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PREFACE

The fundamental axiom of quantum mechanics assumes the Hermiticity
of operators associated with any measurable quantities, observables. But
there are certain class of complex non-Hermitian Hamiltonians which pos-
sess real spectra for certain parameter regimes if they obey parity-time
symmetry(PT symmetry); without losing any of the essential features of
quantum mechanics. The parity reflection operator P and time reversal
operator T are defined by their actions on the position and momentum
operators x̂ and p̂ respectively as p̂ → −p̂, x̂ → −x̂, ı → ı and p̂ → −p̂,
x̂ → x̂, ı → −ı. If the PT symmetry of the Hamiltonian is not broken,
then these non-Hermitian Hamiltonians will exhibit all the properties of a
quantum theory described by the Hermitian Hamiltonian. Bose-Einstein
condensate(BEC), a true quantum system, is used for theoretical and ex-
perimental studies of interplay between nonlinearity and PT symmetry.
In this thesis, we have studied theoretically the matter wave bright solitons
in PT symmetric BECs. The thesis is organized into six chapters:

Chapter 1 : In this chapter, a general introduction of features of PT
symmetric non-Hermitian Hamiltonians is given. Since the thesis
deals with PT symmetric BEC, a theoretical frame work for both
non-interacting and interacting Bose gas (Gross-Pitaevskii mean field
theory) is also shown here. An overview of the analytical and nu-
merical methods used in the thesis is also presented.

Chapter 2 : Dynamics and properties of nonlinear matter waves in a
quasi 1-D attractive BEC subjected to a PT -symmetric trapping
potential are discusssed in this chapter. We have employed both
numerical and analytical methods to find the solutions of Gross-
Pitaevskii equation (GPE). Stationary solutions of GPE are sought
numerically by standard relaxation technique based on pseudospec-
tral differentiation with Fourier differentiation matrices. We have
used the variational approach suitable for non-Hermitian systems to
obtain the approximated solutions of GPE using fundamental equa-
tions based on the Rayleigh-Ritz approximation. We have addressed
how the shape of the imaginary part of the potential, that is, a gain-
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loss mechanism, affects the self-localization and the stability of the
condensate. The stability of the stationary solutions are analyzed
using the Bogoliubov-de Gennes (BDG) equations and the results
obtained from linear stability analysis have been checked numeri-
cally by computing soliton dynamics in the presence of noise.

Chapter 3 : The unidirectional properties shown by the PT symmet-
ric defect in a quasi 1-D attractive BEC is shown in chapter 3. For
that we have analyzed the scattering of soliton by PT symmetric
defects(in terms of the reflection, transmission and capture coeffi-
cients), specifically studying the influence of the transverse profile
of the imaginary component of the defect.

Chapter 4 : This chapter deals with the existence and stability of mat-
ter wave bright solitons governed by the GPE with repulsive in-
teraction between the atoms of the condensate. The condensate is
trapped in a super-Gaussian PT -symmetric potential. We consid-
ered a cigar shaped condensate and studied the interplay among
diffusion, repulsive nonlinearity and gain-loss mechanism on the ex-
istence of the matter wave solitons. The effects of gain-loss profiles
are analyzed by considering two different transverse profiles for the
imaginary part of the PT -symmetric potential. We have checked the
stability of the obtained solutions using linear stability analysis and
results are confirmed using dynamical evolutions of the solutions.

Chapter 5 : Chapter 5 discusses the dynamics of BEC with PT sym-
metry beyond mean field Theory. We have considered the GPE with
mean field correction terms(quantum fluctuations and effective range
expansion) added to it. By means of variational approach we have
obtained expressions for dynamics of soliton parameters. The effect
of varying the strength of PT symmetric trapping potential along
with mean field correction terms on the scattering process is also
examined. The collective excitation frequencies in a quasi 1-D BEC
trapped in a Gaussian PT symmetric potential are calculated us-
ing variational approach and have shown the effects of the trapping
potential on the excitation frequencies.

Chapter 6 : A summary of the results is given in this chapter and the
possible applications and future plan of studies are also presented.
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1
Introduction

The measurements of energy spectrum of a physical system yield real val-

ues and hence in standard quantum mechanics, Hermitian Hamiltonians

are used. But there are physical systems exhibiting dissipation, decays,

resonances etc., represented by non-Hermitian Hamiltonians and non-

Hermitian Hamiltonians possess complex energy eigen values. But there

exists a class of parity-time symmetric(PT symmetric) non-Hermitian

Hamiltonians possessing real eigen values without violating any of the

fundamental axioms of quantum mechanics. The parity operator P and

time reversal operator T are defined by their action on the position and

momentum operators x̂ and p̂ as p̂ → −p̂, x̂ → −x̂, ı → ı and p̂ → −p̂,
x̂→ x̂, ı→ −ı, respectively. The concept of PT symmetry permits a com-

plex potential in a Hamiltonian such that it should satisfy V (x̂) = V ∗(−x̂)
which is a necessary but not a sufficient condition and ∗ stands for com-

plex conjugation. Such a potential signifies an even profile for the real

part of the potential and an odd symmetry for the imaginary part. The

imaginary part of the complex potential corresponds to the interaction

of the system with the environment. These interactions are highly con-

strained so that gain from the environment and loss to the environment

are exactly balanced thereby keeping the system in an equilibrium state.

Above a critical point, known as the exceptional point, PT -symmetry can

be spontaneously broken even though the underlying Hamiltonian satisfies

the PT -symmetric condition.

1



2 Introduction

Bose-Einstein condensate(BEC) seems to be a true quantum system

for theoretical and experimental studies of interplay between nonlinearity

and phenomena shown by Parity-Time (PT ) symmetry. In this thesis,

we have studied theoretically the matter wave bright solitons in PT sym-

metric BECs. Before presenting the details of the research work, basic

introduction of BEC, PT symmetry, historical development and current

status of PT symmetric BECs are given below. An introduction to the

basic analytical and numerical methods used in this thesis is also presented

in this chapter.

1.1 Bose-Einstein condensates

The existence of a peculiar state of matter, BEC, was first predicted by S.

N. Bose[1] and Albert Einstein[2, 3] in 1920’s in a system of non-interacting

bosons such that system exhibits a phase transition at ultra cold temper-

atures and a large fraction of the atoms macroscopically populate at the

ground state. The relevant theoretical frame work for the condensation

in a uniform ideal gas(non-interacting gas) can be understood by con-

sidering quantum mechanics of many particle system in which particles

are identical and indistinguishable[4, 5]. As an example, if we are tak-

ing a two particle wave function in a one dimensional box, the particles

are said to be identical when the observable square modulus of quantum

mechanical wave functions of the system does not change under particle

exchange; i.e., |ψ(x1, x2)|2=|ψ(x2, x1)|2, ψ(x1, x2) = exp(ıα)ψ(x2, x1) and

hence shows two possibilities i.e., the wave function must be either sym-

metric or antisymmetric under the exchange of the two particles. Hence

the spin-statistics theorem is stated as 1) systems of identical particles

with integer spin(s = 0,1,2...), known as bosons, have wave functions

which are symmetric under interchange of any pair of particles and obey
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Bose-Einstein statistics and 2) fermions with half-odd-integer spin(s =

1/2, 3/2,...), have wave functions which are antisymmetric under parti-

cle interchange, obeying Fermi-Dirac statistics. So, at low temperatures,

bosons behave entirely different from fermions (which obey Pauli’s ex-

clusion principle) in such a way that an unlimited number of them can

condense into same energy state giving rise to a peculiar state of matter:

the Bose-Einstein condensate.

For non-interacting bosons in thermodynamic equilibrium, the mean

occupation number(or the average number of particles) for a single-particle

energy εk is given by

f(εk) =
1

exp(β(εk − µ))− 1
, (1.1)

where µ, the chemical potential determined by the condition that the

total number of particles be equal to the sum of the occupancies of the

individual levels and β = 1/kT . i.e., Σkf(εk) = N , with N being the total

number of particles. The chemical potential must be small or equal to

the smallest energy level, µ ≤ ε0, otherwise the system will have negative

occupation numbers which is meaningless.

At high temperatures the chemical potential of this system lies well

below ε0, and the mean occupation number of any state is much less than

unity(i.e., exp(β(µ − εk)) � 1). When the temperature is decreased,

the chemical potential rises and the mean occupation number increases.

Hence the occupation number of the single-particle ground state is arbi-

trarily large compared to any excited single-particle state. The number

of particles in excited states will be much less than the total number of

particles N in the system. That means, the remaining particles will obvi-

ously occupy the ground state: the system has now become Bose-Einstein

condensate. The temperature at which the above said condensation starts
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is termed as Bose-Einstein transition temperature and is given by,

Tc =
2π~2

kBm

(

n

ζ(3/2)

)2/3

, (1.2)

with n, the particle density and ζ(3/2) ≈ 2.612. Since the system is in the

thermodynamic limit, the particle density at the ground state n0 = N0/V

stays finite (N → ∞, V → ∞ hence n = N/V remains constant).

Later it was found that the assumed ‘non-interacting’ nature of the

Bose gas is not sufficient to get into real situations and it demands a

mean filed theory(Gross-Pitaevskii mean field theory) which assumes both

an external trapping and inter-particle interactions. The experimental re-

alization of BEC became thinkable after the invention of powerful methods

in 1970’s for cooling alkali metal atoms by lasers [6, 7] and evaporative

cooling techniques(where more energetic atoms are removed[8]), combined

with development of novel traps. The exploitation of these technologies

led to the first observation of BEC of a weakly interacting atomic Bose

gas in the laboratory in 1995 by JILA group led by E. Cornell and C.

Wieman in dilute gases of 87Rb below 170 nK [9] and Ketterle’s groups at

MIT succeeded in 23Na [10]. These achievements merited those scientists

to receive the 2001 Nobel Prize for physics. Again, BEC of 7Li with an

attractive interaction was created by Hulet’s group at Rice University[11].

Some other examples are atomic hydrogen which was achieved in 1998[12]

by D. G. Fried et.al., metastable Helium[13], Potassium [14], Cesium[15],

Ytterbium[16], Calcium [17], and Strontium[18, 19]. Special attention is

being paid to BEC created from Chromium[20], Dysprosium [21] and Er-

bium [22] owing to their large magnetic dipole-dipole interactions.

The dynamics of the condensate can thus theoretically be described

with the Gross-Pitaevskii equation(GPE)[23] which is effectively a mean-

field approximation for the inter particle interactions at temperatures

T < Tc (Tc is critical condensation temperature) and in dilute limit. The
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required GPE for weakly interacting dilute Bose gas (which is similar

to nonlinear Schrödinger equation (NLSE)) upon which the main discus-

sions of the present thesis have been done, is derived in the following

section[23, 24].

A related point to mention is the fermionic condensate; cooling to ex-

tremely low temperatures makes the fermions to ‘pair up’ to form bosonic

compound particles(molecules or Cooper pairs) and these compound par-

ticles exhibit condensation. The first fermionic condensate was created by

Deborah S. Jin in 2003[25, 26].

1.2 Gross-Pitaevskii mean field theory

The dynamics of a BEC can be well described by means of an effective

mean-field theory which means that the action felt by a given particle

due to the rest of the particles is substituted by the mean field action

of the system over the particle. This approximation is fairly good since

the gas is diluted and it is relevant for experimental realization of BEC.

Also, this approach is much simpler than treating the full many-body

Schrödinger equation and this theory accurately describes the static and

dynamic properties of BECs. Since, BEC is a dilute ultracold gas which

has only binary collisions at these low energy states, the parameter, s-

wave scattering length a, alone is sufficient to describe the inter-particle

interaction.

The dynamics of the condensate can theoretically be described with

the GPE which is a classical nonlinear evolution equation. It was derived

independently by E. P. Gross[27] and L. P. Pitaevskii[28] in 1961. In

fact, this is a variant of nonlinear Schrödinger equation (NLSE)[23, 24,

29, 30], which is a universal model describing the evolution of complex

field envelopes in nonlinear dispersive media. In BEC, the nonlinearity
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is due to the interatomic interactions and it is considered via an effective

mean-field. Another important factor is that the GP equation successfully

predicts and describes the experimentally relevant nonlinear effects and

nonlinear states such as solitons and vortices. The GPE is derived from

the second quantized Hamiltonian for a gas of interacting bosons.

The many-body Hamiltonian for N bosons of mass m interacting by

two-body collisions and confined in an external potential Vext(r) is given

in second quantized form as[4, 23, 24, 31, 32],

Ĥ =

∫

drΨ̂†(r, t)

[

− ~2

2m
∇2 + Vext(r)

]

Ψ̂(r, t)

+
1

2

∫

dr

∫

dr
′

Ψ̂†(r, t)Ψ̂†(r
′

, t)V (r − r
′

)Ψ̂(r, t)Ψ̂(r
′

, t),

(1.3)

where Ψ̂(r, t) and Ψ̂†(r, t) are the boson annihilation and creation field

operators respectively, which satisfy the equal-time commutation relations

[4],
[

Ψ̂(r, t), Ψ̂(r
′

, t)
]

=
[

Ψ̂†(r, t), Ψ̂†(r
′

, t)
]

= 0, (1.4)

and,
[

Ψ̂(r, t), Ψ̂†(r
′

, t)
]

= δ(r − r
′

). (1.5)

V (r − r′) is the two-body interatomic potential which can be simplified

by assuming the case of a dilute ultracold gas with binary collisions at

low energy. In this constraint, the interatomic potential can be replaced

by an effective interaction represented by a delta-function potential [23,

24, 33, 34], since the s-wave scattering length a is small compared to the

de-Broglie wavelength. So,

V (r − r
′

) = gδ(r − r
′

), (1.6)

where the coupling constant g is given by,

g =
4π~2a

m
,
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with a is the s-wave scattering length which alone is sufficient to describe

the inter-particle interaction in the low energy case as stated above.

The time evolution of the field operator Ψ̂(r, t) is then obtained from

the Heisenberg equation of motion,

ı~
∂Ψ̂(r, t)

∂t
=
[

Ψ̂(r, t), Ĥ
]

. (1.7)

Assuming the mean-field theory for dilute gases, formed by N. N. Bogol-

ubov in 1947[35], the field operator Ψ̂(r) is decomposed in to[23, 24, 36],

Ψ̂(r) = ψ(r, t) + ψ̂(r, t), (1.8)

where the complex function ψ(r, t) is the expectation value of the field

operator, regarding the same as the order parameter and it is called the

macroscopic wavefunction of the condensate. The second one, ψ̂(r, t) rep-

resents the non-condensed fraction present even below the transition tem-

perature, Tc which may be thermally-excited atoms or quantum-mechanical

fluctuations in the system. The expectation value of the field operator

Ψ̂(r) is taken such that
〈

ψ̂(r, t)
〉

= 0. Substituting the Hamiltonian

(Eq.1.3) in to the equation of motion (Eq.1.7) and then using the com-

mutation relations(Eqs.1.4,1.5) and simplified form of potential (Eq.1.6),

and also substituting the decomposed form of field operator Ψ̂(r), we get,

ı~
∂ψ(r, t)

∂t
=

{

− ~2

2m
∇2 + Vext(r) + g (nc(r, t) + 2ñ(r, t) + m̃(r, t))

}

ψ(r, t)

+ g
〈

ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)
〉

,

(1.9)

with the condensate density nc(r, t) = |ψ(r, t)|2 and the non-condensate

density ñ(r, t) =
〈

ψ̂†(r, t)ψ̂(r, t)
〉

(which constitutes the depletion of the

condensate by collisional interactions). m̃(r, t) represents the off-diagonal

non-condensate density due to the anomalous correlations between the
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non-condensed atoms and is given by m̃(r, t) =
〈

ψ̂(r, t)ψ̂(r, t)
〉

. The final

term in Eq.1.9, viz,
〈

ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)
〉

corresponds to the three field

correlation function. The non-condensate fraction in trapped atomic gases

at temperatures well below Tc is calculated to be less than 1% [31, 37, 38],

and hence it is reasonable to assume that the non-condensate density,

the off-diagonal non-condensate density, and the correlation functions are

negligible. Hence Eq.1.9 yields the evolution of complex classical field

ψ(r, t) [34],

ı~
∂ψ(r, t)

∂t
=

{

− ~2

2m
∇2 + Vext(r) + g

(

|ψ(r, t)|2
)

}

ψ(r, t). (1.10)

The conserved quantity is the total number of atoms, N, according to,

N =

∫

|ψ(r, t)|2 dr. (1.11)

The strength of nonlinearity is determined by the coefficient g in

Eq.1.10 and it may be either positive or negative depending on scattering

length a > 0 (repulsive interaction) or a < 0 (attractive interaction). It

may be regarded as the defocusing or focusing Kerr-type nonlinearities

in the context of nonlinear optics [39, 40]. By manipulating the interac-

tions and collision properties of the atoms, one can vary either the sign

or the magnitude of the scattering length which leads to important ex-

perimental observations like the formation of bright matter-wave solitons

in BEC[41, 42]. Different methods for external potential Vext are used

in experiments in which magnetic trapping is employed in earlier experi-

ments [23, 24, 34, 43, 44], and later pure optical confinement was achieved

[45–48].

Eq.1.10 is the time-dependent Gross-Pitaevskii equation, which is the

basis of the present discussions of the dynamics of BEC in the following

chapters. In order to study the static properties of Bose-Einstein conden-

sates, the time independent form of GPE is employed. It is obtained from
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Eq.1.10 by making the ansatz,

ψ(r, t) = ψ(r) exp(
−ıµt
~

), (1.12)

where µ is the chemical potential and substituting it in Eq.1.10 will follow,

µψ(r) =

{

− ~2

2m
∇2 + Vext(r) + g

(

|ψ(r)|2
)

}

ψ(r); (1.13)

where the eigen value is the chemical potential µ instead of the energy E

as in the linear Schrödinger equation [23].

Next, we briefly look at the basics of PT symmetry transformations.

The action of parity operator P and time reversal operator T are reviewed

first and then follows their combined action.

1.3 PT symmetry

Symmetry transformations are the special ways of changing our point of

view such that the laws of nature do not change [49], i.e., the new physical

state obtained after the symmetry transformation obeys the same laws as

the old one possessed and the transition probabilities 〈Ψ,Φ〉, the modulus

square of the quantum mechanical scalar product between arbitrary states

Ψ and Φ remain invariant. According to a fundamental theorem by Eugene

Wigner [50], there are two possibilities to fullfill the transition probability

invariant; 1) the effect of a symmetry transformation on any state vector

Ψ is a transformation Ψ → ÛΨ with Û , a linear unitary operator and

obey,
〈

ÛΨ|ÛΦ
〉

=
〈

Ψ|Û†ÛΦ
〉

= 〈Ψ|Φ〉 , (1.14)

with Û†Û = 1 and 2) with Û , as an antilinear operator obeying antiuni-

tary:

Û (α |Ψ〉+ β |Φ〉) = α∗Û |Ψ〉+ β∗Û |Φ〉 , (1.15)
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and
〈

ÛΨ|ÛΦ
〉

= 〈Ψ|Φ〉∗ . (1.16)

Now, we have to consider two discrete symmetry operators, the space

inversion or parity operator P and the time reversal operator T for the

present thesis. The operator on state vector space which gives the space

inversion transformation r → −r is called the parity operation. The

parity operator reverses the signs of the position r̂ and the momentum

operator p̂ as,

Pr̂P−1 = −r̂, (1.17)

and

Pp̂P−1 = −p̂. (1.18)

In order to check whether P is linear or antilinear operator, we have to

consider the operation of P on canonical commutation relation,

ı~δij = [r̂i, p̂j ]
!
=
[

−Pr̂iP−1,−Pp̂jP−1
]

= P (r̂ip̂j − p̂j r̂i)P−1

= Pı~δijP−1,
(1.19)

which should be invariant and it will be satisfied if P−1ıP = ı, hence

we can say the parity operator is a linear unitary operator which satisfies

P−1 = P†. The action of parity operator on vectors and wave functions

is as follows, Pr̂ |r〉=Pr |r〉 and we can write Pr̂ |r〉 = Pr̂(PP−1) |r〉=
−r̂P |r〉, that implies r̂P |r〉= −r(P |r〉). Comparing it with r̂ |−r〉=
−r |−r〉, we can write,

P |r〉 = |−r〉 . (1.20)

In order to keep the uniqueness of the eigen functions, the vectors |−r〉
and P |r〉 differs in phase; and this phase is selected to be unity. Simi-

larly the operation on wave function is defined: Ψ(r) ≡ 〈r|Ψ〉, PΨ(r) ≡
〈r|P|Ψ〉=〈−r|Ψ〉. Since P2 = 1 and therefore P possesses two eigen val-

ues, ±1 and hence 1) even parity (Ψe(r)= Ψe(−r)) for any even function

2) odd parity (Ψo(r)= −Ψo(−r)) for any odd function.
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Now we can look for the action of T operator. Eventhough the conven-

tional word ‘time reversal’ is used for this operator, what it actually means

is the ‘motion reversal’ and the time is only a parameter which cannot be

directly affected by an operator, and the action of T and the parameter t

can only be connected indirectly. By the definition, the effect of the time

reversal operator T is to reverse the linear and angular momentum while

keeping the position unchanged:

T r̂T = r̂,

T p̂T = −p̂,
(1.21)

and operation on commutation relation between r̂ and p̂ gives T ıT −1 =

−ı, hence T is antilinear. Following the same convention as in[51] that

antilinear operators act only to the right, and never to the left and there-

fore, not using the adjoint, A†, for an antilinear operator. The operation

of T on the Schrödinger equation is necessary for the further discussions,

hence,

Ĥ |Ψ(t)〉 = ı~
∂

∂t
|Ψ(t)〉 ,

T ĤT −1T |Ψ(t)〉 = T ı~ ∂
∂t

|Ψ(t)〉 = −ı~ ∂
∂t

T |Ψ(t)〉 .
(1.22)

Assume that the Hamiltonian Ĥ is invariant under time reversal and we

do not get any conserved quantity as like in linear transformation. But

replacing the dummy parameter t with −t in Eq. 1.22, the solutions of

the Schrödinger equation occur in pairs, |Ψ(t)〉 and T |Ψ(−t)〉. To get a

clear picture, Schrödinger equation in coordinate representation is used,
[

− ~2

2m
∇2 + V (r)

]

Ψ(r, t) = ı~
∂

∂t
Ψ(r, t) (1.23)

Its complex conjugate with parameter t replaced with −t is given by,
[

− ~2

2m
∇2 + V ∗(r)

]

Ψ∗(r,−t) = −ı~ ∂
∂t

Ψ∗(r,−t) (1.24)
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In order to keep the Hamiltonian invariant under complex conjugation, the

potential should satisfy V (r) = V ∗(r). Here also, Ψ(r, t) and Ψ∗(r,−t)
are the pair of solutions to the Schrödinger equation. Therefore we may

identify the time reversal operator with the complex conjugation operator

defined by

T Ψ(r, t) = Ψ∗(r,−t). (1.25)

Now we can go to the combined action of P and T , the PT operator.

