
ASPECTS OF DETERMINISTIC ELECTRON THEORY

Thesis submitted to the

Cochin University of Science and Technology

for the award of the degree of

DOCTOR OF PHILOSOPHY

under the Faculty of Science

By

Didimos K.V.

Department of Mathematics
Cochin University of Science and Technology

Cochin - 682 022

April 2017





ASPECTS OF DETERMINISTIC ELECTRON THEORY

Ph.D. thesis in the field of Theories of matter, Spinors &

Geometric Algebra

Author:

Didimos K.V.

Department of Mathematics

Cochin University of Science and Technology

Kochi - 682 022, Kerala, India

Email: didimoskv@gmail.com

Supervisor:

Dr. R.S.Chakravarti

Reader (Rtd)

Department of Mathematics

Cochin University of Science and Technology

Kochi - 682 022, Kerala, India.

Email: chakrsc@rediffmail.com

April 2017





Department of Mathematics

Cochin University of Science and Technology

Cochin - 682 022

CERTIFICATE

This is to certify that the work reported in this thesis entitled “ASPECTS

OF DETERMINISTIC ELECTRON THEORY”is a bonafide record of the

research work carried out by Mr. Didimos K. V. under my supervision in

the Department of Mathematics, Cochin University of Science & Tech-

nology. The results embodied in the thesis have not been included in any

other thesis submitted previously for the award of any degree or diploma.

Dr. R.S. Chakravarti

(Supervising Guide)

Department of Mathematics

Cochin University of Science & Technology

Cochin - 682 022

Cochin-22

11.04.2017





Department of Mathematics

Cochin University of Science and Technology

Cochin - 682 022

CERTIFICATE

Certified that all the relevant corrections and modifications suggested by

the audience during the Pre-synopsis seminar and recommended by the

Doctoral Committee of the candidate have been incorporated in the thesis

entitled “ASPECTS OF DETERMINISTIC ELECTRON THEORY”.

Dr. R.S. Chakravarti

(Supervising Guide)

Department of Mathematics

Cochin University of Science & Technology

Cochin - 682 022

Cochin-22

11.04.2017





Department of Mathematics

Cochin University of Science and Technology

Cochin - 682 022

DECLARATION

I, DIDIMOS K V, hereby declare that the work presented in this the-

sis entitled “ASPECTS OF DETERMINISTIC ELECTRON THEORY”is

based on the original research work carried out by me under the su-

pervision and guidance of Dr.R. S. CHAKRAVARTI, Reader(Rtd), De-

partment of Mathematics, Cochin University of Science and Technology,

Kochi- 682 022 and has not been included in any other thesis submitted

previously for the award of any degree.

.

Didimos K. V.

Research Scholar (Reg. No. 3632)

Department of Mathematics

Cochin University of Science & Technology

Cochin-22

11.04.2017





Acknowledgments

First and foremost I would like to express my heartfelt gratitude to

my guide Dr. R.S. Chakravarti, Reader(Rtd), Department of Mathe-

matics, CUSAT, for his never-ending patience, motivation, enthusiasm,

commitment, immense knowledge and invaluable support. I could not

have prayed for a better guiding light for my thesis writing.

Besides my guide, a special note of thanks to Prof. M. D. Varghese,

Associate Professor(Rtd), St. Thomas College, Thrissur, for his inspi-

ration and valuable suggestions which became the stepping stone of my

doctoral work.

I would like to express my thanks to Dr. A. Vijayakumar, Profes-

sor, Department of Mathematics, CUSAT, the Head of the Department

of Mathematics, CUSAT for his kind approach and consideration, for

providing all the facilities for my research work.

I would like to sincerely thank , Head, Department of Mathematics,

CUSAT, for his valuable suggestions. I also thank other faculty members

Dr. M. N. N. Namboodhiri, Dr. A. Krishnamoorthi, Dr. P. G. Romeo,

Dr. M. Jadhavedan and Dr. B. Lakshmi for giving me the motivation to

conclude my doctoral work. I extend my sincere gratitude to the faculty

members and my good friends Dr. V.B. Kiran Kumar, Dr. Noufal A.,

Dr. Ambily A. A., office staff, librarian of the Department of Mathe-

matics, CUSAT and the authorities of CUSAT for their valuable help in

many areas.

I express my feeling of gratitude to Dr. Johnson X. Palackappillil,

Principal, Sacred Heart College(Autonomous), Thevara, Kochi for giv-

ing me a whole hearted support. I also thank my colleagues Prof. Joy



Mathew, Prof. Cyriac Antony, Prof. Jose P Jose, Prof. W.T. Paul,

Prof. Sebastian M.P., Prof. Shiju George, Prof. Jeenu Kurian, Prof.

Jeet Kurian Mattam, Prof. Sanil Jose, Prof. Jinesh P Joseph and Bilu P

Lalu at S.H College for providing support to complete the doctoral work.

I would like to thank Council for Scientific and Industrial Research

(CSIR) for awarding me a Junior Research Fellowship during my earlier

stage of research.

I would like to place on record my sincere gratitude to my senior re-

seach scholar Dr. Santhosh Kumar Pandey whose work motivated to

build up my thesis.

The tenure of my research at CUSAT will always be remembered in

a major share in the name of my friends who have become a part of

my life. I express my unaffected thanks to my fellow research scholars

Mr. Satheesh Kumar, Dr. Gireeshan K. K., Ms. Seethu Varghese, Ms.

Savitha K.S, Dr. Manju K Menon, Mr. Tijo James, Dr. Kiran Ku-

mar V.B., Mr. Balesh K., Mr. Pravas K., Mr. Shajeeb, Mr. Prince,

Mr. Ajan, Dr. Dhanya Shajin, Mr.Jaison, Mr. Rahul, Ms. Akhila

R., Dr. Chithra M.R., Dr. Pamy Sebastian, Dr. Raji George, Dr.

Jayaprasad P.N., Ms. Anu Varghese, Ms. Smisha, Mr. Shyam Sunder,

Dr. Deepthy C.P, Dr.Seema Varghese, Dr. Lalitha K, Ms. Anusha A.K.,

Dr. Manikandan for their interest in my work. I gratefully acknowledge

the support, during my research period.

I would like to thank my friends Dr. Varghese Jacob, Dr. Varghese

C., Ms. Jaya S, Dr. C. Sreenivasan, Dr. Deepthi C.P., , Ms. Binitha

Benny, for their interest in my work. I extend my gratitude to my friend

Mr. Manjunath A.S. for his care and support like a brother. A special

word of thanks to my friend Tonny K. B. for his valuable help.

A word of thanks would not suffice to express what I feel for my father

(K. R. Varghese), mother (Thankamma Varghese), my wife Delsy Joseph



and our loving son Dave Adam Didimos without whose love, care and an

unwavering faith in me, this thesis would not have been possible. Thank

you for allowing me to be as ambitious as I wanted. I would also like

to thank my sister Deepthy Varghese and her family for their love and

support.

I would like to take this opportunity to thank all my teachers, relatives

and friends once again.

Above all these, I thank God the almighty for being there, for making

me do this work. GOD, I believe that you were the one who guided me in

every single step of my life and I see your light guiding me to the future.

Thank you for being my beacon of light in writing this thesis.

Didimos K.V.





