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Chapter 1

Introduction

Information theory is a branch of the mathematical theory of probability and

mathematical statistics which studies the storage, quantification and communi-

cation of information. For the last few decades, there has been a tremendous

growth in the volume of research in the field of information theory. The infor-

mation theory plays an important role in modern communication theory, which

formulates a communication system as a stochastic process. Entropy has been

introduced to explain the concept of information completely by a single defi-

nition. The concept of entropy was originally developed by physicists in the

context of equilibrium thermodynamics. Entropy is a key measure in informa-

tion theory which quantifies the amount of uncertainty involved in the value of

a random variable or the outcome of a random process. The statistical definition

was developed by Ludwig Boltzmann in the 1870s by analysing the stochastic

behaviour of the microscopic components of the system. Recently there has

been a great deal of interest in the measurement of uncertainty associated with

a probability distribution. Shannon (1948) introduced the concept of entropy

which is widely used in the fields of communication theory, physics, informa-

tion theory, economics, probability and statistics. Later, many researchers stud-

ied the generalized form of Shannon entropy like Renyi’s entropy (see Renyi

1



Introduction 2

(1961)), Tsallis entropy (Tsallis (1988)), etc.

Many generalizations of Shannon entropy (Shannon (1948)) are available in liter-

ature. The important properties of these generalized information measures are

smoothness, large dynamic range with respect to certain conditions, etc. that

make them more flexible in practice. In reliability and life testing, the data is of-

ten truncated for used items, so that the basic form of entropy measures become

unsuitable. The role of information measures relating to the residual and past

lifetime in reliability modelling has been extensively investigated during the last

two decades, starting from the works of Muliere et al. (1993), Ebrahimi (1996)

and Di Crescenzo & Longobardi (2002) with reference to Shannon’s entropy.

Quantile functions are efficient and equivalent alternatives to distribution func-

tions in modelling and analysis of statistical data (see Gilchrist (2000); Nair &

Sankaran (2009)). A probability distribution can be specified either in terms of

the distribution function or by the quantile functions (QF). Although both con-

vey the same information about the distribution of the underlying random vari-

able X, the concepts and methodologies based on the distribution function are

employed in most forms of the lifetime data analysis. Quantile functions have

several properties that are not shared by distribution functions. For example,

the sum of two quantile functions is again a quantile function. In many cases,

quantile function is more convenient as it is less influenced by extreme obser-

vations, and thus provides a straightforward analysis with a limited amount of
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information. There are explicit general distribution forms for the quantile func-

tion of order statistics. It is easy to generate random numbers from the quantile

function. In reliability analysis, a single long term survivor can have a marked

effect on mean life, especially in the cases where some heavy-tailed models are

encountered that are commonly lifetime data. In these cases quantile-based es-

timates are generally more precise and robust against outliers. However, the use

of quantile functions in the place of the distribution function F(.) provides new

models, alternative methodology, easier algebraic manipulations and methods

of analysis in certain cases and some new results that are difficult to derive by

using distribution function. There are certain distributions that do not have a

tractable distribution function. In such cases, quantile functions are more conve-

nient. For a detailed study on quantile function, its properties and its usefulness

in identifying probability models we refer to Nair & Sankaran (2009), Sankaran

& Nair (2009), Sankaran et al. (2010), Nair & Vineshkumar (2011), Nair et al.

(2013), Sankaran & Kumar (2018), Sreelakshmi et al. (2018).

Even if abundant literature is available on characterizations of distributions us-

ing different statistical measures, little work has been found for modelling life-

time data using quantile versions of order statistics. Further, the study of infor-

mation measures using quantile functions is of recent interest. Sunoj & Sankaran

(2012) introduced a quantile version of Shannon entropy and studied its various

properties. A quantile approach on residual Renyi’s entropy and cumulative

entropy measures for residual lifetime random variables are available in Nanda

et al. (2014) and Sankaran & Sunoj (2017) respectively. In the meantime, the

variant approach of employing the quantile version of various entropies was
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introduced with the objectives of providing alternative methodology, new re-

sults and different methods of stochastic comparisons. We may refer to Sunoj &

Sankaran (2012), Yu & Wang (2013), Nanda et al. (2014) and Sunoj et al. (2017)

for a review on this topic.

The objective of the present study is to develop information measures using

quantile functions and provide certain characterisation theorems of distribu-

tions, bounds, ordering relations, ageing properties, non-parametric estimation,

etc based on the proposed measure. The thesis is organized into seven chapters.

After the introductory chapter, in Chapter 2 we give a brief review of the back-

ground materials required for the discussions in subsequent chapters starting

from the definition and basic properties of quantile function along with the de-

scriptive measures and L− moments. Subsequently, we discuss basic reliability

concepts such as hazard rate, mean residual life function, reversed hazard rate

and reversed mean residual life function in both the distribution framework and

quantile set up. We also provide a brief review of some popular quantile func-

tion models in literature such as lambda distributions by Ramberg & Schmeiser

(1972), Freimer et al. (1988), the power-Pareto distribution Hankin & Lee (2006),

Govindarajulu model (Govindarajulu (1977)), etc. Further, we give a brief re-

view of entropy, extropy, order statistics and related measures. Order statistics

play an important role in various fields of statistical theory and practice. Even

if both convey the same information about the distribution, with different inter-

pretations, the order statistics concepts and its methodologies based on distri-

bution functions are traditionally employed in most of the statistical theory and
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practice. The quantile approach will be of more useful when no tractable distri-

bution function exists but quantile function exists. Accordingly, we study some

general distribution and reliability properties of order statistics using quantile

functions. We also examine the quantile-based reliability ageing properties, mo-

ments and stochastic orders of order statistics.

In Chapter 3, we introduce a quantile-based Shannon entropy of order statis-

tics and studied its properties. The quantile Shannon entropy of order statistics

has several advantages. Firstly, unlike Shannon entropy of order statistics based

on distribution function, the computation of its quantile version is quite simple

especially in cases where the distribution functions are not tractable. Secondly,

our approach gives an alternative methodology in the study of Shannon entropy

of order statistics and its dynamic (residual) measure. Further, there are certain

properties of quantile functions that are not shared by the distribution func-

tion approach. Thus a formulation of the definition and properties of entropy

of order statistics in terms of quantile function is studied. Further, an explicit

relationship between quantile entropy of order statistics and quantile density

function can be obtained, thus uniquely determines the underlying distribution.

Rao et al. (2004) introduced an alternative measure of uncertainty that extends

Shannon entropy to random variables with continuous distributions. Cumu-

lative residual entropy can be easily computed from sample data and these

computations asymptotically converge to the true values. Among different gen-

eralized entropy measures, an important one is the Tsallis entropy of order α
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(Tsallis (1988)). Tsallis entropy plays a major role in different fields viz. physics,

chemistry, biology, economics and statistics. Unlike some other generalized in-

formation measures, Tsallis entropy is non-additive. For more details and recent

works on Tsallis entropy we refer to Tsallis (1988), Mathai & Haubold (2007),

Cartwright (2014), Kumar (2016), Baratpour & Khammar (2016), Rajesh & Sunoj

(2016), Calı̀ et al. (2017) and the references therein. Accordingly, in Chapter 4,

we have introduced a quantile-based cumulative residual Tsallis entropy (CRTE)

and quantile-based CRTE for order statistics. Unlike the cumulative residual

Tsallis entropy measures in the distribution function approach due to Sati &

Gupta (2015), Rajesh & Sunoj (2016) respectively, the corresponding quantile

versions possess some unique properties. We obtain some characterizations for

distributions based on the quantile versions of CRTE and derive certain bounds.

We also study various properties of quantile-based CRTE for order statistics.

Non-parametric estimation of CRTE based on quantile function is discussed. A

simulation study is conducted to assess the performance of the estimator. Fur-

ther, the proposed estimator is applied to Aarset data (Aarset (1987)).

Measure of uncertainty in past lifetime plays an important role in different areas

such as information theory, reliability theory, survival analysis, economics, busi-

ness, forensic science and other related fields. However, in many realistic situa-

tions uncertainty is not necessarily related to the future but can also refer to the

past. For instance, if at time t, a system which is observed only at certain preas-

signed inspection times, is found to be down; then the uncertainty of the system

life relies on the past, i.e., on which instant in (0, t) it has failed. A wide variety

of research is available on entropy measures and its applications in past lifetime.
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For details, one can refer to Di Crescenzo & Longobardi (2002), Di Crescenzo

& Longobardi (2009), Sachlas & Papaioannou (2014), Di Crescenzo & Toomaj

(2015) and the references therein. Also, a study on the cumulative Tsallis en-

tropy for past lifetime is available in Calı̀ et al. (2017). In Chapter 5, we propose

a cumulative Tsallis entropy in past lifetime based on quantile function. We

obtain different characterizations based on the proposed measure and quantile-

based reliability measures. We also study the quantile-based cumulative Tsallis

entropy of order statistics in past lifetime. We discuss the non-parametric esti-

mation of CRTE in past lifetime based on quantile function. A simulation study

is conducted to examine the performance of the estimator. We illustrate the util-

ity of the proposed model using a real life data set.

The entropy measure of a probability distribution has found plenty of useful

applications in information sciences since its full-blown introduction in the ex-

tensive article of Shannon (1948). Due to its wide utility in thermodynamics as

cited by Boltzmann and Gibbs, entropy has subsequently bloomed as a show

piece in theories of communication, coding, probability and statistics. One of

the statistical applications of extropy is to score the forecasting distributions

using the total log scoring rule. In Chapter 6, we study the residual extropy

function using distribution function and quantile function approaches. We also

study the quantile-based extropy for order statistics and investigate extropy in

past lifetime in both approaches. Some characterizations and ageing properties

of these extropy functions are proposed. Different stochastic orders based the

residual and past lifetime extropy function are also presented. Moreover, we

introduce the quantile-based cumulative extropy and obtained some interesting
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results within the framework of quantile function. The non-parametric estima-

tion of quantile-based extropy is also studied.

Finally, in Chapter 7 we summarize the major conclusions of the study and also

indicate the directions of future study.



Chapter 2

Basic concepts and review of literature

The present chapter provides a brief review of some of the existing works on

quantile functions, reliability concepts, entropy, extropy, stochastic orders and

order statistics. We also discuss the quantile-based moments and stochastic

orderings of order statistics.

2.1 Quantile functions

In this section, we present the definition and properties of quantile functions,

some descriptive measures, L− moments and reliability concepts, etc., in terms

of quantile functions.

2.1.1 Definitions and properties

Definition 2.1. Let X be a random variable with distribution function F(x)

which is continuous from right. Then quantile function Q(u) of X is defined

as

Q(u) = F−1(u) = inf{x : F(x) ≥ u}, 0 ≤ u ≤ 1. (2.1)

9
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For −∞ < x < ∞ and 0 < u < 1, F(x) ≥ u if and only if Q(u) ≤ x. Thus if there

exists an x such that F(x) = u, then F(Q(u)) = u and Q(u) is the smallest value

of x satisfying F(x) = u. When F(x) is continuous and strictly increasing,

Q(u) = in f {x : F(x) = u},

is the unique value of x such that F(x) = u. In this case we can write the quantile

function by solving F(x) = u for x in terms of u.

Definition 2.2. If f (x) is the probability density function of X, then f (Q(u)) is

called the density quantile function. The derivative of Q(u), i.e., q(u) = Q′(u)

is known as the quantile density function of X. By differentiating F(Q(u)) = u,

we have an identity

q(u) f (Q(u)) = 1. (2.2)

Some important properties of quantile functions are given below:

1. For a general distribution function, from the definition of Q(u) we have,

• Q(u) is non-decreasing on (0, 1) with Q (F (x)) ≤ x for all −∞ < x <

∞ for which 0 < F (x) < 1.

• F (Q (u)) ≥ u for any, 0 < u < 1.

• Q(u) is continuous from the left, ie, Q (u−) = Q (u) so that Q(u) has

limits from above.

• Any jump points of F(x) are flat points of Q(u) and flat points of

F(x) are jump points of Q(u).
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2. Since for a uniform random variable U over (0, 1),

P{Q (U) ≤ x} = P{U ≤ F (x)} = F(x),

Q(u) and X are identically distributed.

3. The sum of two quantile functions is again a quantile function.

4. The product of two positive quantile functions is also a quantile function.

5. If T(x) is non-decreasing function of x, then T(Q(u)) is a quantile function.

On the other hand, if T(x) is non-increasing, then T(Q(1− u)) is also a

quantile function.

6. If Q(u) is the quantile function of X with continuous distribution function

F(x) and T(u) is a non-decreasing function satisfying the boundary con-

ditions T(0) = 0 and T(1) = 1, then Q(T(u)) is a quantile function of a

random variable with the same support as X.

7. If X has quantile function Q(u), then 1
X has quantile function 1

Q(1−u)

For further details on the properties of quantile function, we refer to Gilchrist

(2000).

2.1.2 Descriptive Measures

In this section, we list out commonly used descriptive measures such as mea-

sures of location, scale, skewness and kurtosis based on quantile function. These

quantile-based measures that reduce the shortcomings of the moment based
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ones can be thought of.

An important measure of location is the median, given by

M = Q (0.5) .

To measure the dispersion, we use the inter-quantile range

IQR = Q3 −Q1,

where Q3 = Q (0.75) and Q1 = Q (0.25) . Galton’s measure of skewness is de-

fined as

S =
Q1 + Q3 − 2M

Q3 −Q1
.

It can be seen that the Galton coefficient of skewness lies between −1 and 1, and

the extreme positive skewness occurs when Q1 → M and the extreme negative

skewness is attained when Q3 → M. When a distribution is symmetric, M =

Q1+Q3
2 and hence S = 0. Moors (1988) proposed a measure of kurtosis given by

T =
Q (7/8)−Q (5/8) + Q (3/8)−Q (1/8)

IQR
.

2.1.3 L-Moments

L− moments are the competing alternatives to traditional moments. L− mo-

ments are the expectations of linear combinations of order statistics. A unified

theory on L− moments was studied by Hosking (1990). The main advantages

of L− moments over the conventional moments are, the existence of first L−
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moment ensures the existence of higher-order moments and they have gener-

ally lower sampling variances and are robust against outliers. Hosking (1989)

Hosking (1992), Hosking (2006) and Hoskins & Wallis (1997) have made detailed

studies on the properties of L− moments, its application in summarizing and

identifying probability distributions, estimation techniques based on L− mo-

ments, characterizations of distributions by L− moments and the comparison

between the conventional moments and L− moments in analysing measures of

distributional shapes. The rth L− moment is defined as

Lr = r−1
r−1

∑
k=0

(−1)k

 r− 1

k

 E (Xr−k:r) , r = 1, 2, ... (2.3)

We have,

E(Xr:n) =
∫

x fr(x)dx

=
n!

r! (n− r)!

∫ 1

0
ur−1(1− u)n−rQr (u) du. (2.4)

Using (2.4), (2.3) becomes

Lr = r−1
r−1

∑
k=0

(−1)k

 r− 1

k

 r!
k! (r− k− 1)!

∫ 1

0
ur−k−1(1− u)kQ (u) du. (2.5)
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Jones (2004) has given an alternative method of establishing the above relation-

ship using the quantile function. In particular, the first four L− moments are

L1 =
∫ 1

0
Q (u) du = µ, (2.6)

L2 =
∫ 1

0
(2u− 1) Q (u) du, (2.7)

L3 =
∫ 1

0

(
6u2 − 6u + 1

)
Q (u) du, (2.8)

and L4 =
∫ 1

0

(
20u3 − 30u2 + 12u− 1

)
Q (u) du. (2.9)

The equivalent formulae in terms of quantile density function are

L1 =
∫ 1

0
(1− u) q (u) du, (2.10)

L2 =
∫ 1

0

(
u− u2

)
q (u) du, (2.11)

L3 =
∫ 1

0

(
3u2 − 2u3 − u

)
q (u) du, (2.12)

and L4 =
∫ 1

0

(
u− 6u2 + 10u3 − 5u4

)
q (u) du. (2.13)

L1 and L2 represent the measures of location and spread respectively. Like the

conventional moments, L− moments can also be used to summarize the charac-

teristics of probability distributions, to identify distributions and to fit models

to data. It has been proved that the L-moments have several advantages over

conventional moments. L-moments are capable of characterizing a wider range

of distributions compared to the conventional moments. A distribution may be

specified by its L-moments, even if some of its conventional moments do not

exist (Hosking (1990)). Hosking (1992) illustrated that L-moments are prefer-

able than conventional moments to provide summary measures of distributional
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shape. Yitzhaki (2003) compared the merits of mean difference and variance in

the context of measuring variability. Nair & Vineshkumar (2010) has pointed out

that the study of the measures of residual life based on L− moments is worthy

as the L− moments are more advantageous than usual moments.

2.2 Reliability concepts

Reliability theory depicts the probability of a system completing its expected

function during an interval of time. The term reliability is generally used to

express a certain degree of assurance that a device or a system will operate suc-

cessfully in a specified period of time. During the past decade, the development

of reliability as a separate discipline has been rapid, mainly because of its appli-

cations in several branches such as, statistics, engineering, medicine, economics,

demography, insurance, public policy, etc. Life distributions specified by their

distribution functions and various concepts and characteristics derived from it

are important topics of interest in reliability analysis.

2.2.1 Reliability function

Let X be a non-negative continuous random variable defined on a probability

space (Ω, A, P) with distribution function F(x) = P(X ≤ x). The random vari-

able X could represent the length of life of a device, measured in units of time.

The function

F̄(x) = P(X > x), x ≥ 0,
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is called a reliability function or survival function.

2.2.2 Hazard rate function

The failure rate (hazard rate) function of X is defined as

h(x) = lim
∆t→0

P[x ≤ X < x + ∆x|X > x]
∆x

. (2.14)

For small ∆, ∆h(x) is approximately the conditional probability that a unit will

fail in the next small interval of time ∆, given that the unit has survived age

x. When F(x) is absolutely continuous with probability density function f (x),

(2.14) reduces to

h(x) =
f (x)
F̄(x)

=
d

dx
[−F̄(x)] (2.15)

for all t for which F̄(x) > 0.

The hazard rate function is also referred to as the failure rate function, instan-

taneous death rate, the force of mortality, and intensity function in the fields

respectively survival analysis, actuarial science, biosciences, demography and

extreme value theory.

Integrating (2.15) over (0, x) and using F(0) = 0, we can see that

F̄(x) = exp

− x∫
0

h(t)dt

. (2.16)

From (2.16), it can be seen that h(x) uniquely determines the distribution. The

concept of hazard rate is widely used for characterizing lifetime distributions.
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For example, constancy of hazard rate is a characteristic property of exponential

distribution (Galambos & Kotz (1978)). A large volume of literature is available

on characterizations and other properties of hazard rate function (see Barlow

et al. (1963), Nanda & Shaked (2001), Noughabi et al. (2013), Hua et al. (2018),

etc).

2.2.3 Mean residual life function

Given a component is of age X, the remaining life (residual life) after time t is

random. Define the residual random variable at age t by Xt = X− t|X > t. The

reliability function of Xt is given by

F̄t(x) = F̄(x|t) = F̄(x + t)
F̄(t)

x, t ≥ 0, (2.17)

which represents the conditional probability that a unit of age t will survive for

an additional x unit of time. The mean residual life (MRL) function m(t) for

a random variable X defined on the real line, with E[X] < ∞, is the expected

value of the residual life function. i.e;

m(t) = E[X− t|X ≥ t] ∀ t ≥ 0. (2.18)
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The MRL function m(t), represents the average lifetime remaining for a compo-

nent, which has already survived up to time t. When F(t) is absolutely contin-

uous with respect to a Lebesgue measure, (2.18) becomes

m(t) =
∞∫
0

F̄(x|t)dx

= 1
F̄(t)

∞∫
t

F(x)dx.
(2.19)

If density function exists, then (2.19) can also be written as

m(t) =
1

F̄(t)

∞∫
t

(t− x) f (x)dx. (2.20)

If m(t) is differentiable then the following relationship exists between the hazard

rate and the mean residual life function as

h(t) =
1 + m′(t)

m(t)
. (2.21)

The function m(t) determines the distribution of X uniquely by the relation

F̄(t) =
m(0)
m(t)

exp

− t∫
0

dt
m(t)

 . (2.22)

For more properties on m(t), refer to Hall et al. (1981) , Mukherjee & Roy (1986),

Gupta (2016) and references therein.
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2.2.4 Reversed hazard rate

Let X be a non-negative, absolutely continuous random variable and [X|X ≤ t]

be a random variable which represents the variable pertaining to lifetimes of

components which has failed before attaining an age t were originated. The

revered hazard rate of a random variable X is defined by (see Barlow et al.

(1963))

λ(x) = lim
∆→0

P[x− ∆ < X ≤ x|X ≤ x]
∆

. (2.23)

When probability density function (p.d.f) f (x) of X exists, (2.23) can be written

as

λ(x) =
f (x)
F(x)

, (2.24)

for all X for which F(x) > 0. Thus λ(x)dx can be used as an approximate

probability of a failure in (x− dx, x] given that the failure had occurred in [0, x].

λ(x) uniquely determines the distribution through the relationship

F(x) = exp

− ∞∫
x

λ(t)dt

 . (2.25)

For more details on reversed hazard rate, one can refer to Gupta & Nanda (2001),

Nanda & Shaked (2001), Nair & Asha (2004), Sunoj & Maya (2006), Sankaran

et al. (2007) and Kundu & Ghosh (2017).



Basic concepts and review of literature 20

2.2.5 Reversed mean residual life

The random variable xX = [x−X|X ≤ x] denotes the inactivity time or reversed

residual life of X. It represents the time elapsed since the failure of a unit given

that its lifetime is at most x with the distribution function

xF(t) =
F(x)− F(x− t)

F(x)
. (2.26)

The reversed mean residual life of X is defined as

r(x) = E(x− X|X ≤ x)

=
1

F(x)

∫ x

0
F(t)dt. (2.27)

For more details on reversed mean residual life functions, we refer to Kayid &

Ahmad (2004), Ahmad & Kayid (2005), Gandotra et al. (2011) and Kundu &

Ghosh (2017) and references therein.

2.3 Quantile-based reliability concepts

In reliability theory, several functions can be used to find the failure patterns

in different mechanisms or systems as a function of age. This is accomplished

by identifying the probability distribution of the lifetime random variable. In

this section, we discuss the basic concepts of reliability using quantile functions.

Nair & Sankaran (2009) has formulated the important reliability concepts using

the quantile function approach which are discussed below.
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2.3.1 Hazard quantile function

Setting x = Q(u) in (2.15) and using (2.2), the hazard quantile function is de-

fined as

H (u) = h (Q (u))

= [(1− u) q (u)]−1. (2.28)

In this definition, H(u) is interpreted as the conditional probability of the fail-

ure of a unit in the next small interval of time given the survival of the unit at

100 (1− u)% point of the distribution. H(u) uniquely determines the distribu-

tion through the relationship

Q(u) =
∫ u

0

dp
(1− p)H(p)

. (2.29)

Sankaran & Nair (2009) studied the estimation of the hazard quantile function

based on the right censored data. Midhu et al. (2014) introduced a class of

distributions that has linear hazard quantile function and obtain various dis-

tributional properties and reliability characteristics of the class. For various

properties of H(u), one could refer to Nair et al. (2013).
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2.3.2 Mean residual quantile function

The quantile version of mean residual life function obtained by letting F(x) = u

in (2.20). We have the mean residual quantile function as

M (u) = m (Q (u))

= (1− u)−1
∫ 1

u
[Q (p)−Q (u)] dp. (2.30)

In terms of the quantile density function, (2.30) can be written as

M (u) = (1− u)−1
∫ 1

u
(1− p) q (p) dp. (2.31)

Using (2.31) we have

M (u) = (1− u)−1
∫ 1

u
(H (p))−1 dp. (2.32)

Differentiating (2.32) we get

(H (u))−1 = M (u)− (1− u) M′ (u) . (2.33)

The distribution is uniquely determined by M(u) through the identities

Q (u) = µ−M (u) +
∫ u

0
(1− p)−1M (p) dp. (2.34)

Midhu et al. (2013) proposed a class of distributions that has the linear mean

residual quantile function and studied various distributional properties and re-

liability characteristics of the class. Sankaran & Dileep Kumar (2018) introduced
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a new class of distributions with quadratic mean residual quantile function and

studied distributional properties and various reliability characteristics of the

proposed model.

2.3.3 Reversed hazard quantile function

Analogous to reversed hazard rate, reversed hazard quantile function is defined

as

Λ(u) = λ(Q(u)) = (uq(u))−1. (2.35)

The quantile function is uniquely determined by Λ(u) through the relationship

Q(u) =
∫ u

0
(pq(p))−1dp. (2.36)

For more properties, we may refer to Nair & Sankaran (2009).

2.3.4 Reversed mean residual quantile function

The reversed mean residual quantile function is defined by

R(u) = r(Q(u))

=
1
u

∫ u

0
(Q(u)−Q(p))dp

=
∫ u

0
pq(p)dp. (2.37)
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R(u) determines the distribution uniquely through the relationship

Q(u) = R(u) +
∫ u

0
p−1R(p)dp. (2.38)

Nair & Sankaran (2009) derived that

(Λ(u))−1 = R(u) + uR′(u). (2.39)

2.4 Ageing concepts

In the reliability context, life distributions are generally classified into different

classes based on the monotonic behaviour of the failure rate and mean residual

life function. There can be no ageing, positive ageing or negative ageing. Posi-

tive ageing means the residual lifetime of a unit decreases with the increase in

the age of the unit. Negative ageing is the dual concept of positive ageing which

has a beneficial effect on the life of the unit as the age increases and no ageing

means that the age of a component has no effect on the distribution of residual

lifetime of the unit (see Abouammoh et al. (2000), Deshpande et al. (1986)).

Most of the ageing concepts existing in the literature are described based on the

measures defined in terms of the distribution function. For example, Barlow

& Proschan (1975) established some closure properties of order statistics based

on the reliability ageing classes such as increasing failure rate (IFR), increasing

failure rate average (IFRA) or new better than used (NBU) classes. Takahasi

(1988) and Nagaraja (1990) further studied some of these classes based on order
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statistics. Nair & Sankaran (2009) have identified some quantile functions as

suitable models for lifetime data analysis. Nair & Vineshkumar (2011) modi-

fied the existing definitions based on distribution functions to study the ageing

properties of distributions which do not have a tractable distribution function.

However, a quantile-based study on these ageing classes is of recent interest due

to Nair & Vineshkumar (2011). In this section, we discuss some of the important

results in this area and translate the basic definitions to make them amenable

for a quantile-based analysis.

2.4.1 Ageing Concepts based on hazard quantile function

The concept of increasing and decreasing failure rates for univariate distribu-

tions have been used as a useful tool in the study of the failure patterns of

components / devices. A random variable X is said to have an increasing (de-

creasing) failure rate ( IFR (DFR)) if its hazard rate h(x) is increasing (decreas-

ing).

In the quantile framework, a lifetime random variable X is IHR (DHR) if its

hazard quantile function H(u) is increasing (decreasing) in u. This implies that

H′(u), the derivative of H(u) satisfies

H′(u) ≥ (≤)0, 0 < u < 1.

Thus, all distributions specified in terms of F(x) that are IHR (DHR) preserve

the same property when specified by Q(u) as well. For further reference see

Nair & Vineshkumar (2011).



Basic concepts and review of literature 26

2.4.2 Ageing concepts based on mean resdiual quantile func-

tion

A random variable X with mean residual life function m(x) is said to be in

the increasing (decreasing) mean residual life or IMRL (DMRL) class if m(x)

is increasing (decreasing) in x > 0. In terms of quantile function, the IMRL

(DMRL) is defined as follows. A random variable X with E(X) < ∞ is said to

be IMRL (DMRL) if and only if

M(u1) ≥ (≤)M(u2); u1 ≥ (≤)u2.

2.4.3 Concepts based on survival function

The ageing properties in this class are obtained by comparing survival function

at different points of time. New better (worse) than used (NBU (NWU)) is the

most cited one in this category and new better (worse) than used in expectation

(NBUE (NWUE)) and harmonic new better (worse) than used in expectation

(HNBUE (HNWUE)) are the classes derived from NBU (NWU). We say that X

is NBU (NWU) if and only if F̄(x + t) ≤ (≥)F̄(x)F̄(t), for all x, t > 0.

Within the framework of quantile functions, a random variable X with Q(0) = 0

is said to be NBU (NWU) if and only if, Q(u + v− uv) ≤ (≥)Q(u) + Q(v) for

all 0 ≤ u, v < 1. A lifetime X is new better (worse) than used in hazard rate if

and only if H(0) ≤ (≥)H(u) for u ≥ 0 (see Nair et al. (2013)).
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2.5 Stochastic orders

Stochastic orders are useful for a global comparison of two distributions in terms

of certain characteristics. Stochastic orders have been used during the last few

decades in many diverse areas of probability and statistics such as reliability

theory, biology, economics, queuing theory, survival analysis, insurance, actuar-

ial science, operations research, and management science. Stochastic orders are

used to compare distributions in terms of their characteristics. Definitions of the

stochastic orders given below, unless otherwise specified, can be seen in Shaked

& Shanthikumar (2007). The purpose of stochastic orders is the comparison of

distributions using a variety of information about the models.

