique etc. However, the choice of a suitable technique depends upon the nature of sample and its environment, purpose of measurement, nature of light source used etc. The polynler samples under the present investigation are thermally thin and optically transparent at the excitation (pump beam) wavelength. Photothermal beam deflection technique is advantageous in that it can be used for the detennination of thermal diffusivity of samples irrespective of them being thermally thick or thennally thin and optically opaque or optically transparent. Hence of all the abovementioned techniques, photothemlal beam deflection technique is employed for the successful determination of thermal diffusivity of these polymer samples. However, the semi conducting samples studied are themlally thick and optically opaque and therefore, a much simpler photoacoustic technique is used for the thermal characterization.The production of polymer thin film samples has gained considerable attention for the past few years. Different techniques like plasma polymerization, electron bombardment, ultra violet irradiation and thermal evaporation can be used for the preparation of polymer thin films from their respective monomers. Among these, plasma polymerization or glow discharge polymerization has been widely lIsed for polymer thin fi Im preparation. At the earlier stages of the discovery, the plasma polymerization technique was not treated as a standard method for preparation of polymers. This method gained importance only when they were used to make special coatings on metals and began to be recognized as a technique for synthesizing polymers. Thc well-recognized concept of conventional polymerization is based on molecular processcs by which thc size of the molecule increases and rearrangemcnt of atoms within a molecule seldom occurs. However, polymer formation in plasma is recognized as an atomic process in contrast to the above molecular process. These films are pinhole free, highly branched and cross linked, heat resistant, exceptionally dielectric etc. The optical properties like the direct and indirect bandgaps, refractive indices etc of certain plasma polymerized thin films prepared are determined from the UV -VIS-NIR absorption and transmission spectra. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer. The thermal diffusivity has been measured using the photothermal beam deflection technique as stated earlier. This technique measures the refractive index gradient established in the sample surface and in the adjacent coupling medium, by passing another optical beam (probe beam) through this region and hence the name probe beam deflection. The deflection is detected using a position sensitive detector and its output is fed to a lock-in-amplifIer from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the deflection signal is suitably analyzed for determining the thermal diffusivity.Another class of compounds under the present investigation is copper delafossites. These samples in the form of pellets are thermally thick and optically opaque. Thermal diffusivity of such semiconductors is investigated using the photoacoustic technique, which measures the pressure change using an elcctret microphone. The output of the microphone is fed to a lock-in-amplificr to obtain the amplitude and phase from which the thermal properties are obtained. The variation in thermal diffusivity with composition is studied. |
Description: | Department of Physics, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/2343 |
Files | Size |
---|---|
Dyuthi-T0616.pdf | (6.243Mb) |
Abstract: | Non-destructive testing (NDT) is the use of non-invasive techniques to determine the integrity of a material, component, or structure. Engineers and scientists use NDT in a variety of applications, including medical imaging, materials analysis, and process control.Photothermal beam deflection technique is one of the most promising NDT technologies. Tremendous R&D effort has been made for improving the efficiency and simplicity of this technique. It is a popular technique because it can probe surfaces irrespective of the size of the sample and its surroundings. This technique has been used to characterize several semiconductor materials, because of its non-destructive and non-contact evaluation strategy. Its application further extends to analysis of wide variety of materials. Instrumentation of a NDT technique is very crucial for any material analysis. Chapter two explores the various excitation sources, source modulation techniques, detection and signal processing schemes currently practised. The features of the experimental arrangement including the steps for alignment, automation, data acquisition and data analysis are explained giving due importance to details.Theoretical studies form the backbone of photothermal techniques. The outcome of a theoretical work is the foundation of an application.The reliability of the theoretical model developed and used is proven from the studies done on crystalline.The technique is applied for analysis of transport properties such as thermal diffusivity, mobility, surface recombination velocity and minority carrier life time of the material and thermal imaging of solar cell absorber layer materials like CuInS2, CuInSe2 and SnS thin films.analysis of In2S3 thin films, which are used as buffer layer material in solar cells. The various influences of film composition, chlorine and silver incorporation in this material is brought out from the measurement of transport properties and analysis of sub band gap levels.