To

Issa, Dave and Andrea





Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of this thesis . . . . . . . . . . . . . . . . . . 4

2 The Schrödinger Equation 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Schrödinger equation and Koga’s solution . . . . 8

2.3 The de Broglie wave and its relation to elementary

fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Deterministic Electron Spin 15

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 A free electron . . . . . . . . . . . . . . . . . . . . . . 16

3.3 An electron in an electromagnetic field . . . . . . . . 18

3.4 Pauli and Hopf . . . . . . . . . . . . . . . . . . . . . 20

i



4 Deterministic Dirac Theory 23

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 The Klein-Gordon and Dirac Equations . . . . . . . . 24

4.3 Solutions to the Dirac equation . . . . . . . . . . . . 25

4.4 The choice of the coefficients . . . . . . . . . . . . . . 27

4.5 Verification of the rotating field . . . . . . . . . . . . 30

4.6 An arbitrary spin axis . . . . . . . . . . . . . . . . . 32

5 The Electromagnetic Field of an Electron 35

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Minkowski space . . . . . . . . . . . . . . . . 36

5.2.2 The Geometric Algebra of Minkowski space . 36

5.2.3 The Dirac Equation in Geometric Algebra . . 37

5.2.4 Maxwell’s Equation in Geometric Algebra . . 38

5.3 The Dirac Equation implies Maxwell’s Equation . . . 38

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 42

6 Concluding Remarks 43

6.1 Summary of the thesis . . . . . . . . . . . . . . . . . 43

6.2 Some Open Questions . . . . . . . . . . . . . . . . . 44

Appendix 47

Bibliography 53



Publications 57





Chapter 1

Introduction

This thesis is a study of some questions arising from the work of Toyoki

Koga (1912-2010) on the foundations of quantum physics. We begin with

a few words about Koga’s work.

1.1 Background

Around the turn of the 20th century, investigators like Lorentz, Poincare,

Abraham and Mie speculated that the electron’s structure and properties

were of electromagnetic origin. This line of thought was abandoned by

physicists in the wake of the successes of quantum mechanics from the

1920s onwards.

During the 1950s and 1960s, Toyoki Koga studied the foundations of

quantum mechanics with a view to removing ambiguities and contradic-

tions. He was not satisfied with either the Copenhagen interpretation or

the work of de Broglie and Bohm. This finally led him to a deterministic

theory of the electron including its own internal gravitational field ([9],

1



2 Introduction

Chapter VI of [10]). He then applied this theory to quantum electrody-

namics and nuclear physics. (chapters VII-X of [10]). His approach was

influenced by, among others, Einstein and the investigators mentioned

above.

Before he included gravitation in his theory, Koga gave a treatment of

the Schrödinger and Dirac equations for the electron ([13], [14], [12], [7],

[8] and Chapters IV and V of [10]). He interpreted his solutions to these

equations as localised fields centred around the centre of mass of the

electron. He showed that a de Broglie wave for a free electron could be

obtained by averaging over an ensemble of solutions to the Schrödinger

equation as given by him. This would suggest that the Schrödinger and

Dirac theories of Koga are the deterministic theories underlying quantum

mechanics which Einstein believed to exist.

Koga studied the Schrödinger equation and the Dirac equation (Chap-

ter V of [10]) but not the Pauli equation. This may be because he found

it of no use in developing his general relativistic theory of the electron,

including its internal gravitational field (Chapter VI of [10]). The latter

was motivated by his solution to the Dirac equation. But the determin-

istic theory of the Pauli equation is a good illustration of his ideas.

Koga also showed ([8], Chapter V of [10])that the solution to a system

of equations obtained from the Dirac equation could be interpreted in

such a way that the Maxwell equations could be derived from them as

an approximation under certain conditions.

Koga worked with specific matrix entries and obtained a system of

partial differential equations. Without solving the system, he then gave

names to certain quantities obtained from the solutions to the PDEs and

then interpreted these as the electric field, the magnetic field and so on

which appear in Maxwell’s equations. He did not explain how he arrived
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at these definitions. It would seem to be difficult or even impossible to

get an insight into his derivation.

As a consequence of his approximation procedure Koga obtained the

correct value of the magnetic moment of the electron, namely, the Bohr

magneton. This showed that his derivation was not an empty mathe-

matical exercise.

Later, Koga ([11], Chapter V) wrote out an explicit solution to the

Dirac equation and suggested that the solution represented a spinning

field. In [18], a solution to the Dirac equation closely related to Koga’s

was given using the Geometric Algebra of David Hestenes [4]. The solu-

tion is the sum of three terms: a Klein-Gordon field, a spinning field and

another field symmetric about the spin axis.

After Schrödinger discovered the equation named after him, it was

found that this equation did not completely describe the electron. It

is necessary to ascribe to the electron an intrinsic angular momentum

and magnetic moment. This phenomenon is called electron spin since it

appears that the electron is spinning.

A non-relativistic theory of the electron, including its magnetic mo-

ment, was developed in 1927 by Pauli [21] (see [6] for a modern outline

and references to textbooks) who showed how to extend the Schrödinger

theory. In the following year, Dirac gave a theory of the electron incor-

porating special relativity.

It should be noted that by 1970, Dirac had come to believe that a

deterministic theory of matter ought to hold ([17], lecture by Dirac).



4 Introduction

1.2 Outline of this thesis

In this thesis, we focus on a relatively small but crucial part of Koga’s

work: his study of the Schrödinger and Dirac equations, especially their

solutions for free electrons.

We first give a brief description of Koga’s solution to the Schrödinger

equation (which he called a wavelet in his early papers and an elementary

field in his books). Then we discuss and elaborate on his claim that the

de Broglie wave associated to a free electron can be obtained by averaging

over an ensemble of elementary fields. His treatment of this topic is rather

cursory and inadequate, although it is a key part of his work. We give a

more detailed explanation.

In the next chapter, we develop the non-relativistic theory of electron

spin, as Pauli did, by extending Koga’s solution of the Schrödinger equa-

tion. We find that the electron has a definite spin axis at any point of

time. An external magnetic field exerts a torque which rotates the spin

axis. The Pauli equation holds.

We also discuss the relation of the Hopf map ([5], [20], [15], [19]) to

the Pauli spin theory. It has been mentioned by several authors that

the Hopf map gives the spin direction of a spin 1/2 particle such as an

electron. We show the consistency of this assertion with the Pauli spin

theory, which seems to have been taken for granted in the literature so

far.

After this, we consider Koga’s solution to the Dirac equation. We

show that four one-dimensional solutions to the Klein-Gordon equation

each lead to a solution to the Dirac equation containing a term repre-

senting a rotating field. Two of these solutions are significant. They

represent opposing spins. An electron field with arbitrary spin axis can
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be represented as a linear combination of the two. The Hopf map is used

in proving this.

Then we continue the study of Koga’s work on the Dirac equation

by applying Geometric Algebra to Koga’s approximate derivation of

Maxwell’s equations. The notation and methods of Geometric Algebra

make the relation between the electromagnetic and Dirac fields easy to

see, in fact almost obvious.

We finally summarise the thesis with some concluding remarks.

An appendix dealing with questions posed by an examiner has been

added. Errors that he pointed out have been corrected there.



6 Introduction



Chapter 2

The Schrödinger Equation

2.1 Introduction

We work in an inertial frame, i.e., Newton’s first and third laws are

assumed to hold. The second law needs to be modified for small objects

like electrons. This section is a very brief outline of some of this research

done in the early 20th century.

Space and time are taken to be independent; this is Galilean space-

time.

The wave nature of electromagnetic radiation such as light was ac-

cepted by the end of the 19th century. But in 1900, Max Planck, in

his study of radiation from a cavity, introduced the quantum hypothesis:

matter emits and absorbs radiation of frequency ν in units (quanta) of

hν. Here h is called Planck’s constant.

In 1905 Albert Einstein extended this further to explain the photo-

electric effect. Einstein proposed that radiation also travels as quanta,

each quantum being a particle of energy hν and momentum p = hν/c

where c is the velocity of light.