2.5.1 Usual stochastic order

Let X and Y be two random variables with survival functions F̄X(x) and F̄Y(x)

and the corresponding quantile functions QX(u) and QY(u), respectively. Then

X is said to be smaller than Y in the usual stochastic order X ≤st Y if and only

if

F̄X(x) ≤ F̄Y(x), ∀x

or equivalently

QX(u) ≤ QY(u), ∀u ∈ (0, 1).
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2.5.2 Hazard rate order

In hazard rate order, we compare two distributions by means of the relative

magnitude of their hazard rates. The idea behind this comparison is that when

the hazard rate becomes larger, the variable becomes stochastically smaller. X

is said to be smaller than Y in hazard rate order X ≤hr Y if hX(x) ≥ hY(x) for

all x or equivalently, HX(u) ≥ H∗Y(u), where HX(u) = hX(QX(u)), H∗Y(u) =

hY(QX(u)) and h(.) denotes the hazard rate function.

2.5.3 Reversed hazard function order

Let X and Y be two non-negative random variables. Then X is said to be smaller

than Y in reversed hazard quantile function order (X≤rhq Y), if and only if

λX(x) ≤ λY(x) for all x or equivalently, ΛX(u) ≤ Λ∗Y(u) for all u ∈ (0, 1),

where Λ∗Y(u) = λY(QX(u)).

2.5.4 Convex order

For two random variables X and Y if the condition

E(φ(X)) ≤ E(φ(Y))

for all convex functions φ : R → R, provided the expectations exist then X is

said to be smaller than Y in the convex order. It is denoted by X ≤c Y. Within
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the framework of quantile function, X ≤c Y if and only if

∫ u

0
QX(p)dp ≥

∫ u

0
QY(p)dp.

2.5.5 Transform orders

(i) We say that X is smaller than Y in convex transform order, denoted by

X ≤cx Y, if G−1F(x) is convex in x on the support of F or qY(u)
qX(u)

is increasing

in u.

(ii) We say that X is smaller than Y in star order, written as X ≤∗ Y, if and

only if G−1F(x)
x is increasing for x ≥ 0 or QY(u)

QX(u)
is increasing in u.

(iii) We say that X is smaller than Y in super-additive order, denoted by X ≤su

Y if QY(FX(x)) is super-additive.

2.5.6 Dispersive ordering

Dispersive ordering can be used to compare the spread among probability dis-

tributions. We say that X is smaller than Y in dispersive order, denoted by

X ≤disp Y, if QY(FX(x))−QX(u) is increasing in u ∈ (0, 1).

2.6 Quantile function models

The main objective of quantile-based reliability analysis is to make use of quan-

tile functions as models in lifetime data analysis. The lambda distributions were
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originally developed as a formula for transforming uniform random numbers

to simulate new distributions with a rich variety of shapes. The lambda dis-

tributions are used, when the physical characteristics that govern the failure

pattern in a specific problem are unknown to choose a particular distribution

function. There are members of lambda families that can either exactly or ap-

proximately represent most of the continuous distributions by a good choice of

the parameters. The lambda distribution originated with Tukey (1962).

2.6.1 Lambda family

A family of distributions by a quantile function introduced by Hastings Jr et al.

(1947). During the past 60 years, considerable efforts were made to generalize

this family of distributions and the refined model by Tukey (1962) and to study

their new applications and inference procedures. The basic model from which

all other generalizations originate is the Tukey lambda distribution with quantile

function. Tukey’s Lambda family of distributions is given by

Q(u) =


uλ−(1−u)λ

λ , λ 6= 0

log(u)
1−u , λ = 0

(2.40)

For λ = 1 and λ = 2, it is easy to verify that (2.40) becomes uniform over (−1, 1)

and
(
−1

2 , 1
2

)
, respectively. The density functions are U shaped for 1 < λ < 2

and unimodal for λ < 1 or λ > 2. With (2.40) being symmetric and having the

range for negative values of X, it has limited use as a lifetime model.
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2.6.2 Generalized lambda distribution

The generalized lambda distribution is an extension of Tukey’s lambda distri-

bution [Hastings Jr et al. (1947) Tukey (1962)].

Q (u) = λ1 +
1

λ2

(
uλ3 − (1− u)λ4

)
, 0 ≤ u ≤ 1, (2.41)

where λ1 is a location parameter, λ2 is a scale parameter, while λ3 and λ4 de-

termine the shape. Ramberg & Schmeiser (1974) generalized the Tukey lambda

distribution to a four parameter distribution specified by quantile function in

(2.41). A major limitation of the generalized lambda family discussed above is

that the distribution is valid only for certain regions in the parameter space.

Freimer et al. (1988) introduced a modified generalized lambda distribution de-

fined by

Q(u) = λ1 +
1

λ2

(
uλ3

λ3
− (1− u)λ4 − 1

λ4

)
, (2.42)

which is well defined for the values of the shape parameters λ3 and λ4 over the

entire two-dimensional space.

2.6.3 van Staden & Loots model

A four-parameter distribution that belongs to lambda family proposed by van

Staden & Loots (2009). They generated the model by considering the generalized
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Pareto model with quantile function

Q1 (u) =


−1
λ4

(
(1− u)λ4 − 1

)
, λ4 6= 0

− ln (1− u) , λ4 = 0
(2.43)

and its reflection

Q2 (u) =


1

λ4

(
uλ4 − 1

)
, λ4 6= 0

log u , λ4 = 0
(2.44)

A weighted sum of these two quantile functions with respective weights λ3 and

1− λ3, 0 6 λ3 6 1, along with the introduction of a location parameter λ1 and

a scale parameter λ2, provide the new form. Thus, the quantile function of this

model is

Q (u) = λ1 + λ2

[
(1− λ3)

uλ4 − 1
λ4

− λ3
(1− u)λ4 − 1

λ4

]
, λ2 > 0. (2.45)

2.6.4 Five-parameter lambda family

Gilchrist (2000) proposed a five-parameter family of distributions with quantile

function

Q(u) = λ1 +
λ2

2

[
(1− λ3)

((
uλ4 − 1

)
λ4

)
− (1 + λ3)

(
(1− u)λ5 − 1

λ5

)]
, (2.46)

as an extension to the Freimer et al. (1988) model in (2.42).
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2.6.5 Power-Pareto distribution

The quantile function of the power distribution is of the form

Q1(u) = αuλ1 , 0 ≤ u ≤ 1; α, λ1 > 0, (2.47)

while that of the Pareto distribution is

Q2(u) = σ(1− u)−λ2 .
(2.48)

A new quantile function can then be formed by taking the product of these two

as

Q(u) =
Cuλ1

(1− u)λ2
, 0 ≤ u ≤ 1, C, λ1, λ2 > 0. (2.49)

The distribution of a random variable X with (2.49) as its quantile function is

called the power-Pareto distribution. Gilchrist (2000) and Hankin & Lee (2006)

have studied the properties of this distribution.

2.6.6 Govindarajulu distribution

Govindarajulu (1977) model is the earliest attempt to introduce a quantile func-

tion, not having an explicit form of the distribution function, for modelling data

on failure times. Govindarajulu (1977) introduced the quantile function

Q(u) = θ + σ
(
(β + 1)uβ − βuβ+1

)
, θ, σ, β > 0, 0 ≤ u ≤ 1, (2.50)
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and demonstrated its potential as a lifetime model by fitting it to the data on

the failure times of a set of 25 refrigerators which were run to destruction under

advanced stress conditions. However, other than proposing the model, Govin-

darajulu (1977) did not investigate the various characteristics of the distribution

as a general model as well as its role in reliability analysis.

2.7 Information measures

2.7.1 Entropy

Suppose X is a non-negative continuous random variable denoting the lifetime

of an item with a probability density function (pdf) f (x), cumulative distri-

bution function (cdf) F(x) and survival function (sf) F̄(x) = 1 − F(x). Then

a classical measure of uncertainty for X is the differential entropy, known as

Shannon entropy ((see Shannon (1948), Cover & Thomas (2012))) defined as

η(F) = −E(log f (X)) = −
∫ ∞

0
(log f (x)) f (x)dx. (2.51)

As a statistical average, η(F) measures the expected uncertainty subsumed in

f (x) about the predictability of an outcome of X. When the age of the compo-

nent of X is non-zero, say t, then η(F) in (2.51) is not appropriate and Ebrahimi

(1996) modified η(F) to the residual random variable Xt = X − t|X > t, called

the residual Shannon entropy of X at time t, given by

η(F; t) = −E(log f (Xt) = −
∫ ∞

t

(
log

f (x)
F̄(t)

)
f (x)
F̄(t)

dx. (2.52)
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Clearly, η(F, t) measures the expected uncertainty contained in the conditional

density of X − t given X > t about the predictability of the remaining lifetime

of the component. For more properties of (2.52), we refer to Ebrahimi (1996),

Ebrahimi & Pellerey (1995), Asadi & Ebrahimi (2000), Belzunce et al. (2004) and

Sunoj et al. (2009).

The wide applicability of η(F) and its modified/generalized versions and the

usefulness of order statistics in many applied problems motivated many re-

searchers to study the information theoretic aspects of order statistics. Wong &

Chen (1990) showed that the difference between the average entropy of order

statistics is symmetric about the median. Park (1995) obtained some recurrence

relationships to the entropy of order statistics. Ebrahimi et al. (2004) obtained

bounds for the entropy of order statistics and studied entropy ordering of or-

der statistics. The residual Renyi entropy of order statistics and record values

are available in Zarezadeh & Asadi (2010). Characterizations of distributions

based on Renyi entropy and record values are studied by Baratpour et al. (2007),

Baratpour et al. (2008) and Abbasnejad & Arghami (2010). Thapliyal & Taneja

(2012) obtained certain bounds on a generalized two parameters entropy of or-

der statistics.

2.7.2 Tsallis entropy

Many generalizations of Shannon entropy (Shannon (1948)) are available in liter-

ature. These generalized information measures have many important properties

such as smoothness, large dynamic range with respect to certain conditions that
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make them applicable in practice. Among different generalized entropy mea-

sures, an important one is the Tsallis entropy of order α (Tsallis (1988)). Let

X be an absolutely continuous non-negative random variable, with probabil-

ity density function (pdf) f (x) and cumulative distribution function (cdf) F(x)

respectively. Then Tsallis entropy is defined as

Sα(X) = 1
α−1 E

(
1− ( f (X))α−1

)
=

1
α− 1

(
1−

∫ ∞

0
( f (x))αdx

)
, α > 0, α 6= 1.

It plays an important role in different areas viz. physics, chemistry, biology, eco-

nomics and statistics. Many researchers used it in many physical applications

such as, Nakamichi et al. (2002) developed the statistical mechanics of large scale

astrophysical system , Taruya & Sakagami (2003) investigated thermodynamic

properties of stellar self-gravitating system, Arimitsu & Arimitsu (2002) de-

scribed fully developed turbulence, Weili et al. (2009) developed a new method

for medical image segmentation based on improved PCNN (Pulse Coupled

Neural Network) and Tsallis entropy and Tong et al. (2002) studied signal pro-

cessing. When α → 1, Sα(X) = H(X) = −E(ln f (X)) = −
∫ ∞

0 (ln f (x)) f (x)dx,

the expected uncertainty contained in the pdf about the predictability of the ran-

dom variable X. Unlike Shannon or other generalized entropy measures, Tsallis

entropy is non-additive. For recent works on Sα(X), we refer to Cartwright

(2014), Preda et al. (2015), Sati & Gupta (2015) and the references therein.
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2.7.3 Extropy

The Shannon’s measure of entropy in the discrete case HX = −∑n
i=1 pi log pi,

where pi = P[X = xi] has complementary dual

JX = −
n

∑
i=1

(1− pi) log(1− pi),

which is called the extropy of the random variable X. It originated in environ-

mental investigations by Ayres & Martinas (1995) in the name of M potential

and the term entropy was coined in Martinas (1997). The two measures entropy

and extropy address the measurement of uncertainty in contrasting styles. A

detailed discussion on the motivation, importance and properties of the extropy

in the context of thermodynamics and statistical mechanics is given in Martinas

& Frankowicz (2000). They argue that both entropy and extropy share similar

mathematical properties and that the latter has some conceptual superiority in

certain situations.

2.8 Order statistics

Suppose that X1, X2, ..., Xn are independently and identically distributed (i.i.d)

observations from a population with cumulative distribution function (cdf) F(.)

and probability density function (pdf) f (.). Then the order statistics of the sam-

ple is defined by the arrangement of X1, X2, ..., Xn, from the smallest to largest

denoted as X1:n ≤ X2:n ≤, ...,≤ Xn:n. Let Xi:n be the ith order statistic and Fi:n(.)

and fi:n(.) be the corresponding cdf and pdf. If a system has n independent
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components with lifetimes X1, X2, ..., Xn, then the system functions if and only

if at least k of the components works ( k-out-of-n system). The lifetime of such a

system is described by the (n− k + 1)th order statistic. The parallel (k = 1) and

series (k = n) systems are particular cases of k-out-of-n systems. These systems

play an important role in reliability theory and life testing. For example, an

aircraft with four engines will not crash if at least three of them are working

and for the communications system with three transmitters will send signals if

at least two of them are functioning. The marginal pdf of Xi:n, given by

fi:n(x) =
1

B(i, n− i + 1)
(F(x))i−1(1− F(x))n−i f (x), (2.53)

where B(a, b) =
∫ 1

0 xa−1(1− x)b−1dx, a, b > 0. A wide variety of research is now

available in literature on different aspects of order statistics, the applications

include Balakrishnan & Rao (1998b), Balakrishnan & Rao (1998a). Recently,

quantile-based studies are of special interest among many researchers as it has

some unique properties that are not shared by distribution functions.

In terms of quantile function, the pdf of Xi:n based on quantile functions (Sunoj

et al. (2017)) becomes,

fi:n(QX(u)) =
n!

(i− 1)!(n− i)!
ui−1(1− u)n−i(qX(u))−1 =

gi(u)
qX(u)

, (2.54)

where gi(u) =
1

B(i, n− i + 1)
ui−1(1− u)n−i is the pdf of beta distribution with

parameters (i, n − i + 1) and B(a, b) =
∫ 1

0 xa−1(1− x)b−1dx; a, b > 0, the beta



Basic concepts and review of literature 39

function. The corresponding survival function of Xi:n reduces to

F̄i:n(QX(u)) =
B̄u(i, n− i + 1)
B̄(i, n− i + 1)

,

where B̄u(i, n− i + 1) =
∫ 1

u ui−1(1− u)n−idu is the incomplete beta function.

The study of various reliability measures and its properties based quantile func-

tion is an important topic considered many researchers in the past (see Nair &

Sankaran (2009), Nair et al. (2013)). Ageing concepts play an important role in

distinguishing life distributions as an aid in model building and also in under-

standing the pattern in which a unit is ageing. Nair & Vineshkumar (2011) stud-

ied different classes of life distributions based on ageing concepts using quantile

functions. Motivated with these, we study some basic distribution properties

such as moments and ageing pattern of order statistics using quantile functions.

2.8.1 Moments of order statistics

Let X1, X2, ..., Xn be a random sample from a population with pdf f (.) and cdf

F(.), and let X1:n 6 X2:n, ... 6 Xn:n, be the order statistics obtained from the

above sample. Let us denote the raw moment E(Xk
i:n) by µ

(k)
i:n . Its quantile
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notation

µ
(k)
i:n = E(X(k)

i:n )

=
∫ ∞

−∞
xk fi:n(x)dx

=
n!

(i− 1)!(n− i)!

∫ 1

0
(QX(u))kui−1(1− u)n−idu. (2.55)

From (2.55), the first two raw moments of ith order statistic based on quantile

functions are respectively given by

µ
(1)
i:n =

n!
(i− 1)!(n− i)!

∫ 1

0
Q(u)ui−1(1− u)n−idu, (2.56)

and

µ
(2)
i:n =

n!
(i− 1)!(n− i)!

∫ 1

0
(Q(u))2ui−1(1− u)n−idu.

Then the variance of ith order statistics become

σ2
i:n = µ

(2)
i:n − (µ

(1)
i:n )

2,

and the covariance between Xi:n and Xj:n,

Cov(Xi:n, Xj:n) = µi,j:n − µi:nµj:n, 1 6 i 6 n,
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where,

µi,j:n = E(Xi:nXj:n)

=
n!

(i− 1)!(n− j)!(j− i− 1)!

∫ 1

0

∫ 1

Q(u)
Q(u)Q(v)ui−1(1− u)j−i−1(1− v)n−jdvdu,

Using the distribution function approach, the recurrence relationship connecting

moments of consecutive order statistics for continuous random variables are

defined by Cole (1951), given by

iµ(k)
i+1:n + (n− i)µ(k)

i:n = nµ
(k)
i:n−1, f or i = 1, 2, ..., n− 1 and k ≥ 1. (2.57)

The identity (2.57) provides an easy way of finding the moments of order statis-

tics using its preceding moments. An alternative proof based on mixtures of

discrete and continuous random variables are available in Arnold (1977); (see

Balakrishnan & Malik (1986)). In the following example, we illustrate the use-

fulness of the quantile-based approach in deriving the recurrence relationship

(2.57), where no closed form distribution functions exist.

Example 2.1. Let X be a random variable with Davies distribution (see Han-

kin & Lee (2006)) distribution in which no closed form expression for the dis-

tribution function exists. However, its quantile function is given by Q(u) =

c uλ1

(1−u)λ2
, c, λ1, λ2 > 0. Then µ

(1)
1:n = nc Γ(a+1)Γ(n−b)

Γ(a−b+n+1) , using the relation (2.57) we
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obtain the first order moment of second order statistic as

µ
(1)
2:n = nµ

(1)
1:n−1 − (n− 1)µ(1)

1:n

=

(
Cn(n− 1)Γ(1 + λ1)Γ(n− λ2 − 1)

Γ(n + λ1 − λ2)

)(
λ1 + 1

n + λ1 − λ2

)
=

(
Cn(n− 1)Γ(2 + λ1)Γ(n− λ2 − 1)

Γ(n + λ1 − λ2 + 1)

)
.

2.8.2 Bounds based on moments of order statistics

Hartley & David (1954), Gumbel (1954), Moriguti (1951), Moriguti (1953) and

Moriguti (1954) derived universal bounds for moments of order statistics. David

(1986) derived some bounds for order statistics arising from X
′s
i . Balakrishnan

(1990) provides simple improvements over the Hartley-David- Gumbel bounds.

Consider an arbitrary population with mean 0 and variance 1. That is,

∫ 1

0
Q(u)du = 0 and

∫ 1

0
(Q(u))2du = 1. (2.58)

Then the expected value of the ith order statistic Xi:n as

µi:n =
∫ 1

0
Q(u)

(
1

B(i, n− i + 1)
ui−1(1− u)n−i

)
du. (2.59)

From calculus of variations (see Davis (1962)) we can find the extremal giving

stationary values of (2.59) subject to (2.58) by first obtaining the unconditional

extremal for

µi:n =
∫ 1

0
Q(u)

(
1

B(i, n− i + 1)
ui−1(1− u)n−i − λ

)
du,
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and then determining the constant λ so as to satisfy (2.58). Using Schwarz’s

inequality, we obtain

µi:n 6

(∫ 1

0

u2(i−1)(1− u)2(n−i)

B2(i, n− i + 1)
− 2λ

1
B(i, n− i + 1)

ui−1(1− u)n−i + λ2

) 1
2

,

6
(

B(2i− 1, 2n− 2i + 1)
(B(i, n− i + 1))2 − 2λ + λ2

) 1
2

. (2.60)

Let y =
(

B(2i−1,2n−2i+1)
(B(i,n−i+1))2 − 2λ + λ2

) 1
2 , dy

dλ = 0⇒ λ = 1, and

d2y
dλ
|λ=1=

1√
B(2i−1,2n−2i+1)−(B(i,n−i+1))2

(B(i,n−i+1))2

> 0.

Then the right hand side of (2.60) is minimum when λ = 1. Therefore,

|µi:n| 6
(

B(2i− 1, 2n− 2i + 1)− (B(i, n− i + 1))2) 1
2

B(i, n− i + 1)
. (2.61)

This implies that Q(u) = c(gi(u)− 1), 0 < u < 1. The constant of proportional-

ity, c is determined from
∫ 1

0 Q(u)du = 0 and
∫ 1

0 (Q(u))2du = 1.

∫ 1

0
c2(g2

i (u)− 2gi(u) + 1)du = 1,⇒ c2
(

B(2i− 1, 2n− 2i + 1)
(B(i, n− i + 1))2 − 1

)
= 1.

Thus

c =
B(i, n− i + 1)√

B(2i− 1, 2n− 2i + 1)− (B(i, n− i + 1))2
.

Similarly, by considering the arbitrary population with mean 0 and variance 1,
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the moment of largest order statistic,

µn:n =
∫ 1

0
Q(u)(nun−1 − λ)du. (2.62)

Using Schwarz’s inequality, (2.62) turns to

µn:n 6
(∫ 1

0
(Q(u))2du

) 1
2
(∫ 1

0
(nun−1 − λ)2du

) 1
2

,

6
(∫ 1

0
(n2u2n−2 − 2nλun−1 + λ2)du

) 1
2

,

6
(

n2

2n− 1
− 2λ + λ2

) 1
2

. (2.63)

Let z =
(

n2

2n−1 − 2λ + λ2
) 1

2 , dy
dλ = 0 ⇒ λ = 1, and d2y

dλ |λ=1=
1√

n2

2n−1 − 1
> 0.

Then the right hand side of (2.63) is minimum when λ = 1. Thus we obtain,

µn:n 6
n− 1

(2n− 1)
1
2

. (2.64)

The bound is attained when Q(u) = c(nun−1− 1), 0 < u < 1. Also, the constant

of proportionality c can be determined using the initial conditions c = (2n−1)
1
2

n−1 .

Example 2.2. Suppose X follows Tukey-lambda distribution with quantile func-

tion

Q(u) =
(
uλ − (1− u)λ

)
λ

, 0 6 u 6 1,
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for all non-zero lambda values. Then the moment of ithorder statistic is given

by

µi:n =
∫ 1

0

(
uλ − (1− u)λ

) (ui−1(1−u)n−i

B(i,−i+n+1) − λ
)

λ
du,

=
Γ(i + λ)Γ(−i + n + 1)− Γ(i)Γ(−i + n + λ + 1)

λB(i,−i + n + 1)Γ(n + λ + 1)
.

Now, the moment of first order statistic is obtained as

µ1:n =
∫ 1

0

(
uλ − (1− u)λ

) ( (1−u)n−1

B(1,n) − λ
)

λ
du,

=
Γ(λ)Γ(n + 1)
Γ(n + λ + 1)

− n
λ(λ + n)

.

The moment of nth order statistic is obtained as

µn:n =
∫ 1

0

(
uλ − (1− u)λ

) ( un−1

B(n,1) − λ
)

λ
du,

=
n

λ2 + λn
− Γ(λ)Γ(n + 1)

Γ(n + λ + 1)
.

Table 2.1 gives the sharpness of the universal bounds for the moment of the

largest order statistic µn:n and the largest moment of Tukey-lambda distribution.

We can infer from the table that as the sample size increases the bounds are less

sharp.

2.8.3 Ageing properties of order statistics

In the present section we propose a quantile-based analysis on the ageing con-

cepts based on order statistics. Like the distribution function approach, we now
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Table 2.1: Universal bounds for µn:n and exact values for the largest moment
of Tukey-lambda distribution

Sample size n µn:n for Tukey lambda distribution Universal bound for largest moment
2 0.3333 0.5774

3 0.5000 0.8944

4 0.6000 1.1334

5 0.6667 1.3333

6 0.7143 1.5076

7 0.7500 1.6641

8 0.7778 1.8074

9 0.8000 1.9403

10 0.8181 2.0647

prove that the quantile-based ageing classes of order statistics preserve the same

ageing classes.

Increasing Hazard Rate (IHR)

An extensive review of various properties of IHR classes in the distribution

function approach is available in Lai & Xie (2006) and a quantile-based study of

the same is available in Nair & Vineshkumar (2011). Barlow & Proschan (1996)

showed that if F(.) is IHR then Fi:n(.) is also IHR. Now the following theorem

establishes the IHR property of Xi:n based on quantile function.

Theorem 2.3. If X is IHR then the ith order statistic Xi:n is IHR.

Proof. By virtue of the definition of IHR, Xi:n is said to be IHR iff the hazard

quantile function of the ith order statistic, HXi:n(u) = hi:n(Q(u)) =
fi:n(Q(u))
F̄i:n(Q(u))

is
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increasing in u > 0. When H(u) = ((1− u)q(u))−1 is increasing in u , then

HXi:n(u) =
ui−1(1− u)n−i(q(u))−1

B̄u(i, n− i + 1)

=
ui−1(1− u)n−i+1

B̄u(i, n− i + 1)
H(u), (2.65)

is also increasing in u as
ui−1(1− u)n−i+1

B̄u(i, n− i + 1)
> 0. Thus Xi:n is IHR.

For measuring the quantile-based IHR properties of simple systems with i.i.d

components viz. series and parallel, HX1:n(u) and HXn:n(u) are of important.

Accordingly, in the following example, we consider HX1:n(u) to derive different

properties, results of HXn:n(u) can be obtained in a similar way. Also, for a cer-

tain population, the quantile function Q(u) does not possess a closed form while

the quantile density function q(u) has a closed form. In the following example,

we examine HX1:n(u) for a family of distributions that can be represented only

through q(u).

Example 2.3. When X is distributed with quantile density function given by,

q(u) = Kuδ(1− u)−(A+δ), where K, δ and A are real constants. This quantile

function contains several well-known distributions, which include the exponen-

tial (δ = 0, A = 1), Pareto (δ = 0; A < 1), rescaled beta (δ = 0; A > 1), and

Govindarajulu distribution (δ = β− 1, A = −β).

Figure 2.1 indicates that exponential distribution is both IHR and DHR (since

HX1:n(u) is constant), Pareto distribution is IHR(HX1:n(u) is increasing), rescaled

beta is DHR (HX1:n(u) is decreasing) and Govindarajulu distribution is IHR

when β 6 1 and bathtub-shaped for β > 1.
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Figure 2.1: Plots of Hazard quantile function of first order statistic, HX1:n(u)
against u.

Increasing Hazard Rate Average (IHRA)

A lifetime random variable Xi:nis IHRA iff − log F̄i:n(x)
x

is increasing in x. The

equivalent definition using quantile function is given in the following example.

Definition 2.4. We say that Xi:n is IHRA iff −1
Q(u) log B̄u(i,n−i+1)

B(i,n−i+1) is increasing in

u. For the smallest order statistic, X1:n is IHRA iff − log(1−u)n

Q(u) is increasing in u,

and for the largest order statistic, Xn:n is IHRA iff − log(1−un)
Q(u) is increasing in u.

The following theorem gives the equivalent conditions for IHRA of first order

statistic (series systems).

Theorem 2.5. The following conditions are equivalent
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(i) X1:n is IHRA

(ii)

∫ u
0 HXi:n(p)q(p)dp∫ u

0 q(p)dp

(iii) HXi:n(u) > −
n log(1− u)

Q(u)

Proof. Assume that X1:n is IHRA.

⇔ − log(1− u)n

Q(u)
is increasing in u

⇔ n
Q(u)

∫ u
0

1
1− p

dp is increasing in u ⇔ n

∫ u
0 HX(p)q(p)dp∫ u

0 q(p)dp
is increasing in u,

⇔
∫ u

0 HX1:n(p)q(p)dp∫ u
0 q(p)dp

is increasing in u.

To prove (ii)⇔ (iii), assume (ii) holds.

∫ u
0 HX1:n(p)q(p)dp∫ u

0 q(p)dp
is increasing in u,

⇔ Q(u)H(u)q(u)− q(u)
∫ u

0
H(p)q(p)dp > 0,

Q(u)
1− u

− q(u)(− log(1− u)) > 0 (from (2.65) HX1:n(u) = nHX(u)),

⇔ 1
(1− u)q(u)

>
− log(1− u)

Q(u)
,
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H(u) >
− log(1− u)

Q(u)
.

Theorem 2.6. If X1:n is IHR then X1:n is IHRA but the converse need not be true.

Proof. The first part of the theorem is straightforward. If X1:n is IHR then

HX1:n(u2) > HX1:n(u1), f or u2 > u1,

equivalently

∫ u
0 HX1:n(p2)q(p2)dp2∫ u

0 q(p2)dp2
>

∫ u
0 HX1:n(p1)q(p1)dp1∫ u

0 q(p1)dp1
,

the condition for IHRA. The converse part is proved using a counter exam-

ple that IHRA does not implies IHR. Consider power-Pareto distribution with

quantile function

Q(u) =
cuλ1

(1− u)λ2
, λ1, λ2 > 0.

Then, from the Figure 2.2, it is clear that the condition for IHRA of X1:n is

−1
Q(u)

log(1− u)n = −
log(1− u)

(
n(1− u)λ2

)
cuλ1

is increasing while

HX1:n(u) =
n(1− u)λ2

cλ2
λ1 = 0, 0 < λ2 < 0.1, c > 0,
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Figure 2.2: Plots of IHRA and Hazard quantile function

is not increasing.

