
Deep Learning in Kernel Machines

Submitted in partial fulfillment of the requirements
for the award of the degree of

DOCTOR OF PHILOSOPHY

by

AFZAL A. L.
Reg.No : 4856

under the supervision of

Dr. ASHARAF S
Associate Professor

Indian Institute of Information Technology and Management - Kerala (IIITM-K)
Thiruvananthapuram, Kerala

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY (CUSAT)
KOCHI, KERALA, INDIA- 682 022

Conducted by

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY AND MANAGEMENT - KERALA (IIITM-K)
THIRUVANANTHAPURAM, KERALA - 695581

September 2018



Deep Learning in Kernel Machines

Ph.D Thesis under The Faculty of Technology

Author :

AFZAL A. L.
Ph.D Research Scholar
Indian Institute of Information Technology and Management - Kerala (IIITM-K)
Thiruvananthapuram, Kerala, India – 695581

Supervising Guide :

D. ASHARAF S.
Associate Professor
Indian Institute of Information Technology and Management - Kerala (IIITM-K)
Thiruvananthapuram, Kerala, India – 695581

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY (CUSAT)
KOCHI, KERALA, INDIA- 682 022

Conducted by

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY AND MANAGEMENT - KERALA (IIITM-K)
THIRUVANANTHAPURAM, KERALA - 695581

ii



Dedicated to my family

iii



INDIAN INSTITUTE OF INFORMATION TECHNOLOGY AND MANAGEMENT - KERALA (IIITM-K)
THIRUVANANTHAPURAM, KERALA - 695581

Certificate

Certified that the work presented in this thesis entitled “Deep Learning in Kernel

Machines ” is based on the authentic record of research done by Mr. AFZAL A. L. towards

the partial fulfillment of the requirements for the award of degree ofDoctor of Philosophy of the

Cochin University of Science and Technology, under my guidance and supervision and that this

work has not been submitted elsewhere for the award of any degree.

Signed:

Dr. ASHARAF S
(Supervising Guide)
Associate Professor
Indian Institute of Information Technology and Management - Kerala (IIITM-K)
Thiruvananthapuram, Kerala

Date:

iv



INDIAN INSTITUTE OF INFORMATION TECHNOLOGY AND MANAGEMENT - KERALA (IIITM-K)

THIRUVANANTHAPURAM, KERALA - 695581

Certificate

Certified that the work presented in this thesis entitled “Deep Learning in Kernel

Machines” submitted to Cochin University of Science and Technology byMr. Afzal A.L. for the

award of degree of Doctor of Philosophy under the faculty of Technology, contains all the relevant

corrections and modifications suggested by the audience during the pre-synopsis seminar and

recommended by the Doctoral Committee.

Signed:

Dr. ASHARAF S
(Supervising Guide)
Associate Professor
Indian Institute of Information Technology and Management - Kerala (IIITM-K)
Thiruvananthapuram, Kerala

Date:

v



Declaration

I hereby declare that, the work presented in this thesis entitled “Deep Learn-

ing in Kernel Machines” is based on the original research work carried out by me under the

guidance and supervision of Dr. Asharaf S., Associate Professor, Indian Institute of Information

Technology and Management - Kerala (IIITM-K), Thiruvananathapuram – 695581 in partial

fulfillment of the requirements for the award of the Degree of Doctor of Philosophy. I further

declare that no part of the work reported in this thesis has been presented for the award of any

degree from any other institution.

Signed:

AFZAL A. L.
Ph.D Research Scholar
Indian Institute of Information Technology and Management - Kerala (IIITM-K)
Thiruvananthapuram, Kerala

Date:

vi



Acknowledgments

Firstly, I would like to express my sincere gratitude and admiration to my

advisor Dr. Asharaf S. for his motivation, valuable scientific guidance, constructive

feedback and the continuous support of my Ph.D study and related research. I thank

him for his patience and fairness to share his immense knowledge. His guidance helped

me during the entire course of research and writing of this thesis. I consider myself

fortunate to have worked under his guidance.

I am also grateful to our Director prof.(Dr.) Saji Gopinath for his unconditional

support and encouragement.

Besides my advisor and director, I would like to thank Dr. Tony Thomas,

member of Doctoral Committee for his insightful comments which encouraged me to

widen my research from various perspectives.

I am thankful to all the members of Research committee and other faculty

members of IIITMK for their valuable comments and support.

My sincere thanks also goes to Dr. Rajasree M.S. , the former director, who

provided me an opportunity to join and pursue my research work in this institution.

I also would like to thank my colleagues and friends at Data Engineering Lab

for all their constructive views and discussions.

I am grateful to the concerned authorities of my parent Institution, CAPE,

College of Engineering Perumon, for sanctioning of leave for my PhD studies.

Last but not the least, I would like to thank my family: my parents, wife and

sons for supporting me spiritually throughout writing this thesis and my life in general.

Sincerely

Afzal A.L.

vii



Abstract

The attempt to build algorithms to solve cognitive tasks such as visual object or pat-

tern recognition, speech perception, language understanding etc. have attracted the

attention of many machine learning researchers in the recent past. The theoretical and

biological arguments in this context strongly suggest that building such systems requires

deep learning architectures that involve many layers of nonlinear information process-

ing. Deep learning approach has originally emerged and been widely used in the area

of neural networks. The techniques developed from deep learning research have already

been impacting a wide range of signal and information processing applications. In the

recent past, excited by the startling performance that deep learning approaches have to

offer, there are many attempts to embrace deep learning techniques in other machine

learning paradigms, particularly in kernel machines. Convex optimization, structural

risk minimization, margin maximization, etc. are the some of the elegant features that

makes kernel machines popular among the researchers. With the advent of recently

developed multi layered kernel called arc-cosine kernel, the multilayer computations is

made possible in kernel machines. The multi-layered feature learning perceptiveness of

deep learning architecture have been re-created in kernel machines through the model

called Multilayer Kernel Machines(MKMs). Support vector machines were often used

as the classifier in these models. These deep models have been widely used in many

applications that involves small-size datasets. However the scalability, multilayer mul-

tiple kernel learning, unsupervised feature learning etc. were untouched in the context

of kernel machines. This research explored above problems and developed three deep

kernel learning models viz; (i) Deep kernel learning in core vector machine that ana-

lyze the behavior of arc-cosine kernel and modeled a scalable deep kernel machine by

incorporating arc-cosine kernel in core vector machines. (ii) Deep multiple multilayer

kernel learning in core vector machines modeled a scalable deep learning architecture

with unsupervised feature extraction. Each feature extraction layer in this model exploit

multiple kernel learning framework that involves both single layer and multilayer kernel

computations. (iii) Deep kernel based extreme learning machine combines the multi-

layer kernel computation of arc-cosine kernel and fast, non-iterative learning mechanism

of Extreme Learning Machines. The theoretical and empirical analysis of the proposed

methods show promising results.

viii



Contents

Acknowledgment vii

Abstract viii

List of Figures xi

List of Tables xii

List of Algorithms xiii

List of Abbreviations xiv

1 Introduction 1
1.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Survey 11
2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Deep Learning Architectures . . . . . . . . . . . . . . . . . . . . . 16

Deep Belief Network : . . . . . . . . . . . . . . . . . . . . . 17
Convolutional Neural Networks : . . . . . . . . . . . . . . . 18
Recurrent Neural Networks: . . . . . . . . . . . . . . . . . . 19

2.2 Kernel Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Core Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Kernel Based Extreme Learning Machines . . . . . . . . . . . . . . 37
2.2.4 Kernel Principle Component Analysis . . . . . . . . . . . . . . . . 39

2.3 Multiple Kernel Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Deep Kernel Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.1 Deep Kernel Computation . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.2 Deep Kernel Learning Architecture . . . . . . . . . . . . . . . . . . 52

3 Deep Learning in Core Vector Machines 55
3.1 Deep Kernel Learning in Core Vector Machines . . . . . . . . . . . . . . . 56

3.1.1 Analysis of Arc-cosine Kernel . . . . . . . . . . . . . . . . . . . . . 57
3.1.2 Building Scalable Deep Kernel Machines . . . . . . . . . . . . . . . 59
3.1.3 Algorithm: Deep Core Vector Machines . . . . . . . . . . . . . . . 60

3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



3.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Deep Multiple Multilayer Kernel Learning in Core Vector Machines 67
4.1 Unsupervised Multiple Kernel Learning with Single-layer and Multilayer

Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Deep Multiple Multilayer Kernel Learning in Core Vector Machines . . . 73
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Deep Kernel Learning in Extreme Learning Machines 82
5.1 Extreme Learning Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Deep Kernel Based Extreme Learning Machines . . . . . . . . . . . . . . . 87

5.2.1 Building Deep Kernel based Extreme Learning Machines . . . . . . 87
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions and Future Works 96
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Bibliography 100

List of Publications 110

x



List of Figures

2.1 An architectural comparison between classical machine learning, repre-
sentation learning and deep learning approaches. A) Traditional machine
learning B) Representation learning C) Deep learning . . . . . . . . . . . 14

2.2 Block diagram illustrating the hierarchical feature learning in deep learn-
ing architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Milestones in the journey of deep learning . . . . . . . . . . . . . . . . . . 16
2.4 A typical architecture of Convolutional Neural Network . . . . . . . . . . 19
2.5 A Symbolic modeling of RNN and its unfolded representation . . . . . . . 19
2.6 Architecture of Recurrent Neural Network with Long-Short Term Memory 20
2.7 An illustration of non-linear transformation to the high dimensional fea-

ture space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 A geometric illustration of Hyperplane, margin and support vectors . . . . 29
2.9 A geometric illustration of candidate hyperplane, canonical hyperplanes

and margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.10 A geometric illustration of (Approximate) Minimum Enclosing Ball problem 34
2.11 Different interpretations of deep kernel learning architecture . . . . . . . . 53

3.1 Training time of DSVM and DCVM on subsamples of KDD-cup-2010
datasets with different size . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Deep core vector machines with multiple layers of feature extraction. Each
kernel PCA based feature extraction layer is modeled by leveraging the
convex combination of both single-layered and multi-layered kernels in an
unsupervised manner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 A comparison in accuracy with different number of feature extraction
layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Basic model of Single Layer feed Forward Network . . . . . . . . . . . . . 84
5.2 A comparison in training time (in seconds) between DKELM and DSVM 94

xi



List of Tables

2.1 A summary of popular deep learning architectures . . . . . . . . . . . . . 22
2.2 Main achievements of deep neural network learning . . . . . . . . . . . . . 23
2.3 Commonly used kernel functions . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Basic rules for kernel re-engineering . . . . . . . . . . . . . . . . . . . . . 28

3.1 Composition of datasets used . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 List of common attributes and its values used in Deep Convolution Neural

Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 The performance of Deep CNN in terms of accuracy and CPU times . . . 64
3.4 The generalization performance in terms of prediction accuracy of Deep

CVM , CVM/BVM , Deep SVM, SVM and Deep CNN. . . . . . . . . . . 65
3.5 Training time of DCVM and DSVM on various datasets . . . . . . . . . . 65

4.1 The composition of datasets taken from both libsvm and UCI repositories 76
4.2 The activation list of arc-cosine kernel obtained during cross validation

phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Layer wise prediction accuracy of the proposed method with different

normalization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 The layer wise prediction accuracy with out using normalization method. 79
4.5 The generalization performance in terms of Average Precision, Recall,

F-core and overall prediction accuracy of Deep CVM and proposed method. 80

5.1 Details of Dataset used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Generalization performance in terms of prediction accuracy of Kernel

based ELM(KELM) and proposed Deep kernel based ELM (DKELM) . . 91
5.3 Generalization performance in terms of prediction accuracy of Deep Sup-

port Vector Machine (DSVM) and proposed Deep kernel based ELM
(DKELM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 A comparison in generalization performance of existing models and pro-
posed models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 The average precision, Recall and F1-score of DKELM on various datasets 92
5.6 Activation list and Scaling mechanism that brings out maximum accuracy

in DKELM and DSVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.7 Training time (in seconds) of Deep Support Vector Machine (DSVM) and

Deep kernel based ELM (DKELM) . . . . . . . . . . . . . . . . . . . . . . 93

xii



List of Algorithms

1 Core Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Principle Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Computing Multi layered Arc-cosine kernel . . . . . . . . . . . . . . . . . . 51

4 Algorithm for computing Angular dependency . . . . . . . . . . . . . . . . 51

5 Deep Core Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Unsupervised Multiple Multilayer Kernel Learning . . . . . . . . . . . . . 73

7 Deep core vector machines with unsupervised multiple multi-layered Kernel

PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8 Deep kernel based extreme learning machine . . . . . . . . . . . . . . . . . 89

xiii



List of Abbreviations

BPTT Backpropagation Through Time

CNN Convolutional Neural Networks

CVM Core Vector Machine

DBM Deep Boltzmann Machines

DBN Deep Belief Network

DSVM Deep Support Vector Machines

ELM Extreme Learning Machine

GRU Gated Recurrent Unit

KPCA Kernel based Principal Component Analysis

KPCA Kernel based Principle Component Analysis

LSTM Long Short-Term Memory

MEB Minimum Enclosing Ball

MKL Multiple Kernel Learning

MKM Multilayer Kernel Machine

PCA Principle Component Analysis

QP Quadratic Programming

RNN Recurrent Neural Networks

SLFN Single Layer Feed-forward Networks

xiv



SVM Support Vector Machines

SVR Support Vector Regression

UMKL Unsupervised Multiple Kernel Learning

xv



CHAPTER 1
Introduction

The idea of creating an intelligent machine is as old as modern computing. In 1950,

Alan Turing devised the mechanism to qualify the intelligent conversation capability of

smart computing machines. It attracted the attention of leading scientists like Marvin

Minsky and John McCarthy and started the most thrilling field of computer science,

Artificial Intelligence (AI). In recent past, a prominent enabler of modern artificial in-

telligence, machine learning has offered many fascinating solutions in a wide variety of

real world applications. The predominant characteristic of machine learning algorithms

is its ability to improve the generalization capability in solving problems autonomously

by learning from data. It involves learning a hypothesis from examples in such a way

that it can be further generalized to unseen data. The parameter turning mechanisms

adopted in machine learning algorithms to fit the data often misinterprets this scien-

tific discipline as an extension of parameter optimization problems. This may cause

two detracting scenarios such as over-fitting and under-fitting, which should be avoided.

Over-fitting is the situation in which the learning models are unnecessarily complex

compared to training dataset and it causes the model to fit irrelevant features of data.

Under-fitting is the scenario in which models are too simple and not capable enough to

cope up with complexness present in large volumes of data. Balancing these two sce-

narios is the key challenge in designing machine learning algorithms. Machine learning

algorithms are extensively used in diverse domains of real world applications employ-

ing pattern identification, object recognition, prediction, classification, dimensionality

reduction etc. Machine learning algorithms may be broadly categorized as follows [1]:

1



Introduction

Supervised learning: In this approach, a supervisor (often represented using labels in

a sample dataset) guide the process of training. It necessitates the availability of

labelled dataset to infer the appropriate hypothesis. Each member of the dataset,

referred as data sample, is represented as a pair of an object and its associated

label. The associated label often act as the supervisor in the training process.

The training process involve the evaluation of model capturing the approximation

between estimated label and the desired label to make appropriate model correc-

tions. When the learned model is capable of producing / classifying the labels of

unseen examples (test dataset) correctly, the training is said to have accomplished

its goal. This algorithm is often used in data analysis tasks such as classification

where the model is used to provide categorical labels to unseen data points and in

prediction where the model helps to find future trends.

Unsupervised learning: Unsupervised learning algorithms are used to model appli-

cations that involve dataset consisting of unlabelled data samples. In a sense, an

unsupervised learning algorithm receives inputs (data samples) without any associ-

ated labels or rewards. The training process involved in these algorithms evaluates

the similarities or dissimilarities present in the dataset. These algorithms exhibit

the potential to discover and leverage the hidden structures / patterns / regu-

larities in the dataset. The unearthed pattern can be used for further decision

making. These algorithms are commonly used in tasks like clustering, dimension-

ality reduction, etc.

Semi-supervised learning: Many popular real world applications leverage a blend

of both supervised and unsupervised learning approaches called semi-supervised

learning. In this type of learning algorithm, the training dataset encompasses both

labelled and unlabelled data samples. The training process starts with labelled

data and then trained on unlabeled data to define models.

Reinforcement learning: This approach involve an agent which learn how to interact

with the environment by executing an action and evaluating the corresponding

reward / penalty received to updates its state. Agent utilizes these rewards to learn

the best course of action sequence to achieves a task. In contrast to supervised

2



Introduction

learning where the algorithm is trained on the given dataset, reinforcement learning

involves a sequential decision making in which the next action depends on the

current state of the agent and the observation made by the agent at the current

time period. The potential to identify the ideal behavior within a specified context

/ environment make it a very good candidate in many real world applications.

The invention of Rosenblatt’s single layer perceptron, an early initiative in

artificial neural networks with supervised learning capability, was a milestone in the

development of modern machine learning algorithms [2]. The non-linear learning issues

encountered in those models were later addressed by multi-layer neural works. The

famous gradient based back propagation algorithm was the primary driving force be-

hind the astounding performance of multi layer neural networks in machine learning

applications [3]. In a parallel track, exploration on incorporating statistical approaches

in learning algorithms gave rise to a new learning paradigm called statistical learning

theory [4]. The prime members of this family are kernel machines which utilizes the

mathematical notion of kernel functions to achieve a computationally efficient learn-

ing approach called Kernel Trick [5, 6, 7, 8, 9, 10]. Support Vector Machines (SVM)

[11, 12, 4, 13, 7] is the most popular learning model among the kernel machines.

In the conventional machine learning algorithms the learning task is accom-

plished by extracting a pre-designed set of features relevant for the task and then using

an appropriate machine learning algorithm. These learning algorithms use only a couple

of feature extraction layers and they are often tagged as shallow learning algorithms.

Support vector machines [11, 12, 4, 13, 7], Kernel regression [14, 15, 16], maximal en-

tropy models [17, 18], conditional random fields [19, 20], k-Nearest Neighbors [21, 22]

and Hidden Markov Models [23, 24] are some of the celebrated shallow learning tech-

niques. The shallow learning techniques have been showing promising results in many

real world problems. However, most of the modern intelligent application also demand

feature learning capabilities involving the identification and utilization of implicit com-

plex structures with corresponding rich representation of data. The handcrafted feature

extraction in shallow learning algorithms necessitate prior knowledge and human inter-

vention, requiring deep domain knowledge to identify relevant features. This manual

3



Introduction

process of selecting features seems to be tedious and also requires considerable effort of

experts. This process also may lead to inappropriate selection of features. The difficulty

in shallow learning algorithms to obtain the appropriate data representation restrict

their use in many real world applications that involve natural signals such as human

speech, natural sound, images, visual scenes, natural languages and many more. Build-

ing such real world applications necessitate data representation mechanisms that cope

up with highly complicated and varying functional aspects of such real world applica-

tions. It is also stated that the well abstracted, task specific data representation can

play a vital role in the generalization performance of many learning models [25].

A pragmatic approach for building a solution in many real world application is

to discover, represent and leverage appropriate data abstraction amenable for the given

tasks. In this context, the representation learning refers to a class of machine learning

algorithms that discover suitable internal representation from the available data. Many

recent success stories in machine learning precisely speak the vital role of representa-

tion learning, to extract useful information (learned features) from the data samples

[26, 27]. Other advantage of representation learning is that it can extract different as-

pects of internal representations from available raw data [28]. Autoencoder is a well

known example of representation learning algorithm. However, single layer of feature /

representation learning has its own limitation in addressing many real world problems.

To widen the scope and applicability of machine learning, it would be highly desirable

to conceive more abstracted representation of data by subsuming multiple layers of fea-

ture learning. It is also observed that the use of abstracted and task specific features

learned as a hierarchical representation can be useful in many real world application

[29]. Further, the biological and theoretical arguments in the context of highly com-

plicated and varying cognitive tasks like visual object recognition, pattern recognition,

speech perception, language understanding etc. also suggest the necessity of multiple

layers of feature extraction. This multiple layers of representation is often referred as

hierarchical representation learning that infer top-level features from observed low-level

features with increasing levels of abstractions.

There are several attempts in solving real world problems that employ the power

of multilayer representation learning in conjunction with traditional machine learning

4



Introduction

algorithms. Deep learning is an emerging trend in this direction that exploits hierarchical

representation learning from available data. Deep learning accelerates the process of

building more complex concepts out of simpler concepts, through multiple layers of non-

linear feature transformations. Each stage in this layered representation involve a kind of

trainable feature transformation [30]. For example, deep learning approach resolves the

complicated feature mapping from pixel to object identification through multiple layers

of feature learning (extractions) as follows. The first hidden layer is defined in such a

way that it learn the edges from the set of pixel values (input data), the next layer learns

the curves and contours out of learned edges , the third layer is responsible for learning

object parts out of these learned curves and contours and finally this abstracted features

(object part details) are fed to the classifier for identifying the objects. A fine tuning

mechanism is then employed on the entire structure to improve the overall generalization

performance of the machines [31].

In general, deep learning is a form of representation learning that attempts to

build high-level abstractions from available data using a learning model composed of mul-

tiple non-linear transformations [25, 32]. The fast layer wise learning algorithm for Deep

Belief Network (DBN) by Hinton [33] was a breakthrough in deep learning approaches.

The other contributions towards deep neural network learning such as greedy layer wise

training [34], sparse representation with energy-based model [35], Deep Boltzmann Ma-

chines (DBM) [36] sparse representation for deep belief model [37], Convolutional Neural

Networks [28],Recurrent Neural Networks (RNN) [38] etc. have taken machine learning

to greater heights in terms of pragmatic use in real world applications. In addition

to the multilayer feature extraction, deep learning approaches exhibit the capability of

combining both supervised and unsupervised paradigms. These elegant factors manifest

the prominence of deep learning in divergent machine learning application arena such

as acoustic modeling [39, 40, 41], sentence modeling [42], face recognition [43], action

recognition [44], image classification [45], etc.

Even though the deep learning approaches have been primarily pursuing in the

context of neural networks, there are several attempts to adapt deep learning capabilities

in other learning paradigms, particularly in kernel machines. Kernel machines are class

of machine learning algorithm that rely on a concept called ‘kernel trick’ [5, 6, 7, 8, 9, 10].

5



Introduction

Kernel trick enables machine learning algorithms to attain computations in an implicitly

defined high dimensional feature space for learning non linearities without an explicit

mapping of data samples. It uses a special function called kernel function(s) that takes

data samples in the input space as inputs and computes their inner product in the high

dimensional feature space. Any machine learning algorithm that rely only on the dot

product between data samples can be kernelized by choosing an appropriate kernel that

compute the inner product of data samples in an implicitly defined feature space [10].

Kernel machines have the capability to learn complex decision boundaries by transform-

ing the data representation into the high dimensional feature space called Reproducing

Kernel Hilbert Space (RKHS), with a limited number of training samples[9]. Mercers

theorem provides the mathematical grounding for qualifying functions as kernel func-

tions [4]. The elegant property of these feature mapping is that it could even lead to

computations enabled in an infinite-dimensional feature space. Support Vector Machines

(SVM) [11, 12, 4, 13, 7], Support Vector Regression (SVR) [46], Core Vector Machines

(CVM) [47], Kernel based Principle Component Analysis (KPCA) [48], etc. are some

of the predominant members in the family of kernel machines. Kernel machines often

succeeded in attaining attention because of their convex loss functions that eliminates

local optima and guarantees global optimum. However, the kernel machines typically

involve only a single layer of kernel computation making them shallow architectures.

Single layer kernel computation is apparently unequipped to discover the rich internal

representations of data and seems to be effective only in modeling simple and well con-

structed data problems. It necessitates multiple layers of feature extraction (multilayer

kernel computation) and scalable mechanisms to widen the scope and applicability of

kernel machines.

Recently, there were several attempts to impart deep learning capabilities into

kernel machines to empower them with multiple layers of feature extraction capabilities[49,

50, 51]. A breakthrough in this context is the emergence of arc-cosine kernels [49, 52, 53]

that mimics the computations in a multilayer neural network. Arc-cosine kernel has the

ability to exhibit different behaviors at different layers, which are governed by the activa-

tion value or degree at that layer. Multilayer arc-cosine kernels have been widely used in

conjunction with SVMs and exhibit the potential to build many real world applications

6



Introduction

that involve relatively small sized datasets. Multilayer Kernel Machines (MKMs) was

another milestone in this journey of deep kernel machines [49] which enables multiple

layers of feature extraction. In this context, this research study identified the need for

scalability, the possibility of developing multiple multilayer kernel learning algorithms,

the potential for developing a method for unsupervised feature extraction by exploiting

multiple kernel learning, etc. are some of the potential explorable opportunities.

1.1 Research Motivation

In recent past, there were several attempts to extent the application domains of machine

learning to areas such as speech perception, visual object or pattern recognition, natural

language understanding etc. The startling performance in these attempts are obliged to

a recent advancement in machine learning paradigm called deep learning. This approach

conceived an abstracted representation of data by embracing multiple hierarchical layers

of feature / representation learning. Further, the deep learning approaches often offer

the capability to utilize unlabelled data, which are plenty in nature, for initializing the

network and feature extraction tasks. Deep learning approaches originated and have

mainly been pursued in the area of neural networks. Even though deep neural net-

work learning approaches are moving to greater heights by the invention of innovative

combination of novel feature learning and traditional machine learning techniques may

often realized locally optimal solutions due to the gradient based, non-convex optimiza-

tion techniques used. These approaches seem to be effective only on problems having

enormous amount of training data.

On the other hand kernel machines typically exploit convex optimization strate-

gies which eliminate local optima and provide globally optimal solutions. Kernel ma-

chines also exhibit the potential to learn a complex decision boundary by transforming

the data into the high dimensional feature space, with limited training samples. The

kernel machines reduce the complexity of explicit mapping of every data samples into

the feature space by exploiting kernel function(s) that facilitate the implicit computation

of similarity between each pair of samples in the feature space. Kernel machines also

manifest elegant properties like structural risk minimization and maximum marginal

7



Introduction

classification. Support vector machine and its scalable counter part core vector ma-

chines, extreme learning machines, kernel based principal component analysis etc. are

some of the popular kernel machines. Even though the kernel machines exhibit strong

theoretical grounding, its shallow architecture resulting from the single layer kernel com-

putation (feature extraction) limited its applicability to only problems with well defined

data representations.

Recently a few attempts have been reported in the machine learning literature

to impart deep learning capabilities to kernel machines. The recent uplift in this context

is the invention of arc-cosine kernels to impart deep learning capabilities in kernel ma-

chines. This kernel enables multiple layers of non-linear transformation that mimics the

computations in multi layer neural network. The capability of having different activation

values (degree) in different layers of arc-cosine kernel offers qualitatively different geo-

metric properties making it a suitable candidate for layered feature extraction. There

are different avenues where the arc-cosine kernel proved its efficiency, particularly in

conjunction with SVMs, called Deep Support Vector Machines (DSVM). However, the

quadratic formulation of SVMs and multiple layers of computation in arc-cosine kernel

impose a high computational cost and it restricts the application domains of DSVM1.

This is identified as an interesting research avenue to explore the possibility of scaling

up DSVM to large data problems. In this direction, the CVM, the scalable alternative

for SVMs, is identified as a suitable candidate to build scalable deep kernel machines

using arc-cosine kernels.

Multilayer Kernel Machine (MKM) introduced the process of multiple layers

of feature extraction in kernel machines. It exploited unsupervised Kernel based Princi-

pal Component Analysis (KPCA) and arc-cosine kernel in its feature extraction layers.

It encounters fixed kernel computations and scalability issues. Enhancing the MKM

framework to overcome the fixed kernel computation and scalability issues is identified

as an another potentially explorable opportunity.

The prominent learning approaches such as kernel machines particularly SVMs,

and Neural Networks necessitate an iterative training procedure to adjust their learning
1DSVM : Support Vector Machines with arc-cosine kernel.

8



Introduction

parameters. In machine learning literature, there was a strong belief that all the param-

eters in each layer of learning models need to be adjusted for an efficient generalization.

However, Extreme Learning Machine (ELM) break this assumption and tend to be an

effective learning model without any iterative parameter turning. ELM accomplish this

by exploiting a simple generalized matrix inverse operations to compute the output

weights and a random computation for its input weights and biases. ELMs also exhibit

the potential to achieve the smallest norm of output weights in addition to minimizing

the training error. The original formulation of ELM as a fast learning algorithm for Sin-

gle Layer Feedforward Networks(SLFN) is then remodeled with universal approximation

and classification capabilities. The unified learning method of ELM facilitates divergent

form of feature mappings such as random feature mappings and kernel methods. The

exploration towards the enhancement of shallow kernel ELM to build a deep kernel ELM

is identified as another research avenue.

The above said facts motivated to formulates the research problem as detailed below.

Problem Statement

Explore the possibility of building kernel machines with deep learning characteristics.

The potential dimensions explored are (i) Scalable deep learning in SVM like kernel

machines. (ii) Scalable deep kernel machines with multiple layers of unsupervised feature

extraction. (iii) Deep kernel learning in non-iterative learning approaches like extreme

learning machines.

Based on the above problem statement, this thesis proposed three kernel ma-

chines with deep learning capabilities. The first exploration in this research “Deep

Kernel Learning in Core Vector Machine” modeled a scalable deep kernel machines by

combining arc-cosine kernel and Core Vector Machine. The Second contribution, “Deep

Multiple Multilayer Kernel Learning in Core Vector Machines” was an attempt to bring

out multilayer unsupervised feature extraction in scalable kernel machines by exploiting

multiple kernel learning framework. Multiple kernel learning frame work in this model

can combine both multilayer and single layer kernels. The third model, “Deep Ker-

nel based Extreme Learning Machine” exploited multilayer arc-cosine kernel and fast,

9



Introduction

non-iterative extreme learning machine algorithms to model a deep kernel based extreme

learning machine. Experiments show that all the proposed methods consistently improve

the generalization performances of the conventional shallow kernel machine approaches.

The rest of the thesis is organized as detailed in next section.

1.2 Thesis Outline

Chapter 1 This chapter presents the background and motivations of research

and provides the thesis outline.

Chapter 2 This chapter provides a comprehensive description on related meth-

ods and methodologies used in this research.

Chapter 3 The main focus of this chapter is on scalable deep learning in SVM

like kernel machines. It describes deep kernel computation in core

vector machines.

Chapter 4 The main theme of this chapter is deep kernel learning in non-

iterative methods. It evaluate the feasibility of combining arc-cosine

kernel and extreme learning machines.

Chapter 5 This chapter gives the details of building scalable deep kernel ma-

chines with multiple layers of unsupervised feature extraction.

Chapter 6 Conclusions and future works are mentioned in this chapter

All the papers published in various journals from the above works

and references are presented at the end of thesis.

10



CHAPTER 2
Literature Survey

Core dream of Artificial Intelligence (AI), the most exciting branch of computer

science, is to make the machines to think, to reason, to perceive, to speak, to commu-

nicate and to imitate many other human talents. AI has gone through several stirs of

technical evolutions from first order logic to expert systems to the early waves of ma-

chine learning to today’s deep learning revolution. Deep learning is one of the hottest

discussion among the machine learning researchers which emphasized on both data rep-

resentation and traditional classification/regression methods and producing state of the

art results in many highly varying and complex pattern recognition tasks.

Shallow based learning models, prior to deep learning model, involve only one

or two layers of hand-crafted feature extraction. These models do not seem to be good

enough to discover the rich internal representation of data. These models were often

fitted with supervised methods that enforces the requirement of large amount of labelled

data. On the other hand, deep learning models are equipped with both supervised and

unsupervised methods. These models can process on huge amount of data (both labelled

and unlabelled) and counterbalance the extensive dependency of human intuition and

prior knowledge which is needed to define feature representation in shallow models.

In addition to combining both supervised and unsupervised learning paradigms, deep

learning architectures also possess hierarchical representation of data, greedy layer wise

training and many more desirable characteristics.

11



Literature Survey

Deep learning concepts originates and has been mainly pursuing in the context

of neural networks. Main challenge in modeling deep neural networks is its depen-

dence on gradient based non-linear optimization techniques which are non-convex in

nature. This non-convex optimization problems do not guarantee global optimization.

On other hand, the kernel machines, particularly Support Vector Machines (SVMs),

were attracted by many of the researchers because of its convex optimization and other

interesting properties such as structural risk minimization and maximal marginal classifi-

cation. However, the single layer kernel computation in SVMs are seemingly unequipped

to discover the rich internal representations of data and it also seems to be good enough

only in applications that involve comparatively small amount of data. It demands the

requirement of both multilayer kernel computation and the scalability to cope with mod-

ern real world applications that involve huge amount of data. This thesis explored in

this direction to enhance the kernel machines with scalability and multiple layers of

feature extractions (kernel computations). In this context it worth to walk through the

main concepts and method that we have adopted from various machine learning liter-

atures. The purpose of this chapter is to provide a brief introduction to the research

work conducted in the area of deep learning and kernel machines which have direct

or indirect relevance in this research study. This literature survey begins with a brief

introduction on deep learning in neural network followed by deep learning attempts in

kernel machines. Rest of the chapter is organized as follows. Deep learning strategies

in neural work are discussed in Section 2.1. The basic concepts of kernel machines and

commonly used kernel machines are included in Section 2.2. Multiple kernel learning

strategies are then discussed in Section 2.3. Deep kernel computation and different deep

kernel learning architectures are given in Section 2.4.

2.1 Deep Learning

In the ever-changing ecosystem of machine intelligence, it may be often required to de-

sign new learning paradigms to keep up with highly complicated and varying modern

real-world applications. Traditional shallow based machine learning algorithms work

with predominantly hand-crafted representations of data. It often necessitates a lot of

12



Literature Survey

human intervention and prior knowledge about the task being modeled. Moreover, the

explored features may not be well suited for the learning task and it may de-escalate the

generalization performance of the learning algorithms. Representation learning seems

to be an efficient approach to explore learned representation which often result in much

better performance when compared to hand crafted representation. However, the repre-

sentation learning task does not address variability in the observed data, the factors of

variation that explain the observed data. It requires more abstract, high level descrip-

tion of observed data. The hierarchical representation of data facilitates more abstract

representation which involves high level representation of data in terms of simple low

level representations. The abstract representation of data pave the way for identifying

rich variability in observed data. The theoretical and biological arguments in the con-

text of building more complicated real-world applications that involves natural signals

such as human speech, sound, language, natural image, visual scenes etc. also suggest

the necessity of multilayer data abstraction.

New trend in machine learning is to combine hierarchical data representation

learning with traditional learning algorithms. One such trending learning paradigm that

expedite the process of modeling highly complicated and varying modern real-world ap-

plications is ‘deep learning’. Deep learning approaches attempt to model the multilayer

learning capability of human brain which transforms high dimensional sensory data to

abstract representation by passing through distinct layers of neurons in a hierarchical

manner. Unlike shallow learning architectures that involve at most one layer of data

representation, deep learning architectures encompass multiple processing layers to ex-

tract more abstract representation from large quantities of both labelled and unlabelled

data. This recent entrant in machine learning builds complex concepts in terms of sim-

ple low level concepts in a hierarchical fashion. ‘ Deep learning is a particular kind of

representation learning that achieves great power and flexibility by learning to represent

the raw data as a nested hierarchy of concepts, with each concept defined in relation to

simpler concepts, and more abstract representations computed in terms of less abstract

ones’ [31]. The relationship between machine learning , representation learning and deep

learning is clearly illustrated in Figure 2.1. In representation learning the handcrafted

feature selection approach in machine learning is replaced with learned features. Deep

13



Literature Survey

learning involve multiple layers (hierarchy)of such learned features from simple ones to

more abstracted features.

Hand crafted 

FeaturesInput
Mapping from 

Features
Output

A)

Learned

Features
Input

Mapping from 

Features
Output

B)

Learned 

Features 

(Simple)
Input Output

C)

Learned 

Features 

(Abstract)

Mapping from 

Features

Figure 2.1: An architectural comparison between classical machine learning, repre-
sentation learning and deep learning approaches. A) Traditional machine learning B)

Representation learning C) Deep learning

In general, deep learning is a form of representation learning that attempts to

build high-level abstractions from low-level descriptions of data through multiple non-

linear transformations (representation) in a hierarchical manner [25, 32]. Each successive

layer in this hierarchical model process the output from the previous layer. An algorithm

is deep means the input is passed through a hierarchy of non-linear transformations.

Each stage in that hierarchy is considered as trainable feature transformation. It has

been clearly depicted in Figure 2.2.