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention. Chapter six thus elucidates the theoretical aspects of application of photothermal techniques for solar cell analysis. The experimental design and method for determination of solar cell efficiency, optimum load resistance and series resistance with results from the analysis of CuInS2/In2S3 based solar cell forms the skeleton of this chapter. |
Description: | Department of Physics, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/2368 |
Files | Size |
---|---|
Dyuthi-T0640.pdf | (3.607Mb) |
Description: | Department of Physics, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/xmlui/purl/2110 |
Files | Size |
---|---|
Dyuthi-T0440.pdf | (5.920Mb) |
Abstract: | Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator. |
Description: | Department of Physics, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/2330 |
Files | Size |
---|---|
Dyuthi-T0604.pdf | (5.899Mb) |
Abstract: | The thesis entitled “Photovoltaic and nonlinear optical studies of a few Donor-π-Acceptor molecules with s-triazine core” embodies the results of the investigations carried out to study unsymmetrically substituted s-Triazine cored starburst donor – acceptor systems with a bipodal acceptor/anchoring group design. The thesis opens with a review on the application of organic donor-acceptor systems in photovoltaics with special emphasis on applications in dye sensitised solar cells. The review also briefly discusses the application of such systems in the development of nonlinear optical materials.The unique structure of s-triazine do not permit direct coupling between the donor and acceptor moieties and this has been used as an effective tool for tuning HOMO and LUMO energy levels of such donor acceptor molecules. The effect of nature of the -bridge and the acceptor groups on the photovoltaic properties was studied and the results are presented in chapters 2, 3 and 4. Among the three types of -bridges studied, thiophene served as the best in terms of improving absorption spectral properties. Thiophene bridged dyes (DTT-CYA, DTT-RHA, DTT-BA and DTT-TBA) showed better coverage of the solar spectrum. Photovoltaic properties of these dyes were studied by constructing sandwhich model dye sensitized solar cells with nanocryasalline thin film of TiO2 on FTO coated with the respective dye as the photoanode, I-/I3- and Br-/Br3- as the redox couple/electrolyte and a platinized FTO as the cathode. The cell parameters and the photoconversion efficiency calculated show that the thiophene bridged dyes when used with Br-/Br3- as the redox couple/electrolyte have the optimal performance |
URI: | http://dyuthi.cusat.ac.in/purl/5169 |
Files | Size |
---|---|
Dyuthi-T2203.pdf | (6.127Mb) |
Abstract: | Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements |
Description: | Department of Applied Chemistry, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/3107 |
Files | Size |
---|---|
Dyuthi-T1081.pdf | (10.21Mb) |
Abstract: | This thesis entitled Physicochemical and molecular characterization of bacteriophages ΦSP-1and ΦSP-3, specific for pathogenic Salmonella and evaluation of their potential as biocontrol agent . Salmonella were screened using standard methodologies from various environmental samples including chicken caecum. Salmonella strains, which were previously isolated and stocked in the lab, were also included in this study as host, for screening Salmonella specific lytic phages. The Salmonella strain in this study designated as S49 which helped in phage propagation by acting as host bacteria was identified as Salmonella enterica subsp. enterica by 16S rRNA gene analysis and serotyping . A total of three Salmonella specific phage named as ΦSP-1, ΦSP-2 and ΦSP-3 were isolated from chicken intestine samples via an enrichment protocol employing the double agar overlay method. ΦSP-1 and ΦSP-3 showing consistent lytic nature were selected for further study and were purified by repeated plating after picking of single isolated plaques from the lawns of Salmonella S49 plates. Both the phages produced small, clear plaques indicating their lytic nature. ΦSP-1 and ΦSP-3 were concentrated employing PEG-NaCl precipitation method before further characterization. The focus of present study was to isolate, characterize and verify the efficacy of lytic bacteriophages against the robust pathogen Salmonella, capable of surviving under various hostile conditions. Two phages, ΦSP-1 and ΦSP-3, belonging to two families, Podovoridae and Siphoviridae were isolated. |
Description: | Department of Biotechnology, Cochin University of Science and Technology |
URI: | http://dyuthi.cusat.ac.in/purl/3065 |
Files | Size |
---|---|
Dyuthi-T1039.pdf | (7.420Mb) |
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.