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1. Censoring

Censoring

Quite useful technique in reliability life testing.

Possible termination of experiment before failing all the
experimental units.

Lower cost in terms of money and time than full experiment.

Survival experimental units can be used for further experiments.
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Type-I Censoring

n : Number of items put on the test.

τ : Pre-fixed time.

τ ∗ = τ : Experiment termination time.

n❥
❄

0 τ

❥
❄
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t1:n t2:n · · · · · · · · · tN:n

Number of failures is a random variable.

Advantage : Pre-fixed experiment termination time.

Disadvantage : Very few failures, even no failure, before time τ .
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Duration of experiment is a random variable.



1. Censoring

Type-II Censoring

n : Number of items put on the test.

r (≤ n) : Pre-fixed integer.

τ ∗ = tr :n : Experiment termination time.

n❥
❄

0
t1:n t2:n · · · · · · · · · tr :n

❥
❄

τ∗

Duration of experiment is a random variable.

Advantage : Pre-fixed number of failures.

Disadvantage : Long experimental duration.
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1. Censoring

Other Censoring Schemes

Hybrid Censoring Schemes: Hybridization of Type-I and Type-II
censoring.

Progressive Censoring Schemes: Allow to remove items from the
test before completion of the experiment.

Progressive Hybrid Censoring Schemes: Mixture of hybrid and
progressive censoring schemes.

All the censoring schemes suffer form the disadvantage of either
Type-I or Type-II censoring scheme.
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2. Step-stress Life Tests

Accelerated Life Tests

Useful experimental technique to obtain data on the lifetime
distribution of highly reliable products.

Put a sample of products on the test in some extreme
environmental conditions to get early failures.

Need to extrapolate to estimate the lifetime distribution under
the normal condition.



2. Step-stress Life Tests

Step-stress Life Tests

A particular type of accelerated life test.

Allows the experimenter to change the stress levels during the
life-testing experiments.

n : Number of items put on the test.

s1, s2 : Stress levels (Simple SSLT).

τ : Stress changing time (Pre-fixed).

n❥
✻
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2. Step-stress Life Tests

Step-stress Life Tests

Generalization

n : No of items placed on the test.
s1, s2, s3, . . . , sm+1 : Stress levels.
τ1 < τ2 < . . . < τm : Stress changing times (Pre-fixed).

n❥
✻

0 τ1

✛ s1 ✲

. . . . . . . . . τm−1

✛ sm ✲

τm

✛ sm+1 ✲

t1:n . . . tN1:n tNm−1+1:n. . .
tNm:n tNm+1:n. . .

tn:n



2. Step-stress Life Tests

Models

Consider a simple SSLT, i.e., only two stress levels, s1 and s2,
present.

Fi(.) : CDF of lifetime of an item under the stress level si ,
i = 1, 2 . . . , m + 1.

F (.) : CDF of life time of an item under the step-stress pattern.

Model needed to relate F (·) to Fi(·), i = 1, 2, . . . , m + 1.

Popular models

Cumulative exposure model.
Tampered failure rate model.
Khamis-Higgins model.



2. Step-stress Life Tests

Cumulative Exposure Model

First proposed by Seydyakin (1966)4 and later studied by
Nelson(1980)5.

Fi(·) is the CDF of lifetime of an item under the stress level si ,
i = 1, 2, . . . ,m + 1.

F (·) is the CDF of lifetime of an item under the step-stress
pattern.

4Seydyakin, N. M. (1966) On one physical principle in reliability theory, Technical
Cybernatics, 3:80-87.

5Nelson (1980) Accelerated life testing: step-stress models and data analysis, IEEE
Transactions on Reliability, 141:288-2838.



2. Step-stress Life Tests

Cumulative Exposure Model

The CEM assumptions are:

The remaining life of an item depends only on the current
cumulative fraction accumulated, regardless how the fraction
accumulated.

