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Chapter1)|
INTRODUCTION

Metals play a significant role in all major life processes, which include
maintenance of osmotic balance, stabilization of cellular organelles, electron donors
and acceptors in many processes and cofactor for metalloenzymes (Gadd, 2010;
Jensen, 2013; Vaskova et al., 2012). Heavy metals have a density of >5 and there are
40 known heavy metals. Most of the heavy metals have essential biological functions
except arsenic, cadmium, mercury, and lead (Gadd,1992). They are transported across
the cell membrane through energy independent or dependent processes to participate
in cellular processes. In the cell, prokaryotes including eubacteria and archaea are
able to either oxidize Mn(II), Fe(II), Co(II), Cu(I), or reduce Mn(1V), Fe(I1I), Co(III),
on a large scale and conserve energy in these reactions. Some microbes may reduce
metal ions such as Hg*" or Ag" to Hg and Ag, but do not conserve energy from these
reactions (Beal et al., 2009; Du Laing et al., 2009; Summers and Sugarman, 1974).
Although many of them are essential for the growth of microorganisms, high
concentration of metal in the cytoplasm is reported to have comprehensively toxic
effects at cellular and sub-cellular level as metal denature protein molecules
(Bierkens, 2000; Hamza-Chaffai et al., 1997). Being ancient and ubiquitous on earth,
microbes have acquired a spectrum of resistance strategies compared to higher life
forms depending on the environment (Rajbanshi, 2009; Rajkumar et al., 2010; Sun et
al., 2010).

In marine environment, metal tolerance is generally high among
microorganisms due to their reduced membrane permeability caused by the higher salt
concentrations of marine water (Sprague, 1964) compared to the fresh water.
Nonetheless, in marine environment, the deleterious effects of heavy metals on the
biota are also long lasting as they are not easily or rapidly eliminated from these
ecosystems by natural degrading processes. These metals tend to accumulate in

sediment, move up the aquatic food chain and ultimately reach the human being
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Chapter 1 Introduction

(Forstner et al., 1979;Nakayama et al.,2010; Peralta-Videa et al., 2009; Zhuang et al.,
2009). Toxicities depend mainly on their concentration and bioavailability in the
system, which in turn depends on the source, speciation, and transformation; control
exerted by major sediment components to which metals are preferentially bound,
competition between metals for uptake sites in organisms and the influence of
environmental parameters like turbulence, salinity and pH or redox on these processes

(Bryan and Langston, 1992).

The selective pressure on microbial community by heavy metal pollution leads
to the emergence of resistant strains (Gadd, 2010; Hall, 2002; Hassen et al., 1998),
commonly referred to as metal resistant bacteria (MRB). Several microorganisms
have acquired metal resistance strategies which include exclusion of the metal by a
permeability barrier or active export, physical sequestration and transformation and
detoxification (Kisand et al., 2012; Molina et al., 2011; Pavel et al., 2013). Among the
different strategy, efflux pump is the most common mechanism for adjusting the
intracellular concentrations of heavy metals in microorganisms (Deb et al., 2013;
Hajdu et al., 2010;Yamane et al., 2007). The ascribed function of the efflux pumps is
to regulate the transportation of metabolic products, lipids, sterols, sugars etc. across
the cell membrane (Borges et al., 2003; Borst et al., 2000; Tsuji et al., 1992). The
same efflux pump mechanism against Cu, Co, Zn, Cd, Ni and As is also shared for
providing resistance against tetracycline, chloramphenicol and B-lactam antibiotics
(Baker-Austin et al., 2006).An unfortunate side effect of the heavy metal resistance is
that the same genetic platform can be shared against antibiotics leading to horizontal
transfer of these genes between clinical isolates in the environment and indigenous
environmental isolates. Recently silver nanoparticles (AgNPs) has emerged as a
promising antimicrobial compound against Gram negative and positive nosocosmial
microorganisms and HIV, hepatitis B virus, respiratory syncytial virus, herpes
simplex virus and monkey pox virus (Ayala-Nunez et al., 2009). Resistance to
antimicrobial silver nanoparticles and its mode of action are all hitherto unknown in

the environment.

The increasing trend in concentration of heavy metals in the environment has

attracted considerable attention amongst ecologists globally during the last six decades
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Chapter 1 Introduction

and has also begun to cause concern in most of the major metropolitan cities. The
direct impact of heavy metal pollution on microbial ecosystem includes the alterations
in the physiology, diversity and abundance. In general, microorganisms from heavy
metal polluted environment utilize majority of the energy for cell survival and as a
consequence, their contribution to the ecosystem functioning become meager.
Polymeric and particulate organic matter are processed by the hydrolytic enzymes
secreted by microorganisms before its transportation across the cell membrane (Bong
et al.,, 2010; Chrost and Rai, 1994). The selective pressure of heavy metal pollution
leads to apparent reduction in the extracellular enzyme activity of that particular
ecosystem (D'Souza et al., 2006;Lasat, 2002; Li et al., 2006; McGrath et al., 2001;
Silver, 1984 ; Wang et al., 2007), which indirectly affects the microbial loop and the
ocean productivity (Bong et al., 2010; Chakravarty and Banerjee, 2008; Haferburg and
Kothe, 2007; Hoostal et al., 2008). Heavy metals also contribute indirectly to global
warming. They inhibit bacterial nitrous oxide reductase enzyme which may lead to
the accumulation of potent green house gas N>O (Dickinson and Cecerone, 1986;
Haferburg and Kothe, 2012; Sobolev and Begonia, 2008). Consequently, at the end of

each time period, the pollution problem takes menacing concern.

Estuaries are ecologically and economically important ecosystems with one
end opening to the ocean and the other end receiving the fresh water. Apart from the
natural processes, estuaries receive additional dosage of heavy metals through
industrial and domestic discharges (Balachandran et al.,2002, 2006, 2008; Nair et al.,
2006; Noah and Oomori, 2006). The processes in estuaries are dictated by tidal
variations and freshwater influx, which directly influence the salinity and
bioavailability of heavy metals in the estuary. The heavy metals reaching the estuaries
through fresh water may get trapped in the sediment and their transportation towards
the marine environment may take a long time depending on the water currents.
Therefore, heavy metal pollution and bioaccumulation may have significant effect on
the health of the estuaries and the inhabitants than those in the sea to which the
estuaries open. In Indian estuaries, the heavy metal concentrations in sediment/ water
and in community are much higher than the permissible limits ascribed by

international standards (Agadi et al., 1978; Alagarsamy 2006; Ramkumar et al., 2012;
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Vardanyan and Ingole, 2006). Consequently, the effect of heavy metal pollution on
the diversity and dynamics of microorganisms in the marine environment is a topic of
growing environmental concern as it can provoke unintended alterations in the
functioning of marine ecosystems directly or indirectly. The effects of heavy metals
on macro-organisms are often apparent and well-documented from Indian waters but
its effects on microbial communities have received less attention. There are limited
and scattered studies on metal-microbe interaction. Few studies are on the level of
tolerance and biotransformation of metals in bacteria isolated from coastal waters,
estuaries and from deep sea (Nair et al., 1993; Krishnan et al., 2007; Sujith et al., 2010
and 2014; Ramaiah and De, 2003). There is an isolated report on the distribution of
Hg resistant bacteria along the coastal water of India (De et al., 2008). Nair et al,,
(1992) and Chandy, (1999) have reported that heavy metal resistance was more
pronounced among gram-negative bacteria and that metal and antibiotics resistance
are linked to chromogenesis. Nithya et al., (2011) have studied the diversity of metal
resistant bacteria and its association with antibiotics (Nithya and Pandian, 2010) in the
Palk Bay sediments. These few studies clearly show that there is a dearth of

information on metal - microbe interaction from Indian waters.

The Cochin estuary (CE), which is one of the largest wetland ecosystems,
extends from Thanneermukkam bund in the south to Azhikode in the north. It
functions as an effluent repository for more than 240 industries, the characteristics of
which includes fertilizer, pesticide, radioactive mineral processing, chemical and
allied industries, petroleum refining and heavy metal processing industries
(Thyagarajan, 2004). Studies in the CE have been mostly on the spatial and temporal
variations in the physical, chemical and biological characteristics of the estuary
(Balachandran et al., 2006; Madhu et al., 2007; Menon et al., 2000; Qasim
2003;Qasim and Gopinathan 1969) . Although several monitoring programs have been
initiated in the CE to understand the level of heavy metal pollution, these were
restricted to trace metals distribution (Balachandran et al., 2005) or the influence of
anthropogenic inputs on the benthos and phytoplankton (Madhu et al., 2007;Jayaraj,
2006). Recently, few studies were carried out on microbial ecology in the

CE(Thottathil et al 2008a and b;Parvathi et al., 2009and 2011; Thomas et al., 2006;
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Chandran and Hatha, 2003). However, studies on metal - microbe interaction are
hitherto not undertaken in this estuary. Hence, a study was undertaken at 3 sites with
different level of heavy metal concentration tounderstand the abundance, diversity and
mechanisms of resistance in metal resistant bacteria and its impact on the nutrient
regeneration. The present work has also focused on the response of heavy metal
resistant bacteria towards antibacterial agent’s antibiotics and silver nanoparticles.

Accordingly, the following objectives have been proposed for the thesis:

1. Distribution and enzyme expression profile of metal resistant bacteria along a

pollution gradient in the Cochin Estuary.
2. Differential response of metal resistant bacteria towards antimicrobial agents.

3. Mechanisms of microbial resistance/sensitivity towards silver nanoparticles.
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Chapter 2|
REVIEW OF LITERATURE

2.1 Metal —Microbe interaction
2.2 International Scenario

2.3 National Scenario

This chapter covers all the relevant literature that are dealing with the
importance of bacteria and metals, toxic effects of metals on bacteria, its modes of
resistance to heavy metals, heavy metal pollution and ecological significance of metal-
microbe interaction in marine environment. The review of literature has been grouped

and sub-titled according to the various aspects that have been studied.
2.1 Metal —Microbe interaction

2.1.1 Introduction

Microorganisms are ubiquitous and play a significant and dominating role in
the cycling of organic and inorganic matter in marine ecosystem (Ammerman and
Azam, 1991; Chrost.,1991; Chrost and Overbeck,1987). They are efficient degraders
as they can penetrate the water and sediment most intimately by their high number and
size (Hoppe and Gocke, 1993). They possess a variety of catabolic enzymes which
allow them to decompose various dissolved and particulate substrates (Meyer-Reil.,
1994) thereby making it available for other organisms through the ‘microbial loop’
(Azam et al., 1983). It is well recognized that microbial communities play a vital role
in the biogeochemical cycles of elements in various marine environments and
maintain the ecosystems’ health (Pace, 1997). Further, its’ high surface area to volume

ratio can interact with metals in the surrounding environment (Ledin, 2000).
2.1.2 Role of Heavy Metals in bacteria

Metals are important constituents of the earth’s crust from the time it was

evolved. Heavy metals are a group of about 40 chemical elements with relatively high

Studies on Metal Resistant Bacteria in Cochin Estuary and Its Response towards Antibiotics and Silver Nanoparticles 6 I
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density. Early life has arisen in the presence of metals and living systems have
evolved to use some metals as vital constituents of its biological systems (Diaz-Ravina
et al., 1994, Gadd, 1990a and 1990b, Lehninger et al, 1993). However, some metals
such as arsenic, cadmium, mercury, and lead have no known essential biological
function (Gadd, 1992). It serves as prosthetic groups in many proteins and dictates
the configuration of the active site of enzymes. They serve as redox centers
transferring electrons in important redox reactions. For example, iron participate in
many biological processes, such as photosynthesis, N, fixation, methanogenesis, H
production and consumption, respiration, trichloroacetic acid cycle, oxygen transport,
gene regulation and DNA biosynthesis (Wang et al., 2005). Iron intake mechanism is
greatly controlled by the efficiency of iron scavenging siderophores in bacteria as
predominant form of iron is extremely insoluble in water. Selenium is required for the
function of selenoproteins (Gu et al., 2002). Magnesiumis also involved in the
stabilization of ribosomes, nucleic acids and cell membrane. Under optimal
concentrations, microorganisms transport metals across the cell membrane through
energy independent or energy dependent processes (Nies, 1999; Nies and Silver,
1995; Deng and Wilson, 2001). Energy independent systems are the fast and
unspecific processes guided by the chemiosmotic gradient across the cytoplasmic
membrane of bacteria. Energy dependent transport is substrate specific and slower and
often uses ATP hydrolysis as the energy source. These expensive uptake systems are
activated only by the cell only during the times of need, starvation or a special
metabolic situation (Nies, 1999; Nies and Silver, 1995). In certain specialized
ecosystems like hydrothermal vent, Mn nodule and cobalt crust areas in the ocean the
concentration of metals are high. In these systems metal tolerant bacteria are dominant
and the ecosystem function is metal based (Jeanthonand Prieur, 1990, Rathgeber et
al., 2002, Vetriani et al., 2005, Lianos et al., 2000; Duxbury and Bicknell,1983). Since
microbial encounter with metals are unavoidable in the environment, it is not
surprising that microbes (chemolithotrophs) have developed suitable means to put to
use some metals that can exist in more than one oxidation state, for their benefit as

electron donors or acceptors in their energy metabolism (Ehrlich, 1997).
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2.1.3 Toxic effect of heavy metals on bacteria

A feature of heavy metal physiology is that even though many of them are
essential for microbial growth, they are also reported to have comprehensively toxic
effects on cells when present in slightly higher concentration than the required (Gadd
and Griffiths, 1977). Elevated concentrations of metal ions may interrupt the normal
functioning of energy independent systems resulting in an “open gate” condition
leading to the accumulation of metals in cytoplasm. Zinc a micronutrient at elevated
concentrations can induce DNA damage, cell membrane perturbations and oxygen
stress (Shen et al., 1999). Cadmium ions are highly toxic to cells at very low
concentrations. Cadmium is taken up through calcium channels of the plasma
membrane, and accumulates intra-cellularly due to its binding to cytoplasmic and
nuclear material and inhibits the biosyntheses of DNA, RNA and protein, induce lipid
peroxidation and cause chromosome aberrations (Beyersmann and Hechtenberg,
1997). Some metals (Hg>", Cd*", and Ag") tend to bind to SH groups of proteins and
inactivate their enzyme functions. Other heavy-metal cations may interact with
physiological ions, Cd*" with Zn*" or Ca*", Ni*" and Co®" with Fe**, Zn with Mg*",
thereby inhibiting the functioning of the respective physiological cation (Nies and
Silver, 1995). It may bind to glutathione in Gram negative bacteria and the resulting
bisglutathionato complexes tend to react with molecular oxygen to form oxidized
bisglutathione (GS-SG), the metal cations and hydrogen peroxide (Kachur et al., 1998;
Nies and Silver, 1995). Since the oxidized bisglutathione has to be reduced again in an
NADPH-dependent reaction and the metal cations immediately bind to another two
glutathione molecules, heavy-metal cations cause a considerable oxidative stress.
Heavy metal oxyanions interfere with the metabolism of the structurally related non
metal and reduction of heavy metal oxyanion, leading to the production of radicals.
The figure summarizes the toxic effect of heavy metals on microorganisms (Gadd

1992).
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2.1.4 Mode of resistance in bacteria