Decreasing (Increasing) mean residual life class (DMRL (IMRL))

Definition 2.7. A random variable Xi:n is said to have decreasing (increasing)

mean residual life if Mi:n(u) is decreasing (increasing) in u, 0 < u < 1 or

Mi:n(u1) 6 Mi:n(u2) for 0 6 u2 6 u1 < 1, where MXi:n(u) =
1

B̄u(i, n− i + 1)(∫ 1
u B̄p(i, n− i + 1)q(p)dp

)
, is the quantile-based mean residual life function for

the random variable Xi:n.

Example 2.4. Suppose X follows the power-Pareto distribution. Its quantile

function is given by

Q(u) =
cuλ1

(1− u)λ2
, 0 6 u 6 1, c, λ1, λ2 > 0.
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Power-Pareto distribution is obtained by taking the product of quantile func-

tions of power and Pareto distributions (see Gilchrist (2000)). Then

MX1:n(u) =
1

(1− u)n

∫ 1

u
(1− p)nq(p)dp

=
1

(1− u)n

∫ 1

u
(1− p)n(

cpλ1

(1− p)λ2+1 )(λ1(1− p) + λ2p)dp

=
c

(1− u)n (λ1B̄u(λ1, n− λ2 + 1) + λ2B̄u(λ1 + 1, n− λ2) .

Here M′X1:n
(u) < (>)0, if λ2 6 (>)1 so that F(.) is DMRL (IMRL) according as

λ2 6 (>)1.

New better than used (NBU) class

Barlow & Proschan (1975) introduced NBU for the ith order statistic. Xi:n is said

to be NBU if

F̄i:n(x + t) 6 F̄i:n(x)F̄i:n(t). (2.66)

We obtain now the quantile-based NBU of order statistics.

Theorem 2.8. The first order statistic of a lifetime random variable, X1:n with quantile

function Q(.) is NBU iff Q(u + v− uv)−Q(v) 6 Q(u) holds.

Proof. From (2.66), we can write

B̄F(x+t)(i, n− i + 1) 6
B̄F(x)(i, n− i + 1)B̄F(t)(i, n− i + 1)

B(i, n− i + 1)
(2.67)
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In terms of quantile function (2.67) becomes (see Nair et al. (2013)),

B̄Q−1(Q(u)+Q(v))(i, n− i + 1) 6
B̄u(i, n− i + 1)B̄v(i, n− i + 1)

B(i, n− i + 1)
(2.68)

For the first order statistic (2.68) becomes

B̄Q−1(Q(u)+Q(v))(1, n) 6
B̄u(1, n)B̄v(1, n)

B(1, n)
,

equivalently,

∫ 1

Q−1(Q(u)+Q(v))
(1− p)n−1dp 6

(1− u)n(1− v)n

n

That is

Q(u + v− uv)−Q(v) 6 Q(u).

Hence the proof.

Example 2.5. Suppose X follows the power-Pareto distribution with quantile

function Q(u) = cuλ1

(1−u)λ2
, c, λ1, λ2 > 0, which is both NBU and NWU, since for

λ2 = 0 it is power distribution, which is NBU and for λ1 = 0, it is Pareto, which

is NWU.

Theorem 2.9. If X1:n is IHRA then X1:n is NBU also.
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Proof. We need to show that IHRA =⇒ NBU. Using the condition of IHRA

(see Nair et al. (2013)) we can write

−n log(1− u)
QX(u)

6
−n log(1− (u + v− uv))

QX(u + v− uv)
, 0 < u < v < 1,

=⇒ QX(u + v− uv)
QX(u)

6
−n log(1− (u + v− uv))

−n log(1− u)
,

=⇒ QX(u + v− uv)
QX(u)

>
log((1− u)(1− v))

log(1− u)
,

> 1 +
log(1− v)
log(1− u)

,

equivalently,

QX(u + v− uv)
QX(u)

− 1 6
QX(v)
QX(u)

 − log(1−v)n

QX(v)
− log(1−u)n

QX(u)

 , 0 < u < v < 1

6
QX(v)
QX(u)

, ( since X1:n is IHRA)

=⇒ QX(u + v− uv)−QX(u) 6 QX(v).

Hence the proof.

2.8.4 Stochastic orders of order statistics

In the usual stochastic ordering, X is said to be stochastically smaller than Y

if F̄X(t) 6 F̄Y(t). From the definition of order statistics, it is easy to show

that Xi:n 6st Xj:n, for any i < j. Shaked et al. (1995) done a comprehensive

study on stochastic orders. Boland et al. (1994) obtained hazard rate ordering

from usual stochastic order. The hazard rate ordering plays an important role

in reliability and survival analysis. The likelihood ordering is a powerful one.
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In this section, we examine various quantile-based ordering relationships viz.

stochastic order, hazard rate order, dispersive order, mean residual order, convex

order and star-shaped order based on quantile-based order statistics. Barlow &

Proschan (1981) represented the distribution function of the ith order statistic

Xi:n as FX(i)
(t) = Bn

(i)(FX(t)), where Bn
(i)(p) = n!

(i−1)!(n−i)!

∫ p
0 ui−1(1− u)n−idu, for

0 6 p 6 1.

Definition 2.10. Let X and Y be two random variables with quantile functions

QX(u) and QY(u) respectively. We say that Xi:n is smaller than Yi:n in the usual

stochastic order if QXi:n(u) 6 QYi:n(u).

Example 2.6. Suppose that X follows beta distribution with quantile function

QX(u) = 1− (1− u)
1
c , c > 0 and Y follows Pareto II distribution with quan-

tile function QY(u) = (1 − u)
−1
c − 1, c > 0. Using the relation QXi:n(u) =∫ u

0

(
(1− u)HXi:n(u)

)−1 du, we get QX1:n(u) =
QX(u)

n ,

QX1:n(u)−QY1:n(u) =
1
n

(
1− (1− u)

1
c −

(
(1− u)

−1
c − 1

))
=

1
n

(
1− (1− u)

1
c −

(
1− (1− u)

1
c

(1− u)
1
c

))

= −(1− u)
−1
c

(
1− (1− u)

1
c

)2
6 0,

for all u. Thus X1:n 6st Y1:n.

Definition 2.11. Let X and Y be two random variables with hazard quantile

functions HX(u) and HY(u) respectively. We say that Xi:n is smaller than Yi:n in

the hazard rate order if HYi:n(u) 6 HXi:n(u), where HXi:n(u) = hXi:n(QX(u)) and

HYi:n(u) = hYi:n(QX(u)).

Theorem 2.12. If X 6hr Y then Xi:n 6hr Yi:n.
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Proof. We have HX(u) > HY(u). Using the relation (2.65) it is clear that HXi:n(u) >

HYi:n(u). Thus the result.

Definition 2.13. Let Xi:n and Xj:n be ith and jth order statistics with density

quantile functions fi:n (QX(u)) and f j:n (QX(u)) respectively. We say that Xi:n is

smaller than Xj:n in the likelihood order if
f j:n(QX(u))
fi:n(QX(u))

is increasing in u.

Theorem 2.14. For the ith and jth order statistic, Xi:n 6lr Xj:n, for i < j.

Proof. Using (2.54), we get

f j:n(QX(u))
fi:n(QX(u))

=
gj(u)
gi(u)

=
B(i, n− i + 1)
B(j, n− j + 1)

uj−1(1− u)n−j

ui−1(1− u)n−i

= c
(

u
(1− u)

)j−i
,

is increasing in u for j− i > 0. Thus Xi:n 6lr Xj:n.

Definition 2.15. We say that Xi:n is smaller than Yi:n in increasing convex order

if, Xi:n 6icx Yi:n if
∫ ∞

t F̄i:n(x)dx 6
∫ ∞

t Ḡi:n(x)dx, for all t. In quantile notation

Xi:n 6icx Yi:n if
∫ 1

u B̄p(i, n− i + 1)qX(p)dp 6
∫ 1

u B̄p(i, n− i + 1)qY(p)dp.

Definition 2.16. We say that X is smaller than Y in star order, X 6∗ Y iff

F−1
Yi:n

(FXi:n(x)) is star-shaped in x.

By the definition of the star-shaped functions, 1
x F−1

Yi:n
(FXi:n(x)) should be increas-

ing in x > 0. We use the relationship from Barlow & Proschan (1975) that

F−1
Yi:n

(FXi:n(x)) = (Bn
(i)(FY))

−1(Bn
(i)(FX(x))) = F−1

Y (FX(x)). Then, 1
x F−1

Yi:n
(FXi:n(x))

is increasing in x, which is the same as 1
x F−1

Y (FX(x)) increasing in x. This is
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equivalent to QY(u)
QX(u)

is increasing in u.

Since Xi:n 6c Yi:n implies that qY(u)
qX(u)

is increasing in u, it follows that Xi:n 6c

Yi:n =⇒ Xi:n 6∗ Yi:n.

Definition 2.17. We say that Xi:n is smaller than Yi:n in dispersive order, Xi:n 6disp

Yi:n if F−1
Yi:n

(FXi:n(x))− x is increasing in x.

Since F−1
Yi:n

(FXi:n(x)) = F−1
Y (FX(x)), (see Barlow & Proschan (1975)) we say that

Xi:n 6disp Yi:n if QY(u)−QX(u) is increasing in u

Theorem 2.18. If Xi:n 6disp Yi:n then Xi:n 6st Yi:n.

Proof. Using the definition of dispersive ordering, we have QY(u) − QX(u) is

increasing in u, that is qY(u) − qX(u) > 0, implies that HXi:n(u) > HYi:n(u),

which is equivalent to QXi:n(u) 6 QYi:n(u). Hence the proof.





Chapter 3

Quantile-based entropy of order statistics

3.1 Introduction

Quantile-based study of entropy measures found greater interest among re-

searchers as an alternative method of measuring the uncertainty of a random

variable. The quantile-based entropy measures possess some unique proper-

ties than its distribution function approach. Motivated by this, in the present

Chapter, we introduce a quantile-based entropy of order statistics and study its

properties. We also propose a quantile-based residual entropy of order statis-

tics, an alternative method to measure the uncertainty of ordered observations

for used items. Unlike the distribution function approach, the quantile ap-

proach provides an explicit relationship between the quantile density function

and quantile-based residual entropy of order statistics.

The present chapter is organized as follows. In Section 3.2, we introduce a

quantile-based entropy of order statistics and study its important properties.

Section 3.3 introduces the quantile-based residual entropy of order statistics

and proves that it uniquely determines the quantile density function. Various

0Results in this chapter have been published as entitled “Quantile-based entropy of order
statistics” in “Journal of the Indian Society for Probability and Statistics” (See Sunoj et al. (2017)).

59
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bounds of quantile-based entropy of order statistics and its residual version are

obtained.

3.2 Quantile-based Shannon entropy of order statis-

tics

Recently, Sunoj & Sankaran (2012) introduced a quantile-based Shannon entropy

function, given by

ξ = −E(log f (Q(u))) =
∫ 1

0
log q(u)du, (3.1)

where q(u) = d
du Q(u) denotes the quantile density function. Sunoj & Sankaran

(2012) further extended ξ in (3.1) to the residual random variable in the quantile

setup and studied its properties. The quantile-based residual entropy is given

by,

ξ(u) = log(1− u) +
1

(1− u)

∫ 1

u
log q(p)dp. (3.2)

Sunoj & Sankaran (2012) have shown that the residual quantile entropy function

determines the quantile density function uniquely. An extension of ξ to the past

lifetime is discussed in Sunoj et al. (2013) while a quantile-based residual Renyi’s

entropy is studied by Nanda et al. (2014). Also, a study on the quantile-based

cumulative entropy measures for residual and past lifetime random variables

is available in Sankaran & Sunoj (2017). Recently, a quantile Kullback-Leibler

divergence is proposed by Sankaran et al. (2016), using the quantile function of
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the relative inverse.

From (2.52), Shannon entropy of Xi:n is given by

ηi:n(x) = −E(log fi:n(X)) = −
∫ ∞

0
(log fi:n(x)) fi:n(x)dx.

Now using (2.52), the corresponding quantile-based Shannon entropy of Xi:n is

defined as

ξXi:n = ηi:n(Q(u)) = −
∫ 1

0
(log fi:n(Q(u)) fi:n(Q(u)dQ(u). (3.3)

From (2.51), we have FQ(u) = u, then (2.53) becomes

fi:n(u) = fi:n(Q(u)) =
1

B(i, n− i + 1)
ui−1(1− u)n−i f (Q(u))

=
1

B(i, n− i + 1)
ui−1(1− u)n−i 1

q(u)
. (3.4)

Denoting gi(u) =
1

B(i, n− i + 1)
ui−1(1− u)n−i as the pdf of beta distribution

with parameters (i, n − i + 1), (3.4) becomes fi:n(u) = gi(u)
q(u) and hence ξXi:n in

(3.3) reduces to

ξXi:n = −
∫ 1

0

(
log

gi(u)
q(u)

)
gi(u)
q(u)

q(u)du

= −
∫ 1

0
(log gi(u))gi(u)du +

∫ 1

0
(log q(u)) gi(u)du

= ηgi + Egi (log q(U)) , (3.5)
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where

ηgi = −
∫ 1

0
(log gi(u))gi(u)du,

is the Shannon entropy of beta distribution with parameters (i, (n− i + 1)) (beta

entropy) and

Egi (log q(U)) =
∫ 1

0
(log q(u)) gi(u)du. (3.6)

From (3.5), it is clear that ξXi:n is sum the Shannon entropy of beta distribution

with parameters (i, n − i + 1) and expectation of log q(U) of beta distribution

with parameters (i, n− i+ 1). Also, ξXi:n can be expressed in terms of the hazard

quantile function H(u) by

ξXi:n = ηgi +
∫ 1

0

(
log((1− u)H(u))−1

)
gi(u)du

= ηgi −
∫ 1

0
(log(1− u)) gi(u)du−

∫ 1

0
(log H(u)) gi(u)du. (3.7)

In terms of the reversed hazard quantile function Λ(u), ξXi:n in (3.5) can be

expressed as

ξXi:n = ηgi −
∫ 1

0
(log Λ(u))gi(u)du−

∫ 1

0
(log u)gi(u)du. (3.8)

ηgi can be expressed as a function of digamma function defined as Ψ(z) =

d
dz (log Γ(z)) , given by (Ebrahimi et al. (2004))

ηgi = log B(i, n− i + 1) − (i− 1)[Ψ(i)−Ψ(n + 1)]

− (n− i)[Ψ(n− i + 1)−Ψ(n + 1)]. (3.9)
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Table 3.1 provides quantile-based entropy of order statistics for some impor-

tant lifetime distributions. In the following example we obtain ξXi:n for Govin-

darajulu distribution (Nair et al. (2013)), where the distribution function has no

closed form.

Example 3.1. Let X be a random variable having the Govindarajulu distribution

with the quantile function Q(u) = θ + σ{(β + 1)uβ − βuβ+1}, 0 < u < 1, σ, β >

0, so that q(u) = σβ(β + 1)uβ−1(1− u). Then

Egi(log q(U)) = Egi(log σβ(β + 1)Uβ−1(1−U))

= log σβ(β + 1) + (β− 1)E(log U) + E(log(1−U))

= log σβ(β + 1) + (β− 1)(ψ(i)− ψ(n + 1)) + ψ(n− i + 1)− ψ(n + 1).

Using (3.5), ξXi:n becomes

ξXi:n = log B(i, n− i+ 1)− (i− 1)[ψ(i)−ψ(n+ 1)]− (n− i)[ψ(n− i+ 1)−ψ(n+ 1)]

+ log σβ(β + 1) + (β− 1)(ψ(i)− ψ(n + 1)) + ψ(n− i + 1)− ψ(n + 1).

Figure 3.1 shows that the quantile-based entropy of order statistics ξXi:n is max-

imum at the median for the Govindarajulu distribution. Figure 3.2 indicates that

for Govindarajulu distribution as β increases the entropy of first-order statistics

ξX1:n also increases linearly.

Example 3.2. Let X be a random variable having generalized Pareto distribution

with quantile function

Q(u) =
b
a
[(1− u)−

a
a+1 − 1], a > −1, b > 0. (3.10)
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Figure 3.1: Plot of ξXi:n for Govindarajulu distribution with β > 0, σ = 1.
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Figure 3.2: Plot of ξX1:n of Govindarajulu distribution for different values of β
and σ = 1.

Then the quantile version of entropy of order statistics ξXi:n is given by

ξXi :n = ηgi + Egi(log q(U))

= ηgi +
∫ 1

0
(log q(u))gi(u)du

= ηgi +
∫ 1

0

(
log
(

b
a + 1

)
(1− u)−

a
a+1−1

)
gi(u)du

= ηgi + log
(

b
a + 1

)
−
(

2a + 1
a + 1

)
Egi(log(1−U))
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Figure 3.3: Plot of ξXi :n for generalized Pareto distribution

Table 3.1: Quantile function and quantile-based entropy of order statistics for
lifetime distributions.

Distribution Q(u) ξXi:n

Exponential − log(1−u)
λ , λ > 0 ηgi − log λ− [ψ(n− i + 1)− ψ(n + 1)]

Pareto II β
(
(1− u)−1/c − 1

)
, c, β > 0 ηgi + log β

c − (
c + 1

c
)[ψ(n− i + 1)− ψ(n + 1)]

Rescaled Beta R
(

1− (1− u)
1
c

)
, R, c > 0 ηgi + log

R
c
+

1− c
c

[ψ(n− i + 1)− ψ(n + 1)]

Power αu
1
β , α, β > 0 ηgi + log α

β + 1−β
β [ψ(i)− ψ(n + 1)]

Pareto I σ(1− u)−
1
α , σ, α > 0 ηgi + log

σ

α
− (

α + 1
α

)[ψ(n− i + 1)− ψ(n + 1)]

Log logistic α−1(
u

1− u
)

1
β , α, β > 0 ηgi − log αβ +

1− β

β
[ψ(i)− ψ(n + 1)]− 1 + β

β
[ψ(n− i + 1)− ψ(n + 1)]

Generalized Pareto
b
a
[(1− u)−

a
a+1 − 1], b > 0, a > −1 ηgi + log

b
a + 1

− ( 2a+1
a+1 )[Ψ(n− i + 1)−Ψ(n + 1)]

Govindarajulu θ + σ{(β + 1)uβ − βuβ+1}, θ, σβ > 0 ηgi + log σβ(β + 1) + (β− 1)(ψ(i)− ψ(n + 1)) + ψ(n− i + 1)− ψ(n + 1)

where Egi(log(1−U)) = Ψ(n− i + 1)−Ψ(n + 1). Then ξXi :n becomes

ξXi :n = ηgi + log
(

b
a + 1

)
−
(

2a + 1
a + 1

)
[Ψ(n− i + 1)−Ψ(n + 1)]. (3.11)

Figure 3.3 indicates that ξXi :n shows an increasing tendency when the observa-

tions are in increasing order at different values of a and b.

Theorem 3.1. For the random variable X, ξXi :n possess the following bounds.
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(a) Assume that ξ < ∞, then

ξXi;n ≤ ηgi + nBiξ, (3.12)

where Bi is the ith term of binomial distribution with parameters (n− 1, pi) and

pi =
i− 1
n− 1

is the mode of the beta distribution.

(b) Let the quantile density function q(m) =
1
M

< ∞, where m = Sup{u : q(u) >
1
M
} is the mode of the distribution of the random variable X. Then,

ξXi;n ≥ ηgi − log M. (3.13)

Proof. (a) Since pi =
i− 1
n− 1

is the mode, the maximum value of gi(u) will be

attained at the mode. Thus,

gi(u) ≤ gi(pi) = n

 n− 1

i− 1

 pi−1
i (1− pi)

n−i = nBi (3.14)

Using (3.5), we obtain

ξXi;n − ηgi = Egi(log q(U))

=
∫ 1

0
(log q(u))gi(u)du

≤
∫ 1

0
(log q(u))nBidu

≤ nBiξ, (3.15)

where ξ is the quantile-based entropy defined in (3.1).



Quantile-based entropy of order statistics 67

(b) From (3.5), we have

ξXi;n = ηgi +
∫ 1

0
gi(u) log q(u)du

= ηgi −
∫ 1

0
gi(u) log(q(u))−1du

≥ ηgi −
∫ 1

0
gi(u) log Mdu

= ηgi − log M, (3.16)

completes the proof.

These bounds are useful when the quantile function does not have a closed form

or ξXi:n is difficult to compute.

In the next theorem, we derive the monotone behaviour of ξ̄Xi:n with respect to

the monotone nature of q(u).

Theorem 3.2. Let X be a random variable and let Xi:n, i = 1, 2, ...n denote the ith order

statistics and ξXi:n be the quantile-based entropy of the order statistics.

a. If q(u) is nondecreasing in u, then ξXi:n is increasing in i for i < n
2 .

b. If q(u) is nonincreasing in u, then ξXi:n is decreasing in i for i > n
2 .

Proof. Using (3.5), we can write

ξXi+1:n − ξXi:n = ηgi+1 − ηgi + Egi+1(log q(u))− Egi(log q(u)). (3.17)

Let

∆n(i) = ηgi+1 − ηgi = (log(n− i)− ψ(n− i))− (log i− ψ(i)). (3.18)
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Then ∆n(i) < 0 for i <
n
2

, ∆n(i) > 0, for i >
n
2

, and for an even n, ∆n(
n
2
) = 0.

(see Ebrahimi et al. (2004))

ξXi+1:n − ξXi:n = −∆n(i) + Egi+1(log q(u))− Egi(log q(u)). (3.19)

Since the order statistics are stochastically ordered,

Ui≤stUi+1 ⇒ Egi(φ(Ui)) ≤ Egi+1(φ(Ui+1)) (3.20)

Thus, (3.19) reduces to

ξXi+1:n − ξXi:n ≥ 0, i <
n
2

(3.21)

Thus ξXi:n is increasing in i for i < n
2 , completes the first part of the proof. The

second part can be proved in a similar manner and hence omitted.

The following theorem provides the stochastic comparison of two random vari-

ables with respect to quantile-based entropy of order statistics.

Theorem 3.3. Let X and Y be two random variables with quantile functions QX(u)

and QY(u) respectively. Then

X≤stY ⇔ ξXi:n ≤ ξYi:n , (3.22)

and

X≤hrY ⇔ ξXi:n ≤ ξYi:n . (3.23)
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Proof. If X ≤st Y, then QX(u) ≤ QY(u). From (3.5), we have

ξXi:n = ηgi +
∫ 1

0
(log qX(u))gi(u)du

≤ ηgi +
∫ 1

0
(log qY(u))gi(u)du

= ξYi:n .

By retracing the above inequality we get the converse part of (3.22). Similarly,

one can prove (3.23) using the definition of hazard quantile order and (3.7).

3.3 Quantile-based residual entropy of order statis-

tics

In reliability and life testing, the data are generally truncated and in such situ-

ations ξXi:n is not an appropriate measure. Assume that the component X has

survived t units time, then the residual lifetime of the components, say Xt is of

interest. Based on this, the residual entropy of the ith order statistic is defined

by

ξ(Xi:n, t) = −
∫ ∞

t

(
log

fi:n(x)
F̄i:n(t)

)
fi:n(x)
F̄i:n(t)

dx. (3.24)
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Since F̄i:n(t) =
B̄F(t)(i, n− i + 1)

B(i, n− i + 1)
, the quantile version of the residual entropy of

the ith order statistic is defined as,

ξXi:n(u) = −
B(i, n− i + 1)
B̄u(i, n− i + 1)

∫ 1

u
(log gi(p))gi(p)dp

+
B(i, n− i + 1)
B̄u(i, n− i + 1)

∫ 1

u
(log q(p)gi(p)dp) + log

B̄u(i, n− i + 1)
B(i, n− i + 1)

(3.25)

where
B̄u(i, n− i + 1)
B(i, n− i + 1)

is the quantile form of F̄i:n(t) with B̄u(i, n− i + 1) =∫ 1
u ui−1(1− u)n−idu, the incomplete beta function. From (3.24), the first-order

residual entropy is given by

ξ(X1:n, t) = −
∫ ∞

t

(
log

n(1− F(x))n−1 f (x)
F̄(t)n

)(
n(1− F(x))n−1 f (x)

F̄(t)n

)
dx. (3.26)

and the nth order residual entropy is

ξ(Xn:n, t) = −
∫ ∞

t

(
log

n(F(x))n−1 f (x)
F̄(t)n

)(
n(F(x))n−1 f (x)

F̄(t)n

)
dx. (3.27)

The corresponding quantile residual entropy of the 1st and nth order statistics

obtained respectively as

ξX1:n(u) = − log n + log(1− u) +
n− 1

n
+ n(1− u)−n

∫ 1

u
(log q(p))(1− p)n−1dp,(3.28)

ξXn:n(u) = − log n +
(n− 1)un log u

(1− u)n +
n− 1

n
− log(1− un)−

∫ 1

u
(log q(p))pn−1dp.(3.29)
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An equivalent representation of (3.25) is of the form

ξXi:n(u) = −
1

B̄u(i, n− i + 1)

∫ 1

u
(log gi(p))pi−1(1− p)n−idp

+
1

B̄u(i, n− i + 1)

∫ 1

u
(log q(p))pi−1(1− p)n−idp

+ log
B̄u(i, n− i + 1)
B(i, n− i + 1)

. (3.30)

Order statistics play an important role in system reliability. For example, first-

order statistics represents the lifetime of a series system while the nth order

statistics measure the lifetime of a parallel system. Hence for measuring a

quantile-based uncertainty of series and parallel systems with i.i.d components,

ξX1:n(u) in (3.28) and ξXn:n(u) in (3.29) are of useful. We consider ξX1:n(u) to

derive different properties, the results of ξXn:n(u) can be obtained in a similar

way.

Example 3.3. For the Cox proportional hazards model, defined by hY(x) =

θhX(x), θ > 0, the equivalent quantile function is QY(u) = QX

(
1− (1− u)

1
θ

)
,

and quantile density function qY(u) = 1
θ (1 − u)

1
θ−1qX

(
1− (1− u)

1
θ

)
. Then

quantile-based residual entropy of first-order statistics is given by

ξY1:n(u) = − log n + log(1− u) +
n− 1

n

+n(1− u)−n
∫ 1

u

(
log qX(1− (1− p)

1
θ )

1
θ
(1− p)

1
θ−1
)
(1− p)n−1dp,

= − log n + log(1− u) +
n− 1

n

+n(1− u)−n
∫ 1

u

(
log qX(1− (1− p)

1
θ )
)
(1− p)n−1dp

− log θ +
n(1− θ)

θ
(n log(1− u)− 1).
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Table 3.2 provides the first-order quantile entropy of order statistics ξX1:n(u) for

some important life distributions where the quantile function Q(u) are of closed

form expressions. However, in some cases only the quantile density function

q(u) has a closed form expression. Therefore, in the following example, we

obtain ξX1:n(u) for a family of distributions that can be represented only through

q(u).

Example 3.4. Suppose X is distributed with quantile density function given by

q(u) = Kuα(1− u)−(A+α),

where K, α and A are real constants. It is to be noted that some of the members of

this quantile density have non-monotone hazard quantile functions while some

others have monotone hazard quantile functions. Further, it contains several

well-known distributions which include the exponential (α = 0, A = 1), Pareto

(α = 0, A < 1), rescaled beta (α = 0, A > 1), the log-logistic distribution

(α = λ− 1, A = 2) and Govindarajulu distribution (α = β− 1, A = −β) given in

Example 3.1. Then the residual quantile entropy of first-order statistics ξX1:n(u)

is obtained as

ξX1:n(u) = − log n + log(1− u) +
n− 1

n
+ log k− (A + α)

n
(−1 + n log(1− u))

+nα(1− u)−n
∫ 1

u
(log p)(1− p)n−1dp.
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Table 3.2: Quantile function and the quantile-based residual entropy of the
first-order statistics.

Distribution Q(u) ξX1:n(u)
Exponential − log(1−u)

λ 1− log n− log λ

Pareto II α
(
(1− u)−1/c − 1

)
− log n + log(1− u) +

n− 1
n

+ log
α

c
− 1 + c

c
log(1− u) +

1 + c
cn

Rescaled Beta R
(

1− (1− u)
1
c

)
− log n + log(1− u) +

n− 1
n

+ log
R
c
+

1− c
c

[log(1− u)− 1
n
]

Pareto I σ(1− u)−
1
α − log n + 1 + log

σ

α
− 1

α
log(1− u) +

α + 1
nα

Generalized Pareto
b
a
[(1− u)−

a
a+1 − 1] − log n− a

a + 1
log(1− u) +

n− 1
n

+ log
b

a + 1
+

2a + 1
n(a + 1)

Differentiating the equation (3.30) with respect to u, we get

ξ
′
Xi:n

(u) =
ui−1(1− u)n−i

B̄u(i, n− i + 1)

[
ξXi:n(u)− log q(u)− 1− log

ui−1(1− u)n−i

B̄u(i, n− i + 1)

]
.

(3.31)

Equation (3.31) is equivalent to

q(u) =
ui−1(1− u)n−i

B̄u(i, n− i + 1)
exp

[
ξXi:n(u)− 1−

ξ ′Xi:n
(u)B̄u(i, n− i + 1)

ui−1(1− u)n−i

]
. (3.32)

Equation (3.32) shows that the quantile-based residual entropy of order statistics

uniquely determines the quantile density function.