7



8 The Schrödinger Equation

In 1923 Debye and Compton explained the change of wavelength of

X-rays during scattering using Einstein’s ideas.

The following year, Louis de Broglie, guided by the analogy between

Fermat’s principle in optics (photons) and the least-action principle in

mechanics extended the concept of wave-particle duality to material par-

ticles: the wavelength λ of a particle with velocity v is h/mv.

In 1926 Schrödinger introduced a wave function ψ to represent the

wave character of a particle and derived a wave equation for the electron

in a hydrogen atom. This is known as the time-independent Schrödinger

equation. Solving it, he obtained the exact Bohr energy levels of the

hydrogen atom.

A few months later he discovered a more general equation for the time

evolution of the wave function, now called the time-dependent Schrödinger

equation. This is also called the wave equation.

Louis de Broglie in 1927 and David Bohm in 1952 suggested that a

particle accompanies the wave.

In 1972, Koga published a paper giving a new solution to this equation

representing a localised field around a centre, which he called a wavelet in

his papers. Later, in his books, he used the term elementary field. Using

this solution, he explained various phenomena involving a free electron.

Koga actually took up and developed a 1927 idea of de Broglie. A sequel

in 1974 considered the effect of external electromagnetic fields which are

present in the real world in atoms, etc..

2.2 The Schrödinger equation and Koga’s solution

According to Schrödinger, an electron is described by a complex-valued

function ψ of time t and position vector r = (x, y, z). Let m be the mass
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of the electron and h̄ = h/2π where h is Planck’s constant. Suppose U

stands for potential energy. Then Schrödinger’s equation is

ih̄
∂ψ

∂t
+
h̄2

2m
∇2ψ − Uψ = 0. (2.1)

We substitute ψ = a exp(iS/h̄) in the above equation and separate real

and imaginary parts, getting

∂S

∂t
+

(gradS)2

2m
+ U − h̄2∇2a

2ma
= 0 (2.2)

and
∂a2

∂t
+ div

{
a2 (gradS)

m

}
= 0. (2.3)

Suppose we have a stationary free electron centred at the origin, i.e.,

the momentum is p = 0. Let us assume that gradU = 0. There is a

solution to the Schrödinger equation given by

a = A exp(−κr)/r (2.4)

with κ > 0, a constant, and

S = −Et+ p · r (2.5)

where r = |r|=
√
x2 + y2 + z2 and E = −(h̄2κ2/2m) is the total energy.

The elementary field contains a singularity because exp(−κr)/r be-

comes infinite as r approaches 0. Therefore it does not represent the real

electron accurately at such points. Koga’s explanation is that this is a

consequence of using a linear equation to describe nonlinear reality.

Also, the value of the constant κ is not given by the Schrödinger
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equation and must be chosen to reflect reality. Koga uses ideas of Yukawa

to estimate the value of κ.

Koga mentions that in the Schrödinger theory, we are not considering

the relativistic rest energy, which is why we can get negative energy as

above.

More generally, suppose the electron is at position R at t = 0 and is

moving with constant velocity v. Then the momentum p is mv. Now

we have to replace r with |r− (vt+ R)| in the expression for a and take

E = (mv2/2− h̄2κ2/2m) (2.6)

where v = |v|.
This is Koga’s solution to the Schrödinger equation for a free electron.

It satisfies
∇2a

a
= κ2. (2.7)

2.3 The de Broglie wave and its relation to elemen-

tary fields

The following question arises: suppose we have a free electron, i.e., an

electron which is described by an elementary field, but whose location is

unknown, all points of R3 being equally likely.

It can be considered an infinite ensemble of (possible) electrons, one at

every point of R3. These electrons don’t interact, since there is actually

only one.

Is there a solution of the Schrödinger equation that describes this

situation? And if so, how is it related to elementary fields?
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Koga’s answer is that this is nothing but a de Broglie wave, and

it is obtained by applying a certain averaging process to a collection

(the technical term is ensemble) of elementary fields. The rest of this

section is an attempt to make explicit what Koga seems to suggest in

[13], subsection 6.1 (page 66) and [10], subsection 4.3.b (page 50).

Suppose we take U = 0 in the Schrödinger equation. There is a

solution S = p · r−Et with E = p2/2m = constant, a = constant. This

can be expressed as

ψ = a exp[i(p · r− Et)/h̄] (2.8)

which is a plane wave with direction p. This describes a de Broglie wave;

we now consider how it can be obtained from elementary fields.

Since the Schrödinger equation is linear and homogeneous, a finite

sum of elementary fields is also a solution to the equation. We can ap-

proximate the infinite ensemble mentioned above with a finite collection

of elementary fields, uniformly distributed in space with their centres

forming a finite set Sn. We then consider the limit as the number of

electrons increases without bound and the distance between adjacent

electrons approaches zero, their distribution remaining uniform. We will

assume that Sn ⊆ Sn+1 and |Sn| increases with n. We also require that

every point of R3 is a limit point of the union of the sets Sn.

Here is an example of how all this can be accomplished. Let n be

a nonnegative integer. Consider the set In of rational numbers, of size

22n+1 + 1, defined by

In =

{
−2n,−2n +

1

2n
,−2n +

2

2n
, ..., 2n

}
(2.9)
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and let

Sn = I3n, (2.10)

a subset of R3 with (22n+1+1)3 elements. Each point of Sn is at a distance

1/2n from 6 nearby points. These sets Sn form an ascending chain.

If we enclose each point P = (x, y, z) of Sn in a small cube KP centred

at P with edge length 1/2n and edges parallel to the coordinate axes, their

union is a cube Cn of edge length 2(2n + 1/2n+1) centred at the origin,

Cn =

[
−2n − 1

2n+1
, 2n +

1

2n+1

]3
(2.11)

where the brackets denote a closed interval in R. For each face of Cn,

there are (22n+1 + 1)2 points of Sn at distance 1/2n+1 from that face.

Let

Dn = [−n, n]3, (2.12)

a cube of edge length 2n contained in Cn, also centred at the origin. As

n increases, both cubes get larger but Cn grows far more rapidly than

Dn; the ratio of their edge lengths, n2n+1/(22n+1 + 1), approaches 0.

Suppose we have a collection of possible (i.e., non-interacting) free

electrons, one centred at R at t = 0, for each point R of Sn. Suppose all

of them are moving at velocity v. The elementary field of one of them

with centre R (at t = 0) is given by

ψR = A

(
exp(−κrR,t)

rR,t

)
exp(iS/h̄) (2.13)

where A is a constant, rR,t = |r− (R + vt)| and S is the same for all the

electrons and is as given in the last section.



The Schrödinger Equation 13

It was mentioned earlier that the sigularity in the elementary field

is unrealistic. We therefore modify the definition of ψ as follows. We

choose a “small” r0 and let

a = constant = exp(−κr0)/r0 (2.14)

for r ≤ r0. This removes the singularity. We shall use this modified

definition in the rest of this section without any change in notation.

What follows is a plausibility argument rather than a rigorous proof.

Let Vn be the volume of any one of the cubes KP. For large n, the sum

of these elementary fields, multiplied by the volume of a small cube,

Vn
∑
R∈Sn

ψR, (2.15)

is a good approximation to∫∫∫
Cn

ψR dRx dRy dRz (2.16)

where R = (Rx, Ry, Rz). If the point r−vt is sufficiently close to the ori-

gin, the integral over Cn approximates the integral over all of R3 because

the contributions of distant points are negligible.

For sufficiently large n, points in Dn can be considered close to the

origin for this purpose.

The last integral, over all of R3, is independent of r and t. It can be

concluded that the same property holds approximately for Vn
∑

R∈Sn
ψR,

at least for points in Dn.