If the stress level is fixed, the survivors will fail according to the
distribution function of that stress level but starting at previous
accumulated fraction failed.



2. Step-stress Life Tests

Cumulative Exposure Model
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(b) CDF under CEM

Figure: Example of CEM

Here F1(·) and F2(·) are CDF of Exp(14) and Exp(1) respectively.



2. Step-stress Life Tests

Cumulative Exposure Model

Under the assumptions of CEM, the CDF of the lifetime is given by

FCEM(t) = Fi(t − τi−1 + hi−1) if τi−1 ≤ t < τi , i = 1, 2, . . . , m + 1,

where τ0 = 0, τm+1 = ∞, h0 = 0 and hi , i = 1, 2, . . . , m, is the
solution of

Fi+1(hi) = Fi(τi − τi−1 + hi−1).



2. Step-stress Life Tests

Tampered Failure Rate Model

Proposed by Bhattacharyya and Soejoeti (1989)1 for simple
SSLT.

Generalized by Madi (1993)2 for multiple step SSLT.

1Bhattacharyya, G. K. and Soejoeti, Z. (1989), A tampered failure
rate model for step-stress accelerated life test, Communication in

Statistics - Theory and Methods, 18:1627–1643.
2Madi, M. T. (1993), Multiple step-stress accelerated life test: the

tampered failure rate model, Communication in Statistics - Theory and

Methods, 22:2631–2639.



2. Step-stress Life Tests

Tampered Failure Rate Model

Proposed by Bhattacharyya and Soejoeti (1989)1 for simple
SSLT.

Generalized by Madi (1993)2 for multiple step SSLT.

Effect of switching the stress level is to multiply the failure rate
of the first stress level by a positive constant.

λTFRM(t) =

(
i−1∏

j=0

αj

)
λ(t) if τi−1 ≤ t < τi , i = 1, 2, . . . , m + 1.

1Bhattacharyya, G. K. and Soejoeti, Z. (1989), A tampered failure
rate model for step-stress accelerated life test, Communication in

Statistics - Theory and Methods, 18:1627–1643.
2Madi, M. T. (1993), Multiple step-stress accelerated life test: the

tampered failure rate model, Communication in Statistics - Theory and

Methods, 22:2631–2639.
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Khamis-Higgins Model

Proposed by Khamis and Higgins (1998)1 for Weibull lifetimes.

1Khamis, I. H. and Higgins, J. J. (1998), A new model for step-stress
testing, IEEE Transactions on Reliability, 47:131–134.

2Xu, H. and Tang, Y. (2003), Commentary: The Khamis/Higgins
model, IEEE Transactions on Reliability, 52:4–6.
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Khamis-Higgins Model

Proposed by Khamis and Higgins (1998)1 for Weibull lifetimes.

Under KHM, the CDF is given by

FKHM(t) =1− e−λi (t
β
−τ

β
i−1)−

∑i−1
j=1 λj (τ

β
j
−τ

β
j−1) if τi−1 ≤ t < τi .
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2Xu, H. and Tang, Y. (2003), Commentary: The Khamis/Higgins
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2. Step-stress Life Tests

Khamis-Higgins Model

Proposed by Khamis and Higgins (1998)1 for Weibull lifetimes.

Under KHM, the CDF is given by

FKHM(t) =1− e−λi (t
β
−τ

β
i−1)−

∑i−1
j=1 λj (τ

β
j
−τ

β
j−1) if τi−1 ≤ t < τi .

Xu and Tang (2003)2 showed that KHM is a particular case of
TFRM.

1Khamis, I. H. and Higgins, J. J. (1998), A new model for step-stress
testing, IEEE Transactions on Reliability, 47:131–134.

2Xu, H. and Tang, Y. (2003), Commentary: The Khamis/Higgins
model, IEEE Transactions on Reliability, 52:4–6.



2. Step-stress Life Tests

Advantages

By increasing the stress level, reasonable number of failure can
be obtained.