Example 3.5. Suppose that X follows generalized Pareto Distribution with quan-

tile function

Q(u) =
b
a
[(1− u)−

a
a+1 − 1], a > −1, b > 0. (3.33)

Then the first-order quantile entropy of residual life is given by

ξX1:n(u) = −logn− a
a + 1

log(1− u) +
n− 1

n
+ log

b
a + 1

+
2a + 1

n(a + 1)
. (3.34)
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Figure 3.4: Plot of ξX1:n(u) of generalized Pareto.

Conversely, assume that (3.33) holds. Then using (3.32), we obtain

q(u) = exp{ξX1:n(u)− 1 + log
(1− u)n−1

B(1, n)
−

ξ
′
X1:n

(u)B̄(1, n)

(1− u)n−1 − log
B̄u(1, n)
B(1, n)

},

which is equivalent to

q(u) = exp{− log n− a
a + 1

log(1− u) +
n− 1

n
+ log

b
a + 1

+
2a + 1

n(a + 1)
− 1

+ log n(1− u)n−1 − log(1− u)n − a
n(a + 1)

}.

On simplification, we have

q(u) =
b

(a + 1)
(1− u)

a
a+1−1,

the quantile density function of generalized Pareto with quantile function (3.33).

Figure 3.5 provides the plot of ξX1:n(u) of generalized Pareto distribution by

fixing b = 1 and for different values of a and u.
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Figure 3.5 indicates that when the component lifetimes follow generalized

Pareto distribution, the quantile-based residual entropy of a series system (first-

order statistic) shows an increasing tendency as u increases.

Theorem 3.4. The relationship

ξX1:n(u) = ξX1:n + c log(1− u) (3.35)

holds if and only if X follows generalized Pareto with quantile function (3.33)

Proof. Assume that X follows generalized Pareto with quantile function (3.33).

Using (3.5) we obtain

ξX1:n =
n− 1

n
− log n + log

b
a + 1

+
2a + 1

n(a + 1)
. (3.36)

Comparing (3.34) and (3.36), we get the relation (3.35). For proving the converse

part, assume the relationship (3.35) holds. From (3.31), we get

ξ ′X1:n
(u) =

n
1− u

(
ξX1:n(u)− log q(u)− 1− log n + log(1− u)

)
. (3.37)

Differentiating (3.35) with respect to u, we get ξX1:n = −c
1−u . Then (3.37) becomes

ξ ′X1:n
(u) =

−c
n

+ log q(u)− log(1− u) + 1 + log n.

Now, using the relationship (3.35) the above equation becomes

ξX1:n = (1− c
n
+ log n) + log q(u)− (c + 1) log(1− u). (3.38)
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Taking derivative on both sides of (3.38), we get

q′(u)
q(u)

= − c + 1
1− u

,

on integration we get q(u) = (1− u)c+1. Thus the proof.

Remark 3.1. For c = 0, (c < 0, c > 0) it characterizes exponential distribution,

(Pareto II, Rescaled Beta). The characterization of ξX1:n(u) for different distribu-

tions can be obtained from Table: 3.2.

Theorem 3.5. The quantile-based residual entropy of a series system ξX1:n(u) = C, a

constant if and only if X follows an exponential distribution.

Proof. The proof is straight forward from (3.32).

Theorem 3.6. The relationship ξX1:n(u) = a + bu, where a, b are real constants, holds

if and only if the quantile density of the form q(u) = θ
(1−u) eλu, where θ, λ are real

constants.

Proof. The ’if’ part can be proved easily from (3.28) and the ’only if’ part can be

proved from (3.32), which reduces to q(u) = n
(1−u) exp

[
ξX1:n(u)− 1−

(1−u)ξ ′X1:n
(u)

n

]
,

in turn, provides the required q(u).

Definition 3.7. X is said to have increasing (decreasing) residual quantile en-

tropy of order statistics (IRQEO (DRQEO)) if ξXi:n(u) is increasing (decreasing)

in u ≥ 0.

Now it is easy to show from the relationship (3.31) that if X is IRQEO (DRQEO),

then

ξXi:n(u) ≥ (≤)1 + log
q(u)ui−1(1− u)n−i

B̄u(i, n− i + 1)
,
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or equivalently

ξXi:n(u) ≥ (≤)1 + log
ui−1(1− u)n−i−1

H(u)B̄u(i, n− i + 1)
,

gives the upper (lower) bound for ξXi:n(u). However for the exponential distri-

bution of first-order statistics, ξX1:n(u) = 1 + log q(u)(1−u)
n = 1− log H(u)n =

1 − log n − log λ = C, a constant. Hence exponential distribution belongs to

both increasing (decreasing) residual entropy of first-order statistics classes. For

Pareto II distribution (Table 3.2), ξ ′X1:n
(u) = 1

c(1−u) > 0, so that Pareto II random

variable belong to increasing residual entropy of first-order statistics class. In

the case of rescaled beta density (Table 3.2), ξ ′X1:n
(u) = − 1

c(1−u) < 0, therefore

belongs to the decreasing residual entropy of first-order statistics class. It is to

be noted that the hazard rate ordering do not preserve quantile residual entropy

of first-order statistics. For example, Pareto II is decreasing while ξX1:n(u) is in-

creasing in u.

The ageing behaviours of life distributions is fundamental in reliability theory

and practice and the hazard and mean residual quantile functions are the two

basic concepts in this connection. We say that X is increasing (decreasing) haz-

ard rate (IHR(DHR)) if H(u) is increasing (decreasing) in u. The monotonicity

of h(x) and H(u) are identical. We can see that the residual quantile entropy

of first-order statistics does not preserve the IHR (DHR) property. That is, IHR

(DHR) property does not imply increasing (decreasing) residual quantile en-

tropy of first-order statistics. For example, in the case of Pareto II with quantile

function Q(u) = α
[
(1− u)−

1
c − 1

]
, we have H(u) = c

aα (1− u)
1
c which is DHR
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while ξ ′X1:n
(u) = 1+c

c(1−u) > 0 is increasing residual quantile entropy of first-order

statistics.

Theorem 3.8. If X is increasing residual quantile entropy order(IRQEO) and if φ(.) is

non-negative, increasing and convex, then φ(X) is also IRQEO.

Proof. Let Y = φ(X) be a non-negative, increasing and convex function. Then

g(y) =
f (φ−1(y))

φ
′(φ−1(y))

=
1

φ
′(Q(u))q(u)

.

Using (3.30), the quantile entropy of order Yi:n is given by

ξYi:n(u) = −
B(i, n− i + 1)
B̄u(i, n− i + 1)

∫ 1

u
gi(p)(log gi(p))dp

+
B(i, n− i + 1)
B̄u(i, n− i + 1)

∫ 1

u
gi(p)(log qY(p))dp + log

B̄u(i, n− i + 1)
B(i, n− i + 1)

dp. (3.39)

Equation (3.39) equivalent to

ξYi:n(u) =
B(i, n− i + 1)
B̄u(i, n− i + 1)

(∫ 1

u
gi(p)(log q(p))dp−

∫ 1

u
gi(p)(log gi(p))dp

)
+

B(i, n− i + 1)
B̄u(i, n− i + 1)

∫ 1

u
gi(p)(log φ

′
(Q(p)))dp + log

B̄u(i, n− i + 1)
B(i, n− i + 1)

dp

= ξXi:n(u) +
∫ 1

u

pi−1(1− p)n−i

B̄u(i, n− i + 1)
(log φ′(Q(p)))dp.

Since ξXi:n(u) is IRQEO and φ is non-negative, increasing function, Y = φ(X) is

also IRQEO, which completes the proof.

Example 3.6. Let X be a random variable with Pareto II distribution with quan-

tile function Q(u) = α[(1− u)−
1
c − 1], α, c > 0, and let Y = Xβ, β > 0. Then Y

has Burr type XII distribution with Q(u) = αβ[(1− u)− 1
c − 1]β. The non-negative
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increasing function φ(X) = Xβ, is convex. Then by Theorem 3.8, the Burr type

XII distribution is IRQEO.

Now we find the upper bound of residual entropy of order statistics based on

the quantile function ξXi:n(u) in terms of the entropy of order statistics based on

the quantile function ξXi:n .

From (3.30), we have

ξXi:n(u) = −
B(i, n− i + 1)
B̄u(i, n− i + 1)

(∫ 1

u
gi(p)(log gi(p))dp−

∫ 1

u
gi(p)(log q(p))dp

)
+ log

B̄u(i, n− i + 1)
B(i, n− i + 1)

,

=
B(i, n− i + 1)
B̄u(i, n− i + 1)

ξXi:n +
∫ u

0

pi−1(1− p)n−i

B̄u(i, n− i + 1)

(
log gi(p)(q(p))−1

)
dp

+ log
B̄u(i, n− i + 1)
B(i, n− i + 1)

,

≤ B(i, n− i + 1)
B̄u(i, n− i + 1)

ξXi:n .

Equivalently

ξXi:n(u) ≤
B(i, n− i + 1)
B̄u(i, n− i + 1)

ξXi:n . (3.40)

These bounds are useful when the quantile density has no closed form or the

computation of ξXi:n(u) is difficult.





Chapter 4

Cumulative residual Tsallis entropy measures-

A quantile approach

4.1 Introduction

Rao et al. (2004) proposed an alternative measure of Shannon entropy H(X)

known as cumulative residual entropy (CRE), received a great attention among

researchers as it possesses certain unique properties and applications in compar-

ison with Shannon entropy (see Asadi & Zohrevand (2007), Navarro et al. (2010)

and Toomaj et al. (2017)). Motivated with these, Sati & Gupta (2015) introduced

a cumulative Tsallis entropy (CTE) measure, defined by

ηα(X) =
1

α− 1

(
1−

∫ ∞

0
(F̄(x))αdx

)
, α > 0, α 6= 1, (4.1)

obtained by replacing the pdf f (.) in Sα(X) by the survival function F̄(.), and

studied various properties of its residual form. Recently, Rajesh & Sunoj (2016)

proposed an alternative form of ηα(X), deriving some new results based on it.

0Results in this chapter have been published as entitled “A quantile-based study of cumula-
tive residual Tsallis entropy measures” in the Journal “Physica A: Statistical Mechanics and its
Applications” (See Sunoj et al. (2018)).

81



Cumulative residual Tsallis entropy measures-A quantile approach 82

As many quantile functions used in applied works do not have tractable dis-

tribution functions, the statistical study of the properties of ηα(X) using (4.1)

is difficult. Thus a formulation of the definition and properties of ηα(X) in

terms of quantile functions is required. The quantile approach gives an alter-

native methodology in the study of cumulative Tsallis entropy and its dynamic

(residual) measure. There are certain properties of quantile functions that are

not shared by the distribution function approach. For instance, the sum of

two quantile functions is again a quantile function; the product of two positive

quantile functions is a quantile function and if T(x) is a non-decreasing function

of x, then T (Q(u)) is a quantile function (for more properties, see Nair et al.

(2013)). Also, unlike the distribution function approach the quantile approach

provides an explicit relationship between quantile-based cumulative residual

Tsallis entropy and the quantile density function, that uniquely determines the

distribution.

The organization of the chapter is given as follows. In Section 4.2, we intro-

duce the quantile-based cumulative Tsallis entropy and its dynamic version and

obtain certain characterization results and bounds based on it. In section 4.3,

we extend the quantile-based cumulative residual Tsallis entropy in the context

of order statistics and study its properties. In Section 4.4, we propose a non-

parametric estimator for the quantile-based cumulative residual Tsallis entropy

and a simulation study is carried out to illustrate the performance of the es-

timator. We also investigate the usefulness of the estimator for the real data

set.
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4.2 Quantile-based cumulative Tsallis entropy and

its dynamic version

Then the quantile-based cumulative Tsallis entropy (QCTE) based on (4.1) is

defined as

τα(X) =
1

α− 1

(
1−

∫ 1

0
(1− p)αq(p)dp

)
, α > 0, α 6= 1. (4.2)

In terms of H(u), τα(X) becomes

τα(X) =
1

α− 1

(
1−

∫ 1

0

(1− p)α−1

H(p)
dp
)

, α > 0, α 6= 1.

Thus by knowing either Q(u) (or its quantile density q(u)) or H(u) we can easily

compute τα(X). Table 4.1 provides the expressions of τα(X) for different distri-

butions. As pointed out in Chapter 1, there are some models that do not have a

tractable distribution function while the quantile function exists. Govindarajulu

and generalized lambda distributions given in Table 4.1 are examples of mod-

els that do not have distribution function whereas the quantile function Q(.)

exists, illustrating the importance of τα(X) in (4.2). Further, for some models

only the quantile density function q(.) exists with no closed form for its distri-

bution function (see Nair et al. (2013)). Accordingly, in the following example,

we obtain τα(X) for which only q(.) exists.

Example 4.1. Suppose X is distributed with quantile density function given by

q(u) = (1− u)−A(− log(1− u))−M,
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Table 4.1: Quantile function and the cumulative Tsallis entropy of some distri-
butions.

Distribution Q(u) τα(X)

Exponential − log(1−u)
λ , λ > 0 1

α−1

(
1− 1

αλ

)
Pareto II γ((1− u)

−1
c − 1), γ, c > 0 1

α−1

(
1− γ

−1+αc

)
Rescaled beta R

(
1− (1− u)

1
c

)
, c, R > 0 1

α−1

(
1− R

1+αc

)
Generalized Pareto

b
a
[(1− u)−

a
a+1 − 1], b > 0, a > −1 1

α−1

(
1− b

a(α−1)+α

)
Govindarajulu θ + σ{(β + 1)uβ − βuβ+1}, θ, σ, β > 0 1

α−1

(
1− σβ(β + 1)

(
Γ(2+α)Γ(β)
Γ(2+α+β)

))
Generalized lambda 1

λ1
+ 1

λ2

(
uλ3 − (1− u)λ4

)
, λ1, λ2, λ4εR, λ3εZ+ 1

α−1

(
1− 1

λ2

(
λ4

λ4+α + Γ(1+λ3)Γ(1+α)
Γ(1+λ3+α)

))

where M and A are real constants. Further, it contains several distributions

which include Weibull when A = 1, M = λ−1
λ with shape parameter σ = kλ,

uniform when A = 0, M = 0, Pareto when A > 1, M = 0, and rescaled beta

when A < 1, M = 0. Then the quantile-based cumulative Tsallis entropy is

obtained as,

τα(X) =
1

(α− 1)
(1− (1− A + α)M−1)Γ(1−M), M < 1

where Γ(.) represents the Gamma function. It is to be noted that τα(X) > 0(<

0), for α > 1(0 < α < 1).

4.2.1 Quantile-based cumulative residual Tsallis entropy

For truncated data, measuring uncertainty using τα(X) is not appropriate and a

modified version of τα(X) is essential for such residual random variable, Xt =

(X − t|X > t). In the distribution approach, Sati & Gupta (2015) proposed a
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cumulative residual Tsallis entropy for Xt as

ηα(X; t) =
1

α− 1

(
1−

∫ ∞

t

(
F̄(x)
F̄(t)

)α

dx
)

, α > 0, α 6= 1. (4.3)

Using (4.3), quantile-based cumulative residual Tsallis entropy (QCRTE) is ob-

tained as

τα(u) =
1

α− 1

(
1− 1

(1− u)α

∫ 1

u
(1− p)αq(p)dp

)
, α > 0, α 6= 1. (4.4)

In terms of the mean residual quantile function M(u), (4.4) becomes

τα(u) =
1

α− 1

(
1− 1

(1− u)α

∫ 1

u
(1− p)α−1 (M(p)− (1− p)M′(p)

)
dp
)

,

or equivalently

τα(u) =
1

α− 1

(
1− 1

(1− u)α

∫ 1

u
(1− p)α−1M(p)dp

)
+

1
α− 1

(
1

(1− u)α

∫ 1

u
(1− p)αdM(p)

)
. (4.5)

Applying integration by parts on the third term of (4.5), we obtain

τα(u) =
1

α− 1

(
1−M(u) +

α− 1
(1− u)α

∫ 1

u
(1− p)α−1M(p)dp

)
. (4.6)

Now differentiating (4.6) with respect to u and using (2.33) simplifies to

q(u) = (α− 1)τα′(u) +
α

1− u
(1− (α− 1)τα(u)) , (4.7)
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Table 4.2: Quantile functions and quantile-based cumulative residual Tsallis
entropy of certain distributions

Distribution Q(u) τα(u)
Exponential − log(1−u)

λ , λ > 0 1
α−1

(
1− 1

αλ

)
Pareto II γ((1− u)

−1
c − 1), γ, c > 0 1

α−1

(
1− γ

−1+αc

)
(1− u)

−1
c

Rescaled beta R
(

1− (1− u)
1
c

)
, c, R > 0 1

α−1

(
1− R

1+αc

)
(1− u)

1
c

Generalized Pareto
b
a
[(1− u)−

a
a+1 − 1], b > 0, a > −1 1

α−1

(
1− b

a(α−1)+α

)
(1− u)

−a
a+1

Govindarajulu θ + σ{(β + 1)uβ − βuβ+1}, θ, σ, β > 0 1
α−1

(
1− σβ(β+1)

(1−u)α (−βu(β, 2 + α) + β(2 + α, β)
)

Generalized lambda λ1 +
1

λ2

(
uλ3 + (1− u)λ4

)
, λ1, λ2, λ4εR, λ3εZ+ 1

α−1

(
1− 1

λ2(1−u)α

(
λ4(1−u)λ4+α

λ4+α + Γ(1+λ3)Γ(1+α)
Γ(1+λ3+α)

))
− uλ3

α−1 Σ∞
k=0

(λ3)k(−α)k
(1+λ3)k

uk

k!

where τα′(u) = d
du τα(u). The relationship (4.7) determines the quantile density

function from the quantile-based cumulative residual Tsallis entropy τα(u). The

relationship (4.7) is a unique characteristic of τα(u) unlike the cumulative resid-

ual Tsallis entropy ηα(X; t) in (4.3), where no such explicit relationship exists

between ηα(X; t) and the distribution function F(.). Table 4.2 provides quantile

functions of some important probability models and the corresponding τα(u).

Example 4.2. When X is distributed with quantile density function given by

q(u) = Kuδ(1− u)−(A+δ),

where K, δ and A are real constants. Some of the members of this quantile

density have non-monotone hazard quantile functions while some others have

monotone hazard quantile functions. Further, it contains several well known

distributions which include the exponential δ = 0; A = 1 , Pareto (δ = 0; A < 1),

rescaled beta (δ = 0; A > 1), the log-logistic distribution (δ = λ − 1; A = 2)

and Govindarajulu distribution (δ = β − 1; A = −β) with quantile function
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Figure 4.1: Plots of τα(u) against u with δ = 0, A = 0.5

(θ + σ{(β + 1)uβ − βuβ+1}). Then τα(u) becomes

τα(u) =
1

α− 1

(
1−

∫ 1

u

(1− p)αKpδ(1− p)−(A+δ)

(1− u)α
dp

)
,

=
1

α− 1

(
1− KΓ(1− A + α− δ)Γ(1 + δ)

(1− u)αΓ(2− A + α)
+

KBu(1 + δ, 1− A + α− δ)

(1− u)α

)
,

which is equivalent to

τα(u) =
1

α− 1

(
1− K

(1− u)α

(
−Bu(1 + δ, 1− A + α− δ) +

Γ(1− A + α− δ)Γ(1 + δ)

Γ(2− A + α)

))
.

Figure 4.1 provides the plots of τα(u) and u for α > 1 and 0 < α < 1 respectively.

Figure 4.1 indicates that at α > 1 , τα(u) increases as u increases and at 0 < α <

1, τα(u) decreases as u increases.

Definition 4.1. X is said to have increasing (decreasing ) quantile-based cumu-

lative residual Tsallis entropy (IQCRTE (DQCRTE)) if τα(u) is increasing (de-

creasing) in u ≥ 0.
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Now, we have obtained lower (upper) bounds to τα(u) based on IQCRTE (DQCRTE).

If X is IQCRTE (DQCRTE), then

τα(u) ≥ (≤) 1
α− 1

(
1− α− 1

αH(u)

)
, α > 1 (0 < α < 1).

When X is exponential with survival function F̄(x) = e−λx, x ≥ 0, λ > 0, then

τα(u) = αλ−1
αλ(α−1) = C, a constant. Thus exponential distribution belongs to both

IQCRTE and DQCRTE classes or boundary of these two classes.

Theorem 4.2. τα(u) = C, a constant iff X is exponentially distributed.

Proof. The proof directly follows from (4.7).

Theorem 4.3. If X has increasing (decreasing) failure rate (IFR (DFR)) property, then

X is DQCRTE (IQCRTE) for 0 < α < 1 (α > 1). But the converse need not be true.

Proof. It is known that IFR (DFR) implies increasing (decreasing) mean resid-

ual life (DMRL), which is equivalent to increasing (decreasing) H(u). Therefore

τα
X(u) is increasing (decreasing) in u if α > 1 (0 < α < 1).

On the other hand for rescaled beta (using Table 4.2), we have τα(u) = 1
α−1(1−

R
1+αc )(1− u)

1
c , which is DQCRTE, while H(u) = c

R (1− u)
−1
c is decreasing in u,

completes the proof.

Theorem 4.4. The relationship τα(u) = a + bu, a, b > 0 holds iff X follows a family

of distributions with quantile function

Q(u) = A(α2 − 1)u + α(B(α− 1)− 1)(log(1− u)), A, B > 0.
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Proof. The proof is similar to Theorem 4.2.

Theorem 4.5. Let X and Y be two non-negative absolutely continuous random vari-

ables with quantile functions QX(u) and QY(u), hazard quantile functions HX(u) and

HY(u) respectively. If X 6QHR Y, then

τα
X(u) > (6)τα

Y(u),

for α > 1(0 < α < 1).

Proof. When X 6QHR Y, we have HX(u) > HY(u), implies that for α > 1(0 <

α < 1)

−
∫ 1

u

(1− p)α−1

HX(u)
> (6)−

∫ 1

u

(1− p)α−1

HY(u)
. (4.8)

Therefore (4.8) becomes

1
α− 1

(
1− 1

(1− u)α

∫ 1

u

(1− p)α−1

HX(p)
dp
)
> (6)

1
α− 1

(
1− 1

(1− u)α

∫ 1

u

(1− p)α−1

HY(p)

)
dp.(4.9)

Hence the proof.

Theorem 4.6. If X is increasing QCRTE and if φ(.) is non-negative, increasing and

convex function, then φ(X) is also IQCRTE.

Proof. Let Y = φ(X) be a non-negative, increasing and convex function. Then

g(y) = f (φ−1(y))
φ
′ (φ−1(y))

= 1
φ
′ (QX(u))qX(u)

.
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So

τα
Y(u) =

1
α− 1

(
1− 1

(1− u)α

∫ 1

u
(1− p)αqY(p)dp

)
=

1
α− 1

(
1− 1

(1− u)α

∫ 1

u
(1− p)αφ

′
(QX(p))qX(p)dp

)
.

Since τα
Y(u) is IQCRTE and φ(.) is non-negative, increasing function, Y = φ(X)

is also IQCRTE, which completes the proof.

Example 4.3. Let X be a random variable with Pareto II distribution with quan-

tile function Q(u) = α[(1− u)−
1
c − 1], α, c > 0, and let Y = Xβ, β > 0. Then Y

has Burr type XII distribution with Q(u) = αβ[(1− u)− 1
c − 1]β. The non-negative

increasing function φ(X) = Xβ, is convex. Then by Theorem 4.6, the Burr type

XII distribution is IQCRTE.

4.2.2 An alternate form of QCRTE

Recently, Rajesh & Sunoj (2016) proposed an alternative measure of cumulative

Tsallis entropy as,

ζα(X) =
1

(α− 1)

(
µ−

∫ ∞

0
(F̄(x))α

)
dx, α > 0, α 6= 1, (4.10)

where µ = E(X). Rajesh & Sunoj (2016) also studied ζα(X) in (4.10) for the

residual random variable Xt; t > 0, given by

ζα(t) =
1

α− 1

(
r(t)−

∫ ∞

t

(
F̄(x)
F̄(t)

)α

dx
)

, α > 0, α 6= 1, (4.11)
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where r(t) is the mean residual life function. Rajesh & Sunoj (2016) showed that

unlike the cumulative residual Tsallis entropy introduced by Sati & Gupta Sati &

Gupta (2015), ζα(t) in (4.11) has some additional properties, such as simple rela-

tionships with other information and reliability measures. Motivated by this, in

the present section we define the quantile version of cumulative Tsallis entropy

based on ζα(t). Using (4.10), an alternate form of quantile-based cumulative

Tsallis entropy is defined as

ξα(X) =
1

(α− 1)

(
µ−

∫ 1

0
(1− p)αq(p)dp

)
, α > 0, α 6= 1.

If X and Y are independent, the two-dimensional version of ξα(X) becomes

ξα(X, Y) = µ1ξα(Y) + µ2ξα(X)− (α− 1)µ1µ1ξα(X)ξα(Y),

where µ1 = E(X), µ2 = E(Y), shows that ξα(X) is non-additive. Now the

quantile-based cumulative residual Tsallis entropy based on ξα(X) becomes

ξα(u) =
1

α− 1

(
M(u)− 1

(1− u)α

∫ 1

u
(1− p)αq(p)dp

)
, α > 0, α 6= 1(4.12)

=
1

α− 1
(M(u)− 1 + (α− 1)τα(u)) .

The following theorem provides a simple relationship for finding the quantile-

based cumulative residual Tsallis entropy ξα(u) using quantile mean residual

life.
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Theorem 4.7. Let X be a random variable with quantile MRLF M(u), 0 < u < 1.

Then

ξα(u) =
1

(1− u)α

∫ 1

u
(1− p)α−1M(p)dp.

Proof. Differentiating (2.30) with respect to u we get

d
du

((1− u)M(u)) = −(1− u)q(u).

Then quantile-based cumulative residual Tsallis entropy (4.12) reduces to,

ξα(u) =
1

α− 1

(
M(u)− 1

(1− u)α

∫ 1

u
((1− p)q(p)) (1− p)α−1dp

)
,

=
1

α− 1

(
M(u) +

1
(1− u)α

∫ 1

u

(
d

dp
(1− p)M(p)

)
(1− p)α−1dp

)
,

=
1

(1− u)α

∫ 1

u
(1− p)α−1M(p)dp.

Thus the proof.

Definition 4.8. X is said to have increasing (decreasing) cumulative residual

Tsallis entropy if ξα(u) is increasing (decreasing) in u.

From (4.12) we have

(α− 1)ξ
′α(u) =

(
M(u)
1− u

− α

(1− u)α+1

∫ 1

u
(1− p)αq(p)dp

)
, (4.13)

it is easy to show that if X is increasing(decreasing) cumulative residual Tsal-

lis entropy (IQCRTE) then ηα
X(u) ≥ (≤)MX(u)

α . For exponential distribution
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ηα
X(u) = 1

λα . Thus exponential distribution is the boundary of IQCRTE and

DQCRTE classes.

Theorem 4.9. The relationship ξα(u) = CM(u), C > 0 holds iff X is distributed as

Pareto II, exponential or rescaled beta according as Cα
>
=
<

1.

Proof. The “if ”part of the theorem is straight forward. To prove the “only if

”part let ξα(u) = CM(u), C > 0 hold. From (4.12) we can write

CM(u) =
1

α− 1
(M(u)− 1

(1− u)α

∫ 1

u
(1− p)αq(p)dp). (4.14)

Taking derivatives on both sides of (4.14), we get

CM
′
X(u) =

1
α− 1

(
M
′
X(u) + qX(u)−

α

1− u

∫ 1

u

(1− p)αq(p)
(1− u)α

dp
)

,

=
αηX(u)−MX(u)

1− u
.

Again substitute ηα
X(u) = CMX(u), we get

MX(u)HX(u) =
C

C− αC + 1
.

One can obtain the characterization easily using the relation

[HX(u)]−1 = MX(u)− (1− u)M
′
X(u). (4.15)
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Definition 4.10. The random variable X is said to have less quantile-based cu-

mulative residual Tsallis entropy than the random variable Y if ξα
X(u) 6 ξα

Y(u).

We denote X 6LQCRTE Y.

Theorem 4.11. If X ≥QHR Y then X 6LQCRTE Y.

Proof. From (4.12), we have

(α− 1)(ξα
X(u)− ξα

Y(u)) = MX(u)−MY(u)

+
1

(1− u)α

∫ 1

u
(1− p)α (qY(p)− qX(p)) dp.

Since X ≥QHR Y implies X 6QMR Y and qY(u) 6 qX(u), we obtain ξα
X(u) 6

ξα
Y(u), completes the proof.