Since Vn = (1/2n)3 = 1/(23n), we have shown that the amplitude a of

ψ is constant and obtained by averaging.
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We now turn our attention to the factor exp(iS/h̄). Since we now

have a solution ψ = a exp(iS/h̄) of the Schrödinger equation with a =

constant, and

p = ∇S (2.17)

E = −∂S
∂t
, (2.18)

the real part of the equation reduces to the Hamilton-Jacobi equation.

The result is

E = p2/(2m),p = mv (2.19)

and finally

ψ = a exp[i(−p2t/2m+mv · r)/h̄]. (2.20)

This is the de Broglie wave.



Chapter 3

Deterministic Electron Spin

3.1 Introduction

In 1927 Pauli [21] showed how to extend the Schrödinger theory of the

electron to account for magnetic effects (which others suggested was due

to spin) without taking relativity into account. He introduced an elec-

tron field that took values in C2 rather than C. His modification of

Schrödinger’s equation is now called the Pauli equation. This contains

an additional term due to the torque exerted by the external magnetic

field on an electron. We proceed as Pauli did but extend the Schrödinger

theory of Koga described in the last chapter. This means our theory is

deterministic.

We also study the Hopf map

f : S3 → S2

in the context of electron theory. We address its consistency with the

Pauli theory. This has been mentioned in the literature but has appar-

15



16 Deterministic Electron Spin

ently not been explicitly explained.

It should be noted that in the Pauli theory, the magnetic nature of

the electron is postulated, not explained. The conventional term “spin”

was not used by Pauli. But we find it expedient to use it.

3.2 A free electron

By a free electron we mean one with no external forces acting on it. We

take U = 0 for a free electron. For convenience, we assume that we are

studying an electron which is at rest in our frame. In order to study

electron spin, we postulate that ψ1 and ψ2 are related solutions to the

Schrödinger equation for a free electron:

ψj = aj exp(iS/h̄) (3.1)

where aj = |ψj| are complex valued functions of position and time.

We also assume that the ratio ψ2/ψ1 is constant (independent of time

as well as position) for a free electron. If this ratio gives the spin direction,

then the assumption above is equivalent to the assertion that in the

absence of a torque, an electron does not precess.

This account is motivated by Koga’s work. See [13] for Koga’s treat-

ment of the Schrödinger equation. When an electron is in an external

electric field, Koga studies what happens in [14]. These matters are also

explained in Chapter IV of his book [10] where he changes his terminol-

ogy for the wavefunction from “wavelet” to “elementary field”.

We can write

ψ = ψ0

(
α

β

)
(3.2)
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where ψ0 is a solution to the Schrödinger equation and α and β are

constants (for a free electron) with |α|2+|β|2= 1. This expression is

unique up to multiplication by a complex number of absolute value 1.

We can make it unique by (for example) assuming that α is real and

positive.

If we identify R4 with C2 as in [20], we have

(
α

β

)
∈ S3, the unit

sphere in R4. This brings up the question: what is the direction of ψ, if

any? In other words, what is the spin axis? There is a possible answer

to this. In 1931, Hopf [5] defined a map which we denote

f : S3 → S2 (3.3)

as an example of a continuous map between spheres that is not null-

homotopic. Here S2 is the unit sphere in R3.

We define the Hopf map f here and justify its use later. The following

definition and several equivalent ones are given in [20]; this one is the

most convenient for us.

A general point P ∈ S3 can be described as

P = eiξ

(
cos(θ/2)

eiφ sin(θ/2)

)
(3.4)

where 0 ≤ θ ≤ π. Here θ is unique and φ can also be made unique by

putting suitable bounds on it; ξ is arbitrary. Let

f(P ) = (sin θ cosφ, sin θ sinφ, cos θ) ∈ S2. (3.5)

We see that
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(i) f is continuous, independent of ξ and depends only on the ratio of

the components of P , eiφ tan(θ/2),

(ii) every point of S2 is f(P ) for some P ∈ S3,

(iii) f

(
1

0

)
= (0, 0, 1) (the north pole of S2),

(iv) f

(
0

1

)
= (0, 0,−1) (the south pole of S2), and

(v) f(P ) uniquely determines P (except for the value of ξ).

As a consequence of (i), we can extend the domain of f to all the

points of C2 except the origin. There is also an S2-valued map f(ψ)

where ψ =

(
ψ1

ψ2

)
. It should be noted that f(ψ) depends on t alone;

for a free electron, f(ψ) is constant. Thus, f is a candidate for the

direction map. But is f compatible with the Pauli spin theory? In other

words, for a free electron, do f(ψ) and the spin angular momentum vector

s have the same direction in R3?

By properties (iii) and (iv), f(ψ) gives the spin direction of a spin-up

or spin-down electron.

3.3 An electron in an electromagnetic field

We accept the Pauli equation as given in the literature. This is the

Schrödinger equation with one more term due to an external magnetic
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field. If there is no magnetic field, it reduces to a pair of identical

Schrödinger equations, one for each component of the field. One dif-

ference in our approach is that we always consider angular momentum

as a vector in R3.

In the Schrödinger (or Pauli) equation, the potential energy U is a sum

of terms due to various forces acting on the electron. The vector potential

of the electromagnetic field also modifies the kinetic energy term. These

are all scalar operators; they simply multiply ψ. None of them take into

account the fact that the electron has an intrinsic magnetic moment.

Suppose an electron is placed in a magnetic field B. Then it experi-

ences a torque µ × B where µ is its magnetic moment. The potential

energy term due to the magnetic field is

V = −B · µ (3.6)

which leads to

V =
e

m
(B1s1 +B2s2 +B3s3) (3.7)

where B1, B2, B3 are the components of B.

Since ψ has two components, the three real components s1, s2, s3 of

the spin angular momentum s must be represented in the Pauli equation

by 2×2 matrices, say S1, S2, S3. These satisfy well known commutativity

relations and consequently we can make the choice

Sj =
h̄

2
σj (3.8)

where σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
.
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These are the so called Pauli spin matrices.

Hestenes [4] and Doran and Lasenby [2] explain that these matrices

merely represent three orthogonal unit vectors in R3 and have nothing

to do with spin.

Thus, in the Pauli equation, corresponding to V is the operator

h̄e

2m
(B1σ1 +B2σ2 +B3σ3). (3.9)

For us, the spin vector s is a real vector in R3, not a triple of matrices

as stated in most textbooks. A spin measurement, such as passing an

electron through a Stern-Gerlach apparatus, is actually a rotation of

the spin axis due to the torque exerted by the magnetic field. This is

compatible with the view of Doran and Lasenby in their book [2] that

spin measurement is really spin polarisation.

3.4 Pauli and Hopf

We wish to study the Hopf map in the context of a free electron. But

the effect of spin is not seen unless there is an external magnetic field.

So we assume its existence and then consider the limit of its effect as it

approaches 0.

Let B = |B|n where n is a unit vector with components n1, n2, n3.

This means that Bj = |B|nj for j = 1, 2, 3 and n ∈ S2 is the direction of

B.

Now there is a unique θ such that 0 ≤ θ ≤ π and cos θ = n3. Then,

since n1
2 + n2

2 + n3
2 = 1, there is φ such that sin θ cosφ = n1 and
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sin θ sinφ = n2. Note that for P ∈ S3 the Hopf map satisfies

f(P ) = n = (sin θ cosφ, sin θ sinφ, cos θ) (3.10)

if and only if P is of the form

P = eiξ

(
cos(θ/2)

eiφ sin(θ/2)

)
(3.11)

for some ξ.