Figure 2.2: Block diagram illustrating the hierarchical feature learning in deep learn-
ing architectures

The motivating factor that favor deep learning is that it gives due importance

in both data representation as well as traditional classification methods. Deep learn-

ing has been making tremendous waves at many highly complicated task domains like

14



Literature Survey

speech perception, visual object recognition, pattern recognition, language understand-

ing etc. The recent upturn in the development of general-purpose graphical processing

units(GPUs), availability of immense amount of data and recent advancement in opti-

mization techniques proliferate the popularity of deep learning. The capability to learn

from both labelled and unlabelled data, which is plenty in nature, enable deep learn-

ing models to learn prior knowledge from input data itself and it also reduces human

invention in a greater extent. Deep learning concepts originate and it has been mainly

pursuing in the area of neural networks. Following sections walk through different mile-

stone in the development of todays most exciting practitioner of machine learning, deep

learning.

2.1.1 Historical Background

In around 1960, the famous researcher Frank Rosenblatt developed an algorithm based

on how biological neurons learn from stimuli. This first generation artificial neural

network so called ‘perceptron’ consists of one input layer, an output layer and a fixed

set of hand crafted features [2]. A small random weights are applied to the inputs, and

the resulting weighted sum of inputs passed to a function (threshold) that produces the

output. Marvin Minsky and Seymor Papert highlighted various shortcomings of this

model in their book ‘Perceptrons: an introduction to computational geometry’ and it

dampened the interest on perceptron. They noticed the incapability of perceptron in

learning non-linear functions like XOR.

Non-linearity in artificial neural networks was a long term research in machine

learning community. It came to reality when Mr. Geoffrey Hinton collaborated with

his colleagues David E. Rumelhart, & Ronald J. Williams and invented a new simple

learning algorithm to train the neural network with many hidden layers [3]. It was

considered as the second birth of artificial intelligence. Their back-propagation (BP)

algorithm, the enabler of multilayer neural networks with the capability for no-linear

computation, well addressed the limitations of single layer perceptron and endowed the

neural networks with the ability to learn non-linear functions. This algorithm works

by computing the model output in the forward pass and then back-propagating the

15



Literature Survey

errors to update network weights by exploiting the derivatives of loss function. Such

multilayer networks exhibit the potential to learn any function [54, 55]. This gradient

based learning approach made tremendous change in the quality of machine learning

and paved the way for building many real-world applications. However, BP algorithm

struggled to find good models having reasonable generalization performance in neural

networks with more than a few number of hidden layers. Real world learning problem

often involves non-convex objective functions and it get often trapped into local optima.

A resurgence in neural networks (Deep learning) began in around 2006 when

Geoffrey Hinton proposed the idea of unsupervised pre-training and a novel class of gen-

erative learning models called deep belief nets (DBN) [33, 56]. In the same time, other

pioneers in deep learning research, Yoshua Bengio and Ranzato introduced non genera-

tive, non probabilistic, unsupervised learning models such as stacked auto-encoders [34]

and an energy-based model for training sparse representation of data [35]. These two

models also used a greedy-layer wise training similar to DBN. These three models de-

fined the pillars of modern multilayer neural network popularly called as deep learning.

A picturization of the interesting journey from earlier electronics brain to todays deep

neural networks is shown in Figure 2.3 [57].

Figure 2.3: Milestones in the journey of deep learning

2.1.2 Deep Learning Architectures

In machine learning literature, the term deep learning is popularly used to refer a wide

range of learning algorithms and architectures involving multiple layers of hierarchical

16



Literature Survey

data representation. Most of the works in this context are broadly classified into three

categories : Generative deep architectures, Discriminative deep architectures and Hy-

brid deep architectures [30]. Generative deep models focus on unsupervised learning

to capture abstract, high-level description of the data (representation learning). Dis-

criminative models are intended to learn classifiers using labelled data by capturing the

posterior distributions of classes. Hybrid deep architectures constitute the combination

of both generative and discriminative deep learning architectures. The following section

discuss three interesting deep learning architectures viz; Deep Belief Network(DBN),

Convolutional Neural Network(CNN) and Recurrent Neural Network(RNN).

Deep Belief Network : The era of deep learning architectures started when Mr.Geoffrey

Hinton, explored a new multilayer neural network called a Deep Belief Network (DBN)[33].

Emergence of DBN as a stack of Restricted Boltzmann Machines (RBM) contributed

an effective way of optimizing network weights in a multilayer neural network with a

greedy, layer wise approach . Each layer-wise unsupervised pre-training utilizes a single-

layer representation learning models such as RBM. It exploits a contrastive divergence

approximation of the log-likelihood gradient to train every layer of DBN. This approach

often achieves a time complexity linear to depth and size of networks. The inputs to

the network are fed into the first layer RBM and the final abstracted representation

is extracted from the hidden layer of the last RBM. The deep learning models built

with DBN configured pre-training followed by a traditional neural network (with back-

propagation) outperformed Multi Layer Perceptron (MLP) with random initialization

[58, 40]. This model exhibited the potential to utilize unlabelled data in its pre-training

process. This pre-training process effectively alleviated the under-fitting and over-fitting

problems which are common in deep neural networks.

An alternative application of layer-wise greedy unsupervised pre-training prin-

ciple, on auto-encoder instead of RBM, was introduced by Yoshua Bengio [34]. Auto-

encoders attempts to reconstruct the input in the output layer from the encoded in-

termediate representations in the hidden layer. Thus, target output tends to be the

input itself. It often exploited the transpose of input-hidden layer weight matrix as

17



Literature Survey

hidden-output layer weight matrix. Their paper also utilized a simple fix based on par-

tial supervision that achieves better improvements. It was an attempt to enhance DBNs

to handle continuous-valued inputs. In another paper [29] Hinton suggested the com-

bination of three great ideas for effectively building multiple layers of representations.

Layer wise representation learning by exploiting RBM like machine was his next idea.

It helps to decompose complex learning task into multiple simpler procedures and to

eliminate the inference problems. His third thought was the use of separate fine tuning

mechanism to improve the generalization performance of the composite learning model.

Convolutional Neural Networks : Other prominent deep learning architecture

which has been widely used in image processing is Convolutional Neural Networks

(CNN)[59]. This discriminative deep architecture comprises a stack of convolutional

layers and pooling layers. CNN proposed three ideas such as shared weights, local re-

ceptive fields and sub-sampling, to handle shift and distortion invariance commonly

encountered in image processing tasks. The local receptive fields facilitates the neurons

to identify the visual features like oriented edges, corners and so on. The variation in

silent features can be made by the distortion or shift of inputs. The set of neurons

corresponding to the receptive fields at different locations of the image often share iden-

tical weights. The convolution process involves a digital filter which is convoluted with

a local receptive field in the image (in first layer there after feature map) and then a

bias value is added. This process is then extend through the entire portion of input,

in horizontal and vertical direction. Any number of filters can be used for convolution

and the stacked output of all those filters contributes the convolution layer and delivers

divergent feature maps. Each learned filters can capture different aspects of an image

[60]. It is a common practice to include pooling layers after convolution, to constitute

another level of translation invariance. The pooling layer performs local averaging and

sub-sampling, to reduce the resolution of feature map. It causes the reduction in respon-

siveness of output against shifts and distortions. Pooling facilitates reduction in spatial

size of the representation which in effect minimize the risk of over-fitting by reducing the

number of parameters. At the end of deep network, this layered structure is attached

to a fully-connected layers. The CNN model is depicted in Figure 2.4. CNN has been

18



Literature Survey

proved to solve many real world problems involving image recognition and computer

vision tasks [61, 62].

Figure 2.4: A typical architecture of Convolutional Neural Network

Recurrent Neural Networks: It is an interesting deep learning architecture in-

tended to model learning problems involving sequential data [38]. In contrast to tradi-

tional feedforward network, the cyclic connection involved in RNN enables them as a

powerful choice to model sequential problems. The beauty of RNNs lies in its memory

which remember the information about previous inputs they have received and thus

the potential to maintain long-term dependencies in sequential data. RNN uses same

parameters across all the timestamps, which resembles as the same task is repeated in a

layered fashion, hence the name recurrent. Like other deep learning architectures, RNNs

also used a variant of backpropagation algorithm called Backpropagation Through Time

(BPTT). It back-propagated the errors from last to first timestamps as unfolded through

layers positioned in a temporal fashion. A basic model of RNN has been shown in Figure

2.5. In this figure U, V,W represent input to hidden state, hidden state to hidden states

x

h

o

U

V

W

Unfold

xt-1

ht-1

ot-1

U

W

xt

ht

ot

U

W

xt+1

ht+1

ot+1

U

W

VV V V
. . . . . .

Figure 2.5: A Symbolic modeling of RNN and its unfolded representation

and hidden states to output weight matrices. Now, the hidden states and output can be

19



Literature Survey

computed with hidden activation function Fh and output activation function FO as :

ht = Fh(Uxt + V ht−1)

Ot = FO(Wht)

(2.1)

The basic RNN models encounter the well-known gradient vanishing problem

while training to learn long term patterns. The invention of Long Short-Term Mem-

ory (LSTM) and Gated Recurrent Unit(GRU) addresses gradient vanishing problems

in some extends. The following paragraphs discuss LSTM and GRU in detail. The

remembering capability of RNNs have been extended to a long period of time by ex-

ploiting Long Short-Term Memory (LSTM) networks, RNN layers are build upon LSTM

units [63]. LSTM exhibit a gated cell approach which has the potential to learn which

information and how long it to be remembered. It has been achieved through three

gates named as forget, input and output gates. The gates are formulated with sigmoid

activation and point wise multiplication operations. The architecture of RNN with a

single LSTM unit has been shown in Figure 2.6. In this figure Ft, It, Ot represents the

xt-1

ct-1,ht-1

ot-1

Figure 2.6: Architecture of Recurrent Neural Network with Long-Short Term Memory

forget gate, input gate and output gate respectively. Forget gate determines the infor-

mation to be get rid of the cell state and the output gate is responsible for the portion

of information delivered from the cell sate. Updating new information into the cell state

is carried out by determining the portion of new information to be updated (input gate

layer) and then updating the cell state with filtered information. These operations can

be summarized as follows.

20



Literature Survey

Ft = σ(Wf .[ht−1, xt] + bf ) Forget gate - return a value between 0 and 1

Ft ∗ Ct−1 Forgetting the decided information

It = σ(Wi.[ht−1, xt] + bi) Input gate determines the information to be updated

Ĉt = tanh(Wc.[ht−1, xt] + bc) The candiate vector to be added to the states

Ct = Ft ∗ Ct−1 + It ∗ Ĉt Updating the state with new value after forgetting

from previous states

Ot = σ(Wo.[ht−1, xt] + b0) Output gate decided the portion of information to be

outputed

ht = Ot ∗ tanh(Ct) part of information outputed from LSTM

Another contribution towards long-term dependency problem in RNN is Gated

Recurrent Unit(GRU) [64, 27]. It combines forget gate and input gate in LSTM as

update gate and also involves a reset gate. This architecture is further simplified by

combining cell state and hidden state. Operations in GRU can be summarized as follows.

pt = σ(Wpxt + Upht−1 + bp) Update gate

qt = tanh(Wqxt + Uqht−1 + bq) Reset gate

ht = (1− pt) ◦ ht−1 + pt ◦ σh(Whxt + Uh(qt ◦ ht−1) + bh)

These enhancements resolve gradient vanishing problem and other optimization bot-

tlenecks in some extends and makes RNN more popular. The high dimensional hidden

state and capability to learn and remember previous informations over a sequence makes

RNN a good candidate in many real world applications [65, 66, 67]. Other appealing

deep layered neural networks and its main achievements over the last decade are listed

in Table 2.1 and Table 2.2 respectively.

21



Literature Survey

Table 2.1: A summary of popular deep learning architectures

Year Author(s) Description of work

1986 Michael I. Jordan Explored Recurrent Neural Networks, where con-

nections between the neural nodes for directed

cycles. These models are capable for handling

sequential information.

1990 Yann LeCun Explored LeNet, expressed the possibility of deep

neural networks in practical applications.

1997 Schuster and Paliwal Explored Bidirectional Recurrent Neural Net-

works, where output depends on both the pre-

vious and next elements in the sequence.

1997 Hochreiter and Schmidhu-

ber

Explored Long Short Term Memory networks and

resolved vanishing gradient complications.

2006 Geoffrey Hinton Explored Deep Belief Networks and layered pre-

training approach, which opened the present deep

learning era.

2009 Salakhutdinov and Hinton Explored Deep Boltzmann Machines, where hid-

den units are arranged in a deeply layered pat-

tern. This neural network model exhibits connec-

tion only in the adjacent layers and lacks hidden-

hidden or visible-visible connections within the

same layer.

2012 Geoffrey Hinton Explored Dropout, an effective mechanism for

training deep neural networks.

2014 Ian Goodfellow Explored Generative Adversarial Networks,

which has the capability to mimic any data

distribution.

22



Literature Survey

Table 2.2: Main achievements of deep neural network learning

Year Autors Description

2011 John Markoff Watson : A question - answering model from IBM

beats humans in a Jeopardy! competition by ex-

ploiting natural language processing and informa-

tion retrieval techniques.

2012 Andrew Y. Ng et.al. Google Brain , the machine learning group lead

by Andrew Ng, identifies cats from the unlabelled

image frames of videos.

2014
Yaniv Taigman et.al Deep face: A remarkable achievement from Face-

book which learn the neural work to identifies

faces. This model yielded an accuracy of 97.35%

which is more than 27% accuracy over its imme-

diate predecessor.

Alex Woodie SIbly: Another initiative from Google, provides

a platform for massive parallel learning. It facil-

itates human behaviour prediction and recom-

mendations in a greater extent.

2016 David Silver et.al. AlphaGo: Yet another Google’s innovation the

first Computer Go program to beat an unhandi-

capped professional human player. It exploited

tree search techniques in machine learning ap-

proach.

2017 Alex Woodie AlphaGo Zero & AlphaZero : Improved versions

of AlphaGo which generalized to Chess and more

two-player games.

From the above analysis, the noticeable characteristics and issues of deep neural

network learning approaches are listed as follows:

23



Literature Survey

• Deep learning approaches give due respect in both data representation and classi-

fication or prediction tasks.

• Multiple layers of feature extraction reduces the risk of feature engineering.

• Greedy, layer-wise training method reduces complexity of training.

• These members have best-in-class performance on problems involving unstructured

media like text, sound and images.

• They exhibit the capability to handles both labelled and unlabelled data effectively.

• Deep learning approaches have the potential to combine both supervised and un-

supervised learning paradigms.

• Non-convexity in optimization problem involved in the learning process of these

architectures do not guarantee globally optimal solutions.

• In these models, the structural complexity required for solving any given problem

is heuristically decided and empirically verified - thus do not support the notion

of structural risk minimization.

2.2 Kernel Machines

In machine learning literature, linear models are seem to be effective in learning tasks

that involve linear decision boundaries which are rare in most of the real world appli-

cations. As per Cover’s theorem, problems with non-linear decision boundaries can be

addressed by transforming data samples into a high-dimensional space (feature space)

where they may become linearly separable [68]. This transformation facilitates linear

operations in higher dimensional spaces which are equivalent to non-linear functions in

input space. Let the original input vector space is ℜd and F be the high dimensional

feature space. Then the non-linear mapping ϕ can be expressed as :

ϕ : ℜd 7→ F

24



Literature Survey

For the given training set T = {(xi, yi)}Ni=1 where xi ∈ ℜd, yi ∈ ℜ, the nonlinear mapping

of data samples into the feature space F can be expressed as :

ϕ : x ∈ ℜd 7→ ϕ(x) ∈ F , F ∈ ℜD

The data sample in the feature space then takes the form (ϕ(xi), yi). The class labels

yi remain unchanged in the feature space. It ease the process of finding a linear deci-

sion boundary in the high dimensional feature space F that separate the data samples

((ϕ(x1), y1), ..(ϕ(xi), yi)..(ϕ(xN ), yN )). It is clearly depicted in Figure 2.7. However, it

Figure 2.7: An illustration of non-linear transformation to the high dimensional fea-
ture space

seems to be highly expensive to apply a non-linear function on every instance of data

sample and explicitly transform them into the high dimensional feature space.

An effective approach in this context is the implicit computation of similar-

ity between training samples in feature space without explicitly projecting them onto

the feature space. It can be accomplished by a special mechanism called kernel trick

which involves kernel function. Kernel functions possess the potentiality to handle non-

linearity problems by implicitly mapping data in the input space - where data is linearly

inseparable, to a new high-dimensional space - where data is linearly separable. A ker-

nel facilitates the computation of inner product between all the samples xi, xj in the

feature space as a direct function of the data samples in the original space, without

explicitly applying non-linear mapping ϕ on every data sample [9]. A kernel function

K : d × d 7→ ℜ is perceived as an inner products between data samples mapped in the

25



Literature Survey

feature space through a non-linear mapping, ϕ and it can be expressed as :

K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩F

This kernel trick facilitates the implicit no-linear transformations in many applications

that can be modeled in terms of inner product between the data samples. Any ma-

chine learning algorithm rely on the inner product between the instances can be trans-

formed into kernel machines (kernalized) by replacing all instances of < xi, xj > with

an appropriate reproducing kernel function k(xi, xj) [10]. In the dual representation

of optimization problem, the replacement of inner product with an appropriate ker-

nel function facilitates the non-linear transformation to the higher dimensional feature

space without increasing the tunable parameters. Kernel representation increases the

computational power of linear machines by projecting data into high dimensional feature

space. The learning models that leverage this kernel trick is popularly cited as ‘kernel

machines’. It can be exemplified with a kernel function K(xi, xj) = ⟨xTi xj⟩2 as follows.

Let {(xi, yi)}Ni=1, x ∈ ℜ2 be the dataset. Then

K(xi, xj) = K

x1i

x2i

x1j

x2j



=

⟨x1i

x2i

x1j

x2j

⟩2

=
(
x1ix

1
j + x2ix

2
j

)2
=
(
x1ix

1
j

)2
+
(
x2ix

2
j

)2
+ 2x1ix

1
jx

2
ix

2
j

=
(
(x1i )

2
√
2x1ix

2
i )(x

2
i )

2
)T

︸ ︷︷ ︸
ϕ(xi)


(x1j )

2

√
2x1jx

2
j

(x2j )
2


︸ ︷︷ ︸

ϕ(xj)

Commonly used kernel functions are listed in table 2.3.

26



Literature Survey

Table 2.3: Commonly used kernel functions

Kernel Mathematical Expression Description

Linear Kernel k(x1, x2) = xT1 x2 + C It is simply the inner product be-

tween the training samples with an

additional constant.

Polynomial Kernel k(x1, x2) = (αxT1 x2 + C)d A non-stationary kernel which is ap-

plicable only on normalized training

samples.

Gaussian Kernel k(x1, x2) =

EXP
(
−∥x1−x2∥2

2σ2

) It is a well known example of Radial

Basis Function (RBF) kernel. The

performance of this kernel is highly

influenced by the turning of its pa-

rameter σ. If σ is over estimated,

the non-linear power will be dimin-

ished and its underestimation will

badly affect the regularization

Laplacian Kernel k(x1, x2) = EXP
(
−∥x1−x2∥

σ

)
Laplacian kernel is equivalent to

Gaussian kernel. However it is very

less sensitive to the parameter σ

Sigmoid Kernel k(x1, x2) =

tanh
(
αxT1 x2 + C

) It comes from neural networks. It

is also known as multi-layer percep-

tron kernel

Circular Kernel k(x1, x2) =

2
πarcco

(
−∥x1−x2∥

σ

)
−

∥x1−x2∥
σ

√
1−

(
∥x1−x2∥

σ

)2
An isotropic, positive definite kernel

in R2. commonly used in geostatic

applications

Spherical Kernel k(x1, x2) =

1− 3
2
∥x1−x2∥

σ + 1
2

(
∥x1−x2∥

σ

)3 Same as that of circular kernel but

positive definite in R3

Chi-Square kernel k(x1, x2) =

1−
∑n

i=1
(x1i−x2i)
1
2
(x1i−x2i)

Inspired from Chi-Square distribu-

tion

27



Literature Survey

Kernel function (K) computes an N × N matrix representing the similarity

between all the pairs of data samples in the feature space. This kernel matrix is also

known as Gram matrix and it can be represented as :

K [i, j] = ⟨ϕ(xi), ϕ(xj)⟩ ∀i,j

According to Mercer theorem, a kernel (K) to be a valid kernel, it is necessary and

sufficient that the corresponding kernel matrix K must be symmetric (K = KT ) and

positive-semi definite (CKCT ≥ 0, ∀C).

Re-engineering is another interesting capability of kernel functions. It promote

the construction of complex kernels by combining relatively simple kernels. Some com-

monly used approaches to re-engineer the kernels are shown in Table 2.4. Unlike neural

Table 2.4: Basic rules for kernel re-engineering

Rule Expression
Linear Combination k(xi, xj) =

∑
k βkKk(xi, xj)

Positive Offset 2 k(xi, xj) = k1(xi, xj) + c
Product k(xi, xj) =

∏
k kk(xi, xj)

Exponential k(xi, xj) = exp( 1
σ2kk(xi, xj))

Normalization k(xi, xj) =
kk(xi,xj)√

kk(xi,xi)kk(xj ,xj)

networks, the kernel machines exploit convex optimization strategy which eliminates

local minimum and guarantees global optimization [69]. The modularity of kernel func-

tions facilitate the independent algorithmic design and analysis from kernel functions

[70]. These elegant features and very strong mathematical slants makes the kernel ma-

chines rather popular in machine learning literature. The interesting features and issues

of kernel machines can be summarized as follows.

• Independent design of data representation and learning algorithms.

• Guaranteed global optimization through its convex optimization.

• Kernel function can be used in diverse forms of data such as sequences, vectors,

sets, graphs, etc. (versatility)

• Applicable in both supervised and unsupervised scenarios.

28



Literature Survey

• Learning capacity can be controlled by regularization function

• Strong theoretical frameworks.

• Some of the kernel machines employ structural risk minimization approach

• Selection of an inappropriate kernel function causes the degradation of generaliza-

tion performance of the learning machine.

Following subsections reviews some of the popular learning models that exploit kernel

trick for pattern analysis and classification.

2.2.1 Support Vector Machines

A support vector machine (SVM) is a well-known kernel machine, initially conceived

of by Cortes and Vapnik [11]. This discriminative classifier is conceptualized by ex-

ploiting Maximum Marginal Hyperplane (MMH). A separating hyperplane that con-

stitutes maximum margin from any training observations is the Maximum Marginal

Hyperplane(MMH). The margin between each class and the hyperplane involves dis-

tance computation between hyperplane and the support vectors, the data points close

to hyperplane, of the respective class. The concepts of hyperplane, support vectors and

margin are clearly depicted in Figure 2.8. Initially, SVM was formulated as a supervised

Figure 2.8: A geometric illustration of Hyperplane, margin and support vectors

linear classifier on binary class problems. Later it has been enhanced for regression [46],

multi-class classification [71], etc. The non-linearity in support vector machines have

29



Literature Survey

been accomplished by exploiting kernel trick [5, 6, 7, 8, 9, 10]. Support vector machines

also exhibit the capability to tackle unsupervised scenarios [72].

Generally, SVMs are formulated as quadratic programing problem. SVMs at-

tempt to minimizing an upper bound of the generalization error through maximizing

the margin between the separating hyperplane and the data. The formulation of well

structured optimization problem of SVM can be detailed as follows [11, 12, 4, 13, 7].

SVM formulation : Let f<w,b>(x) = w.x+ b be the candidate hyperplane on dataset

{(xi, yi)}Ni=1 where xi ∈ ℜd and yi ∈ {−1,+1}. SVMs tend to obtain the optimal

solution by maximizing the margin between the candidate hyperplane and canonical

hyperplanes (f<w,b>(x) = +1 and f<w,b>(x) = −1 ), the hyperplanes passed through

support vectors of both the classes. By realizing a functional margin of 1 to the candidate

hyperplane f(w, b) = 0, the training samples belongs to positive and negative classes

can be described as:
xiw + b ≥ +1 for y = +1

xiw + b ≤ −1 for y = -1

These two hyperplanes can be combined as :

yi(xiw + b ≥ −1), ∀i

It has been clearly shown in Figure 2.9. It has been observed that the geometric margin

between the canonical hyperplane is 2
||w|| and the quadratic programming optimization

problem of SVM (primal form) can be expressed as :

min
w,b

1

2
∥w∥2 s.t. yi(< w, xi + b) ≥ 1, ∀i (2.2)

The constrains can be cater into minimization problem by exploiting Lagrange multi-

pliers α.

L(w, b) =
1

2
∥w∥ −

N∑
i=1

αi[yi(x.w + b− 1)]

=
1

2
(w.w)−

N∑
i=1

αiyi(w.xi)−
N∑
i=1

αiyib+

N∑
i=1

αi

(2.3)

30



Literature Survey

Figure 2.9: A geometric illustration of candidate hyperplane, canonical hyperplanes
and margin

Equating the derivatives of Equation 2.3 w.r.t w, b to zero derives w =
∑N

i=1 αiyixi

and eliminate
∑N

i=1 αiyib respectively. Substituting these factors in Equation 2.3 offers

a new formulation which depends on Lagrange multipliers α. This Wolfe dual form of

SVM optimization problem can be expressed as:

L(α) =

N∑
i=1

αi −
1

2

N∑
i,j=1

αiyiαjyj(xi.xj)

subject to αi ≥ 0, ∀i and

N∑
i=1

αiyi = 0.

(2.4)

By considering the matrix M =
∑

i,j
yiyj(xi · xj), the above expression can be written

as:

L(α) =
N∑
i=1

αi −
1

2
αTMα

subject to αi ≥ 0, ∀i and
N∑
i=1

αiyi = 0.

(2.5)

This linear formulation of SVMs involve only dot product between the training samples.

This observation alleviated the process of building non-linear SVM, by replacing the

inner product between the data samples with an appropriate kernel function k(xi, xj)

which compute the inner product < ϕ(xi), ϕ(xj) > in the feature space. Now, the

31



Literature Survey

non-linear SVM can be expressed as [8] :

L(α) =

N∑
i=1

αi −
1

2

N∑
i,j=1

αiyiαjyjk(xi.xj) (2.6)

For the past few years, there have been significant developments in the theoretical un-

derstanding of SVM and its application in real world problems such as text catego-

rization [73], face detection [74], generic object categorization [75] etc. SVM methods

have also been addressed the problems involving structured outputs like tree, sets and

sequences [76]. The structured prediction is commonly used in natural language pro-

cessing. Support vector machines exhibit better generalization performance from limited

data samples by exploiting the structural risk minimization principle [4, 6].

2.2.2 Core Vector Machines

The classical SVM formulation, both binary [11, 77] and multi-class [78], involves Quadratic

programing (QP). In this formulation, the training process enforces a time complexity

in the order of O(n3)1 and a space complexity of O(n2), for ‘n’ training samples. It does

not seems to be a feasible solution for many real world applications that involve very

large size datasets. Many attempts have been made to solve this scalability problem in

kernel machines, particularly in support vector machines. The recent development in

this context, the Core Vector Machine (CVM), exhibit the potential to scale up support

vector machines. The main characteristics of CVM is the reformulation of QP problem

of SVM as an equivalent Minimum Enclosing Ball (MEB) problem. It is then solved by

a fast (1 + ϵ) algorithm by utilizing the concepts of core sets. The minimum enclosing

ball formulation of SVM and its approximation using core set is further explained as in

the following paragraphs.

Minimum Enclosing Ball Problem : Let A = {a1, a2, ..aN}, ai ∈ ℜd be the finite

set of data points in a d dimensional space. The minimum enclosing ball on A (MEB(A))

represents the smallest unique ball that encloses all the vectors in A. It can be expressed
1Solving the quadratic problem and choosing the support vectors involves the order of n2 , while

solving the quadratic problem directly involves inverting the kernel matrix, which has complexity on the
order of n3

32



Literature Survey

with center c ∈ ℜd and radius r ∈ ℜ as BA(c, r), which computes the minimum radius

of a ball that covers all the data points in A. The primal and its equivalent dual form of

minimum enclosing ball scenario can be expressed in the following two equations[79] :

(c, r) = min
c,r

r2 :
∥∥c− ai

∥∥2 ≤ r2; ∀i (2.7)

max
α

N∑
i=1

αi ⟨ai, ai⟩ −
N∑

i,j=1

αiαj ⟨ai, aj⟩

s.t.
N∑
i=1

αi = 1, αi ≥ 0; ∀i

(2.8)

Any quadratic programming problem of this form can be considered as MEB problem.

Traditional approaches to solve minimum enclosing ball problem [80, 81, 82] suffers

from scalability, depends on both dimensionality d and size N of data points. A well-

known (1 + ϵ) approximation algorithm [83, 84, 85, 86] has the capability for solving

this minimum enclosing ball scenario. This algorithm is accomplished on a subset of

data points called core set. Core set is nothing but a subset of dataset on which the

optimization problem can be applied to accomplish a good approximation to the original

inputs.

For the given ϵ ≥ 0, the (1 + ϵ) approximation of the ball BA(c, r) can be expressed as

BA(c, (1 + ϵ)R), where R ≤ r and A ⊆ BA(c, (1 + ϵ)R). The data points enclosed by

BA(c,R), a subset of A, is called the core set of data points A. More formally, a subset

S ⊂ A signifies as core set of A if and only if the expansion of MEB(S) by a multiplicative

factor of (1+ϵ) covers all the points in A. It has been clearly depicted in Figure 2.10. An

approximation strategy proposed in [84] which employed an iterative method to achieve

(1 + ϵ) optimal(approximate) solution. This scheme iteratively expands the current

ball,BA(ci, ri), by including the furthest point away from the ball BA(ci, (1+ ϵ)ri), until

BA(ci, (1+ ϵ)ri) covers all the point in A. The distinctive characteristics of this strategy

is that the number of iteration and the size of core set depends only on multiplicative

factor ϵ, not on dimensionality and size of dataset. This remarkable advantage of (1+ ϵ)

algorithm facilitates its applications on kernel methods.

33



Literature Survey

Figure 2.10: A geometric illustration of (Approximate) Minimum Enclosing Ball
problem

Kernel induced MEB problem: The minimum enclosing ball (MEB) problem ex-

hibit close relation to techniques such as hard-margin support vector data description

[87, 88, 86] (SVDD), binary class and unary class support vector machine paradigms. Let

BA(c, r) be the MEB in the kernel induced feature space on dataset A = {(xi, yi)}Ni=1.

Now the primal problem in SVDD can be expressed as [47]:

(c, r) = min
c,r

r2 : ∥c− ϕ(xi)∥2 ≤ r2; ∀i (2.9)

where ϕ symbolize the feature map. The equivalent dual problem with an appropriate

kernel k(xi, xj) =< ϕ(xi), ϕ(xj) > is :

max
αi

N∑
i=1

αikii −
N∑

i,j=1

αiαjkij

s.t. αi ≥ 0; for i= 1 .. N,

N∑
i=1

αi = 1

(2.10)

The matrix equivalent of 2.10, as expressed in [47], is :

max
α

α
′
diag(K)− α

′
Kα s.t α ≥ O, α

′
I = 1 (2.11)

34



Literature Survey

Here O, I, α represents vectors of zeros, ones and Lagrange multipliers respectively.

Equation 2.10 is further simplified in the situation where kii = z, a constant as :

max
αi

−
N∑

i,j=1

αiαjkij

s.t. αi ≥ 0; for i= 1 .. N,

N∑
i=1

αi = 1

(2.12)

It is observed that, the isotropic kernel2 (e.g., Gaussian kernel), dot product

kernel - k(x, y) = kl(x
′
y) (e.g.,polynomial kernel with normalized inputs;) and all the

normalized kernel satisfies the condition kii = z, a constant. Any kernel machine that

involves kernel function fulfilling the condition kii = z, a constant can be re-formulated

as an equivalent MEB problem [79].

SVM as MEB problem: Consider the training set of input-output pairs {(xi, yi)}Ni=1

where xi ∈ ℜd and yi ∈ {−1,+1}. Now the two class SVM can be reformulated as an

MEB problem and its Wolfe dual form can be expressed as [89, 90, 79]:

min
α

N∑
i,j=1

αiαj(yiyjk(xi, xj) + yiyj +
δij
C

)

s.t.

N∑
i=1

αi = 1 , αi ≥ 0 ∀i

(2.13)

where α is Lagrangian multiplier, δij is the kronecker delta function3 and C > 0 is

an user defined parameter that controls the trade-off between the margin and training

error. By using the transformed kernel k̂ij = yiyj(kij + 1) +
δij
C , the above equation is

then reformulated as:

min
α

N∑
i,j=1

αiαj k̂ij s.t.
N∑
i=1

αi = 1 αi ≥ 0 ∀i (2.14)

2When a kernel depends only on the norm of the lag vector between two examples, and not on the
direction, then the kernel is said to be isotropic: k(x, z) = kl(∥x− y∥)

3δij =

{
1 if i = j

0 if i ̸= j

35



Literature Survey

Whenever the condition kii = z, a constant is satisfied, then the transformed kernel k̂

also satisfies the criteria k̂ii = z
′ , some constant value. Hence, the two class support

vector machine problem also tend to be a minimum-enclosing ball (MEB) scenario. After

formulating the QP problem of binary class SVM as MEB problem (Equation 2.13),

the (1 + ϵ) approximation algorithm [84, 86] can be exploited to obtain the optimum

solution on core set. This would attain a reduced time complexity as linear and a space

complexity which is independent of both dimension and size of input data sample. The

entire process can be elucidated in Algorithm 1.

Algorithm 1: Core Vector Machine
CVM (A, ϵ)

Inputs : T Dataset with N data points ; ϵ Approximation factor; k Kernel
function;

Outputs: S Set of core vectors;
begin

S0 ← {Initial core vectors};
c← c_MEB(S0) ; /* Center of current MEB */
r ← r_MEB(S0) ; /* Radius of current MEB */
S ← S0;
while (There exist P ∈ T Such that ϕ̂(P falls outside of the ball B(c, (1 + ϵ)r))
do

Find a data sample P such that ϕ̂(P is furthest away from c;
Update S = S ∪ {P} ;
Find new MEB(S) ;
Update c = c_MEB(S);
Update r = r_MEB(S);

return S;

In this algorithm T = {(xi, yi)}Ni=1 represent training dataset. The center c

of the ball can be computed by the function c_MEB(.) as: c =
∑m

i=1 αiϕ̂(xi) where

α = [α1, α2...αm]
′ is the Lagrange multipliers, m is the number of data samples in

the current core set and ϕ̂ is the feature mapping corresponding to the transformed

kernel k̂. Similarly, the function r_MEB(.) computes radius r of current ball as :

r =

√
α′diag(k̂)− α′ k̂α. This algorithm start with the initialization of core set (s0) by

including one data sample from each of the classes [89]. In each iteration, a data sample

P ∈ T in the feature space ϕ̂(P ) which is outside of the ball (c, r(1 + ϵ)) and furthest

from c is taken as core vector and it is added to the core set S. The process of fetching

new core vector necessitate the distance computation between the center c of current

36



Literature Survey

MEB and ϕ̂(Pj), ∀Pj ∈ T . It can be computed by the equation :

∥∥∥c− ϕ̂(Pj)
∥∥∥2 = ∑

Pm,PN∈S
αmαN k̂(Pm, PN )− 2

∑
Pi∈S

αik̂(Pi, Pj) + k̂(Pj , Pj) (2.15)

Even though the CVM achieves a faster execution on large dataset it can only

be used with certain kernel functions and methods. This limitation has been solved in

Generalized Core vector Machines[91] by extending the CVM implementation with the

center-constrained MEB problem. It still preserve the time complexity as linear and

space complexity that is independent of both dimension and size of input dataset. Ball

Vector Machines (BVM) is another implementation which exploits the fixed radius char-

acteristic of Enclosing ball(EB) problem [90]. They also proposed (1+ ϵ) approximation

algorithms to obtain the core set, without using any numerical solver. Another major

contribution towards the performance of CVM is Cluster Based Core Vector Machine[92].

It improves the performance of CVM by using Gaussian Kernel function irrespective of

the orderings of pattern belonging to different classes with in the dataset. According to

the authors their method employs a selective sampling based training of CVM using a

novel based scalable hierarchical clustering algorithm. A powerful approach to scale up

SVM for multi-class classification is Multi-class Core Vector Machine(MCVM)[89] that

uses CVM techniques to solve the quadratic multi-class problem defining an SVM with

vector valued output.