4.3 Quantile-based cumulative residual Tsallis entropy

of order statistics

Fashandi & Ahmadi (2012) have derived certain characterizations for symmetric

distributions based on Renyi entropy of order statistics, k-record statistics and

the FGM family of bivariate distributions. Gupta et al. (2014) proved some

characterization results based on dynamic entropy of order statistics. Baratpour

& Khammar (2016) defined Tsallis generalized entropy of order α of ith order
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statistic Xi:n as

Sα(Xi:n) =
1

α− 1
(1−

∫ ∞

0
( fi:n(x))αdx), α > 0, α 6= 1,

=
1

α− 1
(1−

∫ ∞

0

1
β(i, n− i + 1)

F(x)α(i−1)(1− F(x))α(n−i) f (x)αdx).(4.16)

However, the study of entropy of order statistics using quantile functions is of

recent interest. Sunoj et al. (2017) introduced a quantile-based entropy of order

statistics and study its properties. The quantile-based Tsallis entropy of ith order

statistic is defined as,

Tα(Xi:n) =
1

α− 1

(
1−

∫ 1

0

(
1

B(i, n− i + 1)

)α

pα(i−1)(1− p)α(n−i)(q(p))1−αdp
)

.(4.17)

Unlike (4.16), Tα(Xi:n) in (4.17) will be more useful in cases we do not have a

tractable distribution function but have a closed quantile function.

The cumulative Tsallis entropy of ith order statistic is defined as

ηα(Xi:n) =
1

α− 1

(
1−

∫ ∞

0
(F̄i:n(x))α dx

)
,

=
1

α− 1

(
1−

∫ ∞

0

(
B̄F(x)(i, n− i + 1)

B(i, n− i + 1)

)α)
dx, (4.18)

where B̄u(i, n − i + 1) =
∫ 1

u ui−1(1− u)n−idu, is the incomplete beta function.

The corresponding quantile version of the cumulative Tsallis entropy of order

statistics (4.18) becomes,

τα(Xi:n) =
1

α− 1

(
1−

∫ 1

0

(
B̄p(i, n− i + 1)
B(i, n− i + 1)

)α
)

q(p)dp. (4.19)

In the case of a series system, the sample minimum X1:n is of importance. In
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Table 4.3: Quantile function and quantile-based cumulative Tsallis entropy of
first order statistic

Distribution Q(u) τα
X1:n

Exponential − log(1−u)
λ , λ > 0 1

α−1

(
1− 1

nαλ

)
Pareto I σ(1− u)−

1
β , σ > 0 1

α−1

(
1− σ

−1+nαβ

)
Rescaled beta R

(
1− (1− u)

1
c

)
, c, R > 0 1

α−1

(
1− R

−1+nαc

)
Generalized Pareto

b
a
[(1− u)−

a
a+1 − 1], b > 0, a > −1 1

α−1

(
1− b

nα(a+1)−a

)
Govindarajulu θ + σ{(β + 1)uβ − βuβ+1}, θ, σ, β > 0 1

α−1

(
1− σβ(β + 1)

(
Γ(2+nα)Γ(β)
Γ(2+nα+β)

))
Generalized lambda λ1 +

1
λ2

(
uλ3 + (1− u)λ4

)
, λ1, λ2, λ4εR, λ3εZ+ 1

α−1

(
1− 1

λ2

(
λ4

λ4+nα + Γ(1+λ3)Γ(1+nα)
Γ(1+λ3+nα)

))

this case the quantile-based cumulative Tsallis entropy of first order statistic is

of relevance, given by

τα(X1:n) =
1

α− 1

(
1−

∫ 1

0
(1− p)nαq(p)dp

)
. (4.20)

For the parallel systems with sample maximum Xn:n, then (4.19) turns to be

τα(Xn:n) =
1

α− 1

(
1−

∫ 1

0
(1− pn)αq(p)dp

)
. (4.21)

Table 4.3 provides some important quantile functions and the corresponding

quantile-based cumulative Tsallis entropy of first order statistic (series system)

τα(X1:n).
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4.3.1 Quantile-based cumulative residual Tsallis entropy of or-

der statistics (CRTEO)

In the case of truncated data τα(Xi:n) is not useful for measuring the uncertainty.

So we extend the same to the residual random variable Xt as in Section 4.2. The

corresponding cumulative residual Tsallis entropy of ith order statistic for Xt is

given by,

ηα(Xi:n; t) =
1

α− 1

(
1−

∫ ∞

t

(
F̄i:n(x)
F̄i:n(t)

)α)
dx. (4.22)

In the quantile set up, (4.22) becomes

τα
Xi:n

(u) =
1

α− 1

(
1−

∫ 1

u

(
B̄p(i, n− i + 1)
B̄u(i, n− i + 1)

)α

q(p)dp

)
. (4.23)

For the series systems, (4.23) reduces to

τα
X1:n

(u) =
1

α− 1

(
1− 1

(1− u)nα

∫ 1

u
(1− p)nαq(p)dp

)
. (4.24)

Differentiating (4.24) with respect to u on both sides, we get

(1− u)q(u) = nα
(
1− (α− 1)τX1:n(u)

)
+ (α− 1)(1− u)τ

′
X1:n

(u),

which implies that

q(u) =
nα

(1− u)
(
1− (α− 1)τX1:n(u)

)
+ (α− 1)τ

′
X1:n

(u). (4.25)
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Table 4.4: Quantile function and quantile-based cumulative residual Tsallis
entropy of first order statistic.

Distribution Q(u) τα
X1:n

(u)

Exponential − log(1−u)
λ , λ > 0 1

α−1 (1−
1

nαλ )

Pareto II β
(
(1− u)−1/c − 1

)
, β, c > 0 1

α−1

(
1− β(1−u)

−1
c

nαc−1

)

Rescaled beta R
(

1− (1− u)
1
c

)
, R, c > 0 1

α−1

(
1 + R(1−u)

1
c

nαc+1

)

Generalized Pareto
b
a
[(1− u)−

a
a+1 − 1], b > 0, a > −1 1

α−1

(
1− b(1−u)

−a
a+1

a(−1+nα)+nα

)
Govindarajulu θ + σ{(β + 1)uβ − βuβ+1}, θ, σ, β > 0 1

α−1

(
1− σβ(β+1)

(1−u)nα

[
−βu(β, 2 + nα) + Γ(2+nα)Γ(β)

Γ(2+nα+β)

])
Generalized lambda 1

λ2

(
λ3uλ3−1 + λ4(1− u)λ4−1) , λ1, λ2, λ4εR, λ3εZ+ 1

α−1

(
1− 1

λ2(1−u)nα

(
λ4(1−u)λ4+nα

λ4+nα − λ3βu(λ3, 1 + nα)
))

− 1
λ2(α−1)(1−u)nα

Γ(1+nα)Γ(1+λ3)
Γ(1+λ3+nα)

Equation (4.25) shows that the quantile-based cumulative residual entropy of

first order statistic uniquely determines the underlying distribution function.

Table 4.4 gives different quantile functions and its corresponding cumulative

residual Tsallis entropy of the first-order statistic (series system) τα
X1:n

(u).

It is to be noted that the generalized lambda family does not have a closed form

distribution function, while only the quantile function (see Table 4.4) exists.

Figure 4.2 provides the plot of τα
X1:n

(u) of generalized lambda family and u for

α > 1 and 0 < α < 1 respectively. Figure 4.2(a) indicates that as u increases

τα
X1:n

(u) also increases for α > 1. However, Figure 4.2(b) explains the non-

monotone nature of τα
X1:n

(u).

Example 4.4. A random variable X is distributed with quantile density func-

tion q(u) = Kuδ(1− u)−(A+δ), where K, δ, and A are real constants. Then the

quantile-based cumulative residual Tsallis entropy of first order statistic is given
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(a) α > 1

α=0.2

α=0.5

α=0.7

0.2 0.4 0.6 0.8 1.0
u

-2

2

4

τα X1:n
(u)

(b) 0 < α < 1

Figure 4.2: Quantile-based cumulative residual Tsallis entropy of first order
statistic against u.

by

τα
X1:n

(u) =
1

α− 1

(
1 +

K
(1− u)nα

βu(1 + δ, 1− A + nα− δ)

)
+

1
α− 1

(
Γ(1− A + nα− δ)Γ(1 + δ)

Γ(2− A + nα)

)
.

Theorem 4.12. If X is increasing quantile cumulative residual Tsallis entropy IQCRTE

(DQCRTE) and φ(.) is non negative, increasing and convex function, then φ(X) is also

IQCRTE if (α > 1) and DQCRTE if 0 < α < 1.
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Proof. Let Y = φ(X), then qY(u) = φ
′
(QX(u))qX(u). We have

τα
Y1:n

(u) =
1

α− 1

(
1− 1

(1− u)nα

∫ 1

u
(1− p)nαqY(p)dp

)
,

=
1

α− 1

(
1− 1

(1− u)nα

∫ 1

u
(1− p)nαφ

′
(QX(p))qX(p)dp

)
,

=
1

α− 1

(
1− 1

(1− u)nα

∫ 1

u
(1− p)nα(1 + φ

′
(QX(p))− 1)qX(p)dp

)
,

=
1

α− 1

(
1− 1

(1− u)nα

∫ 1

u
(1− p)nαqX(p)dp

)
− 1
(1− u)nα(α− 1)

∫ 1

u
(1− p)nαqX(p)(φ

′
(QX(p)− 1)dp

= τα
X1:n

(u) +
1

(1− u)nα(α− 1)

∫ 1

u
(1− p)nαqX(p)(1− φ

′
(QX(p))dp.

Since τα
Y1:n

(u) is IQCRTE and φ(.) is non-negative, increasing function, Y = φ(X)

is also IQCRTE. Thus the proof.

Example 4.5. Let X be the exponentially distributed random variable with

failure rate λ and let Y = X
1
β , β > 0. Then Y has the Weibull distribu-

tion with Q(u) = λ
−1
β (− log(1 − u))

1
β . The non-negative increasing function

φ(X) = X
1
β , X > 0, β > 0 is convex(concave) if 0 < β < 1(β > 0). Hence by the

Theorem 4.12 Weibull distribution is IQCRTEO if 0 < β < 1 and α > 1.

We now derive a relationship between cumulative residual Tsallis entropy of

first order statistic and cumulative Tsallis entropy of first order statistic as

τα
X1:n

(u) =
1

α− 1

(
1− 1

(1− u)nα

∫ 1

u
(1− p)nαq(p)dp

)
,

=
1

α− 1

(
1− 1

(1− u)nα

(∫ 1

0
(1− p)nαq(p)dp−

∫ u

0
(1− p)nαq(p)dp

))
,

=
1

α− 1

(
1 +

1
(1− u)nα

[
(α− 1)τα

X1:n
− 1 +

∫ u

0
(1− p)nαq(p)dp

])
.
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The constancy of quantile-based residual entropy of first order statistic is a char-

acteristic property of exponential distribution (see Sunoj et al. (2017)). In the

following theorem we prove that the exponential distribution holds the same

property for the quantile-based cumulative residual Tsallis entropy of first or-

der statistic.

Theorem 4.13. τα
X1:n

(u) = c, a constant if and only if X is exponentially distributed.

Proof. The “if”part is direct from Table 4.4 and the “only if”part follows from

(4.25).

Another simple form is a linear function. Hence, we prove a characterization

for which τα
X1:n

(u) assumes a linear form.

Theorem 4.14. Let X be a random variable with quantile function Q(u). For τα
X1:n

(u) =

a + bu, a, b > 0 holds if and only if X follows a family of distributions with quantile

function Q(u) = ((α− 1)(b− nαa) + nα) (− log(1− u))− b(1− α)(1 + nα)(u +

log(1− u)).

Proof. From (4.25), we get H(u) = 1
(α−1)(b−nαa)+nα−b(α−1)(1+nα)u , and using Q(u) =∫ u

0
1

(1−p)H(p)dp, we obtain Q(u) = ((α− 1)(b− nαa) + nα) (− log(1−u))+ b(1−

α)(1 + nα)(−u− log(1− u)). The ”if” part is direct from (4.24).

Now we find bounds for quantile-based cumulative residual Tsallis entropy of

first order statistic based on the hazard quantile function H(u). These bounds

are useful when the quantile density has no closed form or τα
X1:n

(u) is difficult

to compute.
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Theorem 4.15. Let X be a continuous random variable with quantile function Q(u)

and hazard quantile function H(u). If the quantile-based cumulative residual Tsallis

entropy of first order statistic τα
X1:n

(u) is increasing(decreasing) in u, then

τα
X1:n

(u) >
1

α− 1

(
1− 1

nαH(u)

)
,

when α > 1 and

τα
X1:n

(u) 6
1

α− 1

(
1− 1

nαH(u)

)
,

when 0 < α < 1.

Proof. Assume that τα
X1:n

(u) is increasing. So that the first derivative,

τα′
X1:n

(u) > 0. Thus we obtained the bounds as

τα
X1:n

(u) >
1

α− 1

(
1− 1

nαH(u)

)
,

when α > 1 and

τα
X1:n

(u) 6
1

α− 1

(
1− 1

nαH(u)

)
,

when 0 < α < 1.

Remark 4.1. For the Cox proportional hazards model, defined by hY(x) =

θhX(x), θ > 0, the quantile-based cumulative residual Tsallis entropy of first
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order statistic,

τα
Y1:n

(u) =
1

α− 1

(
1− 1

(1− u)nα

∫ 1

u
(1− p)nαqY(p)dp

)
,

=
1

α− 1

(
1− 1

(1− u)nα

∫ 1

u
(1− p)nα (1− p)

1
θ−1

θ
qX(1− (1− p)

1
θ )dp

)
.(4.26)

Taking v = (1− (1− p)
1
θ ), (4.26) becomes

τα
Y1:n

(u) =
1

α− 1

(
1− 1

(1− u)nα

∫ 1

1−(1−u)
1
θ
(1− v)nαθqX(v)dv

)
6

1
α− 1

(
1− 1

(1− u)nα

∫ 1

u
(1− v)nαqX(v)dv

)
6 τα

X1:n
(u).

4.4 An estimator of quantile-based cumulative resid-

ual Tsallis entropy

In this section, we propose a non-parametric estimator for the quantile-based

cumulative residual Tsallis entropy. Let X1, X2, ..., Xn be random samples. We

define the integral estimate of quantile-based cumulative residual Tsallis entropy

as

τ̂(u) =
1

α− 1

(
1− 1

(1− u)α

∫ 1

u
(1− p)αq̂(p)dp

)
, (4.27)

where q̂(u) = n(X(j) − X(j−1)) for j−1
n ≤ u ≤ j

n and j = 1, 2..., n, (see Parzen

(1979)).
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Table 4.5: Bias, mean square error and the estimates of the empirical estimator
τ̂(u) with α = 5.

n=100

u τ̂(u) Bias MSE
0.2 0.2495 0.0224 5.0028 ∗ 10−6

0.4 0.2496 0.0125 1.5626 ∗ 10−6

0.6 0.2497 0.0052 2.9523 ∗ 10−6

0.8 0.2499 0.0013 1.6047 ∗ 10−8

n=500

0.2 0.2497 0.0227 1.0286 ∗ 10−6

0.4 0.2498 0.0127 3.2428 ∗ 10−7

0.6 0.2499 0.0056 6.2474 ∗ 10−8

0.8 0.2499 0.0013 3.6153 ∗ 10−9

4.4.1 Simulation study

To study the performance of the estimator we carried out a series of 1000 simula-

tions each of size n(n = 100 and 500) with different values of u = 0.2, 0.4, 0.6, 0.8

from Govindarajulu distribution with the quantile function in (2.50) for σ =

1, β = 1.

The simulation study shows that the estimate has small bias and negligible MSE.

From Table 4.5 it is clear that MSE of the proposed empirical estimator decreases

with increasing sample sizes.

Figure 4.3 indicates that τ̂(u) increases as u increases.
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Figure 4.3: Plot of τ̂(u)

4.4.2 Application to real data

To illustrate the performance of the proposed estimator we use the data on fail-

ure times of 50 devices (Aarset data given in Aarset (1987)) arranged in order

of magnitude. Nair et al. (2012) fitted Govindarajulu distribution to this Aarset

data and the corresponding estimates of the parameters using L moments are

β̂ = 2.0915 and σ̂ = 93.463 respectively. To test the adequacy of the model

we divide the data into 10 observations each by taking ui =
i
5 , i = 1, 2, ..., 5 the

corresponding x values were computed using (2.50) with the L moment esti-

mates given above. The observed frequencies are 11, 8, 8, 13 and 10 against the

expected frequency of 10 in each class. The chi-square value is obtained as 1.8

which does not reject the hypothesis that the given data follows Govindarajulu

distribution. Q− Q plot also gives the adequacy of the model which is repre-

sented in Figure 4.4. Figure 4.5 indicates that the value of the estimator τ̂(u)

increases for α = 5 and decreases for α = 0.5.
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Figure 4.4: Q-Q plot for Aarset(1987) data
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Figure 4.5: Plot of τ̂(u) for real data



Chapter 5

Quantile-based reliability aspects of cumula-

tive Tsallis entropy in past lifetime

5.1 Introduction

Shannon entropy (see Shannon (1948)) that plays an important role in measur-

ing the average uncertainty of a random variable. However, in certain situations

the Shannon entropy may not be suitable where some generalized versions are

of importance. Various generalized entropy measures are available in the lit-

erature, which possesses many important properties such as smoothness, large

dynamic range with respect to certain conditions, etc. that make them more

flexible in practice. One popular generalization is the Tsallis entropy of order α

given by Tsallis (1988), derived as a generalization of Boltzmann-Gibbs entropy,

as discussed in Chapter 4. In the study of statistical mechanics, Tsallis entropy

provides for a much broader view of how disorder arises in macroscopic sys-

tems.

0Results in this chapter have been published as entitled “Quantile-based reliability aspects
of cumulative Tsallis entropy in past lifetime” in “Metrika-International Journal for Theoretical
and Applied Statistics” (See Krishnan et al. (2019)).
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Recently, Rao et al. (2004) introduced an alternative measure to the differential

entropy known as the cumulative residual entropy (CRE), based on the sur-

vival function F̄(x) = P(X > x) instead of the probability density function f (x)

used in S(X). CRE is considered to be more stable as survival function is more

regular than the probability density function and possess more mathematical

properties. Further, the distribution function exists even if the probability den-

sity function does not exists. Motivated by these, Sati & Gupta (2015) introduced

a cumulative residual Tsallis entropy of order α and extended it to its dynamic

form based on the residual lifetime and studied its properties. Rajesh & Sunoj

(2016) introduced an alternative form of ϕα(X) and proved certain results use-

ful in reliability modelling. Kumar (2017) obtained some characterization results

based on the dynamic cumulative residual Tsallis entropy.

A wide variety of works on different entropy measures in context with past life-

time distributions have been studied extensively in the literature (see Di Crescenzo

& Longobardi (2002), Di Crescenzo & Longobardi (2004),Di Crescenzo & Longo-

bardi (2009), Sachlas & Papaioannou (2014), Di Crescenzo & Toomaj (2015), etc).

Further our work facilitates the extension of the domain of application of cu-

mulative Tsallis entropy in past lifetime to many flexible quantile functions that

serve as useful lifetime models, that possesses no tractable distribution function.

Accordingly, in the present Chapter, we further study on the cumulative Tsallis

entropy in past lifetime using quantile functions.

This chapter is organized as follows. In Section 5.2, we propose the cumulative
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Tsallis entropy and its dynamic form using quantile function and obtain cer-

tain characterizations and bounds of it. In Section 5.3, we study the proposed

measures in the context of order statistics. In Section 5.4, we introduced a non-

parametric estimator for the quantile-based cumulative Tsallis entropy in the

past lifetime and carried out a simulation study to illustrate the performance

of the estimator. The usefulness of the estimator for the real data set is also

investigated.

5.2 Quantile-based cumulative Tsallis entropy in past

lifetime

Let tX = [t − X|X < t] be a random variable describes the past lifetime of a

system at age t. The two relevant ageing functions related to the past lifetime

random variable tX are the reversed hazard rate function and the mean past life-

time or mean inactivity time (Ebrahimi & Pellerey (1995)), defined respectively

as in (2.24) and (2.27). The quantile-based reversed hazard rate function (Nair

& Sankaran (2009)) defined in (2.35) and (2.37)

The cumulative Tsallis entropy can also be defined using the distribution func-

tion (Sati & Gupta (2015)) is given by,

η̄α(X) =
1

α− 1

(
1−

∫ ∞

0
Fα(x)dx

)
, α > 0, α 6= 1. (5.1)
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Table 5.1: Quantile function and the quantile-based cumulative Tsallis entropy
of some distributions.

Distribution Q(u) τ̄α(X)

Exponential − log(1−u)
λ , λ > 0 1

α−1

(
1− 1

λ(α+1)(α+2)

)
Pareto II γ((1− u)

−1
c − 1), γ, c > 0 1

α−1

(
1− γ

c B(α + 1,−1/c)
)

Rescaled Beta R
(

1− (1− u)
1
c

)
, c, R > 0 1

α−1

(
1− R

c B(α + 1, 1/c)
)

Generalized Pareto
b
a
[(1− u)−

a
a+1 − 1], b > 0, a > −1 1

α−1

(
1− b

a+1 B(α + 1, −a
a+1 )

)
Power γu

1
β , γ, β > 0 1

α−1

(
1− γ

1+αβ

)
Uniform a + (b− a)u, −∞ < a < b < ∞ 1

α−1

(
1− (b−a)

α+1

)
Davies cuλ1

(1−u)λ2
, c > 0; λ1, λ2 > 0 1

α−1

(
1− cλ1B(α+λ1,1−λ2)−cλ2B(α+λ1+1,−λ2)

)
Skew lambda δuλ − (1− u)λ, δ, λ > 0 1

α−1

(
1− δλ

α+λ − λB(λ, α + 1)
)

Generalized lambda λ1 +
1

λ2

(
uλ3 − (1− u)λ4

)
, λ1, λ2, λ4 ∈ R, λ3 ∈ Z+ λ1 +

1
λ2

(λ3B(α + 1, λ3) + 1)

Govindarajulu σ
(
(β + 1)uβ − βuβ+1) , σ, β > 0 1

α−1

(
1− σβ(β+1)

(σ+β)(σ+β+1)

)

Following Sankaran & Sunoj (2017), the corresponding quantile-based cumula-

tive Tsallis entropy based on (5.1) becomes

τ̄α(X) =
1

α− 1

(
1−

∫ 1

0
pαq(p)dp

)
, α > 0, α 6= 1. (5.2)

Table 5.1 provides some important quantile functions of distributions and its

corresponding τ̄α(X).

5.2.1 Quantile-based cumulative Tsallis entropy in past lifetime

(QCTEP)

The cumulative Tsallis entropy function for the past lifetime tX is given by,

η̄α(X, t) =
1

α− 1

(
1−

∫ t

0

(
F(x)
F(t)

)α

dx
)

, α > 0, α 6= 1. (5.3)
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Table 5.2: Quantile function and the quantile-based cumulative Tsallis entropy
in past lifetime of some distributions.

Distribution Q(u) τ̄α(u)

Exponential − log(1−u)
λ , λ > 0 1

α−1

(
1− 1

λuαBu(α+1,0)

)
Pareto II γ((1− u)

−1
c − 1), γ, c > 0 1

α−1

(
1− γ

c
Bu(α+1,−1

c )
uα

)
Rescaled Beta R

(
1− (1− u)

1
c

)
, c, R > 0 1

α−1

(
1− R

c
Bu(α+1, 1

c )
uα

)
Generalized Pareto

b
a
[(1− u)−

a
a+1 − 1], b > 0, a > −1 1

α−1

(
1− b

a+1
Bu(1+α)
−a
a+1

)
Power γu

1
β , γ, β > 0 1

α−1

(
1− γ

1+αβ u
1
β

)
Uniform a + (b− a)u,−∞ < a < b < ∞ 1

α−1

(
1− (b−a)u

α+1

)
Davies cuλ1

(1−u)λ2
, λ1, λ2 > 0 1

α−1

(
1− cλ1Bu(α+λ1,1−λ2)

uα − cλ2Bu(α+λ1+1,−λ2)
uα

)
Inverse Weibull (− log u)−λ, λ > 0 1

α−1 (1−
λ
uα (αλΓ(−λ) + (− log(u))−λ(−α log(u))λ(Γ(−λ,−α log(u))− Γ(−λ))))

Skew lambda δuλ − (1− u)λ, δ, λ > 0 1
α−1

(
1− λ

uα (
αuα+λ

α+λ + Bu(α + 1, λ))
)

Generalized lambda λ1 +
1

λ2

(
uλ3 − (1− u)λ4

)
, λ1, λ2, λ4 ∈ R, λ3 ∈ Z+ 1

α−1

(
1−

λ3uα+λ3
α+λ3

+λ4Bu(α+1,λ4)

λ2uα

)

Then the corresponding quantile-based cumulative Tsallis entropy function in

the past lifetime using (5.3) is given by,

τ̄α(u) =
1

α− 1

(
1−

∫ u

0

( p
u

)α
q(p)dp

)
, α > 0, α 6= 1, 0 < u < 1. (5.4)

Differentiating both sides of (5.4) with respect to u, we get

q(u) =
α

u
(1− (α− 1)τ̄α(u))− (α− 1)τ̄

′
α(u), (5.5)

where τ̄
′
α(u) =

d
du τ̄α(u). Thus τ̄α(u) uniquely determines the distribution func-

tion. Unlike η̄α(X, t), distributions which have no explicit distribution function

can be easily modelled through the relationship (5.5). Table 5.2 provides the

quantile functions and the corresponding τ̄α(u) of some important distributions.
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In terms of reversed hazard quantile function, τ̄α(u) reduces to

τ̄α(u) =
1

α− 1

(
1− 1

uα

∫ u

0
pα−1(Λ(p))−1dp

)
.

Further, τ̄α(u) can be expressed in terms of the reversed mean residual quantile

function by,

τ̄α(u) =
1

α− 1

(
1− 1

uα

∫ u

0
pα−1(R(p) + pR′(p))dp

)
=

1
α− 1

(
1− 1

uα

∫ u

0
pα−1R(p)dp− 1

uα

∫ u

0
pαdR(p)

)
. (5.6)

Applying integration by parts on the third term of (5.6), we get

τ̄α(u) =
(

1− R(u)
α− 1

)
+

1
uα

∫ u

0
pα−1R(p)dp.

Remark 5.1. The quantile-based cumulative Tsallis entropy in past lifetime τ̄α(u)

is related to quantile-based cumulative Tsallis entropy τα(X) and its residual

form τα(u) (Sunoj et al. (2018)) as follows:

τ̄α(u) =
1

α− 1
+

τα(X)− τα(u)
uα

,

where τα(X) = 1
α−1

(
1−

∫ 1
0 (1− p)αq(p)dp

)
and τα(u) = 1

α−1

(
1− 1

(1−u)α

∫ 1
u (1− p)αq(p)dp

)
.

The following characterization theorem considers a probability model that does

not have a closed expression for its quantile function.
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Figure 5.1: Plot of τ̄α(u) against u for different distributions.

Theorem 5.1. The relationship τ̄α(u) = 1
α−1

(
1− k

uα Bu(α + δ + 1,−A− δ + 1)
)

, 0 <

u < 1 if and only if

q(u) = kuδ(1− u)−(A+δ), k > 0, (5.7)

where A and δ are real constants.

Proof. The proof directly follows from (5.5).

Remark 5.2. The plots of τ̄α(u) for different members of the model (5.7) are

depicted in Figure 5.1.

It is often useful to identify a different class of probability models based on

the monotone behaviours of uncertainty measures. Accordingly, we define the

following non-parametric classes based on τ̄α(u).
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Definition 5.2. X is said to have increasing (decreasing) quantile-based cumu-

lative Tsallis entropy in past lifetime (IQCTEP (DQCTEP)) if τ̄α(u) is increasing

(decreasing) in u.

Theorem 5.3. If X is IQCTEP (DQCTEP), then for all u ≥ 0,

τ̄α(u) ≤ (≥) 1
α− 1

(
1− 1

αΛ(u)

)
, α > 1 (0 < α < 1),

which provides upper (lower) bounds to τ̄α(u) with respect to IQCTEP (DQCTEP).

The next theorem proves the characterization of exponential distribution with

support (−∞, 0) based on the constancy of τ̄α(u).

Theorem 5.4. τ̄α(u) = c, a constant if and only if X has exponential distribution with

negative support (see Block et al. (1998)).

Proof. Assume that τ̄α(u) = c. Using (5.5), we obtain Q(u) = 1
α(1−c(α−1)) log u =

1
λ log u, where λ = α(1− c(α− 1)). Conversely, assume that X follows exponen-

tial distribution with support (−∞, 0) having quantile function Q(u) = 1
λ log u.

Now from (5.4), we get τ̄α(u) = 1
α−1

(
1− 1

λα

)
, a constant.

In the following theorem, we prove that the IQCTEP property is closed under

monotonic increasing convex transformation.

Theorem 5.5. If X is IQCTEP and if φ(.) is non-negative, increasing and convex

function, then φ(X) is also IQCTEP for 0 < α < 1.



Quantile-based reliability aspects of cumulative Tsallis entropy in past lifetime 115

Proof. Let Y = φ(X) be a non-negative, increasing and convex function. Then

the pdf of Y = φ(X) is gY(y) =
f (x)

φ′(x) =
f (φ−1(y))

φ′(φ−1(y)) =
1

φ′(QX(u))qX(u)
, so that

τ̄Y
α (u) =

1
α− 1

(
1− 1

uα

∫ u

0
pαqY(p)

)
,

=
1

α− 1

(
1− 1

uα

∫ u

0
pαφ′(QX(p))qX(p)dp

)
=

1
α− 1

(
1− 1

uα

∫ u

0
pα(φ′(QX(p))− 1 + 1)qX(p)dp

)
= τ̄X

α (u) +
1

(α− 1)uα

∫ u

0
pα(1− φ′(QX(p)))qX(p)dp.