The name PT symmetry linked with the real spectrum of non-Hermitian

Hamiltonian was identified first by Bender and Boettcher in 1998[52]. Be-

fore entering into how it generalized the postulates of quantum mechanics,

its operation on Hamiltonian is given first.

A Hamiltonian Ĥ is said to be PT symmetric, when the commutator

relation,
[

PT , Ĥ
]

= 0, (1.26)

holds. The Hamiltonian Ĥ is p̂2/2m + V (r̂) for a particle in a potential.

The action of PT symmetry on the potential function is given as,

PT V (r̂) = PT
∞
∑

n=0

vnr̂
n = P

∞
∑

n=0

v∗nr̂
nT =

∞
∑

n=0

v∗n(−r̂)nPT

= V ∗(−r̂)PT .
(1.27)

To get the condition under which the Hamiltonian to be PT symmetric,

we examine,

PT Ĥ = PT
[

p̂2

2m
+ V (r̂)

]

= P
[

p̂2

2m
+ V ∗(r̂)

]

T =

[

p̂2

2m
+ V ∗(−r̂)

]

PT ,
(1.28)

which will be equal to ĤPT , if the potential satisfies,

V (r̂) = V ∗(−r̂). (1.29)
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In terms of real and imaginary parts,

<V (r̂) = <V (−r̂),

ImV (r̂) = − ImV (−r̂).
(1.30)

Thus the concept of PT symmetry permits a complex potential in a Hamil-

tonian such that the real part of the potential must be symmetric and the

imaginary part must be antisymmetric with respect to parity operator.

Next we sail through the complex generalization of postulates of quan-

tum mechanics, properties of PT symmetric systems and the historical

developments in the field of PT symmetry.

Some authors have already mentioned the reality of eigen spectrum for

Hamiltonians with singularity[53–56]. Eventhough D. Bessis conjectured[52]

the occurrence of real and positive spectrum for Hamiltonian of the form

H = p2+x2+ ix2 on the basis of numerical studies, PT symmetry gets its

significance only when it modifies the conventional quantum mechanics[52].

Lots of new kinds of Hamiltonians which are neglected due to the non-

Hermicity are considered again with this new concept. What it makes

more beautiful is that by replacing the condition of Hermiticity with PT
symmetry, none of the physical properties that a quantum theory possesses

are lost.

1.3.1 Features of PT symmetry

The fundamental axiom in quantum mechanics with the observables en-

sures the Hermiticity of any operator associated with the measurable quan-

tity(eigen values)[57]. It excludes the possibility of complex Hamiltonians

which are necessary to represent many physical situations. The key role of

PT symmetry in quantum mechanics[52] is that it makes certain complex

Hamiltonians to possess real energy. How this is possible is discussed be-

low. From Eq.1.30, it is clear that PT symmetry proposes the possibility
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of a complex potential. Due to the complex nature of external potential,

the equation of continuity is generalized in the form,

ρ̇+
−→∇.−→j =

2ρ

~
ImV, (1.31)

with ρ, the position probability density and
−→
j , the probability current

density. For real type of potential(Hermitian Hamiltonian), the R.H.S of

Eq.1.31 is zero. So, the extra feature that added by the complex potential

is that, it gives the system an extra 1) a source if ImV is positive or 2) sink

if ImV is negative. The imaginary part of a potential is antisymmetric,

and hence for every sink there also presents a source in the PT symmetric

potential. These source and sink(gain and loss) work in such way that

an equilibrium state is attained(unbroken PT symmetry) otherwise we

can say that the system is in non-equilibrium state(broken PT symme-

try). In simple language[58], PT-symmetric systems can be thought of

as non-isolated systems interacting with the environment. This interac-

tion with the environment can be represented by the imaginary part of

the complex potential; if the imaginary part is positive, it means that the

system gains energy from surrounding otherwise the system loses energy

to surroundings. When this give-and-take is balanced, system possesses

physical equilibrium otherwise a non-equilibrium state.

Other features of PT symmetric systems are orthogonality and con-

servation of norm[59]. By slightly modifying the scalar product, these

features can be stated as i) two eigen states |ψ1〉 and |ψ2〉 belonging to

different eigenvalues of a PT symmetric operator are quasi-orthogonal,

〈ψ1|P|ψ2〉 = 0, ii) norm is conserved with respect to quasi scalar product,
∂
∂t 〈ψ(t)|P|ψ(t)〉 = 0. It can also be found that the eigen values of the

PT symmetric systems are a) real for the unbroken PT symmetry and

b) complex eigenvalues(at least one pair) for the broken PT symmetry.

This can be demonstrated as follows; let |ψ〉 be the eigen state of PT with
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eigen value λ, by using (PT )2 = 1, it can be written as,

|ψ〉 = PT PT |ψ〉 = PT λ |ψ〉 = λ∗PT |ψ〉 = |λ|2 |ψ〉
⇒ |λ| = 1 ⇒ λ = exp(iϕ),

(1.32)

which means the eigenvalue depends on the phase of the eigenfunction

because of the antilinearity of PT operator. Using the Eq.1.26, we can

write,

Ĥ |ψ〉 = E |ψ〉 ⇔ PT Ĥ |ψ〉 = PT E |ψ〉 ⇔ ĤPT |ψ〉 = E∗PT |ψ〉 ,
(1.33)

ĤPT |ψ〉 = E∗PT |ψ〉 ⇔ ĤPT |ψ〉 ⇔ Ĥ exp(iϕ) |ψ〉 = E∗ exp(iϕ) |ψ〉 ,
Ĥ |ψ〉 = E∗ |ψ〉 ⇒ E = E∗.

(1.34)

Hence we can conclude that eigen values are real if PT symmetry is not

broken.

1.3.2 PT symmetry with nonlinear Hamiltonians

Next we review how PT operates on nonlinear Hamiltonians of NLSE,

GPE etc.[60, 61]. In position representation,

ı~
∂

∂t
ψ(r, t) =

{

Ĥlin + f [ψ(r, t)]
}

ψ(r, t). (1.35)

Ĥlin = p̂2

2m + V (r̂) and nonlinear term is represented by f [ψ] which is a

functional of ψ. For Gross-Pitaevskii non-linearity, the functional takes

the form,

f [ψ(r, t)] =

∫

d3r
′

Vint(r, r
′

)
∣

∣

∣
ψ(r

′

, t)
∣

∣

∣

2

. (1.36)

These nonlinear Hamiltonian will regain the properties of linear PT sym-

metry if it satisfies the conditions f [exp(iϕ)ψ]=f [ψ], ϕεR and PT f [ψ] =

f [PT ψ]. Since the nonlinearity appears as square modulus of the wave
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function, it is not changed by an arbitrary phase. And by satisfying the

next condition,

PT
∫

d3r
′

Vint(r, r
′

)
∣

∣

∣
ψ(r

′

, t)
∣

∣

∣

2

=

∫

d3r
′

V ∗
int(−r, r

′

)
∣

∣

∣
ψ(r

′

, t)
∣

∣

∣

2

=

∫

d3r
′

V ∗
int(−r,−r

′

)
∣

∣

∣
ψ(−r

′

, t)
∣

∣

∣

2

!
=

∫

d3r
′

Vint(r, r
′

)
∣

∣

∣
ψ(−r

′

, t)
∣

∣

∣

2

,

(1.37)

where, P acts only on the r coordinate (r
′

is an integration variable which

is not visible outside the integral) and for the second equality, r
′ → −r

′

is substituted. Also, we must have V ∗
int(−r,−r

′

)=Vint(r, r
′

). It inter-

prets that if the interaction potential is real and it is only determined

by the norm of the difference, |r − r
′ |, then such type of potential will

fulfill the PT symmetric conditions. Other potential types, seen in BEC,

like monopole interaction[62] and dipole interaction[61, 63, 64] also satisfy

these conditions. Hence BEC(i.e., GPE) is a suitable candidate for the

PT symmetric studies.

1.4 Progresses in nonlinear PT symmetric

systems

PT symmetry becomes useful as 1) it provides a complex generalization of

quantum mechanics 2) it follows many properties as like in a conservative

linear and nonlinear systems and 3) a possibility to have a control over

loss/gain of the system via a complex potential, especially the loss of the

system can be engineered in PT symmetric systems.

PT symmetry gives real spectrum only for a certain class of non-

Hermitian Hamiltonians. i.e., it is a necessary but not a sufficient condi-

tion for the reality of the eigen spectrum of non-Hermitian Hamiltonians.
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Later in 2002, Mostafazadeh [65, 66] widened the concept of PT symmetry

with pseudo-Hermiticity. Optics became the first fruitful area for the im-

plementation of PT symmetric concept eventhough the origin was in non-

Hermitian quantum mechanics. There are proposals where one can create

an optical analogue of PT symmetric quantum mechanics in structured

wave guides[67]. Later, El-Ganainy et al.[68] explored the real connection

between PT-symmetric quantum mechanics and optics. This connection is

due to the close similarity of the equation describing the paraxial ray of a

wave guide and the Schrödinger equation in quantum mechanics. In optics,

the gain/loss mechanism is run by complex refractive index of the medium

instead of the complex PT symmetric potential in quantum mechanics.

A detailed description of light propagation and PT symmetry breaking

are given in [69]. Soon, these PT symmetric optical theories were experi-

mentally realized [70–73]. Other areas where intense experimental works

done using PT symmetric concepts are multiple wave guides[74, 75], PT
symmetric microwave cavities[76], PT symmetric cavity lasers[77], uni-

directional invisibility[78, 79], optical whispering gallery resonators[80],

PT symmetric atomic diffusion[81], super conducting wires[82], PT sym-

metric electronic circuits[83], NMR[84], Surface plasmon polaritons[85],

graphene[86] and metamaterials[87].

As already stated, Bose-Einstein condensate, a true quantum system,

is a suitable candidates for PT symmetric studies. The bright matter wave

solitons in PT symmetric Bose-Einstein condensates are the main focus

of this thesis. Below we describe some of the results in PT symmetric

BECs.
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1.5 PT symmetry in BEC

Similar to loss/gain mechanism in PT symmetric optical wave guides,

Klaiman et. al, [69] suggested a similar mechanism can be implemented

in Bose-Einstein condensates in which the external trapping potential is in

the form of double well, one well acts as particle source and the other is a

particle sink. What makes the realization of PT symmetric BEC crucial is

that the interaction in BECs(represented by non-linear terms in GPE) may

alter even PT symmetric properties. Hence the experimental evidence is

still lacking eventhough attempts are going on. Next we consider many

theoretical proposals in literature which may realize the scenario in future.

The first attempt in this regard which tackles both the nonlinearity

and PT symmetry is the PT symmetric Bose-Hubbard model[88–90] for

a Bose-Einstein condensate in a double well potential. This model gives a

good approximation in the mean field limit. Yet another description based

on GPE and a δ- type PT symmetric potential is given by Cartarius et.al.,

[61, 91]. With vanishing nonlinearity, this model shows all the properties of

a PT symmetric optical wave guide and with nonlinearity, it explains BEC

with loss and gain in a double well potential. Hermitian four-well potential

has been proposed for the realization of a PT -symmetric system[92] where

the tunneling of the outer wells can be used to add and remove particles

from the inner wells.

Some of the experimental works which route to the realization of PT
symmetric BEC include optical dipole traps generated by red/blue tuned

resonance laser light[93], optical weak link between two spatially sepa-

rated Bose-Einstein condensates[94], the local interaction of the electron

beam with the atomic ensemble by using high resolution scanning elec-

tron microscopy[95], a pumped atom laser for replenishing a BEC[96] and

controlling the dynamics of an open many-body quantum system with

localized dissipation[97].
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1.6 Bright matter wave solitons in PT sym-

metric systems

The localized solution of an integrable system is usually refereed to as

soliton [98]. In a nonlinear medium such as BEC, the interplay between the

nonlinearity and dispersion results in the appearance of solitons(localized

wavepackets moving without distortion). In BEC, bright or dark solitons

can be generated which depend on whether the interaction between atoms

is attractive or repulsive. A dark soliton is a localized absence of atoms

or depression of the atomic field and it is restricted to propagate in the

nonlinear medium(BEC). Bright solitons are condensates itself and have

no such restriction on the propagation medium.

The Ecole Normale Superieure group in Paris[99] and another group at

Rice University[100] have succeeded in creating bright matter wave soli-

tons in 7Li condensates using Feshbach resonance. Feshbach resonance is a

scattering resonance in which pairs of free atoms are tuned via the Zeeman

effect into resonance with a vibrational state of the diatomic molecule[101]

and thus provide a continuous variation in scattering length(a) from pos-

itive to negative values. The Feshbach resonance provides a continuous

knob to vary the atom-atom interaction from repulsive to attractive and

from weak to strong.

Solitons supported by various PT -symmetric complex potential are re-

ported in nonlinear lattices[102, 103], dark soliton and vortices[104], Gray

soliton[105] and stable bright soliton in defocusing Kerr media[106]. Non-

linear localized modes in PT-symmetric optical media with varying gain-

loss[107] and with varying nonlinearity[108] are reported. The role of PT-

symmetry on soliton propagation in nonlinear couplers has been investi-

gated in[109–111]. Two dimensional solitons in PT-symmetric periodic[112],

nonlocal [113] and inhomogeneous[114] nonlinear media are also studied.
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Next, an overview of the analytical and numerical methods used in

this thesis is given below.

1.7 Variational approach to dissipative sys-

tems

Variational approach is a good analytical approximation method often

providing deeper insights into the physics at work. It is based on Ritz’s

optimization procedure where a trial wave function is selected to match

the physical constraints of the investigated system[115, 116]. Variational

method has been used to solve some types of nonlinear wave equations[117–

119]. The NLSE[120, 121] in nonlinear optics, GPE in the context of

BECs[23, 24, 27, 28] are some examples where variational approach gives

both qualitative and quantitative results. The main task in this approxi-

mation is the selection of a suitable trial function which should match with

the real solution of the system in hand otherwise the results obtained may

be wrong. Adjusting the variational parameters in the trial function is

very important to attain the lowest energy configuration.

Below we are recollecting the variational method which can be used for

both conservative and dissipative systems[116, 122]. It’s noteworthy that

the analytical approach provides approximate solutions when the system

involves loss/gain processes. A mathematical formulation of variational

approach with dissipative terms is described with help of Rayleigh-Ritz

method for NLSE in[122].

The total Lagrangian of the system can be written as,

L
(

q, q∗, ξ, τ, qξ, qτ , q
∗
ξ , q

∗
τ

)

= LC +LNC , (1.38)

where, LC corresponds to conservative part of the Lagrangian while LNC

to the non-conservative part. q(ξ, τ) is the trial function we chose, that
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makes the Lagrangian integral stationary. This corresponds to the am-

plitude envelope of the optical filed in the realm of optical wave guide or

it represents trial function with BEC parameters like width, curvature,

centre of mass, etc. qξ and qτ are the partial derivatives of q with respect

to ξ and τ respectively.

In Hamilton’s principle and there by the Euler-Lagrange equations of

motion is given by,

δ

[
∫ ∫

(L) dξdτ

]

= δ

[
∫ ∫

(LC +LNC) dξdτ

]

= 0, (1.39)

δL

δqi
=

∂

∂ξ

∂LC

∂
(

∂qi
∂ξ

) +
∂

∂τ

∂LC

∂
(

∂qi
∂τ

) − ∂LC

∂qi
= Qi, (1.40)

where Qi is responsible for all the dissipative terms in the system and is

given by,

Qi =
∂LNC

∂qi
− ∂

∂ξ

∂LNC

∂
(

∂qi
∂ξ

) − ∂

∂τ

∂LNC

∂
(

∂qi
∂τ

) . (1.41)

Now we assume the trial function of the following form,

q(ξ, τ) = f (η1(ξ), η2(ξ), ......ηN (ξ), τ) , (1.42)

which consists of a number of unknown parameter functions ηN (ξ) that

clearly explains the system behaviors. Now the L will be functions of
(

ξ, τ, f, f∗, qξ, qτ , q
∗
ξ , q

∗
τ

)

. Then the action integral can be written as,

I =

∫ ∫

L
(

ξ, τ, f, f∗, qξ, qτ , q
∗
ξ , q

∗
τ

)

dξdτ. (1.43)

The extremum of the variation integral I satisfies,

Σn
k=1δ

∫ ∫
(

d

dξ

∂LC

∂fξ
− ∂LC

∂f
+Qq(f)

)

∂f

∂ηi
δηidξdτ = 0, (1.44)
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where it is assumed that the only independent variable is ξ. Again, the

variational equations in terms of ξ and ηi are given by,

Σn
k=1δ

∫ ∫
(

d

dξ

∂LKC

∂(ηi)ξ
− ∂LKC

∂ηi
+QK

)

δηidξdτ = 0, (1.45)

where the subindex K is taken to distinct the Lagrangian and Q before

and after substitution of ηi. In terms of reduced Lagrangian 〈LKC〉, the
Euler-Lagrange equations for the variational parameters ηi is,

d

dξ

∂ 〈LKC〉
∂(ηi)ξ

− ∂ 〈LKC〉
∂ηi

=

∫

QK
∂q

∂ηi
dτ. (1.46)

For a conservative system the R.H.S. of the Eq.1.46 is zero. In the case of

GPE, ξ and τ are interchanged.

1.8 Linear Stability Analysis(LSA)

In order to get physically observable outcomes of a system, the corre-

sponding theoretical solutions obtained must be stable with respect to

perturbations. Hence solutions of non-linear systems are usually checked

for the stability. We have done the stability analysis of the stationary

solutions using the Bogoliubov-de Gennes(BdG) equations which are ob-

tained by linearizing the GPE(NLSE) by using the Bogoliubov ansatz for

elementary excitation [123]. The ansatz is in the form,

ψ(r, t) = exp(−iµt)
[

ψ0(r) + Σj

(

pj(r) exp(−iΩjt) + qj(r) exp(iΩ
∗
j t)
)]

,

(1.47)

where, pj and qj are complex perturbations which oscillate at frequency

±Ωj . Substituting the ansatz, Eq.1.47 in to the GPE given in Eq. 1.10,

and keeping only the linear terms in pj and qj , we will get a matrix relation



Numerical methods 23

as,
[

Ĥ0 − µ+ 2gψ2
0(r) gψ2

0(r)

gψ∗2
0 (r) Ĥ0 − µ+ 2gψ2

0(r)

][

pj(r)

q∗j (r)

]

=

[

~Ωj

−~Ωj

][

pj(r)

q∗j (r)

]

,

(1.48)

with Ĥ0 = − ~
2

2m∇2 + Vext(r). Eq.1.48 is known as Bogoliubov-de Gennes

(BdG) equations and it is connected to the stability of the state Φ0 as,

(

Ωj − Ω∗
j

)

∫

(

∣

∣p2j
∣

∣

2 −
∣

∣q2j
∣

∣

2
)

dr = 0. (1.49)

We can see that if
(

Ωj − Ω∗
j

)

= 0, i.e., if the eigen frequencies Ωj are real,

then the state ψ0 is stable. For this case, the normalization condition for

the eigenmodes pj and qj is of the form
∫

(

∣

∣p2j
∣

∣

2 −
∣

∣q2j
∣

∣

2
)

dr=1. If the

eigen frequencies are complex, the state ψ0 is dynamically unstable and

Eq.1.49 satisfies only if
∫
∣

∣p2j
∣

∣

2
dr=

∫
∣

∣q2j
∣

∣

2
dr.