Similarly, we find Q ∈ S3 such that f(Q) = −n. Since −n is obtained

from n by replacing θ with π − θ and φ with φ+ π, we get

Q = eiξ

(
sin(θ/2)

−eiφcos(θ/2)

)
. (3.12)

Without loss of generality, we will take ξ = 0 or any other convenient

value. With the usual inner product, {P,Q} forms an orthonormal basis

for C2. The two complex vectors P and Q are eigenvectors of the matrix

n1σ1 +n2σ2 +n3σ3 corresponding to the eigenvalues 1, −1. See the paper

[20] for details.

We are now concerned with the question of the relation, if any, be-

tween n and the directions of ψ and s.

First consider a special case. Suppose B is parallel to the +z-axis, i.e.,

n1 = n2 = 0, n3 = 1. We can take P =

(
1

0

)
and Q =

(
0

1

)
. In this

case, using ψ = ψ1P + ψ2Q, σ3P = P and σ3Q = −Q, we see that the

Pauli equation degenerates into a pair of independent scalar equations,

one for each ψj. If ψ2 = 0, we have a spin-up electron; by definition, its

spin axis has the same direction, (0, 0, 1), as B.
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In the general case, there are complex-valued maps ψP and ψQ, uniquely

determined by ψ, such that ψ = ψPP +ψQQ. Again, the Pauli equation

degenerates into a pair of independent scalar equations, one for ψP and

the other for ψQ. If ψQ = 0 then f(ψ) = f(P ) = n while if ψP = 0 then

f(ψ) = f(Q) = −n.

Conversely, if f(ψ) = n then ψQ = 0; if f(ψ) = −n then ψP = 0.

Suppose we rotate the z-axis in R3, making n the north pole of S2

(and −n the south pole), and correspondingly change bases in C2 from{(
1

0

)
,

(
0

1

)}
to {P,Q}. The vectors s and B are unchanged, but

now B is parallel to the new +z-axis. With the new basis of C2, P is

represented by

(
1

0

)
and Q by

(
0

1

)
. Similarly, n is now represented

by (0, 0, 1). Although the Hopf map changes, its values at P and Q

remain the same: n and −n. Thus, as in the special case, the direction

of ψPP is n, which is the direction of B. As in the special case, ψPP

stands for a spin-up electron. So its direction coincides with those of n

and s.

Considering the limit as B→ 0, we see that for a free electron ψ and

s have the same direction. In other words, the Hopf map gives the spin

axis.



Chapter 4

Deterministic Dirac Theory

4.1 Introduction

In 1928 Dirac published an equation for the electron field which was ap-

parently compatible with special relativity. Dirac found that his electron

field had to be 4-dimensional.

The Dirac equation is closely related to another equation, compati-

ble with relativity, whose solution is a complex scalar electron field (or

an n-tuple of such fields). This equation was discovered and rejected

by Schrödinger and was rediscovered by Klein and Gordon, all indepen-

dently. It is named after the latter two.

Koga solved these two equations in a manner similar to his slightly

earlier work on Schrödinger theory. In this chapter we study some prop-

erties of Koga’s solution to the Dirac equation. He conjectured that the

electron was a rotating field but could not prove it.

We describe all this in detail and show that there is more to the

solution than what he suspected.

23
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We also show that the Hopf map can be used to obtain a Dirac electron

field with arbtrarily chosen spin axis in R3.

4.2 The Klein-Gordon and Dirac Equations

Suppose Φ(x, y, z, t) is a solution to the Klein-Gordon equation for a

free electron (this is the only case treated here). This is the following

equation: (
h̄2
∂2

∂t2
− h̄2c2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+m2c4

)
Φ = 0.

Here Φ can be a complex-valued scalar map or an n-tuple of such

maps, for any n.

We take n = 4 in order to use Φ to get a solution Ψ to the Dirac

equation.

Then the Klein-Gordon equation can be written as

D0D1Φ = 0 or D1D0Φ = 0

where the operators D0 and D1 commute:

D0 = ih̄β
∂

∂t
+ ih̄cβ

(
α1

∂

∂x
+ α2

∂

∂y
+ α3

∂

∂z

)
−mc2,

D1 = ih̄β
∂

∂t
+ ih̄cβ

(
α1

∂

∂x
+ α2

∂

∂y
+ α3

∂

∂z

)
+mc2.

Here β, α1, α2 and α3 are 4 × 4 matrices satisfying certain commu-

tativity conditions; following Koga, we choose them to be the matrices
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which were first given by Dirac. Later, we adopt the modern usage of

the term “Dirac equation” of which Koga’s is a special case.

The Dirac equation is nothing but

D0Ψ = 0

and hence, as Koga and others mention, a solution to it is given by

Ψ = D1Φ.

Another equivalent formulation of the Dirac equation uses the so-

called gamma matrices. We are not concerned with this here.

4.3 Solutions to the Dirac equation

Suppose we consider a free electron at rest in our inertial frame with its

centre at the origin of our coordinate system. This case suffices for our

purposes; there is no loss of generality. There exists a (complex) scalar

solution to the Klein-Gordon equation, given by

ϕ = a exp (iS/h̄)

where

a = exp (−κr)/r,

S = −Ect

with

r = |r|,

E2 = m2c2 − h̄2κ2
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where κ is a positive constant, r = position vector, cE = energy, (the

value of κ is not given by the theory and is to be chosen to make the

result conform to reality).

If the electron is moving with velocity u, then the expressions above

need to be modified because the Lorentz transformation of special rela-

tivity applies. For our purposes it is not necessary to consider all this.

This solution was given by Koga ([11], Chapter V); it is very simi-

lar to his solution to the Schrödinger equation. He then took, as a 4-

dimensional solution to the Klein-Gordon equation, Φ = (ϕ1, ϕ2, ϕ3, ϕ4)
T

with

ϕj = a exp (iS/h̄)Aj

where Aj are arbitrary complex constants.

Koga wrote down a 4-dimensional solution to the Dirac equation, Ψ =

(ψ1, ψ2, ψ3, ψ4)
T , by evaluating D1Φ with Φ = (ϕ1, ϕ2, ϕ3, ϕ4)

T . He then

tried to demonstrate that this solution, with arbitrary A1, A2, A3, A4,

represents a rotating field, similar to a spinning top. He was not very

successful, probably because he did not assign specific, suitable values to

the constants Aj as we shall do in this paper, but kept them arbitrary.

Pandey and Chakravarti ([18]) translated the complex scalar solution

of the Klein-Gordon equation ψ = a exp (iS/h̄) into Geometric Algebra

and got a solution to the Dirac equation, but did not interpret the terms

properly. One purpose of this paper is to correct the error in their paper.

It turns out that although Geometric Algebra was initially very helpful in

finding a solution, it did not clearly display some other solutions and the

relation between them; the conventional approach makes things clear.

We shall assume, with no loss of generality, that the electron is at rest
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in our inertial frame:

u = 0.

Koga’s solution to the Dirac equation is as follows. He defined

R = (r− ut)

(
1

|r− ut|2
+

κ

|r− ut|(1− u2/c2)1/2

)
.

For us, of course, u = 0 in the above equation. Now the solution Ψ, with

arbitrary complex constants Aj, has components

ψ1 = a exp (iS/h̄)
[
A1 (Ec+mc2)− A4 ih̄c (Rx − iRy)− A3 ih̄c Rz

]
,

ψ2 = a exp (iS/h̄)
[
A2 (Ec+mc2)− A3 ih̄c (Rx + iRy) + A4 ih̄c Rz

]
,

ψ3 = a exp (iS/h̄)
[
A3 (Ec−mc2) + A2 ih̄c (Rx − iRy) + A1 ih̄c Rz

]
,

ψ4 = a exp (iS/h̄)
[
A4 (Ec−mc2) + A1 ih̄c (Rx + iRy)− A2 ih̄c Rz

]
.