Since φ(.) is a convex, φ′(QX(p)) < φ′(QX(u)), 0 < p < u. Therefore

τ̄Y
α (u) ≥

(1− φ′(QX(u)))
α− 1

+ φ′(QX(u))τ̄X
α (u),

which completes the proof.

Example 5.1. Let X have Pareto II distribution with QX(u) = γ[(1− u)−1/c− 1].

When Y = Xβ, β > 0 the distribution of Y is Burr type XII distribution with

quantile function QY(u) = γβ[(1− u)−1/c − 1]β. Using the above theorem, if X

is IQCTEP then Y is also IQCTEP for 0 < α < 1.

Theorem 5.6. Let X be a non-negative absolutely continuous random variable such

that τ̄α(u) = cR(u). Then

Q(u) =
α

1 + c(α− 1)α
+ 2u + ck(α− 1)−1−cα(α−1)(1 + log u),

where c > 0 is a constant.
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Proof. Assume that τ̄α(u) = cR(u). Using (5.5), we get c(α− 1)R′(u) = −(Λ(u))−1 +

α(1− (α− 1))τ̄α(u) which on simplification resolve to

R(u) =
α

1 + c(α− 1)α
+
(

u + c(α− 1)−1−ckα(α−1)
)

.

Substituting it in (2.38) yields to Q(u) = α
1+c(α−1)α + 2u+ ck(α− 1)−1−cα(α−1)(1+

log u), the required form.

In the next theorem, we show that the power function distribution can be char-

acterized using τ̄α(u).

Theorem 5.7. Let X be a non-negative continuous random variable with quantile func-

tion Q(.) and reversed mean residual quantile function R(.). Then for α > 1,

τ̄α(u) =
1

α− 1
(1− cR(u)) (5.8)

where c > 1
α if and only if X has power function distribution.

Proof. When X follows power function distribution with Q(u) = γu
1
β , β, γ > 0,

we have R(u) = γ
β+1 u

1
β and,

τ̄α(u) =
1

α− 1

(
1− γ

1 + αβ
u

1
β

)
=

1
α− 1

(
1− (β + 1)R(u)

1 + αβ

)
.

To prove the only part, assume that (5.8) holds. Then from (5.4), we obtain

1
α− 1

(
1− 1

uα

∫ u

0
pαq(p)dp

)
=

1
α− 1

(1− cR(u)),
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equivalently

∫ u

0
pαq(p)dp = cuαR(u). (5.9)

Differentiating (5.9) with respect to u,

uαq(u) = c
(

uαR′(u) + αuα−1R(u)
)

. (5.10)

Using the relationships (2.25), (2.39) and (5.10), we have

Λ(u)R(u) =
1− c

c(α− 1)
= k,

where k < 1, a constant. Now, taking the derivative with respect to u on both

sides we get

Λ′(u)R(u) = −Λ(u)R′(u). (5.11)

From (2.39) and Λ(u)R(u) = k, we have

Λ(u)R′(u) =
1− k

u
.

Then (5.11) becomes

Λ′(u)R(u) =
k− 1

u
. (5.12)
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Differentiating uq(u)Λ(u) = 1 with respect to u, we get

Λ′(u) = −Λ(u)
(

1
u
+

q′(u)
q(u)

)
,

so that (5.12) reduces to,

−Λ(u)
(

1
u
+

q′(u)
q(u)

)
R(u) =

k− 1
u

.

On simplification we get

log q(u) = k2 log u + log k1,

where k2 = 1−2k
k and k1 is the constant of integration. Equivalently,

q(u) = k1uk2 ,

which is the quantile density function of power distribution. This completes the

proof.

Now, we extend the Theorem 5.7 to a general case by taking c as a function of

u.

Theorem 5.8. If X is a continuous random variable such that

τ̄α(u) =
1

α− 1
(1− c(u)R(u)),

then

R(u) =
1

1− c(u)
e
∫ u

0
(αc(p)−1)dp

p(1−c(p)) .
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Proof. Assume that τ̄α(u) = 1
α−1(1− c(u)R(u)) holds. It is equivalent to,

1
α− 1

(
1− 1

uα

∫ u

0
pαq(p)dp

)
=

1
α− 1

(1− c(u)R(u)),

or ∫ u

0
pαq(p)dp = c(u)R(u)uα.

Differentiating with respect to u we obtain

q(u)− α

u
c(u)R(u) = c(u)R′(u) + R(u)c′(u),

using (2.39) we may write

R′(u)(u− uc(u)) + R(u)(1− αc(u)− uc′(u)) = 0,

which is a first-order differential equation in R(u), on solving we get the re-

quired form. This completes the proof.

Various stochastic orders are generally used to compare two random variables.

We now consider the reversed hazard quantile function order (Nair et al. (2013))

to compare two random variables based on τ̄α(u).

Theorem 5.9. If X≤rhq Y then τ̄X
α (u) 6 (≥)τ̄Y

α (u) for α > 1(0 < α < 1).

Proof. Assume that X≤rhq Y, it implies ΛX(u) ≤ ΛY(u). This is equivalent to,

−uα−1

ΛX(u)
≤ (≥)−uα−1

ΛY(u)
, α > 1 (0 < α < 1). Then

1
α− 1

(
1− 1

uα

∫ u

0

pα−1

ΛX(p)
dp
)
≤ (≥) 1

α− 1

(
1− 1

uα

∫ u

0

pα−1

ΛY(p)
dp
)

, α > 1 (0 < α < 1).
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Thus τ̄X
α (u) ≤ (≥)τ̄Y

α (u), α > 1(0 < α < 1).

Example 5.2. Let X and Y be two random variables with quantile functions

QX(u) = u
(1−u)2 and QY(u) = 2u − u2, which has no closed form distribution

function. QX(u) is a special case of power-Pareto distributions due to Hankin

& Lee (2006) and QY(u) is a special case of Govindarajulu distribution (Govin-

darajulu (1977)). The reversed hazard quantile functions of X and Y are given

by ΛX(u) =
(1−u)3

u(1−u) and ΛY(u) = 1
2u(1−u) . Then,

d
du

(
ΛX(u)
ΛY(u)

)
=
−(1− p)3(5 + 3u)

(1 + u)2 < 0,

which means ΛX(u)
ΛY(u)

is a decreasing function of u. At u = 0, ΛX(u)
ΛY(u)

= 1, so that

ΛX(u)
ΛY(u)

≤ 1. Thus X ≤
rhq

Y. We also obtain

τ̄X
α (u) =

1
α− 1

(
1− 1

uα

∫ u

0
pα

(
(1− p)2 + 2p(1− p)

(1− p)4

)
dp
)

=
1

α− 1

(
1− u

1− u
+

α

uα
Bu(1 + α, 0) +

u2(−1 + α− uα)

(u− 1)2 − α(α + 1)Bu(2 + α, 0)
uα

)
,

and

τ̄Y
α (u) =

1
α− 1

(
1− 1

uα

∫ u

0
pα(2− 2p)dp

)
=

1
α− 1

(
1− 2

uα
Bu(α + 1, 2)

)
.

From Figure 5.2, it is clear that τ̄X
α (u) ≤ (≥)τ̄Y

α (u), f or α > 1 (0 < α < 1).

Definition 5.10. X is said to be smaller than Y in QCTEP (written as X≤QCTEP Y),

if τ̄X
α (u) ≤ τ̄Y

α (u) for all u ∈ (0, 1).

We use the following lemma by Nanda et al. (2014) to prove the next theorem.
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Figure 5.2: Plots of τ̄X
α (u) and τ̄Y

α (u) against u

Lemma 5.11. Let f (u, x) : (0, ∞) × (0, ∞) −→ (0, ∞) and g : (0, ∞) −→ (0, ∞)

be any two functions. If
∫ ∞

u f (u, x)dx is increasing and g(u) is increasing in u, then∫ ∞
u f (u, x)g(x)dx is increasing in u, provided the integrals exist.

Theorem 5.12. Let X and Y be two random variables such that X≤QCTEP Y. Then for

a non-negative convex function φ(.), φ(X)≤QCTEP φ(Y).

Proof. It is enough to show that

∫ u

0
pαφ′(QX(p))qX(p)dp >

∫ u

0
pαφ′(QY(p))qY(p)dp. (5.13)

Since X≤QCTEP Y, we have

τ̄X
α (u) 6 τ̄Y

α (u),

which is equivalent to

∫ u

0
pαqX(p)dp >

∫ u

0
pαqY(p)dp. (5.14)
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Thus, qX(u) > qY(u). Since φ(.) is increasing convex function, φ′(QX(u)) >

φ′(QY(u)). Now applying Lemma 1 on φ′(QX(u)) > φ′(QY(u)) and (5.14), we

get φ(X) 6 φ(Y).

Recently, Rajesh & Sunoj (2016) proposed an alternative measure of cumulative

residual Tsallis entropy as in (4.10) and (4.11). Sunoj et al. (2018) studied the

quantile versions of (4.10) and (4.11). Unlike the dynamic form of ϕα(X) due

to Sati & Gupta (2015), ζα(X, t) is a function of mean residual life function and

hence more reliability properties were derived based on it. Motivated with

this, an analogous cumulative Tsallis entropy in the past lifetime was recently

proposed by Calı̀ et al. (2017), defined by

ζα∗(X, t) =
1

α− 1

(
r(t)−

∫ t

0

(
F(x)
F(t)

)α

dx
)

, α > 0, α 6= 1. (5.15)

Following (5.15), we define a quantile-based cumulative Tsallis entropy as an

alternative to (5.1) and (5.3), obtained as

ξ̄α(X) =
1

α− 1

(
µ−

∫ 1

0
pαq(p)dp

)
, (5.16)

and for the past lifetime, (5.16) reduces to

ξ̄α(u) =
1

α− 1

∫ u

0

(
p
u
− pα

uα

)
q(p)dp

=
1

α− 1

(
R(u)− 1

uα

∫ u

0
pαq(p)dp

)
, 0 ≤ u ≤ 1. (5.17)
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Differentiating (5.17) with respect to u, we obtain

(α− 1)ξ̄ ′α(u) = R′(u)− q(u)− α

u
(
(α− 1)ξ̄α(u)− R(u)

)
, (5.18)

(5.18) uniquely determines the quantile function. The following theorem pro-

vides the upper (lower) bounds for ξ̄α(u) in terms of R(u).

Theorem 5.13. Let X be a non-negative absolutely continuous random variable with

quantile function Q(.). Then ξ̄α(u) is increasing (decreasing), if and only if

ξ̄α(u) ≤ (≥)R(u)
α

, f or all 0 ≤ u ≤ 1 and α > 1(0 < α < 1).

Proof. Assume that ξ̄α(u) is increasing (decreasing) in u, or ξ̄ ′α(u) ≥ 0. Using

(5.18),

R′(u)− q(u)− α

u
(
(α− 1)ξ̄α(u)− R(u)

)
≥ (≤)0

Equivalently,

ξ̄α(u) ≤ (≥) 1
α− 1

(
uR′(u)− uq(u)

α
+ R(u)

)
=

1
α− 1

(
uR′(u)− (R(u) + uR′(u))

α
+ R(u)

)
=

R(u)
α

,

proves the result.

The next result will be useful for computing ξ̄α(u) when the functional form of

R(u) is known to us.
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Theorem 5.14. Let X be a non-negative absolutely continuous random variable with

quantile mean inactivity time R(u), then

ξ̄α(u) =
1

uα

∫ u

0
pα−1R(p)dp.

Proof. We have

uR(u) =
∫ u

0
pq(p)dp. (5.19)

Differentiating both sides of (5.19) with respect to u we get,

d
du

(uR(u)) =
d

du

∫ u

0
pq(p)dp = uq(u).

Using (5.17) and (5.19) we obtain

ξ̄α(u) =
1

α− 1

(
R(u)− 1

uα

∫ u

0
pα−1(pq(p))dp

)
=

1
α− 1

(
R(u)− 1

uα

∫ u

0
pα−1 d

dp
(pR(p))dp

)
=

1
uα

∫ u

0
pα−1R(p)dp.

Hence the proof.

Example 5.3. Let X and Y be non-negative absolutely continuous random vari-

ables with quantile functions QX(u) and QY(u) respectively. Then X and Y sat-

isfy proportional reversed hazards model (PRHM) when QY(u) = QX(u
1
θ ), θ >

0 or equivalently qY(u) = 1
θ u

1
θ−1qX

(
u

1
θ

)
. Then RY(u) = 1

θu

∫ u
0 p

1
θ−1qX

(
p

1
θ

)
dp.
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Assume that X follows Govindarajulu distribution with quantile function

QX(u) = α + σ
(
(β + 1)uβ − βuβ+1

)
, α, σ, β > 0, 0 ≤ u ≤ 1.

Then

RY(u) =
1

θu

∫ u

0
p

1
θ

(
σβ(β + 1)p

β−1
θ (1− p

1
θ )
)

dp,

= σβ(β + 1)

(
u

β
θ

β + θ
− u

β+1
θ

1 + β + θ

)
.

Now using Theorem 5.14, we have

ξ̄Y
α (u) =

1
uα

∫ u

0
pα−1RY(p)dp

= σβ(β + 1)θ

(
u

β
θ

(β + θ)(β + αθ)
− u

β+1
θ

(1 + β + θ)(1 + β + αθ)

)
.

Remark 5.3. If ξ̄α(u) = cR(u) then

Q(u) = exp[−1
c
(1 + α(c(α− 1)− 1)u)]− 1

c
(log u + α(c(α− 1)− 1)) .

Remark 5.4. If ξ̄α(u) = c(u)R(u) then R(u) = exp[
∫ u

0
α−pc′(p)−1−α(α−1)c(p)

pc(p) dp].

Theorem 5.15. If X is decreasing reversed hazard (DRHR) then X is increasing (de-

creasing) quantile dynamic cumulative Tsallis entropy in past lifetime with respect to

ξ̄α(u) for 0 < α < 1 (α > 1).

Proof. DRHR =⇒ IRMR (see Nanda et al. (2003)), which is equivalent to in-

creasing R(u). Therefore ξ̄α(u) is increasing(decreasing) in u > 0 for 0 < α <

1(α > 1).
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Theorem 5.16. If R(u) = c, a constant then ξ̄α(u) is also a constant.

Proof. Let R(u) = c. Using Theorem 5.14 we obtain ξ̄α(u) = c
α .

Hence the proof.

Theorem 5.17. If R(u) = a + bu, a linear function then ξ̄α(u) is also linear.

Proof. From Theorem 5.14, we have ξ̄α(u) = 1
uα

∫ u
0 pα−1R(p)dp = 1

uα

∫ u
0 pα−1(a +

bp)dp = m + nu, where m = a
α and n = b

α+1 . Thus the proof.

5.3 Quantile-based cumulative Tsallis entropy of or-

der statistics in past lifetime

For past lifetime random variables, the reversed hazard rates are more important

than the usual hazard rates and to study the failure pattern of reliability systems,

it is more appropriate in studying the failure behaviour of parallel systems.

In analogy with (5.1), the cumulative Tsallis entropy of ith order statistic is de-

fined as

η̄α(Xi:n) =
1

α− 1

(
1−

∫ ∞

0
Fα

i:n(x)dx
)

=
1

α− 1

(
1−

∫ ∞

0

(
BF(x)(i, n− i + 1)

B(i, n− i + 1)

)α

dx

)
. (5.20)
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Then the corresponding quantile-based measure of (5.20) becomes (see also

(5.2))

τ̄α(Xi:n) =
1

α− 1

(
1−

∫ 1

0

(
Bp(i, n− i + 1)
B(i, n− i + 1)

)α

q(p)dp

)
. (5.21)

For the sample minimum X1:n,

τ̄α(X1:n) =
1

α− 1

(
1−

∫ 1

0
(−1)α(1− p)nαq(p)dp

)
,

and for the sample maximum

τ̄α(Xn:n) =
1

α− 1

(
1−

∫ 1

0
(−1)α pnαq(p)dp

)
.

Since reversed hazard rates has an affinity to parallel system, we consider mainly

the cumulative Tsallis entropy of nth order statistic. The reversed hazard quan-

tile function and reversed mean residual quantile function (quantile-based mean

inactivity time) for the nth order statistic are Λn:n(u) = nΛ(u) and Rn:n(u) =

1
un

∫ u
0 pnq(p)dp respectively. Then

uR′n:n(u) + nRn:n(u) = (Λ(u))−1. (5.22)

Hence the cumulative Tsallis entropy of ith order statistic in past lifetime is given

by

η̄α(Xi:n, t) =
1

α− 1

(
1−

∫ t

0

Fα
i:n(x)

Fα
i:n(t)

dx
)

=
1

α− 1

(
1−

∫ t

0

(
BF(x)(i, n− i + 1)
BF(t)(i, n− i + 1)

)α

dx

)
. (5.23)
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In terms of quantile function, (5.23) becomes

τ̄
Xi:n
α (u) =

1
α− 1

(
1−

∫ u

0

(
Bp(i, n− i + 1)
Bu(i, n− i + 1)

)α

q(p)dp

)
. (5.24)

For convenience, we may denote τ̄
Xi:n
α (u) = χ̄i:n(u). Using (5.24), the cumula-

tive Tsallis entropy in past lifetime for series and parallel systems are obtained

respectively as

χ̄1:n(u) =
1

α− 1

(
1− 1

(1− u)nα

∫ u

0
(1− p)nαq(p)dp

)
, (5.25)

and

χ̄n:n(u) =
1

α− 1

(
1− 1

unα

∫ u

0
pnαq(p)dp

)
. (5.26)

Differentiating both sides of (5.26) with respect to u, we get

(α− 1)
d

du
(χ̄n:n(u)) + q(u) =

nα

u
(1− (α− 1)χ̄n:n(u)). (5.27)

Thus (5.27) uniquely determines the quantile function for a parallel system. The

following example illustrate this.

Example 5.4. Let X be a the generalized lambda distribution with quantile

function

Q(u) = λ1 +
1

λ2

(
uλ3 − (1− u)λ4

)
, λ1, λ2, λ4 ∈ R, λ3 ∈ Z+.
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Figure 5.3: Plot of χ̄n:n(u) against u.

Then the quantile-based cumulative Tsallis entropy in past lifetime for the par-

allel system is given by

χ̄n:n(u) =
1

α− 1

1−
λ3unα+λ3

nα+λ3
+ λ4Bu (nα + 1, λ4)

λ2unα

 ,

and displayed in Figure 5.3.

The following theorem gives the bounds for χ̄n:n(u), which may be useful when

the computation of χ̄n:n(u) is difficult.

Theorem 5.18. If ψα
n(u) is increasing then

χ̄n:n(u) ≤ (≥) 1
α− 1

(
1− 1

αΛn:n(u)

)
, f or α > 1 (0 < α < 1).

Theorem 5.19. Let X be a non-negative continuous random variable with quantile

function Q(.) and the quantile-based mean inactivity time for nth order statistic Rn:n(.),

then

χ̄n:n(u) =
1

α− 1
(1− cRn:n(u)) (5.28)
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if and only if X has power distribution.

Next remark can be used for finding the quantile-based cumulative past Tsallis

entropy of a parallel system using τ̄X
α (u).

Remark 5.5. Quantile-based cumulative Tsallis entropy in the past lifetime of

nth order statistic can be obtained using the following relation:

χ̄n:n(u) =
(

nα− 1
α− 1

)
τ̄X

nα(u). (5.29)

Definition 5.20. Xi:n is smaller than Yi:n in dispersive order, Xi:n ≤disp Yi:n if

F−1
Yi:n

FXi:n(x)− x is increasing in x.

Since F−1
Yi:n

FXi:n(x) = F−1
Y FX(x) (see Barlow & Proschan (1975) ). We say that

Xi:n ≤disp Yi:n if QY(u)−QX(u) is increasing in u.

Theorem 5.21. If Xi:n ≤disp Yi:n then χ̄X
n:n(u) ≥ (≤)χ̄Y

n:n(u), f or α > 1 (0 < α <

1).

Proof. Assume that Xi:n ≤disp Yi:n. This implies that qY(u) ≥ qX(u), from (5.26),

χ̄X
n:n(u) =

1
α− 1

(
1− 1

unα

∫ 1

0
pnαqX(p)dp

)
≥ 1

α− 1

(
1− 1

unα

∫ 1

0
pnαqY(p)dp

)
, f or α > 1.

Hence the proof. For 0 < α < 1 the proof is similar by inverting the inequalities.

Theorem 5.22. χ̄n:n(u) = C if and only X has an exponential distribution with sup-

port (−∞, 0).
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Proof. Assume that χ̄n:n(u) = C, a constant. This implies that

1
α− 1

(
1− 1

unα

∫ u

0
pnαq(p)dp

)
= C,

equivalently

∫ u

0
pnαq(p)dp = Kunα, (5.30)

where K = C(α− 1) + 1. Differentiating both sides (5.30), we get Λ(u) = K∗,

a constant, thus exponential distribution with support (−∞, 0) (see Sunoj et al.

(2013)).

Theorem 5.23. If X is increasing quantile-based cumulative Tsallis entropy of nth order

statistics in past lifetime and φ(.) is non-negative, increasing and convex function, then

φ(X) is also increasing quantile-based cumulative Tsallis entropy of nth order statistics

in past lifetime for 0 < α < 1.

Proof.

χ̄Y
n:n(u) =

1
α− 1

(
1− 1

unα

∫ u

0
pnαqY(p)dp

)
=

1
α− 1

(
1− 1

unα

∫ u

0
pnαφ′(QX(p))qX(p)dp

)
=

1
α− 1

(
1− 1

unα

∫ u

0
pnα(1 + φ′(QX(p))− 1)qX(p)dp

)
= χ̄X

n:n(u)−
1

(α− 1)unα

∫ u

0
pnα(1− φ′(QX(p)))qX(p)dp. (5.31)

Since X is increasing quantile-based cumulative Tsallis entropy of nth order

statistics in past lifetime and φ(.) is increasing, from (5.31) we can say that φ(X)
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is also increasing quantile-based cumulative Tsallis entropy of nth order statistics

in past lifetime for 0 < α < 1.

5.4 Estimation of quantile-based cumulative Tsallis

entropy in past lifetime

In this section, we present a non-parametric estimator for the quantile-based

cumulative Tsallis entropy in past lifetime. We define the integral estimate as,

ˆ̄τ(u) =
1

α− 1

(
1− 1

uα

∫ u

0
pαq̂(p)dp

)
, (5.32)

where q̂(u) = n(X(j) − X(j−1)) for j−1
n ≤ u ≤ j

n and j = 1, 2, ..., n.

5.4.1 Simulation study

To asses the performance of the proposed measure we perform a simulation

study of 1000 samples of sizes n = 100, 500 from 2.50 with σ = 1, β = 1 for

values of u = 0.2, 0.4, 0.6, 0.8. We present the simulation results in Table 5.3.

5.4.2 Data Analysis

To illustrate the estimation procedure, we consider the data set of the first exter-

nal leakage of 32 centrifugal pumps. We fitted Govindarajulu distribution to this

data. For estimating the parameters we have used the method of L− moments
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Table 5.3: Bias, mean square error and the estimates of the empirical estimator
ˆ̄τ(u) with α = 5.

n=100

u ˆ̄τ(u) Bias MSE
0.2 0.2499 0.0137 1.8678 ∗ 10−6

0.4 0.2497 0.0126 4.6801 ∗ 10−6

0.6 0.2496 0.0239 5.7122 ∗ 10−6

0.8 0.2495 0.0205 4.1889 ∗ 10−6

n=500

0.2 0.2499 0.0137 3.7782 ∗ 10−7

0.4 0.2499 0.0218 9.4952 ∗ 10−7

0.6 0.2498 0.0241 1.1649 ∗ 10−6

0.8 0.2498 0.0208 8.6345 ∗ 10−7

by equating the first two L−moments of the distribution with the sample coun-

terparts. The first two sample L− moments are l1 = 5024.72 and l2 = 1644.68.

Using the equations

l1 =
2σ

β + 2

l2 =
2σβ

(β + 2)(β + 3)

we obtain σ̂ = 8692.16, β̂ = 1.4598. To test the adequacy of the model τ̄0(u), we

use the chi-square test of goodness of fit. Dividing the data into 4 groups of 8

observations each and taking

ui =
i
4

, i = 1, 2, ..., 4

the corresponding x values were computed using (2.50) with the estimates given

above. The observed frequencies in the 4 classes were 6, 13, 8 and 5 against the

expected frequency of 8 in each class. Thus the chi-square value of 4.75 obtained

here does not reject the hypothesis that the data fits Govindarajulu distribution.
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Figure 5.4: Q-Q plot for the first external leakage of 32 centrifugal pumps
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Figure 5.5: Plot of ˆ̄τ(u) for real data

Figure 5.4 gives the Q−Q plot which also shows the adequacy of the model.

Figure 5.5 indicates that the estimates of quantile-based cumulative Tsallis en-

tropy in past lifetime show a decreasing trend for α = 5 and an increasing trend

for α = 0.5.







Chapter 6

Reliability properties of extropy for residual

and past lifetime random variable

6.1 Introduction

Extropy is a recent addition to the family of information measures proposed

by Ayres & Martinas (1995) as the complementary dual of the Shannon’s en-

tropy HX = −∑n
i=1 pi log pi, in the case of discrete random variable X with pi =

P(X = xi). Lad et al. (2015) point out that as a measure of uncertainty extropy

is invariant under permutations and monotonic transformations, maximum ex-

tropy distribution is uniform and satisfy Shannon’s first and second axioms. As

X increases in such a way that ∑n
i=1 pi decreases to zero, ∑n

i=1(1− pi) log(1− pi)

is well approximated by

−
n

∑
i=1

(1− pi)(−pi) = 1−
n

∑
i=1

p2
i .

Also lim
∆x−→0

(
JX−1

∆x

)
= −1

2

∫
f 2(x)dx. In statistical analysis, the discrete approxi-

mation has been used much earlier as repeat rate of a distribution (Good (1979))

0Results in this chapter have been accepted for publication entitled “Some reliability prop-
erties of extropy for residual and past lifetime random variables” in “Journal of the Korean
Statistical Society”.
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and a Gini index of homogeneity is that widely used in database applications.

It is also an indicator of the degree of skewness of the data.

The role of information measures relating to the residual and past lifetime

in reliability modelling has been extensively investigated during the last two

decades, starting from the works of Muliere et al. (1993), Ebrahimi (1996) and

Di Crescenzo & Longobardi (2002) with reference to Shannon’s entropy. In the

meantime the variant approaches of employing the quantile version of vari-

ous entropies were also introduced with the objectives of providing alternative

methodology, new results and different methods of stochastic comparisons. For

details, we refer to Sunoj & Sankaran (2012), Yu & Wang (2013), Nanda et al.

(2014), Sunoj et al. (2017) and Qiu (2019).

The objective of the present work is to investigate some new aspects of residual

and past extropy functions using the distribution function and quantile function

approaches. It is observed that that the extropy being always negative, it is not

valid for the entire parameter space. Further, we need to examine whether the

two extropy functions determine the life distribution uniquely, a problem that

has not been addressed earlier. The quantile function approach, enables us to es-

tablish some results which are difficult to obtain using the definition of residual

and past extropies in terms of the distribution function of X. We also illustrate

certain quantile function models for which the distribution function approach

does not apply. Stochastic orders needed to compare the extropy functions of

two lifetimes in the quantile framework which turns out to be distinct from the
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orderings conceived in the traditional settings, are also discussed in our work.

The chapter is organized as follows. In Section 6.2, we discuss extropy in quan-

tile set up. Section 6.3 and Section 6.4 addresses the residual extropy function

in the distribution function and the quantile framework respectively. We obtain

their properties and some monotone properties and characterization results. In

Section 6.5 we discuss the extropy in past lifetime and the characteristics as-

sociated with it. Section 6.6 presents extropy of order statistics using quantile

function. We extended the measure based on survival function known as cu-

mulative residual extropy and study its properties in Section 6.7. In Section 6.8

we obtain a non-parametric estimator for quantile-based extropy function and

applying the method to a real data set.

6.2 Extropy

Let X be a non-negative random variable with absolutely continuous distribu-

tion function F(.) and probability density function f (.). Then the differential

extropy is defined as (Lad et al. (2015))

JX = −1
2

∫ ∞

0
f 2(x)dx. (6.1)

Qiu (2017) has obtained several results on the extropy of order statistics and

record values based on copies of X and also of coherent systems. Qiu & Jia

(2018a) have obtained two estimators of extropy using spacings. Qiu & Jia

(2018b) further studied the residual extropy of X, proved characterizations of
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exponential, Pareto and finite range distributions and discussed various proper-

ties of the order statistics. For more recent works on extropy, one can also refer

to Alizadeh Noughabi & Jarrahiferiz (2018), Yang et al. (2018), Jose & Sathar

(2019) and the references therein.