2.2.3 Kernel Based Extreme Learning Machines

Artificial neural networks (ANN) and kernel machines have already proved their poten-

tial in many machine learning applications. Gradient based learning algorithms are ex-

tensively used in the context of artificial neural networks. These methods possess inter-

dependencies between the parameters in different layers of neural networks. Quadratic

equations with tuning parameters are extensively utilized in kernel machines. These

factors enforce iterative training procedures to adjust the learning parameters in both

artificial neural networks and kernel machines. Extreme Learning Machines (ELM)tend

to be a non-iterative learning paradigm which keep off these tiresome repeated parame-

ter tuning in its training procedure. ELM was first proposed as a fast learning algorithm

37



Literature Survey

for Single Layer Feed-forward Networks (SLFN). It exploits simple generalized matrix

inverse operations to compute the output weights and facilitates random computation

of input weights and biases [93, 94]. Unlike traditional learning algorithms, ELM tends

to achieve smallest norm of output weights in addition to minimizing the training error.

The generalization performance of feed-forward neural networks reaching minimal error

improves as the norm of output weights decreases [95]. These elegant learning features

are the crux of ELM to fulfill many real world applications including semantic concep-

tion detection for videos [96], face recognition [97, 98], XML document classification [99],

nontechnical loss of electricity analysis [100] etc. ELM can also be utilized to train the

threshold neural networks directly instead of approximating them with sigmoid func-

tions [101]. Robotic execution failure prediction can be accomplished by Kernel based

extreme learning machine [102].

There are many brilliant works that enhances the learning power of extreme

learning machines. The Error minimized extreme learning machine (EM-ELM) [103]

is another remarkable work in ELM. This approach automatically performs adding of

hidden nodes in the generalized SLFNs, either one by one or group by group manner,

which need not be neural alike. ELM based on-line sequential learning method has been

proposed in [104], which learns the data one-by-one or chunk-by-chunk with fixed or

varying chunk size. This on-line model is further extended with fuzzy logic for function

approximation and classification problem [105]. Tensor decomposition based Extreme

Learning Machine reflects a significant work in the realm of machine learning. This

approach utilizes TUCKER and PARAFAC based tensor techniques for building a scal-

able ELM [106]. Multiple kernel learning with different combinations of kernels is also

approached in the extreme learning machines [107]. Distributed ELM with kernels has

the potential to handle the scalability aspects of kernel based ELM by utilizing parallel

computing framework such as Map Reduce [108].

38



Literature Survey

2.2.4 Kernel Principle Component Analysis

Principle Component Analysis (PCA) tend to be an unsupervised feature reduction

approach. It attempts to reduce the dimensionality of dataset with minimal loss of in-

formation. In PCA, linear transformation methods are exploited to find the informative

features that maximize the variance in the given dataset. PCA facilitates dimensionality

reduction by projecting d− dimensional dataset onto a f− dimensional dataset where

f ≤ d. The entire process in PCA can be summarized as in Algorithm 2.

Algorithm 2: Principle Component Analysis
PCA (A, f)

Inputs : A = {(a1, a2, ..aN )} where ai ∈ ℜd: Dataset ; f ≤ d: Subspace dimension
Output: A′ : Principal component
begin

CM ← 1
N

∑N
i=1 aia

T
i ; /* Covarience Matrix */

CME = λE ; /* Computing eigenvector (E) and eigenvalue (λ) */
w ← [e1, e2, ...ef ] ; /* Select f eigenvectors corresponding to the
highest eigenvalues */
A

′ ← wTA ; /* Projecting Dataset A onto f dimensional subspace. */
Return A

′

Principal component analysis seems to be effective only in linear dimensionality

reduction. Recent innovation in unsupervised learning paradigm, the Kernel Principal

Component Analysis (KPCA) facilitates nonlinear feature reduction [109]. KPCA tend

to be an enhanced PCA in the higher dimensional feature space which involves kernel

function to extract the non-linear features in the higher dimensional space [110, 109].

This is accomplished by extracting the principal components (eigenvectors) from the

covariance matrix in the higher dimensional feature space, which is same as nonlinear

PCA in the original space. Here, kernel function facilitate a nonlinear bridge from the

original space to the feature space. The process of modeling KPCA can be detailed as

follows. Let ϕ : ℜd → F be the nonlinear mapping. Then, the covariance matrix in the

induced feature space can be expressed as [111, 109] :

CF
vm =

1

N

N∑
i=1

ϕ(ai)ϕ(ai)
T (2.16)

39



Literature Survey

As in the case of linear PCA, the eigenvalue problem facilitates the computation of

principal components in the feature space. It can be expressed with eigenvectors E in

feature space F and eigenvalues λ as :

CF
vmE = λE

⇒

(
1

N

N∑
i=1

ϕ(ai)ϕ(ai)
T

)
E = λE

⇒ 1

N

N∑
i=1

⟨ϕ(ai), E⟩ϕ(ai) = λE

(2.17)

A noticeable observation in this expression is that E with λ ≥ 0 span over
∑N

i=1 ϕ(ai).

It implies that : ⟨
ϕ(ak), C

F
vmE

⟩
= λ ⟨ϕ(ak), E⟩ ∀k = 1, ..N (2.18)

Another interesting property of eigenvector is that it can be expressed as the linear

combination of ϕ(ai). It can be expressed as:

E =
N∑
i=1

αiϕ(ai) (2.19)

Exploiting these properties, Equation 2.17 can be further expanded as:

⟨
ϕ(ak),

1

N

N∑
i=1

⟨ϕ(ai), E⟩ϕ(ai)

⟩
= λ ⟨ϕ(ak), E⟩ ∀k=1,..n

⇒

⟨
ϕ(ak),

1

N

N∑
i=1

⟨
ϕ(ai),

N∑
j=1

αjϕ(aj)

⟩
ϕ(ai)

⟩
= λ

⟨
ϕ(ak),

N∑
j=1

αjϕ(aj)

⟩

⇒ 1

N

N∑
i=1

αi

⟨
ϕ(ak),

N∑
j=1

ϕ(aj)

⟩
⟨ϕ(aj), ϕ(ai)⟩ = λ

N∑
i=1

αi ⟨ϕ(ak), ϕ(ai)⟩

(2.20)

In matrix form it can be expressed as λNKα = K2α. Where K is an N ×N matrix :

K[i, j] = ⟨ϕ(ai), ϕ(aj)⟩. It can be solved through the eigenvalue problem:

λnα = Kα (2.21)

40



Literature Survey

Now, the first f principal components of data sample a ∈ A can be computed by

projecting ϕ(a) on to the eigenvectors (e1, e2..ef ) in the feature space F as :

a
′
= ⟨ek, ϕ(a)⟩ , for p= 1,..f

=
n∑

i=1

αp
i ⟨ϕ(ai), ϕ(a)⟩

(2.22)

In this scenario, kernel function k(ai, aj) = ⟨ϕ(ai), ϕ(aj)⟩ can play a vital role in the

implicit computation of sample similarities in the feature space. The Equation 2.21

assumed that the data samples were centered (zero mean) in the feature space F . In

other cases, K is replace with Gram matrix K
′
= K − 1NK −K1N + 1NK1N , where

1N is a N ×N matrix with all elements as 1
N .

Kernelization in PCA confer an elegant feature extraction architecture in unsupervised

learning paradigm. Kernel PCA has been extensively utilized as the primary means of

feature reduction in many real world applications . Novelty detection [112], improved

ECG-derived respiratory signals detection algorithm [113], face recognition [110], etc.

are some prominent examples in this context. The utilization of Kernel PCA frameworks

as an efficient feature extraction tool for building non-linear machines has a predominant

role in the domain of kernel machines.

2.3 Multiple Kernel Learning

Conventional kernel based learning frameworks encompasses solitary kernel for its feature

transformation. The generalization performance of such machines strongly depends

on the choice of kernel function being used. The selection of such designated kernel

function necessitate the domain knowledge of the task being modeled. Usually, the

selection of optimal kernel among a set of kernel functions is accomplished by the cross-

validation procedure. This laborious process of kernel selection quell the major effort of

researchers while modeling the machine intelligent frameworks. Unintelligent selection

of such solitary kernel can be addressed by the predominant learning approach called

Multiple Kernel Learning (MKL). This approach tend to obtain the optimal kernel

by letting the learner to choose or combine the base kernels [114]. Let {(ai, bi)}Ni=1 ;

41



Literature Survey

ai ∈ ℜd, bi ∈ ℜ be the set of training samples and K = k1, ...km is the set of m kernels.

The mathematical representation of optimal kernel in MKL takes the form :

K(ai, aj) = F

({
kp(a

p
i , a

p
j )
}m

p=1
|µ
)

(2.23)

where F (.) is the combination function that map ℜm → ℜ and it can be linear, non-

linear or data dependent. Kernel functions kp take m feature representations of data

instances ai = {api }
m
p=1 and aj =

{
apj

}m

p=1
; where api , a

p
j ∈ ℜdp . dp is the dimensionality

of the pth feature representation. µ parameterizes the combination function. Here the

kernel functions and its parameters are known in advance.

It is also possible to integrate the combination parameter µ onto the kernel

functions itself such that it can be optimized during training and it may expressed as:

K(ai, aj) = F

({
kp(a

p
i , a

p
j |µ)

}m

p=1

)
(2.24)

The popular one among these kernel combinations, the linear combination takes the

advantages of using linear methods to parameterize the combination function, expressed

as:

K(ai, aj) =
m∑
p=1

µpkp(a
p
i , a

p
j ) (2.25)

Here the combination parameter µ (kernel weights) is restricted to µ ∈ ℜm. The con-

straint µ ∈ ℜm
+ makes the above combination as conic where as the convex combination

puts the limit as µ ∈ ℜm
+ and

∑m
p=1 µp = 1. The decision function of the MKL machine

corresponding to the liner combination (Equation 2.25) can be expressed as :

F (a) =

N∑
i=1

αiK

=

N∑
i=1

m∑
p=1

αiµpkp(a
p
i , a

p)

(2.26)

In this basic formulation, the learner parameter α and the kernel combination parameter

µ can be optimized either in combined (single-pass) or an alternative fixing (two-pass)

method. In combined method both the combination parameters and the learner pa-

rameters are tuned up simultaneously. However, in the case of alternative strategy, the

42



Literature Survey

combination parameters are tuned separately while fixing learner parameters and vice

versa [115].

In contrast to the linear and non-linear (non-linear combination function), data

dependent combination has the potential to learn the kernel combination criteria for

each region by identifying the local distribution in the data sample. It is accomplished

by assigning separate kernel weights for each pair of data samples. The mathematical

expression for data dependent kernel combination is of the form :

K(ai, aj) =
m∑
p=1

µpkp(a
p
i , a

p
j ) (2.27)

where µp = g(ai, aj), that compute a weight corresponding to (api , a
p
j ).

Many approaches were proposed to introduce multiple kernel learning in kernel

machines. The conic combination of per-defined kernels for the eminent kernel ma-

chine, the support vector machines were attempted in [116]. In this paper they have

conceived a mechanism to learn the kernel combination and support vector machines

simultaneously. Their convex optimization strategy is popularly known as quadratically-

constrained quadratic program (QCQP). This approach applies sequential minimization

strategies on non-smooth convex optimization paradigm. The semi-definite program-

ming approaches facilitate learning of kernel matrices from the data. The limitation in

number of kernels and the data points in this model were addressed in [114]. This pa-

per exploited Moreau-Yosida regularization and sequential minimal optimization (SMO)

algorithms to rebuilt the QCQP problem as a second-order cone programming. A learn-

ing model in conjunction with semi-infinite formulation of QCQP and support vector

machine was proposed in [117]. They have also showed that, their approach can be

generalized to one-class classification and regression. The multi-class multiple kernel

learning approach exploits joint feature-maps for learning different kernels on the out-

put spaces [118]. This approach uses a common feature-space for entire divergent classes.

The requisite for specificity of the kernel in identifying different classes, delimits the uti-

lization of common feature-space. This multi-class multiple kernel learning approach

can be incorporated in deep learning paradigm. The localized multiple kernel learning

approach utilizes a gating strategy for the selection of appropriate kernels [119]. The

43



Literature Survey

coupling of localized gating strategy, kernel based classifier and thereby jointly perform-

ing optimization tend to be the key features of this approach. This framework also

have the potential in combining multiple duplicates of identical kernels, which is local-

ized in divergent parts. Later, Jose et al. [120] provided a generalization to localized

multiple kernel learning approach for learning sparse, deep and high-dimensional tree-

based primal feature-embedding. This primal-based classification facilitates decoupling

of prediction-costs from amount of support vectors. This approach can ensure scalability

of non-linear support vector machines on massive data.

The traditional MKL algorithms are obliged to the class labels of training

data (supervised) for learning the kernels. However, there are many avenues where the

kernel learning task has to be accomplished without class labels, the class labels are

not available. Unsupervised Multiple Kernel Learning (UMKL) approach proposed by

Zhuang et al. tend to be a successful attempt that facilitates multiple kernel learning

from unlabelled data points. In their paper [121], they have formulated the UMKL by

combining the following two intuitions on the optimal kernel K.

• K has the capability to reconstruct the original training data ai from its localized

bases (
∑

j aj)weighted by the kernel matrix; I.e
∥∥∥ai −∑j kijaj

∥∥∥2 will be minimum,

where kij = K(ai, aj).

• K has the potential to minimize the distortion
∑

i,j kij ∥ai − aj∥2 over all training

data.

The authors have also maintained a list of local bases (Bi) for each data sample ai ∈ A,

for exploiting the concepts of locality preservation.

The optimization problem for the unsupervised multiple kernel learning has

been achieved by combining the above intuitions as :

min
k∈K,B

1

2

N∑
i=1

∥∥∥∥∥∥ai −
∑
aj∈Bi

kijaj

∥∥∥∥∥∥
2

+ γ1

N∑
i=1

∑
aj∈Bi

kij ∥ai − aj∥2 + γ2
∑
i

|Bi| (2.28)

44



Literature Survey

Nowadays, there have been wide spread adoption of MKL in real world applications.

Object identification [122], bio-informatics [123], image annotation and computer vision

[124, 125] , etc. are some of the prominent applications in this context.

2.4 Deep Kernel Machines

Kernel machines exhibit the potentiality to decouple data representation from the de-

signing of learning algorithms. The crux in these models, the kernel functions facilitate

more expressive representation by means of similarity between the samples in the high

dimensional feature space. The capability of building more complex kernels upon simple

ones also empowers the kernel machines to model many real world applications. How-

ever, conventional shallow based kernel learning approaches constitute single-layered

kernel computation (non-linear feature transformations). These single layered data rep-

resentation models reflect incapability in modeling highly complex and varying appli-

cations which require the extraction of complex-type structures and concrete internal

representations from raw input. In order to amplify the scope and ease of applicability

of machine learning, it would be highly desirable to build a learning model that should

exploit multiple layers of feature learning for the deep representation of data. Recent

works in kernel machines highlight the necessity of layered data representations upon

which a general classifier /predictor can be placed.

Multiple layers of feature representation has been effectively conceived by deep

learning approaches. The deep layered learning architectures offer openness in building

richer representation from raw data, through multiple layers of non-linear transforma-

tion. In addition to this, deep learning models exhibit the potentiality to combine both

supervised and unsupervised learning paradigms. Deep learning methods originate and

have been maintaining an astounding performance in the context of neural networks.

However,they involve highly nonlinear optimizations and many heuristics for gradient-

based learning, which do not guarantee global optimal solutions and proliferates the

local optimization with increased network depth [32, 30]. Deep neural networks are

seem to be succeeded only in applications that involves huge amount of data.

45



Literature Survey

Unlike neural network, kernel machines ensure global optima by virtue of its

convex optimization strategies. In addition to this, kernel approaches utilized only a

few parameters to learn the decision boundary by projecting the data onto the high di-

mensional feature space (reproducing kernel Hilbert space). It enables the classifiers to

succeeded on applications involving different sample sizes [126]. Kernel machines also ex-

hibit the features like structural risk minimization, maximal marginal classification, etc.

The wide spread acceptance of deep learning approaches in the context of neural network

and the elegant properties of kernel machines motivated some researchers to explore the

possibilities of leveraging deep learning capabilities in kernel machines. However, only

a few attempts in this context were reported in machine learning literature.

2.4.1 Deep Kernel Computation

Inspiring from the success of deep neural network, there have been many attempts

to build kernels that mimicking the multilayer computation in deep neural networks.

Utilization of deep learning capabilities as an efficient abstraction tool has a prominent

role in building deep kernel machines. Let the training sample of input-output pairs

{(xi, yi)}Ni=1 where xi ∈ ℜd, yi ∈ {−1,+1} and K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩F be the

kernel function. In general, multilayer (l layered ) kernel computation is accomplished

by applying the non-linear mapping (ϕ) recursively on data samples and then exercise

inner product between the samples in the feature space. It can be expressed as :

kl(xi, xj) = ⟨ϕl(ϕl−1(...ϕ1(xi))), ϕ
l(ϕl−1(...ϕ1(xj)))⟩ (2.29)

Here the intuition is that, if the single layer network computation can be represented by

the base kernel k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩ then the l− successive applications of the map-

ping ϕ(.) in the Equation 2.29 can imitate multilayer computation in neural networks.

This concept can be further illustrated with popular kernels such as polynomial

kernel and RBF kernel. In the case of homogeneous polynomial kernel, KPOLY (xi, xj) =

46



Literature Survey

(xi.xj)
d, the two layer kernel composition can be constructed as [49]:

K(2)
POLY (xi, xj) = ϕ(ϕ(xi)).ϕ(ϕ(xj))

= (ϕ(xi).ϕ(xj)
d

= ((xi.xj)
d)d

= (xi.xj)
d2

Similarly, for RBF kernel KRBF (xi, xj) = e−λ∥xi−xj∥2 , the two-fold composition of RBF

kernel,K(2)
RBF (xi, xj) can be derived as [49]:

K(2)
RBF (xi, xj) = ϕ(ϕ(xi)).ϕ(ϕ(xj))

= e−λ∥ϕ(xi)−ϕ(xj)∥2

= e−2λ(1−KRBF (xi,xj))

In these multilayer kernel computation, it is hard to quantify the qualitatively differ-

ent representation than the base kernels. Two-fold polynomial kernel is geometrically

same as polynomial kernel with higher degree and the two layer RBF kernel is nothing

more than another RBF kernel with different variance. A breakthrough in this context

was the invention of arc-cosine kernel [49, 127]. Unlike polynomial and RBF kernels,

arc-cosine kernel encode their inputs in the feature space that mimics the representa-

tions of single-layer threshold networks. Arc-cosine kernels were originally defined by

exploring the activation function, the Heaviside step functions used in neural network.

Subsequently, the activation functions such as one-sided polynomial functions, shifted

Heaviside step functions, and sigmoidal functions were exploited to derive three more

versions of this kernel. These different behavior of arc-cosine kernel can be accomplished

by tuning its activation value (degree). The composition of arc-cosine kernel exhibit dif-

ferent geometric properties (behaviors). The multilayer arc-cosine kernel in modeling a

kernel machine mimics the computations in multilayer neural network. It expedite the

process of leveraging deep learning capabilities in kernel machines. The following section

detailing arc-cosine kernel and its multilayer compositions.

47



Literature Survey

The nth order kernel in the family of arc-cosine kernel with Heaviside step

functions Θ(z) = 1
2(1 + sign(z)) can be expressed as [49] :

Kn(xi, xj) = 2

∫
dw

e−
∥w∥2

2

(2π)
d
2

Θ(w.xi)Θ(w.xj)(w.xi)
n(w.xj)

n (2.30)

This integral expression computed by arc-cosine kernel exhibit a close relationship to

the computation of multilayer threshold networks. Let f(x) = G(W · x) be the non-

linear mapping in single layer neural network that transform the input x to the output

space f(x). The parameter W represent the weight matrix that connects input units to

the output units. The non-linearity G is described by the network activation function,

the one-sided polynomial activation function as Gn(z) = Θ(z)zn. Here Θ(z) = 1
2(1 +

sign(z)). For the two data samples xi and xj , the inner product of their corresponding

output is

f(xi) · f(xj) =
p∑

k=1

Θ(wk · xj)Θ(wk · xj)(wk · xi)n(wk · xj)n

where p is the number of output neurons. With the assumption that, the weight matrix

W has a Gaussian distribution with zero mean and unit variance and the network has

an infinite number of output units it can be expressed as:

limp→∞
2

p
f(xi) · f(xj) = Kn(xi, xj)

where

Kn(xi, xj) = 2

∫
dw

e−
∥w∥2

2

(2π)d/2
Θ(w · xi)Θ(w · xi)(w · xi)n(w · xj)n

This expression is similar to one expressed in Equation 2.30. In this integral represen-

tation of arc-cosine kernel, it has been observed that arc-cosine kernel exhibit a trivial

dependency on the magnitudes of the data samples xi, xj and a complex dependency on

the angle between them [127]. The angle θ between inputs xi, xj can be expressed as:

θ = cos−1

(
(xi.xj)

∥xi∥∥xj∥

)
(2.31)

48



Literature Survey

By conquering all the angular dependencies into a single function AD(n, θ), the integral

expression in Equation 2.30 is simplified further as :

K(x, y|n) = 1

π
∥x∥n ∥y∥nAD(n, θ) (2.32)

where the angular dependency

AD(n, θ) = (−1)n(sinθ2n+1)(
1

sinθ

∂

∂θ
)n(

π − θ

sinθ
), for ∀n = 1, 2, 3.. (2.33)

For n = 0, the angular dependency AD(0, θ) = π−θ, simply an element of angle between

the inputs, the Equation 2.32 takes the form as :

K(x, y|0) = 1− θ

π

= 1− 1

π
cos−1

(
(xi.xj)

∥xi∥∥xj∥

) (2.34)

The other expressions of angular dependency with n = 1 and n = 2 are :

• AD(1, θ) = sinθ + (π − θ)cosθ

• AD(2, θ) = 3sinθcosθ + (π − θ)(1 + 2cos2θ)

The parameter n involved in these expression usually referred as the activation value or

degree which determines the behavior of arc-cosine kernel. The arc-cosine kernel exhibit

qualitatively different geometric properties with different activation functions [127]. For

the case n = 0, the kernel K(xi, xi|0) takes the value 1 and it facilitates the arc-cosine

kernel to maps input xi ∈ ℜd to the unit hypersphere in feature space and it behaves

like Radial Basis Function (RBF). For the case n = 1, K(xi, xi) takes the expression

K(xi, xi|1) = ∥x∥2 and it exploited the norm of input which is similar to linear kernel.

In the case of n ≥ 1, it expand the dynamic range of the input, with K(xi, xj |n) = ∥x∥2n

and it is similar to polynomial kernel.

These arc-cosine kernels possess the capability to intensifying the learning mod-

els with multilayer kernel computation [52, 53]. The multi-layered, deep arc-cosine kernel

can be formed by combining single layered arc-cosine kernel (Equation 2.32) in an itera-

tive manner. Each instance of this iterative execution of multilayer arc-cosine kernel may

49



Literature Survey

have different activation value and hence different behavior . This interesting property

of multilayer arc-cosine kernel contributes a deep neural network computation in kernel

machines. The Equation 2.32 represent the computation of single layer arc-cosine kernel

having an activation value n. In the case of multilayer arc-cosine kernel the value of n

may be different in different layers. Let n1, n2..nl be the activation values corresponding

to the layers 1, 2, ..l respectively. Then the l layered arc-cosine kernel can be represented

as:

K(L)
(n1,n2..nl)(xi, xj) = ⟨ϕnl(ϕnl−1(...ϕ1(xi))), ϕnl(ϕnl−1(...ϕ1(xj)))⟩ (2.35)

It can be illustrated for 2-fold arc-cosine kernel with activation value (n = 0 ) as follows.

K(2)
0 (xi, xj) = ⟨ϕ1

0(ϕ
2
0(xi)), ϕ

1
0(ϕ

2
0(xj))⟩

= 1− 1

π
cos−1

(
⟨ϕ1(xi|0), ϕ1(xj |0)⟩
∥ϕ1(xi|0)∥ ∥ϕ1(xj |0)∥

)
= 1− 1

π
cos−1

(
K1(xi, xj |0)√

K1(xj , xj |0) K1(xi, xi|0)

)

= 1− 1

π
cos−1

(
1− θ

π

)

In general, the recursive formulation of l− fold arc-cosine kernel can be expressed as :

K(l+1)(xi, xj |n) =
1

π

[
K(l)(xi, xi|n) k(l)(xj , xj |n)

]n
2

AD(n, θ(l)n ) (2.36)

where θ
(l)
n is the angle between the images of xi and xj in the feature space induced by

the l-fold composition.

θ(l)n = cos−1

 K(l)(xi, xj |n)√
K(l)(xi, xi|n) K(l)(xj , xj |n)

 (2.37)

Above expression is build up on same activation value n at every layers of arc-cosine

kernel. It also enables to use different activation values at different layers of recur-

sion. The iterative procedure of arc-cosine kernel that mimics multilayer computation

in neural network has been summarized in Algorithm 3. This algorithm takes the list of

activation value as parameter, in addition to data samples xi and xj . In this activation

list, the activation value of layers are arranged in chronological order. The length of

50



Literature Survey

activation list determines the depth of arc-cosine kernel. The layered kernel learning

process start with initial kernels Kii = ⟨xi, xi⟩, Kjj = ⟨xj , xj⟩ and Kij = ⟨xi, xj⟩. In

this algorithm, the sub function Angular_depen (Algorithm 4) is used to compute the

angular dependency Ad.

Algorithm 3: Computing Multi layered Arc-cosine kernel
MLArccosine (xi, xj , [act_list])

inputs : Two data samples xi and xj ; The list of activation or degree in each layer
[act_list]

output: The kernel value denoted by Kl
xi,xj

begin
Kii ← Inner-product(xi, xi);
Kjj ← Inner-product(xj , xj);
Kij ← Inner-product(xi, xj);
foreach n ∈ [act_list] do

θ ← cos−1
(

Kij

∥Kii∥∥Kjj∥

)
;

Ad← Angular_depen(n, θ);
Kij =

1
π × (Kij)

n
2 ×Ad;

Kii =
1
π × (Kii)

n ×Ad;
Kjj =

1
π × (Kjj)

n ×Ad;
Kl

xi,xj
← Ki,j;

return Kl
xi,xj

;

Algorithm 4: Algorithm for computing Angular dependency
Angular_depen (n, θ)

inputs : Degree or activation value :n; Angle between input vectors θ
output: The angular dependency :Ad
begin

switch n do
case 0

Ad = π − θ

case 1
Ad = sin(θ) + (π − θ)× cos(θ)

case 2
Ad = 3× sin(θ)× cos(θ) + (π − θ)× (1 + 2× cos(θ)2)

return Ad;

Optimization of multilayer arc-cosine kernel opens up a new insight for deepen-

ing kernel machine with deep kernel computations. The deep kernel learning frameworks

can be modeled efficiently by plugging this multilayer arc-cosine kernel in any kernel ma-

chines. One such well known example in this context is the deep support vector machines

51



Literature Survey

(DSVMs) [49]. Even though DSVM shows better performance on many machine learn-

ing problems it encounters bottleneck, due to its high computational cost, on many real

world application that involve massive data.

Other noticeable work in this context of deep kernel learning is Laplacian deep

kernel learning [128]. In this paper, the authors devised a semi-supervised deep kernel

network learning model, in conjunction with Laplacian SVMs. This model combines

the high generalization capabilities of Laplacian SVMs and the strength of deep neural

networks. The effectiveness of this deep kernel classifier was demonstrated through

image annotation experiments. A kernel method that encode information of deep infinite

layer neural network was devised in [129]. In this paper, the authors derived stochastic

kernels from Gaussian process and showed the alignment of infinite neural network with

Gaussian process and kernel method. This kernel framework involves generalization

bound and regularization method to eliminate overfitting. Adopting from convolutional

neural network, these network exploited localities and non-linearities. This framework

is demonstrated with only two layers, beyond that it failed to address non-linearities.

2.4.2 Deep Kernel Learning Architecture

Recently there are several attempt to build deep kernel learning architecture by the

hierarchical organization of shallow based kernel machines. In the context of image

prediction task, three divergent interpretations of deep kernel learning using multiple

kernels are proposed in the paper [130]. This work modeled a breast cancer classification

algorithm by exploiting the shallow based SVM with multiple kernel learning. This

model also employed the span bound optimization over the dual objective function.

Three different deep kernel learning architectures proposed in this paper are shown

in Figure 2.11. In their first model they explored three-layered deep kernel learning

architecture with two kernel combinations in every layer. The first layer constitute

two elementary kernels and the remaining layers involve the combined kernels from its

previous layer. The final kernel is computed as a linear combination of learned kernels

from three layers. Second model is a two-layered deep learning architecture. In this

model, the first layer kernels and first kernel in the second layer are elementary kernels

52



Literature Survey

INPUT

K1
1

K1
2

K
2
1

K 2
2

K

INPUT

K K K

K

K K K

1 1 1
1 2 3

2 2 2

1 2 3

INPUT

K K K

K K K

K

1 1 1
1 2 3

2 2 2
1 2 3

Two-layered deep kernel learning architecture

Three-layered deep kernel learning architecture with two kernels in every layer

Three-layered deep kernel learning architecture in a different manner

Figure 2.11: Different interpretations of deep kernel learning architecture

whereas the second kernel in second layer is learned from kernels in the first layer. The

outermost kernel computation involves the linear combination of kernels in the second

layer. Third model encompasses three layers of kernel computations. The base kernels

which map the original data are presented in the first layer. In second layer, the first and

second kernels are mapped to second and first kernel in the first layer respectively. In

third layer, the first kernel involves the combination of both the kernels in second layer

where as the second kernel maps the combination of original data and the output of

first kernel in the second layer. Obviously, the linear combination of third layer kernels

outputs the final kernel.

Other noticeable works in the context of deep layered multiple kernel learning

approaches is a “two-layer multiple kernel learning” (2LMKL) approach [131]. Unlike

traditional single layer MKL approach, this work explored a multiple kernel learning in

a hierarchical manner. In this work the authors devised an algorithm for two layer mul-

tiple kernel learning. The authors have also exploited the idea of infinite kernel learning

to generate base kernels in iterative manner. This approach exhibits better flexibility in

comparison with regular multiple kernel learning approaches for exploring optimum ker-

nels in vast applications. Also, alternating-optimization algorithm is utilized for learning

base kernel weights and decision functions simultaneously. Only a solitary Gaussian ra-

dial basis function is applied at the second layer. This paper empirically showed that

53



Literature Survey

2LMKL and 2LMKLInf techniques outperformed other techniques such as support vector

machines (SVM), convex multiple kernel learning (MKL) and multiple kernel learning

with Lp norm regularization (LpMKL). However this approach is attempted only on

two-layered strategy and required further enhancements for building deep architecture.

A back-propagation based deep multilayer multiple kernel approach [132] was

another attempt to leverage deep learning capabilities in kernel machines. This approach

utilizes gradient-ascent strategy instead of leave-one-out error or dual objective-function

estimation for learning the optimal kernel combinations. The empirical result shows

that this approach outperforms two-layer multiple kernel learning (2LMKL) [131] and

deep multi-layer multiple kernel learning (DMKL) [126] approaches.

Based on the literature survey as discussed above, it is learned that the proposed

problem statement is highly relevant in the context of advancing science in the area of

building deep learning capabilities in kernel machines.

54



CHAPTER 3
Deep Learning in Core Vector Machines

The recent advancement in machine learning, the deep learning approach has been

moving towards greater heights in pragmatic applications by giving due importance to

both data representation and classification methods. It facilitated remarkable success

in many real world intelligent applications involving complex, highly varying, higher

dimensional, large volume data set. Even though deep learning has been investing its

effort primarily in the context of neural networks, there are several recent explorations of

deep learning techniques for other machine learning paradigms such as kernel machines.

Recently developed multilayer arc-cosine kernel [49] tend to be the bedrock

for extending deep learning capabilities in kernel machines. Arc-cosine kernel represent

a family of kernels capable of expressing different behaviors with different activation

functions. This multilayer arc-cosine kernel is extensively utilized to build deep kernel

learning in conjunction with many well-known kernel machines. A celebrated learning

model in this context is Deep Support Vector Machine (DSVM) [49] which combines

multilayer arc-cosine kernel and Support Vector Machines (SVM). Quadratic Program-

ming (QP) problem involved in the implementation of SVM impose a time complexity in

the order of O(n3). In addition to this, the use of multilayer arc-cosine kernel increases

the time complexity of DSVM further. Even though this deep model has been widely

used in many applications that involve small datasets, it fails to scale in problems with

large datasets.

55



Deep Learning in Core Vector Machines

Core Vector Machine (CVM) tend to be a scalable SVM formulation leveraging a Min-

imum Enclosing Ball (MEB) approximation algorithm [47]. In CVM, the QP problem

involved in SVM is reformulated as an equivalent MEB problem [81, 133, 134, 135, 136]

and then solved by using a subset of training samples (Core Set) obtained by a faster

(1 + ϵ) approximation algorithm [83, 84, 86]. CVM achieves a time complexity that is

linear in training sample size (m) and a space complexity that is independent of training

sample size [92]. In this context, CVM is identified as a potential candidate to build a

scalable deep SVM algorithm. The main challenge in building deep core vector machine

is the restriction on the kernels that can be used in CVM. It support certain kernels

that satisfying the condition k(x, x) = z, a constant. This chapter diligently discuss

the prominent characteristics of multilayer arc-cosine kernel and the scalable deep ker-

nel machine modeled by combining arc-cosine kernel and core vector machines. This

chapter is organized as follows. Section 3.1 explores deep kernel learning in core vector

machines. Experimental details and performance measures are discussed in Section 3.2.

Section 3.3 conveys conclusions.

3.1 Deep Kernel Learning in Core Vector Machines

Core Vector Machine (CVM) seems to be an efficient mechanism to address the scala-

bility challenge in SVM. It rely on the concept of equivalent Minimum Enclosing Ball

problem. CVM tend to obtain approximately optimal solution by reformulating the QP

problem of SVM as an equivalent MEB problem and then solved by using an efficient

MEB based approximation algorithm by utilizing the idea of core set (a subset of sam-

ple set). As discussed in Chapter 2 (Section 2.2.2), any kernel machine using the kernel

function K satisfying the condition kii = z can easily be converted into an equivalent

MEB problem. Based on this concept, the wolfe duel formulation of two class SVM

(explained in Chapter 2 ) can be expressed as [89, 91]:

min
α

N∑
i,j=1

αiαj(yiyjk(xi, xj) + yiyj +
δij
C

)

s.t.

N∑
i=1

αi = 1 , αi ≥ 0 ∀i

(3.1)

56



Deep Learning in Core Vector Machines

where xi ∈ ℜd , yi ∈ {+1,−1} , α is Lagrangian multiplier, C > 0 is an user defined

parameter that controls the trade-off between the margin and training error and δij is

the kronecker delta function1. By using the transformed kernel k̂ij = yiyj(kij +1)+
δij
C ,

the above equation can be reformulated as:

min
α

N∑
i,j=1

αiαj k̂ij s.t.
N∑
i=1

αi = 1 αi ≥ 0 ∀i (3.2)

The interesting observation in this formulation is that when the kernel k(xi, xi) =

z, a constant is satisfied, then the transformed kernel ˆ(K) also satisfies the condition

k̂(xi, xi) = z
′
, some constant. It is observed that, the isotropic kernel: k(xi, xj) =

∥xi − xj∥ (e.g., Gaussian kernel), dot product kernel: k(xi, xj) = x
′
ixj (e.g.,polynomial

kernel with normalized inputs) and all the normalized kernels are satisfying the condi-

tion kii = z and hence the kernel machine involving these type of kernel can easily be

converted to an MEB problem.

The eminent arc-cosine kernel tend to be the vital element in building deep

kernel machines. The multilayer computation in this arc-cosine kernel enables the pro-

cess of designing kernel machines with deep learning capabilities. This kernel is widely

used in conjunction with SVM and produces elegant results in many machine learning

applications that involve only small datasets. The following section analyzes the charac-

teristics of multilayer arc-cosine kernel to explore the possibilities of utilizing this kernel

in CVM, to build a scalable deep kernel machine.