Microorganisms adopts various mechanisms to combat metal toxicity such as
metal sorption, mineralization, uptake and accumulation, extracellular precipitation
and enzymatic oxidation or reduction to a less toxic form, and efflux of heavy metals
from the cell (Mergeay et al., 2003; Mata et al 2000). Discerning which mechanism is
involved in a bacterial community is made difficult by the multitude of resistance
pathways utilized by bacteria (Silver, 1996; Alonso et al., 2001). An important
protective device used by many microorganisms involves sequestration of toxic metals
by cell-surface moieties. Metallothioneins comprise a group of small, cysteine-rich
proteins with high affinity and selectivity for heavy metals such as cadmium, copper
and zinc. Bacteria expressing metallothionein genes have been shown to accumulate
copper, cadmium and other heavy metals effectively (Pazirandeh et al., 1995).
Another resistant mechanism is by metal ion sorption in microorganisms (Stockdale et
al.,2010). The structure of cell wall affects both the rate and extent of metal sorption.
Glycoproteins present on the outer cell wall side of Gram-positive bacteria have been
suggested to have more potential binding sites for metal ions than the phospholipids
and LPS and hence are responsible for the observed difference in capacity (Ghandour
et al.,1988). Mechanisms of metal resistance in microbes also include precipitation of
metals as phosphates, carbonates and/or sulfides and volatilization via methylation or
ethylation(Gadd, 1990; Silver, 1996). Most cells use two types of uptake system for

heavy-metal ions: one is fast, unspecific and the other is slow , specific (Nies and
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Silver, 1995). Another well studied resistant mechanism is efflux pumps seen as the
active system in both Gram negative and positive bacteria, which render them
resistance against metals (Chuanchuen et al.,2001; Martinez, 2009; McMurry et al,
1980; Paulson et al., 2000; Sanchez , 2005; Zgurskaya and Nikaido, 2000). The efflux
pumps are membranes associated with active transporters, which are reported initially
in Gram negative bacteria as a means to remove antibiotics from the cytoplasm
(McMurry et al, 1980; Parkhill et al 2001). Genome sequence analysis reveal that, on
average, efflux pumps constitute at least 10 % of the transporters in several bacterial
species and they usually have the capability of extruding a broad range of structurally
different compounds (Paulson et al., 2003). Studies have demonstrated that the
efflux pumps of microorganisms are capable of extruding heavy metals (Silver and
Phung, 1996 and 2005; McMurry et al., 1980; Nies and Silver, 1995; Paulson et al ,
2000; Zgurskaya Nikaido,, 2000; Nies 2000). Several bacterial strains are resistant to
Ag ions (Silver, 2003) and can even accumulate Ag particles in their cell wall to as
much as 25 % of the dry weight biomass. The silver resistant Pseudomonas stutzeri
AG259 accumulates silver NPs of particle size 35 to 46 nm in their cell (Slawson et
al., 1992). The defensive mechanism of these microorganisms for metal detoxification
has been suggested as the biological pathway that reduces the metal ions and
precipitates the metal compounds in the periplasmic space (Xie et al., 2007, Klaus et
al 2001). However, the mechanism by which bacteria reduces metal ions to NPs is
hitherto unknown. The different mechanisms adopted by bacteria are depicted in the
figure below (Nies, 1999).
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Metal resistant mechanism in bacteria
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2.2 International scenario

2.2.1 Heavy metal pollution

Heavy metals are both naturally and artificially present in ecosystems. Heavy
metals enter the marine environment through atmospheric and land based effluent
sources. Heavy metals and trace elements are by-products of many industrial
processes, contributing to varying amounts of different metals and trace elements and
as such are discharged as waste into the marine environment (Robson and Neal,
1997). The oceans provide a major sink for many heavy metals and their compounds.
Different degrees of heavy metal pollutions have been observed in the coastal areas of
northwestern Europe, mostly attributed to industrial discharges, waste-disposal
streams, and atmospheric deposition of exhaust gases. However, considerable heavy
metal pollution of sediments of harbours and marinas has been attributed to the
application of antifouling paints on ship hulls (Schiff et al. 2004; Warnken et al.
2004). Dredging operations can increase metal mobilization by whirling up the fine
sediment particles and allowing oxygen to come in contact with previously buried and
reduced sediments. The extent of metal release depends on local parameters such as
sediment geochemistry, currents, grain size, pH, and salinity (Van den Berg et al.,
1998). Unquestionably, a variety of biological parameters also play a role in metal
mobilization. The natural cycling rates of many metals are being disturbed by
anthropogenic activities, especially the release from industrial, domestic and urban
effluents of increasing amounts of Pb, Zn, Cd, Hg and Cu (Schindler et al., 1991) into
the estuaries and coastal waters. Reports on metal pollution and effects on marine
ecosystems have been published by United Nations Environment Programme (UNEP)
and GESAMP (Group of Experts on Scientific Aspects of Marine Environmental
Pollution, Advisory body, established in 1969, consists of 25-30 international experts
on marine pollution and emerging issues, is sponsored by UN, IMO, FAO, UNESCO-
I0C, WMO, TAEA, UNIDO) and the environmental specialists (UNEP 1983,
GESAMP, 1990 in Kullenberg, 1986). Goldberg (1995) reviewed different sources of
heavy metal inputs into the sea and their possible role in ecosystems. These metals
tend to accumulate in sediment and move up the aquatic food chain, ultimately

reaching human being, in whom they produce chronic and acute ailments (Forstner et
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al.,1979), including a number of DNA mutations (De Flora et al., 1994). In the last
few decades there has been growing concern on metal pollution not only in marine but
also in freshwater and terrestrial ecosystems. The metals considered toxic and which
are of concern have been restricted largely, but not exclusively, to ten which appear to
be the most poisonous to marine life. These include, in order of decreasing toxicity
mercury, cadmium, silver, nickel, selenium, lead, copper, chromium, arsenic and zinc.
Stringent implementation of environmental legislations by EEA has led to a reduction

in the discharge of these metals during the last 15 years.
2.2.2 Ecological Studies on Metal-Microbe interaction

Microbial communities are key players involved in metal mobility (Ford and
Ryan, 1995). In marine environments, the heavy metal concentration is high and
marine microbes as a rule are exposed to these higher concentrations and they can
tolerate higher concentration of heavy metals, five- to ten folds higher than their
concentrations in sea- water. Metals have a high ecological significance due to their
toxicity and accumulative behavior. Heavy metals when present in slightly higher
concentration than the required concentration become toxic as a result of their ability
to denature protein molecules (Gadd and Griffiths, 1977). They exert a selective
pressure on Gram-positive and negative bacteria (Wuertz et al., 1997; Kozdroj and
van Elsas, 2001; Abou-Shanab et al., 2007), leading to the emergence of resistant
strains popularly referred to as “metal resistant microorganisms” (MRB). Bacterial
resistance mechanisms to—and intracellular uptake of—trace metals from seawater
have been shown to follow different pathways (Robson and Neal, 1997). Many
researchers have indicated that the abundance, diversity, and functions of microbial
communities may be altered from their pristine conditions by the presence of metal
pollutants (Baath, 1989; Chang et al., 1993; Ellis et al., 2003; Frostegard and Baath,
1996; Konopka et al., 1999; Stephen et al., 2000). It has therefore been suggested that
the microbial abundance, diversity and metabolic activity in metal-contaminated
environments may provide an indication of the health of the ecosystem as a whole
(Kowalchuk et al.,1997; Nielsen and Winding, 2002; Stephen et al, 2000).
Historically, culture-based monitoring has been the most practical and widely used

method employed to observe microbial communities. Plate count techniques are being
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used to evaluate bacterial abundance in contaminated environments (Diaz-Ravina and
Baath, 1996; Ellis et al., 2003; Feris et al., 1999). A number of these studies have
reported a loss of bacterial abundance and metabolic activity with increasing
prevalence of heavy metals. It is now well accepted, though, that 1% or less of
bacterial species are represented in some of these studies (Amann et al., 1995; Pace ,
1997). There is sorption or chelation of metals to unspecified organic compounds
found in most biological media (Chang et al., 1993; Tong and Sadowsky, 1994). Free
metal ion, ordinarily considered to be the toxic metal species that ultimately
determines the microbial response to the metal, rarely approaches the total metal
concentration added to media (Angle and Chaney, 1989). In recent decades, the
development of molecular-based techniques have allowed for a more complete
analysis of both culturable and nonculturable microorganisms in contaminated
environments. As a result, many recent studies have relied heavily on the use of
nucleic acid-based monitoring to assess the anthropogenic effects on microbial
communities (Del Val et al., 1999; Feris et al., 1999; Kuo and Genthner, 1996;
Pennanen et al., 1996).

2.2.3 Metal Tolerance in Bacteria

The tolerance levels of individual isolate to different metals from different
locations were carried out mostly by using amended medium (Nies, 1999,2003
and2007; Silver 1996; Surosz and Palinska, 2004). Culture studies on individual
isolates using amended medium have inherent limitations. The MICs determined with
traditional approach media cannot be related to actual metal concentrations in the
habitat from which bacteria were isolated. In spite of these limitations, the technique
of MICs remains a valid approach to evaluate the action of heavy metals on the
microbial activity in polluted habitats (Mergeay et al., 1985; Liesegang et al., 1993;
Taghavi et al., 1997). All the Gram-negative isolates from marine systems are far
moreresistant than Gram-positive strains (Ravel et al., 1998 and 2000). The level of
tolerance varied among the species and studied metals. The minimum inhibitory
concentration of the metals ranged from 0.01 mM — 40 mM. The order of toxicity of
the metals was found to be Hg > Cd > Co > Cr > Cu > As > Zn >Pb> Ni (Abou-
Shanab et al., 2007). Nieto et al. (1989) reported that Halobacteriummediterranei,
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from solar salterns and hypersaline soils located in Cadiz, Huelva, Alicante, Mallorca
and the Canary Islands, Spain, tolerated eight different metals. Tolerance of bacteria
to a particular metal does not always correlate with their tolerance to other metals.
This may be due to the existence of different mechanisms responsible for bacterial
tolerance to heavy metals (Silver and Phung, 1996; Vieira and Volesky 2010; Xie et
al 2010).

2.2.4 Effect of metal on bacterial abundance

The abundance, diversity, and functions of microbial communities may be
altered from their pristine conditions by the presence of metal pollutants (Baath et al,
1998; Chang et al., 1993; Ellis et al., 2003; Frostegard et al., 1993; Konopka et al.,
1999; Stephen et al., 2000). Studies in the eighties, had shown a decrease in the soil
microbial biomass C and N as a result of long-term exposure to heavy metal
contamination( Knight et al., 1997), which was due to microorganisms in soil under
heavy metal stress diverting energy from growth to cell maintenance functions
(Killham, 1985). Soil microbial biomass, which plays an important role in nutrient
cycling and ecosystem sustainability, has been found to be sensitive to increased
heavy metal concentrations (Garland, 1997; Giller et al., 1998; Grayston et al., 1998;
Liao and Xie, 2007; Wang et al., 2007). Further studies have also reiterated that trace
metals have negative effect on the microbial biomass (Aoyama and Nagumo, 1997;
Brookes and McGrath, 1984; Frostegard et al., 1993; McGrath et al., 1997), microbial
diversity (Rasmussen and Sorensen, 1998) or microbial activities ( Magalhaes et al.,
2007;Wang et al., 2005; Ross et al 2002) in some environments. However, in some
cases, microbial biomass ( Bdéth et al., 1998 Feris et al., 1999; Knight et al., 1997;Shi
et al,, 2002;) bacterial diversity (Bouskill et al., 2010; Sorci et al., 1999;) and
microbial activity (Barajas-Aceves, 2005; Magalhdes et al., 2007) were relatively
insensitive to high metal loads. It was concluded that the unaffected communities may
have become tolerant due to individual acclimation, genetic or physiological
adaptation and loss of sensitive species due to long-term exposure (Bouskill et al.,
2010; Ogilvie and Grant, 2008). In addition, it was concluded that some of these
unaffected communities were possibly protected by high concentrations of organic

substances or clays which are known to complex metals and reduce their
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bioavailability (Bouskill et al., 2010; Sorci et al, 1999). In certain polluted
environments, communities were even more active, with higher bacterial abundances
or higher diversities than the corresponding reference ecosystems (Feris et al., 1999;
Bouskill et al., 2010). A few studies on metal microbes in combination with detailed
metal analyses indicated localized and short-term effects of metal exposure (Diaz-
Ravina and Baath 2001; Rasmussen and Soerensen 1998). Rasmussen and Sorensen
(1998) noticed high levels of Hg resistance (50ppm) among the bacterial isolates from
a mercury-contaminated site inside the Copenhagen Harbour. However, it is very
difficult to draw general conclusions and it seems that each microbial community is
unique and reacts in a different way. Studies from different sites affected by a variety
of anthropogenic activities in European and North American coasts showed the
occurrence of culturable heterotrophic bacteria capable of tolerating ca. 0.5 ppm Hg
(Barkay, 1987; Rasmussen and Sorensen, 1998; Reyes et al., 1999). The dominance

of Gram-negative MRB was observed in Antarctic waters also (De Souza et al., 2006).
2.2.5 Effect of metals on bacterial diversity

The outcome of metal pollution include a decreased bacterial biodiversity, an
irreversible extinction of many sensitive species and the selection of cosmopolitan

ones that are adapted better to contemporary environment.

Among the living biota, the microbial community is a suitable example where
these results can be observed (Alexander, 1994; Baath, 1989; Giller et al., 1998; Van
der Leila et al, 1997; Wuertz et al., 1997). The present understanding of microbes in
natural environments is based on cultivation and isolation techniques. In this way,
only a small fraction of the bacteria that live in marine habitat has been recognized.
Recently, new techniques like nucleic acids and fatty acids signature biomarkers of
diversity have been used successfully in monitoring the impact of metals on
microorganisms in natural or induced bioremediation as it allowed a more complete
analysis of both culturable and nonculturable microorganisms (Chang et al., 1993; Del
Val et al., 1999; Feris et al., 1999; Kuo and Genthner, 1996; Pennanen et al., 1996) in
contaminated environments. There is a reduction of microbial diversity in
contaminated soil, and significant shifts in the community structure, leading to the

dominance of only a few populations (species) and the disappearance of others, some
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of which were never isolated by conventional methods ( Kozdro'ja ,and Elsasb,2001).
Some studies were on long-term impact of heavy metals on bacterial diversity of
marine sediments (Powell et al., 2003; Sorci et al., 1999). Sorci et al., (1999) observed
an increase in biodiversity whereas no measured change or the exact opposite
response was recorded along with heavy metal contamination (Sandaa and Enger,
1994). These differences might be explained by adaptation time and / or co-
contamination with organic material, but these assumptions remain speculative. There
was substantial statistical variation between and within the control groups of several
polluted and pristine Antarctic sediments (Powell et al. 2003). Pseudomonassp was
the most copper-tolerant bacterial strains from naturally polluted environments

(Hassen et al., 1998).
2.2.6 Effect of metal on bacterial enzymes

Bacterial enzyme activity has been applied in monitoring metal polluted
environment (Dutka et al., 1988). Heavy metal pollution exerts an apparent reduction
in the extracellular enzyme activity which has significant impact on ecosystem
processes ( Lasat, 2002; Li et al., 2006; McGrath et al., 2001; Silver, 1984; De Souza
et al., 2006; Wang et al., 2007;). It has been reported that both Cu- and Zn-ions act as
inhibitors of urease activity. The Cu-ion, forming a more stable sulfide, is a
considerably more powerful inhibitor than the Zn-ion.Many reports have shown that
short-term or long-term exposure to toxic metals results in the reduction of microbial
activities (Baath, 1989; Bardgett andSagger, 1994; Doelman, and Haanstra,1984 and
1986; Duxbury, 1983; Hoppe,1991; Hoppe and Gocke , 1993;Lasat, 2002; McGrath et
al., 1997 and 2001; Revel et al., 1998) and in mangrove sediments (Tam and Yao,
1998). A study by Bong et al, (2010) on individual isolates showed that high
concentration of Zn inhibits the aminopeptidase activity, but no change was seen for
trypsin and chymotrypsin. De Souza et al. (2006) have reported a reduction in the
multiple enzymes among bacteria with multiple metal resistances. This apparent
reduction in the extracellular enzyme activity will have significant impact on
ecosystem processes (Silver, 1984; McGrath et al., 2001; Lasat, 2002; Li et al., 2006;
DeSouza et al., 2006; Wang et al., 2007).
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2.2.7 Transfer of metal resistance among bacteria

Numerous studies have reported the incidence of bacterial plasmids
(Cervantesand and Gutierrez-Corona,1994; Foster, 1981; Franke et al., 2001; Gadd,
1990; Haferburg et al., 2009 and 2010; Henschke and Schmidt, 1990) and its
mobilization by indigenous bacteria in marine sediments and water of estuarine and
pelagic ecosystems(Henschke and Schmidt, 1990; Paulson et al, 2003). Some of the
heavy-metal-resistant bacteria are shown to possess specific plasmids. Marine
plasmids with heavy metal resistance traits obtained either through exogenous or
endogenous methods have been the ability to self-transfer and transfer itself to broad
host ranges (Sandaa and Enger, 1994). The gene responsible for metal resistant efflux
pumps can be transferred from one bacterium to another through mobile genetic
platforms such as plasmids and transposons (Silver, 1996; Silver and Ji, 1994; Top et
al., 1994). This has been shown in Epilithon MRB group (Henschke and Schmidt,1990).