1.9 Numerical methods

Different numerical schemes used in the following chapters of this thesis to

find stationary solution and dynamics of the system are briefly explained

below.

Stationary solutions of GPE, Eq.1.10 are sought using standard re-

laxation technique based on pseudospectral differentiation with Fourier

differentiation of matrices [124]. This method is successful in solving prob-

lems arising in many areas of science[125, 126] due to its spatially spectral

accuracy. Spectral methods are powerful methods used for solving the par-

tial differential equations. Unlike the finite difference methods, spectral

methods are global methods, where the computation at any given point
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depends not only on the information at neighboring points, but also on the

information from the entire domain. Spectral methods are converged ex-

ponentially, which makes them more accurate than local methods. To find

the stationary solution, first we convert the differential eigenvalue problem

to a matrix eigenvalue problem. Then the standard relaxation technique

is used: i.e., begin with an initial guess for the solution x0 to the matrix

equation Ax = b and iterate until the updated solution xk that is close to

the exact solution within some pre-specified error tolerance (|b−Axk| <
error tolerance(e.g.,∼ 10−6) ). Hence the stationary solutions of GPE can

be found as explained below. Eq.1.13 is expressed in dimensionless 1-D

form as,

µψ = −1

2

∂2ψ

∂x2
+ (VR + iVI)ψ − |ψ|2 ψ, (1.50)

where, Vext(r) is expressed in complex form to include the notion of PT
symmetry. Let ψ = u+ ıv be the initial guess for the solution and substi-

tuting in Eq.1.50 and we have obtained after separating real and imaginary

parts,

µu = −1

2

∂2u

∂x2
+ VRu− VIv − (u2 + v2)u, (1.51)

µv = −1

2

∂2v

∂x2
+ VRv + VIu− (u2 + v2)v. (1.52)

The new assumed solution after one iteration will be u = u + ∆u and

v = v + ∆v. To get ∆u and ∆v, substitute first, the perturbed form of

solution as u = u+∆u and v = v+∆v in Eq.1.51 and in Eq.1.52, we have

obtained the equations in matrix form as(higher order terms in delta are

neglected),

P

[

∆u

∆v

]

= Q

[

u

v

]

(1.53)
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with matrices P and Q are given by,
[

1
2

d2

dx2 + (u2 + v2) + µ− VR + 2u2 2uv + VI

2uv − VI
1
2

d2

dx2 + (u2 + v2) + µ− VR + 2v2

]

(1.54)

and
[

−1
2

d2

dx2 − (u2 + v2)− µ+ VR −VI
VI

−1
2

d2

dx2 − (u2 + v2)− µ+ VR

]

. (1.55)

Now we can write,
[

∆u

∆v

]

= P−1Q

[

u

v

]

. (1.56)

The iteration will be continued till the new solution which closes to the

exact solution(within the specified error tolerance) is obtained.

For the dynamical evolution, we numerically solve Eq.1.10 using the

operator splitting technique. For the generic evolution equation,

ut = Âu+ B̂u, (1.57)

the solution u(t + ∆t) at time t + ∆t can be computed starting from

u(t) by using different splitting methods. In our case operators Â and

B̂ correspond to the diffusion term and to the overall effective potential,

Veff . For the diffusion term, the Crank-Nicolson scheme was utilized.

According to the chosen splitting method, the solution can be obtained

as:

Lee: u(t+∆t) = e∆tÂe∆tB̂u(t), (1.58)

Strang: u(t+∆t) = e0.5∆tÂe∆tB̂e0.5∆tÂu(t), (1.59)

SWSS: u(t+∆t) =
1

2
(e∆tÂe∆tB̂ + e∆tB̂e∆tÂ)u(t). (1.60)

Due to the non-Hermitian nature of the system, numerical convergence

strongly depends on the underlying operator splitting method used. For a
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conservative system(as well as the PT symmetric system below PT break-

ing point), a simple Lee splitting with a first order accuracy is sufficient

to achieve numerical convergence. In our case the dynamics of the con-

densate requires the symmetrically weighted sequential splitting(SWSS),

which is second order accurate. We also employed the Strang method,

encompassing a second order accuracy as well. Nonetheless, the Strang

method fails for Vi values close to the exceptional point.

1.10 Outline of the thesis

In this thesis we have studied the consequences of interplay between

the nonlinearity (originating from the interatomic interactions) and PT
symmetry(gain and loss mechanism) in BEC. We look for localized solu-

tions(matter wave bright solitons) of the Gross-Pitaevskii equation (GPE)

with trapping potential chosen in complex form to account for the gain

and loss effects in a PT -symmetric system. The thesis is organized into

six chapters: An introductory remarks on PT symmetry and BEC are

given in chapter 1. Behavior of the matter wave bright solitons in BEC

with a competing attractive nonlinearity and PT symmetry are discussed

in chapter 2. We have checked the non-reciprocal behavior shown by BEC

trapped in 1-D super-Gaussian PT symmetric potential in chapter 3. A

competing repulsive nonlinearity with PT symmetry is dealt in chapter

4. Dynamics of BEC with PT symmetry beyond mean field theory are

discussed in chapter 5 and finally concluded in chapter 6.
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Existence, stability and

dynamics of PT symmetric
bright soliton in an attractive

BEC

Non-Hermitian PT symmetric Hamiltonians are useful to describe the

gain and loss mechanisms in open quantum systems[127] like Bose-Einstein

Condensates(BEC) as presented in chapter 1. Hence the non-Hermitian

description of the Gross-Pitaevskii equation is expected to provide inter-

esting outcomes concerning basic physical principles. In this chapter, how

the gain/losss mechanism affects the existence, stability and dynamics of

matter wave bright solitons in BEC trapped in a PT symmetric potential

is investigated. Optical solitons in nonlinear optical media and matter

wave solitons existing in dilute BEC, share the same main features due to

the mathematical equivalence between the nonlinear Schrödinger equation,

describing nonlinear light propagation, and the GPE, describing quantum

phases of matter[99, 100]. In both cases, the nonlinearity stems from

many-body interactions which are neglected in the linear models. In con-

trast to optics, experimental realizations of PT -symmetric quantum sys-

tems are lacking, but there are considerable theoretical proposals[92, 128–

130]. Different types of complex PT symmetric potentials used in BECs

are already mentioned in chapter 1 and in this thesis, the fundamental

27
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single peak PT -symmetric soliton supported by a single well potential is

considered.

The present chapter deals with the PT -symmetric matter wave soli-

tons in a reduced 1D setting, where the BEC is harmonically trapped

in two spatial dimensions, whereas in the third spatial direction a super-

Gaussian potential acts on the matter wave. Family of super-Gaussian

profiles have been chosen which allows in varying the shape of the trap-

ping potential from a Gaussian to a square-well, thus helping to address

the role played by the steepness of the potential on the confinement of the

condensate. Furthermore, it is assumed that the BEC interacts with the

local environment by adding an imaginary component on the potential pro-

file, accounting phenomenologically for gain and loss in the system. The

condition which has to hold true to get PT -symmetry is that the imagi-

nary part of the complex potential has to be anti-symmetric, i.e, losses in

the trap should be compensated by the gain in the trap. Previous works

on PT -symmetric solitons concentrated on potentials with fixed profile

for imaginary potential(gain/loss mechanism), considering only changes

in the amplitude of the potential[131].

To account for the gain/loss mechanisms, two kinds of transverse pro-

file for the imaginary potential are considered in the present thesis: 1) the

imaginary part of the potential is taken as the first derivative of the real

part of the potential and 2) an imaginary potential which is given by the

real profile multiplied by a first degree polynomial, thus slightly varying

with the profile of the real part of the potential. The form of the potential

and its purpose in the study are detailed in the next section.

To experimentally implement gain/loss mechanisms in a BEC trapped

in a single well potential, a pumping scheme similar to the one imple-

mented in atom lasers[96] can be exploited as well as optical dipole traps,

suitably adjusting the detuning to red or blue [132]. The loss mechanisms
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can also be implemented by shining the BEC with electron beams[97].

Manipulation of atoms could also be achieved using state-dependent po-

tentials [133] as well as multi-well systems[134, 135].

Both variational and numerical analysis have been used to find the

properties of the system trapped in super-Gaussian PT symmetric poten-

tial and it is demonstrated that variational results are in good agreement

with numerical simulations of the GPE.

In the following sections, the problem is stated and solutions in the

linear and nonlinear cases are obtained and the stability and dynamics of

the solutions are checked. Finally, the results obtained by variational and

numerical methods are compared.

2.1 Governing equation and dimensional re-

duction

In the mean field approximation, the condensate wave function Φ(R, T )

obeys the Gross-Pitaevskii equation given by,

i~
∂Φ

∂T
= − ~2

2m
∇2Φ + g |Φ|2Φ+ Vext(R)Φ, (2.1)

with m the atomic mass, ~ the Planck’s constant, g = 4π~2a/m, a the

scattering length, Vext the trapping potential and R = (X, Y, Z) is the

spatial coordinate. Eq.2.1 is valid under the condition that (i) both ther-

mal and quantum depletions are fully accounted by the imaginary part of

the potential Vext(in other words, the number of particles N0 =
∫

|Φ|2d3R
is constant in time if Im (Vext) = 0) and (ii) phenomena investigated using

Eq.2.1 should take place over distances larger than the scattering length

a(i.e., the dilute limit case). Assuming that the condensate is harmoni-

cally trapped in the Y and Z directions and with an axial trap potential

U(X) in the X direction, the external trapping potential can be written
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as Vext =
1
2mw

2
⊥(Y

2+Z2)+U(X), with w⊥ being the frequency of atomic

oscillations in the radial direction.

For a cigar shaped condensate, i.e., if the density along theX direction,

nx =
∫∞

−∞
|Φ|2dY dZ, is such that |a|nx � 1 (w⊥ � wx), the full 3D GPE

equation can be reduced to a monodimensional geometry by making the

ansatz [136],

Φ(X, Y, Z, T ) = σ(X, T )χ(Y, Z), (2.2)

χ(Y, Z) =
1

a⊥
√
π
exp

(

−Y
2 + Z2

2a2⊥

)

, (2.3)

with a⊥ =
√

~

mw⊥
. Substitution of Eq.2.2 into Eq.2.1 provides

i~
∂σ

∂T
χ =− ~2

2m

∂2σ

∂X2
χ− ~2

2m
σ
( ∂2χ

∂Y 2
+
∂2χ

∂Z2

)

+ g|σ|2σ|χ|2χ+
[1

2
mw2

⊥(Y
2 + Z2) + U(X)

]

σχ.

(2.4)

Multiplying both sides by χ∗ and integrating across the whole Y Z plane,

Eq.2.4 can be recast as,

i~
∂σ

∂T
= − ~2

2m

∂2σ

∂X2
+

(

g

∫ ∫

|χ|4dY dZ
)

|σ|2σ

+
[

C + U(X)
]

σ, (2.5)

where,

C =
~2

2m

∫ ∞

−∞

(

∣

∣

∣

∣

∂χ

∂Y

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂χ

∂Z

∣

∣

∣

∣

2
)

dY dZ+

∫ ∞

−∞

1

2
mw2

⊥(Y
2+Z2)|χ|2dY dZ.

Given that the constant, C does not depend either on time and X , posing

σ = ψ exp(−iCt) Eq.2.5 becomes the 1D GPE,

i~
∂ψ

∂T
= − ~2

2m

∂2ψ

∂X2
+ β |ψ|2 ψ + U(X)ψ, (2.6)
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with β = g
∫ ∫

|χ|4dY dZ = g
2πa2

⊥

. The above 1D reduction is valid, if the

condensate is strongly confined in the radial direction[100]. Specifically, a

dimensionality cross-over constant(from 3D to 1D) Dco = N0awx/a⊥w⊥

can be defined such that if Dco � 1, the dynamics of the condensate can

be described by Eq.2.6[137, 138]. As we are interested in self-focusing non-

linearity, we consider a negative scattering length resulting in attractive

interactions between the particles; moreover, we normalize Eq.2.6 using

the dimensionless variables t = Tw⊥, x = X/a⊥, U(X) = V (x)~w⊥ and

ψ = u/
√
2a, obtaining,

i
∂u

∂t
= −1

2

∂2u

∂x2
− |u|2 u+ V (x)u. (2.7)

In Eq.2.7 we take V (x) to be complex-valued and PT -symmetric, i.e.,

possessing a symmetric real part and an anti-symmetric imaginary part

so that the potential obeys the necessary(but not sufficient) condition for

possessing real eigenvalues. The potential now reads V (x) = VR(x) +

iVI(x). The real part of the trapping potential is chosen to be of super-

Gaussian form, i.e,

VR = −Vr exp
(

−x2l
)

(l = 1, 2, . . .). (2.8)

Increasing l permits to span from a Gaussian-shaped trap(l = 1) to a

rectangular trap(l � 1), thus allowing to address the role played by the

abruptness of the trapping potential. The imaginary part of the potential

is chosen in order to enable a complete understanding about the flux of

particles associated with PT potentials. For this purpose, two different

transverse profiles are chosen: type A encompassing,

V A
I (x) = −Vix2l−1 exp(−x2l), (2.9)

where the gain/loss profile is given by the first derivative of VR(x), irre-

spective of the value assumed by the parameter l; type B encompassing,

V B
I (x) = −Vix exp(−x2l), (2.10)
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Figure 2.1: Sketch of the transverse profiles of the real and imaginary
part of the potential for (a) potential A and (b) potential B for l = 2(solid
lines) and l = 8 (dashed lines) showing how the imaginary part varies. It
is to be noted that for l = 1 both the potentials are equivalent.



Stationary solutions in the linear case 33

where the profile VI(x) now is a super-Gaussian multiplied by x. Fig.2.1

depicts both kinds of potentials together with their real part: the gain/loss

distribution for type A tends to become sharply peaked as l is increased

whereas VI slightly changes with l for type B, conserving indeed a smoother

profile as l grows up. The total number of particles N =
∫∞

−∞
|u|2 dx in

the normalized frame is related to the actual number of particles N0 by

N =
∫∞

−∞
|u|2 dx = 2aN0/a⊥. To be concrete, taking the parameters of

quasi-1D 7Li condensate consisting of N0 = 6000 atoms, experimentally

demonstrated in[100], with a = −3aB(aB is the Bohr radius), we obtain

a⊥ = 0.3µm, N ≈ 6 and Dco = 0.025 ≤ 1 for wx/w⊥ = 1/100.

Now, we can find the stationary solutions of Eq.2.7 in the linear and

nonlinear cases separately.

2.2 Stationary solutions in the linear case

Before dealing with the nonlinear case, the existence and the behavior

of confined modes in the linear case are studied in this section. Bound

states can be found numerically from Eq.2.7 making the ansatz u(x, t) =

φ(x)e−iµt, providing the linear eigenvalue problem µφ = −1
2
∂2φ
∂x2 + (VR +

iVI)φ. Due to the presence of dissipative terms, eigenvalue µ in general

will be complex, that is, we can write µ = µR + iµI . Now we have solved

numerically the equation to get the ground state with Vr fixed at Vr = 1.

Fig.2.2 and Fig.2.3 show that eigenvalues of the system follow an analogous

behavior as the gain/loss magnitude Vi is changed. In fact, for Vi lower

than a critical value, Vc, PT -symmetry is conserved and all the eigen-

values are real. The eigenmode has a symmetric real and anti-symmetric

imaginary part(Fig.2.2 last row last column). Condition Vi = Vc identi-

fies the exceptional point where PT -symmetry is spontaneously broken:

the eigenvalues corresponding to the maximum µR becomes complex, thus
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Figure 2.2: Ground state µ vs Vi for the potential of type A. Top row
depicts real part µR and middle row depicts imaginary part µI , plotted
versus Vi. Imaginary eigenvalues with equal magnitude but opposite in
sign appear at the exceptional point. The stationary profiles at Vi = 3,
which falls in different spectral region for each l, is plotted in the last row;
black symmetric solid line is the intensity, blue dashed line is the real part
of φ and finally the antisymmetric red solid line is the imaginary part of
the field φ. Here Vr = 1.
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Figure 2.3: Ground state µ vs Vi for the potential of type B. Top row
depicts real part µR and the bottom row depicts imaginary part µI , plotted
versus Vi. As compared to type A, trend of the eigenvalue µI versus Vi
depends much less on l given that VI(x) is kept constant. Here Vr = 1.
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the corresponding eigenmodes are subjected to an exponential decay or

amplification, according to the sign of the imaginary part of µ. The real

part of the eigenmode now becomes asymmetric(an example is shown in

Fig.2.2 last row third column). Further increase in Vi induce an almost

linear growth for |µI |; µR follows a raising quasi-linear trend with Vi as

well. This trend is abruptly interrupted for a certain threshold value,

Vt, after that both the µR and µI vanish. At this point the eigenvalues

are in the continuum and the corresponding eigenmodes are spread in

space(Fig.2.2 last row first two columns; size of the numerical grid is [-40

40] with solutions required to vanish at the boundary.)

The dynamics described above is shared by both the types of imagi-

nary potentials VI described by Eqs.2.9 and 2.10. For potentials of type

A(Eq.(2.9)) the critical potential is V A
c ≈ lVr/2+1/5(i.e., linearly increase

with l) and follows more or less the trend for analytically solvable com-

plex Scarf II potential[139], thus providing Vc ≈ 0.7 for l = 1, Vc ≈ 1.2

for l = 2, Vc ≈ 2.2 for l = 4, and Vc ≈ 4.2 for l = 8. For the type

B(Eq.2.10), the transition occurs at V B
c ≥ Vr for l ≥ 2(l = 1 is analogous

to type A), then undergoing small increases as l gets larger. The threshold

potential Vt follows an analogous trend, the increase with Vi being larger

for potentials of type A.

The complex nature of the potential impacts deeply on the nature of

the stationary solutions. In the presence of a complex potential the behav-

ior of Vc and Vt can be understood by invoking the particle conservation

on each point of the transverse plane. The particle conservation for the

Schrödinger equation reads,

−→∇ · −→j = −∂ρ
∂t

+ 2Vi(x)ρ, (2.11)

where ρ = |φ|2 is the particle intensity and the particle flux j is given by

j = 1
2i

(

u∗ ∂u∂x − u∂u∗

∂x

)

. Setting φ =
√
ρeiξ(x), the flux reads, j = ρ ∂ξ

∂x . For
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stationary modes, ∂ρ/∂t = 0 holds valid. Thus, Eq.2.11 implies [140],

∂

∂x

(

ρ
∂ξ

∂x

)

= 2Vi(x)ρ. (2.12)

Eq.2.12 tells us that the eigenmodes feature a non-flat phase profile on the

transverse plane x, the latter corresponding to a net motion of particles

from the gain to loss regions, as required to conserve the overall particle

number in the presence of Vi[141]. According to Eq.2.12, an even ρ cor-

responds to an odd ξ, that is, an even real part and an odd imaginary

part, respectively. Physically, particles are created within the gain region

and then they diffuse towards the loss region in order to keep the over-

all(i.e., integrated along x) particle number
∫

nxdx constant. It is to be

noted that the flux j is an even function, that is, a unidirectional flow

takes place when the real part of φ is even[141]. Eq.2.12 also states that

larger the Vi, larger the anti-symmetric component of the wave function

is. Physically, the transverse flux must be larger in order to compensate

the inhomogeneous gain/loss.

2.3 Stationary solutions in the nonlinear case

Let us now discuss the nonlinear case. In full analogy with the linear case,

solitonic solutions of Eq.2.7 are in the form u(x, t) = φ(x) exp(−iµt), µ
being the chemical potential. Due to the non-linear term both φ(x) and

µ depends on the number of particles N , defined in the dimensionless

framework as N =
∫

|ψ|2dx. Substituting for u(x, t), Eq.2.7 turns into,

µφ = −1

2

∂2φ

∂x2
+ (VR + iVI)φ− |φ|2 φ. (2.13)

Stationary solutions of Eq.2.13 are sought using standard relaxation tech-

nique based on pseudo-spectral differentiation with Fourier differentiation

matrices[124]. We look for stationary solutions for different l and VI values
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keeping the amplitude of real part Vr fixed (Vr=1). The most striking ef-

fects ascribable to the nonlinearity is the generation of a nonlinear bound

state featuring µR < 0 and µI = 0, regardless of the magnitude of Vi (i.e.,

even above the exceptional point). Differently stated, the nonlinearity

provokes a transition from broken PT to a PT -symmetric state[140–142],

even if all the linear eigenvalues are complex. An overview of the features

of the fundamental soliton showing the minimum µR for varying Vi and l

is shown in Fig.2.4.

Typical profiles of the shape-invariant solutions for potentials of type

A are depicted in Fig.2.5 and for potentials of type B in Fig.2.6. In both

the figures soliton transverse profiles for fixed values of the eigenvalue µ

are plotted. In accordance with Eq.2.12, the fundamental soliton has an

even real part and an odd imaginary part[106, 131, 140, 141].