3.1.1 Analysis of Arc-cosine Kernel

Introducing arc-cosine kernel in SVMs was the first attempt in incorporating the con-

cepts of deep learning in kernel machines. Each layer in this multilayer arc-cosine kernel

is defined with an activation value, referred as its degree. The performance of each layer

in this hierarchy is highly influenced by the activation value defined for that layer. The

ability to utilize divergent activation functions makes the arc-cosine kernel to express

different behaviors and hence represents a family of kernels. The arc-cosine kernel with

1δij =

{
1 if i = j

0 if i ̸= j

57



Deep Learning in Core Vector Machines

different activation functions have qualitatively distinct geometric properties [127]. The

arc-cosine kernel and its different behaviors are clearly detailed in Chapter 2. It is sum-

marized as follows. As discussed in Chapter 2,the simplified form of nth order arc-cosine

kernel (Equation 2.32 ) can be expressed as :

kn(x, y) =
1

π
∥x∥n ∥y∥nAD(n, θ)

Here, the angular dependency AD(n, θ) (Equation 2.33) depends on two factors such as

degree or activation value n and the angle θ between data samples, say xi and xj .

AD(n, θ) = (−1)n(sinθ2n+1)(
1

sinθ

∂

∂θ
)n(

π − θ

sinθ
)

θ = cos−1

(
(x.y)

||x| | ||y| |

)
Now, the first three forms of angular dependency can be computed by exploring the

above equations as follows:

• AD(0, θ) = π − θ

• AD(1, θ) = sin(θ) + (π − θ)× cos(θ)

• AD(2, θ) = 3× sin(θ)× cos(θ) + (π − θ)× (1 + 2× cos(θ)2)

In multi layered arc-cosine kernel each layer may have different activation function(degree).

The non-linear transformation in each layer is determined by the value of its associated

degree. The arc-cosine kernel with different activation functions have qualitatively dif-

ferent geometric properties [127]. Let n be the degree of the arc-cosine kernel at a

particular level. Then for the case n = 0 arc-cosine kernel maps input x to the unit

hypersphere in feature space, with k0(x, x) = 1 and it behaves like Radial Basis Func-

tion (RBF ). For the case n = 1, arc-cosine kernel preserves the norm of input with

k1(x, x) = ||x| |2 which is similar to linear kernel and in the case of n ≥ 1, it expand

the dynamic range of the input, with kn(x, x) = ||x| |2n and it is similar to polynomial

kernel. From the above analysis it is clear that, in some special cases, particularly with

58



Deep Learning in Core Vector Machines

degree 0, arc-cosine kernel satisfies the required condition k(xi, xi) = z, (a constant)

for being a kernel function in CVM. Following section explain the process of building

scalable deep kernel machine by combining multilayer arc-cosine kernel and core vector

machine.

3.1.2 Building Scalable Deep Kernel Machines

From the discussions in Section 3.1 and 3.1.1, it is clear that the arc-cosine kernel can be

employed to build scalable deep kernel learning architecture with core vector machine.

The first step in CVM is reformulation of quadratic programming problem of support

vector machines to an equivalent Minimum Enclosing Ball (MEB) problem. It then

exploits the well-known (1+ ϵ) MEB approximation algorithm to solve the reformulated

MEB problem. This approximation algorithm using the subset of sample set called core

set enables CVM as an appropriate choice for building kernel machine for data intensive

applications.

Equation 3.2 shows an equivalent MEB formulation of two class support vector

machine, where the transformed kernel k̂ij = yiyj(kij + 1) +
δij
C . In this transformed

kernel kij represent the actual kernel function and it should satisfy the condition kii = z,

a constant.

Now, the scalable deep kernel machine, Deep Core Vector Machine (DCVM) can

be modeled by inducing the multilayer arc-cosine in the Equation 3.2. The mathematical

model of multi-layered kernel induced MEB problem is then defined as :

min
α

N∑
i,j=1

αiαj k̂
l
n(xi, xj) s.t.

N∑
i=1

αi = 1, αi ≥ 0 ∀i (3.3)

where the transformed kernel

k̂ln(xi, xj) = yiyj(k
l
n(xi, xj) + 1) +

δij
C

(3.4)

Here K l
n(xi, xj) represent l- fold arc-cosine kernel with degree n and C > 0 is an user

defined parameter that controls the trade-off between the margin and training error.

59



Deep Learning in Core Vector Machines

The recursive expression of l - fold arc-cosine kernel can be expressed as :

kln(xi, xj) =
1

π
[k(l−1)

n (xi, xi)k
(l−1)
n (xj , xj)]

n
2 AD(n, θ(l−1)

n ) (3.5)

In this l-fold composition of arc-cosine kernel, the angle θ
(l)
n between data samples xi

and xj in the feature space can be expressed as :

θ(l)n = cos−1

 k
(l)
n (xi, xj)√

k
(l)
n (xi, xi)k

(l)
n (xj , xj)

 (3.6)

The multi-layered, deep arc-cosine kernel can be formed by combining arc-cosine kernel

in an iterative manner, with same or different activation function in each layer. The

hierarchical multilayer arc-cosine kernel can be implemented as discussed in Chapter 2

(Algorithm 3). In this hierarchy, each layer computation is determined by the activation

value of that layer and previous layer output.

3.1.3 Algorithm: Deep Core Vector Machines

As in the case of CVM, the idea of core sets obtained by a faster (1 + ϵ) approximation

[84, 86] can also be exploited to scale up the multi-layered kernel induced MEB problem

for Deep Core Vector Machines. This (1 + ϵ) approximation can be accomplished by an

iterative strategy proposed by [83]. In this method, the current ball B(ci, ri) at the ith

iteration is expanded with a multiplicative factor of (1 + ϵ), and then updates the core

set with a new vector which is the furthest point outside the ball B(ci, (1 + ϵ)ri). This

process is repeated until all the data points in dataset are covered by B(ci, (1 + ϵ)ri).

This iterative (1 + ϵ) approximation for DCVM is shown in Algorithm 5.

In this algorithm T = {(xi, yi)}Ni=1 represent training data set. The center c of

the ball can be extracted by the function c_MEB(.) as: c =
∑m

i=1 αiϕ̂
l
n(xi), where m is

the number of data samples in the core set, α = [α1, α2...αm]
′ be the Lagrange multipliers

and ϕ̂l
n is the feature mapping corresponding to the transformed multilayer kernel k̂ln.

The list of activation or degree for each layer of arc-cosine kernel is given by the set L

and its size determines the number of layers. Similarly, r_MEB(.) computes radius r

of current ball as: r =

√
α′diag(k̂ln)− α′ k̂lnα. The initial core set (S0) is obtained by

60



Deep Learning in Core Vector Machines

Algorithm 5: Deep Core Vector Machine
DCVM (T, ϵ, L)

// T Dataset ; ϵ Approximation factor ; L List of activation value for
each layer of arc-cosine kernel

begin
S0 ← {Initial core vectors};
c = c_MEB(S0);
r = r_MEB(S0) ;
S = S0;
while (There exist A ∈ T Such that ϕ̂l

n(A) falls outside of the ball
B(c, (1 + ϵ)r)) do

Find a data sample A such that ϕ̂l
n(A) is furthest away from c;

Update S = S ∪ {A} ;
Find new MEB(S) ;
Update c = c_MEB(S);
Update r = r_MEB(S)

choosing one data sample from each of the classes [89]. The process of finding new core

vector necessitate the distance computation between the center c of current MEB and

ϕ̂l
n(Aj), ∀Aj ∈ T . The data sample A ∈ T in the feature space ϕ̂l

n(A) which is outside

of the (1+ ϵ) ball (c, r(1+ ϵ)) and furthest from c is taken as core vector and it is added

to the core set. The distance between the center c of current MEB and ϕ̂l
n(Aj) can be

computed by the equation:

∥∥∥c− ϕ̂l
n(Aj)

∥∥∥2 = ∑
Am,AN∈S

αmαN k̂ln(Am, AN )− 2
∑
Ai∈S

αik̂ln(Ai, Aj) + k̂ln(Aj , Aj) (3.7)

In this equation, the feature mapping is carried implicitly by using the transformed

multilayer kernel k̂ln. It can be computed by the Equation 3.4 and its subsequences. The

crux of this transformed kernel is the multilayer arc-cosine kernel. This deep layered

arc-cosine kernel uses an incremental approach for its training process and it is detailed

in Algorithm 3. For example, the arc-cosine kernel of depth 1 with degree n can be

written by using the Equation 3.5 as:

k1n(x, y) =
1

π
[k(0)n (x, x)k(0)n (y, y)]

n
2 AD(n, θ(0)n ) (3.8)

where the base kernels k0(x, x) =< x, x > and , k0(y, y) =< y, y >.

The training process in DCVM, except kernel computation is same as that of

61



Deep Learning in Core Vector Machines

core vector machines. Execution of each layer in this multilayer kernel depends on the

given activation value. In the proposed DCVM, the kernel parameter is a structure L,

represents the list of activation values corresponding to each layer of the hierarchical

structure. The size of L determines the number of layers in arc-cosine kernel and hence

the depth of DCVM. In machine leaning literature, any concrete method has not been

reported for the selection of number of layers and list of activation values for the multi-

layered arc-cosine kernel and still this exist as an open problem. It is a common practice

to train the arc-cosine model with all the combination of selected range of activation

values. The MEB approximation algorithm for deep core vector machine terminates

when there is no data sample outside of the (1 + ϵ) ball. The high accuracy and low

computational complexity of DCVM shows its high potential in the context of deep

kernel machines.

3.2 Experimental Results

The performance of proposed deep core vector machines is illustrated in comparison

with other related learning models such as CVM, SVM, DSVM and Deep Convolutional

Neural Network(Deep CNN). The experiments on these models were attempted on seven

bench mark datasets taken from both libSVM [137] and UCI machine learning repository

[138]. It has been delineated in Table 3.1. All the method except Deep Convolutional

Neural Network(Deep CNN) uses sparse representation of data.

Table 3.1: Composition of datasets used

Sl.No. Dataset #Clss #Dim #Train #Test

1 Optdigit 9 64 3,823 1,797
2 Satimage 6 36 4,435 2000
3 Pendigit 10 16 7,494 3,498
4 Letter 26 16 15,000 5,000
5 Ijcnn1 2 22 49,990 91,701
6 News 20 20 62,061 15,935 3,993
7 KDD CUP 2010 2 29,890,095 19,264,097 748,401

62



Deep Learning in Core Vector Machines

3.2.1 Implementation

Publicly available C++ package, libCVM-2.2 [139] elucidates the implementation details

of CVM. The basic implementation of multilayer arc-cosine kernel and its employment

on support vector machine has been taken from the package libSVM-2.91 [140]. These

two packages played vital roles in implementing the proposed Deep Core Vector Ma-

chine (DCVM). The radial basis function (rbf kernel) with γ = 1
number_of_features has

been used to evaluate the performance of support vector machine. In our experiments,

all the learning models such as CVM/BVM (libCVM-2.2), SVM & DSVM (libSVM-2.91)

and proposed DCVM exercised with package specified default values for all its param-

eters except degree of arc-cosine kernel. Arc-cosine kernel with all the combinations of

activation values 0 to 3 were attempted in DSVM and DCVM. A python library Keras

with Theano as back end is used to implement Deep CNN. By fixing softmax as the out-

put layer activation function, various layer-activation-optimization combinations were

experimented with Deep CNN. The common attributes and its values [141] attempted

in Deep CNN are listed in Table 3.2. All experiments were done on a server machine

configured with AMD Opteron 6376 @ 2.3 GHZ / 16 core processor and 16 GB RAM.

The generalization performance in terms of prediction accuracy (in %) and CPU time

(in seconds) have been recorded in all the experiments.

Table 3.2: List of common attributes and its values used in Deep Convolution Neural
Network Model

Attributes Values

Loss function categorical cross entropy
Convolution layer -filter Size 3× 1
Max-pooling size 2× 1
No.of Epochs 10
Batch size 10
Activation Functions tested {relu, liear, sigmoid}
Optimizers tested {sgd, adam, adagrad, adamax}

63



Deep Learning in Core Vector Machines

3.2.2 Performance Evaluation

This section illustrates the performance of proposed DCVM in comparison with other

deep learning structures such as DSVM and Deep CNN. The performance of deep ker-

nel learning structures (DCVM & DSVM) over its shallow based counterparts(CVM &

SVM) were also studied. The experimental results of Deep CNN on various datasets

are detailed in Table 3.3. The number of convolutional layers and number of filters

used in each layer is shown in columns #Layers and Filters respectively. The activation

function and optimization technique that qualify maximum accuracy (Acc) is shown in

column Act and Optm respectively. The training time in second is stored in the column

CPUtime. In the case of Kdd-Cup-2010 dataset, if the number of layers exceed 2, Deep

CNN does not converges even after 5 days of its training. The prediction accuracy of

Table 3.3: The performance of Deep CNN in terms of accuracy and CPU times

Datasets #Layers Filters Act Optm Acc CPUtime

Optdigit 6 (64,64,128,128,256,256) linear sgd 97.01 303.21
Satimage 6 (64,64,128,128,256,256) relu adam 90.87 417.43
Pendigit 8 (64,64,128,128,128,256,256,256) relu adamax 98.04 627.82
Letter 8 (64,64,128,128,128,256,256,256) linear sgd 90.57 1022.72
Ijcnn1 8 (64,64,128,128,128,256,256,256) relu adamax 98.97 3312.7
News 20 7 (64,64,128,128,128,256,256) linear sgd 83.87 14630.68
Kdd-Cup-2010 2 (16,32) linear adam 43.25 112347.40

DCVM, the best among traditional CVM / BVM, DSVM, SVM and Deep CNN are

given in Table 3.4. For the datasets 1- 5, the prediction accuracy of CVM/BVM and

SVM were taken from the base paper [90]. For the remaining datasets, our experimental

result on libCVM-2.2 and libSVM-2.91 packages were recorded. In columns DCVM &

DSVM, the values in parenthesis denote the list of activation value of the multilayer

arc-cosine kernel that bring out maximum accuracy. For example, in the case of Letter

dataset, DCVM performs well in 2-layer arc-cosine kernel with degrees [1, 0] . Whereas

DSVM perform well in 3-layer arc-cosine kernel with degrees [0, 1, 2]. The highest accu-

racy on each dataset is indicated by bold face values. The NT values in this table shows

that there is no result within 5 days of training.

The scalability aspects of proposed DCVM is empirically evaluated by com-

paring its training time with that of DSVM on various datasets and it has been shown

64



Deep Learning in Core Vector Machines

Table 3.4: The generalization performance in terms of prediction accuracy of Deep
CVM , CVM/BVM , Deep SVM, SVM and Deep CNN.

Dataset DCVM CVM/BVM DSVM SVM DCNN

Optdigit 97.72 (0) 96.38 97.02(0,1) 96.77 97.01
Satimage 92.15(0,1,2) 89.60 90.35(0,1,2) 89.55 90.87
Pendigit 98.37(0,1) 97.97 97.94(0,1,2) 97.91 98.04
Letter 96.94 (1,0) 94.47 95.02(0,1,2) 94.25 90.57
Ijcnn1 99.00 (0,1,2) 98.67 97.99 (0,1) 98.97 98.97
News 20 84.07 (0,1,2) 79.61 83.92 (0,1,2) 72.38 83.87
Kdd-Cup-2010 88.75 (0) 63.83 NT 61.00 43.25

in Table 3.5. The training time shown in this table is the time taken by the respective

models on each datasets against the accuracy shown in the Table 3.4. As in the case

of accuracy tabulation, the NT values in this table also indicate there were no result

within 5 days. Bold face values in this table represent minimum training time taken for

each dataset.
Table 3.5: Training time of DCVM and DSVM on various datasets

Dataset DCVM DSVM DCNN

Optdigit 1.23 2.02 203.21
Satimage 2.73 2.14 217.49
Pendigit 3.02 2.90 427.82
Letter 28.01 30.03 631.46
Ijcnn1 316.97 383.23 7312.71
News 20 329.43 403.09 14630.68
Kdd-Cup-2010 95879 NT 112347.40

The faster generalization performance of DCVM has been further illustrated

by the graph shown in Figure 3.1. This graph plots the training time taken by DCVM &

DSVM on different subsets of KDD-CUP-2010 dataset with varying sizes (104, 105, 106

and 107). All those trained models are tested against a common subset of KDD-CUP-

2010 test dataset with size 25000. The training time for each subset represent the CPU

time, recorded in second against highest accuracy.

The major observations from these experiments can be summarized as:

• In terms of accuracy, DCVM perform better than the best of CVM/BVM models,

traditional deep support vector machines and Deep CNN.

• DCVM is much faster than DSVM on large datasets.

65



Deep Learning in Core Vector Machines

103 104 105 106 107 108

Sample Size

101

102

103

104

105

106

107

108

109

C
P
U
 t
im

e
s 

in
 S

e
co

n
d

7
4

2
3
8
5
3 1
8
0
3
4
5

Not converged

8
4

1
0
7
3
5

4
8
6
7
3

9
5
8
7
9

DSVM
DCVM

Figure 3.1: Training time of DSVM and DCVM on subsamples of KDD-cup-2010
datasets with different size

• With the increase in size of training samples , the growth rate of training time of

DCVM is low when compared to that of DSVM.

• On KDD-CUP 2010, DSVM does not converge even after five days of execution

when the sample size exceeds 106.

• On small datasets DSVM converges more quickly, because of its high sophisticated

heuristics.

3.3 Conclusions

This work is a novel effort to build a scalable deep kernel machine. This new learning

model facilitates the scalability by exploiting the scalable counterpart of SVM, the Core

Vector Machine. The deep kernel computation in this model is accomplished by the

well known multilayer kernel, the arc-cosine kernel. In this work we have analyzed

the behavior of multilayer arc-cosine kernel and proved that in certain cases the arc-

cosine kernel satisfies the required condition mandated by CVM. Various experiments on

different datasets have been conducted to demonstrate the generalization performances

in terms of prediction accuracy at a lesser training time when compared with other

deep learning approaches. The experimental results show the potential of DCVM as a

scalable deep kernel machine.

66



CHAPTER 4
Deep Multiple Multilayer Kernel Learning in Core Vector Machines

Over the last few years, we have been witnessing a dramatic progress of deep

learning in many real world applications. The representation / feature learning plays a

vital role in extracting useful information form raw data, for the successful implemen-

tation of deep learning algorithms. To take this journey further, it would be highly

desirable to conceive more abstracted representation of data by embracing multiple lay-

ers of feature learning. Deep learning attempts to build high-level abstractions in data

by exploiting learning models composed of multiple layers of non-linear transformations

[25, 32]. Multilayer feature extraction and the capability of combining both supervised

and unsupervised paradigms manifest the prominence of deep learning in the diverse

machine learning arena. Deep learning approaches have been mainly pursuing in the

area of neural network. There are a few attempts to impart deep learning features in

kernel machines. A prominent invention in this direction is the modeling of Multilayer

Kernel Machine (MKM) framework [49] which re-create multilayer representation / fea-

ture learning perceptiveness of deep learning architecture in kernel machines. Each layer

in this multilayer learning structure utilizes KPCA to facilitate feature extraction. The

fixed, solitary kernel computation involved in the KPCA may adversely affect the gener-

alization performance of MKM framework. In addition to this fixed kernel computation,

MKM also encounters scalability issues due to the high computational complexity caused

by the final classifier, the Deep Support Vector Machine (DSVM).

It has been observed that, the limitation of fixed, solitary kernel computation

can be well addressed by an approach employing a linear or convex combination of

67



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

base kernels called Multiple Kernel Learning (MKL) [114]. Conventional supervised

MKL algorithms necessitate class labels to obtain the optimal kernel. However, recently

developed unsupervised MKL algorithm [121] exhibit the potential to evaluate the linear

or convex combination of multiple single-layered kernels, purely from unlabelled data. In

the previous chapter (Chapter 3) it has been proved that the scalability issue in DSVM

can be addressed by Deep Core Vector Machine (DCVM), the combination of arc-cosine

kernel and Core Vector Machine (CVM).

Building on the above facts, this chapter attempt to build a scalable deep

kernel machines with multiple layers of unsupervised feature extraction, by revamping

the traditional Multilayer Kernel Machine. Each KPCA based feature extraction layer

in this proposed framework is modeled by the combination of both single-layer and

multilayer kernels in an unsupervised manner. Recently developed multilayer arc-cosine

kernel can be used as multilayer kernel in MKL framework. Core vector machine with

arc-cosine kernel is used as the final layer classifier which ensure the scalability in this

model.

The rest of the chapter is organized as follows. Since the proposed model

exploits unsupervised multiple kernel combination including both single-layer and mul-

tilayer kernels in its feature extraction layers, it is discussed in Section 4.1. The overall

design of the proposed deep multi-layered kernel learning in core vector machines is dis-

cussed in Section 4.2. Experimental details and performance evaluations are discussed

in Section 4.3. Section 4.4 present conclusions.

4.1 Unsupervised Multiple Kernel Learning with Single-

layer and Multilayer Kernels

Conventionally, the kernel machines involves solitary static kernels for data representa-

tions. The selection of such static kernel seems to be expensive and an inappropriate

kernel selection may causes the lessening of generalization performance of the machines.

Multiple Kernel Learning (MKL) exhibit the potential to address this solitary kernel

68



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

learning problem. MKL provide an optimal kernel by learning a linear or convex com-

bination on a set of predefined kernels [114]. These predefined kernels may represent

different notion of similarity. MKL is not only a mechanism for reducing the burden

of choosing right kernel but also for combining data from different sources such as au-

dio,video and images. Let T = {(xi, yi)}Ni=1 be the training dataset, where xi ∈ Rd is

the input feature vector and yi is the unknown class label of xi. The multiple kernel

learning with a set of m predefined kernel functions (kp(., .)mp=1 and their combination

parameterized by µ can be expressed as :

Kµ(xi, xj) = F

({
kp(x

p
i , x

p
j )
}m

p=1
|µ
)

(4.1)

where F (.) is the combination function that map ℜm → ℜ and it can be linear, non-linear

or data dependent. Kernel functions kp take m feature representations of data instances

xi = {xpi }
m
p=1 and xj =

{
xpj

}m

p=1
; where xpi , x

p
j ∈ ℜdp . dp is the dimensionality of the

pth feature representation. Traditional supervised multiple kernel learning approaches

necessitate class labels of the training samples to obtain the optimal kernel. It does

not seems to be feasible for many scenarios where the class labels may not be available.

The availability of massive amount of unlabelled data and the capability of new learning

approaches to handle unlabelled data, motivated the researchers to explore unsupervised

approaches to combine predefined kernel functions. One of such innovative move in this

direction is Unsupervised Multiple Kernel Learning (UMKL) [121]. It finds an optimal

kernel combination of m predefined kernel functions, purely based on unlabelled data.

The formulation of optimization problem [121] of unsupervised multiple kernel learning

involves the following two intuitive principle:

• The optimal kernel K enables the reconstruction of each training sample xi form

its localized bases weighted by kij . It means, for each data sample xi, the optimal

kernel (K) minimize the approximation error
∥∥∥xi −∑j kijxj

∥∥∥2 .

• K minimizes the distortion
∑

i,j kij ∥xi − xj∥2 over all training data.

In their formulation, the locality preserving principle has been accomplished by using

a set of local bases for each data sample xi denoted as Bi. By combining the above

69



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

intuitions and facts they formulated UMKL as [121]:

min
k∈K,B

1

2

N∑
i=1

∥∥∥∥∥∥xi −
∑
xj∈Bi

kijxj

∥∥∥∥∥∥
2

+ γ1

N∑
i=1

∑
xj∈Bi

kij ∥xi − xj∥2 + γ2
∑
i

|Bi| (4.2)

where γ1 deals the trade-off between error and the locality distortion. γ2 is used to con-

trol the size of local basis size. The above formulation can be simplified by constraining

the local bases to fixed size B as :

min
k∈K,B

1

2

N∑
i=1

∥∥∥∥∥∥xi −
∑
xj∈Bi

kijxj

∥∥∥∥∥∥
2

+ γ1

N∑
i=1

∑
xj∈Bi

kij ∥xi − xj∥2 (4.3)

It can be expressed in matrix form as [121]:

min
µµµ∈∆∆∆,D

1

2
∥X(I−K ◦D)∥2F + γ1 ∗ tr K ◦D ◦M(11T) (4.4)

In this expression, bold upper case letters denote matrices, bold lower case

letters denote vectors. The ith column in matrix X represent the data point xi. D ∈

{0, 1}N×N is a matrix in which each column vector dddi represent the local bases for xi.

This equation also enforce a constraint that ∥dididi∥1 = B, fori = 1, 2, . . . , N . The fixed

constant B << N is used to control the size of Bi for each xi. ∆∆∆ =
{
µµµ : µµµT1 = 1,µµµ ≥ 0

}
is the domain of a simplex. The matrix M, the Euclidean distance on X, is defined as :

[M]ij = xTi xi + xTj xj − 2xTi xj . The notation ‘◦’ represent Hadamard product, element

wise multiplication of two matrices, ∥·∥2F denotes the Frobenius-norm of a matrix and ‘tr’

denotes the trace of a matrix. The kernel K is defined by [K]i,j =
∑m

p=1 µpk
p(xi, xj), 1 ≤

i, j ≤ N .

The optimization task given in Equation 4.4 can be solved by an alternative

optimization algorithm in which µµµ and D are solved alternatively. In this approach, first,

µµµ is solved by fixing the variable D. By ignoring all the constraints on D, the objective

function w.r.t µµµ can be expressed as [121]:

J(µµµ) = µµµT

(
m∑
t=1

N∑
i=1

kt,ik
T
t,i ◦ didi

T ◦P
)T

µµµ+ zTµµµ (4.5)

70



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

where [z]t =
∑N

i=1(2γvi◦di−2bi◦di)
Tkt,i, P = XTX, and kt,i =

[
kt(xi, x1), . . . , k

t(xi, xN )
]T

is the ith column of the tth kernel matrix, b and v are columns of P and M corresponding

to xi respectively. γ1 is abbreviated as γ.

In the second approach a greedy algorithm is used to solve D, after fixing µµµ and the

kernel K. Since the columns (di) of D are independent of each others it can be solved

separately [121] and the objective function w.r.t d can be expressed as:

J(d) = dT (kkT ◦ b)d + (2γk ◦ v− 2k ◦ p)Td

in this expression common subscripts of d,k,p,v are omitted and it can be further

simplified as [121]:

J(d) = dTQd + cTd

where Q = kkT and c = 2γk ◦ v−2k ◦ p. This method add one sample x∗ into the base

set Bi of xi. The sample x∗ that minimize the increase of J(d) is selected, i.e.

x∗ = arg min
xj∈X−Bi

2
∑

t:xt∈Bi

Qtj +Qjj + cj

Traditional unsupervised MKL model uses only single-layered kernels like Gaus-

sian kernels, polynomial kernels etc. Recently developed arc-cosine kernels enable multi-

layered kernel computation. The arc-cosine kernel has its own layered architecture and

the computation in each layer depends on both the kernel values computed by the pre-

vious layer and the activation value in the current layer. As discussed in Chapter 2

(Section 2.4.1), the simplified form of nth order arc-cosine kernel with angular depen-

dency AD(n, θ) can be expressed as :

K(x, y|n) = 1

π
∥x∥n ∥y∥nAD(n, θ) (4.6)

where the angular dependency

AD(n, θ) = (−1)n(sinθ2n+1)(
1

sinθ

∂

∂θ
)n(

π − θ

sinθ
), for ∀n = 1, 2, 3.. (4.7)

71



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

Let [n1, n2, ...nl] be the list of activation values corresponding to the layers 1, 2, ..l re-

spectively. Then the l layered arc-cosine kernel can be represented as:

K(l)
(n1,n2..nl)(xi, xj) = ⟨ϕnl(ϕnl−1(...ϕ1(xi))), ϕnl(ϕnl−1(...ϕ1(xj)))⟩ (4.8)

The multi layer arc-cosine kernel can be computed recursively as :

k(l+1)
n (x, y) =

1

π

[
k(l)(x, x) k(l)(y, y)

]n
2

AD(n, θ(l)n ) (4.9)

The layered kernel learning process start with initial kernels: k(xi, xi) =< xi, xi >,

k(xj , xj) =< xj , xj > and k(xi, xj) =< xi, xj >.

Now, the Unsupervised Multiple Multi-layered kernel Learning (UsMMlKL)

can be easily modeled by fabricating UMKL (Equation 4.3) with arc-cosine kernel. Since

the execution of arc-cosine kernel depends on the degree of kernel at each layer, it may

have different behavior on different execution instance of its iterative function. Each in-

stance of arc-cosine kernel in UsMMlKL framework attributes a set of kernels, depends

on the nature and depth of activation list and contributes another recursive kernel

computation ([K]i,j =
∑m

t=1 µtk
t(., .)) in Equation 4.4. The depth of such recursive

computation is determined by the size of activation list associated with each instance of

arc-cosine kernel. Algorithm 3, discussed in Chapter 2, is utilized to compute the kernel

matrix associated with the arc-cosine kernel. The process of computing kernel weight

in an unsupervised multiple multi-layered kernel learning framework is summarized in

Algorithm 6. Since our proposed model involves multiple layers, the alternating opti-

mization strategy seems to be too costly and hence we chose to solve µ by fixing the

variable D in advance. The matrix D is computed beforehand by taking B nearest neigh-

bors of xi from the training set. In this algorithm the activation list for each instance of

arc-cosine kernel is passed as list of integers along with other kernel parameters, parm.

The size of activation list governs the depth of recursive computation by the particular

instance of arc-cosine kernel. bi and vi are columns of P and M corresponding to xi

respectively.

72



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

Algorithm 6: Unsupervised Multiple Multilayer Kernel Learning
UsMMlKL (X,K, param,D, γ)

inputs : X : A matrix in which ith column vector is the point xi.
K = {k1, k2....km}: the set of ‘m’ predefined kernel functions. Param:
Kernel parameters, D ∈ {0, 1}N×N is a matrix in which each column
vector di represent the local bases for xi, γ: Turning parameter

output: Optimal kernel weight µ
begin

M[i, j]← xTi xi + xTj xj − 2xTi xj ;
µ← 1/m;
P← XTX ;
repeat

W←
∑m

t=1

∑N
i=1 kt,i kT

t,i ◦ didT
i ◦P ;

[z]t ←
∑N

i=1 (2γvi ◦ di − 2bi ◦ di)
T kt,i;

µ = arg min
µ

(µTWµ+ zTµ);

until there is no more changes in µ;
return µ;

This UsMMlKL can be well fitted in KPCA for feature extraction. The follow-

ing section explain the process of building scalable deep multiple multi-layered kernel ma-

chine by incorporating Unsupervised Multiple Multi-layered kernel Learning (UsMMlKL)

framework.

4.2 Deep Multiple Multilayer Kernel Learning in Core Vec-

tor Machines

Multilayer Kernel Machine (MKM) [49] opens up a new insight in leveraging multiple

layers of feature extractions in kernel machines. In this architecture, the feature extrac-

tion layers were modeled with KPCA followed by a supervised feature selection method.

In this model DSVM was usually used as the final layer classifier. This machine struggled

with two limitations such as fixed kernel computation and scalability. The fixed kernel

used in this architecture does not guarantee the optimum choice of the kernel for the

task being modeled. The quadratic formulation of DSVM, in the output layer, impose

a high computational complexity in many real world application that involve large size

datasets. The following section exploring the possibilities to address these limitations of

73



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

MKM and proposes a new scalable deep kernel learning architecture with unsupervised

deep multiple multi-layered kernel learning.

The first noticeable limitation in existing MKM, the fixed kernel computation

can be solved by imparting Multiple Kernel Learning (MKL) approaches. The unsuper-

vised MKL algorithm [121] tend to be an approach to deal with unlabelled dataset. The

multilayer arc-cosine kernels open up a favorable opportunity to device MKL with multi-

layered kernels. In considerations with these facts, the proposed model start with the

formulation of unsupervised multiple multi-layered kernel learning (UsMMlKL) frame-

work. As discussed in Section 4.1, this unsupervised combination of single-layered and

multi-layered kernel, can be accomplished by fabricating traditional unsupervised MKL

with multilayer arc-cosine kernel. This UsMMlKL frame work is then used in combine

with KPCA for feature extraction. This revamped KPCA facilitates multiple multi-

layered kernel computations. The multiple feature extraction layers can be formed by

stacking this revamped KPCA in a hierarchical fashion.

The second problem of MKMs, the scalability aspects of final layer classifier can

be well addressed by core vector machines. In CVM the quadratic optimization problem

of SVMs has been reformulated as an equivalent minimum enclosing ball problem and

then solved by a core set obtained by a faster (1 + ϵ) approximation algorithm. Deep

core vector machines (DCVM) [142] can be modeled by leveraging multilayer arc-cosine

kernel in core vector machines. The formulation of DCVM is well explained in Chapter

3. This DCVM can easily be used as the output layer classifier in the multi layer kernel

machine which ensure scalability.

Finally, the existing MKM is restructured with multiple layers of revamped

KPCA as feature extraction layers and DCVM as the output layer classifier. The overall

architecture of the proposed framework is shown in Figure 4.1. This deep kernel learning

architecture consists of multiple layers, with each layer performing feature extraction

using revamped KPCA in an UsMMlKL method followed by supervised feature selection.

The supervised feature selection allows to retain only those set of features that are most

relevant for the task being modeled. Like deep neural network learning architecture,

after L layers of feature extraction, the refined data is given to the scalable deep core

74



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

Supervised 
Feature 
Selection

UsMMLKL
Based

Kernel PCA
DATA

Core vector Machine 
with

Arc-cosine Kernel

Layer 1

Layer N
Supervised 

Feature 
Selection

UsMMLKL
Based

Kernel PCA

Output Layer

Figure 4.1: Deep core vector machines with multiple layers of feature extraction.
Each kernel PCA based feature extraction layer is modeled by leveraging the convex
combination of both single-layered and multi-layered kernels in an unsupervised man-

ner.

vector machines. The proposed method is summarized in Algorithm 7. In this algorithm,

the optimum kernel weight is computed by a sub function UsMMlKL (), represents the

unsupervised multiple multi-layered kernel learning model.

Algorithm 7: Deep core vector machines with unsupervised multiple multi-layered
Kernel PCA
Deep_UMMlKL (X, y,L,KL, Param,D, γ)

inputs : X : A matrix in which ith column vector is the point xi, Y: true Labels, L:
Number of layers, KL: L x m matrix in which K(l) = {k(l)1 , k

(l)
2 , k

(l)
m } is the

list of kernels in layer l, kernel parameters Param, D ∈ {0, 1}N×N is a
matrix in which each column vector di represent the local bases for xi,
Turning parameter γ.

output: Predicted labels Y ′

begin
foreach l in range(L) do

µl ← UsMMlKL(X, K(l), Paraml, D, γ);
Knew ←

∑m
t=1 µ

l
t ∗K

(l)
t ;

X_kpca← KPCA(Knew);
X_new ← selected features (X_kpca);
X ← X_new;

Give the final set of features to the deep core vector machine ;
return Y ′;

75



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

The proposed multilayer learning model combine kernels in an unsupervised

manner and uses a supervised core vector machine as the final classifier. The main char-

acteristic of this proposed model is that it exhibits the prominent features of deep neural

networks such as the hierarchical representation of data and the capability for combin-

ing both supervised and unsupervised methods. However, unlike deep neural networks,

this model ensure global optimum with its convex loss function. The other theoretical

advantage of this model is the margin maximization, the key feature of SVM/CVM,

that reduces the risk of over-fitting. The use of CVM as the final classifier in our model

resolves the scalability problem of exciting MKMs to some extent. The main problem

faced by our model is the multiple use of multilayer kernel which elevate the structural

complexity of the model. The other noticeable issue of this approach is the restriction

on the kernel functions possible (k(xi, xi) = c, a constant) due to the final classifier, the

CVM.

4.3 Experimental Results

The datasets and their compositions used in our experiments are given in Table 4.1. It

include both binary and multi-class datasets having varying size and dimensions. All the

datasets except Ijcnn1 and Usps were taken from UCI machine learning repository [138]

and Ijcnn1 and Usps were taken from libSVM repository [137]. The feature extraction

Table 4.1: The composition of datasets taken from both libsvm and UCI repositories

Sl.No. Dataset #Clss #Dim #Train #Test

1 Australian Credit 2 8 460 230
2 Breast-cancer 2 10 400 283
3 Diabetes 2 8 512 256
4 Ijcnn1 2 22 49,990 91,701
5 Letter 26 16 15,000 5,000
6 Optdigit 9 64 3,823 1,797
7 Satimage 6 36 4,435 2000
8 Pendigit 10 16 7,494 3,498
9 Usps 10 256 7,291 2007

module, the kernel PCA based unsupervised multiple multilayer kernel learning has

been implemented in python 2.7.6 and deep core vector machine (DCVM), the final

76



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

layer classifier, has been implemented in C++ 1. The python package subprocess was

used to invoke DCVM within the python framework.