2.2.8 Co-occurrence of metal and antibiotic resistance in bacteria

Co-resistance is a potential mechanism of dual resistance that occurs
when the genes specifying resistant phenotypes are located together on the same
genetic element such as a plasmid, transposon or integron (Chapman, 2003).
Recently, some insight has also been gained into the genetic flexibility of mixed
microbial populations with respect to metal contamination and widespread occurrence
of lateral gene transfer in response to metal toxicity (Cook et al., 1972; Sobecky,
1999). Bacteria resistant to both antibiotics and heavy metals are also isolated from
non-polluted environment with greater abundance from polluted sites of Colgate
Creek in Baltimore Harbour. Nakagawa et al. (2005a and 2005b) suggested that the
combined expressions of antibiotic resistance and metal tolerance may not be a
fortuitous phenomenon but rather is caused by selection resulting from metals present
in an environment. Studies have shown the occurrence of metal tolerance and
antibiotic resistance in bacteria ( Oyetibo et al., 2010;Timoney et al., 1978 ). Berg
et al., (2005) found Cu resistant isolates had a higher incidence of antibiotic resistance
as compared to copper sensitive isolates, indicating that these metal and antibiotic

traits are associated. Sabry et al., (1997) found the highest incidence of metal-

Studies on Metal Resistant Bacteria in Cochin Estuary and Its Response towards Antibiotics and Silver Nanoparticles 17 I



Chapter 2 Review of Literature

antibiotic double resistance existed between lead and all antibiotics (100%), copper
and penicillin (95%) and nickel and ampicillin (83.3%). and the role of plasmids in
conferring resistance to both antibiotics and metals has been demonstrated (Foster
1981; Lyon and Skurray 1987). There is substantial overlap between known
mechanisms for metals and antibiotic resistance, such as those for copper and
tetracyclines, copper and ciprofloxacin, and arsenic and B-lactams (Baker-Austin et
al., 2006). Jacoby (1974) found that R-plasmids determining gentamicin resistance
also determine a number of other properties such as resistance to ultraviolet (UV)
light, inorganic and organic Hg compounds. The table below gives the list of shared

structural and functional characteristics of prokaryotic antibiotic- and metal resistance

systems.
Resistance mechanism Metal ions Antibiotics® References#
Reduction in permeability (b) As, Cu, In, Mn, Co, Ag | Cip, Tet, Chlor, B-lactam | Silver, S.(1996), Ruiz, N. (2003)
Drug and metal alteration (c) As, Hg B-lactams, Chlor [Mukhopadhyay and Rosen (2002), Wright, (2005)
Drug and metal efflux (d) Cu, Co, Zn, Cd, Ni, As Tet, Chlor, B-lactams Nies, D.H. (2003), Levy (2002)
Alteration of cellular target(s) (e) | Hg, Zn, Cu Cip B-lactams, Trim, Rif Barkay et al. (2003), Roberts, (2005)
Drug and metal sequestration (f) | Zn, Cd, Cu CouA Bontidean, et al. (2000) Castillo, et al. (1991)

a) Abbreviations: Chlor, chloramphenicol; Cip, ciprofloxacin; CouA, coumermycin
A; Rif, rifampicin; Tet, tetracycline; Trim, trimethoprim.

b) Includes reduction of membrane permeability to metals and antibiotics.

¢) Includes drug and metal inactivation and modification.

d) Includes rapid efflux of the metal and antibiotic.

e) Includes alteration of a cellular component to lower its sensitivity to the toxic
metal and antibiotic.

f) Includes drug and metal sequestration.

# References in Baker-austin, 2006)

All these studies support the hypothesis that metal exposure results in
increased frequency of antibiotic tolerance in bacteria. This was confirmed using
culture-independent method in a microcosm by Stepanauskas et al., (2006) and is not

limited to a subset of metals or antibiotics.

Microorganisms resistant to both antibiotics and metals have been isolated

from metal-contaminated environments such as estuaries (Allen et al., 1977, Timoney
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et al.,, 1978), soils( Baker-Austin et al., 2006; De Souza et al., 2006; McArthur and
Tuckfield, 2000) sewage (Varma et al., 1976) in soils amended with Cu (Berg et al.,
2005), freshwater microcosms amended with Cd and Ni (Stepanauskas et al., 20006),
and liquid pure cultures containing Cu and Zn (Caille et al., 2007). Occurrences of
multiple co-resistances to metal and antibiotics among bacteria has become a global
phenomena as it was observed among bacteria from Antarctic (De’Souza et al., 2006)
as well as from rivers and bays (Traxler and Wood, 1981). The presence of metal
and/or antibiotic-resistant bacteria in natural habitats is now well established (Austin
et al.,1977; Lulietal.1983). Numerous studies have reported the occurrence of bacterial
plasmids and mediation of resistance in marine sediments and estuarine and pelagic
ecosystems (Cervantes and Gutierrez, 1994; Foster, 1983; Franke, 2001; Gadd, 1990;
Haferburg et al, 2009 and 2010; Henschke and Schmidt, 1990).

2.2.9 Effect of Silver Nanoparticles (AgNPs) on bacteria

Silver and its compounds are well known for their antibacterial property, since
the age of ancient Egyptians (Klasen, 2000; Kvtek et al., 2008) and the most widely
used silver preparation in human medicine, sulfadiazine, was introduced in 1960s
(Kvtek et al., 2008). Currently, silver sulfadiazine is listed by the World Health
Organization as an essential anti-infective topical medicine. AgNPs small size and
larger surface area demonstrated greater bactericidal efficiency (Baker, 2005; Sarkar
et al., 2007). In comparison to the antibiotics, the bacterial resistance against ionic
silver has been observed only rarely and does not constitute any significant
implications (Silver, 2003). Silver nanoparticles have emerged as an alternative
therapy to control the multiplication of multiple antibiotic resistant bacteria as silver
and its compounds have strong inhibitory and bactericidal effects on bacteria
including E. coli,V. cholera, P.aeruginosa, S.aureus, S. typhus and the multiple drug
resistant P. aeruginosa, the ampicillin resistant E. Coli and the erythromycin resistant
Streptococcus pyogenes (Ayala-Nunez et al., 2009; Choi, 2008; Sondi and Salopek-
Sondi, 2004 ; Shrivastava et al., 2007;), fungi ( Ghandour et al., 1988), and virus
(Frankeet al., 2001; Merchan, et al. 2006; Morones et al., 2005; Li et al., 2010; Lara
et al., 2010; Lok et al., 2006; Choi et al., 2008; Silver., 2003) but lower toxicity to

mammalian cells (Zhao and Stevens, 1998).
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2.2.10 Mode of inhibition of AgNPs

Even though the antimicrobial properties of Ag NPs are receiving much
attention in healthcare, the mechanism by which they kill microorganism is not well
defined ( Morones et al., 2005; Nel et al., 2006;). Gogoi et al., (2006) demonstrated
that silver nanoparticles have no direct effect on either cellular DNA or protein. But
scanning electron microscopic studies showed that Nano Particles (<10 nm) may enter
the cell directly to inhibit microbial growth (Morones et al., 2005); change the
membrane permeability, collapse the proton motive force, and redox cycle in the
cytosol (Lok et al., 2006; Morones et al., 2005; Sondi and Salopek-Sondi, 2004) or
disrupt the mitochondrial respiratory chain leading the production of ROS even
without UV light and interruption of ATP synthesis, which in turn cause DNA damage
Electron dense areas were observed inside the cell of bacteria treated with silver ions,
while a large number of nanoparticles were observed in the case of nanoparticle
treated ones (Morones et al., 2005). Amro et al., (2000) suggested that metal depletion
may cause the formation of irregularly shaped pits in the outer membrane and change
phospholipid portion of the bacterial membrane and permeability by progressive
release of lipopolysaccharide molecules and membrane proteins (ompA, ompC, ompF,
oppA and MetQ) (Lok et al., 2006). While both E. coli and S. aureus depict higher
sensitivity to the silver nanoparticles compared to the copper nanoparticles, the
difference is less for S. aureus compared to E. coli. No strain specificity were reported
by Panacek et al., (2009) for silver nanoparticles on two strains of S. aureus as Ag+
can lead to enzyme inactivation via formatting silver complexes with electron donors
containing sulfur, oxygen, or nitrogenor by displacing native metal cations from their

usual binding sites in enzymes (Ghandour et al.,1988)

Industrial development has resulted in severe disturbance of ecological balance
in most ecosystems. The outcome of the disturbance include a decreased biodiversity,
an irreversible extinction of many sensitive species and the selection of cosmopolitan
ones that are adapted better to contemporary environment. All the above studies have
shown that MRB are ubiquitous and depend on various factors including the
concentration and bioavailability of heavy metals in the microenvironment, abundance

and diversity of the natural population as well as drug resistant ability of the bacteria
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(Bong et al., 2010; Geslin, et al., 2001; Haferburg and Kothe, 2007). The common
mechanism adopted for resistance to toxic compounds isthe ABC transporters (eftlux)
which transports nutrients across the bacterial cell membrane (Locher et al., 2002).
This property can be beneficially used for metal bioremediation. The significance of
metal-microbe study in metal-contaminated environments may provide an indication
of ecosystem health as a whole (Ellis et al., 2003; Kowalchuk et al., 1997; Nielsen and
Winding, 2002; Stephan et al., 2000).

2.3 National Scenario

2.3.1 Heavy Metal Pollution

The concentration of heavy metals is low in the Arabian Sea, except for a few
localized areas (Kureishyet al., 1986; Sanzgiriet at., 1988 whereas the concentration of
heavy metals in the coastal and impacted Indian estuaries are higher (Zingade et al.,
1976,1988, Subramanian et al., 1988, Mukarje and Kumar 2012, Kumar and Edward
2008, Banarjee and Gupta 2012) than the permissible limits ascribed by international
standards ((Agadi et al., 1978; Alagarsamy, 2006; Ramkumar et al., 2012; Vardanyan
and Ingole, 2006; Senthilnathan et al 1998). The geochemistry of sediments of the
Indian estuaries have received wide attention in the recent past in order to understand
the elemental composition of the sediments, the influence of anthropogenic activities
on riverine chemistry and the transport of metals from rivers to the coastal oceans
(Subramanianan 1980; Bijoy Nandan, and Abdul Azis, 1994; Satyanarayana et al
1993; Sesamal et al 19861; Luoma et al 2008; Qasim and Sengupta (1981). The level
of different metals is influenced by the type of effluents discharged by industries.
Considerable enrichment of Hg was evident in the estuary of Mumbai when compared
with the values reported for the open shore coastal water off Bassein-Mumbai (Zingde
and Desai, 1981; Sahu and Bhosale, 1991). Similar increase has been reported from
Ulhas estuary and the nearby Thane Creek due to the indiscriminate release of
industrial effluents and domestic wastewater that goes largely untreated (Patel et al.,
1985;; Zingde, 1999; Bhosale and Sahu, 1991). These toxic metals not only pollute the
creek waters but also pose a threat to the aquatic biota. The heavy metal

concentrations in Indian estuaries are much higher than the permissible limits ascribed
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by international standards (Agadi et al., 1978; Nair S et al 1990; Alagarsamy, 2006;
Ramkumar et al., 2012; Vardanyan and Ingole, 2006; Mohapatra and Rengarajan
(2000). Food chain contamination by heavy metals has become a burning issue in
recent years because of their accumulation in bio-systems from contaminated water,
soil and air (Lokhande and Kelkar, 1999). The increase in residue levels of heavy
metal content in water, sediments and biota, will result in decreased productivity
(Lokhande and Kelkar, 1999). A comprehensive report on the metal pollution along
the coastal and marine ecosystems of India has also sounded concern on deleterious
effects of the ever increasing metal pollution on the marine biota (Pillai 1996). A
comprehensive review of environmental geochemistry, mineralogical and mass
transfer of metals of Indian river basins is available in literature (Subramanian, 1980;
Subramanian et al., 1988 Sarin and Krishnaswami, 1984; Chakrapani and Subramanian,
1990; Sasamal et al 1987). Robin et al, (2012) observed that heavy metal
concentrations in the marine environment of the Arabian Sea (except Cochin) were
below the threshold levels associated with the toxicological effects and the regulatory
limits. Metal enrichments were observed close to the major urban areas of coastal waters,
mostly associated with large scale industrialization. In the Mandovi estuary particulate Fe
(Kamat and Sankaranarayanan 1975) ; Al (Upadhyay and Sen Gupta 1995); As, Cu, Zn
and Mn in marine flora and fauna of the estuarine waters (Zingde et al. 1976), trace metals

(Alagarsamy et al, 2006) in the bottom sediments have been reported.

2.3.2 Metal —Microbe interaction
2.3.2.1 Ecological studies

The effects of heavy metals on macro-organisms are often apparent and well-
documented but their effects on microbial communities have received less attention.
Few studies based on culture method have been carried out from coastal waters,
estuaries and deep sea. Tolerance to heavy metals was more pronounced in Gram-
negative bacteria from coastal regions (Nair et al. 1993). The study showed that the
marine chromogenic and non-chromogenic bacteria were resistant to heavy metals and
drugs. Among the metals, Zn and Hg were found to be less toxic to pigmented
bacteria than Cd. High frequency of metal resistance among pigmented bacteria may
be due to the genetic linkage of these traits on the same plasmid or on co-transmissible

plasmids. Pigmented bacteria were observed to be resistant only at higher
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concentrations of antibiotics. Metal and antibiotics are linked to chromogenesis and
differential sensitivity to both metals and antibiotics resistance were observed among
pigmented and non-pigmented bacteria from the coastal waters (Nair et al.,1992). It
was postulated that the pigmented bacteria would survive better in a metal-polluted
environment, an analogue to the survival of Gram-negative bacteria (Olson and
Thornton, 1982). Heavy metal tolerance in chromogenic and non-chromogenic marine
bacteria was also recorded from the Arabian Gulf (Chandy, 1999). Hg tolerant
bacteria are ubiquitous in the coastal waters of the Arabian Sea .and present even in
the deeper depth (1000m) of the Bay of Bengal (De et al 2003, 2008). The population