Experimental time is reduced.



2. Step-stress Life Tests

Disadvantages

Exact relationship between the stress level and lifetime of the
product is needed.

Model must take into account the effect of stress accumulated.

Model becomes more complicated.
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Literature Review

Balakrishnan et al. (2007)1.

◮ Simple step-stress life test.
◮ Type-II censoring.
◮ Exponentially distributed failure times.
◮ Cumulative exposure model.

1Balakrishnan, N., Kundu, D., Ng, H. K. T., and Kannan, N. Point and interval
estimation for a simple step-stress model with Type-II censoring. Journal of Quality

Technology, 9:35–47, 2007.
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◮ fG(·) is the PDF of Gamma distribution.
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Model Description

n : Number of item put on the test.

s1, s2 : Stress levels.

τ1 : Stress changing time (Pre-fixed).

Type-I censored data.

τ2(> τ1) : Censoring time (Pre-fixed).
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4. Model Description and Prior Assumptions Model Description

Model Description

n : Number of item put on the test.

s1, s2 : Stress levels.

τ1 : Stress changing time (Pre-fixed).

Type-I censored data.

τ2(> τ1) : Censoring time (Pre-fixed).

Life time at stress level si , i = 1, 2, has a Weibull(β, λi)
distribution, i.e., its CDF is given by

Fi(t) =

{
1− e−λi t

β

if t > 0

0 otherwise.
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β
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if t ≥ τ1.
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4. Model Description and Prior Assumptions Model Description

Model Description

Under CEM, the CDF is given by

FCEM(t) =





0 if t < 0

1− e−λ1t
β

if 0 ≤ t < τ1

1− e
−λ2

(
t−τ1+

λ1
λ2

τ1

)β

if t ≥ τ1.

Under KHM, the CDF is given by

FKHM(t) =





0 if t < 0

1− e−λ1t
β

if 0 ≤ t < τ1

1− e−λ2(t
β
−τ

β
1 )−λ1τ

β
1 if τ1 < t < ∞.

KHM is mathematically tractable than CEM.

It is difficult to distinguish between CEM and KHM.
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λ1 ∼ Gamma(a1, b1).

λ2 ∼ Gamma(a2, b2).

β ∼ Gamma(a3, b3).

λ1, λ2, and β are independently distributed.
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Main aim of SSLT is to get rapid failure by imposing extreme
environmental condition.

Plausible to assume that the mean life time at stress level s2 is
smaller than that at stress level s1.

λ1 < λ2.
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4. Model Description and Prior Assumptions Prior Assumptions

Prior Assumptions II

Main aim of SSLT is to get rapid failure by imposing extreme
environmental condition.

Plausible to assume that the mean life time at stress level s2 is
smaller than that at stress level s1.

λ1 < λ2.

Reparameterize λ1 = αλ2 with 0 < α < 1.

λ2 ∼ Gamma(a2, b2).

β ∼ Gamma(a3, b3).

α ∼ Beta(a4, b4).

α, β, and λ2 are independently distributed.
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Motivation

Weibull distribution is quite flexible and fits a large range of
lifetime data.



4. Model Description and Prior Assumptions Motivation

Motivation

Weibull distribution is quite flexible and fits a large range of
lifetime data.

MLEs of the model parameters do not have explicit form and all
inferences rely on asymptotic distributions.
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5. Posterior Analysis Posterior Analysis