In the training phase, we choose 2500 or entire training dataset, whichever is

less, for cross validating the activation list of arc-cosine kernel from all the combination of

degree 0, 1, 2 and 3. The core vector machine with arc-cosine kernel was used as classifier

in this case. The activation list corresponding to the maximum accuracy obtained in

this validation phase were selected as the default activation list for arc-cosine kernel in

the subsequent process. The Table 4.2 shows the selected activation list against each

dataset.

Table 4.2: The activation list of arc-cosine kernel obtained during cross validation
phase.

Sl.No Dataset Activation List
Unnormalized Data Normalized Data

1 Australian Credit [0,2] [0,2]
2 Breast-Cancer [0,1,2] [0,2]
3 Diabetes [0,1] [0,2]
4 Ijcnn1 NA [0,2]
4 Letter [0,1,2] [0,2]
5 Optdigit [0,2] [0,1,2]
6 Pendigit [0,2] [0,2]
7 Satimage [0,1] [0,1,2]
8 Usps NA [0,2]

In each layer of feature extraction module, we set apart 3000 or entire training

data points, which ever is less, for computing the optimal kernel weight in an unsu-

pervised manner. The list of kernels for the multilayer feature extraction were given

as a matrix. The ith row in this matrix represent the list of kernels for ith layer of

feature extraction module. Even though any kernel combinations can be used, we have

used an arc-cosine kernel in between two RBF kernels as the kernel combination in each

layer. After obtaining the optimal kernel value, the entire datasets were used for fea-

ture extraction. The feature selection was done by using univariate feature selection

method available in scikit-learn2 library [143]. Based on ranking produced by the selec-

tion method, top five percent of features were selected, since empirically it was giving
1DCVM has been implemented by combining the features from both the packages libCVM-2.2 [139]

and libSVM-2.91
2Available at http://scikit-learn.org/stable/modules/feature_selection.html

77



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

a consistent performance. Final classification were carried out by CVM with arc-cosine

kernel. In all the experiments, we have recorded the standard metric measures such as

precision, recall, F1-Score and accuracy.

4.3.1 Performance Evaluation

The performance of proposed method has been evaluated on both normalized and un-

normalized form of all the datasets except Ijcnn1 and Usps. The dataset name suffixed

with the word scaled indicates normalized dataset.Three well known techniques such as

Standard Scalar, Robust Scalar and MinMax scalar [143] were used for normalizing data

samples and the variation in prediction accuracy has been shown in Table 4.3. We have

experimented with up to 3 layers of feature extraction, for evaluating the performance

of multilayer computation. The L1, L2 and L3 columns in Table 4.3 represent the pre-

diction accuracy of each normalization techniques with one , two and three layers of

feature extraction respectively. The prediction accuracy of proposed method on all the

dataset without using any normalization techniques has been shown in Table 4.4. The

variation in accuracy with different layers of feature extraction has been illustrated by

the graph shown in Figure 4.2.

Table 4.3: Layer wise prediction accuracy of the proposed method with different
normalization methods

Sl.No Dataset Standard Scaler Robust Scaler MinMax Scaler
L1 L2 L3 L1 L2 L3 L1 L2 L3

1 Australian Credit_scale 86.52 86.52 86.96 80.44 81.30 85.48 81.30 81.30 82.61
2 Breast-Cancer_scale 97.88 98.23 98.23 98.23 97.88 98.23 97.53 97.53 97.53
3 Diabetes_scale 72.66 73.44 73.04 71.88 73.44 78.52 74.60 76.56 77.73
4 Letter_scale 96.74 96.79 97.73 89.58 90.22 90.52 95.02 95.22 95.36
5 Optdigit_scale 97.66 97.72 97.99 96.60 96.99 97.50 99.05 99.11 99.22
6 pendigit_scale 99.40 99.54 99.57 99.29 99.37 99.40 99.40 99.54 99.63
7 satimage_scale 92.70 93.20 93.50 93.05 93.05 93.02 90.85 91.00 90.80

The classification report including average precision, recall, F-measures and

the prediction accuracy of proposed method and deep core vector machine on both

normalized and unnormalized dataset have been shown in Table 4.5. In this table,

the classification report of proposed method represent the best among those layer wise

performances shown in above tables. The bold face values indicate the highest accuracy

on each dataset.

78



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

Table 4.4: The layer wise prediction accuracy with out using normalization method.

Sl.No Dataset Prediction Accuracy
L1 L2 L3

1 Australian Credit 67.83 74.94 75.83
2 Breast-Cancer 68.87 71.94 71.94
3 Diabetes 64.45 65.63 70.70
4 Letter 96.90 97.67 98.08
5 Optdigit 97.94 98.11 98.57
6 pendigit 99.06 99.49 99.49
7 satimage 88.45 89.40 89.10

8 ijcnn1
(Scaled to [-1 1]) 99.20 99.37 99.64

9 Usps
(scaled to [-1 1]) 97.41 97.71 98.06

Le
tt

e
r

o
p

td
ig

it

P
e

n
d

ig
it

S
a

ti
m

a
g

e

50
60
70
80
90

100
110

A
cc

u
ra

cy
 i

n
 %

Multi-class Dataset 

Le
tt

e
r

o
p

td
ig

it

P
e

n
d

ig
it

S
a

ti
m

a
g

e

U
sp

s50
60
70
80
90

100
110

A
cc

u
ra

cy
 i

n
 %

Multi-class Dataset (Normalized)

A
u

st
ra

lia
n

b
re

a
st

-c
a

n
ce

r

D
ia

b
e

te
s50

60
70
80
90

100
110

A
cc

u
ra

cy
 i

n
 %

Binary Dataset 

A
u

st
ra

lia
n

b
re

a
st

-c
a

n
ce

r

D
ia

b
e

te
s

Ijc
n

n
1

50
60
70
80
90

100
110

A
cc

u
ra

cy
 i

n
 %

Binary Dataset (Normalized)

Layer1
Layer2
Layer3

Figure 4.2: A comparison in accuracy with different number of feature extraction
layers

From Table 4.5 & Figure 4.2, following observations have been made.

• In all the datasets, proposed method shows the best result in average precision,

recall and F1-measures.

• Proposed algorithm consistently improves the accuracy of single layer deep core

vector machines.

79



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

Table 4.5: The generalization performance in terms of Average Precision, Recall,
F-core and overall prediction accuracy of Deep CVM and proposed method.

Sl.No Dataset DCVM Proposed method
Preci Reca F1-sc Acc Preci Reca F1-Sc Acc

1 Australian Credit .754 .52 .753 75.21 .773 .758 .765 75.83
2 Breast-Cancer .784 .675 .569 67.49 .793 .696 .741 71.94
3 Diabetes .671 .684 .673 68.35 .694 .707 .697 70.70
4 Letter .969 .969 .969 96.94 .981 .981 .981 98.08
5 Optdigit .977 .977 .977 97.66 .987 .985 .986 98.57
6 pendigit .984 .984 .984 98.37 .996 .995 .995 99.49
7 satimage .855 .858 .852 85.80 .891 .894 .892 89.40

Scaled dataset
8 Australian Credit_scale .857 .857 .857 85.65 .870 .870 .869 86.96
9 Breast-cancer_scale .961 .961 .961 96.11 .983 .982 .982 98.23
10 Diabetes_scale .760 .766 .757 76.56 .784 .785 .779 78.52
11 Letter_scale .967 .967 .967 96.66 .981 .976 .978 97.73
12 Optdigit_scale .978 .977 .977 97.72 .992 .992 .992 99.22
13 Pendigit_scale .982 .982 .982 98.19 .996 .996 .996 99.63
14 Satimage_scale .920 .921 .920 92.15 .935 .935 .934 93.50
15 Ijcnn_scale .990 .991 .990 99.00 .993 .997 .995 99.64
16 Usps_scale .952 .952 .952 95.22 .981 .981 .981 98.06

• In most of the datasets, the proposed algorithm achieves higher accuracies as the

number of layers increased.

• As in the case of DCVM, proposed method also attains higher accuracies on nor-

malized datasets.

• Proposed method also shows its potential in the context of multilayer unsupervised

feature extraction, as in the case of deep learning models.

4.4 Conclusions

This work is a novel effort to build a scalable deep kernel machine with multiple layers of

feature extractions. This model addressed the fixed kernel computation and scalability

issues prevailing in existing MKM architecture. The unsupervised MKL formulation

involving both single-layered and multi-layered kernels resolves fixed kernel computation.

This unsupervised multiple muli-layered kernel learning framework can effectively be

fitted in KPCA for feature extraction. Stacking of such layers in a hierarchical fashion

constitute multiple layers of feature extraction in the proposed model. The utilization

of Deep Core Vector Machine (DCVM) as the final layer classifier ensures scalability in

80



Deep Multiple Multilayer Kernel Learning in Core Vector Machines

the proposed model. The empirical results show that the proposed method considerably

outperform conventional core vector machine with arc-cosine kernel. The improvement

in accuracy as the number layers increased shows the potential of multiple layers of

feature learning. Hence the proposed learning architecture modeled with multiple layers

of unsupervised feature extraction followed by a scalable final classifier can be observed

as a novel and pragmatic deep kernel machine.

81



CHAPTER 5
Deep Kernel Learning in Extreme Learning Machines

The contemporary machine learning paradigms such as neural networks and sup-

port vector machines consistently emphasized on the requisite for learning parameter

tuning in every layers for efficient generalization. However, there were some observa-

tions reflecting efficient learning without repeated parameter tuning [144]. The Extreme

Learning Machine (ELM) is one such learning method that eliminate repeated parame-

ter tuning. ELM was originally developed as a fast learning algorithm for Single Layer

Feed-forward Networks (SLFN). The ELM has been later re-modeled with universal ap-

proximation and classification capabilities. The unified learning method of ELM allows

using different types of feature mappings like random feature mappings and kernel meth-

ods [145]. Kernel based Extreme Learning Machines, one of the prominent research area

in ELM, exploited kernel functions to tackle the situation in which the feature mapping

functions of hidden nodes are unknown to the user [146]. A unified learning model for

binary, multi-class classification and regression is proposed in this approach. Kernels

such as linear kernel, polynomial kernel, Gaussian kernel, exponential kernel, etc. have

been widely used in conjunction with extreme learning machines. However, these ker-

nels constitute only solitary layered non-linear feature transformations in ELM. These

shallow based ELM frameworks lack the potential in extracting complex structures and

generating efficient representations from raw features. These limitations demand the

necessity for utilizing deep learning paradigms with the escalated number of layers for

efficient feature extractions.

82



Deep Kernel Learning in Extreme Learning Machines

The deep learning architecture, the recent advancement in artificial neural net-

works opens up a breakthrough in diverse artificial intelligence tasks[33, 34, 29, 28,

36, 147]. The deep learning approaches possess the potential to outperform contempo-

rary shallow architectural models. The wide spread acceptance of deep learning in the

realm of neural networks motivated the researchers to model kernel machines with deep

learning capabilities. The multiple, multi-layered arc-cosine kernels [49] attributed deep

learning features in the kernel based learning machines such as support vector machines.

The multiple layers in arc-cosine kernels are used to achieve complex computations as in

multi-layered neural network. Each layer in this hierarchy is defined with an activation

value, referred as its degree, which determines the non-linear transformations in that

layer. Arc-cosine kernels of different degrees have qualitatively different geometric prop-

erties. The arc-cosine kernels exhibit dominant potentialities in enforcing deep learning

features in kernel based extreme learning machines.

This work is a novel effort to build deep learning algorithms with non-iterative

parameter tuning capability by combining Extreme Learning Machine and arc-cosine

kernels. The rest of this chapter is organized as follows. The mathematical formulation

of extreme learning machines and its kernel version is explained in section 5.1. The

proposed deep extreme learning machine and its computations are explained in section

5.2. Experimental analysis and performance evaluations are elucidated in section 5.3.

Conclusions are conveyed in section 5.4.

5.1 Extreme Learning Machines

Extreme Learning Machines (ELM) was first proposed by Huang et al. [93], as a fast

learning algorithm for SLFNs. The attractive features of these learning paradigm en-

compasses:

• Randomly generated input weights and hidden layer biases.

• The hidden layer parameters need not be tuned because they are independent of

input samples.

• Non-iterative (Analytical) computation of output weights, as linear systems.

83



Deep Kernel Learning in Extreme Learning Machines

Single layered feed-forward neural networks with N distinct training samples (xi, yi)Ni=1|xi ∈

ℜn, yi ∈ ℜm, can be depicted in Figure. 5.1. The input weight matrix WN×L and the

Figure 5.1: Basic model of Single Layer feed Forward Network

output weight matrix βL×m can be represented as:

W =



w11 w12 . . . w1L

w21 w22 . . . w2L

...
...

...
...

wN1 wN2 . . . wNL


N×L

β =



β11 β12 . . . β1m

β21 β22 . . . β2m
...

...
...

...

βL1 βL2 . . . βLm


L×m

The mathematical model of SLFN can be expressed as [94]:

L∑
i=1

βiA(wi.xj + bi) = Oj , for j = 1 to N (5.1)

In this formulation, bi represents bias of ith hidden node and A()1 be the activation

of hidden nodes. The input weight vector wi connects ith hidden node and the input

nodes whereas the output weight vector βi connects ith hidden node and output nodes.

According to [93], there exist βi, wi and bi such that actual output Oj equals to the
1The hidden layer neuron may have different type of activation function (sigmoid, hyperbolic tangent,

threshold, etc.)

84



Deep Kernel Learning in Extreme Learning Machines

target output yj , then SLFN approximate these N samples with zero mean square error.

i.e.
N∑
j=1

∥Oj − yj∥ = 0

Now the Equation 5.1 becomes

L∑
i=1

βiA(wi.xj + bi) = yj , for j = 1 to N (5.2)

In simple form, the output function of SLFN can be expressed as:

fL(x) =
L∑
i=1

βihi(x) = h(x)β

and these N equations(one for each data sample) can be written in matrix form as:

fL(x) = Hβ = Y (5.3)

where H is a N × L matrix of the form

H =



h(x1)

...

h(xi)

...

h(xn)


=


A(w1.x1 + b1) . . . A(wL.x1 + bL)

... . . .
...

A(w1.xN + b1) . . . A(wL.xN + bL)

 (5.4)

“β” is the output weight matrix (L ×m), which is of the form:


βT
1

...

βT
L

 and “Y” is the

output matrix (N ×m). The conventional gradient based training method of SLFN fine

tunes the parameters w, b and β with respect to the objective function:

min
w,b,β
∥Hβ − Y ∥ (5.5)

85



Deep Kernel Learning in Extreme Learning Machines

The corresponding cost function is [94]

E =

N∑
j=1

(
L∑
i=1

βihi(xj)− yj

)
(5.6)

where hi(xj) = A(wi.xj+bi). Different from traditional gradient based methods2, ELM

optimizes not only for the smallest error but also the smallest norm of output weights.

The objective function of ELM [93] can now be expressed as:

min
β
∥Hβ − Y ∥ , subjected to min ∥β∥ (5.7)

The smallest norm least square solution of the Equation 5.7 can be obtained analytically

as:

β̂ = H†Y (5.8)

where H† is the Moore-Penrose generalized inverse of matrix H. The H† can be computed

as: H† = HT ( I
C +HHT )

−1, where “C” is the regularization parameter. The output

function of ELM can be expressed as:

f(x) = h(x)β = h(x)HT (
I

C
+HHT )

−1

Y (5.9)

Usually the feature transformation function of ELM is known to the user. In the case

of unknown feature mapping, the user can define kernel functions by applying mercer’s

theorem [146, 148]. The output function of ELM, Equation 5.9, then involves a dot

product, HHT . This dot product can easily be replaced with a kernel KELM . Each

element in this kernel KELM (i, j) = K(xi, xj) = ⟨h(xi), h(xj)⟩. Equation 5.9 can be

then modified for ELM with kernel function as:

f(x) =


k(x, x1)

...

k(x, xN )


T

(
I

C
+KELM )

−1

Y, (5.10)

where kELM = k(h(xi), h(xj))

2 The vector P of tunable parameters in the kth iteration can be obtained as (Pk = Pk − 1±η ∂E(P )
∂P

).

86



Deep Kernel Learning in Extreme Learning Machines

The solitary kernel functions including linear kernel, Gaussian kernel , poly-

nomial kernel etc. have been extensively used in this formulation. These kernels map

the input data in lower dimension to higher dimensional feature space. As shown in

Equation 5.7, ELM attempts to achieve the minimum norm of its output weight vector

β, besides the minimization of training error.

5.2 Deep Kernel Based Extreme Learning Machines

Traditional kernel based extreme learning machines exploited solitary kernels that con-

stitute only single layer of feature extraction. It does not seems to be competent with

many real world applications that involve highly complex and varying functions. This

limitation necessitate the requirement of multi-layered feature extraction from the raw

data. The new trend in machine learning is to explore the possibilities of equipping clas-

sifiers with deep learning capabilities, multiple layers of feature mapping. The multilayer

kernel computation capability of arc-cosine kernel [49] enrich the process of extending

deep learning features into kernel machines. The authors have attempted to explore

deep arc-cosine kernels only on kernel machines like support vector machines that re-

quire iterative tuning of parameters. Extreme learning machine tends to become more

popular by leveraging non-iterative parameter turning. By moving with new trends in

machine learning , migrating shallow architectures into deep architectures, this section

proposes a new deep kernel learning structure in the context of non-iterative learning

paradigms. The proposed method exploits multilayer arc-cosine kernel and extreme

learning machines, with comparable performance.

5.2.1 Building Deep Kernel based Extreme Learning Machines

The multilayer arc-cosine kernel has widely been used as the crux for building deep ker-

nel machines. The main parameter of arc-cosine kernel, the activation list determines

the depth and behavior (representation) of kernel computation. Unlike other kernels,

the recursive mapping of arc-cosine kernel ϕ(...ϕ(x)) generates a qualitatively different

representation than the original mapping ϕ(x). In this hierarchical computation, differ-

ent nonlinear mappings (degree) and hence different kernel behavior can be attained at

87



Deep Kernel Learning in Extreme Learning Machines

different layers. This arc-cosine kernel has been evaluated only in the context of learning

machines that necessitates iterative parameter turning.

Extreme learning machines and its kernel counterpart are fast machine learning

approaches that facilitate non-iterative parameter tuning. ELM exploited kernel func-

tions when the feature transformation function is unknown to the user. The formulation

of kernel based extreme learning machine, as shown in Equation 5.10, constitutes only

shallow based kernels such as RBF, polynomial,linear, etc.

In consideration with the above facts, a deep kernel based extreme learning

machine is proposed by re-modeling the Equation 5.10 with “l”-fold arc-cosine kernel.

Let K l
n() be the l fold arc-cosine kernel with activation value n. The mathematical

model of Deep Kernel based Extreme Learning machine(DKELM) can be defined as:

f(x) =


kln(x, x1)

...

kln(x, xN )


T

(
I

C
+KELM )

−1

Y, (5.11)

where kELM = kln(h(xi), h(xj))

Here K l
n(xi, xj) represents l- fold arc-cosine kernel with degree n. It can be computed

iteratively as:

kln(xi, xj) =
1

π
[k(l−1)

n (xi, xi)k
(l−1)
n (xj , xj)]

n
2 AD(n, θ(l−1)

n ) (5.12)

where θ(l) is the angle between the images of xi and xj in the feature space induced by

the l-fold composition.

θ(l) = cos−1

 k
(l)
n (xi, xj)√

k
(l)
n (xi, xi)k

(l)
n (xj , xj)

 (5.13)

AD(n, θ) is the angular dependency and its computation for the first three activation

values are given in Algorithm 4. The detailed learning procedure for DKELM has been

shown in Algorithm 8.

88



Deep Kernel Learning in Extreme Learning Machines

Algorithm 8: Deep kernel based extreme learning machine
DKELM (H, [act− fact], Y )

inputs : The Data matrix H,the list [act− fact] contain activation factor for each
layer in deep kernel. Y is the set of expected targets.

output: Outputwt ; The set of output weights used for prediction
begin

for i,j= 1 to num-rows(H) do
ΩELM = Deep_arc_cosine (Hi, Hj , [act− fact]) ;

Outputwt = ( I
C +ΩELM )

−1
.Y ;

return Outputwt;

In this algorithm, the sub procedure Deep_arc_cosine exploits multilayer arc-

cosine kernel (Algorithm 3) to computes the deep kernel matrix ΩELM . The depth of

recursive computation is determined by the size of given activation list. The feature

extraction at different layers of arc-cosine kernel depends on the activation value for

that layer and the kernel value computed in the previous layer. The multilayer arc-

cosine kernels and its computations are elaborated in Section 2.4.1.

Once deep kernel matrix ΩELM is computed, the DKELM algorithm uses a

simple generalized matrix inverse operation on deep kernel matrix. The generalized

matrix inverse operation tend to be a linear solver to compute the output weights(Line3

in Algorithm 8 ), similar to Lagrangian multipliers in SVM. The output weight vectors

are used to predict the class label for training and testing dataset as:

Predicted_Targets =< ΩELM , Outputwt) >. In the case of testing, ΩELM represents

the kernel matrix corresponding to the test dataset. The use of multilayer arc-cosine

kernel pave the way to bring deep kernel learning capability in kernel based extreme

learning machine. The comparable performance of DKELM in terms of accuracy and

low computational complexity opens up a new learning algorithm in the context of deep

kernel machines.

5.3 Experimental Results

This section elaborates the experiments conducted to show the improved generalization

performance of the proposed deep kernel based extreme learning machines. The choice

of datasets for the experiments are inspired by the paper [146] an they are utilized to

89



Deep Kernel Learning in Extreme Learning Machines

test the performance of deep kernel based ELM over shallow kernel based ELM. These

dataset have been taken from both LIBSVM [137] and UCI Machine Learning Repository

[138]. Dataset composition has been shown in Table 5.1.

Table 5.1: Details of Dataset used

Sl.No Dataset #Dim #Train #Test #class
1 Australian Credit 6 460 230 2
2 Colon 2000 30 32 2
3 Diabetes 8 512 256 2
4 Glass 9 142 72 6
5 Iris 4 100 50 3
6 Leukemia 7129 38 34 2
7 Letter 16 13333 6667 26
8 Liver 6 230 115 2
9 Mushroom 22 1500 6624 2
10 Satimage 36 4435 2000 6
11 Segment 19 1540 770 7
12 Wine 13 118 60 3

The proposed DKELM has been implemented in python 2.7.6 by extending

the kernel based ELM 3 with deep multi-layered arc-cosine kernel 4. In all dataset, the

experiments were repeated for ten different train - test combinations. In each combina-

tion, three scaling mechanisms such as standard scalar, robust scalar and minmax scalar

methods were carried out. Also, all combinations of arc-cosine kernel with degree 0,1,2

and 3 were evaluated. Deep Support Vector Machine (DSVM) has been implemented

by using the SVM module available in sklearn package (python 2.7.6) with arc-cosine

function as the custom kernel. All experiments were done on a server machine configured

with AMD Opteron 6376 @ 2.3 GHZ / 16 core processor and 16 GB RAM. In all the

experiments, precision, recall, F1-score, prediction accuracy (in %) and CPU time (in

seconds) have been recorded.

5.3.1 Performance Evaluation

A comparative analysis in terms of prediction accuracy of kernel based ELM (column

KELM) and proposed DKELM method (column DKELM) is elucidated in Table 5.2.
3The ELM package elm-0.1.1 is available at https://pypi.python.org/pypi/elm
4libSVM-2.91:Available at

https://www.csie.ntu.edu.tw/ cjlin/libsvm/oldfiles/

90



Deep Kernel Learning in Extreme Learning Machines

The prediction accuracy of kernel based ELM (Gaussian kernel) were taken from the

paper[146].

Table 5.2: Generalization performance in terms of prediction accuracy of Kernel based
ELM(KELM) and proposed Deep kernel based ELM (DKELM)

Dataset KELM DKELM
Australian Credits 86.29 90.90
Colon 84.38 93.81
Diabetes 77.52 80.70
Glass 68.41 73.62
Iris 96.04 99.01
Leukemia 82.35 98.80
Letter 97.41 97.80
Liver 72.14 79.14
Mushroom 88.84 99.30
Satimage 92.35 93.03
Segment 96.53 97.10
Wine 98.48 99.63

Experiments are attempted on Deep kernel based frameworks such as deep sup-

port vector machine(column DSVM) and proposed deep kernel based Extreme learning

machine. A comparative analysis in terms of prediction accuracy of deep support vec-

tor machine(column DSVM) and the proposed DKELM method (column DKELM) is

elucidated in Table 5.3.

Table 5.3: Generalization performance in terms of prediction accuracy of Deep Sup-
port Vector Machine (DSVM) and proposed Deep kernel based ELM (DKELM)

Dataset DSVM DKELM
Australian Credits 84.03 90.90
Colon 84.12 93.81
Diabetes 75.83 80.70
Glass 71.69 73.62
Iris 96.89 99.01
Leukemia 90.05 98.80
Letter 95.02 97.80
Liver 70.19 79.14
Mushroom 93.31 99.30
Satimage 90.35 93.03
Segment 95.47 97.10
Wine 94.45 99.63

In addition to the above analysis, a comparison in terms of prediction accu-

racy of existing models and proposed deep kernel learning models has been done and

it is shown in Table 5.4. This table includes a comparison between existing models,

91



Deep Kernel Learning in Extreme Learning Machines

viz; Core Vector Machine (column CVM), Kernel based Extreme Learning Machines

(column KELM) and proposed deep kernel learning models, viz; Deep Core Vector

Machines (column DCVM), Deep Multiple Multilayer Kernel learning in CVM (col-

umn DMMlKLCVM) and Deep Kernel based Extreme Learning Machine (column

DKELM). The performance of CVM on all the datasets are evaluated by using the

package libCVM-2.2 [139].

Table 5.4: A comparison in generalization performance of existing models and pro-
posed models

Dataset Existing Models Proposed Models
CVM KELM DCVM DMMlKLCVM DKELM

Letter 94.47 97.41 96.94 98.08 97.80
Satimage 89.60 92.35 92.15 93.50 93.03
Australian Credits 79.83 86.29 86.65 86.95 90.90
Diabetes 73.62 77.52 76.56 78.52 80.70

Table 5.5 represents average precision, recall and F1-score computed on each

dataset for the proposed Deep kernel based ELM (DKELM). The scaling mechanism and

activation list of arc-cosine kernel that brings out maximum accuracy in deep learning

frameworks such as DSVM and DKELM has been shown in Table 5.6.

Table 5.5: The average precision, Recall and F1-score of DKELM on various datasets

Dataset Precision Recall F1-score

Australian Credits 0.907 0.914 0.910
Colon 0.938 0.938 0.938
Diabetes 0.818 0.798 0.808
Glass 0.786 0.694 0.734
Iris 0.999 0.991 0.990
Leukemia 0.988 0.989 0.988
Letter 0.980 0.970 0.979
Liver 0.793 0.791 0.788
Mushroom 0.997 0.991 0.994
Satimage 0.934 0.918 0.926
Segment 0.973 0.971 0.972
Wine 0.998 0.992 0.990

A comparison in training time taken by DSVM and DKELM has been shown

in the Table 5.7. A comparative analysis of Deep support vector machine (DSVM) and

deep kernel based ELM (DKELM) in terms of training time is elucidated in Table 5.7.

92



Deep Kernel Learning in Extreme Learning Machines

Table 5.6: Activation list and Scaling mechanism that brings out maximum accuracy
in DKELM and DSVM

Dataset DKELM DSVM
Activation List Scaling Activation list Scaling

Australian Credits [2,0,3,1 ] Robust scalar [2,0,3,1] Robust scalar
Colon [3,2,1,0] Minmax Scalar [2,3,1,0] Minmax scalar
Diabetes [0,1] Robust scalar [0,1,3 ] Standard scalar
Glass [ 1 ] Standard Scaler [ 0, 1, 2 ] Standard scalar
Iris [ 1 ] Minmax scalar [ 1 ] Robust scalar
Leukemia [ 3, 2, 1, 0 ] Minmax scalar [3, 2, 1, 0 ] Minmax scalar
Letter [ 1 ] Minmax scalar [ 0, 1 ] Standard scalar
Liver [ 0,1 ] Standard Scaler [0, 1, 2 ] Minmax scalar
Mushroom [ 3, 2, 1, 0 ] Standard Scaler [3, 2, 1, 0 ] Standard scalar
Satimage [0, 2 ] Robust scalar [ 0, 2 ] Robust scalar
Segment [ 1 ] Minmax scalar [ 1, 0 ] Minmax scalar
Wine [3, 1, 2, 0 ] Minmax scalar [2, 1, 3, 0 ] Minmax scalar

Table 5.7: Training time (in seconds) of Deep Support Vector Machine (DSVM) and
Deep kernel based ELM (DKELM)

Dataset DSVM DKELM
Letter 148.503 66.785
Mushroom 3.769 1.869
Satimage 15.984 7.013
Segment 1.990 1.021
Colon 0.06 0.06
Leukemia 0.049 0.041
Iris 0.02 0.02
Wine 0.023 0.014
Glass 0.005 0.004
Australian Credits 0.189 0.182
Diabetes 0.082 0.079

The improved performance in terms of training time of DKELM over DSVM has been

further illustrated in Figure 5.2.

The following observations can be made from the above experimental results.

• From Table 5.3, it is clear that proposed DKELM attains improved accuracy on

KELM.

• The prediction accuracy given in Table 5.3 and the average precision, recall and

F1-score given in Table 5.5 show that the proposed DKELM consistently improves

the accuracy of DSVM.

93



Deep Kernel Learning in Extreme Learning Machines

Figure 5.2: A comparison in training time (in seconds) between DKELM and DSVM

• The prediction accuracy given in Table 5.4 show that the proposed deep kernel

learning models consistently improves the existing models.

• From Figure 5.2, it can be seen seen that the difference in training time required

for DSVM and DKELM increases as the size of dataset is increased.

• For the large dataset ’letter’, proposed DKELM runs more than twice as faster

than DSVM.

• The improved accuracy and less training time shows that the proposed deep kernel

based ELM has high potential in the context of deep kernel machines.

5.4 Conclusions

Extreme learning machines (ELM) tend to be an initiative towards eliminating iterative

parameter tuning, which is a trivial issue faced by neural networks and kernel machines.

The ELM eliminates this overwhelming process by enforcing analytical computation of

94



Deep Kernel Learning in Extreme Learning Machines

output weights. This is achieved by the utilization of random weight assignments in

the hidden nodes. ELM was originally developed as a fast learning algorithm for single

layer feed-forward neural networks (SLFN). Later, it has been re-modeled with universal

approximation and classification capabilities. Kernel based ELM is one among different

models of ELM which uses the kernel trick for the feature transformation. The existing

kernel based ELMs are using single layer of kernel functions and hence belongs to the

class of shallow architectures. This research explores a new deep kernel based learning

model with extreme learning machine and arc-cosine kernels. Arc-cosine kernels possess

the potential to mimic deep layer frameworks in shallow architectures. The multi-layer

feature transformation by the arc-cosine kernel and the fast training mechanism without

iterative parameter tuning adopted by the extreme learning machine turns out to be the

prominent features of DKELM. The performance of proposed DKELM is compared

with solitary layered KELM and DSVM. In all cases, proposed model shows improved

accuracy. In the case of training time, proposed model converges extremely fast as

compared to that of deep support vector machines.

95



CHAPTER 6
Conclusions and Future Works

6.1 Conclusions

In the recent past, deep learning architectures have been making tremendous progress in

the context of enabling pragmatic applications of machine intelligence. The deep learn-

ing models attempt to discover abstract representation of training data by exploiting

multiple layers of feature transformations. The modern hardware technologies coupled

with algorithmic advancements in optimization techniques to solve complex learning

problems make deep learning more attractive and powerful when compared to tradi-

tional shallow learning architectures. Deep learning originated in the context of neural

networks and have made many success stories in the field of image prediction, language

translation, signal processing, action recognition, face recognition etc. Emergence of

unsupervised, greedy layer-wise learning procedure bestow an efficient way of training

deep neural network learning architectures. Deep Belief Networks, Convolutional Neural

Networks, Recurrent Neural Networks, etc. are some of the well known deep learning

architectures.

The astounding performance of deep neural network learning motivated the

researchers to shift their attention towards imparting deep learning capabilities in other

learning approaches, particularly in kernel machines. The elegant characteristics that

favor kernel machines over other models are:

• Strong theoretical foundation.

96



Conclusions and Future Works

• The utilization of convex loss functions ensure globally optimal solutions.

• Structural risk minimization : structural complexity of the model is learned from

data. for example, in SVM the model complexity is controlled automatically by

adjusting the number of support vectors during training.

• Some kernel machines (SVM and its variants) relies on the concepts of margin

maximization and hence reduce the risk of over-fitting.

Recently developed arc-cosine kernel exhibits capability for multiple layers of kernel

computations / feature extractions. It is widely used in conjunction with SVMs and

produces promising results in many real world applications. Multilayer Kernel Machine

(MKM) was another attempt in kernel machines towards multiple layers of feature ex-

traction. These contributions open up an extendable research avenue in building ad-

vanced techniques in kernel machines. From the literature review, it is learned that

the scalability, multiple multilayer kernel learning, unsupervised feature extraction by

exploiting multiple kernel learning, etc. were unexplored in the context of deep kernel

machines.

This research is an effort to build deep structured scalable kernel machine

architectures similar to deep neural network for supervised classification. This research

explored the possibility of enhancing kernel machines with deep learning principles.

Some of the dimensions explored in this work are (i) Feasibility of building a scalable

deep kernel machine similar to SVM like machines. (ii) Scalable deep kernel machines

with multiple layers of unsupervised feature extraction. (iii) Deep kernel learning in

non-iterative learning approaches like extreme learning machines. In this direction,

three deep kernel learning architectures were proposed.

• Deep learning in core vector machines : It modeled a scalable deep kernel machines

by combining arc-cosine kernel and Core Vector Machine. This research analyzed

the behavior of multilayer arc-cosine kernel and proved that in certain cases the

arc-cosine kernel satisfies the required condition mandated by CVM and thus pro-

posed Deep Core Vector Machine algorithm. Experimental results show that the

proposed DCVM outperforms traditional CVM, DSVM and deep CNN.

97



Conclusions and Future Works

• Deep Multiple Multilayer Kernel Learning in Core Vector Machines: This work

is an effort to build a scalable deep kernel machines with multiple layers of un-

supervised feature extraction. In this model feature extraction is accomplished

by KPCA, similar to MKM. KPCA in this proposed model is modeled as a MKL

framework by combining both single-layered and multi-layered kernels in an unsu-

pervised manner. Recently developed multilayer arc-cosine kernels ensure multi-

layered kernels in MKL framework. Core vector machine with arc-cosine kernel

is used as the final layer classifier which ensure the scalability in this model.The

empirical results show that the proposed method considerably outperform conven-

tional core vector machine with arc-cosine kernel.

• Deep kernel based extreme learning machines: It is an attempt to build deep kernel

learning features in fast non-iterative learning algorithms. It combines the multi-

layer feature transformation of arc-cosine kernel and the fast non-iterative training

mechanism of ELM. The experiments in this models shows its out performance over

conventional kernel based extreme learning machines.

This thesis attempted to build scalable kernel machines with deep learning capabili-

ties as discussed above. From the theoretical analysis and experimental results, it is

observed that the proposed methods are promising candidates in the context of deep

kernel machines.

6.2 Future Works

The theoretical and empirical analysis done through this thesis work unearth the fol-

lowing avenues for further explorations.

• The generalization of deep core vector machines to the multi-view version for

handling the input data with multiple feature representations is a potentially ex-

plorable problem.

• The generalization performance of ‘Deep Multiple Multilayer Kernel Learning in

Core Vector Machines’ is highly influenced by the structure of multilayer MKL

98



Conclusions and Future Works

framework. The number of layers and appropriate base kernels contribute this

multilayer MKL structure. A theoretical study on the optimal structure of multi-

layer MKL model is a potential future direction

• A study on feasibility of deep multilayer kernel learning approach on structured

output prediction task that involves very complex decision function is another

interesting research problem.

• The multiple kernel learning based feature extraction involves extensive amount of

matrix manipulation. The scalability aspects in this context is another potential

future direction.

• The deep learning algorithms are found to be effective for memory related neural

network models such as Recurrent neural network, Memory network, Turing neural

network etc. A study on the formulation of recurrent kernels that mimics the above

models is another explorable direction.