" in water and 10* g in

of Hg resistant bacteria along the Indian coast was 10> L
sediment (Ramaiah and De, 2003). They were found in no-pollution (Positra,
Marmogao, Terekhol, and Gopalpur), low-pollution (Malvan, Karwar, Paradip,
Nagapattinam) and high-pollution (Mumbai, Chennai, Mangalore, Kulai, Padubidri,
and Ratnagiri) regions (Ramaiah and De, 2003). They opined that the occurrence of
Hg resistant bacteria in non polluted locations could be due to the adaptation of
natural population. The gene responsible for metal resistant efflux pumps can be
transferred from one bacterium to another through mobile genetic platforms such as
plasmids and transposons (Ghosh et al., 2000; Gupta et al,1998, 2001). Cd showed
negative effect on microbial biomass and diversity in a pond (Ganguly and Jana,
2002).They found that Cd affected the heterotrophic bacteria, ammonifying bacteria,
ammonia oxidizing bacteria, denitrifying bacteria and cellulose decomposing bacteria.
Very little information is available on the bacterial diversity from polluted Indian
waters. Nithya et al, (2011) recorded metal resistant bacteria belonging to
Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria (including alpha (a)-,
gamma (Yy)-, delta (8)-, and epsilon (g)-Proteobacteria), and uncultured bacteria in the
Palk Bay sediments. Studies on bacterial tolerance levels of metals from different
locations are available. Nair et al., (1993) studied the responses of two strains of
bacterial isolates from Indian coastal waters and found that the growth of
Flavobacterium sp. and Bacillus sp. were inhibited by Hg, Cd, and Zn..The order of
inhibition observed for Bacillussp was Hg>Zn>Cd and for Flavobacterium sp it was
Hg>Cd>Zn.. Further, it was noticed that with prolonged incubation Bacillus sp.
overcame the inhibitory effect whereas Flavobacterium sp. did not. Higher
concentrations of glucose in the growth medium increased the inhibitory effect of the
metal. At lower concentrations (15ug ml™) there was a stimulatory effect on ['*C]

glucose uptake on Flavobacterium sp. Their study also showed that the Gram positive
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isolate was less adaptable to metals than the Gram negative.Krishnan et al., (2007)
reported that both autochthonous autotrophs and heterotrophs work in tandem in
reducing Mn and other related metal ions in mangrove sediments. The maximum level
of tolerance exhibited by the bacterial isolates from the estuary was 1 mM in non-
amended medium and 10 mM in 0.01% glucose amended medium (Krishnan et al.,
2007) whereas bacteria from the coastal waters were capable of growth in liquid
medium containing 50 ppm Hg (= 68 ppm HgCL,) or more.Two isolates from an area
with intense shipping traffic were found to be capable of colony formation on sea
water nutrient agar with 75 ppm of Hg (Ramaiah and De, 2003). Mercury resistant
marine bacteria could detoxify 70% Cd and 98% Pb from growth medium containing
100 ppm concentration of the metals (De et al. 2008). Apart from heavy metals, the
mercury-resistant bacteria also degraded toxic polychlorinated biphenyls and
tributylin (De and Ramaiah 2007). In the case of arsenite, estuarine bacterial strains
could tolerate up to 1000 ppm tolerance and biotransformation potential showed the
capability of detoxifying arsenic as much as 92% within 120 hr (Nagvenkar and
Ramaiah, 2010). Studies from the deep sea regions were mainly on the tolerance level
and the transformation of metals by bacteria (Sujith et al, 2010, 2014). The
immobilization of Mn, Co and Ni by indigenous microbial communities associated
with deep-sea sediments showed that suboxic and organically rich conditions
favourMn and Co immobilization whereas oxic and organically poor conditions
favour Ni immobilization. The general trend in immobilization of the metals after 45
days in organically richer core BC26 was Mn (85.6 uM g™) > Co (46.3 pM g) > Ni
(6 uM g) n the other hand, the Mn(II) oxidizing bacteria associated with the basalt
under ambient concentrations of organic carbon promoted the immobilization of Mn
whereas carbon enriched conditions promoted the mobilization of Mn from the basalt
surfaces. The mobilization of Mn in the presence of added glucose was 1.76pg g d!
(Sujith et al. 2014).

Two bacterial isolates CR35 and CR48 from the bottom waters of the Carlsberg
Ridge had threshold concentration of 100 uM Mn*" and precipitated Mnexternally
(Fernandes et al., 2005). The maximum oxidation of Mn by CR35 isolate was 27 uM
Mn d” in unamended medium and it was 35 uM Mn d”' in 0.01% glucose amended
medium by CR48 isolate. The same isolates when exposed to Ni and Co in the absence

of Mn accumulated these metals both intra- and extracellularly (Sujith et al., 2010;

Antony et al., 2011). Immobilization of Co by the bacterial isolates occurred at lower

Studies on Metal Resistant Bacteria in Cochin Estuary and Its Response towards Antibiotics and Silver Nanoparticles 24 I



Chapter 2 Review of Literature

concentration of 10 uM Co concentration (Antony et al., 2011) whereas Ni at 100 uM
Ni*" concentration stimulated the growth of the bacteria. The immobilization of Ni by
CR35 isolate was 1.49 uM d”' and for CR48 isolate it was 0.12 pM d”' (Sujith et al.,
2010). The immobilization of Ni showed the participation of hydroxyl, carbonyl,
sulphide and phosphoryl groups in Ni binding. With Co, change in morphology of cells
was observed, a strategy to counter the toxicity of the metal. Isolates from the
Afanasiy-Nikitin Seamount tolerated higher concentration of Co, but showed decreased
level of tolerance in the presence of glucose (Suyjith et al., 2010). In India, industrial
developments have resulted in severe disturbance of ecological balance in most
ecosystems. The outcome of the disturbances include a decreased biodiversity, an
irreversible extinction of many sensitive species and the selection of cosmopolitan ones

that are adapted better to contemporary environment.
2.3.2 Cochin Estuary

. The Cochin backwater (Cochin estuary) is the largest of its kind on the west
coast of India with an area of 256 Km’. It is a well-studied estuary and its
hydrography, chemistry and biology was reviewed by Qasim(2003). The hydrography,
flow regime and geochemistry of CE have been well described by several researchers
(Sankaranarayananet al., 1998; 1978; Paul and Pillai., 1983;, Nair et al, 1990; Ouseph,
1992). Trace metals in bulk water and sediment were analyzed recently and the
concentration showed an increase from the earlier reports (Manju et al., 2014,
Deepulal et al., 2012, Martin et al., 2012, Priju and Narayana 2007, Kumar et al,,
2010). The concentration of trace metals in the sediments of Vembanad estuary,
Muvattupuzha river (Mallik 1987; Padmalal ,1997) and also the surface sediment of
CE have been investigated (Paul sk 2001; Balachandranet al.,2005 and 2006; Renjith
and Chandramohanakumar, 2007). Apart from the natural processes, the Cochin
estuary receives an additional dosage of effluents through industrial and domestic
discharges (Balachandran et al., 2006; Nair et al., 2006). There are 16 major and
several minor industries situated in the upstream region of the Cochin estuary
discharging nearly 0.105 Mm’d” of effluents. The effluents contain fertilizer,
pesticide, radioactive mineral, chemicals, petroleum products, heavy metal and fish

processing discharges. Apart from the natural processes, the Cochin estuary receives
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an additional dosage of heavy metals through industrial and domestic discharges.
(Balachandran et al., 2006; Nair et al., 2006). Several monitoring programs have been
initiated to understand the level of heavy metal pollution and its bioaccumulation
which have significant effect on the health of the estuaries, its inhabitants and the
coastal waters. Studies in the Cochin estuary during the past three decade have
demonstrated an increase in Zn concentration in the sediments from 70 to 1266 mg kg’
! (Venugopal et al 1982; Balachandran et al 2006). Similarly, the Cd concentration
also showed an increase from 1.7 to 14.94 mg kg during 1990-2000 (Nair et al.,
1990; Rajamani Amma, 1994; Balachandran et al., 2006). This significant increase in
the heavy metal concentration (Balachandran et al., 2005; Nair et al., 2006; Paul sk,
2001) is mostly through increased discharge of industrial and domestic wastes
(Balachandran et al., 2006; Nair et al., 2006). A study on the distribution of metals in
the sediment core in the Cochin estuary showed an increase in their concentration
from bottom to the surface, which further confirms the increased anthropogenic
activities with time (Unnikrishnan and Nair, 2004). High level of heavy metal have
been reported in bivalve (Lakshmanan et al 1989, Pillai et al 1995, Nair and Nair
1986), benthos (Jayaraj, 2006) and fish (Nair et al., 2006) from the Cochin estuary.
Although studies on microbial ecology have been initiated in CE (Thottathil et al
2008a,b; Parvathi et al., 2009; Parvathi et al., 2011; Thomas et al., 2006;Chandran and
Hatha, 2003)studies on metal - microbe interaction have hitherto not undertaken. The
effect of heavy metal pollution on the diversity and dynamics of microorganisms in
the marine environment is a topic of growing environmental concern as it can provoke

unintended alterations in the functioning of this estuary directly or indirectly.
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MATERIALS AND METHODS

3.1. Study Area

3.2 Analysis of Environmental Parameters

3.3 Bacterial Variables

3.4. Studies on MRB

3.5. Effect of Silver Nanoparticles (AgNPs) on Mutiple Drug Resistant (MDR) Pathogenic MRB
3.6 Statistical Analysis

3.1. Study Area

The Cochin estuary (CE) is one of the largest and productive estuaries along the
south west coast of India.The average depth is 5+2 m, except in the mouth region of the
estuary where the depth varies from 10 to 13 m. It serves as a repository for effluents
discharged from various industries such as fertilizer, pesticide, radioactive mineral and
heavy metal processing units , chemical and allied industries, petroleum refineries and
fish processing units (Report submitted by Monitoring Committee on Hazardous Wastes
and Hazardous Chemicals set up by the Supreme Court. http://www.pucl.org/
Topics/Industries-envirn-re-settlement/ 2004/ eloor.htm ). These effluents are rich in

heavy metal concentrations such as zinc, cadmium, nickel, cobalt and copper.
3.1.1. Sampling locations

Three sampling locations, viz.Vypin, Munambam and Eloor were selected for
the study based on the concentration of heavy metals reported at these locations
(Balachandran et al., 2005). The geographical positions of the sampling sites are
shown in Figure 1. Eloor is at an intersection where the river Periyar joins the CE. It
receives substantial input of untreated effluents from more than 240 industries located
along the banks of the river Periyar. Vypin is situated close to the mouth of the estuary
which is the major opening through which the Arabian Sea water enters into the
estuary. Average depth of Vypin is 10 m and is relatively not influenced by industrial
inputs. Munambam is located at the northern end of the estuary and has a fishing

harbor. The average depth is 4 m and is categorized as a saline area.
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3.1.2 Sample collection

Sediment and water samples were collected in March 2008 from the three
locations. From each location, five sediment samples were collected using a van Veen
grab (Mouth area - 0.05 m?). Sub-samples of the sediments were collected in plastic
bag using alcohol sterilized plastic spatula to avoid metal contamination. Near-bottom
watersamples were collected from the 3 sites by using a 10 L capacity Niskin water
sampler. The sampler was closed with a messenger at the desired depth. For metal
analysis all precautions were taken to avoid contamination from all possible sources.
Nylon rope was used for operating the samplers. Samples were collected in pre-
cleaned and acid washed polyethylene containers. All the samples were transported in

an ice chest to the laboratory for analysis.
3.2 Analysis of Environmental Parameters

3.2.1 Water

The water samples from the 3 locations were analyzed for routine environmental

parameters. Standard curves for each analysis are in the Appendix section.
3.2.1.1. Salinity and Temperature

Salinity and temperature were measured onboard with the aid of a portable

Conductivity-Temperature-Depth (CTD) probe (Sea Bird Electronics, Inc., USA).
3.2.1.2. Dissolved oxygen (DO)

Dissolved oxygen was determined by the Winkler's method by Strickland and
Parsons, (1972) using standard iodimetric titration. The principle of the determination
and the possible sources of systematic errors are discussed by Grasshoff,(1983). Water
samples were collected from the Niskin sampler in 125 ml acid washed (10% HCI)
glass-stoppered bottles taking care that no air bubbles were trapped inside and fixed
immediately on board with 1 ml of manganous chloride and 1 ml of alkaline iodide
solution (Winkler’s reagents A & B respectively). The samples were mixed thoroughly
and the precipitate was allowed to settle. The samples were transported to the laboratory
for analysis. One ml of sulphuric acid (10 N) was added to each sample and the sample

was shaken thoroughly for dissolving the precipitate and was titrated against 0.01 N
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sodium thiosulphate using starch as the indicator. The procedure was standardized by

using potassium iodate.
3.2.1.3. Nitrite

In this method, nitrite in the water sample when treated with sulphanilamide in
acid solution(Appendix) results in a diazo compound, which reacts with n(l-
naphthylethylenediaminedihydrochloride to form an azo dye (Grasshoff, 1983). The
absorbance was measured at 543 nm.Standards were run with analytical reagent

quality sodium nitrite. (precision: (0.01 pmol N-NO,T™).
3.2.1.4. Nitrate

Nitrate-N in the water sample was quantitatively reduced to nitrite by passing
through a reduction column filled with copper coated cadmium granules and measured
as nitrite. During the reduction stage, ammonium chloride buffer was added to the
sample to maintain a stable pH (Grasshoff, 1983). The sample after reduction was

analyzed for nitrite-N as described in section 3.2.1.3. (0.1 pmol N-NO5 ™).
3.2.1.5. Phosphate

Phosphate-P was determined as inorganic phosphate by the formation of a
reduced phosphomolybdenum blue complex in an acid solution containing molybdic
acid, ascorbic acid and trivalent antimony. The method was developed by Murphy and
Riley, (1962) and a variation of this method described by Grasshoff, (1983) was
adopted in the present work. Instead of single solution reagent as in the Murphy and
Riley procedure, two stable reagent solutions were used here. A mixed reagent of 0.5
ml containing molybdic acid and antimony tartrate followed by 0.5 ml of ascorbic acid
reagent were added to 25 ml aliquots of the samples. The absorbance was measured at
882 nm within 30 minutes to reduce any possible interference from arsenite.Potassium

dihydrogen orthophosphate was used as standard.
3.2.2 Metal Analysis

Concentrations of Zn, Hg, Co, Cd, Cuand Ni in the water and sediment samples
were analyzed using inductively coupled plasma atomic emission spectrometer (ICP-AES

- Thermo Electron IRIS INTREPID II XSP DUO). Sediment samples (5 nos.) from each
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station were sub-sampled and pooled for analysis. The pooled samples were dried at 60 °C
and finely powdered using mortar and pestle. One gram of finely powdered dried
sediment was digested repeatedly with HF-HCIO4- HNOs, suspended in 0.5 M HCI (25
ml) and analyzed for heavy metals following the standard protocol (Loring and Rantala,
1977). For water samples, a known volume was filtered through pre-weighed Millipore
filter paper (0.45 um) and the filtrate was acidified using concentrated HCI. The dissolved
metals were extracted using 2 % ammonium pyrrollidinedithiocarbamate (APDC) in 10
ml of methyl Isobutyl ketone (MIBK) at pH 4.5 and brought back to aqueous layer by
back-extraction with concentrated HNO; and made upto 20 ml with sterile de-ionized
water (Smith and Windom, 1972). The extracts were analyzed in the flame for trace
metals. The analyses were done in triplicate. The concentration of metal in water and

sediment are expressed as mg L™ and mg kg™, respectively.
3.3 Bacterial Variables

3.3.1 Abundance

Four fractions of the bacteria viz. total counts, total direct viable, total culturable
counts (colony forming units) and metal resistant bacterial counts were enumerated. The

details of the media composition and reagents used are given in the Appendix section.
3.3.1.1 Total Counts (TC)

Water samples were fixed in hexamine buffered formalin (2%) and diluted ten
times in sterile saline. For sediment samples, one gram of the pooled sediment sample
in hexamine buffered formalin (2%) was dispersed in sterile saline and sonicated in a
water bath for 10 min to dislodge the cells. Enumeration was done following the
method of Hobbie et al., (1977). Preserved samples (1 ml) were stained (in duplicate)
with 100 pl of acridine orange stain (Hi-Media, Mumbai) (final concentration 0.01%
w/v) and incubated in dark for 2 minutes before filtering through 0.22 pm black
stained Nuclepore polycarbonate membrane filter (Whatman Asia Pacific, Singapore).
The slide was then viewed under oil immersion objective (100x) of an epifluorescence
microscope (Olympus Corporation, Japan), equipped with HbO lamp and U-MWB2
mirror unit having excitation filter of 460-490 nm and emission filter of 520 nm.

About 10-12 fields of >30 bacteria per field were counted per filter using 100X oil
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objective lens and the average field count was used to calculate the total bacterial
abundance using the equation given below. The bacterial abundance in sediment and

water are expressed as cells g or cells L™ respectively.

] 1
Filter area ¥ Average count X .