These expressions can be obtained directly or by putting u = 0 in the

solution given by Koga.

4.4 The choice of the coefficients

Not all such solutions can be expected to be physically realistic; Koga

mentioned that the arbitrary coefficients Aj need to be appropriately cho-

sen. But he did not make any choice and tried to prove, using arbitrary

Aj, that the solution represents a spinning field.

We propose four possible solutions, each obtained by taking one Aj

to be 1 and the others to be 0.

Taking A1 = 1, A2 = A3 = A4 = 0 gives the solution correspond-

ing to that obtained by Pandey and Chakravarti [18] using Geometric
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Algebra. We call this solution Ψf (f stands for first).

Ψf = a exp (iS/h̄)


Ec+mc2

0

ih̄cRz

ih̄c(Rx + iRy)

 .

This can be written as the sum of four column vectors, the second

term being the zero vector:

Ψ = a exp (iS/h̄)


Ec+mc2

0

0

0



+ a exp (iS/h̄)


0

0

ih̄cRz

0



+ a exp (iS/h̄)


0

0

0

ih̄c(Rx + iRy)

 .

The three nonzero vectors can be interpreted as follows: since Ec +

mc2 is constant, the first vector is a solution to the Klein-Gordon equa-

tion which represents a field without spin. The second vector is a field

which has rotational symmetry about the z-axis. Finally, the last vector

represents a spinning field with angular velocity

ω = Ec/h̄.
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This can be verified by observing that if we take a rotating frame with

the same origin, z-axis and angular velocity ω, the field is a constant field

in this frame. We do this in the next section.

At this point it can be mentioned that Pandey and Chakravarti [18]

made the error of mixing the last two components. In the present ap-

proach, it is impossible to do this.

Similarly, if we take A2 = 1 and A1 = A3 = A4 = 0 we get

ψ1 = 0,

ψ2 = a exp(iS/h̄)(Ec+mc2),

ψ3 = a exp(iS/h̄)ih̄c(Rx − iRy),

ψ4 = a exp(iS/h̄)(−ih̄cRz).

Again there are three nonzero column vectors. They can be interpreted

exactly as in the previous case (but in a different order) except that the

direction of rotation is reversed because Rx−iRy is the complex conjugate

of Rx + iRy (their arguments are the negatives of each other). If the first

solution Ψf is defined to be spin up, then the second, which we call Ψs,

is spin down.

Two similar choices can be made, A3 = 1 and A4 = 1. The solutions

are similar to the ones described above. But the Klein-Gordon term

contains Ec−mc2 instead of Ec+mc2.

These four solutions have some common features. Each has three

nonzero components: a constant component, a component independent

of x and y with the same magnitude in all four, and a component giving a

rotating field with angular velocity |Ec/h̄|. The first two solutions have a

constant component of the same magnitude, |Ec+mc2|. Similarly for the

last two. It was mentioned earlier that E satisfies E2 = m2c2−h̄2κ2. If we
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assume the positive root for E in the first two solutions and the negative

root in the last two, the constant component has the same value in all

four. All this suggests that these solutions really represent the electron.

The last two can be considered negative energy solutions. We will not

say any more about them.

4.5 Verification of the rotating field

In this section, the axis of rotation is always the z-axis. We first consider

how a rotating field can be described in general. Let F = F (x, y, z, t) be

a field. The argument is independent of where F takes its values.

Suppose a general point with coordinates (x, y, z, t) in our inertial

frame has coordinates (x′, y′, z, t) in a rotating frame with the same z-

axis and angular velocity ω relative to the inertial frame.

A point is stationary in the rotating frame if and only if it is moving

along a circle centred at a point on the z-axis, in a plane parallel to the

xy-plane, with angular velocity ω.

The field F can be said to be rotating with angular velocity ω if it is

constant (time-independent) when observed by an observer fixed in the

rotating field.

Let x+ iy = ρeiθ where ρ = |x+ iy|. Then x′+ iy′ = ρei(θ−ωt).

It follows from the above that the condition

F (x, y, z, t) = F (x′, y′, z, 0) for all points

is equivalent to the statement that the field F is rotating with angular

velocity ω relative to the inertial frame.
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We now apply the above results to Koga’s solutions. It suffices to

consider Ψ = Ψf ; the other solutions behave similarly.

Suppose F = ψ4 and the angular velocity is ω = Ec/h̄. Then, using

S = −Ect and x′+ iy′ = exp(−iωt)(x+ iy) we get

ψ4(x, y, z, t) = a exp (iS/h̄)


0

0

0

ih̄c(Rx + iRy)



= a exp (−iωt)(ih̄c)
(

1

r2
+
κ

r

)
0

0

0

x+ iy


and so

ψ4(x′, y′, z, 0) = a(ih̄c)

(
1

r2
+
κ

r

)
0

0

0

x′+ iy′


= ψ4(x, y, z, t).

This shows that ψ4 is a rotating field as desired.
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4.6 An arbitrary spin axis

Suppose n ∈ S2. This means n = (n1, n2, n3) ∈ R3 with n2
1 +n2

2 +n2
3 = 1.

We can describe the components of n using spherical coordinates:

n1 = sin θ cosφ,

n2 = sin θ sinφ,

n3 = cos θ

where θ is unique if we assume 0 ≤ θ ≤ π, and φ is unique modulo 2π.

Let f denote the Hopf map. Then we have seen in the last chapter that

n = f

(
cos(θ/2)

eiφ sin(θ/2)

)

and

−n = f

(
sin(θ/2)

−eiφ cos(θ/2)

)
.

Let

Ψn = cos(θ/2)Ψf + eiφ sin(θ/2)Ψs.

In this section we shall explain how Ψn can be transformed into a Dirac

field with spin-up axis n.

The idea is to consider what happens when we rotate the n-axis to

make it coincide with the z-axis. Corresponding to this, there is a uni-

tary linear operator T on C2, i.e., a 2× 2 unitary matrix, which takes
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(
cos(θ/2)

eiφ sin(θ/2)

)
to

(
1

0

)
and

(
sin(θ/2)

−eiφ cos(θ/2)

)
to

(
0

−1

)
.

We apply T to the first two components of Ψn and, separately, to the

last two components. This amounts to multiplying the column vector Ψn

by the 4× 4 matrix

M =

(
T 0

0 T

)
.

. We will show that after rewriting appropriately, the result is an expres-

sion identical to Ψf . The rewriting consists of replacing the components

of R by expressions in the new components. This can be done as soon

as the new coordinate axes have been chosen.

In the operator D0 which defines the Dirac equation, we have to

change the matrices αj and β in such a way as to preserve the commu-

tativity relations. So we replace αj with MαjM
−1 and β with MβM−1.

This yields a new Dirac equation of which MΨn is a solution.

Now we analyse the effect of applying T . The first two components

of Ψn form a constant multiple of

(
cos(θ/2)

eiφ sin(θ/2)

)
. It therefore suffices

to consider the effect on the last two components of Ψn.

There is a useful simplification. The desired change of axis can be

obtained by composing two computationally far simpler rotations as fol-

lows.

The vector n can first be taken into the xz-plane by a rotation through

the angle φ about the z-axis. This amounts to assuming that θ = 0. In

this case, Rz is unchanged and the polar forms for Rx+ iRy and Rx− iRy

help in finding the new components of R.
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Assume that this has been done. Then, by a rotation about the y-axis

through the angle θ, we can take n (which is now in the xz-plane) to the

z-axis. In this case we have φ = 0 and Ry doesn’t change. It helps to

use the polar forms for Rx + iRz and Rx − iRz.