99



Bibliography

[1] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. MIT press, 2012.

[2] Frank Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[3] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533, 1986.

[4] Vladimir Vapnik. Statistical learning theory. Wiley, New York, 1998.

[5] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algo-
rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop
on Computational learning theory, pages 144–152. ACM, 1992.

[6] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-
chines: And Other Kernel-based Learning Methods. Cambridge University Press,
New York, NY, USA, 2000.

[7] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

[8] Shun-ichi Amari and Si Wu. Improving support vector machine classifiers by
modifying kernel functions. Neural Networks, 12(6):783–789, 1999.

[9] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods
in machine learning. The annals of statistics, pages 1171–1220, 2008.

[10] K-R Muller, Sebastian Mika, Gunnar Ratsch, Koji Tsuda, and Bernhard Scholkopf.
An introduction to kernel-based learning algorithms. IEEE transactions on neural
networks, 12(2):181–201, 2001.

[11] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[12] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[13] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. Support vector machines. IEEE Intelligent Systems and their ap-
plications, 13(4):18–28, 1998.

[14] Jeffrey D Hart and Thomas E Wehrly. Kernel regression estimation using re-
peated measurements data. Journal of the American Statistical Association,
81(396):1080–1088, 1986.

100



Bibliography

[15] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression.
Statistics and computing, 14(3):199–222, 2004.

[16] Hiroyuki Takeda, Sina Farsiu, and Peyman Milanfar. Kernel regression for im-
age processing and reconstruction. IEEE Transactions on image processing,
16(2):349–366, 2007.

[17] Robert Malouf. A comparison of algorithms for maximum entropy parameter
estimation. In proceedings of the 6th conference on Natural language learning-
Volume 20, pages 1–7. Association for Computational Linguistics, 2002.

[18] Gerhard Jäger. Maximum entropy models and stochastic optimality theory. Ar-
chitectures, rules, and preferences: variations on themes by Joan W. Bresnan.
Stanford: CSLI, pages 467–479, 2007.

[19] Charles Sutton and Andrew McCallum. An introduction to conditional random
fields for relational learning, volume 2. Introduction to statistical relational learn-
ing. MIT Press, 2006.

[20] Charles Sutton, Andrew McCallum, et al. An introduction to conditional random
fields. Foundations and Trends in Machine Learning, 4(4):267–373, 2012.

[21] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE
transactions on information theory, 13(1):21–27, 1967.

[22] Keinosuke Fukunaga and L Hostetler. Optimization of k nearest neighbor density
estimates. IEEE Transactions on Information Theory, 19(3):320–326, 1973.

[23] Padhraic Smyth. Clustering sequences with hidden markov models. In Advances
in neural information processing systems, pages 648–654, 1997.

[24] Ara V Nefian and Monson H Hayes. Hidden markov models for face recognition.
In Acoustics, Speech and Signal Processing, Proceedings of the IEEE International
Conference on, volume 5, pages 2721–2724. IEEE, 1998.

[25] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

[26] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning repre-
sentations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[27] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[28] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional
deep belief networks for scalable unsupervised learning of hierarchical represen-
tations. In Proceedings of the 26th annual international conference on machine
learning, pages 609–616. ACM, 2009.

[29] Geoffrey E Hinton. Learning multiple layers of representation. Trends in cognitive
sciences, 11(10):428–434, 2007.

101



Bibliography

[30] Li Deng. Three classes of deep learning architectures and their applications: a
tutorial survey. APSIPA transactions on signal and information processing, 2012.

[31] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learn-
ing, volume 1. MIT press Cambridge, 2016.

[32] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends®
in Machine Learning, 2(1):1–127, 2009.

[33] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[34] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. Advances in neural information processing
systems, 19:153, 2007.

[35] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun.
Efficient learning of sparse representations with an energy-based model. In Pro-
ceedings of the 19th International Conference on Neural Information Processing
Systems, pages 1137–1144. MIT Press, 2006.

[36] Ruslan Salakhutdinov and Geoffrey E Hinton. Deep boltzmann machines. In
AISTATS, volume 1, page 3, 2009.

[37] Honglak Lee, Chaitanya Ekanadham, and Andrew Y Ng. Sparse deep belief net
model for visual area v2. In Advances in neural information processing systems,
pages 873–880, 2008.

[38] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages
3104–3112, 2014.

[39] Jun Deng, Zixing Zhang, Erik Marchi, and Bjorn Schuller. Sparse autoencoder-
based feature transfer learning for speech emotion recognition. In Affective Com-
puting and Intelligent Interaction (ACII), Humaine Association Conference on,
pages 511–516. IEEE, 2013.

[40] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, and Tara N
Sainath. Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal Processing Magazine,
29(6):82–97, 2012.

[41] Yajie Miao, Florian Metze, and Shourabh Rawat. Deep maxout networks for low-
resource speech recognition. In Automatic Speech Recognition and Understanding
(ASRU), IEEE Workshop on, pages 398–403. IEEE, 2013.

[42] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[43] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recog-
nition: A convolutional neural-network approach. IEEE transactions on neural
networks, 8(1):98–113, 1997.

102



Bibliography

[44] Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural network
for skeleton based action recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1110–1118, 2015.

[45] Sheng-hua Zhong, Yan Liu, and Yang Liu. Bilinear deep learning for image classi-
fication. In Proceedings of the 19th ACM international conference on Multimedia,
pages 343–352. ACM, 2011.

[46] Harris Drucker, Christopher JC Burges, Linda Kaufman, Alex J Smola, and
Vladimir Vapnik. Support vector regression machines. In Advances in neural
information processing systems, pages 155–161, 1997.

[47] Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. Core vector machines: Fast
SVM training on very large data sets. Journal of Machine Learning Research,
6(Apr):363–392, 2005.

[48] Roman Rosipal, Mark Girolami, Leonard J Trejo, and Andrzej Cichocki. Kernel
PCA for feature extraction and de-noising in nonlinear regression. Neural Com-
puting & Applications, 10(3):231–243, 2001.

[49] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In
Advances in neural information processing systems, pages 342–350, 2009.

[50] Andre Wibisono, Jake Bouvrie, Lorenzo Rosasco, and Tomaso Poggio. Learning
and invariance in a family of hierarchical kernels. 2010.

[51] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep
kernel learning. In Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, pages 370–378, 2016.

[52] Chih-Chieh Cheng and Brian Kingsbury. Arccosine kernels: Acoustic model-
ing with infinite neural networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, pages 5200–5203. IEEE, 2011.

[53] Youngmin Cho and Lawrence K Saul. Large-margin classification in infinite neural
networks. Neural computation, 22(10):2678–2697, 2010.

[54] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 2(4):303–314, 1989.

[55] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neu-
ral networks, 4(2):251–257, 1991.

[56] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[57] Andrew L. Beam. Deep learning 101 - part 1: History and background. 2017.

[58] G Dahl, D Yu, L Deng, and A Acero. Context-dependent dbn-hmms in large
vocabulary continuous speech recognition. In Proc. ICASSP, 2011.

[59] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech,
and time series. The handbook of brain theory and neural networks, 3361(10):1995,
1995.

103



Bibliography

[60] Itamar Arel, Derek C Rose, and Thomas P Karnowski. Deep machine learning-a
new frontier in artificial intelligence research. IEEE computational intelligence
magazine, 5(4):13–18, 2010.

[61] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[62] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[63] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. Learning pre-
cise timing with lstm recurrent networks. Journal of machine learning research,
3(Aug):115–143, 2002.

[64] Joel Heck and Fathi M Salem. Simplified minimal gated unit variations for recur-
rent neural networks. arXiv preprint arXiv:1701.03452, 2017.

[65] Alex Graves and Jürgen Schmidhuber. Offline handwriting recognition with mul-
tidimensional recurrent neural networks. In Advances in neural information pro-
cessing systems, pages 545–552, 2009.

[66] Felix A Gers and E Schmidhuber. Lstm recurrent networks learn simple context-
free and context-sensitive languages. IEEE Transactions on Neural Networks,
12(6):1333–1340, 2001.

[67] Mikael Bodén and Janet Wiles. Context-free and context-sensitive dynamics in
recurrent neural networks. Connect. Sci., 12:197–210, 2000.

[68] Christopher M.. Bishop. Pattern recognition and machine learning. Springer, 2006.

[69] Marc G Genton. Classes of kernels for machine learning: a statistics perspective.
Journal of machine learning research, 2(Dec):299–312, 2001.

[70] John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis.
Cambridge university press, 2004.

[71] Jason Weston and Chris Watkins. Support vector machines for multi-class pattern
recognition. In ESANN, volume 99, pages 219–224, 1999.

[72] Asa Ben-Hur, David Horn, Hava T Siegelmann, and Vladimir Vapnik. Support
vector clustering. Journal of machine learning research, 2(Dec):125–137, 2001.

[73] Thorsten Joachims. Text categorization with support vector machines: Learning
with many relevant features. Machine learning: ECML-98, pages 137–142, 1998.

[74] Edgar Osuna, Robert Freund, and Federico Girosit. Training support vector ma-
chines: an application to face detection. In Computer vision and pattern recog-
nition, Proceedings, IEEE computer society conference on, pages 130–136. IEEE,
1997.

[75] FJ Huang and Y LeCun. Large-scale learning with SVM and convolutional nets
for generic object categorization. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2006.

104



Bibliography

[76] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Al-
tun. Support vector machine learning for interdependent and structured output
spaces. In Proceedings of the twenty-first international conference on Machine
learning, page 104. ACM, 2004.

[77] Vladimir Vapnik, Steven E Golowich, Alex Smola, et al. Support vector method
for function approximation, regression estimation, and signal processing. Advances
in neural information processing systems, pages 281–287, 1997.

[78] You Ji and Shiliang Sun. Multitask multiclass support vector machines: model
and experiments. Pattern Recognition, 46(3):914–924, 2013.

[79] Ivor W Tsang, James Tin-Yau Kwok, and Pak-Ming Cheung. Very large SVM
training using core vector machines. In AISTATS, 2005.

[80] Guanglu Zhou, Jie Sun, and Kim-Chuan Toh. Efficient algorithms for the small-
est enclosing ball problem in high dimensional space. Novel Approaches to Hard
Discrete Optimization, 37:173, 2003.

[81] Bernd Gärtner. Fast and robust smallest enclosing balls. Algorithms-ESA’99,
pages 693–693, 1999.

[82] Bernd Gärtner and Sven Schönherr. An efficient, exact, and generic quadratic
programming solver for geometric optimization. In Proceedings of the sixteenth
annual symposium on Computational geometry, pages 110–118. ACM, 2000.

[83] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via
core-sets. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, pages 250–257. ACM, 2002.

[84] Mihai Bădoiu and Kenneth L Clarkson. Optimal core-sets for balls. Computational
Geometry, 40(1):14–22, 2008.

[85] Mihai Badoiu and Kenneth L Clarkson. Smaller core-sets for balls. In Proceedings
of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages
801–802. Society for Industrial and Applied Mathematics, 2003.

[86] Piyush Kumar, Joseph SB Mitchell, and E Alper Yildirim. Approximate mini-
mum enclosing balls in high dimensions using core-sets. Journal of Experimental
Algorithmics (JEA), 8:1–1, 2003.

[87] David MJ Tax and Robert PW Duin. Support vector data description. Machine
learning, 54(1):45–66, 2004.

[88] Tingting Mu and Asoke K Nandi. Multiclass classification based on extended
support vector data description. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), 39(5):1206–1216, 2009.

[89] S Asharaf, M Narasimha Murty, and Shirish Krishnaj Shevade. Multiclass core
vector machine. In Proceedings of the 24th international conference on Machine
learning, pages 41–48. ACM, 2007.

[90] Ivor W Tsang, Andras Kocsor, and James T Kwok. Simpler core vector machines
with enclosing balls. In Proceedings of the 24th international conference on Ma-
chine learning, pages 911–918. ACM, 2007.

105



Bibliography

[91] IW-H Tsang, JT-Y Kwok, and Jacek M Zurada. Generalized core vector machines.
IEEE Transactions on Neural Networks, 17(5):1126–1140, 2006.

[92] S Asharaf, M Narasimha Murty, and Shirish Krishnaj Shevade. Cluster based core
vector machine. In Sixth International Conference on Data Mining (ICDM’06),
pages 1038–1042. IEEE, 2006.

[93] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning ma-
chine: a new learning scheme of feedforward neural networks. In Neural Networks,
Proceedings. IEEE International Joint Conference on, volume 2, pages 985–990.
IEEE, 2004.

[94] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning ma-
chine: theory and applications. Neurocomputing, 70(1):489–501, 2006.

[95] Peter L Bartlett. The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size of the network.
IEEE transactions on Information Theory, 44(2):525–536, 1998.

[96] Bo Lu, Guoren Wang, Ye Yuan, and Dong Han. Semantic concept detection for
video based on extreme learning machine. Neurocomputing, 102:176–183, 2013.

[97] Abdul Adeel Mohammed, Rashid Minhas, QM Jonathan Wu, and Maher A Sid-
Ahmed. Human face recognition based on multidimensional PCA and extreme
learning machine. Pattern Recognition, 44(10):2588–2597, 2011.

[98] Weiwei Zong and Guang-Bin Huang. Face recognition based on extreme learning
machine. Neurocomputing, 74(16):2541–2551, 2011.

[99] Xiang-guo Zhao, Guoren Wang, Xin Bi, Peizhen Gong, and Yuhai Zhao. Xml
document classification based on elm. Neurocomputing, 74(16):2444–2451, 2011.

[100] AH Nizar, ZY Dong, and Y Wang. Power utility nontechnical loss analysis
with extreme learning machine method. IEEE Transactions on Power Systems,
23(3):946–955, 2008.

[101] Guang-Bin Huang, Qin-Yu Zhu, KZ Mao, Chee-Kheong Siew, Paramasivan
Saratchandran, and Narasimhan Sundararajan. Can threshold networks be trained
directly? IEEE Transactions on Circuits and Systems Part 2: Express Briefs,
53(3):187–191, 2006.

[102] Bin Li, Xuewen Rong, and Yibin Li. An improved kernel based extreme learning
machine for robot execution failures. The Scientific World Journal, 2014, 2014.

[103] Guorui Feng, Guang-Bin Huang, Qingping Lin, and Robert Gay. Error minimized
extreme learning machine with growth of hidden nodes and incremental learning.
IEEE Transactions on Neural Networks, 20(8):1352–1357, 2009.

[104] Yuan Lan, Yeng Chai Soh, and Guang-Bin Huang. Ensemble of online sequential
extreme learning machine. Neurocomputing, 72(13):3391–3395, 2009.

[105] Hai-Jun Rong, Guang-Bin Huang, Narasimhan Sundararajan, and Paramasivan
Saratchandran. Online sequential fuzzy extreme learning machine for function
approximation and classification problems. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 39(4):1067–1072, 2009.

106



Bibliography

[106] Nikhitha K Nair and S Asharaf. Tensor decomposition based approach for training
extreme learning machines. Big Data Research, 10:8–20, 2017.

[107] Xinwang Liu, Lei Wang, Guang-Bin Huang, Jian Zhang, and Jianping Yin. Mul-
tiple kernel extreme learning machine. Neurocomputing, 149:253–264, 2015.

[108] Xin Bi, Xiangguo Zhao, Guoren Wang, Pan Zhang, and Chao Wang. Distributed
extreme learning machine with kernels based on mapreduce. Neurocomputing,
149:456–463, 2015.

[109] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal
component analysis. In International Conference on Artificial Neural Networks,
pages 583–588. Springer, 1997.

[110] Quan Wang. Kernel principal component analysis and its applications in face
recognition and active shape models. arXiv preprint arXiv:1207.3538, 2012.

[111] Jong-Min Lee, ChangKyoo Yoo, Sang Wook Choi, Peter A Vanrolleghem, and
In-Beum Lee. Nonlinear process monitoring using kernel principal component
analysis. Chemical engineering science, 59(1):223–234, 2004.

[112] Heiko Hoffmann. Kernel PCA for novelty detection. Pattern recognition,
40(3):863–874, 2007.

[113] Devy Widjaja, Carolina Varon, Alexander Dorado, Johan AK Suykens, and
Sabine Van Huffel. Application of kernel principal component analysis for single-
lead-ecg-derived respiration. IEEE Transactions on Biomedical Engineering,
59(4):1169–1176, 2012.

[114] Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learn-
ing, conic duality, and the smo algorithm. In Proceedings of the twenty-first in-
ternational conference on Machine learning, page 6. ACM, 2004.

[115] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Two-stage learning
kernel algorithms. In ICML, pages 239–246. Citeseer, 2010.

[116] Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and
Michael I Jordan. Learning the kernel matrix with semidefinite programming.
Journal of Machine learning research, 5(Jan):27–72, 2004.

[117] Sören Sonnenburg, Gunnar Rätsch, and Christin Schäfer. A general and efficient
multiple kernel learning algorithm. In Advances in neural information processing
systems, pages 1273–1280, 2006.

[118] Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. In
Proceedings of the 24th international conference on Machine learning, pages
1191–1198. ACM, 2007.

[119] Mehmet Gönen and Ethem Alpaydin. Localized multiple kernel learning. In Pro-
ceedings of the 25th international conference on Machine learning, pages 352–359.
ACM, 2008.

[120] Cijo Jose, Prasoon Goyal, Parv Aggrwal, and Manik Varma. Local deep kernel
learning for efficient non-linear SVM prediction. In International Conference on
Machine Learning, pages 486–494, 2013.

107



Bibliography

[121] Jinfeng Zhuang, Jialei Wang, Steven CH Hoi, and Xiangyang Lan. Unsupervised
multiple kernel learning. Journal of Machine Learning Research-Proceedings Track,
20:129–144, 2011.

[122] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Representing shape with a
spatial pyramid kernel. In Proceedings of the 6th ACM international conference
on Image and video retrieval, pages 401–408. ACM, 2007.

[123] Theodoros Damoulas and Mark A Girolami. Probabilistic multi-class multi-kernel
learning: on protein fold recognition and remote homology detection. Bioinfor-
matics, 24(10):1264–1270, 2008.

[124] Alexander Binder and Motoaki Kawanabe. Enhancing recognition of visual con-
cepts with primitive color histograms via non-sparse multiple kernel learning. In
Workshop of the Cross-Language Evaluation Forum for European Languages, pages
269–276. Springer, 2009.

[125] Peter Gehler and Sebastian Nowozin. Infinite kernel learning. Technical Report
TR-178, Max Planck Institute For Biological Cybernetics, 2008.

[126] Eric V Strobl and Shyam Visweswaran. Deep multiple kernel learning. In Machine
Learning and Applications (ICMLA), 12th International Conference on, volume 1,
pages 414–417. IEEE, 2013.

[127] Youngmin Cho and Lawrence K Saul. Analysis and extension of arc-cosine kernels
for large margin classification. arXiv preprint arXiv:1112.3712, 2011.

[128] Mingyuan Jiu and Hichem Sahbi. Laplacian deep kernel learning for image anno-
tation. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE Inter-
national Conference on, pages 1551–1555. IEEE, 2016.

[129] Tamir Hazan and Tommi Jaakkola. Steps toward deep kernel methods from infinite
neural networks. arXiv preprint arXiv:1508.05133, 2015.

[130] Rabha O Abd-Elsalam, Yasser F Hassan, and Mohamed W Saleh. New deep kernel
learning based models for image classification. International Journal of Advanced
Computer Science and Applications, 8(7):407–411, 2017.

[131] Jinfeng Zhuang, Ivor W Tsang, and Steven CH Hoi. Two-layer multiple kernel
learning. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 909–917, 2011.

[132] Ilyes Rebai, Yassine BenAyed, and Walid Mahdi. Deep multilayer multiple kernel
learning. Neural Computing and Applications, 27(8):2305–2314, 2016.

[133] Guanglu Zhou, Kim-Chuan Tohemail, and Jie Sun. Efficient algorithms for the
smallest enclosing ball problem. Computational Optimization and Applications,
30(2):147–160, 2005.

[134] E Alper Yildirim. Two algorithms for the minimum enclosing ball problem. SIAM
Journal on Optimization, 19(3):1368–1391, 2008.

[135] Kaspar Fischer, Bernd Gärtner, and Martin Kutz. Fast smallest-enclosing-ball
computation in high dimensions. In ESA, volume 2832, pages 630–641. Springer,
2003.

108



Bibliography

[136] Kaspar Fischer and Bernd Gärtner. The smallest enclosing ball of balls: combina-
torial structure and algorithms. International Journal of Computational Geometry
& Applications, 14(04n05):341–378, 2004.

[137] Chih-Chung Chang and Chih-Jen Lin. LibSVM: a library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27,
2011.

[138] CL Blake and Christopher J Merz. UCI repository of machine learning databases
[http://www. ics. uci. edu/˜ mlearn/mlrepository. html]. Irvine, CA: University of
California. Department of Information and computer science, 55, 1998.

[139] Ivor Tsang, Andras Kocsor, and James Kwok. LibCVM toolkit. https://github.
com/aydindemircioglu/libCVM, 2011.

[140] Chih-Chung Chang and Chih-Jen Lin. LIBSVM-2.91: A library for support
vector machines. Software available at https://www.csie.ntu.edu.tw/~cjlin/
libsvm/oldfiles/, 2011.

[141] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

[142] A L Afzal and S Asharaf. Deep kernel learning in core vector machines. Pattern
Analysis and Applications, pages 1–9, 2017.

[143] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[144] Guang-Bin Huang, Qin-Yu Zhu, and Chee Kheong Siew. Real-time learning capa-
bility of neural networks. IEEE Transactions on Neural Networks, 17(4):863–878,
2006.

[145] Guang-Bin Huang, Lei Chen, and Chee Kheong Siew. Universal approximation
using incremental constructive feedforward networks with random hidden nodes.
IEEE Transactions on Neural Networks, 17(4):879–892, 2006.

[146] Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang. Extreme
learning machine for regression and multiclass classification. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2):513–529, 2012.

[147] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Pro-
ceedings of the 22nd ACM SIGSAC conference on computer and communications
security, pages 1310–1321. ACM, 2015.

[148] Guang-Bin Huang. An insight into extreme learning machines: random neurons,
random features and kernels. Cognitive Computation, 6(3):376–390, 2014.

109

https://github.com/aydindemircioglu/libCVM
https://github.com/aydindemircioglu/libCVM
https://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles/
https://github.com/fchollet/keras


List of Publications

International Journals

• Afzal, A.L. and Asharaf, S., “Deep kernel learning in core vector machines”.

Pattern Analysis and Applications, Springer. [ Impact Factor : 1.352; Indexed in

: Science Citation Index Expanded (SciSearch), Journal Citation Reports/Science

Edition, SCOPUS, etc.. ]

• Afzal A.L. and Asharaf S. “Deep multiple multilayer kernel learning in core vector

machines”, Expert Systems with Applications, Elsevier. [ Impact Factor : 3.928;

Indexed in : Science Citation Index Expanded, Scopus, etc..]

Manuscript Submitted

• Afzal, A.L., Nikhitha k. Nair and Asharaf, S., “Kernel based extreme learning

machines”. Pattern Analysis and Applications, Springer. [ Impact Factor : 1.352;

Indexed in : Science Citation Index Expanded (SciSearch), Journal Citation Re-

ports/Science Edition, SCOPUS, etc.. ]



THEORETICAL ADVANCES

Deep kernel learning in core vector machines

A. L. Afzal1 • S. Asharaf2

Received: 4 August 2016 /Accepted: 18 January 2017 / Published online: 11 February 2017

� Springer-Verlag London 2017

Abstract In machine learning literature, deep learning

methods have been moving toward greater heights by

giving due importance in both data representation and

classification methods. The recently developed multilay-

ered arc-cosine kernel leverages the possibilities of

extending deep learning features into the kernel machines.

Even though this kernel has been widely used in con-

junction with support vector machines (SVM) on small-

size datasets, it does not seem to be a feasible solution for

the modern real-world applications that involve very large

size datasets. There are lot of avenues where the scalability

aspects of deep kernel machines in handling large dataset

need to be evaluated. In machine learning literature, core

vector machine (CVM) is being used as a scaling up

mechanism for traditional SVMs. In CVM, the quadratic

programming problem involved in SVM is reformulated as

an equivalent minimum enclosing ball problem and then

solved by using a subset of training sample (Core Set)

obtained by a faster ð1þ �Þ approximation algorithm. This

paper explores the possibilities of using principles of core

vector machines as a scaling up mechanism for deep sup-

port vector machine with arc-cosine kernel. Experiments

on different datasets show that the proposed system gives

high classification accuracy with reasonable training time

compared to traditional core vector machines, deep support

vector machines with arc-cosine kernel and deep convo-

lutional neural network.

Keywords Deep kernel � Core vector machines �
Scalability � Support vector machines � Arc-cosine kernel

1 Introduction

The attempts to build algorithms to solve cognitive tasks

such as visual object or pattern recognition, speech per-

ception, and language understanding, etc. have attracted

the attention of many machine learning researchers in the

recent past. The theoretical and biological arguments in

this context strongly suggest that building such systems

requires deep architectures that involve many layers of

nonlinear information processing. This deep structured

learning paradigm is commonly called deep learning or

hierarchical learning. In machine learning research, some

of the motivating factors favoring deep learning architec-

tures are: the wide range of functions that can be param-

eterized by composing weakly nonlinear transformations,

the appeal of hierarchical distributed representations and

the potential for combining unsupervised and supervised

methods [5, 13, 14, 17, 20]. Deep learning approach has

originally emerged and been widely used in the area of

neural networks. Techniques developed from deep learning

researches have already been impacting a wide range of

signal and information processing application areas

[12, 18, 27]. Deep architectures learn complex mappings

by transforming their inputs through multiple layers of

nonlinear processing. They involve highly nonlinear opti-

mizations and many heuristics for gradient-based learning,

& A. L. Afzal

afzal.res15@iiitmk.ac.in

S. Asharaf

asharaf.s@iiitmk.ac.in

1 Data Engineering Lab, Indian Institute of Information

Technology and Management-Kerala (IIITM-K),

Thiruvananthapuram, India

2 Indian Institute of Information Technology and Management-

Kerala (IIITM-K), Thiruvananthapuram, India

123

Pattern Anal Applic (2018) 21:721–729

https://doi.org/10.1007/s10044-017-0600-4

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-017-0600-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-017-0600-4&amp;domain=pdf
https://doi.org/10.1007/s10044-017-0600-4


which do not guarantee global optimal solutions due to the

non-convexity of the optimization problem.

In the recent past, machine learning researchers have

tried to adapt deep learning techniques for other machine

learning paradigms like kernel machines. The machine

learning approaches leveraging the concepts of kernel trick

are referred as the kernel machine. The kernel machines

have become rather popular in machine learning literature

because of its very strong mathematical slant and guaran-

teed global optima. Any machine learning algorithm

modeled by the inner product between data samples can be

transformed into kernel machines by choosing an appro-

priate kernel that compute the inner product of data sam-

ples implicitly in the feature space [19]. The recently

developed multi layered kernel called arc-cosine kernel [8]

leverages the possibilities of extending deep learning fea-

tures into the kernel machines. The arc-cosine kernel has

multiple layers of nonlinear transformation that mimics the

computations in multilayer neural network. The nonlinear

transformation in each layer is determined by the given

value of its activation or degree. Arc-cosine kernels of

different degrees have qualitatively different geometric

properties. There are reported works which demonstrate the

possibility of deep kernel machine by combining the well-

known kernel machine, support vector machine, with deep

arc-cosine kernel and it has been widely used in applica-

tions that involve small-size datasets [8]. However, these

deep support vector machine (DSVM)1 models show high

computational complexity and necessitate much of explo-

ration on its scalability aspects.

Traditional Binary [11, 26] and multi-class [15] SVMs

have been usually formulated as Quadratic Programing

(QP) problem, and this formulation has a time complexity2

of Oðn3Þ and a space complexity of Oðn2Þ, for ‘n’ training
samples. If an l-layered arc-cosine kernel is used for

modeling a deep kernel machine, then its time complexity

will be the order of Oðl � n3Þ. It may take months or years

for learning modern real-world applications that involve

large amount of data samples. It is a long-term research to

scale up kernel machines particularly SVMs so as to con-

ciliate modern real-world applications that involve very

large size datasets.

Many attempts have been made to solve this scalability

problem in kernel machines. The recent development in this

category, the core vector machine (CVM), resolves the scal-

ability problembyexploiting the ‘‘approximateness’’ property

of SVMs and reformulating the quadratic problem (QP) as an

equivalent minimum enclosing ball problem (MEB) and then

uses an ð1þ �Þ MEB approximation algorithm to obtain the

core set (a subset of training samples) in the kernel-induced

feature space [23]. This would attain a reduced time com-

plexity as linear and a space complexity which is independent

of both dimension and size of input data sample. Even though

the CVM achieves a faster execution on large dataset it can

only be used with certain kernel functions and methods. This

limitation has been solved in generalized core vector machi-

nes [22] by extending the CVM implementation with the

center-constrained MEB problem. It still preserve the time

complexity as linear and space complexity that is independent

of both dimension and size of input dataset. Ball vector

machines (BVM) is an another implementation of CVM in

which the authors use an easier enclosing ball (EB) problem

where the ball’s radius is fixed [25]. They also proposed three

ð1þ �Þ approximation algorithm to obtain the core set and its

implementation do not use any numerical solver. Another

major contribution toward the performance of CVM is cluster

based core vectormachine [1]. It improves the performance of

CVM by using Gaussian Kernel function irrespective of the

orderings of pattern belonging to different classes with in the

dataset. According to the authors, their method employs a

selective sampling based training of CVM using a novel-

based scalable hierarchical clustering algorithm. A powerful

approach to scale up SVM for multi-class classification is

multi-class core vector machine (MCVM) [2] that uses CVM

techniques to solve the quadraticmulti-class problemdefining

an SVM with vector-valued output. Even though all these

proposals have been performingwell for traditional SVM, the

scalability aspects of deep support vector machine needmuch

of exploration. This paper explores the possibility of using

CVM as a scaling up mechanism for deep kernel machines,

particularly deep support vector machines.

The rest of the paper is organized as follows. The basic

idea of core vector machine and arc-cosine kernel are given

in Sects. 2 and 3, respectively. Section 4 deals with pro-

posed scalable deep kernel machine. Experimental results

and main observations are included in Sect. 5. Section 6

gives conclusions.

2 Core vector machines

The state-of-the-art SVM implementations involves quad-

ratic programming (QP) problem and typically have a time

complexity of Oðn3Þ. To reduce the time and space com-

plexities, core vector machine [23] has been proposed as a

scaling up mechanism for SVM. Such architecture tend to

obtain approximately optimal solution for SVM by refor-

mulating the QP problem as an equivalent minimum

enclosing ball (MEB) and then uses an efficient minimum

1 DSVM: support vector machines with arc-cosine kernel.
2 Solving the quadratic problem and choosing the support vectors

involves the order of n2, while solving the quadratic problem directly

involves inverting the kernel matrix, which has complexity on the

order of n3.

722 Pattern Anal Applic (2018) 21:721–729

123

Author's personal copy



enclosing ball approximation algorithm with the idea of

core set, a subset of training samples. It can be further

explained as in the following paragraphs.

Let A ¼ fa1; a2; . . .; ang where ai 2 Rd be the data

points then the MEB(A), expressed as BAðc; rÞ, computes

the minimum radius of a ball that covers all the data points

in A with center c and radius r. The primal and its equiv-

alent dual form of MEB(A) can be expressed in the fol-

lowing two equations [24]:

ðc; rÞ ¼ min
c;r

r2 : c� aik k2 � r2; 8i ð1Þ

max
a

Xn

i¼1

ai aiaih i �
Xn

i;j¼1

aiaj aiaj
� �

s:t:
Xn

i¼1

ai ¼ 1; ai � 0; 8i
ð2Þ

Any QP of this form can be considered as MEB problem3.

The equivalent MEB problem in kernel-induced feature

space for the kernel function ‘k’ satisfies the condition

kða; aÞ ¼ z, a constant, can be expressed as [25]

Primal form:

ðc; rÞ ¼ min
c;r

r2 : c� /ðaiÞk k2 � r2; 8i ð3Þ

Dual form:

max
ai

Xn

i¼1

aikii �
Xn

i;j¼1

aiajkij

s:t: ai � 0; for i ¼ 1. . .m;
Xn

i¼1

ai ¼ 1

ð4Þ

where kij ¼ kðai; ajÞ ¼ /ðaiÞ;/ðajÞ
� �

. It is observed that if

a kernel is either isotropic4 (e.g., Gaussian kernel) or a dot

product - kðx; yÞ ¼ klðx
0
yÞ (e.g., polynomial kernel with

normalized inputs) or any normalized kernel then it satis-

fies the condition kii ¼ z and hence the kernel machines

involving these types of kernel can be easily converted to

MEB problem. For example, the two class SVM can be

reformulated as an MEB problem and expressed in Wolfe

dual form [2] as

min
a

Xn

i;j¼1

aiaj yiyjkðxixjÞ þ yiyj þ
dij
C

� �

s:t:
Xm

i¼1

ai ¼ 1; ai � 0 8i
ð5Þ

where xi 2 Rd, yi 2 fþ1;�1g, a is Lagrangian multiplier

and dij is the Kronecker delta function.5 By using the

transformed kernel k̂ij ¼ yiyjðkij þ 1Þ þ dij
C
, the above

equation can be reformulated as

min
a

Xn

i;j¼1

aiajk̂ij s:t:
Xn

i¼1

ai ¼ 1 ai � 0 8i ð6Þ

when kðx; xÞ ¼ c, a constant, is satisfied, the transformed

kernel k̂ also satisfies the condition k̂ðx; xÞ ¼ c1, some con-

stant. Hence, the two class SVM problem, as shown in Eq. 5,

can be further scaled by the idea of core sets obtained by a

faster ð1þ �Þ approximation of MEB problem [3, 16]. Let

Bxðc; rÞ be the MEB(X) for X � A, then an expansion by a

factor of ð1þ �Þ on MEB(X), Bxðc; rð1þ �ÞÞ covers all the
points in A, and then X is said to be the core set of A. More

formally, for a given �� 0; Bxðc; ð1þ �ÞrÞ is an ð1þ �Þ
approximation of MEB(A) if A � Bxðc; ð1þ �ÞrÞ. An itera-

tive strategy proposed by [4] has been used to achieve this

ð1þ �Þ approximation. In each iteration, the radius ri of the

current evaluation Bxðci; riÞ is incremented by a factor of

ð1þ �Þ and a point in A, farthest and outside of the ball

Bxðci; ð1þ �ÞriÞ, is added to the core set. This process is

repeated until there is no such point in the given dataset A.

3 Arc-cosine kernel: a deep kernel

Deep learning processes have been originated and pursuing

in the area of artificial neural network. Meanwhile, some of

the researchers turn their attention toward the exploration

of the possibilities of deep learning in kernel machines

particularly on well-known maximal margin classifier,

support vector machines (SVM). The first approach in this

area was the optimization of multiple, multilayered arc-

cosine kernel [9] and the authors defined the nth-order

kernel in the family of arc-cosine kernel as

knðx; yÞ ¼ 2

Z
dw

e�
Wk k2
2

ð2PÞ
d
2

Hðw:xÞHðw:yÞðw:xÞnðw:yÞn ð7Þ

where H denotes the Heaviside function;

HðzÞ ¼ 1
2
ð1þ signðzÞÞ. The above equation has a depen-

dency on both magnitudes of the inputs and angle between

them. In simple form, it can be written as:

knðx; yÞ ¼
1

p
xk kn yk knjnðhÞ ð8Þ

where the angular dependency

3 a; bh i represent dot product between vectors a,b.
4 When a kernel depends only on the norm of the lag vector between

two examples, and not on the direction, then the kernel is said to be

isotropic: kðx; zÞ ¼ klð x� yk kÞ.
5 dij ¼

1 if i ¼ j

0 if i 6¼ j

�

Pattern Anal Applic (2018) 21:721–729 723

123

Author's personal copy



jnðhÞ ¼ ð�1Þnðsinh2nþ1Þ 1

sinh
o

oh

� �n p� h
sinh

� �
ð9Þ

The authors also provided first three expressions of jnðhÞ as

j0ðhÞ ¼p� h

j1ðhÞ ¼sinhþ ðp� hÞcosh
j2ðhÞ ¼3sinhcoshþ ðp� hÞð1þ 2cos2hÞ:

For the case n = 0, the kernel function takes the simple

form:

k0ðx; yÞ ¼ 1� h
p

ð10Þ

The angle h between the input vectors x and y is

h ¼ cos�1 ðx:yÞ
jxj jj jyj jj

� �
ð11Þ

The multilayered, deep arc-cosine kernel can be formed by

combining single layered arc-cosine kernel (Eq. 8) in an

iterative manner, with same or different activation function

in each layer. The layered kernel learning process start

with initial kernels: k0ðxi; xiÞ ¼ \xi; xi [ , k0ðxj; xjÞ ¼
\xj; xj [ and k0ðxi; xjÞ ¼ \xi; xj [ . The working pro-

cedure of multilayered arc-cosine kernel [8] has been

shown in Algorithm 1. In this algorithm, the subfunction

Compute J (Algorithm 2) is used to compute the angular

dependency Jnh.