Area of counted field Volume of sample X Dilution

3.3.1.2 Total Viable Count (TVC)

Total viable count was enumerated following the method of Kogure et al,
(1987). The samples were incubated under dark at 28 + 2°C for 8 hours (hr) with pre-
sterilized yeast extract solution to a final concentration of 0.01 % and 50 pul of
antibiotic cocktail. The samples were fixed in hexamine buffered formalin (2%).
Counting procedure was the same as mentioned in section 3.3.1.1 Swollen and
elongated cells were enumerated as viable bacterial cells and expressed as cells g™ and

cells L™, respectively for sediment and water.
3.3.1.3 Culturable Aerobic Bacteria

Culturable bacterial abundance was enumerated on Nutrient agar (NA) and
Peptone Yeast extract Tryptone (PYT80) agar plates (Appendix). The samples were
serially diluted and 500 pl of the samples were spread plated on NA and PYT 80 agar
plates. Colony forming units were counted after incubating the plates at 28 = 1°C for

48 hr. The numbers are expressed as cfu L™ for water and cfu g for sediment.
3.3.1.4 Metal Resistant Bacteria (MRB)

The metal resistant bacteria were enumerated using the method of Hassen et
al., (1998). Briefly, PYT 80 agar plates supplemented with 0.005 mM concentration of
each metal (ZnSO4.7H,0, HgCl,, CoCl, 6H,0, CdCl,, CuSO45H,0 and NiCl,) were
prepared. The samples after serial dilution were spread plated and incubated at 28 =+
2°C for 7 days. The colonies appeared on these plates were considered as MRB. The

colonies were counted and expressed as cfu L™ for water and cfu g™ for sediment.
3.4. Studies on MRB

Morphologically different metal resistant bacteria (250 nos) were isolated from

different metal plates and purified on NA plate following streak plate method. The
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purity of isolates was confirmed by Gram staining. The purified isolates (Vypin 83
nos., Munambam 83 nos. and Eloor 84 nos.) were stored in NA slants amended with

metal (0.005mM) at 4°C for further analysis.
3.4.1 ldentification

MRB were identified based on the fatty acid profile of the bacterium developed
for aerobic bacteria by MIDI Inc. USA)(Sasser, 1990). The details of reagents used for
fatty acid extraction are given in the Appendix section. Briefly, the bacterial isolates were
grown on Trypticase soya (TS) agar plates for 24 hr at room temperature (28 + 2°C). Wet
bacterial biomass of 40 mg was saponified at 95-100°C for 5 min in 1 ml saponification
reagent. After 5 min., the reaction mixture was vortexed and continued the saponification
for 25 min. Subsequently, the tube was supplemented with 2 ml methylation reagent and
kept at 80 + 1°C in water bath for 10 min. The mixture was extracted with methanol:
methyl tert-butyl ether (1:1) in a laboratory rotator and the aqueous phase was discarded.
The remaining fraction was subjected for a base wash with NaOH (0.25 M) in distilled
water (900 ml) and the extract was transferred in to a GC sample vial. Fatty acid was
analyzed in Agilent GC 6950 by injecting 2 pul of sample through a 25 m silica capillary.
The oven temperature was increased from 170°C to 310°C during each run. By increasing
the temperature, the fatty acids get volatilized at specific temperature and detected in a
Flame Ionization Detector (FID). CHEMSTATION software converted the signal from
FID into a chromatogram, which was transferred to SHERLOCK software for comparing
with fatty acid profile library of known organisms. SHERLOCK software has an inbuilt
library of fatty acid profiles for around 3000 bacterial species (Pendergrass and Jensen,
1997).The organisms were identified based on the similarity index. The chromatogram
and composition report of a representative bacteriium is given in Appendix . Previous
studies have shown that more than 90 % identification of bacteria by fatty acid profile is
in accordance with 16S rRNA gene sequencing method at the genus level and more than

70 % at the species level (Osterhout et al., 1991; Tang et al., 1998).
3.4.2 Multiple Metal Resistances

Bacterial resistance to heavy metals was examined by the plate diffusion method

(Hassen et al., 1998). The glassware used in the experiments were leached in 2 N HNO;
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and rinsed several times with sterile de-ionized water before using to avoid metal
contamination. In the central well of PYT plates, 500 pl of 5 mM of metal solution
(ZnS04.7H,0, HgCl,, CoCl,6H,O, CdClL, CuSO45H,0, NiCl) was added and
incubated at 28+2°C for 24 hr to allow diffusion of the metal into the agar. Six strains of
bacteria were streaked in a radial fashion on each metal plate (in triplicates) and
incubated for 7 days at 28 + 2°C. Bacteria which showed visible growth were counted
as metal resistant and scored for multiple resistances.Microorganisms were also
screened for AgNOs resistance in LauriaBertani (LB) agar plates supplemented with
different concentrations of AgNOs, ranging from 0.5 mM to 1000 mM. Filter sterilized
AgNOs solution was added to the LB agar medium just before preparing plates. Spot
inoculation of 10 bacteria were done on a single plate and incubated in the dark at room

temperature. The isolates showing growth in 72 hr was considered as resistant strains.
3.4.3 Antibiotic Resistances

Sensitivity of MRB to 12 commercially available antibiotic discs (Hi- media,
Mumbai) was tested. The mode of action, chemical class and concentration of

antibiotics are given in Table 1.

Mod‘e & Chemical Class Name Abbreviation COHCEI:I'II‘(I'IOH per
action Disc ([1g)
Cellwall | B-Lactams Ampicillin A 25

synthesis | Glycopeptides Vancomycin Va 10

Macrolides Azithromycin At 15
Oxytetracyclin 0 30
Tetracyclines

Protein Tetracyclin T 10
synthesis Gentamycin G 30

Aminoglycosides
Amikacin Ak 10
Chloramphenicol Chloramphinicol ( 30
Quinolones/ Ciprofloxacin (f 10
Nucleic acid | Fluoroquinolones Nalidixic acid Na 30
synthesis | Nitrofurantoin Nitrofurantion Nf 100
Sulfonamides Trimethoprim Tr 10

Table 1 Details of the antibiotics used in the study
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Muller Hinton agar plates were swabbed with 0.5 ml overnight grown cultures
and the antibiotic discs were placed aseptically. A maximum of six discs were placed
at sufficient distance from each other and all cultures were tested in duplicate. The
plates were incubated at 28+1°C for 18 hr and the clearing zones formed around the
discs were recorded using Hi Antibiotic Zone Scale (Hi media,Mumbai). The isolates
were recorded as resistant if there was no visible zone around the discs. Multiple
Antibiotic Resistance (MAR) index was calculated as the number of antibiotics to
which each isolate was resistant to the total number of antibiotics tested (Krumperman

and Paul1983).
3.4.4 Enzyme Expression

The presence ofenzyme among MRB was tested in NA medium prepared with
50% sea water supplemented with different substrates. MRB were grown in NA
overnight and the active cultures were used for different enzyme assay. Presence of
enzyme was scored based on the clearing zone or change in colour. The extent of
enzyme expression or production was measured as the function of zone size of
individual MRB to produce clearing zone in the substrate enriched solid media. Based
on the zone size (diameter in mm), production by MRB was classified as Low (0-10

mm), Medium (11-20 mm) and High (> 20 mm).
3.4.4.1Amylase

The bacteria were spot inoculated over the surface of a NA plate supplemented
with 0.2 % soluble starch and incubated for 24 hr at 28 + 2°C. The ability of bacteria
to produce amylase was identified by flooding the plates with 1% iodine solution. The

zones of clearance around the colonies were measured.
3.4.4.2 Gelatinase

The colonies were spot inoculated over the surface of a NA plate supplemented
with 0.4 % gelatin and incubated at 28 +2°C for 48 hr. The ability of bacteria to
utilize animal protein gelatin was recorded as the clearing zone around the colonies on

addition of HgCl, solution (15%).
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3.4.4.3 Lipase

NA medium was supplemented with 0.01% CaCl,. Tween 80 was sterilized by
autoclaving at 121°C for 20 min and was added to the molten agar medium at 45-50°C
to give a final concentration of 1% (vol/vol). The medium was shaken well until the
Tween was thoroughly mixed and was dispensed into petri plates and solidified. The
cultures were spot inoculated and incubated at 28 + 2°C. After 72 hr, the plates were
observed for formation of an opaque zone containing crystals of calcium around the

colonies as positive for lipase activity.
3.4.4.4 DNase

The ability of bacteria to produce DNase was tested using readymade DNase agar
(Hi media, Mumbai). The composition of the medium is given in Appendix section. The
cultures were spot inoculated and incubated at 28 & 2°C for 24 hr. The formation of blue

coloured colonies due to toludine blue was considered as postive for DNAse.
3.4.4.5 Phosphatase

Phenolphthalein phosphate agar containing sodium phenolphthalein phosphate
(0.01%) was prepared in 50 % sea water. The cultures were spot inoculated and
incubated at 28 + 2°C. After 48 hr of incubation, the colonies were subjected to
ammonia fumes and the formation of pink color to the colonies in 3 seconds (sec) was

considered as positive.
3.4.4.6 Urease

Christensen’s urease agar medium was prepared in 50 % sea water and
sterilized at 115°C for 20 min. Filter sterilized urea (40%) was added to the sterilized
medium and mixed well before pouring to plate. The plates were spot inoculated and
incubated for 48hr at 28 + 2°C. Development of pink color around the colony was

considered as positive.
3.4.4.7 Protease

Skim milk (5%, final concentration) incorporated in nutrient agar were
used as the screening medium. The cultures were spot inoculated andincubated at 28 + 2°C.

Clear zone around the bacterial colony afterincubation indicated hydrolysis of casein.
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3.5. Effect of Silver Nanoparticles (AgNPs) On Mutiple Drug Resistant
(MDR) Pathogenic MRB

3.5.1 Selection of MDR pathogenic MRB

Five MDR pathogenic MRB were selected for this study. Out of which three
were Gram negative (Vibrio alginolyticus, Pseudomonas aeruginosa and Escherichia
coli), and two Gram positive bacteria (Staphylococcus aureus and Bacillus subtilus).

These bacteria showed high levels of resistance against heavy metals and antibiotics.
3.5.2 Preparation of AgNPs

AgNPs was provided by Prof. Anantharaman, Department of Physics, Cochin
University of Science and Technology, Kochi, Kerala. The preparation and
characterization of the nanoparticles were done based on Thomas et al., (2008).
Briefly, AgNPs was prepared using Ag—SiO, solution by employing tetraethyl
orthosilicate-(TEOS), ethanol, distilled water and silver nitrate as precursors. The
mean particle size was 5-6 nm. The concentration of silver present in different
volumes used in this study was 0.189 ppm in 20pg.ml”, 0.208 ppm in 40pg.ml"0, 153
ppm in 60pg.ml”, 0.136 ppm in 80pug.ml" and 0.126 ppm in 100ug.ml™".

3.5.3 Effect of AgNPs onMDR pathogenic MRB

To study the effects of nanoparticles on MDR, pathogenic MRB,log phase cells
of the cultures were treated with AgNPs (in triplicate) for 3 hr. The controls
maintained were cultures without AgNPs. Both the experiment and control MDR
pathogens were analysed for cell wall integrity, viability, metabolically active cells,

fatty acid composition of the whole cell and genetic stability.
3.5.3.1 Cell wall integrity
Scanning Electron Microscopic analysis

Control and treated cell pellets were subjected to dehydration by running it
through a series of increasing concentrations of acetone (10, 30, 50, 70, 90 and 100%).
The samples were air dried, mounted on a stub and sputter coated with Au/Pd. The

cell wall integrity was observed using Scanning Electron Microscope (SEM).
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3.5.3.2. Viability

The loss of viability of bacteria (death) was tested using 2 methods viz. 1)
Resistant population (%) and 2) SDS assay.

1. Resistant population

Overnight grown cultures in LB broth were dispensed separately into
microcentrifuge tubes to obtain a final concentration of 10°ells mI". The tubes were
exposed to 0, 20, 40, 60, 80 and 100 ug.ml’1 concentrations of AgNPs separately for
one hour, and were spread over the surface of LB agar plates. All plates were

incubated at 28+1 °C for 24 hr before enumerating the resistant population (%).
2. SDS Assay

Overnight cultures of bacterial cells were washed copiously with sterilized
phosphate buffered saline (pH 7.4) and 200 pl of the washed cells were dispensed in
the wells of sterile micro plate. After measuring the initial absorbance, the test
solution was supplemented with, AgNPs (100 ugml™) and SDS (0.1%). Control wells
without AgNPs and SDS were also maintained. The absorbance at 600 nm was
recorded every 15 min for a period of 2 hr. The percentage decrease in absorbance

compared to the initial reading was plotted against time (Lok et al., 2006)
3.5.3.3 Metabolic active cells

Bacterial cells were treated with AgNPs for one hour and stained with 20 pl of
5-cyano-2,3-ditolyl tetrazolium chloride (CTC) solution following the procedure
recommended by the manufacturer (Molecular Probes; Invitrogen, Eugene, OR,
USA). Experimental and control samples were incubated for 30 min in dark condition.
Samples were filtered through 0.2 pm polycarbonate filters, and counter stained with
4' 6-diamidino-2-phenylindole (DAPI). Counterstaining with DAPI allowed
concurrent determination of total (i.e., viable plus non-viable) and respiring (i.e., cells
exhibiting CTC-formazan fluorescence) cell counts in a single preparation. The
samples were washed copiously with phosphate buffered saline and the dead and
metabolically active cells were differentially counted using 100 X oil objectives under

an epifluoresence microscope (Olympus, USA). Metabolic active cells were
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expressed as the ratio of metabolically active cells (i.e., CTC stained) to total cells
(i.e., DAPI stained, cells). If all the cells were metabolically active, then the ratio of

dead to live cell would be close to one.
3.5.3.4 Whole ell fatty acid composition

The whole cell fatty acid profiles of pathogenic bacteria before and after
treatment with AgNPs were analyzed using a gas chromatography system (16890N
Network GC system, Agilent Technologies Inc., Wilmington, DE). Difference in the
number and the intensity of fatty acids were compared. The details of fatty acid

analysis are as described in section 3.4.1.
3.5.3.5 Genetic stability

The effect of AgNPs on stability of genetic material of pathogens was
investigated by comet assay (Singh et al., 1999).Details of reagent preparation is given
in Appendix. Briefly, AgNPs treated and control cells were washed copiously with
phosphate buffered saline (PBS, pH 7.4) and re-suspended in saline and subjected to
comet assay. For comet assay, 50 pl of 10° bacterial cells were mixed with 500 pl of
0.5% low melting point agarose prepared in Tris acetic acid EDTA buffer (TAE).
Bacterial cells impregnated in agarose solution were spread over a microscopic slide,
pre-coated with a thin layer of 0.5% agarose and solidified by incubating at 4°C for 30
mins. Slides were then incubated at 37°C for 30 min and subjected to cell lysis for 1 hr
at 37°C, by immersing in lysis solution. Subsequently, the cells were subjected for
enzyme digestion by incubating in enzyme solution for 2 hr at 37°C. After digesting
the cell wall by lysis and enzyme treatment, the slides were equilibrated with 300 mM
sodium acetate and subjected to electrophoresis at 50 V for 15-20 min. Following
electrophoresis, slides were immersed in 1 M ammonium acetate in ethanol for 30 min
and then in absolute ethanol for 1 hr. The slides were air dried at room temperature
(28£1°C) and then immersed in 70% ethanol for 30 min and air dried. Slides were
then stained with 1 ml freshly prepared solution of 1 ul SyBr green in Iml Tris EDTA
(TE) buffer. The comets were recorded using a fluorescence microscope (OLYMPUS
BX 61) equipped with dichroic filter pairs (Excitation filter: 470-490 nm, Emission

filter 520 nm, Dichroic 500 nm) and digital camera attached to fluorescence
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microscope. The comet length was measured and processed using the software Image
Pro. The nucleic acids were classified based on comet length as intact/low (0 -10 mm

length) or heavy damaged (>10 mm) groups and are presented as histogram.
3.5.4 Mechanism of resistance by MDR Staphylococcus aureus

To understand the resistance mechanism of MDR strain S. aureus to AgNPs
resistance, Verapamil assay was carried out. Verapamil is a known calcium channel
blocker for ABC transporter. S. aureus cells were exposed to Verapamil to a final
concentration of 20 ug ml" for 1 hr prior to the treatment with AgNPs. Total death
rate and nucleic acid damage of the treated cells were determined following the

method given under sections 3.5.3.2. and 3.5.3.5 respectively.
3.6 Statistical Analysis

Metal concentrations of water and sediment, abundance, community structure
of culturable and non-culturable bacteria were subjected to various statistical analysis
(Snedecor and Cochran, 1967). Depending on sample size and distribution, the data
were normalized. The analyses were carried out using, student’s t test, 3 ways
ANOVA. Diversity index (Shannon-Wiener H”) for culturable community (Shannon

and Weaver, 1963) and Cluster Analysis were done using Primer 6 software.
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RESULTS

4.1 Water Quality

4.2 Bacterial Abundance

4.3 Studies on MRB

4.4. Studies on “MDR” Pathogenic MRB

4.5 Mechanisms of Resistance of S. aureus to AgNPs

4.1 Water quality

The physico-chemical characteristics of the near-bottom water from the 3
locations are given in Table 1. There was not much variation in the overall characteristics
of the water at the 3 stations and is comparable to earlier studies during the same period in
CE. Eloor is in the upper region of the estuary and has direct riverine influence unlike
Vypin, which is at the mouth of the estuary. Eloor recorded low salinity (19) and high
nitrate (19.35 pmol N-NO3T%) compared to Vypin and Munambam.

