Now showing items 1-4 of 4
Abstract: | Understanding of the Atmospheric Boundary Layer (ABL) is imperative in the arena of the monsoon field. Here, the features of the ABL are studied employing Conserved Variable Analysis (CVA) using equivalent potential temperature and humidity. In addition, virtual potential temperature and wind are used during active and weak phases of monsoon. The analysis is carried out utilising the radiosonde observations during the monsoon months for two stations situated in the west coast of India. All these parameters show considerable variations during active and weak monsoon phases in both the stations. The core speed and core height vary with these epochs. The core speed is found to be more than 38 knots in the active monsoon phase around 1.2 km over Trivandrum and around 2 km over Mangalore. But during weak monsoon phase the core wind speed is decreased and core height is elevated over both stations. The wind direction shows an additional along shore component during weak monsoon period. The Convective Boundary Layer (CBL) height shows increase during weak monsoon phase over both stations due to less cloudiness and subsequent insolation. The CBL height during the southwest monsoon is more over Mangalore and is attributed by the orographic lifting in the windward side of the Western Ghats while the influence of the Ghats is less over Trivandrum. |
Description: | E:\IMS-1&2ND ISSUE\VAYUMANDAL-2007 IIND\111-131 |
URI: | http://dyuthi.cusat.ac.in/purl/3781 |
Files | Size |
---|---|
CAB.HV_Vayu.pdf | (985.2Kb) |
Abstract: | The oscillations in the Atmospheric Boundary Layer (ABL) are important because the transport mechanism from the surface to the upper atmosphere is governed by the ABL characteristics. The study was carried out using wind and temperature data observed at surface, 925 hPa and 850 hPa levels over Cochin and the different frequencies embedded in the boundary layer parameters are identified by employing wavelet technique. Surface boundary layer characteristics over the monsoon region are closely linked to the upper layer monsoon features. In this perception it is important to study the various oscillations in the surface boundary layer and the layer above. It is found that the wind and temperature at different levels show oscillations in Quasi Biweekly Mode (QBM) and Intra Seasonal Oscillation (ISO) bands as observed in a typical monsoon system. Amplitude of the oscillation varies with height. The amplitude of the QBM periodicity is more in the surface levels but in the upper levels the amplitude of the ISO periodicity is more than that of the QBM. From this, it is obvious that the controlling mechanism of QBM band is surface parameters such as surface friction and that for ISO band is associated with the active-break cycles of monsoon system |
Description: | J.Mar. Atmos. Res. Vol.3, N o. 1 Jan. 2007, 59-63 |
URI: | http://dyuthi.cusat.ac.in/purl/3783 |
Files | Size |
---|---|
CAB.VH.PKK.TPS_JMAR.pdf | (174.9Kb) |
Abstract: | The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coe±cient for the di®erent seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coe±cient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (»0.2 m s¡1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s¡1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s¡1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5£10¡7 N m¡3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coe±cient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was con¯rmed via wavelet analysis. In the case of the drag coe±cient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coe±cient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied. |
Description: | ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 24, NO. 4, 2007, 631{643 |
URI: | http://dyuthi.cusat.ac.in/purl/3799 |
Files | Size |
---|---|
VH.CAB.TPS_AAS.pdf | (1.960Mb) |
Abstract: | The characteristics of the monsoon boundary layer are imperative to understand in the perception of the tropical regions. The southwest monsoon is associated with a strong wind in the lower troposphere near 1.5 km and is referred to as Low Level Jet stream (LLJ). The boundary layer structure associated with the LLJ during monsoon can be studied using L-band Ultra High Frequency (UHF) radar. This L-band wind profiler-commonly referred as lower atmospheric wind profiler (LAWP), was installed at NARL, Gadanki. Zonal, meridional and vertical wind components are used to understand the diurnal variation of the wind in the Atmospheric Boundary Layer (ABL) and associated features. From the analysis during non rainy days of the southwest monsoon, it is found that the LLJ has maximum strength during the early morning hours at lower level and the height increases as day progresses. The vertical wind shows the transfer of momentum from the LLJ towards the surface, indicating the sinking motion during the daytime. Vertical gradient of the wind shear shows the intensity of clear air turbulence is moderate and no severe clear air turbulence is noticed during the monsoon period |
Description: | J.Mar. Atmos. Res. Vol.3, No.2 July 2007, 51-59 |
URI: | http://dyuthi.cusat.ac.in/purl/3800 |
Files | Size |
---|---|
VH.CAB_JMAR.pdf | (183.8Kb) |
Now showing items 1-4 of 4
Dyuthi Digital Repository Copyright © 2007-2011 Cochin University of Science and Technology. Items in Dyuthi are protected by copyright, with all rights reserved, unless otherwise indicated.