This kernel has been successfully used in conjunction

with SVM and has demonstrated promising results in many

real-world applications. However, their generalization

performance is often controlled by the size of datasets.

4 Deep core vector machine

In multilayered arc-cosine kernel, each layer may have

different activation function (degree). The nonlinear

transformation in each layer is determined by the given

value of its degree. The arc-cosine kernel with different

activation functions has qualitatively different geometric

properties [9]. Let n be the degree of the arc-cosine kernel

at a particular level. Then, for the case n ¼ 0 arc-cosine

kernel maps input x to the unit hypersphere in feature

space, with k0ðx; xÞ ¼ 1 and it behaves like radial basis

function (RBF). For the case n ¼ 1, arc-cosine kernel

preserves the norm of input with k1ðx; xÞ ¼ jxj jj2 which is

similar to linear kernel and in the case of n� 1, it expands

the dynamic range of the input, with knðx; xÞ ¼ jxj jj2n and it
is similar to polynomial kernel. From the above analysis of

arc-cosine kernel, we can see that some special cases,

particularly with degree 0, satisfies the required condition

(kðxi; xiÞ ¼ c; a constant) for being a kernel function in

CVM. Based on this observation, we are modeling a new

724 Pattern Anal Applic (2018) 21:721–729

123

Author's personal copy



scalable deep core vector machine by combining the deep

arc-cosine kernel with the core vector machine.

Equation 6 shows an equivalent MEB formulation of

two class support vector machine, where the transformed

kernel k̂ij ¼ yiyjðkij þ 1Þ þ dij
C
. In this transformed kernel, kij

represents the actual kernel function and it should satisfy

the condition kii ¼ c; a constant. Similarly, we can write

the equivalent MEB formulation of deep kernel machine

with multiple, multilayered (deep) kernel as

min
a

Xn

i;j¼1

aiajk̂
l
nðxi; xjÞ s:t:

Xn

i¼1

ai ¼ 1; ai � 0 8i ð12Þ

where the transformed kernel

k̂lnðxi; xjÞ ¼ yiyjðklnðxi; xjÞ þ 1Þ þ dij
C

ð13Þ

Here Kl
nðxi; xjÞ represents l-fold arc-cosine kernel with

degree n. It is recursive in nature and can be expressed as

klnðxi; xjÞ ¼
1

p
½kðl�1Þ

n ðxi; xiÞkðl�1Þ
n ðxj; xjÞ	

n
2jnh

ðl�1Þ
n

ð14Þ

where hðlÞn is the angle between the images of x and y in the

feature space induced by the l-fold composition.

hðlÞn ¼ cos�1 k
ðlÞ
n ðxi; xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
ðlÞ
n ðxi; xiÞkðlÞn ðxj; xjÞ

q

0
B@

1
CA ð15Þ

jnh is the angular dependency and its various forms are

discussed in Sect. 3. The details of learning process in deep

core vector machine using multilayered arc-cosine kernel

(DCVM) have been given in the following section.

4.1 DCVM algorithm

The learning process in deep core vector machine uses the

concept of core set obtained by ð1þ �Þ approximation of

MEB, as in CVM. The iterative ð1þ �Þ approximation

algorithm for DCVM is shown in Algorithm 3. The sym-

bols used in this algorithm are:

• T: the data set.

• Si: the current core set.

• ci; ri: the ball center and radius at ith iteration.

• k: the kernel matrix
Pn

i;j¼1 k
l
nðxi; xjÞ

• k̂ln; /̂
l
n: transformed deep kernel and its associated map.

n is the activation function at layer l.

This algorithm employs the following user defined

parameters

• The parameter L represents the list of degree (Activa-

tion function) of each layer. size (L) gives the number

of layers.

• � for MEB approximation algorithm.

Algorithm starts with the initialization of core set S with

one point from each of the classes [2]. In each iteration, the

data sample A 2 T in the feature space Ûl
nðAÞ which is

outside of the ð1þ �Þ ball (ci;Rið1þ �Þ) and furthest from

ci is taken as core vector. It involves computing the dis-

tance between the current center ci and Ûl
nðAjÞ, 8Aj 2 T . It

seems to be very expensive when the size of dataset is

large. Here we are using a method mentioned in [23] to

speedup the computational effort to find the furthest data

point. This distance computation uses the multilayered arc-

cosine kernel (kln) evaluation instead of explicit Ûl
nðAÞ.

Pattern Anal Applic (2018) 21:721–729 725

123

Author's personal copy



ci � Ûl
nðAjÞ

�� ��2 ¼
X

Am;An2Si
amank̂lnðAm;AnÞ

� 2
X

Ai2Si
aik̂lnðAi;AjÞ þ k̂lnðAj;AjÞ

ð16Þ

The transformed kernel in this equation can be computed

by Eq. 13 and its subsequences. The deep layered arc-

cosine kernel uses an incremental approach for its training

process, and it can be computed by using Algorithm 1. For

example, the arc-cosine kernel of depth 1 with degree n can

be computed as:

k1nðx; yÞ ¼
1

p
½kð0Þn ðx; xÞkð0Þn ðy; yÞ	

n
2jnðhð0Þn Þ ð17Þ

where the base kernels k0ðx; xÞ ¼ \x; x[ and, k0ðy; yÞ ¼
\y; y[ .

The training process in DCVM, except kernel compu-

tation, is same as that of core vector machines. In the

proposed DCVM, the kernel parameter is a structure L,

representing the list of activation values in each layer. The

size of L determines the depth of the arc-cosine kernel. In

machine leaning literature, any concrete method has not

been reported for the selection of number of layers and list

of activation values for the multilayered arc-cosine kernel

and still this exist as an open problem. It is a common

practice to train the arc-cosine model with all the combi-

nation of selected range of activation values. The MEB

approximation algorithm for deep core vector machine

terminates when there is no data sample outside of the

ð1þ �Þ ball. The high accuracy and low computational

complexity of DCVM show its high potential in the context

of deep kernel machines.

5 Experimental results

Experiments have been conducted on seven data sets taken

from both libSVM site [7] and UCI machine learning

repository [6]6. Table 1 shows the dataset composition. The

training data size is ranged from 3823 to 19,264,097, and

the range of dimension is from 16 to 29,890,095. All the

methods except deep convolutional neural network (Deep

CNN) use sparse representation of data.

The proposed deep core vector machine (DCVM) has

been implemented in C?? by combining the features from

both the packages libCVM-2.2 [21] and libSVM-2.917. The

experimental results of CVM/BVM were obtained by using

the package libCVM-2.2, whereas the libSVM-2.91 was

used for SVM and deep SVM (DSVM). In both the cases,

the package-specified default values were used for all its

parameters. Deep CNN has been implemented in python

2.7.6 using the library Keras with Theano backend. All

experiments were done on a server machine configured

with AMD Opteron 6376 @ 2.3 GHz/16 core processor and

16 GB RAM. The radial basis function (rbf kernel) with

c ¼ 1=number of features has been used in SVM. In the

case of DSVM and DCVM, experiments were repeated for

arc-cosine kernel with all the combinations of activation

values 0, 1, 2 and 3. By fixing softmax as the output layer

activation function, various layer-activation-optimization

combinations were experimented with Deep CNN. The list

of common attributes and its values [10] used in Deep

CNN are displayed in Table 2. The generalization perfor-

mance in terms of prediction accuracy (in %) and CPU

time (in s) have been recorded in all the experiments.

5.1 Performance evaluation

This section compares the accuracy of our proposed

DCVM with DSVM and deep CNN. we also compare the

variation in accuracies while transforming shallow-based

SVM and CVM into deep SVM and deep CVM, respec-

tively. The performance of deep CNN on various datasets

are shown in Table 3. The column names Act, Optm and

Acc represent activation function, optimization technique

and prediction accuracy, respectively. Column #Layers

record the number of convolutional layers and the column

name. Filters represent the combination of number of

Table 1 The seven publicly

available datasets taken from

libSVM and UCI repositories

S. No. Dataset #Clss #Dim #Train #Test

1 Optdigit 9 64 3823 1797

2 Satimage 6 36 4435 2000

3 Pendigit 10 16 7494 3498

4 Letter 26 16 15,000 5000

5 Ijcnn1 2 22 49,990 91,701

6 News 20 20 62,061 15,935 3993

7 KDD-CUP-2010 2 29,890,095 19,264,097 748,401

6 Optdigit was taken from UCI machine learning repository and all

other datasets were taken from libSVM.
7 Available at: https://www.csie.ntu.edu.tw/cjlin/libsvm/oldfiles/.

726 Pattern Anal Applic (2018) 21:721–729

123

Author's personal copy

https://www.csie.ntu.edu.tw/cjlin/libsvm/oldfiles/


filters. The column CPUtime stores the training time in

seconds. In the case of Kdd-Cup-2010 dataset, if the

number of layers exceed 2, Deep CNN does not converges

even after 5 days of its training.

Table 4 shows the classification accuracy of deep core

vector machine (in column DCVM), the best among tra-

ditional CVM and BVM (in column CVM/BVM), deep

support vector machine (in column DSVM), support vector

machine (in column SVM) and deep CNN (in column

DCNN) on various datasets. For the datasets 1–5, the

prediction accuracy values in column CVM/BVM and

SVM were taken from the paper [25]. For the remaining

datasets, our experimental result on libCVM-2.2 and

libSVM-2.91 packages were recorded. In our experiment,

default values were assigned to all the parameters except

degree of arc-cosine kernels. In the case of DCVM and

DSVM, the corresponding activation values for the l-fold

arc-cosine kernel are shown in parenthesis. For example, in

the case of Satimage dataset, DCVM and DSVM performs

well in 3-layer arc-cosine kernel with degrees 0, 1 and 2,

respectively. The bold face values indicates the highest

accuracy on each dataset. The NT values in this

table shows that there is no result within 5 days of training.

The following factors can be observed from Table 4.

• In terms of accuracy, DCVM performs better than the

best of CVM/BVM models, traditional deep support

vector machines and deep CNN.

• Introducing deep arc-cosine kernel into CVM is more

appreciated than that of SVM.

For comparing the performance in terms of computation

time, we have recorded the training time taken by DSVM

and DCVM on various datasets and it is shown in Table 5.

As in the case of accuracy, the NT values in this table also

show that there is no result within 5 days. Minimum

training time taken for each dataset is shown in bold val-

ues. With the increase in training size, it is observed that

the training time for DCVM is comparatively lesser than

that of DSVM.

Performance of the proposed DCVM in terms of training

time against the size of dataset can be further illustrated by

the graph shown in Fig. 1. In this experiment, we have

created four data subset of sizes 104; 105; 106 and 107

respectively, from the KDD-CUP-2010 raining dataset

Table 2 List of common attributes and its values used in deep con-

volution neural network model

Attributes Values

Loss function Categorical cross-entropy

Convolution layer-filter size 3
 1

Max-pooling size 2
 1

No. of epochs 10

Batch size 10

Activation functions tested relu; liear; sigmoidf g
Optimizers tested sgd; adam; adagrad; adamaxf g

Table 3 The performance of

deep CNN in terms of accuracy

and CPU times

Datasets #Layers Filters Act Optm Acc CPUtime

Optdigit 6 (64,64,128,128,256,256) Linear Sgd 96.88 303.21

Satimage 6 (64,64,128,128,256,256) Relu Adam 90.87 417.43

Pendigit 8 (64,64,128,128,128,256,256,256) Relu Adamax 98.04 627.82

Letter 8 (64,64,128,128,128,256,256,256) Linear Sgd 89.57 1022.72

Ijcnn1 8 (64,64,128,128,128,256,256,256) Relu Adamax 98.97 3312.7

News 20 7 (64,64,128,128,128,256,256) Linear Sgd 83.87 14630.68

Kdd-Cup-2010 2 (16,32) Linear Adam 43.25 112,347.40

Table 4 The generalization

performance in terms of

prediction accuracy of Deep

CVM, CVM/BVM, deep SVM,

SVM and deep CNN

Dataset DCVM CVM/BVM DSVM SVM DCNN

Optdigit 97.71 (0) 96.38 97.02 (0,1) 96.77 97.01

Satimage 92.15 (0,1,2) 89.60 90.35 (0,1,2) 89.55 90.87

Pendigit 98.37 (0,1) 97.97 97.94 (0,1,2) 97.91 98.04

Letter 96.94 (1,0) 94.47 95.02 (0,1,2) 94.25 90.57

Ijcnn1 99 (0,1,2) 98.67 97.99 (0,1) 98.97 98.97

News 20 84.07 (0,1,2) 79.61 83.92 (0,1,2) 72.38 83.87

Kdd-Cup-2010 88.75 (0) 63.83 NT 61 43.25

For the datasets (1–5), the values in CVM/BVM and SVM were taken from [25]. The list of activation

values for the deep arc-cosine kernel has been shown in parenthesis

Pattern Anal Applic (2018) 21:721–729 727

123

Author's personal copy



mentioned in Table 1. The DCVM and DSVM were trained

with all the combination of activation values 0, 1, 2 and 3

of arc-cosine kernel. The training time taken by DCVM

and DSVM against highest accuracy was recorded for

plotting the graph. A common data subset of size 25,000,

created from the KDD-CUP-2010 testing dataset, was used

as testing dataset. The major observations from this graph

are:

• DCVM is much faster than DSVM on large datasets.

• As the number of training sample increases, the growth

rate of training time of DCVM is highly appreciative

when compared to that of DSVM.

• On KDD-CUP 2010, DSVM does not converge even

after 5 days of execution when the sample size exceeds

106.

• On small datasets, DSVM converges more quickly,

because of its highly sophisticated heuristics.

6 Conclusions

This paper models deep core vector machine as a scalable

mechanism for deep support vector machines. While ana-

lyzing the behavior of arc-cosine kernel, it has been

observed that in some cases of activation function arc-

cosine kernel satisfies the required condition for being a

kernel in core vector machines. Our proposed algorithm

combines the widely used scaling up mechanism for SVM

such as core vector machines and the deep arc-cosine

kernel. Various experiments on different datasets have

been conducted to demonstrate the generalization perfor-

mances in terms of prediction accuracy and training time of

our proposed deep core vector machine. Even in the case of

large size datasets, our model converges with high accu-

racy in a lower training time. The empirical results also

show the potential of DCVM in the context of scalable

deep kernel machines.

Exploration of the possibilities of using core vector

machine in the context of scalable deep multiple kernel

learning model is a potential future dimension. The gen-

eralization of deep core vector machines to the multi-view

version for handling the input data with multiple feature

representations is another area for further exploration.

Table 5 Training time of DCVM and DSVM on various datasets

Dataset DCVM DSVM DCNN

Optdigit 1.23 2.02 203.21

Satimage 2.73 2.14 217.49

Pendigit 3.02 2.90 427.82

Letter 28.01 30.03 631.46

Ijcnn1 316.97 383.23 7312.71

News 20 329.43 403.09 14,630.68

Kdd-Cup-2010 95879 NT 112,347.40

The training times are recorded in seconds and it is against the

accuracy shown in Table 4

Fig. 1 Training time of DSVM

and DCVM on different size of

KDD-cup-2010 datasets

728 Pattern Anal Applic (2018) 21:721–729

123

Author's personal copy



References

1. Asharaf S, Murty MN, Shevade SK (2006) Cluster based core

vector machine. In: Sixth international conference on data mining

(ICDM’06), IEEE, pp 1038–1042

2. Asharaf S, Murty MN, Shevade SK (2007) Multiclass core vector

machine. In: Proceedings of the 24th international conference on

machine learning, ACM, pp 41–48

3. Bădoiu M, Clarkson KL (2008) Optimal core-sets for balls.

Comput Geom 40(1):14–22

4. Bādoiu M, Har-Peled S, Indyk P (2002) Approximate clustering

via core-sets. In: Proceedings of the thirty-fourth annual ACM

symposium on theory of computing, ACM, pp 250–257

5. Bengio Y, Lamblin P, Popovici D, Larochelle H et al (2007)

Greedy layer-wise training of deep networks. Adv Neural Inf

Process Syst 19:153

6. Blake C, Merz CJ (1998) UCI repository of machine learning

databases [http://www.ics.uci.edu/*mlearn/mlrepository.html].

University of California. Department of Information and Com-

puter Science 55, Irvine

7. Chang CC, Lin CJ (2011) Libsvm: a library for support vector

machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

8. Cho Y, Saul LK (2009) Kernel methods for deep learning. In:

Advances in neural information processing systems, pp 342–350

9. Cho Y, Saul LK (2011) Analysis and extension of arc-cosine

kernels for large margin classification. arXiv preprint arXiv:

11123712

10. Chollet F (2015) Keras. https://github.com/fchollet/keras

11. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

12. Hinton G, Deng L, Yu D, Dahl GE, Ar Mohamed, Jaitly N,

Senior A, Vanhoucke V, Nguyen P, Sainath TN et al (2012) Deep

neural networks for acoustic modeling in speech recognition: the

shared views of four research groups. IEEE Sign Process Mag

29(6):82–97

13. Hinton GE (2007) Learning multiple layers of representation.

Trends Cogn Sci 11(10):428–434

14. Hinton GE, Osindero S, Teh YW (2006) A fast learning algo-

rithm for deep belief nets. Neural Comput 18(7):1527–1554

15. Ji Y, Sun S (2013) Multitask multiclass support vector machines:

model and experiments. Pattern Recogn 46(3):914–924

16. Kumar P, Mitchell JS, Yildirim EA (2003) Approximate mini-

mum enclosing balls in high dimensions using core-sets. J Exp

Algorithm (JEA) 8:1–1

17. Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional

deep belief networks for scalable unsupervised learning of hier-

archical representations. In: Proceedings of the 26th annual

international conference on machine learning, ACM, pp 609–616

18. Miao Y, Metze F, Rawat S (2013) Deep maxout networks for

low-resource speech recognition. In: Automatic speech recogni-

tion and understanding (ASRU), 2013 IEEE Workshop on, IEEE,

pp 398–403

19. Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An

introduction to kernel-based learning algorithms. IEEE Trans

Neural Netw 12(2):181–201

20. Salakhutdinov R, Hinton GE (2009) Deep boltzmann machines.

In: AISTATS, vol 1, p 3

21. Tsang I, Kocsor A, Kwok J (2011) Libcvm toolkit. https://github.

com/aydindemircioglu/libCVM

22. Tsang IH, Kwok JY, Zurada JM (2006) Generalized core vector

machines. IEEE Trans Neural Netw 17(5):1126–1140

23. Tsang IW, Kwok JT, Cheung PM (2005) Core vector machines:

Fast svm training on very large data sets. J Mach Learn Res

6:363–392

24. Tsang IW, Kwok JTY, Cheung PM (2005) Very large svm

training using core vector machines. In: AISTATS

25. Tsang IW, Kocsor A, Kwok JT (2007) Simpler core vector

machines with enclosing balls. In: Proceedings of the 24th

international conference on machine learning, ACM, pp 911–918

26. Vapnik V, Golowich SE, Smola A, et al (1997) Support vector

method for function approximation, regression estimation, and

signal processing. Adv Neural Inf Process Syst 281–287

27. Zhong Sh, Liu Y, Liu Y (2011) Bilinear deep learning for image

classification. In: Proceedings of the 19th ACM international

conference on Multimedia, ACM, pp 343–352

Pattern Anal Applic (2018) 21:721–729 729

123

Author's personal copy

http://www.ics.uci.edu/%7emlearn/mlrepository.html
http://arxiv.org/abs/11123712
http://arxiv.org/abs/11123712
https://github.com/fchollet/keras
https://github.com/aydindemircioglu/libCVM
https://github.com/aydindemircioglu/libCVM


Expert Systems With Applications 96 (2018) 149–156 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Deep multiple multilayer kernel learning in core vector machines 

Afzal A.L. a , ∗, Asharaf S. b 

a Data Engineering Lab, Indian Institute of Information Technology and Management - Kerala (IIITM-K), Thiruvananthapuram, India 
b Indian Institute of Information Technology and Management - Kerala (IIITM-K), Thiruvananthapuram, India 

a r t i c l e i n f o 

Article history: 

Received 15 June 2017 

Revised 22 November 2017 

Accepted 30 November 2017 

Available online 2 December 2017 

Keywords: 

Deep kernel machines 

Unsupervised MKL 

Core vector machines 

Scalability 

Arc-cosine kernel 

Multilayer kernel learning 

a b s t r a c t 

Over the last few years, we have been witnessing a dramatic progress of deep learning in many real 

world applications. Deep learning concepts have been originated in the area of neural network and 

show a quantum leap in effective feature learning techniques such as auto-encoders, convolutional neu- 

ral networks, recurrent neural networks etc. In the case of kernel machines, there are several attempts to 

model learning machines that mimic deep neural networks. In this direction, Multilayer Kernel Machines 

(MKMs) was an attempt to build a kernel machine architecture with multiple layers of feature extraction. 

It composed of many layers of kernel PCA based feature extraction units with support vector machine 

having arc-cosine kernel as the final classifier. The other approaches like Multiple Kernel Learning (MKL) 

and deep core vector machines solve the fixed kernel computation problem and scalability aspects of 

MKMs respectively. In addition to this, there are lot of avenues where the use of unsupervised MKL with 

both single and multilayer kernels in the multilayer feature extraction framework have to be evaluated. 

In this context, this paper attempts to build a scalable deep kernel machines with multiple layers of 

feature extraction. Each kernel PCA based feature extraction layer in this framework is modeled by the 

combination of both single and multilayer kernels in an unsupervised manner. Core vector machine with 

arc-cosine kernel is used as the final layer classifier which ensure the scalability in this model. The major 

contribution of this paper is a novel effort to build a deep structured kernel machine architecture simi- 

lar to deep neural network architecture for classification. It opens up an extendable research avenue for 

researchers in deep learning based intelligent system leveraging the principles of kernel theory. Experi- 

ments show that the proposed method consistently improves the generalization performances of existing 

deep core vector machine. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent past, the application domains of machine learning 

have been extended over many highly complicated and contin- 

uously varying functions like speech perception, visual object or 

pattern recognition, language understanding etc. The recent break- 

throughs in these applications have been made possible through 

the recent advancement in machine learning paradigm called deep 

learning. The performance of learning algorithm on a particular 

application is highly influenced by the choice of data representa- 

tion being used. The motivating factor that favor deep learning is 

that it gives due importance in both data representation and clas- 

sification methods. In general, deep learning is a form of repre- 

sentation learning that attempts to build high-level abstractions 

in data using learning model composed of multiple non-linear 

∗ Corresponding author. 

E-mail addresses: afzal.res15@iiitmk.ac.in (A. A.L.), asharaf.s@iiitmk.ac.in (A. S.). 

transformations ( Bengio, Courville, & Vincent, 2013; Bengio et al., 

2009 ). The fast learning algorithm for multilayer neural networks 

by Hinton ( Hinton, Osindero, & Teh, 2006 ) was the breakthrough 

in deep learning. The other contributions such as greedy layer 

wise training ( Bengio, Lamblin, Popovici, Larochelle et al., 2007 ), 

sparse representation with energy-based model ( Ranzato, Poult- 

ney, Chopra, & LeCun, 2006 ), sparse representation for deep be- 

lief model ( Lee, Ekanadham, & Ng, 2008 ), convolutional neural 

networks ( Lee, Grosse, Ranganath, & Ng, 2009 ) etc. makes deep 

learning model more effective and popular. The techniques de- 

veloped from deep learning research have been widely used in 

many real world applications such as speech emotion recogni- 

tion ( Deng, Zhang, Marchi, & Schuller, 2013 ), sentence modeling 

( Kalchbrenner, Grefenstette, & Blunsom, 2014 ), face recognition 

( Lawrence, Giles, Tsoi, & Back, 1997 ), action recognition ( Du, Wang, 

& Wang, 2015 ), etc. The training process in deep learning architec- 

ture involves highly non-linear optimizations and many heuristics 

for gradient-based learning, which gets trapped in local optimal so- 

lutions due to the non-convexity of the optimization problem. 

https://doi.org/10.1016/j.eswa.2017.11.058 

0957-4174/© 2017 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.eswa.2017.11.058
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.11.058&domain=pdf
mailto:afzal.res15@iiitmk.ac.in
mailto:asharaf.s@iiitmk.ac.in
https://doi.org/10.1016/j.eswa.2017.11.058


150 A . A .L., A . S. / Expert Systems With Applications 96 (2018) 149–156 

On the other hand, the kernel machines succeeded in attain- 

ing more attention because of its ability to eliminate local op- 

tima and guaranteed global optimum with the help of convex loss 

functions. Kernel machines leverage the concept of kernel trick for 

the non-linear transformation of data samples. Support Vector Ma- 

chines (SVM) ( Cortes & Vapnik, 1995 ), Core Vector Machines (CVM) 

( Tsang, Kwok, & Cheung, 2005 ), Kernel based Principle Component 

Analysis (Kernel PCA) ( Rosipal, Girolami, Trejo, & Cichocki, 2001 ), 

etc., are the common kernel based learning algorithms. In recent 

years, some of the researchers turn their attention towards the 

development of kernel machines with deep learning capabilities 

( Cho & Saul, 2009; Wilson, Hu, Salakhutdinov, & Xing, 2016 ). Re- 

cently developed multilayer arc-cosine kernel ( Cho & Saul, 2009 ) 

enrich the kernel machines with multiple layers of kernel compu- 

tation. Arc-cosine kernel may have different activation value or de- 

gree that shapes its behavior. A multilayer arc-cosine kernel with 

same or different activation values in each layer mimics the com- 

putations in multilayer neural network and it has been well eval- 

uated with popular kernel machines like support vector machines 

and core vector machines. 

The multilayer feature learning perceptiveness of deep learn- 

ing architecture have been re-created in kernel machines through 

the model called Multilayer Kernel Machines(MKMs) ( Cho & 

Saul, 2009 ). It includes multiple layers of kernel PCA based fea- 

ture extraction and a deep support vector machine (DSVM) 1 as 

the final classifier. The kernel PCA based feature extraction in- 

volves only a single fixed kernel computation. The generalization 

performance of these machines heavily depends on the kernel be- 

ing selected and this limitation has been addressed by the lin- 

ear or convex combination of base kernels called Multiple Ker- 

nel Learning (MKL) ( Bach, Lanckriet, & Jordan, 2004 ). Traditional 

MKL algorithms follow supervised learning strategy which required 

class labels. However, the vast amount and high availability of un- 

labeled data demands an unsupervised method for the combina- 

tion of multiple kernels. In the paper ( Zhuang, Wang, Hoi, & Lan, 

2011 ), the authors have proposed an unsupervised multiple kernel 

learning method which evaluate the linear combination of multi- 

ple single layer kernels purely from unlabeled data. Even though 

this method has been widely used in many applications, the pos- 

sibility of combining single layer and multi layer kernels in an un- 

supervised method and their application in the context of feature 

extraction need much more exploration. 

The other major problem faced by these MKMs are its high 

computational complexity caused by the deep support vector ma- 

chine used as the final classifier. DCVMs are often formulated as 

in quadratic form ( Cortes & Vapnik, 1995; Ji & Sun, 2013 ) and it 

makes the computation very complex and expensive 2 for the appli- 

cations that involves large size datasets. The concepts of core vec- 

tor machine ( Tsang et al., 2005 ) and its subsequent works ( Asharaf, 

Murty, & Shevade, 20 06; 20 07; Tsang, Kwok, & Zurada, 2006; 

Tsang, Kocsor, & Kwok, 2007 ) were mainly focused on the scala- 

bility aspects of shallow based support vector machines. The scal- 

ability aspects of deep support vector machines were addressed 

by deep core vector machines ( Afzal & Asharaf, 2017 ) and it has 

been modeled by coupling the multilayer arc-cosine kernel with 

the core vector machines. However further exploration is required 

to evaluate the feasibility of deep core vector machines to address 

the scalability aspects of MKMs. 

1 Support vector machines with arc-cosine kernel. 
2 Solving the quadratic problem and choosing the support vectors involves the or- 

der of n 2 , while solving the quadratic problem directly involves inverting the kernel 

matrix, which has complexity on the order of n 3 . It has a space complexity of O ( n 2 ), 

for ‘n’ training samples. If a deep kernel machine is modeled with a multilayer arc- 

cosine kernel (say l − layers ) then computational complexity becomes O ( l ∗n 3 ). 

The other potential learning strategies that elucidate the possi- 

bilities of deep learning in Kernel machines is Multi Layer Multiple 

Kernel Learning (MLMKL). In MLMKL, the convex or linear com- 

bination of all the base kernels in antecedent layers is passed as 

new inputs to the base kernels in subsequent layers. These meth- 

ods have been successfully used with support vector machines 

and they often demonstrated promising results ( Rebai, BenAyed, & 

Mahdi, 2016 ). However, in this layered kernel machines the possi- 

bilities of using unsupervised MKL with multilayer kernel and the 

scalable deep core vector machines has to be explored further. The 

main facts from the above analysis of related methodologies has 

been summarized in Table 1 . 

By perceiving the above facts, this paper explores the possibil- 

ity of building a deep core vector machine with multiple layers 

of feature extractions. Each layer in this multilayer framework ex- 

ploits kernel PCA for feature extraction. Kernel PCA is modeled by 

leveraging the combination of both single and multilayer kernels 

in an unsupervised fashion. 

The rest of the paper is organized as follows. The basic idea 

of deep kernel machine has been given in Section 2 . Unsuper- 

vised multiple kernel learning has been explained in Section 3 . 

The proposed Deep multiple multilayer kernel learning in core vec- 

tor machines has been included in Section 4 . Experimental details 

and performances of proposed method are shown in Section 5 . 

Section 6 gives conclusions. 

2. Deep Kernel machines 

Data representation learning plays a key role in the success 

of machine learning algorithm because it make easier to extract 

useful information when building classifiers or other predictors 

( Bengio et al., 2013 ). In order to amplify the scope and ease of 

applicability of machine learning, it would be highly desirable to 

build a learning model that should exploit multilayer feature learn- 

ing for the deep representation of data. The number of feature 

learning layers or depth is one among other evaluating criteria in 

these models. 

Deep learning is the recent popular learning architecture in 

neural network that gives due respects in both data representation 

and classification or prediction task. Deep learning models extract 

more useful, abstract data representation through multiple non- 

linear transformations of data samples. The deep learning architec- 

ture has an appeal of hierarchical distributed representations and 

the potential for combining unsupervised and supervised methods 

( Bengio et al., 20 07; Hinton, 20 07; Hinton et al., 2006; Lee et al., 

2009; Salakhutdinov & Hinton, 2009 ). In the area of artificial neu- 

ral network, the deep learning methods have already proved its 

efficiency in many signal and information processing applications 

( Hinton et al., 2012; Miao, Metze, & Rawat, 2013; Zhong, Liu, & Liu, 

2011 ). 

Inspiring from these success of deep learning techniques in 

neural network, there have been many attempts to build deep ker- 

nel machines. The first notable work in this context is the multi- 

layer arc-cosine kernel ( Cho & Saul, 2009 ) that initiates deep learn- 

ing capability in kernel machines. This arc-cosine kernel is the crux 

of many popular deep kernel machines such as deep support vec- 

tor machine and and its scalable deep core vector machines. 

2.1. Multi-layered deep kernel: arc-cosine kernel 

A breakthrough in modeling a kernel machine that mimics deep 

neural network was the optimization of multilayer arc-cosine ker- 

nel ( Cho & Saul, 2011 ). The arc-cosine kernel behaves differently 

with different activation values and hence represents a family of 

kernels. According to Cho and Saul (2009) , the n th order kernel in 



A . A .L., A . S. / Expert Systems With Applications 96 (2018) 149–156 151 

Table 1 

Main pros and cons of related methodologies. 

Learning Models Pros Cons 

Deep neural 

network learning 

architecture 

It gives due respect in both data representation and classification 

or prediction tasks. The automatic feature extraction reduces the 

risk of feature engineering. Layer-wise training method is 

adopted for reducing the complexity of training. It has 

best-in-class performance on problems on unstructured media 

like text, sound and images. It handles both labeled and 

unlabeled data effectively. 

Because of the non-convexity in optimization they do not 

guarantee global optimization. The degree of non-linearity is 

controlled heuristically by number of hidden nodes and layers - 

it does not involves structural risk minimization. 

Deep support 

vector machines 

The presence of structural risk minimization techniques entitle the 

DSVM to control the no-linearity automatically by adjusting the 

number of support vectors during training. The appearance of 

convex optimization guarantee global solution. Multilayer 

arc-cosine kernel has been used to apply no-linear projection 

into higher dimensional space. It relies on the concept of margin 

maximization and hence reduce the risk of over-fitting. 

DSVM encounters bottlenecks on massive datasets due to its high 

computational complexity (cubic in the number of training 

points). It deals only with labeled dataset (Supervised learning 

model). 

Multilayer kernel 

machines 

The kernel PCA based feature extraction layers support hierarchical 

data representation. The top level classifier, deep support vector 

machine, used in this frame work retains all the above said 

advantages of DSVM. 

The main pitfalls of these models are its fixed, single kernel 

computing and high training cost of deep support vector 

machine. Selection of task specific choice of kernel is the 

another big issue in this frame work. 

Deep core vector 

machine 

It has been modeled as a scalable deep support vector machine by 

exploiting the minimum enclosing ball and (1 + ε) 

approximation algorithm. DCVM achieves smaller asymptotic 

complexity than DSVM -reduces the cubic time complexity of 

DSVM as linear in number of training samples (m) and a space 

complexity that is independent of m. It retains all other 

advantages of deep support vector machines such as convex 

optimization , structural risk minimization, margin 

maximization, etc. 

The core vector machines can operate only on certain kernel that 

satisfies k (x i , x i ) = k, a constant - Minimum Enclosing Ball (MEB) 

problem in kernel-induced feature space for the kernel function 

k should satisfies the condition k (x i , x i ) = c, a constant. 

Multilayer feature extraction capabilities of DCVM has to be 

explored further. 

Multiple kernel 

learning 

Instead of single, fixed kernel computation it uses linear or convex 

combinations of base kernels. MKL can be implemented in both 

supervised and unsupervised manner. 

Feasibility of single and multilayer kernel combination has not yet 

been explored 

the family of arc-cosine kernel can be expressed as: 

k n (x, y ) = 2 

∫ 
dw 

e −
‖ W ‖ 2 

2 

(2�) 
d 
2 

�(w.x )�(w.y )(w.x ) n (w.y ) n (1) 

where the Heaviside function �(z) = 

1 
2 (1 + sign (z)) . The simplified 

form of arc-cosine kernel with angular dependency AD n ( θ ) can be 

expressed as : 

k n (x, y ) = 

1 

π
‖ 

x ‖ 

n ‖ 

y ‖ 

n AD n (θ ) (2) 

where 

AD n (θ ) = (−1) n (sinθ2 n +1 )( 
1 

sinθ

∂ 

∂θ
) n ( 

π − θ

sinθ
) (3) 

The value of AD n ( θ ) depends on two parameters: the degree or ac- 

tivation value n and the angle θ between the input vectors, say x 

and y . 

θ = cos −1 

(
(x.y ) 

| | x | | | | y | | 
)

(4) 

The computation of AD n ( θ ) has been shown in Algorithm 1 . 

This algorithm is limited for first three expressions of J n θ . The 

Eq. (2) represent the computation of single layer arc-cosine kernel 

having an activation value n . In the case of multilayer arc-cosine 

kernel the value of n may be different in different layers. Let n 1 , 

n 2 .. n l be the activation values corresponding to the layers 1, 2, 

.. l respectively. Now the l layered arc-cosine kernel can be repre- 

sented as: 3 

k (L ) 
(n 1 ,n 2 ..nl) 

(x, y ) = < φnl (φnl−1 ( . . . φ1 (x ))) , φnl (φnl−1 ( . . . φ1 (y ))) > 

(5) 

3 < ., . > represent inner product. 

Algorithm 1: Algorithm for computing Angular dependency. 