Let us now discuss the soliton properties depending on the shape of the

potential, starting from type A. For Vi = 0.5 soliton profiles are slightly

perturbed by the small transverse flux(Eq.2.12), whatever the values of

µ and the degree l are. Increasing the magnitude of Vi, profiles of φ

are affected by the dissipative terms when µ is small, corresponding to

wide solitons strongly overlapping with the gain/loss regions. To minimize

the spatial overlap between the intensity distribution and the gain/loss

regions, solitons get narrower as Vi increases(third column in Fig.2.5). In

agreement with this interpretation, this effect disappears as l is increased.

Solitons propagating in type B potentials confirm our interpretation. In

fact, regardless of the shape of VR (i.e., independently from l), solitons get

narrower as Vi is raised up, given that the spatial shape of VI does not

vary appreciably with l.

Now, Eq.2.7 is solved using variational method and the results obtained

are compared with that found from numerical methods.
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2.4 Variational approach

The variational method has been widely used to obtain solutions for

nonlinear waves obeying the GPE (or, equivalently, the NLSE). In fact,

the method provides closed form solutions in qualitative(or quantitative)

agreement with the actual dynamical behavior. It also ensures a deeper

insight on the underlying physics. In order to adopt it in the presence of

PT -symmetry, we use the variational approach developed for dissipative

systems[140, 143, 144]. Making the ansatz u(x, t) = φ(x, t) exp(−iµt),
Eq.2.7 can be recast as,

i
∂φ

∂t
+ µφ+

1

2

∂2φ

∂x2
+ |φ|2 φ+ Vr exp(−x2l)φ = iVIφ. (2.14)

The Lagrangian for the conservative part, corresponding to the left hand

side(LHS) of Eq.2.14, is

Lc =
i

2

(

∂φ∗

∂t
φ− ∂φ

∂t
φ∗
)

− µ |φ|2 + 1

2

∣

∣

∣

∣

∂φ

∂x

∣

∣

∣

∣

2

− Vr exp(−x2l) |φ|2 −
1

2
|φ|4 ,

(2.15)

for both type A and B potentials.

We assume a trial solution such that it accounts for the non-zero phase

associated with PT -symmetric stationary states as,

φ(x, t) = A(t) exp

(

−x
2

ω2
b

)

exp[iθf(x)], (2.16)

where A(t) corresponds to the wave amplitude supposed to be real, wb

is the width of the soliton, θ is the amplitude of the phase profile and

f(x) is the phase distribution along x(in other words we set ξ = θf(x),

f(x) being a conveniently chosen normalized function so that the overall

phase jump across the soliton is equal to θ). Since the real part of the

solution is symmetric and the imaginary part is antisymmetric, f(x) can
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be assumed to be an odd function of x. The particle number of the solution

is defined as N =
∫∞

−∞
|φ|2 dx =

√

π
2A

2ωb = 2aN0/a⊥. Inserting Eq.2.16

into Eq.2.15 yields the following Lagrangian,

Lc = −µA2 exp

(

−2x2

ω2
b

)

+
A2

2
exp

(

−2x2

ω2
b

)

θ2
(

df(x)

dx

)2

+
2x2

ω4
b

A2 exp

(

−2x2

ω2
b

)

− Vr exp(−x2l)A2 exp

(

−2x2

ω2
b

)

− 1

2
A4 exp

(

−4x2

ω2
b

)

.

(2.17)

Integrating Eq.2.15 across the whole x axis provides the reduced La-

grangian, 〈Lc〉 =
+∞
∫

−∞

Lcdx. From Eq.2.17 we find

〈Lc〉 =− µA2√πωb√
2

+
1

2
A2θ2

+∞
∫

−∞

(

df(x)

dx

)2

exp

(

−2x2

ω2
b

)

dx

+
2

ω4
b

A2√πω3
b

4
√
2

− VrA
2

+∞
∫

−∞

exp
(

−x2l
)

exp

(

−2x2

ω2
b

)

dx

− 1

2
A4

√
π

2
ωb.

(2.18)

Eq.2.18 can be further simplified and rewritten in terms of the particle
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number N , yielding,

〈Lc〉 =− µN +

√
2Nθ2√
πωb

∞
∫

0

(

df(x)

dx

)2

exp

(

−2x2

ω2
b

)

dx

+
N

2ω2
b

− 2
√
2VrN√
πωb

∞
∫

0

exp(−x2l) exp
(

−2x2

ω2
b

)

dx

− N2

2
√
πωb

.

(2.19)

The last term on the RHS of Eq.2.19 depends on the square of the par-

ticle number N , denoting its nonlinear origin stemming from two-body in-

teractions. The standard variational approach for systems with dissipative

terms can be modified as[143, 144],

d

dt

(

∂ 〈Lc〉
∂ϕt

)

− ∂ 〈Lc〉
∂ϕ

= 2Re

∞
∫

−∞

Q
∂φ∗

∂ϕ
dx, (2.20)

with Q = iVI(x)φ representing the source/sink of new particles, thus being

responsible for the non-conservation of the Hamiltonian for the general

solution. Symbol ϕ stands for the three variational parameters introduced

above, thus including the particle number N , the soliton width ωb and the

overall phase delay θ. Summarizing, Eq. 2.20 provides three variational

expressions allowing the computation of µ, wb and θ for a fixed number

of particle N .

Computing the variation with respect to N , the corresponding RHS of

Eq.2.20 is,

2Re

∞
∫

−∞

Q
∂φ∗

∂N
dx =

√

2

πw2
b

Re







i

∞
∫

−∞

VI exp

(

−2x2

w2
b

)

dx







. (2.21)

Eq.2.21 vanishes for two reasons: the integrand is a purely imaginary num-

ber, but at the same time the integral is zero owing to the odd symmetry
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of its argument. Thus d
dt

(

∂〈Lc〉
∂Nt

)

− ∂〈Lc〉
∂N = 0, from which we can find an

explicit expression for the chemical potential µ as,

µ =
θ2√
2πωb

∞
∫

−∞

(

df(x)

dx

)2

exp

(

−2x2

ω2
b

)

dx

+
1

2ω2
b

− N√
πωb

−
√
2Vr√
πωb

∞
∫

−∞

exp
(

−x2l
)

exp

(

−2x2

ω2
b

)

dx.

(2.22)

First term on the RHS of Eq.2.22 stems from the influence of the phase

profile θf(x) on the nonlinear eigenvalue µ; physically, µ increases as the

overall phase profile across x grows up, that is, the net effect of the trans-

verse flux is to weaken the localization of the condensate. Second and third

term on the RHS of Eq.2.22 originate from the dispersive spreading and

the two-body interaction term, respectively. In fact, their sign is opposed

due to their opposite effect on the trapping of the condensate. Moreover,

in agreement with the local Kerr like nonlinearity assumed in Eq.2.1, the

nonlinear term depends on the intensity N/wb. The last term in Eq.2.22

accounts for the trapping exerted by VR(x) and it is negative(thus favours

the stabilization of the condensate). Also, it is directly proportional to

the overlap between the particle distribution and the real potential VR.

When variation with respect to the condensate width ωb is computed,

the integral involving the dissipative term vanishes in full analogy with
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Eq.2.21. Euler-Lagrange equation in this case provides,

1

ω3
b

− N

2
√
πω2

b

=
θ2√
2
√
π

∂

∂ωb







1

ωb

∞
∫

−∞

(

df(x)

dx

)2

exp

(

−2x2

ω2
b

)

dx







−
√
2Vr√
π

∂

∂ωb







1

ωb

∞
∫

−∞

exp
(

−x2l
)

exp

(

−2x2

ω2
b

)

dx







.

(2.23)

The LHS of Eq.2.23 gives the competition between dispersion of the par-

ticles(term proportional to ω−3
b ) and negative scattering length(term pro-

portional to w−2
b ) in determining the condensate width when the PT po-

tential is lacking. We find that N ∝ w−1
b , thus avoiding the catastrophic

collapse ascribable to a soliton width independent from N , occurring in

the presence of Kerr nonlinearity(attractive two-body interaction) when

diffraction/dispersion acts in more than one dimension[145]. The RHS

of Eq.2.23 accounts for the influence of the PT potential on the conden-

sate width, confirming the presence of an additional effective term on the

potential well stemming from the transverse inhomogeneous phase of the

soliton, as already discussed for the case of Eq.2.22.

Finally, we compute the Euler-Lagrange equation for θ. We have ∂φ∗

∂θ =

−if(x)φ∗, the dissipative term in Eq.2.20 is purely real. Furthermore, the

corresponding integrand is an even function of x. Thus, the overall phase

delay θ is,

θ = −2

∞
∫

0

VI(x) exp
(

−2x2

ω2
b

)

f(x)dx

∞
∫

0

(

df(x)
dx

)2

exp
(

−2x2

ω2
b

)

dx

, (2.24)

with VI = −Vix2l−1 exp(−x2l) for potential A and VI = −Vix exp(−x2l)
for potential B. Eq.2.24 shows that the phase of the solution vanishes when
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the potential is purely real, hence demonstrating that, for purely real po-

tentials, stationary solutions feature a flat phase profile across x, whereas

the introduction of complex potentials results in stationary solutions with

phase following the symmetry of the potential.

In the following sections of this chapter, we discuss and compare the

variational results with those obtained from numerical analysis for differ-

ent transverse profiles of the imaginary potential.

2.5 Discussion

To proceed with variational analysis, we have to choose a suitable form for

the function f(x) introduced in Eq.2.16. Numerically obtained stationary

profiles suggest a tanh(x) profile for the phase of the solutions for low

l. So, throughout the calculations we choose f(x) = tanh(x). We will

also discuss how differences with the numerical simulations arise for high

values of l and Vi.

2.5.1 Gaussian potential

Typical stationary profiles obtained numerically(dashed lines) are shown

in Fig.2.7 for l = 1, that is, a Gaussian trapping potential and an odd pro-

file for gain/loss(VI for l = 1 is the first derivative of the Gaussian, both for

potentials of type A and B). The corresponding solutions obtained using

variational approach are also shown(solid lines). The density distribution

|φ|2 of fundamental solitons is bell-shaped, irrespective of the values of Vi,

Vr and µ. Results from the two approaches are in good agreement for low

values of Vi, with a small discrepancy in the amplitude. The larger the

Vi, the bigger the differences are. In fact, for Vi > 0.7 the corresponding

linear system is actually in the PT broken state(Vc = 0.7) as explained

in section 2.2. The size of the condensate predicted from the variational
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Figure 2.7: Soliton profiles versus x obtained from numerical simulations
(dashed lines) and from variational analysis (solid lines), for different Vi
as marked. Real potential VR(x) is Gaussian, i.e., it is l = 1. Top row:
waveform for the lowest |µ| value ensuring soliton existence for each Vi,
corresponding to |µ| = 0.48, 0.7, and 2.26 from left to right, respectively.
The other two rows correspond to µ = −3 and µ = −6, from top to bottom
respectively. In all the plots we set Vr = 1. In all the panels comparison is
made choosing µ and finding the corresponding particle number N from
numerical simulations; then the variational solution corresponding to that
value of N is used for comparison.
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approach differs from the actual size, hence resulting in a comparatively

large difference in the predicted amplitude. Dependence on the nonlinear

eigenvalue µ can be appreciated comparing different rows: discrepancies

depend slightly on the values of |µ|, showing instead a strong dependence

on Vi. Phase profiles of the solitonic solutions versus x are shown in the

first two rows of Fig.2.8. The variational curves follow the same trend of

the full numerical simulations stemming from Eq.2.1, but the two phase

profiles differ by a small factor for which the variational approach is unable

to account.

A detailed comparison of various parameters predicted from the varia-

tional analysis and the numerical simulations is presented in the last two

rows of Fig.2.8 for three representative values of Vi. Regarding the non-

linear eigenvalue µ, a quantitative agreement between the two approaches

is found for small Vi and small N . For very large Vi, the qualitative trend

versus N is reproduced, but quantitative difference arise even for the low-

est N . Finally, last row in Fig.2.8 shows that the two theories predict a

very similar width, wb, of the condensate with number of particles N . The

accordance being improved as the particle number increases.

Some general conclusions can be drawn about the nature of solitons in

the presence of a PT -symmetric potential. As solitons become narrower,

the number of particles N is increased due to the attractive two-body

interaction, as in the case of self-focusing in a homogeneous Kerr media.

The presence of Vi imposes a lower threshold in N for solitons to exist:

physically the threshold appears owing to the transverse flux and the re-

quirement for particle conservation. In particular, the fundamental soliton

becomes narrower as Vi is increased. Despite the fact that the predicted

values for the threshold(by both methods) do not match perfectly, vari-

ational analysis captures qualitatively the presence of a finite existence

range for large Vi(the last two rows in Fig.2.8). To be specific, for the
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Figure 2.8: Phase profiles versus x for three Vi when µ = −6 (top row) and
for the lowest |µ| allowed (second row); in the latter case it is found that
|µ| = 0.48, 0.37 and 2.26, from left to right. The third and the fourth row
report the behavior of the nonlinear eigenvalue µ and of the soliton width
wb versus the particle number N , respectively. In all the plots numerical
and variational results are represented by dashed and solid line with �,
respectively.
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case of Vi = 3, variational solutions exist from µ = −2.26 and N > 4.33,

whereas numerical simulations predict solitons existing for N > 4.23 with

nonlinear eigenvalues smaller than µ = −1.3 .

2.5.2 Potential A

Now, we concentrate our effort on potential A, where the transverse profile

of the imaginary component varies together with the profile of the real part

of the potential. Fig.2.1 shows that in this case the gain/loss distribution,

as l is increased, is more and more localized in proximity of the edge

of the real potential. As the number of particles is increased, solitons

shrink around the symmetry axis(i.e., x = 0) of the system so that only

their tails interact with the gain/loss region. Thus, the transverse flux

gets minimized. Solitonic profiles versus x are plotted in Fig.2.9 for three

values of Vi and for three different l, both for low and high µ. Variational

approach reproduces faithfully the actual solitons for l = 2, independent

of the values of Vi. Quantitative differences take place for l larger than 4

for broad solitons, whereas the accordance remains very good for narrow

solitons, no matter how large l is. In fact, in the latter case, there is no

appreciable spatial overlapping between the intensity distribution and the

imaginary potential.

The behavior of the chemical potential µ (Eq.2.22) and that of the

beam width wb (Eq.2.23) versus the particle number N are plotted in

Fig.2.10, together with the corresponding numerical results. Qualitatively,

variational analysis is capable of describing the behavior of both µ and wb

with the corresponding curves featuring a very similar shape; as for l = 1.

Variational analysis is also able to specify a threshold for the soliton exis-

tence when Vi is large. At the same time, the quantitative differences can

be appreciated. For small Vi and l = 2, the nonlinear eigenvalue µmatches

for small N , tending to diverge as the particle number is increased. For
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Figure 2.9: Family of potentials A. Normalized intensity profiles of the
solitons obtained numerically (dashed lines) and those obtained from vari-
ational analysis (solid lines) are depicted for three different Vi as marked.
All the curves are normalized with respect to the peak of the numerical
solutions. Narrow profiles correspond to µ = −6, whereas wider solitons
correspond to the lowest eigenvalue (|µ|), the latter depending on the pair
l and Vi: for l = 2 the eigenvalues for each Vi is 0.54, 0.35 and 0.7 (from
the smaller to the larger Vi, respectively); for l = 4 it is |µ| = [0.57, 0.52,
0.25] ; for l = 8 its |µ| = [0.75, 0.72, 0.6]. In all cases Vr = 1.
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Figure 2.10: Family of potentials A. Behavior of µ and of the soliton width
wb versus the particle number N is plotted in the top and bottom row,
respectively. Imaginary potential Vi is 0.1 in the first and third column
(�), whereas Vi = 3 in the second and fourth column(4), respectively. In
all the plots numerical and variational results are represented by dashed
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Figure 2.11: Family of potentials A. Soliton phase versus x profile for
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Figure 2.12: Family of potentials B. Normalized intensity profiles of the
solitons obtained numerically (dashed lines) and those obtained from vari-
ational analysis (solid lines) are depicted for three different Vi as marked.
All the curves are normalized with respect to the peak of the numerical
solutions. Narrow profiles correspond to µ = −6, whereas wider solitons
correspond to the lowest eigenvalue (|µ|), the latter depending on the pair
l and Vi: for l = 2 the eigenvalues for each Vi is 0.54, 0.63 and 1.8 (from
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Figure 2.13: Family of potentials B. Behavior of µ and of the soliton width
wb versus the particle number N is plotted in the top and bottom row,
respectively. Imaginary potential Vi is 0.1 in the first and third column
(�), whereas Vi = 3 in the second and fourth column(4), respectively. In
all the plots numerical and variational results are represented by dashed
line with symbols on the right and by solid lines with symbols on the left,
respectively.
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l = 2 and Vi = 3, an initial displacement(i.e., in correspondence to the

threshold) between the two curves is observed. Then, for high N the

eigenvalue µ approaches the same values for each Vi owing to the high

degree of spatial localization achieved. For l = 8, the soliton threshold al-

most disappears owing to the small overlap of the field with the imaginary

potential. For the same reason, and according to both the techniques, the

trend of µ with N results to be slightly dependent on Vi. Finally, the

variational and the numerical curves cross around N = 2, stating that

differences at small N arise from the shape of the potential.

Behavior of wb is similar: for l = 2 an appreciable divergence between

the two approaches occurs only in the proximity of the threshold for large

Vi, whereas the soliton width matches almost perfectly for other N values.

For l = 8 variational analysis predicts a wider condensate width for small

N . After the crossing point, variational widths become narrower, tending

to coincide with the exact values for N ≈ 6.

The quantitative discrepancies between variational and exact solutions

can be mainly attributed to the trial function used for the phase profile

f(x). The phase profiles obtained from the two approaches do not even

show the same spatial shape (Fig.2.11): in fact, the hyperbolic tangent

profile assumed for f(x) is best suited for l = 1 whatever µ is.

Let us start from the nature of the exact phase profile. First, the

overall phase jump increases with Vi owing to the larger flux of particles

required for particle conservation. Second, the overall phase jump for l = 8

is about half the value for l = 2, owing to the smaller overlap between the

field and the imaginary potential. Third, the overall phase jump decreases

as µ diminishes(N increases) owing to the stronger self-localization. Let

us now discuss the spatial shape of the phases. According to Eq.2.12, the

phase gradient does not appreciably change when the local imaginary po-

tential is small, whereas it can undergo a change in the convexity(d2ξ/dx2
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changes its sign) when the generation/destruction of particles is relevant.

Accordingly, for low l and small Vi phase shows a single inflection point

placed at x = 0(case l = 2, Vi = 0.1 and µ = −0.54 in Fig.2.11 and also in

Fig.2.8). As N increases, for Vi = 0.1 and l = 2 the single inflection point

separates into two distinct points, symmetrically placed with respect to

x = 0. A similar but faster(i.e., occurring at lower N) transition can be

observed if Vi is increased. For example, for Vi = 3 and l = 2 the first

existing soliton already shows two inflection points(Fig.2.11). For larger

values of l the two inflection points appear even for lower excitations due

to the larger strength of the local imaginary potential. For example, for

l = 8, the phase profile is almost flat around x = 0 and increases on

the edges due to the narrowness of solitons and the low overlap with the

gain/loss regions(Fig.2.11). The simple trial function used in the varia-

tional computation does not account for this: as a consequence, a very

small θ value is predicted: particularly for l = 8 it is of the order of 10−3

for small N , the magnitude of which further decreases with increasing N .

2.5.3 Potential B

Now, let us turn our attention towards potential B, where the transverse

profile of the imaginary part of the potential varies slightly and does not

undergo strong localization as the real part of the potential is varied.

Stated otherwise, the gain/loss regions now span throughout the real po-

tential, irrespective of the profile of the real potential. Analogously to

potential A, for low values of l and Vi, the soliton solutions match quite

well with numerical findings, above all when the condensate is strongly

self-confined(Fig.2.12). Behavior of µ and width wb versus N for Vi = 0.1

is very similar to potential A due to the small transverse flux(Fig.2.13).

Conversely, differences between A and B are relevant when Vi becomes

larger. For example, when Vi = 3 soliton threshold shifts towards larger
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N , both for l equal to 2 and 8(Fig.2.13); variational equations are used

to compute the threshold positions with a good degree of accuracy. Ad-

ditionally, both µ and wb computed from variational method are smaller

than the numerically found values. Finally, Fig.2.14 shows the phase pro-

file of solitons for potential belonging to type B. Due to the spatially wider

imaginary potential, the numerical phase shows a single inflection point

at x = 0, regardless of Vi and l. Thus, the trial function assumed for

f(x) possesses the same shape as of the actual phase. Nonetheless, the

corresponding phase profiles for l = 2 have a mismatch by a factor of 2

in the magnitude θ, the latter increasing for greater l. For l = 8, the

overall phase jump θ computed from variational method undergoes slight

modifications as µ changes.

2.6 Stability and Dynamical Evolution

The stability of the stationary solutions φ is analyzed using the Bogoliubov-

de Gennes(BdG) equations[123] which are obtained by linearizing the GPE

by considering the Bogoliubov ansatz for elementary excitations:

u = (φ+ p(x) exp(iλt) + q(x) exp(−iλ∗t)) exp(−iµt), (2.25)

which gives the linearized BDG equations as,

λ

[

p

q∗

]

=

[

L1 − iVI(ξ) φ2

− (φ∗)2 −L1 − iVI(ξ)

][

p

q∗

]

, (2.26)

where L1 = −µ+ 1
2

∂2

∂x2 + 2 |φ|2 − VR.