Chapter 5

The Electromagnetic Field of

an Electron

5.1 Introduction

This chapter is a description of a proof by Koga that for a free electron,

the Dirac field that Koga describes is roughly equivalent to the Maxwell

field, i.e., the electromagnetic field described by Maxwell’s equations.

This is only a rough equivalence but it has two goals for Koga: firstly

a derivation of the magnetic moment of the electron, secondly a sugges-

tion that one should try to look for equations that imply both the Dirac

equation and Maxwell equations, as limiting cases for two different lim-

its. Koga accomplished this in [9]; see also Chapter VI of [10], taking

into account the internal gravitational field of the electron. This was

the culmination of his theoretical work. He later applied this theory to

various physical problems in the last four chapters of [10].

35
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5.2 Background

We introduce the geometric or Clifford algebra of 4 dimensional space-

time, the study of which was begun by Dirac in the 1920s. This is a

brief outline, sufficient for our purposes. It should not be considered an

introduction to the subject (see [2] or [4]).

The Einstein summation convention applies. Greek indices range from

0 to 3 and Latin indices from 1 to 3.

5.2.1 Minkowski space

For us, Minkowski space (the spacetime of special relativity) is a 4 di-

mensional real space with coordinates x0 = ct, x1, x2 and x3. We assume

that an origin has been chosen and a corresponding basis of unit vectors

is given: γ0, γ1, γ2 and γ3. There is also a reciprocal basis: γ0 = γ0,

γi = −γi for i = 1, 2, 3. The metric is

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.

5.2.2 The Geometric Algebra of Minkowski space

This algebra, also called the spacetime algebra, is the associative algebra

generated by γµ, µ = 0, 1, 2, 3 (as above), with relations (γ0)
2 = 1, (γi)

2 =

−1 for i = 1, 2, 3 and γµγν = −γνγµ when µ 6= ν.

It is a 16 dimensional real vector space; we call its elements multivectors.

A basis is

{1} ∪ {γµ} ∪ {γµγν | µ < ν} ∪ {γµγνγτ | µ < ν < τ} ∪ {γ0γ1γ2γ3}.

This algebra contains Minkowski space as a subspace.
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We call I = γ0γ1γ2γ3 the unit pseudoscalar. It satisfies I2 = −1.

The subspaces of the spacetime algebra have dimension 1, 4, 6, 4

and 1 respectively; their members are called scalars, vectors, bivectors,

trivectors and pseudoscalars.

The bivectors generate a subalgebra of dimension 8, which we call the

even subalgebra. It is convenient to introduce new notation to deal with

this subalgebra. Let σi = γiγ0 for i = 1, 2, 3. Then a basis for the even

subalgebra is

{1} ∪ {σi} ∪ {σiσj | i < j} ∪ {σ1σ2σ3}.

Note that σi
2 = 1, σ1σ2σ3 = I and Iσ1 = σ2σ3 = γ3γ2 with two more

such relations obtained by cyclic permutation of the indices.

Suppose ψ is a function defined on Minkowski space with values in

the spacetime algebra. The vector derivative of ψ is defined as

∇ψ = γµ
∂ψ

∂xµ
.

5.2.3 The Dirac Equation in Geometric Algebra

We follow the scheme given in chapter 8 of [2] for mapping the 4 di-

mensional complex space, in which solutions to the Dirac equation take

values, bijectively to the even subalgebra of the spacetime algebra, and

replacing the action of the Dirac (gamma) matrices (and the complex

number i) with multiplication by members of the spacetime algebra on

the left and right. A similar scheme is used in [4]. An inertial frame is

assumed. The Dirac (or Dirac-Hestenes) equation is

h̄∇ψIσ3 = mcψγ0.
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5.2.4 Maxwell’s Equation in Geometric Algebra

See chapter 7 of [2] (or [4]). The four Maxwell equations (in differential

form) in vacuum reduce to the single equation

∇F = J

where F = E + IB is called the electromagnetic field strength, E is the

electric field, B for our purposes is the magnetic field (both are in the

space spanned by σ1, σ2 and σ3) and J = Jµγµ is a vector called the

spacetime current density. Here J0 is the charge density, denoted ρ and

(J iγi)γ0 = J iσi is the current density. The quantity F is covariant under

Lorentz transformations.

5.3 The Dirac Equation implies Maxwell’s Equation

Consider the Dirac equation in Geometric algebra,

h̄∇ψIσ3 = mcψγ0.

We now replace ψ with φ exp

(
−Iσ3mc2t

h̄

)
in this equation.

This corresponds to a similar transformation made by Koga (with the

complex number i instead of the bivector Iσ3). The same transformation

is also used by Gurtler and Hestenes [3] and Doran and Lasenby chapter

8 of [2] in different contexts. In all these cases, the idea is to factor out

the fast oscillating or high-energy component of ψ and leave a funtion,

φ, which varies relatievly slowly with time. This implies that if we use

Iσ3, the field must spin around an axis parallel to the σ3 axis.
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We get a “Dirac equation” for φ:

h̄∇φIσ3 = mc(φγ0 − γ0φ).

Like ψ, the function φ is also even-valued. Hence φ can be written as

φ = φ0 +X + IY + φ4I

where φ0 and φ4 are scalars and X and Y are bivectors (specifically,

linear combinations of σ1, σ2, σ3). Suppose

X = X1σ1 +X2σ2 +X3σ3, Y = Y1σ1 + Y2σ2 + Y3σ3

In order to compare the Dirac Equation (for φ) and the Maxwell

equation, we try to equate F with some bivector obtained from φ. Some

possible choices are the bivector part of φIσ3, φσ2, φI or φ. It turns out

that the second of these four gives sensible results.

We have

φσ2 = φ0σ2 +Xσ2 + IY σ2 + φ4Iσ2

with bivector part [Y3σ1 +φ0σ2−Y1σ3] + I[−X3σ1 +φ4σ2 +X1σ3], which

we equate to F = E+ IB. Equating the coefficients of the six bivector

basis elements

(σ1, σ2, σ3, Iσ1, Iσ2, Iσ3), we get

E = Y3σ1 + φ0σ2 − Y1σ3, B = −X3σ1 + φ4σ2 +X1σ3.
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The Dirac equation gives (using (σ3)
2 = 1)

∇φσ2 = −mc
h̄

(φγ0 − γ0φ)σ1

which can be rewritten as

∇(X2+[Y3σ1+φ0σ2−Y1σ3]+I[−X3σ1+φ4σ2+X1σ3]+Y2I) =

(
2mc

h̄

)
(X + φ4I) γ1

. From this we subtract the Maxwell equation

∇F = J.

The result is

∇X2 +∇IY2 =

(
2mc

h̄

)
(X + φ4I) γ1 − J.

The left hand side of this equation has eight terms: four vector and

four trivector terms. The right hand side also has only vector and trivec-

tor terms. Equating corresponding terms, we get the following scalar

equations. Similar equations were obtained by Koga ([8], Chapter V of

[10]).
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∂X2

∂x0
=

2mc

h̄
X1 − ρ,

∂X2

∂xi
= J i, (i = 1, 2, 3),

∂Y2
∂x1

=

(
2mc

h̄

)
φ4,

∂Y2
∂x2

=

(
2mc

h̄

)
X3,

∂Y2
∂x3

= −
(

2mc

h̄

)
X2,

∂Y2
∂x0

= 0.

Thus, by taking F = [Y3σ1 + φ0σ2− Y1σ3] + I[−X3σ1 + φ4σ2 +X1σ3],

we ensure that all the components of φ are closely related to the electro-

magnetic field.