Angular_depen (n, θ ) 
inputs : Degree or activation value: n ; Angle between 

input vectors θ
output : The angular dependency: AD n θ
begin 

switch n do 

case 0 
AD n θ = π − θ

case 1 
AD n θ = sin (θ ) + (π − θ ) × cos (θ ) 

case 2 
AD n θ = 3 × sin (θ ) × cos (θ ) + (π − θ ) × (1 + 2 ×
cos (θ ) 2 ) 

return AD n θ ; 

The multi layer arc-cosine kernel can be computed recursively as : 

k (L +1) 
n (x, y ) = 

1 

�

[
k (L ) (x, x ) k (L ) (y, y ) 

] n 
2 

J n (θ
(L ) 
n ) (6) 

The layered kernel learning process start with initial ker- 

nels: k 0 (x i , x i ) = < x i , x i >, k 0 (x j , x j ) = < x j , x j > and k 0 (x i , x j ) = < 

x i , x j > . 

Since the execution of arc-cosine kernel depends on the degree 

of kernel at each layer, it may have different behavior on differ- 

ent execution instance of its iterative function. The working pro- 

cedure of multilayer arc-cosine kernel has been summarized in 

Algorithm 2 . In this algorithm, the sub function Angular _ depen 

( Algorithm 1 ) is used to compute the angular dependency AD n θ . 

The deep kernel learning in kernel machine can be modeled ef- 

ficiently by plugging this multilayer arc-cosine kernel in any ker- 



152 A . A .L., A . S. / Expert Systems With Applications 96 (2018) 149–156 

Algorithm 2: Computing multi layered arc-cosine kernel. 

MLArccosine (x, y, [ act _ list]) 
inputs : Two data samples x and y ; The list of activation 

or degree in each layer [ act _ list] 

output : The kernel value denoted by k l (x, y ) 

begin 

k ii ← Inner-product( x, x ); 

k j j ← Inner-product( y, y ); 

k i j ← Inner-product( x, y ); 

foreach n ∈ [ act − list] do 

θ ← cos −1 
(

k i j 

‖ k ii ‖ ‖ k j j ‖ 
)

; 

AD n θ ← Angular _ depen (n , θ ) ; 

K i j = 

1 
π × (k i j ) 

n 
2 × AD n θ ; 

K ii = 

1 
π × (k ii ) 

n × AD n θ ; 

K j j = 

1 
π × (k j j ) 

n × AD n θ ; 

k l x,y ← k i, j ; 

return k l x,y ; 

nel machines. One such well known example in this context is the 

deep support vector machines (DSVMs) ( Cho & Saul, 2009 ). Even 

though DSVM shows better performance on many machine learn- 

ing problems it encounters bottleneck, due to its high computa- 

tional cost, on many real world application that involve massive 

data. The scalability aspects of support vector machines has been 

well addressed by the concept of core vector machines. The fea- 

sibility of using arc-cosine kernel in core vector machines were 

discussed in Afzal and Asharaf (2017) . This scalable deep kernel 

model is also showing its better performance on many benchmark 

datasets. However, the exploitation of multilayer feature extraction 

capability of deep neural networks in this model required further 

exploration. 

3. Unsupervised multiple kernel learning with multilayer 

kernels 

The generalization performance of traditional kernel based fea- 

ture extraction models and the classifiers were strongly depends 

on the choice of kernel functions being used. This often requires 

domain knowledge and hence the researchers need to spend con- 

siderable amount of time for selecting an appropriate kernel func- 

tion for a particular application. Multiple Kernel learning (MKL) 

eliminate these limitations by learning a convex combination of a 

set of predefined kernel to obtain an optimal kernel ( Bach et al., 

2004 ). MKL reduces the burden of choosing right kernel and hence 

automate the kernel parameter turning. The other desirable ad- 

vantage of MKL is that it allows to combine data from differ- 

ent sources such as audio,video and images. Traditional MKL algo- 

rithms follows supervised learning strategy. However, the availabil- 

ity of unlabeled data and the capability of deep learning architec- 

ture to process these unlabeled data motivated some researchers 

in the area of kernel machines to develop an unsupervised method 

to combine and obtain an optimal kernel from a set of kernels. The 

unsupervised multiple kernel learning has been first introduced in 

Zhuang et al. (2011) . They have formulated the optimization task 

of unsupervised MKL by combining the following two intuitions 

on the optimal kernel k i j = k (x i , x j ) . 

• k ij can reconstruct the original training data x i from the local- 

ized bases weighted by k ij ; I.e 
∥∥x i −

∑ 

j k i j x j 
∥∥2 

will be mini- 

mum. 

• k ij minimizes the distortion 

∑ 

i, j k i j 

∥∥x i − x j 
∥∥2 

over all training 

data. 

In addition to this, the locality preserving principle can be ex- 

ploited by using a set of local bases for each x i ∈ X denoted as B i . 

By fixing the size of the local bases to some constant N B , they 

have formulated the optimization problem for unsupervised multi- 

ple kernel learning, by combining the above intuitions as : 

min 

k ∈K 
1 

2 

n ∑ 

i =1 

∥∥∥∥∥x i −
∑ 

x j ∈ B i 
k i j x j 

∥∥∥∥∥
2 

+ γ ∗
n ∑ 

i =1 

∑ 

x j ∈ B i 
k i j 

∥∥x i − x j 
∥∥2 

(7) 

and its matrix equivalent as: 

min 

μ∈ 
,D 

1 

2 

‖ 

X (I − K ◦ D ) ‖ 

2 
F + γ ∗ tr K ◦ D ◦ M(11 

T ) (8) 

subject to [ K] i, j = 

m ∑ 

t=1 

μt k 
t (x i , x j ) , 1 ≤ i, j ≤ n and 


 = 

{ 

μ : μT 1 = 1 , μ ≥ 0 

} 

This optimization problem can be solved in two ways 

( Zhuang et al., 2011 ) : first by solving for μ with a fixed D (us- 

ing convex optimization) and then solving for D by fixing μ (us- 

ing a greedy mixed integer programming formulation). Since the 

proposed method uses a layered architecture, we are following the 

first strategy. The matrix D is computed beforehand by taking k 

nearest neighbors of x i from the training set and represented by 

putting a one in the corresponding positions of d i . Now the opti- 

mization problem can be rewritten as : 

min 

μ∈ 

1 

2 

‖ 

X (I − K ◦ D ) ‖ 

2 
F + γ ∗ tr K ◦ D ◦ M(11 

T ) (9) 

where γ controls the trade-off between the coding error and the 

locality distortion. D ∈ {0, 1} n × n , the local bases of each x i as a col- 

umn vector d i . Each column vector d i ∈ {0, 1} n has a 1 at those 

points j where, x j ∈ B i and ‖ d i ‖ 1 = N B , i = 1 , 2 , . . . , n . The matrix M, 

the Euclidean distance on X, is defined as : [ M] i j = x T 
i 

x i + x T 
j 
x j −

2 x T 
i 

x j . The notation ‘ ◦’ denotes element wise multiplication of two 

matrices, ‖ ·‖ 2 F denotes the Frobenius-norm of a matrix and ‘tr’ de- 

notes the trace of a matrix. The objective function is formulated as 

a convex quadratic programming problem : 

J(μ) = μT 

(
m ∑ 

t=1 

n ∑ 

i =1 

k t,i k 
T 
t,i ◦ d i d 

T 
i ◦ P 

)T 

μ + z T μ (10) 

where [ z] t = 

∑ n 
i =1 (2 γ v i ◦ d i − 2 p i ◦ d i ) 

T k t,i , P = X T X, and k t,i = 

[ k t (x i , x 1 ) , . . . , k 
t (x i , x n )] T is the i th column of the t th kernel ma- 

trix. p and v are columns of P and M corresponding to x i respec- 

tively. 

In the above unsupervised MKL model, only shallow based ker- 

nels have been used. The MKL with multilayer kernel can be mod- 

eled easily in conjunction with arc-cosine kernel. The arc-cosine 

kernel has its own layered architecture and the computation in 

each layer depends on both the kernel values computed by the 

previous layer and the activation value in the current layer. Since 

each layer in the arc-cosine kernel behaves like a single kernel, the 

multilayer arc-cosine kernel contributes a list of kernels in the MKL 

frame work. This unsupervised MKL with multilayer kernel can be 

used in conjunction with many kernel machines such as deep sup- 

port vector machines, deep core vector machines, etc. 



A . A .L., A . S. / Expert Systems With Applications 96 (2018) 149–156 153 

4. Deep multiple multilayer kernel learning in core vector 

machines 

The Multilayer Kernel Machine (MKM) proposed in Cho and 

Saul (2009) has an architecture similar to that of neural network 

based deep learning machines. In this architecture, the feature ex- 

traction layers were modeled with kernel PCA followed by a su- 

pervised feature selection method and the final layer classifier was 

modeled with deep support vector machine (DSVM). While analyz- 

ing, we have noticed two limitations in this architecture. The fixed 

kernel used in this architecture does not guarantee the optimum 

choice of the kernel for the task being modeled. The quadratic for- 

mulation of SVM, in the output layer, impose a high computational 

complexity in many real world application that involve large size 

datasets. To address these limitations of existing MKMs, in this sec- 

tion we are proposing a new scalable deep kernel learning model, 

a deep core vector machines with unsupervised multiple multi- 

layer kernel learning based feature extraction layers. In our pro- 

posed method, first we formulate an unsupervised multiple kernel 

learning framework which involves both single and multilayer ker- 

nels. This MKL framework is then used to revamp the kernel PCA 

with multiple kernel computation. Finally, the existing MKM is re- 

structured with multiple layers of revamped kernel PCA as feature 

extraction layers and deep core vector machine as the output layer 

classifier. The details are given in the following paragraphs. 

In the Unsupervised Multiple Kernel Learning (UsMKL) model 

shown in Eq. (7) uses only shallow based kernels. The recently de- 

veloped arc-cosine kernel has a multilayer structure by itself. The 

behavior of each layer in arc-cosine kernel is often described by 

the given activation value and hence it expose multiple kernels 

by itself. Even though the arc-cosine kernel, the multilayer ker- 

nel has been well evaluated in many classification and regression 

task, their applicability in the context of MKL as feature extrac- 

tion methods has not yet been addressed in the machine learn- 

ing literature. By observing these facts, we are modeling an Un- 

supervised Multiple Multilayer Kernel Learning (UsMM l KL) frame- 

work by using arc-cosine kernel in conjunction with UsMKL model. 

Each instance of arc-cosine kernel in our MKL framework can be 

evaluated with its associated set of activation values. If multilayer 

arc-cosine kernels have been introduced in UsMKL model, then 

[ K] i, j = 

∑ m 

t=1 μt k 
t (., . ) computation in Eq. (8) will add another re- 

cursive kernel computations for each occurrence of the arc-cosine 

kernel. The depth of such recursive computation is determined by 

the size of list of activation values associated with each instance of 

arc-cosine kernel. The kernel matrix associated with the arc-cosine 

kernel can be computed by using Algorithm 2 . This UsMM l KL can 

easily be applied in kernel PCA to form a multiple multilayer ker- 

nel learning based feature extraction layer. The multiple feature ex- 

traction layers can be formed by stacking this unsupervised mul- 

tiple multilayer kernel based kernel PCA models in an hierarchical 

fashion. 

The second problem of MKMs, the scalability aspects of DSVM 

has been well addressed by deep core vector machines (DCVM), 

core vector machines with arc-cosine kernel. In core vector ma- 

chines the quadratic optimization problem of SVMs has been re- 

formulated as an equivalent minimum enclosing ball problem and 

then solved by a core set obtained by a faster (1 + ε) approxima- 

tion algorithm. The formulation of deep core vector machines have 

been well explained in our previous paper ( Afzal & Asharaf, 2017 ). 

This DCVM can easily be used as the output layer classifier in 

the multi layer kernel machine with unsupervised multiple mul- 

tilayer kernel learning. The overall architecture of the proposed 

framework is shown in Fig. 1 . The architecture consists of mul- 

tiple layers, with each layer performing feature extraction using 

kernel PCA in an UsMM l KL method followed by supervised fea- 

ture selection. The supervised feature selection allows to retain 

Supervised 
Feature 
Selection

UsMMLKL
Based

Kernel PCA
DATA

Core vector Machine 
with

Arc-cosine Kernel

Layer 1

Layer N
Supervised 

Feature 
Selection

UsMMLKL
Based

Kernel PCA

Output Layer

Fig. 1. Deep core vector machines with multiple layers of feature extraction. Each 

kernel PCA based feature extraction layer is modeled by leveraging the convex com- 

bination of both single and multilayer kernels in an unsupervised manner. 

only those set of features that are most relevant for the task be- 

ing modeled. Like deep neural network learning architecture, af- 

ter L layers of feature extraction, the refined data is given to the 

scalable core vector machines with arc-cosine kernel. The proposed 

method is summarized in Algorithm 3 . In this algorithm, the sub 

Algorithm 3: Algorithm for computing scalable Multilayer 

kernel machines with Unsupervised Multiple multilayer ker- 

nel PCA. 

Deep _ UsMM l KL (X, y, L , KL, N B , γ ) 
inputs : Datset X, Labels y, Number of layers L , List of 

Kernels KL - L x m matrix in which 

K 

(l) = { k (l) 
1 

, k (l) 
2 

, k (l) 
m 

} is the list of kernels in layer 

l, Size of the local bases N B , Turning parameter γ
output : Optimal kernel weight μl for each layer and 

prediction accuracy 

begin 

X new 

← X 

foreach l in range( L ) do 

μl ← UsMM l KL( X new 

, N B , γ ); 

K new 

= 

∑ m 

t=1 μ
l 
t ∗ K 

(l) 
t ; 

Perform Kernel PCA with K new 

; 

X new 

← X with selected features; 

Final classification with Deep core vector machine 

( X new 

, Y ). 

return AD n θ ; 

function UsMM l KL () represent Unsupervised Multiple Multilayer 

Kernel Learning model for computing the optimum kernel weight. 

The proposed multilayer learning model combine kernels in an 

unsupervised manner and uses a supervised core vector machine 

as the final classifier. The main characteristic of this proposed 

model is that it exhibit the prominent features of deep neural net- 

works such as the hierarchical representation of data and the ca- 

pability of combining both supervised and unsupervised methods. 

However, unlike deep neural networks, this model ensure global 

optimum with its convex loss function. The other theoretical ad- 



154 A . A .L., A . S. / Expert Systems With Applications 96 (2018) 149–156 

Table 2 

The composition of datasets taken from both libsvm and UCI 

repositories. 

Sl.No. Dataset #Clss #Dim #Train #Test 

1 Australian 2 8 512 256 

2 Breast-cancer 2 10 400 283 

3 diabetes 2 8 512 256 

4 Ijcnn1 2 22 49,990 91,701 

5 Letter 26 16 15,0 0 0 50 0 0 

6 Optdigit 9 64 3823 1797 

7 Satimage 6 36 4435 20 0 0 

8 Pendigit 10 16 7494 3498 

9 Usps 10 256 7291 2007 

Table 3 

The activation list of arc-cosine kernel obtained during cross validation 

phase. 

Sl. no Dataset Activation list 

Unnormalized data Normalized data 

1 Australian [0,2] [0,2] 

2 Breast-Cancer [0,1,2] [0,2] 

3 Diabetes [0,1] [0,2] 

4 Ijcnn1 NA [0,2] 

4 Letter [0,1,2] [0,2] 

5 Optdigit [0,2] [0,1,2] 

6 Pendigit [0,2] [0,2] 

7 Satimage [0,1] [0,1,2] 

8 Usps NA [0,2] 

vantage of this model is the margin maximization, the key feature 

of SVM/CVM, that reduces the risk of over-fitting. The use of CVM 

as the final classifier in our model resolves the scalability prob- 

lem of exciting MKMs to some extent. The main problem faced by 

our model is the multiple use of multilayer kernel which elevate 

the structural complexity of the model. The other noticeable issue 

of this approach is the restriction on the kernel functions possi- 

ble( k (x i , x i ) = c, a constant) due to the final classifier, the CVM. 

5. Experimental result 

The datasets and their compositions used in our experiments 

are given in Table 2 . It include both binary and multi-class datasets 

having varying size and dimensions. All the datasets except Ijcnn1 

and Usps were taken from UCI machine learning repository ( Blake 

& Merz, 1998 ) and Ijcnn1 and Usps were taken from libSVM repos- 

itory ( Chang & Lin, 2011 ). The feature extraction module, the kernel 

PCA based unsupervised multiple multilayer kernel learning has 

been implemented in python 2.7.6 and deep core vector machine 

(DCVM), the final layer classifier, has been implemented in C++ . 4 

The python package subprocess was used to invoke DCVM within 

the python framework. 

4 DCVM has been implemented by combining the features from both the pack- 

ages libCVM-2.2 ( Tsang, Kocsor, & Kwok, 2011 ) and libSVM-2.91. 

In the training phase, we choose 2500 or entire training dataset, 

whichever is less, for cross validating the activation list of arc- 

cosine kernel from all the combination of degree ‘0’,‘1’, ‘2’ and ‘3’. 

The core vector machine with arc-cosine kernel was used as classi- 

fier in this case. The activation list corresponding to the maximum 

accuracy obtained in this validation phase were selected as the de- 

fault activation list for arc-cosine kernel in the subsequent process. 

The Table 3 shows the selected activation list against the dataset 

used. 

In each layer of feature extraction module, we set apart 30 0 0 

or entire training data points, which ever is less, for computing 

the optimal kernel weight in an unsupervised manner. The list of 

kernels for the multilayer feature extraction were given as a ma- 

trix. The i th row in this matrix represent the list of kernels for i th 

layer of feature extraction module. Even though any kernel combi- 

nations can be used, we have used an arc-cosine kernel in between 

two RBF kernels as the kernel combination in each layer. After ob- 

taining the optimal kernel value, the entire datasets were used for 

feature extraction. The feature selection was done by using uni- 

variate feature selection method available in scikit-learn 

5 library 

( Pedregosa et al., 2011 ). Based on ranking produced by the selec- 

tion method, top five percent of features were selected, since em- 

pirically it was giving a consistent performance. Final classification 

were carried out by core vector machine with arc-cosine kernel. In 

all the experiments, we have recorded the standard metric mea- 

sures such as precision, recall, F1-Score and accuracy. 

5.1. Performance evaluation 

The performance of proposed method has been evaluated on 

both normalized and unnormalized form of all the datasets except 

Ijcnn1 and Usps. The dataset name suffixed with the word scaled 

indicates normalized dataset.Three well known techniques such as 

Standard Scalar, Robust Scalar and MinMax scalar ( Pedregosa et al., 

2011 ) were used for normalizing data samples and the variation 

in prediction accuracy has been shown in Table 4 . We have experi- 

mented with up to 3 layers of feature extraction, for evaluating the 

performance of multilayer computation. The L1, L2 and L3 columns 

in Table 4 represent the prediction accuracy of each normalization 

techniques with one , two and three layers of feature extraction 

respectively. The prediction accuracy of proposed method on all 

the dataset without using any normalization techniques has been 

shown in Table 5 . The variation in accuracy with different layers 

of feature extraction has been illustrated by the graph shown in 

Fig. 2 . 

The classification report including average precision, recall, F- 

measures and the prediction accuracy of proposed method and 

deep core vector machine on both normalized and unnormalized 

dataset have been shown in Table 6 . In this table, the classification 

report of proposed method represent the best among those layer 

5 Available at http://scikit-learn.org/stable/modules/feature_selection.html. 

Table 4 

Layer wise prediction accuracy of the proposed method with different normalization methods . 

Sl. no Dataset Standard scaler Robust scaler MinMax scaler 

L1 L2 L3 L1 L2 L3 L1 L2 L3 

1 Australian_scale 86.522 86.522 86.957 80.435 81.305 85.478 81.304 81.304 82.609 

2 Breast-Cancer_scale 97.880 98.233 98.233 98.233 97.879 98.233 97.527 97.527 97.527 

3 Diabetes_scale 72.656 73.438 73.047 71.875 73.437 78.516 74.609 76.563 77.73 

4 Letter_scale 96.74 96.79 97.73 89.58 90.22 90.52 95.02 95.22 95.36 

5 Optdigit_scale 97.6628 97.7184 97.997 96.605 96.995 97.496 99.054 99.109 99.221 

6 pendigit_scale 99.399 99.5426 99.571 99.285 99.371 99.399 99.399 99.543 99.628 

7 satimage_scale 92.7 93.2 93.5 93.05 93.05 93.2 90.85 91.0 90.8 



A . A .L., A . S. / Expert Systems With Applications 96 (2018) 149–156 155 

Fig. 2. A comparison in accuracy with different number of feature extraction layers. 

Table 5 

The layer wise prediction accuracy with out using normalization 

method. 

Sl.No Dataset Prediction accuracy 

L1 L2 L3 

1 Australian 67.83 74.94 75.831 

2 Breast-Cancer 68.87 71.937 71.937 

3 Diabetes 64.453 65.625 70.703 

4 Letter 96.9 97.67 98.082 

5 Optdigit 97.941 98.108 98.564 

6 pendigit 99.057 99.493 99.493 

7 satimage 88.45 89.4 89.1 

8 ijcnn1 (Scaled to [ −1 1]) 99.199 99.370 99.637 

9 Usps (scaled to [ −1 1]) 97.409 97.708 98.057 

wise performances shown in above tables. The bold face values in- 

dicate the highest accuracy on each dataset. 

From Table 6 and Fig. 2 , following observations have been 

made. 

• In all the dataset, proposed method possess best result in aver- 

age precision, recall and F1-measures. 
• Proposed algorithm consistently improves the accuracy of sin- 

gle layer deep core vector machines. 
• In most of the datasets, the proposed algorithm achieves higher 

accuracies as the number of layers increased. 
• As in the case of DCVM, our method also attains higher accura- 

cies on normalized datasets. 
• Proposed method also shows its potential in the context of 

multilayer unsupervised feature extraction, as in the case of 

deep learning models. 

This approach was carried out on a CPU machine configured 

with AMD Opteron 6376 @ 2.3 GHZ / 16 core processor and 16GB 

RAM. Exploitation of the parallelization possible in computation 

using GPU or distributed computing platform would have reduced 

the training time of this approach. This is a potentially possible di- 

mension for the empirical exploration. 

Table 6 

The generalization performance in terms of Average Precision, Recall, F-core and 

overall prediction accuracy of Deep CVM and proposed method. 

Sl.No Dataset DCVM Proposed method 

Preci Reca F1-sc Acc Preci Reca F1-Sc Acc 

1 Australian .754 .52 .753 75.211 .773 .758 .765 75.831 

2 Breast-Cancer .784 .675 .569 67.49 .793 .696 .741 71.937 

3 Diabetes .671 .684 .673 68.35 .694 .707 .697 70.703 

4 Letter .969 .969 .969 96.9 .981 .981 .981 98.082 

5 Optdigit .977 .977 .977 97.663 .987 .985 .986 98.564 

6 pendigit .984 .984 .984 98.371 .996 .995 .995 99.493 

7 satimage .855 .858 .852 85.8 .891 .894 .892 89.4 

Scaled dataset 

8 Ausralian_scale .857 .857 .857 85.65 .870 .870 .869 86.957 

9 Breast-cancer_scale .961 .961 .961 96.11 .983 .982 .982 98.233 

10 Diabetes_scale .760 .766 .757 76.56 .784 .785 .779 78.516 

11 Ijcnn_scale .990 .991 .990 99.001 .993 .997 .995 99.637 

12 Letter_scale .967 .967 .967 96.66 .981 .976 .978 97.73 

13 Optdigit_scale .978 .977 .977 97.718 .992 .992 .992 99.221 

14 Pendigit_scale .982 .982 .982 98.19 .996 .996 .996 99.628 

15 Satimage_scale .920 .921 .920 92.15 .935 .935 .934 93.5 

16 Usps_scale .952 .952 .952 95.217 .981 .981 .981 98.057 

6. Conclusions 

This paper proposes a deep core vector machine with multi- 

ple layers of feature extraction. Each feature extraction layer is 

modeled with an unsupervised multiple kernel learning framework 

having both single and multilayer kernels. This deep kernel learn- 

ing model addresses the limitations such as fixed kernel compu- 

tation problem and scalability issues of existing multilayer ker- 

nel machines. The convex combination of both single and mul- 

tilayer kernels using the unsupervised MKL formulation resolves 

fixed kernel computation. This unsupervised MKL framework is 

then used to revamp the Kernel PCA for feature extraction. The 

scalability problem is addressed by using deep core vector machine 

as the final classifier. The empirical results show that the proposed 

method considerably outperform conventional core vector machine 

with arc-cosine kernel. The improvement in accuracy as the num- 



156 A . A .L., A . S. / Expert Systems With Applications 96 (2018) 149–156 

ber layers increased shows the potential of multiple layers of fea- 

ture extraction. The proposed learning architecture modeled with 

multiple layers of unsupervised feature extraction followed by a 

scalable final classifier possess a deep learning perceptiveness in 

kernel machines. 

6.1. Future works 

The theoretical and empirical analysis of this paper list out 

some insightful future directions to explore. a) The generalization 

performance of our model is highly influenced by the structure of 

multilayer MKL framework. The number of layers and appropriate 

base kernels contribute this multilayer MKL structure. A theoreti- 

cal study on the optimal structure of multilayer MKL model is a 

potential future direction. b) A study on feasibility of deep multi- 

layer kernel learning approach on structured output prediction task 

that involves very complex decision function is another interest- 

ing research problem. c) The multiple kernel learning based feature 

extraction involves extensive amount of matrix manipulation. The 

scalability aspects in this context is another potential future direc- 

tion. d) The deep learning algorithms are found to be effective for 

memory related models such as Recurrent neural network, Mem- 

ory network, Turing neural network etc. A study on the formula- 

tion of recurrent kernels that mimics the above models is another 

explorable direction. 

References 

Afzal, A. L. , & Asharaf, S. (2017). Deep kernel learning in core vector machines. Pat- 
tern Analysis and Applications , 1–9 . 

Asharaf, S. , Murty, M. N. , & Shevade, S. K. (2006). Cluster based core vector machine. 
In Sixth international conference on data mining (icdm’06) (pp. 1038–1042). IEEE . 

Asharaf, S. , Murty, M. N. , & Shevade, S. K. (2007). Multiclass core vector machine. In 

Proceedings of the 24th international conference on machine learning (pp. 41–48). 
ACM . 

Bach, F. R. , Lanckriet, G. R. , & Jordan, M. I. (2004). Multiple kernel learning, conic 
duality, and the smo algorithm. In Proceedings of the twenty-first international 

conference on machine learning (p. 6). ACM . 
Bengio, Y. , Courville, A. , & Vincent, P. (2013). Representation learning: A review and 

new perspectives. IEEE transactions on pattern analysis and machine intelligence, 
35 (8), 1798–1828 . 

Bengio, Y. , Lamblin, P. , Popovici, D. , & Larochelle, H. (2007). Greedy layer-wise train- 

ing of deep networks. Advances in neural information processing systems, 19 , 153 . 
Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in 

Machine Learning, 2 (1), 1–127 . 
Blake, C. , & Merz, C. J. (1998). Uci repository of machine learning databases 

[http://www. ics. uci. edu/ ∼ mlearn/mlrepository. html]. irvine, ca: university 
of california. Department of Information and computer science, 55 . 

Chang, C.-C. , & Lin, C.-J. (2011). Libsvm: A library for support vector machines. ACM 

Transactions on Intelligent Systems and Technology (TIST), 2 (3), 27 . 
Cho, Y. , & Saul, L. K. (2009). Kernel methods for deep learning. In Advances in neural 

information processing systems (pp. 342–350) . 
Cho, Y., & Saul, L. K. (2011). Analysis and extension of arc-cosine kernels for large 

margin classification. arXiv preprint arXiv:1112.3712 . 
Cortes, C. , & Vapnik, V. (1995). Support-vector networks. Machine learning, 20 (3), 

273–297 . 

Deng, J. , Zhang, Z. , Marchi, E. , & Schuller, B. (2013). Sparse autoencoder-based fea- 
ture transfer learning for speech emotion recognition. In Affective computing and 

intelligent interaction (acii), 2013 humaine association conference on (pp. 511–516). 
IEEE . 

Du, Y. , Wang, W. , & Wang, L. (2015). Hierarchical recurrent neural network for skele- 
ton based action recognition. In Proceedings of the ieee conference on computer 

vision and pattern recognition (pp. 1110–1118) . 
Hinton, G. , Deng, L. , Yu, D. , Dahl, G. E. , Mohamed, A.-r. , Jaitly, N. , et al. (2012). Deep 

neural networks for acoustic modeling in speech recognition: The shared views 

of four research groups. IEEE Signal Processing Magazine, 29 (6), 82–97 . 
Hinton, G. E. (2007). Learning multiple layers of representation. Trends in cognitive 

sciences, 11 (10), 428–434 . 
Hinton, G. E. , Osindero, S. , & Teh, Y.-W. (2006). A fast learning algorithm for deep 

belief nets. Neural computation, 18 (7), 1527–1554 . 
Ji, Y. , & Sun, S. (2013). Multitask multiclass support vector machines: Model and 

experiments. Pattern Recognition, 46 (3), 914–924 . 

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural net- 
work for modelling sentences. arXiv preprint arXiv:1404.2188 ,. 

Lawrence, S. , Giles, C. L. , Tsoi, A. C. , & Back, A. D. (1997). Face recognition: A con- 
volutional neural-network approach. IEEE Transactions on Neural Networks, 8 (1), 

98–113 . 
Lee, H. , Ekanadham, C. , & Ng, A. Y. (2008). Sparse deep belief net model for visual 

area v2. In Advances in neural information processing systems (pp. 873–880) . 

Lee, H. , Grosse, R. , Ranganath, R. , & Ng, A. Y. (2009). Convolutional deep belief 
networks for scalable unsupervised learning of hierarchical representations. 

In Proceedings of the 26th annual international conference on machine learning 
(pp. 609–616). ACM . 

Miao, Y. , Metze, F. , & Rawat, S. (2013). Deep maxout networks for low-resource 
speech recognition. In Automatic speech recognition and understanding (asru), 

2013 ieee workshop on (pp. 398–403). IEEE . 

Pedregosa, F. , Varoquaux, G. , Gramfort, A. , Michel, V. , Thirion, B. , Grisel, O. , 
et al. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learn- 

ing Research, 12 , 2825–2830 . 
Ranzato, M. , Poultney, C. , Chopra, S. , & LeCun, Y. (2006). Efficient learning of sparse 

representations with an energy-based model. In Proceedings of the 19th interna- 
tional conference on neural information processing systems (pp. 1137–1144). MIT 

Press . 

Rebai, I. , BenAyed, Y. , & Mahdi, W. (2016). Deep multilayer multiple kernel learning. 
Neural Computing and Applications, 27 (8), 2305–2314 . 

Rosipal, R. , Girolami, M. , Trejo, L. J. , & Cichocki, A. (2001). Kernel pca for feature 
extraction and de-noising in nonlinear regression. Neural Computing & Applica- 

tions, 10 (3), 231–243 . 
Salakhutdinov, R. , & Hinton, G. E. (2009). Deep boltzmann machines.. In Aistats: 1 

(p. 3) . 

Tsang, I., Kocsor, A., & Kwok, J. (2011). Libcvm toolkit. https://github.com/ 
aydindemircioglu/libCVM . 

Tsang, I.-H. , Kwok, J.-Y. , & Zurada, J. M. (2006). Generalized core vector machines. 
IEEE Transactions on Neural Networks, 17 (5), 1126–1140 . 

Tsang, I. W. , Kocsor, A. , & Kwok, J. T. (2007). Simpler core vector machines with 
enclosing balls. In Proceedings of the 24th international conference on machine 

learning (pp. 911–918). ACM . 
Tsang, I. W. , Kwok, J. T. , & Cheung, P.-M. (2005). Core vector machines: Fast svm 

training on very large data sets. Journal of Machine Learning Research, 6 (Apr), 

363–392 . 
Wilson, A. G. , Hu, Z. , Salakhutdinov, R. , & Xing, E. P. (2016). Deep kernel learning. In 

Proceedings of the 19th international conference on artificial intelligence and statis- 
tics (pp. 370–378) . 

Zhong, S.-h. , Liu, Y. , & Liu, Y. (2011). Bilinear deep learning for image classifi- 
cation. In Proceedings of the 19th acm international conference on multimedia 

(pp. 343–352). ACM . 

Zhuang, J. , Wang, J. , Hoi, S. C. , & Lan, X. (2011). Unsupervised multiple kernel learn- 
ing. Journal of Machine Learning Research-Proceedings Track, 20 , 129–144 . 

http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0010
http://arxiv.org/abs/1112.3712
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0017
http://arxiv.org/abs/1404.2188
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0026
https://github.com/aydindemircioglu/libCVM
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0030
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0031
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0032
http://refhub.elsevier.com/S0957-4174(17)30814-X/sbref0032


BIO-DATA 

1. Name                                          :  Afzal A.L. 

2. Age and Date of Birth               : 40 years, 31/05/1978 

3. Address for correspondence   : Salma Bhavan 

        : Thundathil P O - 695581 

                                                               : kariavattom ,  

   : Thiruvananthapuram, Kerala 

                                                               : Phone +919447246553 

4. e-mail address                          : afzal.res15@iiitmk.ac.in, afzal.a.l@gmail.com 

5. Educational Qualifications 

Sl. 

No. 
Examinations Passed Institution at which studied Year of 

Passing 
Grade 

1 
B. Tech (Computer Science 

and  Engineering) 
Calicut University 2000 62% 

2 
M. Tech (Computer and 

Information Technology) 

Manonmaniam Sundaranar 

University 
2010 71.28% 

 

6.   Experience 

Sl. No. Particulars Period Institution 

1 

 

Assistant Professor in 

Computer Science and 

Engineering 

July 2003 – 

Till date 

 

Co-operative 

Academy of 

Professional Education 

(CAPE)  
 

        


	Acknowledgment
	Acknowledgments

	Abstract
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	1 Introduction
	1.1 Research Motivation
	1.2 Thesis Outline

	2 Literature Survey
	2.1 Deep Learning
	2.1.1 Historical Background
	2.1.2 Deep Learning Architectures
	Deep Belief Network :
	Convolutional Neural Networks :
	Recurrent Neural Networks:



	2.2 Kernel Machines
	2.2.1 Support Vector Machines
	2.2.2 Core Vector Machines
	2.2.3 Kernel Based Extreme Learning Machines
	2.2.4 Kernel Principle Component Analysis

	2.3 Multiple Kernel Learning
	2.4 Deep Kernel Machines
	2.4.1 Deep Kernel Computation
	2.4.2 Deep Kernel Learning Architecture


	3 Deep Learning in Core Vector Machines
	3.1 Deep Kernel Learning in Core Vector Machines
	3.1.1 Analysis of Arc-cosine Kernel
	3.1.2 Building Scalable Deep Kernel Machines
	3.1.3 Algorithm: Deep Core Vector Machines

	3.2 Experimental Results
	3.2.1 Implementation
	3.2.2 Performance Evaluation

	3.3 Conclusions

	4 Deep Multiple Multilayer Kernel Learning in Core Vector Machines
	4.1 Unsupervised Multiple Kernel Learning with Single-layer and Multilayer Kernels 
	4.2 Deep Multiple Multilayer Kernel Learning in Core Vector Machines 
	4.3 Experimental Results
	4.3.1 Performance Evaluation

	4.4 Conclusions

	5 Deep Kernel Learning in Extreme Learning Machines
	5.1 Extreme Learning Machines
	5.2 Deep Kernel Based Extreme Learning Machines
	5.2.1 Building Deep Kernel based Extreme Learning Machines

	5.3 Experimental Results
	5.3.1 Performance Evaluation

	5.4 Conclusions

	6 Conclusions and Future Works
	6.1 Conclusions
	6.2 Future Works

	Bibliography
	List of Publications
	Publications

	Deep kernel learning in core vector machines
	Abstract
	Introduction
	Core vector machines
	Arc-cosine kernel: a deep kernel
	Deep core vector machine
	DCVM algorithm

	Experimental results
	Performance evaluation

	Conclusions
	References

	Deep multiple multilayer kernel learning in core vector machines
	1 Introduction
	2 Deep Kernel machines
	2.1 Multi-layered deep kernel: arc-cosine kernel

	3 Unsupervised multiple kernel learning with multilayer kernels
	4 Deep multiple multilayer kernel learning in core vector machines
	5 Experimental result
	5.1 Performance evaluation

	6 Conclusions
	6.1 Future works

	 References