If the frequency λ is real, the perturbed stationary state will be stable,

whereas, if the frequency is complex, the stationary state experiences oscil-

latory instability(OI). If it is purely imaginary, the solutions are said to be

linearly unstable undergoing exponential amplification. Solving Eq.2.26



Stability and Dynamical Evolution 61

2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

µ

Im
(λ

)

l=1

2 4 6
0

0.005

0.01
l=2

2 4 6
0

1

2

3

4
x 10

−3 l=8

2 4 6
0

1

2

3

4
x 10

−3

µ
2 4 6

0

2

4

6
x 10

−3

µ

Figure 2.15: Stability eigenspectrum computed from Eq.2.26 for varying
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larger l enhances soliton instability for potentials of type B (bottom row)
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we find that the eigen values of the instability spectrum are either real

implying linear stability or complex implying oscillatory instability. In

general, we can say that the condensate will be dynamically stable when

the imaginary part of the potential Vi is much less than the critical point

Vc at which the PT -symmetry is spontaneously broken. The stability of

the condensate also depends on the chemical potential µ. Representative

behavior of the instability spectrum is depicted in Fig.2.15 for various Vi

and l values, for numerically obtained solutions. From this, we can infer

that, the profiles deviating from the actual stationary solution will act as

a perturbation and the evolution of this perturbation will depend on the

instability associated at that particular chemical potential value. That

is, for example, for low Vi values, the Bogoliubov analysis suggests stable

condensate. The condensate will survive small perturbations to it. That

is, the initial condensate profiles differing slightly from the actual profile

can be stable for sufficiently long time. Qualitatively, similar instabil-

ity spectrum is obtained for the variational solutions as well predicting

stability for low Vi and instability for high Vi.

2.7 Propagation dynamics

The results obtained above from the linear stability analysis of solitons

have been checked numerically by computing soliton dynamics in the pres-

ence of noise. We have employed standard beam propagation method

using Crank-Nicolson scheme for diffraction. The Strang splitting, an

asymmetric operator splitting featuring second order accuracy, is used for

simulations with high Vi, where stationary solutions are obtained near the

PT -symmetry breaking point.

We have investigated field dynamics when a soliton, perturbed with

Gaussian noise encompassing a magnitude 1% of the soliton amplitude,
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Figure 2.16: Top row: Intensity evolution of soliton solutions for µ = 3.4
and (left panel) Vi = 0.1 showing unperturbed soliton and (right panel)
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Figure 2.18: Evolution of trajectory 〈x〉 and width wb vs t for Vi = 0.5
(top two rows) and Vi = 1 (bottom two rows) for potentials of type A
(second and third column) and potentials of type B (last two columns) for
different l and Vi as marked; for l = 1 both the potentials are equivalent.
Dotted lines correspond to the propagation of stationary nonlinear modes
where as solid lines correspond to wave evolution initially perturbed by
1% random noise in amplitude for µ = 0.7 (�), µ = 3.4 (�) and µ = 6
(4).
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is taken as the input beam. Representative results are shown in Fig.2.16.

For Vi = 0.1 the soliton is stable over the dynamical evolution whereas

for Vi = 0.5, solution experiences exponential growth due to an instabil-

ity mode with Im(λdom) ≈ 2 × 10−3(λdom is the maximum of imaginary

part of the eigenvalue λ), in good agreement with Linear Stability Analy-

sis(LSA). Results from LSA are confirmed also in the presence of stronger

instability: in this case field distribution loses its spatial symmetry and un-

dergo a much stronger exponential growth. In the bottom row of Fig.2.16,

transverse profiles of the beam at various longitudinal sections are shown

for Vi = 1, for both types of potentials A and B, and for various l val-

ues. At each section field is normalized to the local power to improve the

visibility. Solitons acquire an asymmetric profile across x while evolving

and eventually converting to a strongly localized mode which undergoes

exponential amplification.

The oscillations in the peak of the solution owing to OI can also be

observed; the time evolution of the center of mass of the field 〈x〉 =
∫

|ψ|2xdx/
∫

|ψ|2dx is graphed in Fig.2.17 and also in Fig.2.18, together

with the width of the beam, wb. Specifically, solitons with three different

µ values with low, intermediate and high magnitude were considered for

the propagation studies. The intermediate value is chosen to be µ = 3.4,

which for low l falls in the window where the solutions are predicted to

be quasi-stable by LSA. Numerically found time evolutions are depicted

in Fig.2.18. The time evolution of the beam width is depicted for differ-

ent l values as marked for both propagation with noise(dotted lines) and

without added noise(solid lines). Simulations are in very good agreement

with LSA predictions: for low Vi, solitons are quasi-stable for both the

potentials; LSA predicts a small exponential amplification for Vi = 0.5,

confirmed by numerics. A good agreement is found also for Vi = 1: field

intensity first starts to breathe upon time evolution owing to the inter-
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Figure 2.19: Dynamical evolution of the condensate for both numerical
solutions (top row) and the corresponding variational results (bottom row)
for l = 1 and µ = −3; Vi values are as shown in the figure.

ference between the solitonic profile and the eigenmode associated with

λdom. At the same time, an exponential growth of the perturbative mode

occurs. After a given time, the perturbation becomes larger than the

soliton width and the overall field is mainly composed by a very narrow

bell-shaped wave positioned in the gain region undergoing very strong

amplification supported by nonlinear self-focusing.

Physically, instability is strictly related with the presence of some lin-

ear eigenstates encompassing a complex eigenvalue, a general property

of localized complex potentials, different to what happens in periodic

systems[141, 142]. Thus, we can conclude that PT -symmetric solitons
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Figure 2.20: Dynamical evolution of the total number of particles N (top
row), together with the center of mass 〈x〉 (second row) and width wb

(third row). Dashed lines correspond to evolution in time of the stationary
solutions taken as input in the numerical code solving directly Eq. 2.7,
whereas the solid lines correspond to the stationary regime computed with
the variational approach. The evolution of both variational (fourth row)
and numerical (last row) phase is plotted as well. The parameters are l =
1 and µ = −3; Vi values are reported directly in the figure.
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supported by localized potentials are in general unstable. The instability

manifests appreciably at large propagation distances with respect to the

Rayleigh length for Vi < Vc, whereas solitons survive for short distances

when Vi ≥ Vc. For example, in Ref.[146] authors claim solitons are stable,

whereas we have demonstrated that solitons are actually subjected to a

small exponential growth, an important detail in applications such as laser

cavities.

To further verify this and also to check how variational solutions are

similar to condensate profiles obtained numerically, we have compared the

dynamical evolution of the solutions obtained from the two approaches.

Dynamical evolution of the condensate is also necessary to corroborate

the results from the BDG analysis. As a representative case, plots of

the intensity evolution |φ|2 with time t for different Vi and l = 1 are

shown in Fig.2.19. It has to be noted that numerically obtained stationary

solutions are propagated with out the inclusion of any noise, so that the

condensate maintains its stationary profile. Due to the differences between

the semi-analytical solution and the exact soliton, the condensate does

not preserve its shape on evolution. Instead, a breathing behavior (i.e.,

periodic oscillations on the wave size) jointly with an oscillatory trajectory

is observed. Oscillations in the field survive and remain bounded for time

scales much larger than td = 2w2
b/ω⊥, at which a beam of width wba⊥

expands by
√
2wba⊥ in the free diffusive regime (for example a beam of

width wb = 0.4 taken at t = 200 corresponds to 625td): we deduce that

instability does not take place, i.e., exponential growth on propagation

is ruled out, at least on realistic time lags. Whereas, in the PT -broken

state (Vi = 1), this no more holds true and the condensate experiences

exponential growth together with oscillation in the trajectory at very small

time scale.

The dynamic evolution of the number of particles N , the center of
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mass 〈x〉 =
∫

|φ|2xdx/
∫

|φ|2dx and the size of the condensate are plotted

in Fig.2.20, together with the phase distribution for both the numerical

and variational solutions. The oscillating trajectory can be attributed to

the non-stationary particle flux associated with discrepancies with respect

to the actual solitary waves. Displacement from zero of the center of mass

is proportional to the magnitude of Vi. The width of the beam oscillates

around the actual width of the numerical soliton on propagation both for

low and high Vi, trying to evolve into a stationary solution; correspond-

ingly the particle number N also oscillates around the stationary density.

2.8 Summary of the chapter

We have used numerical and variational methods to obtain the solitonic

solutions of a BEC subjected to a focusing nonlinearity and a trapping

potential featuring PT -symmetry. Starting from a mean field approach,

a simplified one-dimensional equation governing the evolution of matter

waves in a complex trapping potential is found. We study two families of

complex potentials in order to understand the effects of the shape of the

gain and loss mechanisms on the existence and features of the solitons.

To this extent, a super-Gaussian trapping potential is chosen for the real

part, coupled with two different families of functions for the gain/loss

mechanisms. In the first type gain/loss varies together with the form of

the real part of the potential, concentrating where the real potential varies;

in the second type gain/loss spatial distribution remains almost invariant,

overlapping spatially across the whole extension of the real part of the

potential.

For the variational approach, suitable trial solutions based on the fea-

tures of the system, that is, an even real part and an odd imaginary part

for the stationary solution, was chosen. We found a good agreement be-
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tween variational predictions and actual values for the soliton width and

chemical potential, whereas in the phase profile larger discrepancies are

found when the gain/loss regions become highly localized with respect to

the matter wave, principally attributed to the improper choice of the vari-

ational function modeling the transverse profile of the phase. Ideally, such

a function should model the convexity changes associated with the phase

gradient occurring with increasing gain/loss in the system. The agreement

between the two approaches is particularly good when the real part of the

potential is Gaussian and the imaginary part is Hermite-Gaussian of order

1; the width, chemical potential and the phase predictions agree very well.

Appreciable deviations in the two approaches occur when the system is

far away from the PT -breaking point, i.e., when the gain/loss mechanism

is very high, irrespective of the shape of the potential. We demonstrate

that a lower threshold in the particle number for the existence of solitary

solutions, strongly dependent on the imaginary component of the poten-

tial, exists, the existence region shrinking as the gain/loss magnitude grows

up. The variational approach is capable to describe qualitatively the phe-

nomenon, with a degree of accuracy on the order of 0.3%. Finally, we

demonstrated that the threshold in particle number is much larger when

the overlap between the imaginary potential and the field is large, due to

the larger transverse flux required to achieve a stationary solution. We also

carried out the stability analysis as well as the full dynamical evolution of

both numerically and variationally obtained solutions and compared the

density oscillations, width and center of mass variations from that of the

actual solutions.
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symmetric defects in a 1-D
Bose-Einstein condensate.

In this chapter we study the unidirectional behavior shown by BEC trapped

in 1-D super-Gaussian PT symmetric potential represented by Eq.2.7(in

chapter 2). The unidirectional behavior is explained as the almost perfect

transmission occuring in one direction and almost perfect reflection occur-

ing in the other direction when light beams scattered off by a potential

from two opposite directions. Scattering dynamics of matter waves by a

potential is a textbook problem in quantum mechanics[147–151] and has

been studied widely in different contexts: in particle physics, condensed

matter physics and in nonlinear optics[152–154]. When matter wave is

interacting with a defect, a resonant transmission or reflection occurs.

Such behavior can find applications for practical purposes. Interaction

of solitons resulting in chaotic scattering behavior has been considered

in[155], where fractal behavior was observed for certain velocities and was

explained by the n-bounce resonance phenomenon.

Interaction of solitons with potential barrier or well is the key mecha-

nism for atom interferometers[156, 157], atom-surface interfaces[158] and

matter-wave soliton interferometer[159]. Numerous theoretical[160–163]

as well as experimental investigations[164, 165] concentrate on scattering

of solitons from different type of potential barriers or wells. Eventhough

73
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scattering of waves is studied in many contexts in physics, BEC seems

to be a true candidate for the scattering studies as far as the above said

applications are considered.

The significance of symmetries and spectral characteristics of optical

systems are often analyzed using light scattering studies. Recently scat-

tering by PT symmetric potential is more attended by researchers as it

shows special properties. One of the main outcomes of scattering studies

in PT symmetric nonlinear systems is the observation of nonreciprocal

transport especially with low power threshold[78, 80]. It is noted that

the Hermitian counter part does not show such unidirectional properties.

Experimental realization of diode type transmission effect at the excep-

tional point(phase transition point) on-chip parity-time metamaterials is

demonstrated in[87]. PT symmetric LCR circuit which shows the dual

behavior of scattering at some characteristic frequencies, is experimentally

demonstrated in[166]. The scattering of linear and nonlinear waves in a

long waveguide array with a PT symmetric defect created by two waveg-

uides is discussed[167, 168] in which they demonstrated that the reflected

and transmitted linear and nonlinear waves can be substantially amplified

by the PT symmetric defect.

Some other works in literature that deal with the scattering by PT
defects which include scattering of gap solitons[169], scattering by PT
Gaussian potential[170]. Scattering studies in PT symmetric nonlinear

systems show nonreciprocal transport[80], repeated reflection transmis-

sion and trapping depending on the strength of the potential[171–174],

multisoliton scattering[175] and magnetic flux controlled non-Hermitian

PT system[174]. These studies are greatly acknowledged because of its

importance in the field of quantum information processing[80], on-chip

isolators and circulators[176].
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3.1 Model

The GPE for PT symmetric BEC with one dimensional setting have al-

ready been discussed in chapter 2. For the sake of continuity, the model

equation and the form of PT symmetric trapping potential are shown here

again,

i
∂u

∂t
= −1

2

∂2u

∂x2
− |u|2 u+ V (x)u, (3.1)

where the real part of the potential is given by,

VR = −Vr exp(−x2l) (l = 1, 2, . . .), (3.2)

and the imaginary part of the potential(type-A),

V A
I (x) = −Vix2l−1 exp(−x2l). (3.3)

3.2 Scattering Dynamics

We study the scattering dynamics of a soliton given by [60],

ψ = Asech [A(x− x0)] exp(ivincx),

moving with a velocity vinc towards the PT -symmetric defect, coming

from ±x0. A is the amplitude and inverse spatial width of the soliton.

Dynamics is analyzed in terms of the reflection(R), transmission(T) and

capture(C) coefficients which are defined as,

R =
1

P

∫ −h

−∞

|ψ|2dx, (3.4)

T =
1

P

∫ +∞

h

|ψ|2dx, (3.5)

C =
1

P

∫ h

−h

|ψ|2dx, (3.6)
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Figure 3.1: Variation of the reflection, transmission and capture with input
velocity at the output plane t = 400. for Vi = 0.1 (�) and Vi = 0.7. (∗).
Solid lines correspond to soliton impinging from the left (x0 = +10) and
dotted lines to that of solitons impinging from the right (x0 = −10) of the
defect. Here, A = 0.3, l = 2
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Figure 3.2: Intensity(|ψ|2) evolution in the plane x-t depicting the scatter-
ing dynamics of the impinging soliton for various Vi as marked for input
velocity vinc = 0.1. Here, A = 0.3, l = 2 and x0 = ±10.
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Figure 3.3: Intensity(|ψ|2) evolution in the plane x-t depicting the scatter-
ing dynamics of the impinging soliton for various Vi as marked for input
velocity vinc = 0.2. Here, A = 0.3, l = 2 and x0 = ±10.
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Figure 3.4: Variation of the reflection, transmission and capture coeffi-
cients with input velocity as a function of Vi calculated at t = 400. Here,
A = 0.3, l = 2 and x0 = ±10.
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with the condition R + T + C = 1(if the defect is conservative) and P =
∫ +∞

−∞
|ψ|2dx being the power of the input soliton. The width h is taken to

be eight times the width of the real part of the PT potential.

Soliton-defect interaction is studied by numerically integrating Eq.4.1

using standard finite-difference beam propagation method. We fix the

amplitude A of the input soliton(also the input width) and vary the veloc-

ity of the impinging soliton for varying magnitude of the imaginary part

of the potential Vi. Thus transiting the defect from a PT unbroken to

PT broken state, the RTC coefficients are calculated for sufficiently large

propagation distances(allowing the soliton to emerge after the interaction).

We first consider the l = 2 defect. The PT -breaking for this potential

occurs at Vi = 1.2(as seen in chapter 2)when Vr = 1. Throughout this

study the amplitude of the defect is fixed to be Vr = 1 unless specified oth-

erwise. The fundamental soliton with hyperbolic secant profile and ampli-

tude A = 0.3(width ' 3.3) is incident separately on to the PT -symmetric

defect from the gain side and the loss side. After sufficient propagation

time, the RTC coefficients are calculated for different incident velocities.

Fig.3.1 shows a typical profile for the RTC coefficient for varying velocities

for two different Vi; one far below the PT breaking and the other near to

the PT breaking. Solid lines correspond to dynamics when soliton beam is

incident from the left and dashed lines correspond to dynamics when soli-

ton is incident from the right. For very low Vi value, the dynamics for the

beams incident from left or right is invariant(curves with �), whereas for

large Vi this invariance is broken and the dynamics shows a nonreciprocal

behavior for increasing velocity(dashed line with ∗), i.e., with increasing

angle of incidence. For example, for velocity vinc = 0.2, the beam behav-

ior changes from total reflection to total transmission(capture coefficient

is negligible) depending on from which side of the defect the beam is in-

cident on. The propagation dynamics(Intensity(|ψ|2) evolution in the x-t
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plane) for the three representative Vi values are shown in Figs.3.2 and 3.3

where we have employed the standard beam propagation method.

The dependence of RTC coefficients as a function of Vi and velocity vinc

is shown in Fig.3.4. It is clearly evident that as Vi increases, the soliton-

defect interaction can change from reciprocal to non-reciprocal behavior

for increasing velocities(Figs.3.1-3.4). Moreover, the dynamics for a fixed

Vi can change from total reflection to total transmission with increasing

velocity, for example, the Vi = 0.7 case in Figs.3.2 and 3.3. The effect

can be attributed to the transition of the system towards the PT broken

state. As can be seen in Fig.3.1, the amplitude of the reflection coefficient

increases with increasing Vi when the soliton is incident from the gain

region, but a much narrower reflected beam(than the incident beam) is

obtained. Whereas both the reflected and transmitted beams experience

attenuation when the beam is incident from the loss side of the defect; a

broader output beam is obtained.

With increasing amplitude A of the input soliton, i.e., with narrower

input beams, the RTC coefficients have a much complex behavior. The

beam when incident from the gain side gets significantly amplified and

experiences multiple reflections(multiple emissions from the defect for low

input velocities) together with capturing but no transmission, as seen in

Fig.3.5. Whereas, when the incidence is from the loss side, a part of the

beam gets captured and the other part gets transmitted together with

amplification in beam power on propagation. It is to be noted that no

part of the beam is reflected. We consider the case when A = 1.5. The

input soliton has a width of 0.67, i.e., the soliton width is less than the

width of the defect which is equal to one. Fig.3.5 shows typical propa-

gation dynamics of the beam for two different Vi values. The observed

complex scattering dynamics can be attributed to the system being near

the exceptional point. To demonstrate this, we study the soliton-defect
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Figure 3.5: Intensity evolution (normalized at each t) in the plane x-
t depicting the scattering dynamics of the impinging soliton for various
Vi as marked for input velocity vinc = 0.1. The last column shows the
corresponding power evolution verus t, with the top curve (red) for high
Vi and bottom curve (black) for low Vi. Here, l = 2, A = 1.5 and x0 = ±10.
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Figure 3.6: Variation of the reflection, transmission and capture coeffi-
cients with input velocity as a function of Vi calculated at z = 400. Here,
A = 0.3, l = 8 and x0 = ±10.
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interaction for l = 8; in this case, the exceptional point is at Vi = 4.2(we

obtained in chapter 2). Fig.3.6 plots the RTC coefficients for varying Vi

values and is conspicuous by the absence of non-reciprocal behavior for

any value of Vi as the defect is always below the exceptional point.

3.3 Summary of the chapter

We have analyzed the scattering of soliton by a PT symmetric defect,

specifically studying the influence of the transverse profile of the imaginary

component of the PT -symmetric defect. We have demonstrated that,

when the defect approaches the PT -breaking point, the interaction of the

soliton beam with the defect results in either transmission or reflection

depending on the launch position of the beam i.e., whether the soliton

is on the gain side or the loss side of the defect. The transition from

reciprocal to non-reciprocal and vice versa can be obtained by varying the

angle of incidence, i.e., the velocity of the input beam. Such a behavior is

obtained near the exceptional point and is not seen for defects far below

the PT -breaking point. Variational analysis of soliton scattering by a PT
symmetric potential in a 1D Bose-Einstein condensate(beyond mean field

theory) has been done in chapter 5.
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dynamics of PT symmetric
bright soliton in a repulsive

BEC

Bright solitons supported by the complex potential in a BEC with re-

pulsive interaction between the atoms of the condensate in a reduced 1D

setting is discussed in this chapter. The localization is provided by the

PT -symmetric potential whereas the defocusing nature of nonlinearity

tries to destroy the wave localization. Hereafter, the term bright solitons

is used for these localized nonlinear waves with reference to their spatial

shape, even if the confinement is actually provided by the PT -symmetric

potential. Even though all discussions are referred to the BEC case, gener-

alization to the optical case is straightforward due to the correspondence

between the two governing equations in the corresponding media: the

NLSE and the GPE, respectively. The form of trapping potential is same

as used in chapter 2. i.e., the BEC is harmonically trapped in two spatial

dimensions, and is subjected to a super-Gaussian potential in the third

spatial direction. A super-Gaussian profile for the trapping potential al-

lows us to vary the trapping potential from a Gaussian to a square-well.