Now the quantile-based extropy based on (6.1) is given by

J(X) = −1
2

∫ 1

0
f 2(Q(p))dQ(p)

= −1
2

∫ 1

0
(q(p))−1dp

= −1
2

∫ 1

0
(1− p)H(p)dp. (6.2)

J(X) provides a quantile version of the extropy, that measures the uncertainty

of X, using either quantile density function or hazard quantile function.

Example 6.1. Consider the quantile function (Midhu et al. (2013))

Q(u) = −(c + µ) log(1− u)− 2cu, µ > 0;−µ ≤ c < µ,

corresponding to the linear MRLF (see Sankaran & Nair (2009))

M(u) = cu + µ, µ > 0, −µ < c < µ, 0 ≤ u ≤ 1. (6.3)

Then J(X) for (6.3) is obtained as

J(X) = −1
2

(
−2c− (µ + c) log(µ− c) + (µ + c) log(µ + c)

4c2

)
.



Reliability properties of extropy for residual and past lifetime random variable 141

Table 6.1: Quantile function and the quantile-based extropy of some distribu-
tions.

Distribution Q(u) J(X)

Exponential − log(1−u)
λ , λ > 0 −λ

4

Pareto II γ((1− u)
−1
c − 1), γ, c > 0 − c2

2(2c+1)γ

Rescaled Beta R
(

1− (1− u)
1
c

)
, c, R > 0 − c2

2(2c−1)R

Generalized Pareto
b
a
[(1− u)−

a
a+1 − 1], b > 0, a > −1 − (a+1)2

2(3a+2)b

Power γu
1
β , γ, β > 0 − β2

2(2β−1)γ

Uniform a + (b− a)u, −∞ < a < b < ∞ −1
2(b−a)

Davies cuλ1

(1−u)λ2
, c > 0; λ1, λ2 > 0 − 2 F̃1

(
1,2−λ1;−λ1+λ2+4;1− λ2

λ1

)
Γ(2−λ1)Γ(λ2+2)

2(cλ1)

J(X) is not useful for a system that has survived for some units of time t.

6.3 Residual-extropy

Since JX is not applicable to a system that has survived for some units of time

Qiu & Jia (2018b) considered the residual extropy of X

JF(t) = −
1

2F̄2(t)

∫ ∞

t
f 2(x)dx (6.4)

and established the identity

J′F(t) =
1
2

(
h2(t) + 4h(t)JF(t)

)
, (6.5)

where h(t) is the hazard rate function of X. A main limitation of residual ex-

tropy is that it is always negative so that it is not defined for certain regions of

the parametric space. For example when X has rescaled beta distribution with
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survival function

F̄(x) =
(

1− x
R

)c
, 0 ≤ x ≤ R, R, c > 0.

We have,

JF(t) = −
c2

(4c− 2)(R− t)
,

so that JF(t) is not defined for c < 1
2 . Similarly for the power distribution F(x) =(

x
β

)α
, 0 ≤ x ≤ β, α, β > 0,

JF(t) =
α2(1− ( t

β )
2α−1)

(2− 4α)
(

1− ( t
β )

α
)2 ,

is valid only for α > 1
2 . Thus the parameter values become a crucial aspect when

discussing properties of residual extropy. Qiu & Jia (2018a) (their Theorem 2.9)

proves the result for k > 1
4 by taking the distribution of X as F̄(x) = (1− x)c, c >

1. One can consider a more flexible range for the parameter as seen from the next

theorem which modifies their result.

Theorem 6.1. The relationship JF(t) = −kh(t) where k is a non-negative constant

holds for all t > 0 if and only if X has

(i) rescaled beta distribution F̄(x) = (1− x
R )

c, 0 ≤ x ≤ R, R > 0, c > 1
2 if k > 1

4

(ii) exponential law F̄(x) = e−λx, x > 0; λ > 0 if k = 1
4 and

(iii) Pareto II distribution F̄(x) = (1 + x
α )
−c, x > 0; c, α > 0 if k < 1

4 .

Proof. When X has the given distribution JF(t) = − c2

(4c−2)(R−t) and h(t) = c
R−t

provides JF(t) = −kh(t), k = c
4c−2 . Thus k > 1

4 when c > 1
2 . If X follows
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the exponential distribution given in (ii), then JF(t) = and h(t) = λ pro-

vides the relation JF(t) = −kh(t). When X follows Pareto II given in (iii),

JF(t) = − c2

(−4c−2)(t+α)
and h(t) = c

t+α provides the given relation between JF(t)

and h(t).

Conversely suppose that JF(t) = −kh(t). Taking derivative on both sides and

using the relation (6.5), we obtain

h′(t)
h2(t)

=
4k− 1

2k
.

By solving the above differential equation we get

h(t) = (pt + d)−1, p =
1− 4k

2k
, d > 0

when k < 1
4 , p is negative and hence F̄(x) = (1 + pt

d )
− 1

p which is rescaled beta

with c = − 1
p and R = − p

d > 0.

We now examine whether JF(t) determines F(x) uniquely. For this, we write

(6.5) as a quadratic in h(t),

h2(t) + 4h(t)J(t)− 2J′F(t) = 0. (6.6)

It is seen that (6.6) has only one positive root when J′F(t) > 0 or when J′F(t) = 0

and two positive roots when J′F(t) < 0. In the first two cases, JF(t) determines

h(t) and the distribution of X uniquely. However the last case the two roots can

be hazard rate function and hence, in general, JF(t) does not characterize the

distribution if we adopt (6.6) as the basis of argument. To see this, from (6.6),



Reliability properties of extropy for residual and past lifetime random variable 144

when there are two roots, they are given by

h(t) = −2JF(t)±
(

4J2
F(t) + 2J′F(t

) 1
2 . (6.7)

Example 6.2. Let X follow the power distribution F(x) = x2, 0 ≤ x ≤ 1, then

JF(t) = −
2
3
(1− t3)

(1− t2)2

and

J′F(t) = −
2
3

t(1− t)(t2 + t + 4)
(1− t2)3

showing that both JF(t) and J′F(t) are less than zero. After some algebra we get

4J2
F(t) + 2J′F(t) =

16(1− t)4(t + 2)2

36(1− t2)4 .

Thus using (6.7) we have two solutions for h(t), given by h1(t) = 2
(1−t)2 and

h2(t) =
2(t2+t+4)

3(1−t)(1+t)2 . Writing h2(t) as

h2(t) =
3

2(1− t)
+

1
2(1 + t)

+
2

(1 + t)2 ,

it is easy to see that h2(t) ≥ 0 and
∫ 1

0 h2(t)dt diverges to ∞ proving it to be a

hazard rate. Also, h1(t) is the hazard rate of the power distribution mentioned

at the beginning of this example and h2(t) corresponds to

F̄(x) = (1− x)
3
2 (1 + x)−

1
2 e−

2x
1+x , 0 ≤ x ≤ 1.



Reliability properties of extropy for residual and past lifetime random variable 145

However, JF(t) can also characterize some distributions. For example, if X as-

sumes uniform distribution in [0, b], still there are two positive roots, but they

are equal to (b − t)−1. Hence the uniform distribution is characterized by its

residual extropy function.

The random variable X is said to have increasing (decreasing) residual extropy,

IRE (DRE) if JF(t) is increasing (decreasing) for all t > 0. Thus the IRE (DRE)

class is defined by the property JF(t) ≥ (≤) − h(t)
4 for all t. From (6.6), the

equality JF(t) = − h(t)
4 holds for all t > 0 if and only if X is exponential. Since

rescaled beta is DRE and Pareto II is IRE the classes are not empty. There is a

clear distinction between monotonic entropy and extropy. While the monotonic-

ity of the hazard rate implies monotone residual entropy, the magnitude of the

hazard rate is the determining factor for residual extropy. The rescaled beta is

DRE where h(t) is increasing, power distribution is DRE where 1
2 < a < 1, h(t)

is bathtub shaped.

6.4 Quantile-based residual extropy

Within the framework of quantile functions, we can write the residual quantile

extropy as

JQ(u) = JF(Q(u)) = − 1
2(1− u)2

∫ 1

u

dp
q(p)

. (6.8)

Differentiation of (6.8) yields

q(u) = [2(1− u)2 J′Q(u)− 4(1− u)JQ(u)]−1. (6.9)
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The utility of the representation (6.9) is two-fold. Firstly it shows that the distri-

bution of X is characterized in terms of JQ(u) and secondly it helps to generate

new quantile functions based on assumed functional forms of JQ(u). Also

H(u) = 2(1− u)J′Q(u)− 4JQ(u). (6.10)

Accordingly, JQ(u) determines H(u) and the distribution through Q(u). Equa-

tions (6.9) and (6.10) exhibit the advantage of quantile approach over the distri-

bution function counterpart in the sense the former gives a unique representa-

tion of the distribution where as it could not be accomplished in the latter as

was shown in the above example. The difference between (6.7) and (6.10) is that

the former gives scope for two values for h(t), the latter is only a linear function

providing unique value.

Example 6.3. Consider the linear mean residual quantile function family of

distribution (Midhu et al. (2013)) specified by

Q(u) = −(c + µ) log(1− u)− 2cu, µ > 0;−µ ≤ c < µ, (6.11)

which contains the exponential and uniform distributions and closely approxi-

mates several continuous distributions. It does not have a tractable distribution

to study the properties of JF(t) using F. In this case, the quantile residual ex-

tropy is

JQ(u) =
1

2(1− u)
− c + µ

8c2(1− u)2 log
µ + c

µ− c + 2u
.

Note that the hazard quantile function of (6.11) is H(u) = (µ− c + 2cu)−1.
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Table 6.2: Quantile function and the quantile-based dynamic extropy of some
distributions.

Distribution Q(u) JQ(u)
Exponential − log(1−u)

λ , λ > 0 −λ
4

Pareto II γ((1− u)
−1
c − 1), γ, c > 0 − c2(1−u)

1
c +2

(2(1−u)2)((2c+1)γ)

Rescaled Beta R
(

1− (1− u)
1
c

)
, c, R > 0 − c2(1−u)−1/c

2(2c−1)R

Generalized Pareto
b
a
[(1− u)−

a
a+1 − 1], b > 0, a > −1 − (a+1)2(1−u)1− 1

a+1

2(3a+2)b

Power γu
1
β , γ, β > 0

β

(
β−βu

2− 1
β

)
2(1−2β)γ(1−u)2

Uniform a + (b− a)u, −∞ < a < b < ∞ − 1
2(1−u)(b−a)

Davies cu
(1−u) , c > 0. 1−u

c
(

u
(1−u)2

+ 1
1−u

)

Example 6.4. This example shows how to construct new quantile functions that

confirms to known functional forms of JQ(u). Let JQ(u) = −ebu. Then from (6.8),∫ 1
u

dp
q(p) = 2(1− u)2ebu, 0 < b < 2 or

q(u) = [2(1− u)ebu(2− b(1− u))]−1,

which is a quantile density function.

Theorem 6.2. Let X be an absolutely continuous non-negative random variable. Then

JQ(u) is linear of the form JQ(u) = A + Bu, A < 0, A + B < 0, B > 2A if and only if

H(u) is linear.

Proof. Then from (6.10)

H(u) = 2B− 4A− 6Bu = a + bu, a = 2B− 4A > 0, b = −6B,
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which is a hazard quantile function whenever B > 2A. Conversely let H(u) =

a + bu, a > 0, a + b > 0, (see Midhu et al. (2014)). Then

a + bu = −4JQ(u) + 2(1− u)J′Q(u) (6.12)

which reduces to a linear differential equation

J′Q(u)−
2JQ(u)
(1− u)

=
(a + bu)
2(1− u)

with integrating factor (1− u)2. Thus

d
du

(1− u)2 JQ(u) =
(a + bu)(1− u)

2

giving the general solution

JQ(u) =
−3a− b + 2bu

12
+

C
(1− u)2 .

It satisfies (6.12) only when C = 0. Thus

JQ(u) =
−3a− b + 2bu

12
= (A + Bu).

Remark 6.1. Distribution with linear hazard quantile function has been dis-

cussed in Nair et al. (2013) and Midhu et al. (2013) where its properties and

applications are given. It subsumes the exponential, half-logistic, exponential-

geometric and Marshall-Olkin type distributions. Thus Theorem 6.2 provides a
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characterization of the linear hazard quantile function family in terms of linear

residual extropy quantile function.

With the aid of (6.10), we can derive some ageing properties of X by means of

JQ(u). Differentiating (6.10), we get

H(u) = −6J′Q(u) + 2(1− u)J′′Q(u).

Consequently, X is IFR if JQ(u) is increasing and concave, while X is DFR when

JQ(u) is decreasing and convex. Also, we have some stochastic orders connect-

ing two lifetimes X and Y with residual extropies JQX(u)and JQY(u).

Definition 6.3. We say that X has less residual quantile extropy than Y, denoted

by X ≤RQE Y if JQX(u) ≤ JQY(u) for all 0 < u < 1.

Theorem 6.4.

X ≤HQ Y ⇒ X ≤RQE Y

where ≤HQ is the hazard quantile function order.

Proof.

X ≤HQ Y ⇔ 1
(1− u)qX(u)

≥ 1
(1− u)qY(u)

⇒
∫ 1

u
dp

qX(p) ≥
∫ 1

u
dp

qY(p) ⇒ −
1

2(1−u)2

∫ 1
u

dp
qX(p) ≤ −

1
2(1−u)2

∫ 1
u

dp
qY(p) ⇔ X ≤RQE Y.

The implication of this theorem is that when X ≤HQ Y, the device with lifetime

X is less reliable than that with lifetime Y which also means that the information

content in the residual life distribution of X is smaller than the content in Y.
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Remark 6.2. Since X ≤HQ Y ⇔ X ≥RHQ Y we have X ≥RHQ Y ⇔ X ≤RQE Y.

It may be noted in this connection that the residual extropy (6.4) can also be

ordered. We say that X is less than Y in residual extropy, denoted by X ≤RE Y,

if JFX(t) ≤ JFY(t) for all t > 0. However, X ≤RE Y and X ≤RQE Y are not

identical. Also, it appears that implications of ≤RE with other stochastic orders

are difficult to find in contrast to ≤RQE .

Some comments about the above result seem to be in order. Since X ≤HQ Y is

equivalent to the dispersive order X ≤disp Y all properties of the dispersive order

given in Shaked & Shanthikumar (2007), Section 3B holds good for the residual

quantile extropy order. Two important results in this connection are when X and

Y have zero as the lower endpoint of their supports, from Theorem 3.4 X ≤RQE

Y ⇒ X ≥st Y ⇔ QX(u) ≥ QY(u) for all u or FX(x) ≤ FY(x) for all x. The other

result is X ≤RQE Y ⇒ V(X) ≤ V(Y) where V stands for the variance. While

extropy accounts for the uncertainty due to the individual probabilities involved

in the distributions, variance speaks about the variation about the mean and

have apparently these two notions have conceptually no connection. The above

result brings an implication between the two. The converse of Theorem 6.4 may

not be true and therefore the additional requirements that ensure the converse

is stated in the next theorem.

Theorem 6.5. If
JQY (u)
JQX (u) is increasing in u, then X ≤RQE Y ⇒ X ≤HQ Y.

Proof.

JQY(u)
JQX(u)

is increasing⇔

∫ 1
u

dp
qY(p)∫ 1

u
dp

qX(p)

is increasing.
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Figure 6.1

⇔ 1
qX(u)

∫ 1

u

dp
qY(p)

− 1
qY(u)

∫ 1

u

dp
qX(p)

≥ 0

⇔ qY

qX
≥

∫ 1
u

dp
qY(p)∫ 1

u
dp

qX(p)

≥ 1⇔ (1− u)qY ≥ (1− u)qX

⇔ HX(u) ≥ HY(u)⇒ X ≤HQ Y.

Since X ≤HQ Y ⇔ X ≤RHQ Y we also have X ≤RHQ Y ⇒ X ≤RQE Y.

Example 6.5. For the uniform distribution QX(u) = u, JQX(u) = − 2
1−u and

for QY(u) = u
1
2 , JQY(u) = −4

6
(1−u

3
2 )

(1−u)2 0 < u < 1, so that X ≥RQE Y. From

Figure 6.1(a) it is clear that X and Y are not in hazard hazard quantile order.

Figure 6.1(b) shows that
JQY (u)
JQX (u) is decreasing in u. So that the condition given in

Theorem 6.5 can not be relaxed for satisfying the implication.

Theorem 6.6. Let X be a random variable with quantile function Q(u) and hazard

quantile function H(u) for all u ∈ (0, 1). The relationship JQ(u) = −kH(u), where k

is a non-negative constant holds for all u if and only if X has

(i) rescaled beta distribution Q(u) = R
(

1− (1− u)
1
c

)
, 0 ≤ u ≤ 1, R > 0, c > 1

2 if

k > 1
4
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(ii) exponential law Q(u) = log(1−u)
λ , 0 ≤ u ≤ 1; λ > 0 if k = 1

4 and

(iii) Pareto II distribution Q(u) = γ((1− u)
−1
c − 1), 0 ≤ u ≤ 1; c, α > 0 if k < 1

4 .

Proof. Assume that JQ(u) = −kH(u). Differentiating both sides and using (6.9),

we get

H(u) = −2k(1− u)H′(u) + 4kH(u),

implies,
H′(u)
H(u)

=
4k− 1

2k(1− u)

Now,

log H(u) =
4k− 1

2k
(− log(1− u)) + log c,

equivalently,

H(u) =
c1

(1− u)
4k−1

2k
.

When k = 1
4 , H(u) = 1, a constant which characterizes exponential distribution.

For Pareto II H(u) = c
γ (1− u)

1
c and for rescaled beta H(u) = c

R (1− u)
−1
c . So

that k < 1
4 characterizes Pareto II and k > 1

4 characterizes rescaled beta.

Theorem 6.7. Let X and Y be two non-negative random variables with quantile densi-

ties qX(.) and qY(.) respectively such that qX(0) ≤ qY(0). If X ≤c Y, then JQX(u) ≤

JQY(u).
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Proof. If X ∈ IFR then H(u) is increasing in u. We have X ≤c Y, iff qY(u)
qX(u)

is

increasing in 0 ≤ u ≤ 1. That is,

q′X(u)
qX(u)

≤
q′Y(u)
qY(u)

,

equivalently,

qX(u) ≤ qY(u).

Thus

JQX(u) =
−1

2(1− u)2

∫ 1

u
(qX(p))−1dp ≤ −1

2(1− u)2

∫ 1

u
(qY(p))−1dp,

JQX(u) ≤ JQY(u).

The following theorem provides the upper bound of extropy.

Theorem 6.8. If X is said to have an increasing failure rate (IFR (IFRA, NBU)) then

JQX(u) ≤ JQY(u), where Y has exponential distribution.

Proof. X ∈ IFR(IFRA, NBU) if and only if X ≤c (≤∗,≤su)Y, where Y has the

exponential distribution with mean 1
λ (see Shaked & Shanthikumar (2007)).

Since JQY(u) = −λ
4 , we obtain the upper bound of extropy of IFR(IFRA, NBU)

classes by Theorem 6.7
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Theorem 6.9. Let X be a non-negative continuous random variable with quantile func-

tion Q(.) and mean residual quantile function M(.). Then

JQ(u)M(u) = c, (6.13)

where c ∈ R if and only if X has exponential distribution.

Proof. Let X has exponential distribution with quantile function Q(u) = − 1
λ log(1−

u), λ > 0. We have M(u) = 1
λ . Now,

JQ(u) = −λ

4

= − 1
4M(u)

,

that is JQ(u)M(u) = c, a constant.

Let (6.13) holds. Taking derivative on both sides of (6.13) with respect to u we

get

J′Q(u)M(u) + JQ(u)M′(u). (6.14)

Using the relation (see Nair et al. (2013))

(H(u))−1 = M(u)− (1− u)M′(u),

(6.14) becomes

(H(u)M(u))2 + 6c(H(u)M(u))− 2c = 0.
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By solving the above differential equantion we get

H(u)M(u) = c,

which characterizes exponential distribution.

6.5 Extropy of order statistics

Extropy of ith order statistic based on (6.1) is given by

JXi:n =
−1
2

∫ ∞

0
f 2
i:n(x)dx, (6.15)

where fi:n(x) = 1
B(i,n−i+1)Fi−1(x)(1− F(x))n−i f (x).

Within the framework of quantile functions we obtain the quantile-based ex-

tropy based on (6.15) as

J(Xi:n) =
−1
2

∫ 1

0

(
1

B(i, n− i + 1)
pi−1(1− p)n−i(q(p))−1

)2

dQ(p)

=
−1
2

∫ 1

0

(
pi−1(1− p)n−i

B(i, n− i + 1)

)2

(q(p))−1dp. (6.16)

In system reliability, first-order statistic represents the lifetime of a series system

while the nth order statistic measures the lifetime of a parallel system. For a

series system (i = 1),

J(X1:n) =
−1
2

∫ 1

0

(
n(1− p)n−1

)2
(q(p))−1dp. (6.17)
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For a parallel system (i = n),

J(Xn:n) =
−1
2

∫ 1

0
(npn−1)2(q(p))−1dp. (6.18)

The following theorem provides some interesting properties of quantile-based

extropy of order statistics when the pdf of the underlying iid random variables

are symmetric.

Theorem 6.10. Let X1, X2, ..., Xn be iid samples whose distribution is symmetric about

mean µ. Then

(a) J(Xi:n) = J(Xn−i+1:n)

(b) ∆J(Xi:n) = −∆J(Xn−i:n), ∀i = 1, 2, ..., n − 1 where ∆J(Xi:n) = J(Xi+1:n) −

J(Xi:n).

(c) If Y = X−µ
a then J(Yi:n) = aJ(Xi:n).

Proof. For a symmetric random variable Xi:n = −Xn−i+1, equivalently fi:n(µ+

x) = fn−i+1:n(µ− x). That is

ui−1(1− u)n−i

B(i, n− i + 1)
=

un−i(1− u)i−1

B(n− i + 1, i)
.

Therefore
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(a)

J(Xn−i+1:n) =
−1
2

∫ 1

0

(
pn−1(1− p)i−1

B(n− i + 1, i)

)2

(q(p))−1dp

=
−1
2

∫ 1

0

(
pi−1(1− p)n−i

B(i, n− i + 1)

)2

(q(p))−1dp

= J(Xi:n).

(b) We have, ∆J(Xi:n) = J(Xi+1:n)− J(Xi:n).

Now, ∆J(Xn−i:n) = J(Xn−i+1:n)− J(Xn−i : n) = −∆J(Xi:n).

(c) Let Y = X−µ
a . QY(u) =

QX(u)−µ
a .

Then

J(Yi:n) =
−1
2

∫ 1

0

(
pi−1(1− p)n−i

B(i, n− i + 1)

)2(qX(p)
a

)−1

dp

= aJ(Xi:n).

Recently, Baratpour et al. (2007), Baratpour et al. (2008) showed that Shannon

entropy and Renyi entropy of the ith order statistic can characterize the under-

lying distribution uniquely. Motivated by these we propose the quantile-based

residual extropy of ith order statistic as

JQXi:n
(u) =

−1
2(B̄u(i, n− i + 1)2)

∫ 1

u
p2(i−1)(1− p)2(n−i)(q(p))−1dp. (6.19)
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For series system (i = 1), the quantile-based residual extropy is given by

JQX1:n
(u) =

−n2

2(1− u)2n

∫ 1

u
(1− p)2(n−1)(q(p))−1dp. (6.20)

For a parallel system (i = n), the quantile-based residual extropy is given by

JQXn:n
(u) =

−n2

u2n

∫ 1

u
p2(n−1)(q(p))−1dp. (6.21)

Here we consider series system. Differentiating (6.20) with respect to u, we get

J′QX1:n
(u) =

n2H(u)
2(1− u)

+
2n

(1− u)
JX1:n(u),

equivalently

q(u) =
n2

2

(
(1− u)2 J′QX1:n

(u)− 2nJX1:n(u)
)−1

, (6.22)

(6.22) shows that the quantile-based residual extropy of the first-order statistic

can characterize the underlying distribution uniquely.

Theorem 6.11. Let X be a continuous random variable with quantile function Q(u)

and hazard quantile function H(u). If the quantile-based dynamic extropy of first-order

statistics is increasing (decreasing) in u, then JQX1:n
(u) ≥ −nH(u)

4 .

Theorem 6.12. Let X be a random variable with hazard quantile function H(u). If

JQX1:n
(u) = −kH(u), for all u ∈ (0, 1)

i a rescaled beta distribution, if and only if k > n
4 and c > 1

2n ;

ii an exponential distribution if and only if k = n
4 ;
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Table 6.3: Quantile function and the quantile-based extropy of first-order statis-
tic for some distributions.

Distribution Q(u) JQX1:n
(u)

Exponential − log(1−u)
λ , λ > 0 −nλ

4

Pareto II γ((1− u)
−1
c − 1), γ, c > 0 c2n2(1−u)1/c

2γ(2cn+1)

Rescaled Beta R
(

1− (1− u)
1
c

)
, c, R > 0 − c2n2(1−u)−1/c

2R(2cn−1)

Generalized Pareto
b
a
[(1− u)−

a
a+1 − 1], b > 0, a > −1 − (a+1)2n2(1−u)

a
a+1

2b(2(a+1)n+a)

Power γu
1
β , γ, β > 0 −

βn2(1−u)−2n

(
Γ(2− 1

β )Γ(2n−1)

Γ(2n− 1
β
+1)

−Bu

(
2− 1

β ,2n−1
))

2γ

Uniform a + (b− a)u, −∞ < a < b < ∞ − n2

2(2n−1)(u−1)(a−b)

Davies cu
(1−u) , c > 0. − n2(u−1)2

2c(2n−1)(1−u)

iii a Pareto distribution if and only if k < n
4 .

Proof. The proof is similar to Theorem 6.6.

Theorem 6.13. The exponential distribution with quantile function Q(u) = −1
λ log(1−

u) can be characterized by J(Xi:n) = nJ(X).

The next theorem implicates the monotonic property of quantile-based extropy

of first-order statistic.

Theorem 6.14. If X has a decreasing density quantile function f (Q(.)) then JQX1:n
(u)

is decreasing.

Proof. For 0 < u1 < u2 < 1, f (Q(u2)) ≤ f (Q(u1)). From (6.20), we write

JQX1:n
(u1) =

−n2

2(1− u1)2n

∫ 1

u1

(1− p1)
2(n−1) f (Q(p1))dp1

>
−n2

2(1− u2)2n

∫ 1

u2

(1− p2)
2(n−1) f (Q(p2))dp2

= JQX1:n
(u2).
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Thus the proof.

The following counterexample shows that the above theorem is applicable for

first-order statistics only. The theorem violates for i > 1.

Example 6.6. Consider power-Pareto (c = λ1 = λ2 = 1) distribution with quantile

function Q(u) =
u

1− u
. It is clear that the density quantile function f (Q(u)) =

(1− u)2 is decreasing in u. Now, we obtain

JX2:2(u) =
−2

(1− u2)2

∫ 1

u
p2(q(p))−1dp

=
−2

(1− u2)2

∫ 1

u
p2(1− p)2dp. (6.23)

From (6.23), we get JX2:2(
1
4) = −0.068 and JX2:2(

1
2) = −0.059. That is JX2:2(

1
4) <

JX2:2(
1
2), which is not decreasing in u.

6.6 Past extropy

It is reasonable to presume that in many realistic situations uncertainty is not

necessarily related to the future but can also refer to the past. The extropy of

past lifetime [X|X ≤ t] is defined as

J̄F(t) = −
1
2

∫ t

0

(
f (x)
F(t)

)2

dx. (6.24)
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Table 6.4: Quantile function and the quantile-based extropy of some distribu-
tions.

Distribution F(x) λ(t) J̄F(t)
Uniform x, 0 ≤ x ≤ 1 1

t − 1
2t

Power
( x

α

)β , 0 ≤ x ≤ α; β > 0 β
t − β2

(4β−2)t , β > 1
2

Reciprocal exponential exp(−λ
x )

λ
t2 − (t2+2λt+2λ2)

8λt2

Generalized exponential (1− eλx)θ , x > 0; θ, λ > 0 θλ
eλt−1 − λθ2

2(2θ−1)

(
1

eλt−1 −
1
2θ

)
Lindely distribution β2

1+β (1 + x)e−βx,x>0;β>0 β2(1+t)
1+β+βt

β3

2(1+β+βt)2

(
1+β
2β −

(1+t)
β − (1 + t)2

)
Reversed exponential ea(x−b), 0 ≤ x ≤ b; a, b > 0 a − 1

4a

Reversed generalized Pareto
( ax+c

ab+c

) a+1
a , a > −1, c > 0, 0 ≤ x ≤ b a+1

c+at − (a+1)2

(2a+4)(at+c) , 0 < x ≤ b

The reversed hazard rate function related to the past lifetime random variable,

defined as λ(t) = f (t)
F(t) . By differentiation with respect to t, (6.24) becomes

λ2(t) + 4λ(t) J̄F(t) + 2 J̄′F(t) = 0, (6.25)

as a relationship between reversed hazard rate λ(t) and past extropy. Some

examples of λ(t) and J̄F(t) are given in Table 6.4. Since J̄F(t) lies in (−∞, 0), the

analysis of (6.25) depends on whether J̄′F(t) is zero, positive or negative. When

J̄′F(t) > 0 there can be two roots and in the other cases there is only one positive

root for (6.25). The roots are given by

λ(t) = −2 J̄F(t)±
√

4 J̄2
F(t)− J̄′F(t).

In the case of uniform distribution J̄′F(t) = 1
2t2 > 0, both the roots are identi-

cal. Hence J̄F(t) = − 1
2t characterizes the uniform law. All distributions with

decreasing past extropy are characterized by the form of J̄F(t). But when J̄F(t)

is increasing both the solutions of (6.25) can be reversed hazard rates. Thus in

general, J̄F(t) does not determine F uniquely.
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Example 6.7. In Table 6.4, J̄F(t) = − β2

(4β−2)t , β > 1
2 for the power distribution.