SI No Parameters Vypin Munambam Eloor
1 Temperature ('() 29 31 30
2 Salinity 3 27 19
3 Dissolved Oxygen (ml I') 3.16 39 5.17
4 Nitrite(LimoIN-NO, 1) 0.73 0.37 0. 20
5 Nitrate(Limol N-NO, 1) 382 10.70 19.35
6 Phosphate (mol P-PO,T") 1.38 0.33 0.51

Table 1Physico-chemical characteristics of near-hottom water at the 3 stations
Variation in metal concentrations

The average concentrations of heavy metals in water and sediment at Vypin,
Munambam and Eloor are presented in Table 2. Out of the six metals analysed, except
Hg other five metals were detected in the sediment and water. In sediment,
concentration of Zn was maximum (mean = 1017.7 mg kg ) followed by Ni (mean =
122.67 mg kg ™). Among the metals Zn was the most variable (C.V %= 121.5) and
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cobalt was the least variable (C.V % = 58.04).The concentration of all metals was less
in water compared to the sediment but the pattern of distribution of metals was similar
in water and sediment. In water Zn was the major metal (413.6 + 528.04mgL™)
followed by Ni and Co. Ni showed least variability (c.v %=83.14) whereas the other
metals are distributed with high variability (C.\VV % 127.7 - 141.4). Among the three
locations, Eloor recorded higher concentrations of all metals both in the sediment and
water. The concentration of Zn at Eloor was as high as 2758 mg kg™ and 1159 mg L™
in sediment and water, respectively. At Viypin, only Co (16 mg kg™) was detected in
the sediment, whereas rest of the metals were below the detection limit in both water
and sediment. There was a gradient not only in the concentration of metals but also

in the number of metals recorded at the 3 stations.

Heavy Sediment (mg kg -') Water (mg L)

Metals Vypin Munambam Eloor Vypin Munambam Eloor
In BDL 290 2758 BDL 80 1159
(o 16 80 114 BDL 21 50
Ni BDL 109 259 BDL 56 123
(v BDL 42 145 BDL BDL 97
(d BDL 27 164 BDL BDL 50
Hg BDL BDL BDL BDL BDL BDL

Table 2. Heavy metal concentration in sediment and water at the 3 stations (BDL-below detection limit)

3 way ANOVA of metal concentrations showed significant difference between
water and sediment (F (110) = 5.144 P<0.05), between metals (F (6 10y =7.784,P<0.05)
and between stations (F,10) = 10.01 P<0.05). Metal-station interaction was also high

(F (10,10)=6.068, P,0.05) showing spatial selectivity for metals except Zn.

Cluster analysis (Figure 1), grouped the stations according to the metal
concentrations and the clusters were statistically different. Sediment sample from
Eloor was distantly separated from other 2 stations. Water sample from Eloor and
sediment sample from Munambam were in the second cluster. This clearly shows that
the metals were carried down the estuary from source point (head of the estuary). The
metal concentrations in the 3 stations corroborates with the earlier report that
classified Eloor as heavily, Munambam as moderately and Vypin as least polluted

stations in the CE.
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Figure 1.Dendrogram of the stations Heavy metal concentrations were used to link the stations

4.2 Bacterial Abundance
421 TC, TVCand TCC

The bacterial abundance at the three stations is presented in Figure 2. TC in
sediment ranged from 10° to 10% cells gand in water from 10 to 10° cells L™ at the 3
stations. TCwas 2.23 + 0.3 x 10°and 6 + 0.05 x 10" cells g™in the sediment of
Eloor and Vypin respectively whereas it was 1.15 + 0.1 x 10° and 6.5 + 0.05 x 10°
cells L™ in the water, respectively. In Munambam, TC in the sediment was1.09 + 0.3
x 10° cells g*. TVC was four order less than TC and ranged from 10* to 10° cells L’
in water and 10°to 10° cells g in sediment. TVC in the sediment was high at
Vypin and Munambam. It ranged from 1.05 + 0.4 x10° to 2.65 #+ 0.3 x 10°cells g™.
TCC, was one to two order less than that of TVC. Though Eloor recorded comparative
less bacterial population, there was no significant variation in TC, TVC and TCC
between stations in water (P > 0.05) and sediment (P > 0.05).
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Figure 2. Bacterial abundance at Vypin(BM)Munambam( M) and Eloor(F) stations (a) water and (b)
sediment Values are expressed as average + SD

4.3 Studies on MRB

4.3.1 Abundance

MRB population in different metal amended media ranged between 10*“cfu g*
in sediment and 10°%cfu L™ in water (Table 3,4). At Eloor MRB population was high
in the sediment and ranged between 2.5 + 0.13 x 10“t06.3+ 0.4 x 10%cfu g’

' Though Hg was below detection limit in sediment and water Hg -MRB abundance
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was 6.3 + 0.4 x10%cfu g* in sediment and 4.2 + 0.9 x 10% cfu L™ in water at Eloor
(Table 3,4). At Vypin and Munambam the MRB was one order less than Eloor, and
was in the range of 10°fu gtand 10°cfu L™ in sediment and water,
respectively. There was significant difference between stations in the MRB
population of water (P< 0.05) and sediment (P < 0.0005). There was also significant
difference in MRB population between different metal in water (P< 0.005) and
sediment (P < 0.015). The abundance of MRB appears to be influenced by the metal

and its concentration at each station.

Metal MRB abundance (cfu g')
(0 .005mM) Vypin Munambam Eloor
In 1.1+04x10° 6.0+ 023 x10° 25+0.13 x 10*
(d 50%0.14x 10 5.0 £ 0.19 x10 1.7+017 x10°
Ni 121032 x10° 2.2+ 0.52 x10° 1.4+ 0.52 x 10°
(o 1.5+ 0.22 x10° 20+ 05x10° 1.1+ 0.33x10°
(u 4.0+ 0.34 x10° 121 0.64 x 107 1.6+ 0.2x10*
Hg Nd Nd 6.3+ 0.4 x10°

Table 3. Abundance of MRB in the sediment at the 3 stations (Nd-Not detected) Values are expressed as

average + SD

Metal MRB abundance (cfu L")
(0 .005mM) Vypin Munambam Eloor
In 3.0£0.34 x 10° 4.0+ 0.44 x10° 6.0+ 021 x10°
(d 1.3 0.15 x10? 2.0+ 0.21 x10° 1.8+ 0.08 x 10°
Ni 4.0+ 0.04 x10° 1.2 0.08 x 107 3.910.60 x 10°
(o 7.0 + 0.39 x10’ 1.4 % 0.05 x10’ 561012 x 10°
(u 4.0+ 0.54 x10° 8.0 £ 0.01 x10° 2.3+ 036 x 10°
Hg Nd Nd 42+ 09x10°

Table 4. Abundance of MRB in the water at the 3 stations (Nd-Not detected) Values are expressed as
average + SD

4.3.2 Multiple Resistances

Out of the 250 MRB, 130 MRB tolerated 5 mM of all 5 metals except Hg. The
percentage of resistance among the MRB varied with metal and station. More than 80%

of MRB from water and sediment of Eloor showed resistance to Zn, Ni, Cu and Co

[25)
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(Figure 3a). At Vypin and Munambam, the percentage of MRB resistance to different
metals was < 20 and 30 % respectively. MRB resistant to Hg was seen only at Eloor and
percentage of Hg resistant MRB was 30 and 20 % in sediment and water, respectively.
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Figure 3a Tolerance of MRB from Vypin( B)Munambam( M) and Eloor( ) to different metals (o) Water
(b) Sediment
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The percentage of multiple MRB in the 3 stations is given in Figure 3b.
Multiple MBR to 3 metals was observed in the sediment and water in all the 3
stations. There was difference in the percentage of multiple MBR in water and
sediment. The percentage of multiple MBR irrespective of the number of metals was
high at Eloor in sediment and water.
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Figure 3b: Percentage of Multiple MRB a) Water b) Sediment at the 3 stations. (M)Vypin () Munambam (F9)Eloor
The effect of different concentrations of AgNO3 (0.5 to 1000 mM) on MRB is
shown in Figure 4. Eloor recorded higher percentage of resistant MRB compared to
the other 2 stations. In 250 mM concentration of AgNO3 the % of resistance was

Studies on Metal Resistant Bacteria in Cochin Estuary and Its Response towards Antibiotics and Silver Nanoparticles a7 I



Chapter 4

Results

higher in sediment than water.

However, at higher concentration of 500 and 1000

mM, only sediment MRB from Eloor showed resistance (~40%). Bacteria from Vypin

and Munambam were the least resistant to AgNO; with less than 40% showing
resistance at 0.5 mM concentration.
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Figure 4: Percentage of silver nitrate resistant MRB at Vypin ( B)Munambam ( M) and Eloor( F)a) Water

and (b) Sediment
4.3.3. Antibiotic Resistance

Out of 250 MRB, 121 MRB showed resistance to at least one of the antibiotics

tested. The number of resistant bacteria in the sediment was more than water (Figure 5), a
trend similar to heavy metal. More than 50% of the MRB from Eloor sediment showed
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resistance against antibiotics A, At, Ak, C, Cf, Na, Nf, T and Va (expansion given
M&M Table 1). Least resistance was for Gentamicin (G) (Protein synthesis inhibitor) and
Trimithoprim (Tr) (nucleic acid synthesis inhibitor). The percentage of resistance to
antibiotics was higher among MRB from Eloor than Vypin and Munambam. At Vipin,
the percentage of antibiotic resistant MRB in the water was less than 10%.

LOO 1
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A At Ak C Cf G Na Nf O Tr T Va

100“b
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A At Ak C Cf G Na Nf O Tr T Va

Antibiotics

Figure 5. Percentage of antibiotic resistance in MRB af Vypin ( Il)Munambam ( W) and Eloor( ) (a) Water
and (b) Sediment
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Approximately 40% of the MRB from Eloor sediment showed Multiple
Antibiotic Resistance (MAR) index more than 0.75 (Figure 6). At Vypin and
Munambam more than 60% of the MRB from sediment had MAR index below 0.25.
MAR index below 0.25 was seen in 80% of MRB from of Vypin water.

100 -

0-0.25 0.25-0.5 0.5-0.75 0.75-1.0
MAR index

Figure 6. MAR index of MRB at Vypin ( B )Munambam (M) and Eloor(F1)(a) Water and (b) Sediment
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4.3.4 Enzyme expression profile

The enzyme expression of MRB at the three stations is given in Figures 7a. It
was observed that all the MRB, irrespective of their source of isolation (water or
sediment) expressed 7 hydrolytic enzymes. However, there was variation in the
percentage of MRB expressing different enzymes. In general the percentage of MRB
with enzyme activities was lower in the water than in the sediment samples. The

enzyme expression profile of MRB from Eloor was low (< 20%).
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Figure 7a Enzyme expressions of MRB at Vypin ( ) Munambam ( B) and Eloor () (a) Water and (b) Sediment
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It was observed that >80% of the MRB from Eloor produced “low level” of
protease, amylase, gelatinase and lipase whereas >70% of the MRB from Vypin water
showed “medium” production of enzymes (Figure 7b). Munambam water showed
more than 40% “medium” production. Enzyme profiling of MRB suggests that the
expression in number and extant of enzyme production was higher in the least
polluted Vypin station. Thus, it is apparent that metal pollution has a strong impact on

the enzyme expression profile of MRB.
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Figure 7h. Percentage of MRB with different level of enzyme production (a) Water (b) Sediment ( M)
low( ) medium () high

4.3.5 Identification of MRB
Two hundred and fifty MRB isolates were affiliated to 2 major phyla

Proteobacteria and Firmicutes and two minor phyla Actinobacteria and

Bacteriodetes (Figure 8). At Eloor Proteobacteria and Firmicutes were present in the
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sediment whereas an additional phylum Actinobacteria was recorded in the water.
Vypin and Munambam recorded 4 phyla Proteobacteria, Firmicutes, Actinobacteria
and Bacteriodetes. Actinobacteria and Bacteriodetes were <10% in Vypin and
Munambam. In the sediment Proteobacteria was 71, 59 and 48 % at Eloor,
Munambam and Vypin respectively. Among the different phyla, Firmicutes was the
dominant phylum in the water at Vypin (56.4%) and Munambam (53%) while at
Eloor it was Proteobacteria (63%). The number of phyla was low in polluted Eloor.

Vypin Munambam Eloor

Actinobacteria: 7.6 % Actinobacteria: 5%
Bacteriodetes: 2.5% | Bacteriodetes: 3% Actinobacteria: 5%

e Firmicutes: 32%

Protecbacteria: 63%

Firmicutes: 56.4%

Water

Actinobacteria: 9% . Actinobacteria: 2%
Bacteriodetes: 4% Bacteriodetes: 2%

Proteshacteria: 59%

Firmicutes: 35% Proteabacteria: 48%

Proteobacteria: 71%

Sediment

Figure 8. Diversity of MRB in water and sediment at the 3 stations

In CE, 26 genera and 46 species were recorded and the number varied within
the phylum and between the stations. There were 21 species of Proteobacteria
(Table5), 17 species of Firmicutes (Table 6), 5 species of Actinobacteria (Table7) and
3 species of Bacteriodetes (Table 8). In the sediment 31 species and in water 26
species were recorded. Maximum number of species was recorded at Vypin. Among
the 46 species, only 8 species were common in the 3 stations. The common species
under phylum Proteobacteria were Comamonas testosterone, Listonella anguillarum,
Pseudomonas aeruginosa, Pseudomonas huttiensis, Shigella flexinari and Vibrio
furnissi, Bacillus filicolonicus and Bacillus pumilus under phylum Firmicutes.
Maximum Proteobacteria species (18) were recorded in sediment at Eloor and ,6
species of Firmicutes. The number of Fimicutes species was low at Eloor compared
to other two stations. The Firmicutes isolated from Eloor were B. cereus, B.
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filicolonicus, B. pumilus GC-sub gp B, Staphylococcus cohini, S. aureus and S.
gallinarum. At Vypin, 17 species of Firmicutes were recorded in the sediment.