Furthermore, the BEC interacts with the local environment by adding a

potential profile accounting for gain and loss in the system. BEC behavior

85
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in a PT symmetric potential encompassing a super-Gaussian profile and

attracting inter-particle interaction has been described in chapter 2. In

the repelling case discussed here, the PT -symmetric complex potential is

strong enough to compensate the effect due to linear diffusion and the re-

ciprocal repulsion between the atoms below the exceptional point, whereas

above the exceptional point self-localization is inhibited by the nonlinear

effects. PT symmetric bright solitons in a self-defocusing nonlinearity

have been discussed in a Scarff II trapping potential[106, 177], Rosen-

Morse potential[178] and in a parabolic trapping potential[179, 180]. The

last two potentials do not possess a PT -breaking point. All these stud-

ies briefly discussed the existence of solitons, without going into details

of stability range and existence curves with respect to the amplitude and

transverse profile of the considered complex potential.

The derivation of the GPE and its form in reduced 1D BEC are dis-

cussed in chapters 1 and 2 and here, the GPE for repulsive condensate

trapped in PT symmetric super-Gaussian potential is studied.

4.1 Mathematical formulation

At temperatures T < Tc(Tc is critical condensation temperature) and in

dilute limit, i.e., the scattering length, a, is much less than the mean in-

terparticle spacing, the evolution of BEC is well described by the GPE.

Usually, the BECs are modeled inserting a harmonic potential modeling

the trap for atoms, whereas the two particle interaction in the simplest

case is described by a Kerr-like cubic nonlinearity. The flexibility of se-

lecting trapping frequencies in each spatial direction determines the shape

of the condensate: spherical, disk-shaped or cigar shaped condensates can

be generated[181]. Such BEC systems in reduced dimensions have been

studied earlier[182, 183]. The normalized one-dimensional GPE governing
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the dynamics of the condensate is,

ı
∂u

∂t
= −1

2

∂2u

∂x2
+ |u|2 u+ V (x)u, (4.1)

with the time coordinate normalized as t = Tw⊥ and the spatial coordi-

nate as x = X/a⊥, where, w⊥ is the harmonic oscillator frequency in the

transverse (Y, Z) direction and a⊥ =
√

~

mw⊥
, with m the atomic mass.

In Eq.4.1, due to the sign of the nonlinear term, we are consider-

ing a positive scattering length resulting in repulsive interactions be-

tween the particles. For the trapping potential, we take V (x) to be

complex, i.e., V (x) = VR(x) + iVI(x). We also assume that the po-

tential is PT -symmetric, therefore possessing a symmetric real part and

an anti-symmetric imaginary part such that the potential obeys the nec-

essary (but not sufficient) condition for possessing real eigenvalues, i.e.,

V (x) = V ∗(−x). The real part of the trapping potential is chosen to be

of super-Gaussian form, i.e.,

VR(x) = −Vr exp(−x2l). (4.2)

The imaginary part of the potential is chosen such as to enable a complete

understanding of flux of particles associated with PT potentials as detailed

in chapter 2. The two different types of transverse profiles considered are,

potential A: VI(x) = −Vix2l−1 exp(−x2l), (4.3)

and

potential B: VI(x) = −Vix exp(−x2). (4.4)

According to their definitions, for type A, the transverse profile of VI is

proportional to the first derivative of VR inverted in sign, thus it changes

with the profile of VR as l varies; for type B the profile does not depend on

VR, and it is chosen as a Hermite(super)-Gaussian function of first order.
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4.2 Stationary solutions in the linear and

nonlinear regime

The ground state stationary solutions of Eq.4.1 can be found making the

ansatz u(x, t) = φ(x)e−iµt which results in,

µφ = −1

2

d2φ

dx2
+ (VR + iVI)φ+ |φ|2 φ, (4.5)

with µ being the chemical potential and φ(x) being the time invariant

transverse profile. For each value of the eigenvalue µ, a corresponding

particle number, named N =
∫

|φ|2dx, is associated, providing the non-

linear dispersion relationship for the condensate.

Stationary solutions of Eq.4.5 are found using standard relaxation tech-

nique based on Newton-Kantorovich method and pseudospectral differ-

entiation with Fourier differentiation matrices[124]. We seek for bound

states for different l and Vi values keeping Vr = 1. We recall from chapter

2 that in the linear case(with Vr = 1), the potential supports only the

fundamental bound state and above a critical value of the imaginary part

of the potential, the system ceases to have purely real eigenvalues. This

critical point, also known as the PT -symmetry breaking point or the ex-

ceptional point of the system, in the super-Gaussian potential occurs at,

Vc ≈ lVr/2 + 1/5 for potentials of type A, providing Vc ≈ 0.7 for l = 1,

Vc ≈ 1.3 for l = 2 and Vc ≈ 2.5 for l = 4. For the potential of type B, the

transition occurs at Vc ≥ Vr for l ≥ 2 (l = 1 is analogous to type A), then

undergoing small increases as l gets larger (Vc ≈ 1 for l = 2 and Vc ≈ 1.2

for l = 4).

Let us now study the stationary solutions in the nonlinear case when

nonlinearity is defocusing, i.e., the higher the particle density the higher

the potential is. Typical profiles of the solitons obtained numerically are

depicted in Fig.4.1 for the two different potentials. The complex part of the
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Figure 4.1: Typical solution profile for the two kinds of potential for l =
2 and different Vi values as marked. The symmetric curves represent
the real part (blue curves) and the density distribution (black curves) of
the solution, corresponding to the higher and to the lower amplittude,
respectively. The asymmetric profile represents the imaginary part of the
solution. The shaded area corresponds to the loss (cyan) and gain (yellow)
regions. (Top row) Potential A: The particle number N for the two cases
are 1.29 and 0.05, respectively. (Bottom row) Potential B: The particle
number N for the two cases are 0.71 and 0.08, respectively. It can be seen
that the magnitude of the imaginary part of the solution increases with Vi.
Throughout the chapter the real part of the potential is taken as Vr = 1.



90
Existence, stability and dynamics of PT symmetric bright

soliton in a repulsive BEC

Figure 4.2: Comparison between focusing and defocusing nonlinearity in
the presence of the same PT -symmetric potential V (x) with l = 1. Trans-
verse profiles of the effective potential Veff (solid lines) together with the
PT -symmetric potential VR (dashed lines) for the focusing (top row) and
defocusing (bottom row) nonlinearity; the particle number N is the same
in the two cases and equal to 0.62. Left and right column correspond to
Vi = 0.1 and Vi = 0.6, having a linear eigenvalue µ equal to −0.47 and
−0.29, respectively. The nonlinear eigenvalue µ differs between the focus-
ing and the defocusing case owing to the different overall potential acting
on the condensate.
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potential heavily affects the shape of the nonlinear stationary solutions:

in fact, a time-invariant solution can be found only in the presence of a

balance of the particle flux, the latter clearly depending on the spatial

profile of the particle source-sinks. For a fixed shape of VI(x), an increase

in the amplitude of the imaginary part Vi corresponds to an increase in the

imaginary part of the soliton. Moreover, there is an upper cut-off for µ for

any given pair Vi and l: Nonlinear shape-preserving solutions cease to exist

above this cut-off value. This can be easily seen by analyzing the overall

effective potential Veff = VR±|φ|2, the plus and minus sign corresponding

to defocusing and focusing nonlinearity, respectively. Typical behavior is

plotted in Fig.4.2. For the same particle numberN , a focusing nonlinearity

makes the overall potential Veff deeper than the linear one: in this case,

the eigenvalue µ spans from the linear value dictated by V (x) to minus

infinity for N → ∞. In the defocusing case, the nonlinearity makes the

overall potential Veff shallower than the potential V (x), and the nonlinear

eigenvalues increase from the linear value to zero as N grows up. In fact,

when Veff is positive, wave trapping(i.e., bound states) is not observed.

Particle number N versus the chemical potential µ are plotted in Fig.4.3

for various Vi values. With increasing Vi, the existence region of the

solutions decreases.

Fig.4.4 summarizes the essential features of the fundamental soliton

versus Vi for the defocusing nonlinearity. It reveals that no soliton solution

exists above the PT -breaking point, which is in sharp contrast with the

focusing case(in chapter 2), where a nonlinear bounded solution always

exist, irrespectively of the magnitude of Vi, i.e., even if the corresponding

linear system is in the PT -breaking point. The behavior can be explained

with reference to the transverse flux of particle from the gain to the loss

zone. To ensure a large enough migration of particles, the field must

be trapped enough around the origin. Whereas in the attractive case
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Figure 4.3: Particle number N versus µ existence curve for potentials of
type A (top row) and of type B (bottom row). Each panel corresponds to
a different l as labeled, whereas each curve corresponds to a value of Vi
whose magnitude increases from top to bottom curves. The thicker lines
represent the region where the solutions are unstable.
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Figure 4.4: Overview of the soliton properties versus the PT -symmetric
potential for three different values of l. First row: Nonlinear spectrum
of the condensate versus the magnitude of the imaginary potential Vi,
plotted when the eigenvalue µ is real. Bottom curves are the minimum
µ, thus corresponding to the linear case. Top lines report the maximum
µ achievable for a fixed linear potential. Second (third) row: number
of particles N (beam width wb) corresponding to the first row for the
maximum N supporting self-localization. In every panel the inner curves
correspond to potentials of type B and outer curves to potential of type
A, respectively.
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the nonlinearity helps the confinement and it is always able to avoid the

PT -breaking. In the case of particle repulsion, the field confinement is

contrasted by the nonlinearity.

In the defocusing case, soliton exists inside a finite band of the chem-

ical potential, as explained above(Fig.4.2). The bottom edge of the band

corresponds to the linear case, in turn depending both on l and Vi. Specif-

ically, the larger Vi is owing to the smaller spatial confinement[140]. The

maximum value of µ is usually zero, but it becomes negative in proximity

of the exceptional point due to the appearance of large tails in the soli-

ton profile(Fig.4.2). Moreover, the upper and lower edges of the allowed

spectrum converge as Vi increases(first row in Fig.4.4): for Vi correspond-

ing to the breaking of the PT symmetry, the interval degenerates into a

single point for high l. Oppositely to self-focusing nonlinear media, for a

given µ, the required N decreases with increasing magnitude of the imag-

inary part of the potential, in order to increase the spatial localization

and compensate the flux. This holds true also for the particle number

N corresponding to the maximum achievable µR = Real(µ)(the second

row in Fig.4.4). It has to be noted that, in the limit N → 0, the mean

field approximation is no more valid. The width of the solitons defined as

wb =
√

∫

x2|φ|2dx/
∫

|φ|2dx also shows an increasing behavior with Vi:

in fact, for large Vi the nonlinear solutions do not maintain a Gaussian-

like transverse profile due to the lateral peaks appearing in the effective

potential(second row in Fig.4.2). Finally, the interval of Vi ensuring soli-

ton existence, going from zero to the linear exceptional point, is larger for

potentials of type A than for potentials of type B. When the parameter l

increases, solitons exist for larger values of Vi due to the lower amount of

flux to compensate the inhomogeneous gain/loss.
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4.3 Linear Stability Analysis

We now proceed to address the stability of these stationary solutions upon

small perturbations. For this we make use of the linear stability analy-

sis(LSA) and perturb the stationary solution as

u = [φ+ a(x, t)] exp(−iµt), (4.6)

where a(x, t) = p(x) exp(iλt) + q(x) exp(−iλ∗t), with p(x) and q(x) be-

ing the eigenfunctions of the linearized eigenvalue problem. Substituting

Eq.4.6 in Eq.4.1 and linearizing with respect to a, it yields the eigenvalue

problem

λ

[

p

q∗

]

=

[

L1 − iVI(x) −φ2

(φ∗)2 −L1 − iVI(x)

][

p

q∗

]

, (4.7)

where L1 = µ + 1
2

d2

dx2 − 2 |φ|2 − VR. A solution is linearly stable if Im(λ)

is equal to zero for all λ. The differential operators are discretized us-

ing pseudospectral method based on Fourier differentiation matrices[124].

The eigenvalue problem is implemented in MatLab and the eigenvalues

and eigenfunctions of discretized version of Eq.4.7 are obtained using the

eig function. A grid of [−40, 40] with number of points 1002 was chosen

along x. According to the set of eigenvalues λ found from Eq.4.7, soli-

tons can show three different responses to noise, in turn determining the

stability of the solution. First, if all the eigenvalues are purely real, the

given soliton is linearly stable. Second, if at least one of the eigenval-

ues is purely imaginary, the soliton shape is destroyed in evolution due

to the exponential amplification of the initial noise with time. Finally, if

eigenvalues are complex, i.e., with non-zero real part and the eigenvalues

appear as quartets, oscillatory instability(OI) is observed[184].

LSA predicts stable solutions for both the potentials until Vi = 0.5Vc.

For higher Vi, LSA predicts OI for both the families of potentials. Impor-
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tantly, instability is predicted even for solutions in proximity of the linear

limit, suggesting the presence of numerical artifacts in the LSA results.

Even though the predicted instability values are small(in the range of

10−3), they are not negligible when compared to the numerical accuracy.

The corresponding eigenfunctions spread all over the numerical integra-

tion domain. All of these features suggest that the discretization of the

grid leads to spurious results, the effect being particularly relevant close to

the exceptional points. For example, for potential A, with l = 4, Vi = 2.4

and µ = −0.18, the stationary solution is a low amplitude solution with

N → 0, i.e., the linear limit. Stationary solutions in the linear limit should

be stable, but the LSA predicts an unphysical unstable behavior. Thus,

all the LSA must be checked and compared with numerical simulations

of the original system in the presence of noise. Accordingly, the unstable

regions confirmed together with direct numerical integration of Eq.4.1 are

marked by thicker lines in Fig.4.3. The details of the numerical analysis

are discussed in the next section.

Looking at Fig.4.3, for defocusing nonlinearity solitons supported by

potential B never shows instability for l > 1, whereas for potential A

instability appears for Vi close to Vc and at the edge of the soliton existence

region, i.e., for |µ| → 0.

4.4 Dynamical evolution

We numerically solve Eq.4.1 using the operator splitting technique. For

the generic evolution equation,

ut = Âu+ B̂u, (4.8)

the solution u(t + ∆t) at time t + ∆t can be computed starting from

u(t) by using different splitting methods. In our case, operators Â and

B̂ correspond to the diffusion term and to the overall effective potential
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Veff . For the diffusion term, the Crank-Nicolson scheme was utilized.

According to the chosen splitting method(Lee, Strang or SWSS), the form

solution can be obtained and is given in chapter 1. Due to the non-

Hermitian nature of the system, numerical convergence strongly depends

on the underlying operator splitting method used. For a conservative

system(as well as for Vi � Vc), a simple Lee splitting with a first order

accuracy is sufficient to achieve numerical convergence. As detailed below,

in our case the dynamics of the condensate requires the symmetrically

weighted sequential splitting (SWSS), which is second order accurate. We

also employed the Strang method, encompassing a second order accuracy

as well. Nonetheless, the Strang method fails for Vi values close to the

exceptional point.

To illustrate the differences, we simulate the evolution of the stationary

solution for fixed parameters with the three different methods for the case

of potential A with parameters l = 4 and Vi = 2.4 ≈ Vc. The results are

shown in Fig.4.5. Note that in this case the gain-loss region is in a narrow

region of the solution(the shaded regions). The numerical grid is [-30 30]

with the number of points in the transverse direction nx = 5001 and the

time step ∆t = 1 × 10−4. The evolution is studied until t = 300 with

absorbing boundary condition. For both the Lee and Strang splitting the

numerical noise accumulates on propagation and the solution becomes

unstable after z = 130. For the SWSS case, for the same numerical

parameters, the stationary evolution of the solution survives on longer

distances. To address the stability of the obtained solutions, the stationary

state is perturbed by an additive random Gaussian noise of magnitude

5% of the solution amplitude. The perturbed profile is now taken as the

input for the numerical code with SWSS splitting. The field at short times

smooths out its profile, but at the same time an oscillation between two

different states develop. In other words, an internal mode of the soliton is
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Figure 4.5: First panel shows the profile of the input stationary state
for Potential A with l = 4, Vi = 2.4 and µ = −0.15. The symmetric
curves represent the real part of the solution (blue curve) and the density
distribution (black curve), corresponding to the higher and to the lower
magnitude, respectively. The asymmetric profile (red curve) represents
the imaginary part of the solution. The shaded area corresponds to the
loss (cyan) and gain (yellow) regions. The dynamical evolution of the
stationary solution for different operator splitting method, as marked in
the title, is shown in the other panels. For the same numerical parameters
SWSS is more accurate than the other methods. The unstable dynamics
of the solution in the presence of noise is depicted in the last panel. The
initial solution is perturbed with a 5% Gaussian noise. Here Vc ≈ 2.5
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excited[145].

We carried out a systematic analysis of the evolution dynamics of the

stationary states to compare with the instability predicted from LSA. We

start with the case l = 1 where both the kinds of potentials are equivalent.

In this case the transition from the gain to the loss region is continuous,

i.e., there are no appreciable gaps around x = 0, as depicted by the shaded

area in Fig.4.6. An unstable µ is chosen from the existence curve plotted in

Fig.4.3. The soliton undergoes instability, as shown by the breathing-like

behavior shown in Fig.4.6.

Summarizing, for low Vi, the condensate remains stable upon evo-

lution for time scales much larger than characteristic diffusion range,

td = 0.5w2
b/w⊥, i.e, time required by the condensate to broaden by a

factor of
√
2 with respect to its original size. Finally, with increasing Vi,

the condensate becomes unstable for a narrow range of |µ| for potential A
whereas for potential B the condensate remains stable for all Vi values.

To compare our results with experimental repulsive BEC systems we

consider two different BECs. For a BEC with 87Rb [185] containing about

N0 = 1500 atoms, trapped in a harmonic potential with frequencies ν⊥ =

408Hz, νx = 63Hz, s wave scattering length a = 95a0, a0 is the Bohr

radius, a⊥ = 1.36µm, diffusion time td = 0.1ms for a beam of width wb =

0.8. Hence t = 200 in the normalized frame corresponds to 1.6 × 106td.

Similarly, for repulsive BEC with 87Rb [186], N = 1.5 × 105 and ω⊥ =

2π×425Hz gives td = 0.2ms and hence t = 200 corresponds to 1.7×106td

.

4.5 Summary of the chapter

To conclude, we have addressed the existence and stability of stationary

states of BEC with repulsive nonlinearity, the latter being trapped in a
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Figure 4.6: First panel shows the profile of the input stationary state
for l = 1, Vi = 0.65 and µ = −0.12. The symmetric curves represent
the real part of the solution (blue curve) and the density distribution
(black curve), corresponding to the higher and to the lower magnitude,
respectively. The asymmetric profile (red curve) represents the imaginary
part of the solution. The shaded area corresponds to the loss (cyan) and
gain (yellow) regions. The dynamical evolution of the stationary solution
using SWSSS is depicted with and without the inclusion of noise. The
initial solution is perturbed with a 5% Gaussian noise. Here Vc ≈ 0.65.
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super-Gaussian PT -symmetric potential. We demonstrate that the ex-

istence region greatly depends on the transverse profile of the gain-loss

mechanism. For concreteness, we elaborated the ideas using the Gross-

Pitaevskii equation with repulsive interaction between the atoms of the

condensate, although the model can be applied to any nonlinear system

including optics, acoustics and so on. We considered a cigar shaped con-

densate and studied the interplay among diffusion, repulsive nonlinearity

and gain-loss mechanism on the existence of the matter wave solitons.

The effects of different gain-loss profiles are further analyzed by consid-

ering two different types of transverse profiles for the imaginary part of

the PT -symmetric potential. In contrast with focusing media, where the

nonlinearity is able to transit the system from a PT -broken state (linear

regime) to PT -unbroken state (nonlinear regime), with the defocusing

nonlinearity this transition does not occur. Thus, solitons do not exist

above the linear exceptional point. PT -symmetric matter wave solitons

are found to be always stable when the transverse profile of the imagi-

nary part of the complex potential remains invariant with the change in

the real potential, i.e, potentials of type B. The complex potentials be-

longing to type A, whose imaginary part changes together with the real

part, are found to support unstable solitons in proximity of the excep-

tional point(fixed by the linear potential) and at the edge of the soliton

existence region versus nonlinear excitation.





5
Dynamics of BEC with PT

symmetry beyond mean field
theory.