Substituting in (6.25) and solving

λ(t) =
2β2

(4β− 2)t
± 2β(β− 1)

(4β− 2)t
.

Thus the two solutions are λ1(t) =
β
t giving the original power distribution and

λ2(t) =
2β

(4β−2)t giving another power distribution F(t) =
(

t
β

) 2β
4β−2 , β > 1

2 . Thus

J̄F(t) does not uniquely determine F.

Further, (6.25) reveals that J̄F(t) is strictly increasing (decreasing) in t according

as J̄F(t) < (>) − λ(t)
4 . Examples of increasing (decreasing) past extropy, IPE

(DPE) and some characterizations by relationships reversed hazard rates are

seen in the next two theorems.

Theorem 6.15. Let X be a non-negative random variable with support [0, b]. Then

the property J̄F(t) = −kλ(t) where k is some non-negative constant is satisfied by all

t ∈ (0, b] if and only if X follows reversed generalized Pareto with

F(x) =
(

ax + c
ab + c

) a+1
a

, a > −1, c > 0, x ∈ (0, b]. (6.26)

Proof. The necessary part follows from Table 6.4, where k = a+1
4a+2 > 0. From the

given property λ′(t)
λ2(t) = 1−4k

1−2k and on integration λ(t)(p + qt)−1 with p > 0 and

q = 4k−1
1−2k . Thus

F(x) = exp[−
∫ ∞

x
λ(t)dt] =

(
p + qx
p + qb

) 1
q

, 0 < x ≤ b. (6.27)

By setting k = 2a+1
2(3a+2) , a = 4k− 1, c = p(1− 2k), (6.27) leads to (6.26).
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Remark 6.3. As a −→ 0 in (6.26), we have

F(x) = exp[c−1(x− b)], 0 ≤ x ≤ b

the reversed exponential distribution. In this case k = 1
4 and J̄F(t) = − 1

4c . Two

other members of the family (6.26) are of the form

F(x) =

(
1 + ax

c

1 + ab
c

) a+1
a

, a, c > 0

and

F(x) =

(
1− px

c

1− pb
c

)
, p, c > 0,

obtained when k < 1
4 and k > 1

4 respectively.

Remark 6.4. X is IPE when a > 0, DPE when −1 < a < 0 and X has constant

J̄F(t) when a = 0. Thus J̄F(t) can be increasing, decreasing or constant, the last

two cases holding only when zero is a point of discontinuity of F.

Theorem 6.16. If F(x) is absolutely continuous satisfying F(0) = 0 then J̄F(t) =

−kλ(t) for k > 0 and all t if and only if F(x) =
( x

α

)β , 0 ≤ x ≤ α, β > 1
2 .

Proof. The ’if’ part follows from Table 6.4. Further to prove the converse, pro-

ceeding as in the previous theorem we have

F̄(x) =
(

qx + p
qα + p

) 1
q

, 0 ≤ x ≤ α.

SinceF(0) = 0 we have p = 0 and taking q = β−1, we have the required F(x).
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Much more general and powerful results can be found by considering the past

quantile extropy

J̄Q(u) = J̄F(Q(u)) = − 1
2u2

∫ u

0

1
q(p)

dp. (6.28)

A major benefit of (6.28) is that unlike J̄F(t) the past quantile extropy function

J̄Q(u) determines the distribution of X uniquely through the inversion formula

q(u) =
(
−2(2uJ̄Q(u) + u2 J̄′Q(u))

)−1
. (6.29)

This enables construction of distributions based on past quantile extropy func-

tion. We demonstrate the utility of (6.29) in model building. Consider the

rational function

J̄Q(u) = −
(

a− bu +
c
u

)
, a2 + 4bc ≤ 0.

By (6.29) we can write

q(u) = (2c + 4au− 6bu2)−1, a2 ≤ min(−4bc, 3bc). (6.30)

Equation (6.30) defines a distribution with hazard quantile function

H(u) =
2c + 4au + 6bu2

1− u
.

When 2a− 3b + c = 0, c 6= 0, H(u) = 6bu− 4a + 6b, giving a linear hazard quan-

tile distribution discussed earlier for X. When c = 0, 2a = 3b and JQ(u) = bu− a,
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a linear function of u with a > b. Also when b = 0, we have JQ(u) as a homo-

graphic function with a > 0, c > 0. Finally b = c = 0 leads to the exponential

model. Thus (6.30) comprises of a new class of distributions with exponential,

half-logistic, exponential-geometric etc., as special cases.

The residual and past extropies can be related to one another in the quantile

framework. Thus the knowledge of one of these is enough to determine the

other which saves the computational work involved in finding it from first prin-

ciples.

Theorem 6.17.

JQ(u) = (1− u)−2
(

J̄Q(1)− u2 J̄Q(u)
)

J̄Q(u) = u−2
(

JQ(0)− (1− u)2 JQ(u)
)

, J̄Q(1) = JQ(0) = JX.

Proof. We have

q(u) =
(

2
d

du
(1− u)2 JQ(u)

)−1

and

q(u) =
(
−2

d
du

u2 J̄Q(u)
)−1

.

Equating these expressions and integrating

(1− u)2 JQ(u) = −u2 J̄Q(u) + k.

As u → 0, k = J(0) and as u → 1, k = J̄Q(1). The identities in the Theorem now

follow.
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With reference to reversed hazard quantile function, we find

λQ(u) = −
(

4 J̄Q(u) + 2uJ̄′Q(u)
)

. (6.31)

Hence for an absolutely continuous F, λQ(u) is decreasing whenever J̄Q(u) is

increasing and convex. As seen earlier λQ(u) can also be increasing or non-

monotone when X has support [0, b], b < ∞ and zero is a point of discontinuity.

It can also be concluded that J̄Q(u) determine λQ(u) uniquely. Since equation

(6.31) being a differential equation in J̄Q(u), it can be solved to find

J̄Q(u) = u−2
(∫
−

uλQ(u)
2

+ k
)

,

where k is determined such that limu→1 J̄Q(u) = J̄X, the extropy of X. The last

equation shows that J̄Q(u) is completely specified by λQ(u). Comparison of

past extropies of two non-negative and absolutely continuous random variables

X and Y can be accomplished in terms of stochastic orderings.

Definition 6.18. (i) The random variable X is less than Y in past extropy de-

noted by X ≤PEX Y if J̄X(t) ≤ J̄Y(t) for all t > 0.

(ii) We say that X is less than Y in past quantile extropy, X ≤PQEX Y if

J̄QX(u) ≤ J̄QY(u) for all u ∈ (0, 1).

The following are the some important properties of the two orderings ≤PEX and

≤PQEX.

(i) The stochastic order ≤PEX does not imply ≤PQEX .
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Example 6.8. Let FX(x) = x, 0 ≤ x ≤ 1 and FY(x) = x2, 0 ≤ x ≤ 1. Then

J̄X(t) = − 1
2t and J̄Y(t) = − 2

3t so that X ≥PEX Y. However, QX(u) = u and

QY(u) = u
1
2 leads to J̄QX(u) = − 1

2u and J̄QY(u) = − 2

3u
1
2

. Now, J̄QX(u) and

J̄QY(u) cross each other at u = 9
16 and hence not ordered.

(ii) Also, ≤PQEX does not imply ≤PEX .

Example 6.9. Let F(x; λ) = e−
λ
x , x > 0; λ > 0. Then J̄X(t; λ) = − t2+2λt+2λ2

8λt2 , and

it is easy to see that J̄X(t; 1) and J̄X(t; 2) cross at t = 2. Hence J̄X(t; 1) and J̄X(t; 2)

are not ordered by ≤PEX . On the other hand, QX(u) = −λ(log u)−1 gives

J̄Q(u, λ) = − 1
λu2

∫ u

0
p(log p)2dp.

Hence J̄Q(u; 1) ≤PQEX J̄Q(u; 2).

(iii) X ≤RHQ Y ⇔ X ≥HQ Y ⇒ X ≤PQEX Y. Conversely if J̄Y(u)
J̄X(u)

is increasing

in u then X ≤PQEX Y ⇒ X ≤RHQ Y ⇒ X ≥HQ . The proof is similar to that of

Theorem 4.3.

(iv) Although ≤PEX and ≤PQEX are not mutually implied, they can do so under

certain conditions. If J̄Y(t) be increasing and X ≤hr Y, then X ≤PEX Y ⇒

X ≤PQEX Y.

Proof. X ≤PEX Y ⇔ J̄X(t) ≤ J̄Y(t)⇔ J̄X(QX(u)) ≤ J̄Y(QY(u)). Since J̄ is increas-

ing and X ≤hr Y ⇒ QX(u) ≤ QY(u). The last inequality is J̄QX(u) ≤ J̄QY(u) and

the result follows.
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Remark 6.5. In the above result X ≤hr Y can be replaced by X ≤rhr Y. Also one

can use X ≤HQ Y or X ≤RHQ Y.

There are occasions where one has to compare the reliabilities of two devices,

e.g. those with the same specifications and use but produced by different man-

ufacturing processes. In such cases, we identify those with less residual uncer-

tainty as more reliable. Let X and Y be non-negative random variables with

zero as the left extremity of the support.

Definition 6.19. The random variable X is smaller than Y in decreasing residual

extropy, denoted by X ≤DRE Y, if if
JQY (u)
JQX (u) is increasing in u ∈ [0, 1]. This is

equivalent to saying that X ≤DRE Y ⇔
∫ 1

u
dp

qY(p)∫ 1
u

dp
qX(p)

is increasing in u for all u ∈ [0, 1].

Similarly X is smaller than decreasing past extropy if
J̄QY (u)
J̄QX (u) is increasing in u

and is written as X ≤DPE Y. Obviously X ≤DPE Y is equivalent to
∫ u

0
dp

qY(p)∫ u
0

dp
qX(p)

is

increasing in u. Thus

X ≤DPE Y ⇔

∫ u
0

dp
qY(p)∫ u

0
dp

qX(p)

≥ qX(u)
qY(u)

⇔
J̄QX(u)
J̄QY(u)

≥ HY(u)
HX(u)

. (6.32)

In cases where it is difficult to establish the monotonicity of
J̄QX (u)
J̄QY (u)

, inequality

(6.32) gives a graphical procedure. When the graph of the ratio
J̄QX (u)
J̄QY (u)

lies below

that of HY(u)
HX(u)

, we conclude that X ≤DPE Y. Likewise we have the bound for
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X ≤DRE Y as

X ≤DRE Y ⇔
JQX(u)
JQY(u)

≤ HX(u)
HY(u)

. (6.33)

Inequalities (6.32) and (6.33) are necessary and sufficient conditions.

The two orders ≤DRE and ≤DPE are also useful in defining the DREx and DPEx

classes. In fact we have

X ≤DPEx E⇔ X is DREx

and

X ≤DPEx E∗ ⇔ X is DPEx

where E is the exponential random variable and E∗ is the reversed exponential

random variable. From Theorem 6.17 we see that for two non-negative random

variables X and Y

(JQX(u)− JQY(u))) = (1− u)−2
(

J̄QX(1)− J̄QY(1)− u2( J̄QX(u)− J̄QY(u))
)

.

In lifetime models for which J̄QX(1) = J̄QY(1), that is X and Y have the same

extropy measure JX = JY, it is easy to see that

JQX(u) ≥ JQY(u)⇔ J̄QX(u) ≤ J̄QY(u)

or X ≥ (≤)DREx is equivalent to X ≤ (≥)DPEx. The condition JX = JY is not

a trivial case as can be seen in the next example.
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Example 6.10. Assume that FX(x) = x2, 0 ≤ x ≤ 1 and FY(x) = 1− (1− x)2, 0 ≤

x ≤ 1. Then JX = JY = −2
3 . Notice that QX(u) = u

1
2 and QY(u) = 1− (1− u)

1
2 .

We have JQX(u) = −
2(1−u

3
2 )

3(1−u)2 and JQY(u) = −
2(1−u)−

3
2

3(1−u)2 so that JQX(u) ≥ JQY(u).

Also J̄QX(u) = −
2

3u
1
2

and J̄QY(u) = −
2((1−u)

3
2−1)

3u2 so that J̄QX(u) ≤ J̄QY(u).

Past extropy is defined as,

J̄t(X) = − 1
2F2(t)

∫ t

0
f 2(x)dx. (6.34)

Theorem 6.20. Let X be a random variable having generalized-Pareto distribution with

quantile function Q(u) = b
a

(
(1− u)

−a
a+1 − 1

)
, a > −1, b > 0 if and only if

J̄Q(u) =
c1

u2

(
(1− u)(q(u))−1 − c2

)
. (6.35)

Proof. Suppose that (6.35) holds. Then using (6.28), we have

−1
2u2

∫ u

0
(q(p))−1dp =

c1

u2

(
(1− u)(q(u))−1 − c2

)
. (6.36)

Differentiating both sides of (6.36) with respect to u, we get

q′(u)
q(u)

(1− u) =
2c1 − 1

2c1
.

Integrating both sides we get the q(u) of the generalized-Pareto distribution.

Thus the proof.

Theorem 6.21. J̄Q(u) = c, a constant if and only if X has exponential distribution

with negative support.
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Proof. Let J̄Q(u) = c. Using (6.29), we have Λ(u) = −4c, which characterizes

exponential distribution with negative support. Conversely suppose that X has

exponential distribution with support (−∞, 0) having quantile function Q(u) =

1
λ log u. Using (6.28), we get J̄Q(u) = −λ

4 , a constant.

Theorem 6.22. Let X be a non-negative continuous random variable with quantile

function Q(.) and reversed mean residual quantile function R(.). Then

J̄Q(u)R(u) = c, (6.37)

where c > 0 if and only if X has power function distribution.

Proof. Let X has power distribution with quantile function Q(u) = γu
1
β , γ, β >

0. We have R(u) = γ
β+1 u

1
β . Now, using (6.28)

J̄Q(u) =
−β2

2γ(2β− 1)
u
−1
β

=
−β2

2(β + 1)(2β− 1)
(R(u))−1.

Conversely suppose that (6.37) holds. Differentiating (6.37) with respect to u,

we get

J̄Q(u)R′(u) =
Λ(u)R(u) + 4c

2u
.

Using the relationship (2.39) and (6.37), we have obtain

(Λ(u)R(u))2 + 6cΛ(u)R(u)− 2c = 0. (6.38)
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The solution of (6.38) is obtained as Λ(u)R(u) = c, a constant which character-

izes power distribution. This completes the proof.

Remark 6.6. Quantile-based dynamic past extropy can be expressed in terms of

quantile-based dynamic extropy and quantile-based extropy as,

J̄Q(u) =
−1
2u2

(
J(X) + (1− u)2 JQ(u)

)
.

6.7 Cumulative residual extropy

In this section, we introduce a cumulative residual extropy using distribution

function and quantile approaches. Cumulative extropy of a non-negative con-

tinuous random variable X can be defined by

CE(X) = −1
2

∫ ∞

0
F̄2(x)dx. (6.39)

CE(X) is obtained by replacing the probability density function f (.) in (6.1) by

the survival function F̄(.). Unlike (6.1), CE(X) is more stable as the cumulative

distribution function F(.) or F̄(.) always exists. For the residual random variable

Xt, (6.39) modified to

CE(Xt) = −
1
2

∫ ∞

t

(
F̄2(x)
F̄2(t)

)
dx, (6.40)
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can be termed as cumulative residual extropy. Based on (6.39), the quantile-

based cumulative residual extropy can be defined as

Φ(X) = −1
2

∫ 1

0
(1− p)2q(p)dp. (6.41)

The corresponding quantile-based cumulative residual extropy function using

(6.40) becomes

ΦQ(u) = −
1
2

∫ 1

u

(
(1− p)2

(1− u)2

)
q(p)dp. (6.42)

Differentiating both sides of (6.42) with respect to u, we get

q(u) =
(−4ΦQ(u)

(1− u)
+ 2Φ′Q(u)

)
. (6.43)

The identity (6.43) uniquely determines the quantile density function.

Equation (6.42) can be also expressed in terms of the hazard quantile function

by

ΦQ(u) = −
1

2(1− u)2

∫ 1

u

(
(1− p)
H(p)

)
dp. (6.44)

Using the interrelationship between hazard quantile function and mean residual

quantile function, given by (H(u))−1 = M(u)− (1− u)M′(u), (6.44) becomes

ΦQ(u) = −
1

2(1− u)2

∫ 1

u
(1− p)M(p)dp +

1
2(1− u)2

∫ 1

u
(1− p)2dM(p). (6.45)
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Applying integration by-parts on the second term of (6.45), yield

ΦQ(u) = −
1

2(1− u)2

∫ 1

u
(1− p)M(p)dp− M(u)

2
. (6.46)

Equation (6.46) represents the quantile-based cumulative residual extropy in

terms of mean residual quantile function M(u).

Example 6.11. For proportional hazard quantile function model QY(u) = QX(1 −

(1− u)
1
θ ),

ΦQY(u) = −
1

2θ(1− u)2

∫ 1

u
(1− p)1+ 1

θ qX(1− (1− p)
1
θ )dp.

Taking v = 1− (1− p)
1
θ , then

ΦQY(u) = −
1

2θ(1− u)2

∫ 1

1−(1−u)
1
θ
(1− v)2θqX(v)dv.

Theorem 6.23. For a non-negative continuous random variable X with ΦQ(u) = c,

where c > 0 is a constant. Then H(u) is a constant, which characterizes exponential

distribution.

Proof. The proof directly follows from (6.43).

Definition 6.24. We say that X has less cumulative residual quantile extropy

than Y, denoted by X ≤CRQE Y if ΦQX(u) ≤ ΦQY(u), for all 0 < u < 1.

Theorem 6.25. If X ≤HQ Y then X ≥CRQE Y.
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Proof. Let X ≤HQ Y. So that qX(u) ≤ qY(u) implies that

∫ 1

u
(1− p)2qX(p)dp ≤

∫ 1

u
(1− p)2qY(p)dp,

equivalently

− 1
2(1− u)2

∫ 1

u
(1− p)2qX(p)dp ≥ − 1

2(1− u)2

∫ 1

u
(1− p)2qY(p)dp.

Thus ΦQX(u) ≥ ΦQY(u).

Theorem 6.26. X ≤CRQE Y ; X ≤HQ Y.

The following counter example illustrates the above theorem.

Example 6.12. Let QX(u) = u2 and QY(u) = 2u − u2, both does not have a

tractable distribution function. We have ΦQX(u) = (3u+1)(u−1)
12 and ΦQY(u) =

− (u−1)2

4 holds X ≤CRQE Y. But the hazard quantile functionsHX(u) = 1
2u(1−u)

and HY(u) = 1
2(1−u)2 has the property HX(u) > HY(u) for u = 1

3 and HX(u) <

HY(u) for u = 2
3 . Thus X ≤CRQE Y does not imply X ≤HQ Y.

Definition 6.27. X is said to have increasing (decreasing) cumulative residual

quantile extropy (ICRQE (DCRQE)) if ΦQ(u) is increasing in u.

Theorem 6.28. If X is ICRQE (DCRQE) then ΦQ(u) ≤ (≥)1
4 ((1− u)M′(u)−M(u)) .

For exponential distribution with Q(u) = − 1
λ log(1− u), ΦQ(u) = − 1

4λ . The

exponential distribution is the boundary class of ICRQE and DCRQE classes.
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Theorem 6.29. Let X be a random variable with quantile function Q(u) and mean

residual quantile function M(u) for all u ∈ (0, 1). The relationship ΦQ(u) = cM(u),

where c is a non-negative constant holds for all u if and only if X is distributed as Pareto

II, exponential or rescaled beta when c
>
=
<

1
4 .

Proof. Assume that

ΦQ(u) = cM(u), (6.47)

holds. Differentiating (6.47) with respect to u, we get

Φ′Q(u) = cM(u),

and using (6.43), we obtain

2cM′(u) = q(u) +
4cM(u)

1− u
,

equivalently
M′(u)
M(u)

=

(
4c− 1
2c + 1

)(
1

1− u

)
,

d
du

log M(u) =
(
−4c + 1
2c + 1

)
d

du
(− log(1− u)),

implies M(u) = c1(1− u)
1−4c
1+2c .

Theorem 6.30. If Y = aX + b, with a > 0 and b > 0, then ΦQY(u) = aΦQX(u).
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Proof. Let Y = aX + b, with a > 0 and b ≥ 0. Then

FY(y) = P[Y ≤ y] = P[aX + b ≤ y] = FX(
y− b

a
).

By setting FX

(
y−b

a

)
= u, we get QY(u) = aQX(u) + b, we have

ΦQY(u) = −
1

2(1− u)2

∫ 1

u
(1− p)2qY(p)dp = − 1

2(1− u)2

∫ 1

u
(1− p)2aqX(p)dp = aΦQX(u).

Theorem 6.31. Let X be a random variable with quantile density function

q(u) = kuδ(1− u)−(A+δ), k > 0, A, δ ∈ R, u ∈ (0, 1)

if and only if

ΦQ(u) =
1

(1− u)2

(
Φ(X) +

c
2

Bu(1 + δ, 3− δ− A)
)

.

6.8 Application of quantile-based extropy

To apply the quantile-based extropy in real life situation, we need to develop a

non-parametric estimator
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6.8.1 Non-parametric estimation and simulation studies

To propose a non-parametric estimator for quantile-based extropy function, we

consider a random sample X1, X2, ..., Xn. We compute empirical distribution

function FX:n. The empirical quantile function is given by (Parzen (1979))

Q̂(u) = n
(

j
n
− u

)
X(j−1) + n

(
u− j− 1

n

)
X(j), (6.48)

for j−1
n ≤ u ≤ j

n and j = 1, ..., n. The corresponding quantile density function

q̂(u) = Q̂′(u) is given by q̂(u) = n(X(j)−X(j−1)) for j−1
n ≤ u ≤ j

n and j = 1, ..., n.

We consider estimator for quantile-based extropy given by,

Ĵ(X) =
−1
2

∫ 1

0
( ˆq(p))−1dp,

where ˆq(p) = n(X(j)−X(j−1)) is the empirical estimator of quantile density (see

Parzen (1979)). The estimator can be written in the form

Ĵ(X) =
−1
2n

n

∑
j=1

(
n(X(j) − X(j−1))

)−1
. (6.49)

To assess the efficiency of the estimator (6.49), we conduct a Monte Carlo sim-

ulation study with various sample sizes n = 20, 100, 300, 600, 900 and 1000. The

data are generated from Davies (power-Pareto) distribution given in Table 6.1

with parameters c = 1, λ1 = 1 and λ2 = 7. The true value of J(X) for the Davies

distribution is −0.038. The bias and MSE are computed for each of these sam-

ple sizes and are given in Table 6.5. It is evident from Figure 6.2 that the MSE

decreases as sample size increases.
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Table 6.5

n 20 100 300 600 900 1000
Bias 0.4782 0.4345 0.4393 0.4288 0.4008 0.3759
MSE 0.3429 0.0426 0.0075 0.0066 0.0020 0.0008

ˆJ(X) -0.5162 -0.4725 -0.4774 -0.4668 -0.4389 -0.4139

0 200 400 600 800 1000
0.00

0.02

0.04

0.06

0.08

0.10

n

M
S
E

Figure 6.2: Mean square error of the estimator

6.8.2 Data Analysis

For establishing the usefulness of the proposed quantile-based extropy, we apply

the above empirical estimator to real-life data set. The data consists of the times

(in months) to first failure of 20 small electric carts (Zimmer et al. (1998)). Now,

we fit the data using Davies distribution. To estimate the parameters, we use

the method of L- moments, which are the competing alternatives to the conven-

tional moments (see Hosking (1992)). Since Davies distribution contains three

parameters, we take three sample L- moments which are given respectively by,
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l1 =

(
n
1

)−1 n

∑
i=1

X(i) = 14.675

l2 =
1
2

(
n
2

)−1 n

∑
i=1

((
i− 1

1

)
−
(

n− i
1

))
X(i) = 7.33447

l3 =
1
3

(
n
3

)−1 n

∑
i=1

((
i− 1

2

)
− 2
(

i− 1
1

)(
n− i

1

)
+

(
n− i

2

))
X(i) = 2.4678,

where X(i) is the ith order statistic. The corresponding population L− moments

are given by

L1 = µ = cB(λ1 + 1, 1− λ2),

L2 =
c(λ1 + λ2)

λ1 − λ2 + 2
B(λ1 + 1, 1− λ2),

and

L3 =
c(λ2

1 + λ2
2 + 4λ1λ2 + λ2 − λ1)B(λ1 + 1, 1− λ2)

(λ1 − λ2 + 2)(λ1 − λ2 + 3)
.

We equate sample L- moments to population L- moments given by,

lr = Lr, r = 1, 2, 3. (6.50)

Solutions of set of equations (6.50) give the estimates of c, λ1 and λ2. The esti-

mates using L- moments are

ĉ = 18.6139, λ̂1 = 1.12554, λ̂2 = 0.291096.

Thus the non-parametric estimate of extropy is −0.020254 and the parametric
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Figure 6.3: Q-Q plot for the data set

estimate of the extropy measure for the same family of distribution is −0.01735.

To check the goodness of fit, we use Q−Q plot which is represented in Figure:

6.3, shows the adequacy of the model since the number of observations is small

to accommodate the chi-square test.





Chapter 7

Summary and Future Work

Information theory provides a unification of known results and leads to natu-

ral generalizations and the derivation of new results. Recently, quantile-based

studies are of special interest among many researchers while it has some special

features which are not shared with the distribution function approach. Quantile

function exists for a few distributions which do not have a tractable distribution

function. Motivated by the special features of the quantile function, we stud-

ied some information measures within the framework of the quantile function.

Chapter 1 provides an introduction to the thesis which contains a brief outline

of the work we have carried out. In Chapter 2, we gave a brief review of the lit-

erature and basic concepts regarding quantile functions and some information

measures. We also conducted a quantile-based study for order statistics along

with redefined ageing concepts. The order relations can be used for the compar-

ison of the characteristics of two distributions. We studied the order relations of

order statistics in terms of quantile functions.

In Chapter 3, we have introduced entropy and residual entropy of order statis-

tics in terms of the quantile function. It has been shown that the quantile-

based residual entropy of order statistics determines the quantile density func-

tion uniquely using a simple relationship between quantile density function and

183
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quantile-based residual entropy of order statistics. We have derived some upper

bounds for the entropy of order statistics in quantile set up, which may be use-

ful when the quantile density has no closed form or the computation is difficult.

Chapter 4 derived a quantile version of the cumulative residual Tsallis entropy

due to Sati & Gupta (2015) and Rajesh & Sunoj (2016) respectively and studied

its different properties. We have illustrated the usefulness of these measures in

modelling certain distributions using quantile-based reliability functions. We

obtained certain bounds to these quantile-based cumulative residual Tsallis en-

tropy measures. We also extended these quantile measures in the context of

order statistics and studied its properties.

In Chapter 5, we have introduced quantile-based cumulative Tsallis entropy and

its dynamic version for past lifetime random variables. It is shown that the

quantile-based cumulative Tsallis entropy in past lifetime determines the distri-

bution uniquely through an explicit expression. Our approach gives an alter-

native method for finding the cumulative Tsallis entropy in past lifetime and

useful for the probability models which do not have a closed distribution func-

tion. We have also studied different properties of these quantile-based measures

in the context of order statistics. In particular, we have examined the properties

of quantile-based cumulative Tsallis entropy of nth order statistic.

Chapter 6 established some new monotone properties, characterizations, ageing

properties and orderings of residual and past lifetime extropy measures. We
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also studied these extropy functions using quantile functions and found that

the quantile function approach gives several new results that are not achieved

when the definition using distribution function is employed. We have discussed

the quantile-based extropy of order statistics and obtained some properties. We

derived the cumulative extropy and its residual form based on quantile func-

tion and obtained some characteristic results. Finally, we have proposed a

non-parametric empirical estimator for quantile-based extropy and illustrated

its performance using simulated and real data sets.

In the previous chapters, we have seen more results and findings in entropy and

extropy using quantile functions and order statistics. We identify the following

problems which require further investigation.

• Chapter 3 devotes to entropy of order statistics. Analogues results for the

entropy of record values using quantile function is an open problem.

• The problem of estimating various information measures using quantile

functions is yet another problem to be examined.

• Only very little work seems to have been done on the extropy measure.

One can study the generalized extropy measures and its quantile approach.

• Another future work is the study on the divergence measure of extropy

using quantile functions.
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