Proteobacteria WVypin 5 WMunumbumS " Eloor 5
Acinetobacter bavmanni - + + +
(edacia davicae - - . . . +
Chromobacterivm violacivm + - - - + +
Citrobacter koseri - +
Comamonas acidovorans - + - - + +
Comamonas testosterone - + + - + +
Escherichia coli + + - - + +
Enterobacter gergoviae - - ; ; + +
Klvyveraascorbata + + - +
Listonella anguillarum + + - + + +
Proteus mirabilis - - - + . ¥
Psevdomonas aervginosa + + + + + +
Pseuvdomonas huttiensis - + + + + +
Serratia marcescens - + - - + +
Shewanella putefaciens - + - - + +
Shigella flexnari + - + + + +
Vibrio alginolyticus - - R . + +
Vibrio cholera - - ] + + +
Vibrio furnissii + - - + + +
Xanthomonas arboricolapruni - + . - + +
Yersinia pseudo tuberculosis - + - - + +

Table 5. Species distribution of Proteobacteria at 3 stations (W- water;S- sediment)
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Firmicutes y Vypin S \l,\vllunumbu? y Eloor S
Bacillus atrophaeus + + +
Baciflus cereus + + +
Bacillus cereus Sub group A +
Bacillus filicolonicus + + + + +
Bacillus marinus + + +
Bacillus mycoides 6C-Sub gp + + + +
Bacillus oleronivs + + +
Baciflus pumilus 6C-Sub gp B + + + + + +
Bacillus sphaericus . + +
Baciflus sp +
Bacillus subtilis + +
Exignobacterivm acetylicum +
Paenibaciflus larvae pulvifaciens + +
Staphylococcus cohinicohini + +
Staphylococcus avreus + +
Staphylococcus gallinarum + + +
Table 6. Species distribution of Firmicutes at the 3 stations (W- Water; S- Sediment) .
Actinobacteria W Vypin S \:\Vllunumbur? W Eloon S
Cellulomonas turbata + +
Curtobacterivm flaccumbaciens
Micrococcus luteus +
Micrococcus lylae
Nocardia-nova + +
Table 7.Species of Actinobacteria at 3 the stations (W- water; S- sediment)
Bacteriodetes " Vypin S Vl\\lllunumbu? " Eloor S
Chryseobacterivm-balustinum
Havobacterivm +
Myroidesod orafus + + +

Table 8. Species distribution of Bacteriodetes at the 3 stations (W- Water S- Sediment)
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Three way Analysis of Variance (ANOVA) of the Proteobacteria showed
significant variation in species between water and sediment samples (F405%) =
5.1511 P<0.05 ) and also between the three stations (F4060%)= 2.976, P<0.06) in the

first order interaction effect (Table 9).

Source §S dof MSS Fratio
Between water andsediment ( A) 6.2222 ] 6.2222 5.1511%
Between stations (B) 7.1905 2 3.5952 2.9764°
Between species (C) 34.3810 20 1.7191 1.4231"%
AB interaction 0.01587 2 0.0079 0.006569"
BCinteraction 57.1440 40 14286 1.1827"
ACinteraction 8.4440 20 0.4222 0.3495"
Error 48.3175 40 1.2079
Total 161.7550 125

Table 9.3 Way ANOVA table for Proteobacteria (*P <0.05,F,,, a - P < 0.06, F , 5 NS - P> 0.05 not
significant)

It was observed that number of species in sediment at Eloor was significantly
different from that at Vypin water (t @os%) = 3.2442, P<0.05) and Munambam water
(t @05%) = 2.409,P< 0.05) (Table 10).Based on the spatial distribution sediment of
Eloor was found to be favorable for Proteobacteria (Average abundance is Maximum
= 1.619) whereas water and sediment of Vypin are least favorable and species of this
group were with highest variability in the water samples.

Proteobacteria Vypin | Munambam | Eloor Vypin Munambam Eloor
Water water water sediment sediment sediment

Vypin Water - O

Munambam water 0.268 -

Eloor water 1.976 1.257 -

Vypin sediment 1508 | 093 | 0359 : O

Munambam sediment 1.391 0.989 0.000 0.253 -

Eloor sediment 3.244 2.409 1.637 1.854 1.206

Table 10.Trillis diagram showing the significance of the difference between water and sediment samples
(O— Calculated t is not significant at 5% P>0.05. @ Calculated 1 is not significant at 10%

P<0.06. . Calculated t is significant at 5% P<<0.05 for 40 degrees of freedom)
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The 3 way Analysis of Variance (ANOVA) of species of phylum Firmicutes

revealed that there was no significant difference in water and sediment samples (P>

0.05). But between stations the abundance of species vary significantly (F (232,14%) =

2.0942,P<0.14). (Tablell). Further the species of this group shows a selective

preference for the locations as indicated by high station —species interaction (F (32,32,5%)

= 2.412,P<0.05).

Source df MSS F ratio
Between water and sediment (A) 0.3529 1 0.3529 0.4308"
Between stations (B) 3.4314 2 1.7157 2.0942°
Between species (C) 25.2941 16 1.5809 1.9297"
AB interaction 1.1176 2 0.5588 0.6821"
BCinteraction 63.2352 32 1.9761 2.417*
ACinteraction 10.3146 16 0.6446 0.7868"
Error 26.2157 32 0.8192
Total 129.9615 101

Table 11. 3way ANOVA table for Firmicutes (*significant P<0.05, F 5, ,; a- significant P < 0.06 calculated

F 2.9, b significant - P<0.14,F ;, 5,))

There was significant difference in Firmicutes species in water between Eloor

and Vypin (t s25%) = 2.0383,P<0.05). No such difference was seen sediment at the 3
stations (P>0.05) (Table 12).

Firmicut Vypin | Munambam | Eloor Vypin Munambam Eloor
irmicutes Water water water sediment sediment sediment
Vypin Water O . O
Munambam water 0.307 O O
Eloor water 2.038* 1311 O
Vypin sediment 0.754 0.295 1.223
Munambam sediment 1.084 0.647 0.587 0.445 -
Eloor sediment 1.259 0.785 0.447 1.603 0.132 -

Table 12. Table 12 Trillis diagram showing the significance of the difference between water and sediment

samples (Q- Calculated t is not significant at 5% P>0.05. . Calculated 1 is significant at
5% P<<0.05 for 32 degrees of freedom).
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Shannon Weiner index (H’) was higher in sediment than water. Vypin,
recorded the highest H’ of 3.1 and 3.3 in water and sediment, respectively. In Eloor H’
index was 2. 8 and 2.7 in sediment and water, respectively. The diversity decreased
with increase in metal concentration. The species diversity index (H’) at the three
stations is presented in Table 13. At Eloor maximum species diversity was observed
among Proteobacteria (2.70 in water and 2.89 in sediment, respectively) whereas the
diversity index (H’) was low for phylum Firmicutes (1.71 in water and 1.72 in

sediment).
Phvl Vypin Munambam Eloor
ylum Water Sediment Water Sediment Water Sediment
Proteohacteria 1.94 2.56 2.07 2.48 2.70 2.89
Firmicutes 2.60 2.37 2.05 1.73 1.72 1.71
Actinobacteria 1.09 1.38 0.69 ND ND ND

Table13. Shannon Weiner Indices (H') in the 3 stations (ND-not detected)

Cluster analysis based on species showed clear separation between stations
irrespective of the samples (Figure 9). More than 80% similarity in the diversity was
observed among the MRB from Eloor water and sediment whereas there was less than
60% similarity between Eloor and VVypin. The clustering based on metal concentration
was similar to that of species diversity, clearly reflecting the influence of metal

concentration on diversity.

20
g 40 +
=
E‘ 60 +
£
v 80_
100+ lWater Sedimen’j l‘\I\Ja’[er Sedimen’j lWater Sedimem‘]
| |
Munambam Vypin Eloor
Samples

Figure 9.Cluster analysis of water and sediment samples from the three stations. Bacterial diversity was
used to associate the stations.
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4.4, Studies on “MDR” pathogenic MRB

The multiple metal and antibiotic resistance profiles of five selected pathogenic

bacteria are given in Table 14 a, 14b and 14c. V. alginolyticus showed maximum MAR

index of 1.0, i.e resistant to all the antibiotics tested, followed by E. coli (MAR index
0.91), P. aeruginosa and B. subtilis (MAR index 0.75) and S. aureus (MAR index 0.25).
Interestingly S. aureus showed higher tolerance to AgNOs; (1000mM) and B. subtilis

showed lowest tolerance (100mM). Gram negative isolates, E. coli, V. alginolyticus and

P. aeruginosa, showed tolerance up to 500 mM concentrations of AgNO:s.

All the

cultures could tolerate upto 5mM concentration of other studied metals except B.subtilis

(2.5mM).
Bacterial species MARindex AgNO, concentration
B. subtilis 0.75 100 mM
S. aureus 0.25 1000 mM
E coli 0.91 500 mM
V. alginolyticus 1.00 500 mM
P. aeruginosa 0.75 500 mM

Table14a. MAR index and AgNO, tolerance level of MDR pathogenic MRB

Bacterial species In Cd Hg Ni Cu Co
B. subtilis 5mM 5mM 2.5mM 5mM 5mM S5mM
S. aureus 5mM 5mM 5mM 5mM 5mM S5mM
E coli 5mM 5mM 5mM 5mM 5mM 5mM
V. alginolyticus 5mM 5mM 5mM 5mM 5mM S5mM
P. aeruginosa SmM SmM 5mM SmM SmM SmM
Table14hb. Metal tolerance among MDR pathogenic MRB
Antibiotics | S gureus B.subtilis E.coli V.alginolyticus P.aervginosa

A R R R R R

At S R R R R

Ak R S R R S

( S R R R R

(f S S R R S

6 S R S R R

Va S R R R R

Na R R R R R

Nf S R R R R

0 S R R R R

Tr S R R R R

T S S R R S

Table14c. Antibiotic resistance among MDR pathogenic MRB
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4.4.1 Effect of AgNPs

The effect of different concentrations of AgNPs on MDR pathogenic MRB is
shown in Figure 10. All the Gram negative microorganisms, E. coli, P. aeruginosa and V.
alginolyticus, were sensitive to AgNPs and the level of sensitivity varied between
organisms. P.aeruginosa showed resistance up to 60 pg mI*AgNPs and complete
mortality of cells occurred at 80 pg ml™. V. alginolyticus was highly sensitive with
complete mortality even at lowest concentration tested (20 pug mi™) while more than 40 %
of P. aeruginosa cells were resistant up to 60 pg mi™. Negligible percentage of E. coli
cells (<10 %) were resistant up to 100 pg mI*AgNPs. Gram positive bacteria also showed
differences in their resistance pattern against AgNPs. B. subtilis was highly sensitive and
complete mortality was observed at minimum concentrations (20 pg ml™Y), while

approximately 80 % of S. aureus cells were resistant to 100 pg mI*AgNPs.

100
I I .
80 I W E. coli
E}?.. * I W P.aeruginosa
e
((}] 60 S.aureus
g W V.alginolyticus
B 10 W B. subtilis
iE
Wy
Qy 20
ot I
0 - i"'
20 40 60 80 100

Concentration of AgNPs (ug ml?)

Figure10. Percentage of resistance of MDR pathogenic MRB to AgNPs Values are expressed as average + SD
4.4.2 Cell wall Integrity

The cell wall integrity of test organisms on exposure to AgNPs was studied
using Scanning electron microscopic and SDS assay. The morphology of the cell of
Gram negative MRB affected after AgNPs treatment. The damage was more severe in
E. coli and P. aeruginosa, as the surface of majority of cells became rough and
elongated and cell wall breakage was seen in the SEM images (Figure 11). Inthe case
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of Gram positive B. subtilis the cell surface was distorted but in S. aureus there was no

significant changes in the morphology of the cell.

Before After _

E. coli

P. aeruginosa

V. alginolyticus

B. subtilis

S. aureus

Figure11 Scanning electron Micrographs depicting the effect of AgNPs on the hacterial cell morphology at a
magnification of 5000X. Before is without and after is with AgNPs treatment
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The cell wall integrity was quantified based on SDS assay. The percentage of
cell wall integrity of 5 MDR pathogenic MRB is shown in Figure 12. The cell wall
integrity of Gram negative strains V. alginolyticus, P. aeruginosa and E. coli was
reduced drastically after 50 minutes of incubation with AgNPs. The cell wall of B.
subtiliswas more resistant to AgNPs with only <20% loss of cell wall integrity in 50
minutes and approximately 40 % loss of integrity time after 90 minutes. The cell
wall of S. aureus was highly resistant to AgNPs and maintained more than 75% of its
cell wall integrity even after 120 minutes of exposure in 100 ug mI™*AgNPs .

140
mE. cali

=

20 I I M P.geruginosa

S.aureus

(=]
(=]
1

| u V.alginolyticus

m B. subtilis

L=
(=]
I

IS
o
L

Cell wall integrity( %)

[
(=]
1

[0} 10 20 30 40 50 60 90 120
Time (mins)

Figure 12. Cell wall integrity of MDR pathogenic MRD after exposure to AgNPs.

4.4.3 Metabolic activity of cells

Metabolic activity of the test organisms decreased with increasing
concentrations of AgNPs except for S. aureus (Figure 13). The ratio of metabolically
active to total cells in P. aeruginosa, V. alginolyticus and B. subtilis started decreasing
on exposure to 20 pgml™and reached a minimum of 0.2 at 60 pgml*AgNPs. E. coli
cells were metabolically active upto 40 pgml™ and minimum activity reached at 60
ugml™ of AgNPs. Interestingly no significant changes in the metabolic activity of S.
aureus were observed even at highest (100 pgml™) concentrations of AgNPs.
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Figure 13. Effect of AgNPs on metabolic activity of MDR pathogenic MRB. Metabolic activity is expressed as
ratio of active to total cell .Values are expressed as average + SD

4.4.4 Cell

wall composition

There was quantitative and qualitative change in the whole cells fatty acid

composition of the sensitive Gram positive and negative multiple drug resistant
MRB when treated with AgNPs.

In the case of Gram negative E. coli, fatty acids

concentration of C 17. ocyclo reduced from 25% in control to 12 % in treated cells

whereas the concentration of C 1499 increased from 7 % in the control to 35 % in the

AgNPs treated cells.

In P. aeruginosa cells the concentration of the fatty acids such

as 10:0 30H, 12:0 30H17:0 cyclo and 19:0 cyclo w8c were affected. V. alginolyticus

fatty acids such as C 1600 and C 14:00 decreased and Ci.q0 increased (Table 15).