We have seen in the previous chapters how the gain/loss mechanism(via

modifying the form of trapping potential in to complex form) affects

the properties of BEC by analyzing the ground state solution of the

GPE. In this chapter, we are studying the collective excitations in the

same system, i.e., in quasi 1-D BEC trapped in PT symmetric poten-

tial. Collective excitations represent a phenomenon that occurs within

the macroscopic system consisting of a large number of interacting bosons

and found that it is a successful tool for the investigation of the prop-

erties of BEC. The collective modes can be generated in BEC by dif-

ferent ways, one among them is varying the geometry of the trapping

potential[187–193] and another by the modulation of the s-wave scatter-

ing length via Feshbach resonance[194–199]. The frequencies of collective

excitations in dilute BEC have been measured experimentally for the first

time at JILA[187]. It is noted that experimentally measured excitation

frequencies[187, 189] match with the theoretical predictions[200–204]. Be-

cause of the nonlinearity in the BEC system, collective excitations show

frequency shifts[197, 205–207], mode coupling[205–209], damping[188, 210]

and also collapse and revival of oscillations[205, 211, 212]. Collective exci-

tation interferometry that uses to sense the rotation using collective modes

103
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of an interacting Bose-Einstein condensate[213]. The appearance of 1-D

feature shown by experiments[214–216] on trapped Bose gases at low tem-

perature paved more attention on collective excitations. The collective

excitations of a one-dimensional Bose-Einstein condensate trapped in an

anharmonic potential is studied in[217, 218]. The collective excitations

of low-dimensional Bose-Einstein condensates with two and three body

interactions in anharmonic potentials are detailed in[219]. The transition

temperature, the depletion of the condensate atoms, and the collective ex-

citations of a BEC with two and three-body interactions in an anharmonic

trap at finite temperature are studied in[220].

Since the present thesis mainly concentrates on the effects of com-

plex trapping potential(or we can say the gain/loss mechanism), it is also

worthwhile to notice how the collective phenomena are affected by these

type of complex trapping potential. In addition, we have considered the

beyond mean field correction theory. Most of the theoretical works in

PT - symmetric BEC were detailed in the mean free field limit of GPE

where a pure condensate is assumed. Such an explanation is inadequate

and failed to follow the experimental values[221] when 1) the interaction

with the environment is considered 2) the number density is high and 3)

the dimension of the system is considered[222, 223]. Description of sys-

tems with these additional features and also trapped in PT symmetric

potential needs detailed discussion.

Interactions among the particles of quantum degenerate gases play a

major role in altering their features[24, 123]. These interactions in dilute

gases are mainly binary and treated with an s wave scattering approach

and the s wave scattering length, a characterizes the strength of interac-

tions.

The present chapter deals with the collective excitations in BEC trapped

in a PT symmetric potential with mean field correction terms added to
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GPE. We use a Gaussian type of single well potential[224]. The Gaus-

sian single well potential can be experimentally implemented[96, 97, 132].

We employ variational approach[143, 144, 217] to find out the excitation

frequencies. In order to compare the results in purely real trapping po-

tential and in complex PT potential, we consider two cases: 1) The real

part of the potential is treated first, and then 2) the complex PT sym-

metric potential has been considered. In the former case, the motions of

the center of mass and condensate width are coupled. But in the latter

case, in addition to these, we have to consider the velocity of the center of

mass also which plays a great role in determining the collective excitation

frequencies.

We give a suitable theoretical model for 1-D BEC in a PT symmetric

Gaussian potential in section 5.1. Variational approach to non-Hermitian

system and evolution equations for variational parameters are obtained

in section 5.2. The collective excitation frequencies of the system with

the real part of the trapping potential and with complex PT symmetric

potentials are separately discussed in 5.3, scattering of the soliton by the

PT defect is studied in section 5.4 and finally concluded in 5.5.

5.1 Theoretical Model

In the mean field approximation, the BEC obeys the GPE[24, 123],

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + g |ψ|2 ψ + Vext(R)ψ, (5.1)

with m is the atomic mass, g = 4π~2a/m, a the scattering length, Vext

the trapping potential and R = (X, Y, Z) is the spatial coordinate. Here

the interaction considered is only binary and it can be modified by in-

cluding higher order correction terms. Hence, we start with three dimen-

sional GPE with two, three body interactions and the mean field correction
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terms[225–227],

ı~
∂ψ

∂t
=− ~2

2m
O

2ψ + Vext(R)ψ + εgg0 |ψ|2 ψ + εqq0 |ψ|3 ψ

+ εpp0ψO
2 |ψ|2 + εχχ0 |ψ|4 ψ,

(5.2)

where, εg = εq = εp = εχ = ±1 : −1 for attractive interaction and +1

for repulsive interaction. g0 = 4π~2as/m term corresponds to two body

interaction, q0 = 32g0a
3/2/3

√
π term[221, 228] corresponds to higher-

order correction term to the two-body interaction due to quantum fluctua-

tions(since quantum fluctuations are dramatically enhanced in low dimen-

sional systems), p0 = 8π~2a3s/3m term[229] corresponds to higher-order

correction to the two-body interaction due to shape-dependent confine-

ment and the final term corresponds to three body interaction, strength

of which is calculated using effective field theory and for ultracold BECs,

it is expressed as 39π(4π − 3
√
3)~2a4s/m[230, 231].

When the trapping frequency in the perpendicular direction is very

large compared to that in the x-direction such that the ground state in

the perpendicular direction is hard to achieve; hence all atoms are con-

fined in the ground state in the x-direction. Hence a quasi one dimen-

sional case can be achieved. Assuming that the condensate is harmoni-

cally trapped in the Y and Z directions and with an axial trap potential

U(X) in the X direction, the external trapping potential can be written

as Vext = (1/2)mω2
⊥(Y

2 + Z2) + U(X), with w⊥ being the frequency of

atomic oscillations in the radial direction and U(X) is taken to be a Gaus-

sian trap[224] in such a way that it satisfies PT symmetric conditions in

BEC.

We proceed by assuming, ψ(X, Y, Z, t) = σ(X, t)χ(Y, Z), σ(X, t) =

ψ exp
(

−iCt
~

)

and χ(Y, Z) = (1/a⊥
√
π) exp(−(Y 2 + Z2)/2a2⊥). After sub-

stitution and and using the transformation: t = T/ωX , a⊥ =
√

~/mω⊥,
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x = Xa⊥ and ψ = ψ/
√
2as. we get,

ı
∂ψ

∂T
=− 1

2

∂2ψ

∂X2
+ g0 |ψ|2 ψ + U(X)ψ

+ (εgg̃0 − εpg̃0
′

) |ψ|2 ψ + εq q̃0 |ψ|3 ψ

+ εpp̃0ψ
∂2

∂X2
|ψ|2 + εχχ̃0 |ψ|4 ψ,

(5.3)

with U(X) = αX2+V0 exp(−X2)+iViX exp(−X2), α = ω2
x

2ω2
⊥

, g̃0 = 1, εg =

εq = εp = εχ = ±1, g̃0
′

= 4a2s/3a
2
⊥, q̃0 = 64

√
2as/15πa⊥, p̃0 = 4πa⊥a

2
s/3

and χ̃0 = χ0/12π
2a4⊥a

2
s~ω⊥. The first term in U(X) is negligible compared

with other two terms as α is of the order of 10−4 for the parameters that

we take. The imaginary part in the potential refers to the interaction of

BEC with the local environment and it is responsible for the influx and

outflux of the particles in the system. Fig.5.1 represents the form of the

trapping potential, U(X) that we used in the present work.

To be concrete, taking the parameters of quasi-1D 7Li condensate ob-

tained experimentally[100], consisting ofN0 = 6000 atoms, with a = −3aB

(aB is the Bohr radius), a⊥ = 1.3µm, we have obtained Dco = 0.007 � 1

for wx/w⊥ = 1/100, where Dco = N0awx/a⊥w⊥ is the cross-over constant,

defined such that, if Dco � 1, the dynamics of the condensate can be de-

scribed by Eq.5.3[232, 233]. Hence for quasi-1D attractive 7Li condensate,

g̃0 = −1, g̃0
′

= 2× 10−8, α = 10−4, q̃0 = −2 × 10−4, p̃0 = 2 × 10−25 and

χ̃0 = 10−7.

5.2 Variational approach

We use the variational approach developed for dissipative systems[143,

144] for the PT symmetry and get the solutions of Eq.5.3. The notations

used for further steps are t = T , x = X , g0 = (εg g̃0 − εpg̃0
′

), q0 = εq q̃0,
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Figure 5.1: The symmetric blue curve(solid) represents the real part of
the potential with V0 = −1 and α = −10−4. Dashed, dashed dotted
and dotted (anti-symmetric) curves are for Vi values: −0.2, −0.6 and −1
respectively.
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p0 = εpp̃0 and χ0 = εχχ̃0. Hence the GPE takes the form,

ı
∂ψ

∂t
+

1

2

∂2ψ

∂x2
− [αx2 + V0 exp(−x2)]ψ

− g0 |ψ|2 ψ − q0 |ψ|3 ψ − p0ψ
∂2

∂x2
|ψ|2 − χ0 |ψ|4 ψ

= ıVix exp(−x2)ψ.

(5.4)

We take a trial function of the form[217, 224],

ψ(x, t) = A exp

[

−(x− ζ)2

2ω2
+ ıv(x− ζ) + ıb(x− ζ)2

]

, (5.5)

with A(t), ζ(t), ω(t), v(t) and b(t) are time dependent variational param-

eters representing the amplitude, center of mass location with speed and

chirp respectively.

The Lagrangian for the GPE includes two terms L = Lc + Lnc[144],

with Lc corresponding to conservative part and Lnc, to nonconservative

part. Lnc is responsible for all the dissipative processes in the system

and it is related to the R.H.S of Eq.5.4. Lagrangian for conservative part

(L.H.S of Eq.5.4) is obtained and is written as,

Lc =
ı

2
(ψ
∂ψ∗

∂t
− ψ∗∂ψ

∂t
) +

1

2

∣

∣

∣

∣

∂ψ

∂x

∣

∣

∣

∣

2

+ [αx2 + V0 exp
−x2

] |ψ|2

+
g0
2
|ψ|4 + 2q0

5
|ψ|5 + p0

2
|ψ|2 ∂

2 |ψ|2
∂x2

+
χ0
3

|ψ|6 .
(5.6)

Integrating Eq.5.6 across the whole x axis provides the reduced Lagrangian
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〈Lc〉 =
+∞
∫

−∞

Lcdx,

〈Lc〉 = −Nvdζ
dt

+
N

2

db

dt
ω2

+
N

4ω2
+
Nv2

2
+Nb2ω2 +

Nα

2
(ω2 + 2ζ2)

+
V0N exp

− ζ2

1+ω2

√
1 + ω2

+
g0N

2

2
√
2πω

+
2
√
2q0N

5

2

5
√
5π

3

4ω
3

2

− p0N
2

2
√
2πω3

+
χ0N

3

3
√
3πω2

,

(5.7)

where, N =
∫∞

−∞
|ψ|2 dx =

√
πA2ω and it is related to the total number of

atomsN0 by N = 2|as|N0/a⊥. For the quasi-1D
7Li condensate N0 = 6000

which gives N = 1.5.

The modified Lagrangian equations of motion for the dissipative sys-

tems (which accounts for both Lc and Lnc terms)[143, 144] ,

d

dt

∂ 〈Lc〉
∂(∂η∂t )

− ∂ 〈Lc〉
∂η

= 2Re

∫

Q
∂ψ∗

∂η
dx, (5.8)

with Q = ıVix exp(−x2)ψ.
Computing the variations with respect to the parameters, we obtain

the approximate equations of motions for these parameters. Thus,

dω

dt
= 2bω + Viζκω(1 + ω2)−1(1− 2ω4 − ω2 + 2ζ2ω2), (5.9)

with κ = exp
(

− ζ2

1+ω2

)

/(1 + ω2)5/2. The motion of the center of mass is

given by the time derivative of ζ ,

dζ

dt
= v + Viκω

2(1 + ω2 − 2ζ2), (5.10)

and the variational equations for velocity, v and chirp b are given by,

dv

dt
=− 2αζ + 2κ(V0ζ(1 + ω2)

+ Vi(vζ + vζω2 + ω2b+ ω4b− 2ω2ζ2b)),
(5.11)
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and,

db

dt
=

1

2ω4
− 2b2 − α + V0κ(1 + ω2 − 2ζ2) +

g0N

2
√
2πω3

+
6
√
2q0N

3/2

10
√
5π3/4ω7/2

− 3p0N

2
√
2πω5

+
2χ0N

2

3
√
3πω4

.

(5.12)

Eqs.5.9, 5.10, 5.11 and 5.12 are solved numerically (Runge-Kutta method)

and plotted in Figs.5.2 and 5.3 and have shown the time evolution of ω,

v and ζ for different Vi values. For |V0| = 1 case, the corresponding linear

system shows a PT broken state when |Vi| > |Vc|(where, |Vc| = 0.7)

with Vc known as PT breaking point(obtained in chapter 2). Hence the

following three cases are selected. i.e., 1) |Vi| = 0.2 (far below the PT
breaking), 2) |Vi| = 0.6 (just below the PT breaking) and 3) |Vi| = 1

(above the PT breaking point). From the bottom panel of Fig.5.2, it is

clear that the condensate gets collapsed as it is well above Vc. The mean

field correction terms are negligible for each case plotted here; i.e., for

the time scale (0, 30). As the time evolves(for example t = (70, 90)), the

plots with the mean field correction terms(red dashed curve) show slight

difference from that without correction terms(blue solid curve)(first row

of Fig.5.3). Whereas the loss/gain term coefficient Vi increases, the effects

from imaginary part of the PT potential is more predominant than that

from the mean free field correction terms and hence both curves(red and

blue) are overlapping(second row of Fig.5.3).

5.3 Collective excitations

Frequencies of collective oscillation modes are found in this section. We

first differentiate Eqs.5.9 and 5.10 to get,

d2ζ

dt2
+ 2αζ − 2V0κζ(1 + ω2)− Viκ(1 + ω2)−2µ

− V 2
i κ

2(1 + ω2)−3η = 0

(5.13)
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Figure 5.2: This figure depicts the time evolution of ω, v and ζ for different
Vi values. For the last row |Vi| > |Vc|, where Vc is the PT breaking point
of the system in the linear limit. Blue curves represent the evolution
with out any mean field correction terms. Red dashed lines are that with
correction terms. Both curves are overlapping for the initial range [0, 30]
of time. Initial conditions for the time evolution plot are, V0 = −1, ζ0 = 0,
ω0 = 1, A = 1, v0 = −0.2 and b0 = 0.0021.
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Figure 5.3: This figure depicts the time evolution of ω, v and ζ for different
Vi values for the time scale range (70, 90). Blue curves represents the
evolution with out any mean field correction terms. Red dashed lines are
that with correction terms. Both curves are overlapping in the bottom
row. But, in the top row a slight deviation is observed. Initial conditions
for the time evolution plot are, V0 = −1, ζ0 = 0, ω0 = 1, A = 1, v0 = −0.2
and b0 = 0.0021.
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d2ω

dt2
+ 2αω − 1

ω3
− g0N√

2πω2
− 6

√
2q0N

3/2

5
√
5π3/4ω5/2

+
3p0N√
2πω4

− 4χ0N
2

3
√
3πω3

− 2V0κ(ω + ω3 − 2ζ2ω)− Viκ(1 + ω2)−3µ̃

− V 2
i κ

2(1 + ω2)−4η̃ = 0

(5.14)

with

µ = b(6ω2 + 12ω4 + 6ω6) + v(2− 6ω4 − 4ω6)ζ + b(−12ω2 + 12ω6)ζ2 +

v(4ω2 + 4ω4)ζ3 + (−8bω4)ζ4,

and η = (2ω2−5ω4−31ω6−43ω8−23ω10−4ω12)ζ+(−4ω2+28ω4+

66ω6 + 32ω8 − 2ω10)ζ3 + (−20ω4 − 4ω6 + 16ω8)ζ5 + (−8ω6)ζ7.

µ̃ is given as µ̃ = (4bζ + v− 2vζ2)ω+ (−4vζ4+ 20bζ3+2vζ2− 14bζ +

v)ω3 + (8bζ5 − 4vζ4 + 10vζ2 − 36bζ − 3v)ω5 + (−20bζ3 + 6vζ2 − 14bζ −
5v)ω7 + (16bζ − 2v)ω9,

and η̃ is given by η̃ = (ζ2)ω + (14ζ4 − 13ζ2 + 1)ω3 + (24ζ6 − 16ζ4 −
22ζ2 + 3)ω5 + (40ζ6 − 110ζ4 + 49ζ2)ω7 + (4ζ6 − 76ζ4 + 97ζ2 − 10)ω9 +

(−4ζ4 + 42ζ2 − 15)ω11 + (2ζ2 − 9)ω13 − 2ω15.

Substituting ζ = ζ0 + δζ , ω = ω0 + δω and linearizing the Eqs5.13

and 5.14 around the equilibrium points (ζ0, ω0) we can find the collective

excitation frequencies. The Gaussian (real potential) and PT symmetric

(complex potential) traps are separately discussed and excitation frequen-

cies are found in the following subsections.

5.3.1 Collective excitation in the Gaussian trap

We take Vi = 0 here, now the trap is Gaussian in its form and then Eqs.5.13

and 5.14 are coupled with coupling parameters: ζ , the center of mass po-

sition and ω, the condensate width. The equilibrium points corresponding

to the stationary states of the condensate trapped in Gaussian trap are

given by,

2αζ0 − 2V0κ0ζ0(1 + ω2
0) = 0, (5.15)
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2αω0 −
1

ω3
0

− g0N√
2πω2

0

− 6
√
2q0N

3/2

5
√
5π3/4ω

5/2
0

+
3p0N√
2πω4

0

− 4χ0N
2

3
√
3πω3

0

− 2V0κ0(ω0 + ω3
0 − 2ζ20ω0) = 0.

(5.16)

Hence the stable equilibrium points are obtained as,

ζ0 = 0, (5.17)

and

2αω0 =
1

ω3
0

+
g0N√
2πω2

0

+
6
√
2q0N

3/2

5
√
5π3/4ω

5/2
0

− 3p0N√
2πω4

0

+
4χ0N

2

3
√
3πω3

0

+
2V0ω0

(1 + ω2
0)

3/2
.

(5.18)

Expanding Eqs.5.13 and 5.14 around the stable equilibrium points and

linearizing it, we get,

[

δ
··
ζ

δ
··
ω

]

+

[

m1 0

0 m2

][

δζ

δω

]

= 0, (5.19)

where, the matrix M with elements

m1 = 2α− (2V0/(1 + ω2
0)

3/2) and

m2 = 2α + (3/ω4
0) + (2g0N/

√
2πω3

0) + (3
√
2q0N

3/2/
√
5π3/4ω

7/2
0 ) −

(12p0N/
√
2πω5

0) + (4χ0N
2/
√
3πω4

0) + (2V0(−1+ 3ω4
0 +2ω6

0)/(1+ω2
0)

9/2).

The frequencies of the collective modes are related to the eigenvalues of

the matrix M . Hence solving
∣

∣M − Ω2I
∣

∣= 0, we get,

Ω1 =
√
2

√

α− V0
(

ω2
0 + 1

)

3/2
, (5.20)

Ω2 =

√

I +
60V0ω10

0

(ω2
0+1)9/2

+
90V0ω8

0

(ω2
0+1)9/2

− 30V0ω4
0

(ω2
0+1)9/2

+ 20
√
3χ0ω2

0 + 45
√
15ω2

0

, (5.21)
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where N is substituted with
√
πA2ω0 and A = 1. Also I = 30αω4

0 +

15
√
2g0ω

2
0−90

√
2P0+9

√
10q0ω

2
0. Now we can write the equation of motion

of the center of mass and width of the condensate as, ζ = A sin(Ω1t+ θ1)

and ω = ω0 + B sin(Ω1t + θ2) respectively, with A, B and θ are real

constants.

Figs.5.4 and 5.5 show the behavior of the equilibrium width ω0 and the

collective excitation frequencies Ω1, Ω2 versus the number of atoms in the

condensate, N . Solid blue curves are for V0 = −0.3, dashed black curves

for V0 = −0.7 and dashed dotted red curves are for V0 = −1. Boxes are

corresponding curves with the mean field correction terms included. The

range of N in the plots corresponds to N0 values in the range 400 to 12000.

As the depth of the trap V0 is increased, the excitation frequencies shifted

to higher values(Fig.5.5). Another point is, for each V0, there exists a

threshold value to N , Nc below which condensate width possesses posi-

tive values and above which the width of the condensate shows negative

values meaning that the condensate gets collapsed. It is also observed the

reappearance of width for further increase in N . For example, V0 = −0.3

case, the critical number Nc ≈ 3.2 and above this threshold value, the

equilibrium width, ω0 = −20.5935(negative value for width) and a large

positive value ω0 = 22.0653 for N = 4, as depicted in the inset of Fig.5.4.

It is shown that the threshold in particle number, Nc has a strong depends

on the trap parameter, V0. As depth of the trap V0 increases, the critical

number Nc decreases.