Posterior Distribution under Prior Assumptions I

For β > 0, λ1 > 0, and λ2 > 0

l1(β, λ1, λ2 |Data) ∝ βn∗+a3−1λ
n∗1+a1−1
1 λ

n∗2+a2−1
2

× e−(b3−c1)β−λ1A1(β)−λ2A2(β),

n∗ = n∗1 + n∗2, c1 =

n∗∑

j=1

ln tj :n,

A1(β) = b1 +

n∗1∑

j=1

t
β
j :n + (n − n∗1)τ

β
1 ,

A2(β) = b2 +
n∗∑

j=n∗1+1

(tβj :n − τβ1 ) + (n − n∗)(τβ2 − τβ1 ).
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For β > 0, λ1 > 0, and λ2 > 0

l1(β, λ1, λ2 |Data) ∝ βn∗+a3−1λ
n∗1+a1−1
1 λ

n∗2+a2−1
2

× e−(b3−c1)β−λ1A1(β)−λ2A2(β),

n∗ = n∗1 + n∗2, c1 =

n∗∑

j=1

ln tj :n,

A1(β) = b1 +

n∗1∑

j=1

t
β
j :n + (n − n∗1)τ

β
1 ,
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For 0 < α < 1, β > 0, and λ2 > 0

l2(α, β, λ2 |Data) ∝ αn∗1+a4−1(1− α)b4−1βn∗+a3−1λn∗+a2−1
2

× e−(b3−c1)β−λ2(αD1(β)+D2(β)+b2),

n∗ = n∗1 + n∗2, c1 =

n∗∑

j=1

ln tj :n,
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β
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β
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5. Posterior Analysis Posterior Analysis

Bayes Estimate and Credible Interval

Squared error loss function.

gB(β, λ1, λ2) =

∫ ∫ ∫
g(β, λ1, 2)l1(β, λ1, λ2)dλ2dλ1dα.

Bayes estimate of g(β, λ1, λ2) cannot be obtained explicitly in
general.

An algorithm based on importance sampling is proposed to
compute ĝB(β, λ1, λ2) and to construct CRI for g(β, λ1, λ2) in
both the cases.



5. Posterior Analysis Posterior Analysis

Bayes Estimate and Credible Interval

l1(β, λ1, λ2 | Data) = l3(λ1, | β, Data)× l4(λ2, | β, Data)

× l5(β |Data),

where

l3(λ1, | β, Data) =
{A1(β)}

n∗1+a1

Γ(n∗1 + a1)
λ
n∗1+a1−1
1 e−λ1 A1(β) if λ1 > 0,

l4(λ2, | β, Data) =
{A2(β)}

n∗2+a2

Γ(n∗2 + a2)
λ
n∗2+a2−1
2 e−λ2 A2(β) if λ2 > 0,

l5(β |Data) = c2
βn∗+a3−1e−(b3−c1)β

{A1(β)}n
∗

1+a1{A2(β)}n
∗

2+a2
if β > 0.
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6. Data Analysis

Illustrative Example

An artificial data is generated from KHM with n = 40, β = 2,
λ1 = 1/1.2 ⋍ 0.833, λ2 = 1/4.5 ⋍ 2.222, and τ1 = 0.6.

τ2 = 0.8.

a1 = b1 = a2 = b2 = a3 = b3 = 0.0001 and a4 = b4 = 1.

Prior I : β̂ = 2.35, λ̂1 = 0.93, λ̂2 = 2.61.

Prior II : β̂ = 2.49, λ̂1 = 1.01, λ̂2 = 2.50.

Prior I : 95% symmetric CRI for β is (1.12, 4.04).

Prior II : 95% symmetric CRI for β is (0.45, 2.44).
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7. Conclusion

Conclusions

Extensive simulation has been done to judge the performance of
the proposed procedures.

a1 = b1 = a2 = b2 = a3 = b3 = 0.0001 and a4 = b4 = 1.

MSEs of all unknown parameters decrease as n increases keeping
other quantities fixed.

MSEs of BE of all unknown parameters are smaller in case of
Prior II than those in case of Prior I.

Other loss functions and other censoring schemes can be
handled in a very similar fashion.
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8. Future Works

Future Works

Step-stress model in the presence of competing risks under
Bayesian framework.

Optimality of SSLT under Bayesian framework.

Prior elicitation is becoming a popular topic among Bayesian. It
will be a challenging task to find a subjective prior for step-stress
life testing models.



Thank You
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