Now assume that the field φ varies “slowly” with time. In other words,

the time derivatives of the components of φ are small compared to the

other terms. By assuming
∂X2

∂x0
= 0, we get

2mc

h̄
X1 = ρ.

Assuming that the electron is a field which is nonzero only in a

bounded region, we can integrate over all of σ1σ2σ3 space to get

2mc

h̄
M = e

where M is the σ3 component of the moment of the magnetic field and e

is the electronic charge. Thus we get the correct expression for the Bohr
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magneton.

5.4 Conclusions

We have been able to show that from the Dirac equation for a free elec-

tron, an approximate derivation of Maxwell’s equation can be given. This

corresponds to Koga’s arguments. The Maxwell field is accepted by the

scientific community as something that really exists. The derivation in

this paper suggests that Koga’s Dirac field that we work with in this

paper is equally real.

It may be worthwhile to find the electromagnetic field corresponding

to Koga’s explicit solution to the Dirac equation ([11], Chapter V and

[18]).

We conclude by mentioning that for Koga, the work of his which

we study here was a motivation for finding a set of equations which

include the electron’s gravitational field and imply the Dirac equation

and Maxwell’s equations as limiting cases under different conditions ([9]

and Chapter VI of [10]).



Chapter 6

Concluding Remarks

6.1 Summary of the thesis

In this thesis we discussed a deterministic theory of the electron based

on Toyoki Koga’s work with the help of the Hopf map.

The thesis started by analysing a fundamental equation in quantum

mechanics: the Schrödinger equation. We showed that the solution to the

Schrödinger equation given by Koga yielded a de Broglie wave through

an averaging process.

Next we considered the Pauli equation to deal with the spin of a free

electron. Using the solution to the Schrödinger equation given by Koga,

a solution to the Pauli equation for free electron could be obtained. With

the help of the Hopf map, the spin axis was defined for a free electron.

Even though this spin axis has been referred to in the literature, nobody

gave an explanation for assigning the spin axis. In this thesis, we could

explain what is the relation between the spin axis assigned to a free

electron and the spin angular momentum vector.
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The properties of the solution to the Dirac equation given by Koga

were discussed in this thesis. It was shown that the solution to the Dirac

equation contains a term which represents a rotating field. We have

proved that the Hopf map can be used to obtain a Dirac electron field

with arbtrarily chosen spin axis in R3.

Finally, we discussed Koga’s rough comparison between the Maxwell

field and the Dirac field of an electron using Geometric Algebra, which

greatly clarified his argument.

In his papers and books, Koga devoted considerable space to his dif-

ficulties with the foundations of quantum mechanics which were the rea-

sons for his taking a new path. We did not touch upon any of these issues

here.

6.2 Some Open Questions

• Remove the singularity in a = exp(−κr)/r, i.e., get a better ex-

pression for the function a which occurs in all the solutions given

by Koga.

• How to take the non-relativistic limit of the solution to the Dirac

equation given by Koga?

• Understand the solutions to the Dirac equation containing Ec−mc2.

• Understand the significance of the term containing Rz in the solu-

tion of the Dirac equation.

• Understand how the spin theories of Pauli and Dirac, involving

spinors, emerge from the theories given here based on Koga’s work.
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We have examined some mathematical issues arising in Koga’s work,

especially concerning electron spin. We hope this thesis will help to con-

vince the community of physicists that Koga’s ideas are worth studying.





Appendix

The questions raised by an examiner are answered
here

S.No Question Answer

1. In chapter 2, for a free

particle the de Broglie

wave is obtained via

an ensemble of ele-

mentary field solution

of the Schrödinger

equation in page 9.

Does this method ex-

tend to the case of the

harmonic oscillator, or

the hydrogen atom?

Koga discusses the hydrogen atom in

subsection 5.2 of his paper [13] and,

in more detail, in subsection 4.5.a of

his book [10]. He discusses the one-

dimensional oscillator in subsection

5.3 of the above paper and, in more

detail, section 4.7 of the book men-

tioned above. He concludes that “it

is unavoidable to suspect that the

one-dimensional oscillator is a phe-

nomenon fictitiously formulated in

order to conclude, as closely as pos-

sible, Planck’s formula E = nh̄ν”.
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2. End of page 7,

What is m in mc =

hν/c ?

The last sentence of page 7 has been

rewritten as “Einstein proposed that

radiation also travels as quanta, each

quantum being a particle of energy

hν and momentum p = hν/c where

c is the velocity of light”.

3. Koga’s elementary

field seems to be

square integrable and

it can be expressed as

Fourier integral over

plane curves.

What does this im-

ply for the proposed

framework?

Koga’s elementary field suggests that

a “particle” such as an electron is

a field in a small region of space.

The region is spherical for a free par-

ticle but gets distorted by external

fields and resists the distortion lead-

ing to stable atoms. See his paper

[14]. More details are in section 4.3

of his book [10]. Square integrability

does not seem to be significant. We

are interested in individual particles,

not ensembles.
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4. Can each component

of the spin has any

real value in the range

(−h̄/2, h̄/2)?

The Stern Gerlach

experiment seems to

show only ±h̄/2 are

possible.

Do all components

of spin have definite

values simultenously?

Do they not anticom-

mute?

A deterministic interpretation of the

Stern-Gerlach experiment follows.

Any electron has a unique spin axis

at any time. Electrons enter the

apparatus with different spin direc-

tions. The torque due to the mag-

netic field rotates each electron and

when it leaves, its spin can only have

one of two values (directions). The

Pauli matrices represent orthogonal

unit vectors in R3. Thus the spin is

a vector with numerical components

in all directions, simultaneously. See

the book by Doran and Lasenby [2],

page 273 for a more conventional

explanation assuming that the spin

measurement apparatus is actually

a spin polariser rather than a mea-

surer.

5. Section 5.2.1. The

text says γ0, γ1, γ2, γ3

are unit vectors in R4.

Then how do we get

γµγν = −γνγµ for µ 6=
ν?

The relation is a definition intro-

duced by Hestenes to encode the in-

variance of the metric of special rela-

tivity in the Spacetime Algebra. See

[2], Section 5.1.
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6. Page 23. First sen-

tence: why ‘appar-

ently’?

In his book [10], Koga derives the

relation Mz = (h̄/2mc)e in section

5.4 and concludes that “the relation

Mz = (h̄/2mc)e implies that a field

governed by the Dirac equation has

a peculiar regularity or order that

can be introduced to a field satis-

fying the Maxwell-Lorentz equations

either by a particular boundary con-

dition or by a particular source, i.e.,

Bohr Magneton. These observations

suggest that neither an electromag-

netic field nor a field satistying the

Dirac equation may fully represent

the real field of the electron”.

That is why we have written ‘appar-

ently’ in the first sentence.
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7. Page 38. For the vac-

uum Maxvwell equa-

tion, Should we not

have J = 0?

We are concerned with points in the

interior of the electron. The electron

is a field and is not “matter” in the

usual sense. So we consider it a vac-

uum. It is assumed that it is electri-

cally charged. Since the Dirac field

has a rotating component, we as-

sume that charges are rotating, pro-

ducing magnetic fields. So we take J

to be nonzero.

8. There are problems

with physical dimen-

sions which should be

corrected.

Page 24 first equation

Page 25 S/h̄ is not di-

mensionless.

Pages 27,28,29. Ec +

mc2 is not meaningful.

The first equation on page 24 is the

Klein-Gordon equation and has been

corrected.

In Koga’s treatment of the Dirac

equation (but not the Schrodinger

equation) which is studied in this

thesis, the energy of an electron is

cE rather than E. This should be

kept in mind. Therefore there are no

problems with physical dimensions

on pages 25, 27, 28 and 29.
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