5.3.2 Collective excitation in the PT symmetric trap

In this case, Vi 6= 0 and V0 6= 0, then the Eqs.5.9, 5.10, 5.11 and 5.12 are

coupled, hence we have to analyze both d2v
dt2 and d2b

dt2 along with Eqs.5.13

and 5.14 to get,
d2v

dt2
= η1ζt + η2ωt + η3vt + η4bt, (5.22)
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Figure 5.4: Equilibrium width ω0 versus number of atoms in the conden-
sate, N are depicted here. The range of N in the plots corresponds to N0

values in the range 400 to 12000. Solid lines are for V0 = −0.3, dashed
lines for V0 = −0.7 and dashed doted lines are for V0 = −1. Correspond-
ing boxes represents the mean field corrected values. It is obvious that for
the parameters taken, the mean field correction values are negligible. The
inset plot shows the behavior of ω0 with N > Nc for V0 = −0.3.
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corresponds to N0 values in the range 400 to 12000. Solid lines are for
V0 = −0.3, dashed lines for V0 = −0.7 and dashed doted lines are for
V0 = −1. Corresponding boxes represents the mean field corrected values.
It is obvious that for the parameters taken, the mean field correction values
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d2b

dt2
= −4bbt + µ1ζt + µ2ωt, (5.23)

with ωt, ζt, vt and bt(subscript denotes first derivative with respect to time)

are given by Eqs. 5.9, 5.10, 5.11 and 5.12 respectively. And the expressions

for the coefficients η1, η2, η3, η4, µ1 and µ2 are given in appendix.

By equating the second derivative terms in Eqs. 5.13, 5.14, 5.22 and

5.23 to zero and simultaneously solving the four equations to get the equi-

librium points ζ0, ω0, v0 and b0. These equilibrium points versus N are

plotted in Fig.5.6. The effect of the gain/loss parameter Vi to the system

is very clear that it couples one more internal degree of freedom, namely

the velocity of center of mass v to the position of the center of mass ζ

and width ω. Another result to be pinpointed is that, as Vi increases,

the corresponding v0 has appreciable variation but there is no variation in

the equilibrium width ω0. This variation of v0 represents a net motion of

particles from the gain to loss regions, as required to conserve the overall

particle number in the presence of Vi[141].

Next we expand Eqs. 5.13, 5.14, 5.22 and 5.23 around these equilibrium

points and by linearizing, we will get the matrix equation as,
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= 0. (5.24)

Matrix elements (m1 to m16) are too long to be included in this thesis.

Solving |M −Ω2I|= 0 numerically, we get the frequencies Ω1, Ω2, Ω3 and

Ω4 and their dependence on N are depicted in Fig.5.7.

Another main result is that the threshold number Nc for a particular

V0 value gets hiked as |Vi| increases. For V0 = −1 and Vi = 0, the Nc is

obtained as Nc = 2.5, then we have checked Nc for |Vi| = 0.2 and found

that Nc = 2.5 itself. When |Vi| = 0.6 (just below PT breaking), Nc is
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hiked to Nc = 3 and for |Vi| = 1 also Nc is kept at this hiked value.

Red curves in Fig.5.5 are for parameter values |V0| = 1 and Vi = 0, and

blue, black, red curves in Fig.5.7 correspond to |V0| = 1 with different

Vi values. The hike in the value of Nc is observed as Vi approaches its

critical value |Vc| = 0.7. This hike in the critical number of atoms Nc (as

|Vi| is increased to and just below the exceptional point Vc) may be the

reason for quasi stability of the condensate below the PT breaking point

as noted in chapter 2.

Fig.5.7 represents the collective excitation frequencies versus N plots

for different Vi values. It is noted that, in this range of N values and

for the parameters taken, the mean field corrections are negligible. For

example, without any correction terms, i.e., α = −10−4, g0 = −1, q0 =

0, p0 = 0, χ0 = 0, V0 = −1 and Vi = −0.6 the values obtained for

[N, ζ0, ω0, v0, b0,Ω1,Ω2,Ω3,Ω4] are [1.6, −1.38×10−30, 0.84799, 0.191419,

6.31 × 10−30, 0.983529, 0.984821, 1.87435, 2.13481]. When correction

terms are included, i.e., α = −10−4, g̃0
′

=−2 × 10−8, q0 = −2 × 10−4,

p0 = 2×10−25 and χ0 = 0, then the quantities become [1.6, −1.97×10−31,

0.847934,0.19141, 2.761×10−30, 0.983572, 0.984864, 1.87451, 2.13508]. As

in the previous case (Vi = 0), here also, the sudden collapse of condensate

occurs above Nc. The condensate restore its width with high positive

value for the further increase in N .

Our studies on collective excitations in PT symmetric systems are

dealt in general and have to be extended in the following respects to get

additional new physics.

a) Some authors claim the stability of the solutions in deep potential

than in shallow potentials[131, 234]. Hence, our studies(in which the depth

of the trapping potential is small) have to be extended for checking the

results with deep real part of the PT symmetric potential. We expect that

when the complex part of the PT symmetric potential which is responsible
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Figure 5.7: Collective excitation frequencies Ω1, Ω2, Ω3 and Ω4 versus
number of atoms in the condensate N are depicted here. The range of N
in the plots corresponds to N0 values in the range 4000 to 12000. For all
panels V0 = −1. Solid lines are for Vi = −0.2, dashed lines for Vi = −0.6
and dashed doted lines are for Vi = −1. Corresponding boxes represents
the mean field corrected values.
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to instabilities is dominated by the real part(applying a deep real part of

the PT symmetric potential), the condensate stabilizes.

b) The mean filed correction terms(with the given set of parameter

values)could not neither arrest the collapse of the condensate nor sup-

press the reappearance of the excitation frequencies even in the absence

of imaginary part of the complex potential. Hence we have to work more

on the region of parameters where the corrections terms start to play on

the excitation frequencies.

5.4 Scattering by the PT defect

We have studied numerically the scattering of solitons by PT defect in

chapter 3 with the real part of the trapping potential is taken to be of

the form V A
I (x) = −Vix2l−1 exp(−x2l), l = 2. There we have seen that

the unidirectional properties shown by the system depends on both the

angle of incidence and the depth of the imaginary part of the trapping

potential. In this section we have tried to solve the scattering problem via

variational approach for slightly different form of trapping potential, i.e.,

l = 1 case. The main attraction of this study is to look for the effect of

the beyond mean filed correction terms on the scattering process.

The variational approach with trial function given in Eq.5.5 is apt to

explain the scattering of soliton by the PT defect qualitatively. Here the

defect is a nonlinear effective potential created by the combined effects

of PT symmetric potential and nonlinear interaction terms in Eq.5.4 and

this PT defect is kept at ζ = 0 position. When a soliton (centered far away

from the defect, i.e., ζ >> 0) approaches the defect and allowed to interact

with the defect for a sufficiently long interval of time, then depending on

the value of Vi the following situations may occur; reflection, transmission

and trapping of the soliton by the defect. It can be demonstrated by
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solving numerically the variational Eqs.5.9, 5.10, 5.11 and 5.12 by Runge-

Kutta method.

The soliton is made to approach the defect from ζ = 10. The scattering

properties shown by this Gaussian PT defect is illustrated in Fig.5.8. The

different regimes of scattering are depicted by keeping the real part of the

defect potential, V0 = −0.3 as constant and varied the imaginary part Vi

of the PT defect.The parameter values are c0 = −1, c1 = c2 = c3 = 0,

α = −10−4. Three regimes: (a) reflection (solid black curve) with Vi =

−0.05 (b) transmission (solid green curve) with Vi = −0.4 (c) trapping

(solid blue curve) with Vi = −0.7 are obtained. The initial conditions

used are, ζ0 = 10, ω0 = 1, A = 1, v0 = −0.2 and b0 = 0.0021. Thus

we have found the three regimes of the scattering for present system by

varying the gain/loss coefficient Vi.

For the same parameters with the launching position shifted to ζ =

−10 is shown in Fig.5.9. We can see that the scattering regimes in this case

are not matching with the previous case (ζ = 10); i.e., it depends on the

launching position of incoming soliton (we got this type of unidirectional

behavior in chapter 3 also).

Now we add the mean field correction terms and examine how these

terms affect the scattering dynamics. For this, the trapping case with Vi =

−0.7 and V0 = −0.3 in the Fig.5.8(solid blue curve) is considered again

to find the effects of the mean field correction and three body interaction

terms and plotted the results in Fig.5.10. Here, solid blue curve represents

the same case as that in the Fig.5.8(without any correction terms). The

dashed red curve represents the time evolution of ζ with only the three

body interaction term added, c3 = 10−7. The dashed doted line(Cyan)

represents that with the mean field correction terms added, c0 = −1−2×
10−8, c1 = −2 × 10−4 and c2 = 2 × 10−25. It is observed that, when the

three-body interaction term is added, the trapped soliton is propagated
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Figure 5.8: Time evolution of the center of mass: V0 is kept at V0 = −0.3
and Vi values are varied. The mean field correction terms are absent here.
Figure consists of three cases, (a) reflection (solid black curve) with Vi =
−0.05 (b) transmission (solid green curve) with Vi = −0.4 (c) trapping
with Vi = −0.7. The initial conditions used are, ζ0 = 10, ω0 = 1, A = 1,
v0 = −0.2 and b0 = 0.0021.
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Figure 5.9: Time evolution of the center of mass: V0 is kept at V0 = −0.3
and Vi values are varied. All parameters are same as that in Fig. 5.8
except that the soliton has initially launched from loss side.
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Figure 5.10: Time evolution of the center of mass: The trapping case
with Vi = −0.7, V0 = −0.3 and c0 = −1 in the Fig.5.8 (solid blue lines)
is considered with the mean correction and three body interaction terms
added to it. The initial conditions used are, ζ0 = 10, ω0 = 1, A = 1,
v0 = −0.2 and b0 = 0.0021. Dashed red curve represents the time evolution
of ζ with three body interaction term alone is added i.e., c3 = 10−7.
Dashed doted lines (Cyan) represents that with the mean field correction
terms are added, c0 = −1− 2× 10−8, c1 = −2× 10−4 and c2 = 2× 10−25.
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for less time (compared to that with only two body interaction is present)

and gets transmitted. Similarly for the addition of mean field correction

terms, the trapping case is almost flipped in to a transmission regime.

5.5 Summary of the chapter

We have investigated collective excitations of a 1-D BEC trapped in a

Gaussian PT symmetric potential well by solving the time-dependent

GPE with the mean field correction terms(quantum fluctuations and ef-

fective range expansion). It is noted that the effects from these correction

terms are negligible when we consider high values for gain/loss coeffi-

cient. Variational approach for dissipative systems are employed for ana-

lyzing the system. The equilibrium values for variational parameters are

found out and excitation frequencies are plotted for cases with and with-

out loss/gain coefficient term. If only the real part of the PT symmetric

trapping potential is present, the expressions for collective excitation fre-

quencies show that only the center of mass motion and the width of the

condensate are coupled together and the excitation frequencies depend on

the depth of the real potential. For the PT symmetric trapping potential,

the motion of the center of mass, velocity of center of mass and width

are coupled together to get the collective excitations of the system. i.e.,

addition of gain/loss terms(imaginary part of the PT symmetric trapping

potential) to the system affects it in such a way that the velocity of the

motion of the center of mass of the condensate is varied. This results in a

net motion of particles from the gain to loss regions, as required to con-

serve the overall particle number in the presence of this imaginary part

of the potential. The critical number Nc of the condensate (for a particu-

lar depth V0 of the real part of the potential) gets hiked as the loss/gain

coefficient Vi approaches its critical point Vc.
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We have also investigated the scattering of soliton by the PT defect in

a 1-D BEC. The scattering dynamics is influenced by varying the imagi-

nary part(gain/loss profile) of the PT defect. It is noted that there is no

noticeable effect from these correction terms for reflection and transmis-

sion processes, while the motion of the center of mass position is affected

by the mean field correction terms once it gets trapped in the defect, i.e.,

in one case of the initial conditions, when the soliton is trapped and oscil-

lates in the well, it is found that the correction terms introduce instabilities

leading to an ejection of the soliton.

In order to make this work significant, we should have to perform the

numerical simulations and compare it with that obtained from variational

analysis. Also we have to carefully check the role of the real part of the PT
symmetric potential since applying a deep real part of the PT symmetric

potential, the condensate is found to stable over collapse. The aforesaid

works are planned for future studies.





6
Conclusions and Future scopes

PT symmetry has found applications in several areas spanning from PT -

symmetric quantum oscillators[52] to linear [71, 77] and nonlinear optics

[141, 142], from microwave cavities[76] and electronics[235, 236] to quan-

tum field theory[237], engineering even the loss of the system makes the

PT symmetric studies relevant in the current science.

In this thesis, we have mainly studied the interplay between the fo-

cusing/defocusing non-linearity with the PT symmetry in 1-D BEC. We

have also addressed how the matter wave solitons behave when gain/loss

mechanisms are varied. The effects of the transverse profile of gain or loss

on the existence of solitons have been studied by considering two different

kinds of localized photonic potentials differing in their imaginary part.

For the attractive condensates(focusing nonlinearity), it is found that

nonlinearity is able to reestablish the PT symmetry which were broken

in the absence of the Kerr effect. We have observed that solitons be-

come strongly unstable when the underlying system is beyond the linear

exceptional point. A much smaller instability is also found even below

the exceptional point, resulting in an exponential amplification which is

contrasting with the available literature. In the defocusig case, the non-

linearity is unable to transit the system from a PT broken state(linear

regime) to PT unbroken state(nonlinear regime). Thus, solitons do not

exist above the linear exceptional point. PT symmetric matter wave soli-

tons are found to be always stable when the transverse profile of the imag-

131
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inary part of the complex potential remains invariant with the change in

the real potential. The complex potentials whose imaginary part changes

together with the real part, support unstable solitons in proximity of the

exceptional point(fixed by the linear potential) and at the edge of the

soliton existence region versus nonlinear excitation. Our findings can be

applied to the investigation of BEC in open systems(exchanging energy

with the environment), for example in the design of matter wave ’laser’

operating near the PT -breaking point [100, 238].

We have also analyzed the scattering of soliton by a PT -symmetric

defect and it is obtained that the scattering properties depend on the

magnitude of the imaginary part of the potential and can be tuned to

reciprocal to non-reciprocal behavior by tuning the angle of incidence.

Results are promising for PT diode devices in information handling [80]

and in matter wave interferometry [239, 240].

Another topic of the study was the dynamics of BEC with PT sym-

metry beyond mean field theory. The scattering dynamics is greatly influ-

enced by varying the imaginary part(gain/loss profile) of the PT defect.

It is noted that no noticeable effect from these correction terms for reflec-

tion and transmission processes, while the motion of the center of mass

position is greatly affected by the mean field correction terms once it gets

trapped in the defect. We have also investigated the collective excitations

of a 1-D BEC trapped in a Gaussian PT symmetric potential well. If

only the real part of the PT symmetric trapping potential is present, the

expressions for collective excitation frequencies show that only the cen-

ter of mass motion and the width of the condensate are coupled together

and the excitation frequencies depend on the depth of the real potential.

Addition of gain/loss terms to the system affects it in such a way that

the velocity of the motion of the center of mass of the condensate is var-

ied. The critical number Nc of the condensate(for a particular depth V0
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of the real part of the potential) gets hiked as the loss/gain coefficient Vi

approaches its critical point Vc.

6.1 Future scopes

The potential types seen in BEC like monopole and dipole interactions

also satisfy the PT symmetric conditions. Hence PT symmetric studies

can also be done in the context of monopolar and dipolar BEC. The PT
symmetric studies can be extended to vortex solutions in a rotating Bose-

Einstein condensate. Other topics of interest are the modulational insta-

bility and spin-orbit coupling in PT symmetric systems. The studies on

general class of pseudo-Hermitian operators with special symmetries[237]

are promising area to widen the concepts related to PT symmetry. These

are some of the areas proposed for future studies.
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[64] Rüdiger Fortanier, Dennis Dast, Daniel Haag, Holger Cartarius, Jörg

Main, Günter Wunner, and Robin Gutöhrlein. Dipolar Bose-Einstein
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[122] S Chávez Cerda, S. B. Cavalcanti, and J. M. Hickmann. A vari-

ational approach of nonlinear dissipative pulse propagation. EPJ D-

Atomic, Molecular, Optical and Plasma Physics, 1(3):313–316, 1998.

[123] Lev. P. Pitaevskii and Sandro Stringari. Bose-Einstein Condensa-

tion. Oxford University Press, New York, 2003.

[124] Lloyd N. Trefethen. Spectral Methods in MATLAB. SIAM, Philadel-

phia, 2000.

[125] Claudio Canuto, M Yousuff Hussaini, Alfio Maria Quarteroni,

A Thomas Jr, et al. Spectral methods in fluid dynamics. Springer

Science & Business Media, 2012.

[126] David Gottlieb and Steven A Orszag. Numerical analysis of spectral

methods: theory and applications. SIAM, 1977.

[127] Nimrod Moiseyev. Non-Hermitian quantum mechanics. Cambridge

University Press, 2011.

[128] Shachar Klaiman, Uwe Günther, and Nimrod Moiseyev. Visualiza-

tion of branch points in PT-symmetric waveguides. Phys. Rev. Lett.,

101:080402, Aug 2008.



150 BIBLIOGRAPHY

[129] Holger Cartarius and Günter Wunner. Model of a PT-symmetric

Bose-Einstein condensate in a δ-function double-well potential. Phys.

Rev. A, 86:013612, Jul 2012.

[130] Holger Cartarius, Daniel Haag, Dennis Dast, and Gnter Wunner.

Nonlinear Schrdinger equation for a PT -symmetric delta-function dou-

ble well. J. Phy. A: Math. Theor., 45(44):444008, 2012.

[131] Sumei Hu, Xuekai Ma, Daquan Lu, Zhenjun Yang, Yizhou Zheng,

and Wei Hu. Solitons supported by complex PT symmetric Gaussian

potentials. Phys. Rev. A, 84:043818, Oct 2011.

[132] Rudolf Grimm, Matthias Weidemüller, and Yurii B Ovchinnikov.

Optical dipole traps for neutral atoms. Advances in atomic, molecular,

and optical physics, 42:95–170, 2000.
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[144] S. Chávez Cerda, S.B. Cavalcanti, and J.M. Hickmann. A variational

approach of nonlinear dissipative pulse propagation. EPJ D- Atomic,

Molecular, Optical and Plasma Physics, 1(3):313–316, 1998.

[145] Y. S. Kivshar and G. P. Agrawal. Optical Solitons. Academic Press,

San Diego, CA, 2003.



152 BIBLIOGRAPHY

[146] K.G. Makris, R. El-Ganainy, D.N. Christodoulides, and Z.H. Mus-

slimani. Beam dynamics in pt symmetric optical lattices. Phys. Rev.

Lett., 100:103904, 2008.

[147] Lev Davidovich Landau, Evgenii Mikhailovich Lifshitz, JB Sykes,

John Stewart Bell, and ME Rose. Quantum mechanics, non-relativistic

theory, volume 11. 1958.

[148] Albert Messiah. Quantum mechanics, v. 2. North-Holland, 1961.

[149] Jun John Sakurai and Jim Napolitano. Modern quantum mechanics.

Addison-Wesley, 2011.

[150] Leonard Sidney Rodberg and Raphael Morton Thaler. Introduction

to the quantum theory of scattering. Academic Press, 1967.

[151] Ping Sheng. Introduction to wave scattering, localization and meso-

scopic phenomena, volume 88. Springer Science & Business Media,

2006.

[152] R. W. Boyd. Nonlinear Optics. Academic Press, Boston, 1992.

[153] Yuri S Kivshar and Boris A Malomed. Dynamics of solitons in nearly

integrable systems. Rev. Mod. Phys., 61(4):763, 1989.

[154] I. M. Lifshitz and A. M. Kosevich. The dynamics of a crystal lattice

with defects. Rep. Prog. Phys., 29(1):217, 1966.

[155] Roy H Goodman and Richard Haberman. Chaotic scattering and

the n-bounce resonance in solitary-wave interactions. Phys. Rev. Lett.,

98(10):104103, 2007.

[156] T. P. Billam, S. L. Cornish, and S. A. Gardiner. Realizing bright

matter wave soliton collisions with controlled relative phase. Phy. Rev.

A, 83(4):041602, 2011.



BIBLIOGRAPHY 153

[157] Alexander D Cronin, Jörg Schmiedmayer, and David E Pritchard.

Optics and interferometry with atoms and molecules. Rev. Mod. Phys.,

81(3):1051, 2009.

[158] S. L. Cornish, N. G. Parker, A. M. Martin, T. E. Judd, R. G. Scott,

T. M. Fromhold, and C. S. Adams. Quantum reflection of bright matter-

wave solitons. Physica D: Nonlinear Phenomena, 238(15):1299–1305,

2009.

[159] Hidetsugu Sakaguchi and Boris A Malomed. Matter-wave soliton in-

terferometer based on a nonlinear splitter. New J. Phys., 18(2):025020,

2016.

[160] Xiang D Cao and Boris A Malomed. Soliton-defect collisions in the

nonlinear Schrödinger equation. Phy. Lett. A, 206(3):177–182, 1995.

[161] V. V. Konotop, V́ıctor M Pérez-Garćıa, Yi-Fa Tang, and Luis
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