E. coli V. alginolyticus P. aeruginosa
Fatty Acid Fatty acid (%) Fatty acid (%) Fatty acid (%)
Experiment | Control | Experiment Control Experiment Control
12:00 4.4 2.43 8.61 3.77 3.62 3.96
14:00 8.59 8.02 4.6 8.2
17:0 cyclo 12.98 25.46 0.61 1.68 2.21
16:00 34.96 7.19 24.53 31.18 35.08 33.91

Table 15. Percentage of fatty acid composition of gram negative “MDR” pathogenic MRB (Experiment
represents AgNPs treated cultures: Control is untreated)
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In both Gram positive cultures (B. subtilis and S aureus) the level of 15 antiiso
fatty acid concentrations declined after the treatment with AgNPs whereas 15 iso and
C 17: 00 concentrations increased and it was very prominent in S.aureus where the
concentration of 15 iso fatty acid increased from 10.25 % in control to 53.1 % in
AgNPs treated cells (Table 16). The chromatogram of fatty acid composition of the 5
MDR bacteria is given in Appendix

Fatty acid B subtilis S aureus
Fatty acid (%) Fatty acid (%)
Experiment Control Experiment Control

12:00 0.1 0.26 - 0.16
14:0 iso 1.19 1.12 1 1.56
15:0 iso 55.02 52.9 53.1 10.25
15:0 anteiso 19.71 23.81 19.93 44.81
16:0 iso 3.35 2.21 3.17 2.13
16:00 3.88 2.88 3.47 375
17:0 iso 9.87 5.84 10.75 7.83
17:0 anteiso 4.44 4.01 5.29 13.84

Table16. Percentage of fatty acid composition of gram positive pathogenic “MDR™ MRB (Experiment
represents AgNPs treated cultures: Control is untreated)

4.4.5 DNA damage

The effects of AgNPs on the integrity of DNA in test organisms were
represented as a function of tail length in Comet assay. Figure 14 shows the histogram
of comet assay results of MDR strains exposed to 100 ug ml* concentration of
AgNPs. The DNA damage induced by AgNPs was high in E. coli and P. aeruginosa,
wherein more than 45 and 65 % cells, respectively were damaged. The extant of DNA
damage was less in B. subtilis and V. alginolyticus,(ca 15%), However, the cell of S.
aureus were not affected by AgNPs as most of the cells ( 98%) were under low or no
damage class in comet assay. Figure 15 shows is a representative image of heavy

damaged and intact / Low damaged DNA of multiple drug resistant pathogenic MRB.
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Figure 14. Percentage of DNA damage incidents in MDR pathogenic MRB

Heavy damage

Intact / Low damage

Figure15. Image of heavy dumaged and intact/Low damaged DNA of a MDR pathogenic MRB
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4.5 Mechanisms of resistance of S. aureus to AgNPs

To understand the resistance mechanism of S. aureus to AgNPs , the cells
were exposed to efflux pump blocking agent VVerapamil before treatment with AgNPs.
It is observed that none of the cells were resistant to AgNPs in the presence of
Verapamil, while more than 80 % were resistant to 100 ugmI*AgNPs in the absence
of Verapamil (Figure 16a). The role of efflux pump in rendering AgNPs resistance to
S. aureus was further confirmed with comet assay (Figure 16,b). DNA damage was
observed among more than 60 % of cells in the presence of Verapamil. Figure 17 is a

schematic representation of AgNPs resistance mechanisms of S. aureus.
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Figure 16a. Percentage of viabilty of S aureus cells to AgNPs after Verapamil treatment
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Figure 16h. Percentage of incidents of S.aureus cells to AgNPs after Verapamil treatment
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5.1 Metal Pollution

Heavy metal pollution is an ever increasing problem in oceans, coastal waters,
estuaries, rivers and lakes. Estuaries, which form an important component of the coastal
ecosystem, are also known to be the major reservoirs of trace metals, both from
anthropogenic and natural origins (Bryan, 1980; Langston, 1982). The concentration of
heavy metals in CE was higher than that of the other impacted Indian estuaries (Qasim,
2003; Zingade and Desai, 1981; Subramanian et al., 1988; Mukherjee and Kumar 2012;
Kumar and Edward 2008; Banarjee and Gupta, 2012) except few regions close to
Mumbai. Heavy metals reaching the estuaries through fresh water/effluents may get
trapped in the sediment and their transportation towards the marine environment may
take a long time depending on the speed and course of water currents. Estuarine
sediments represent one of the ultimate sinks for heavy metals discharged into the
environment (Bettinetti et al., 2003; Hollert et al., 2006). During the past three decades
in CE ,Zn concentration in the sediments have increased from 70 to 1266 mg kg™
(Venugopal et al., 1982; Balachandran , 2006). Similarly, the Cd concentration also
showed an increase from 1.7 to 14.94 mg kg during 1990-2000 (Nair et al., 1990;
Rajamani Amma, 1994; Balachandran et al., 2006). The significant increase in the
heavy metal concentration recorded over a period of time in CE (Balachandran et al.,
2005; Nair et al., 2006; Paul SK,2001) is mostly through increased discharge of
industrial and domestic wastes into the estuary (Balachandranet al., 2006; Nair et al.,
2006). Indiscriminate release of industrial effluents and domestic wastewater resulted in
similar increase of metals in Ulhas estuary and the nearby Thane Creek (Patel et al.,

1985; Zingde and Desai 1981; Sahuand Bhosale,1991; Ram et al., 1998). An increase in

Studies on Metal Resistant Bacteria in Cochin Estuary and Its Response towards Antibiotics and Silver Nanoparticles 68 I



Chapter 5 Discussion

metal concentration from bottom to the surface of the sediment core in the CE was
observed (Unnikrishnan and Nair, 2004).This rise is mainly due the increased
anthropogenic activities with time. The increased monsoonal supply of anthropogenic
inputs together with previously deposited sediments may be the reason for the increased
metal contamination in the CE. Further, residual effects of most of these heavy metals
on aquatic biota are long lasting and highly deleterious (Forstner et al 1979; De Flora et
al., 1994) as they are not easily or rapidly eliminated from these ecosystems by natural
degradation processes. In CE, the concentration of different metals varied in sediment
and water. Metal concentration in CE was in the order of Zn > Ni > Cd >Cu >Co at all
the stations. The concentration level of different metals is influenced by the type of
effluents discharged by industries. Hg concentration was below the detectable limit in
the CE though considerable enrichment of Hg was evident in the estuary of Mumbai
compare to the open shore coastal water off Bassein-Mumbai (Zingde and Desai, 1981;
Sahu and Bhosale, 1991). The anthropogenic input of Hg in the estuary is mainly from
chloro-alkali production, instrument manufacturing and dentistry which are absent in
the industrial belt of the CE. Among the metals studied, Zn concentration during this
study was very high such high concentration of Zn has been reported earlier in the CE
(Venugopal. 1982; Balachandran , 2006). Spatial variation of metal concentration in
surface sediments of the estuaries is often attributed to mixing of sediments from
different origins and to pollution sources (Forstner, 1981). Station-wise variation in
metal concentration was observed in the present study. Eloor recorded the highest
pollution compared to Vypin. The level of metal concentration varies depending on the
distance from the point of discharges. Being mostly industrial in origin, this high
concentration of certain metals at Eloor can be attributed to its closeness with the
industrial belt. The concentration of metals in the CE was high in the sediment
compared to water at all the stations. The higher levels of the metals in the sediment is
due to the accumulation of metals through the complex physical and chemical
adsorption mechanisms, which depend on the nature of the sediment matrix and the
properties of the adsorbed compounds. The high affinity of the metals with organic
matter, metal oxides, and clay minerals helps in accumulating them in benthic sediment

effectively over time (Maher and Aislabie, 1992; Ankley et al., 1992; Wang et al,,
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2007). The concentration of the metals in the water column seems to depend on the
metal concentration in the sediment. It was also observed that the concentration in the
CE water was influenced by the level of the respective metal concentration in the
sediment. The favourable physico-chemical conditions of the sediment could have
remobilized and released the metals into the water column in the CE. The present results
also confirm that the CE is facing serious metal pollution problem which is increasing

with time due to enhanced discharge of untreated/partly treated industrial effluents.
5.2 Effect of heavy metal pollution on bacterial abundance

Heavy metals are both naturally and artificially present in ecosystems and many
metals and metalloids (e.g., Zn, Cu, Mn) are essential in the functioning of living
organisms as micronutrients serving as structural proteins and pigment, used in the
redox processes, regulation of the osmotic pressure, maintaining the ionic balance and
enzyme component of the cells (Kosolapov et al., 2004). The high-surface area-to-
volume ratio provides a large contact area for the microbes to interact with metals in the
surrounding environment (Ledin, 2000). Since microbial encounters with metals are
unavoidable in the environment, it is not surprising that microbes have developed
suitable means to put to use some metals that can exist in more than one oxidation state,
for their benefit as electron donors or acceptors in their energy metabolism (Ehrlich,
1997). A feature of heavy metal physiology is that even though many of them are
essential for growth, they are also reported to have comprehensively toxic effects on
cells, mainly as a result of their ability to denature protein molecules (Gadd and
Griffiths, 1977). Thus, metals have a high ecological significance due to their toxicity
and accumulative behavior. The xenobiotic pumps in microbes are also involved in
heavy-metal detoxification (Bard and White, 2000) that poses a serious threat to the
environment. The distribution of metals in the environment are at times depends on the
microbes. Effect of heavy metal pollution on the abundance, structure and diversity, and
dynamics of microorganisms in the marine environment is a topic of growing
environmental concern as it has direct and long lasting impact on the ecosystem

functioning and are not easily degradable (Valsecchi et al., 1995; Bong, et al., 2010).
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In marine environment, microorganisms are exposed to metals ever since their
origin and have acquired several mechanisms to survive in such environments.
Within the aquatic system, heterotrophic bacteria are the most abundant and
ubiquitous forms, and is recognized to be a critical component of the marine
biogeochemical cycles and food web dynamics. There are several studies in which it
has been reported that heavy metal pollution can affect the abundance and diversity of
microbial population (Ellis et al., 2003; Kandeler et al., 2000; Khan and Scullion,
2000; Chen et al., 2013; Wang et al., 2005; Wang et al., 2007). The total and viable
counts in sediment and water of the CE were within the reported values from other
Indian estuaries despite being considered as metal polluted estuary. Earlier study by
Thothalil (2008a) had reported the abundance of bacteria in the CE to be 10 ° L™
which was the same reported for the Madovi and Zuari estuaries (Ram et al.,2003). In
CE there was no significant difference in bacterial abundance between stations like
Eloor with high metal concentration and Vypin with low metal concentration, except
for the TCC which was low in number at the polluted station of Eloor. Eloor recorded
the highest concentration of 1159 mg L of Zn where the respective abundance of
TC, TVC and TCC in water were 10 °, 10 > and 10* cells L™ clearly showing that the
abundance of bacteria was as commonly observed in any tropical estuary and was
not significantly affected by the metal concentration. Bong et al., (2010) also
observed that higher concentration of Zn did not cause any significant change on the
bacterial abundance. An unchanged bacterial abundance was also observed by Liu et
al., (2012), who reported no differences in bacterial abundance which was subjected to
long-term heavy metal pollution. Chen et al (2013) suggest that long-term heavy metal
pollution had no effect and did not decrease the microbial biomass, activity and
diversity. Another explanation for maintaining the uniform abundance at the three
stations may be that metal contamination would have brought about a shift within the
soil microbes from sensitive to less sensitive microorganisms (Maliszewska et al.,
1985; Giller et al., 1998). Some group may be eliminated whilst others showed
increase in abundance because of reduced competition for substrate (van Beelen and
Doelman, 1997). The replacement of sensitive bacteria by the resistant ones may not

result in any net effect on broad microbial indices such as soil respiration or total
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biomass. Based on this study, it can be concluded that in the CE metal concentration
in sediment and water, whether high or low, had no significant influence on total and

viable bacterial abundance.

5.3 Studies on Metal resistant Bacteria (MRB)

5.3.1 Abundance

Population studies on metal resistant bacteria are very limited and are mostly
enumerated in a given metal amended medium but presence of MRB have been shown
to be ubiquitous as they have been isolated from different geographical locations
(Mudryk 2005). Azamet al., (1983) have reported that an adaptation or selection of
bacteria to heavy metal naturally occurs in the marine environment. And marine
bacterial strains can tolerate (without pre-adaptation) five- to tenfold higher heavy
metals concentrations than in seawater (Sigel 1993) as bacteria not only have a high
affinity towards metals but can also accumulate both heavy and toxic metals by a
variety of mechanisms (Harrison et al., 2006; Jeyasingh and Philip, 2005). The
abundance of metal resistant bacteria is more in marine system since the marine
isolates are encapsulated strains. It seems quite reasonable to state that many marine
bacteria having high metal tolerance produce metal sorption polysaccharides (Sigel
1993).The occurrence of MRB in the CE is not surprising and it was an order less than
TCC. TCC was always higher than MRB and decreased with increase in the
concentration of metal whereas MRB increased with metal concentration. This may be
due to adaptation as mentioned earlier by horizontal transfer of resistance genes
located on conjugal plasmid (Rasmussen and Sorensen, 1998). It appears that MRB
population in CE may be long term adaption of the TCC. In the CE, regardless of the
number of the metals present, the MRB abundance was in the order of 10 > *g"'with
sediment recording higher population. MRB population was one order less than TCC.
Spatial variation in the abundance of MRB in water and sediment was observed in the
CE which correlated to the concentration of the metal. In polluted Eloor sediment, MRB
was high and ranged between 2.51 + 0.13 x 10 *t0 6.3 £ 0.4 x 10 *cfug” compared to
other two stations. Comparable population of MRB have been recorded along the

Indian coast and higher population was in sediment than in water (Ramaiah and De
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2003). They also showed that the abundance varied between regions and was
dependant on the concentration of the metal with Mumbai recording higher
population. Higher abundance in water was also recorded by Ivanova et al., (2002).
They found the percentage of the metal-resistant strains isolated from seawater (50%
of the strains studied) was higher than mollusks and seaweeds (26 and 11%,
respectively) and varies with the source. In CE, the population of MRB was high in
sediment as the concentration of the metal in the sediment was more than double in
the water. This high concentration may be the reason for the evolution of more
resistant bacteria in sediment. In Torch Lake copper resistant fraction of the surface
community represented only 1/100™ of the cultivable community, but below the
surface sediment, the viable cell count dropped and copper resistant bacteria increased
to 30—-75% of the cultivable cells (Konstantinidis 2003). Earlier study on Hg resistant
bacteria from the coastal waters of India has shown that MRB abundance vary from
98% to as low as >0.5 % (Ramaiah and De 2003). They reported the occurrence of
Hg MRB from no-pollution (Positra, Marmugao, Terekhol,Gopalpur), low-pollution
(Malvan, Karwar, Paradip, Nagapattinam), and high-pollution (Mumbai, Chennai,
Mangalore, Kulai, Padubidri, and Ratnagiri) coastal locations showing that retrieval
depends on the location and the metal concentration used for isolation (Ramaiah and
De, 2003). In CE, Hg resistant population was also recorded though the metal was
below detectable levels at Eloor. The population of Hg resistant bacteria was 10> L™
in water and 10° g” in sediment. Studies using microcosm have shown that the
immediate response to metal pollution leads to a rapid increase in the frequency of
resistant bacteria but on a long term there is adaptation to heavy metal exposure and
maintenance of the hemostats. Microbial communities have been used to reveal the
long-term consequences of heavy metal contamination, report positive correlations
between environmental and metal concentration and increased tolerance of microbial
community (Lock and Janssen, 2005; Diaz-Ravina et al. 1994; Pennanen et al. 1996).
The common finding is that bacteria have a high frequency of resistance to any stress
(Andersson 2003; Martinez et al 2009; Stortz et al., 1990; Bjedov et al 2003). These
MRB bacteria, would have developed resistance to metals by different mechanisms,

such as metal sorption and intra-/ extra-cellular sequestration (Gadd, 2004 Hamamura
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et al., 2009; Wauertz et al 1997), detoxification and efflux pump systems to protect
themselves from metal toxicities (Silver and Phung, 1996 and 2005 Teitzel et al.,
2006; Nakagawa and Takai 2008; Haferburg et al., 2009; Martinez et al., 2009;
Haferburg and Kothe, 2010) to survive in stress environment. Microbial communities
can be used to reveal the long-term consequences of heavy metal contamination,
reporting positive correlations between environmental metal concentration and
increased microbial community tolerance and it can also give the sources of their
isolation (Lock and Janssen, 2005; Diaz-Ravina et al. 1994; Pennanen et al. 1996).
Since MRB do not arise by chance and that there must be selection factors (Hideomi
et al., 1997) and in CE, the selection factor is the heavy metals. The presence of MRB
is important in the contaminated CE for continuing the basic biological processes (De

et al., 2003)
5.3.2 Multiple resistances

Most of the studies on metal resistant bacteria are based on the study on
individual bacterium, its MIC and mode of resistance (Hassen et al 1998; Rasmussen
and Sorensen1998; Konstantinidis et al., 2003). Bacteria tolerate low concentrations
of certain transition metals such as cobalt, copper, nickel and zinc as they are essential
for many cellular processes of bacteria. Higher concentration may be cytotoxic and all
the bacteria may not tolerate metals. Most of the isolates from the CE were tolerant to
multiple metal ions. Such multi-tolerance to metals is a common phenomenon for both
algae and bacteria in aquatic system (Takamuraet al., 1989). Multiple tolerance to
more than 5 metals has been observed in halophilic eubacteria from solar salterns of
Spain (Nieto et al.,1989). The percentage of resistance varied with metal and location.
It was observed that 90 — 100% of the bacteria retrieved from Eloor region were
resistant against 5 mM concentration of Zn, Co, Ni and Cu, 50 — 60% was resistant
against Cd and 20-30% was resistant against Hg. At Vypin and Munambam metal
tolerance was less than 40%. Studies on the cultures of Oregon soils showed tolerance
to heavy metals with a large proportion tolerating Ni, Pb, and Zn upto 20 mM. The
patterns of tolerance among cultures varied as in the case of those in the CE. The
resistance depended on the metal concentration. The high levels of resistance and the

widespread tolerance were attributed to the high metal contents (4,390 mg Ni kg and
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330 mg Co kg) of Oregon soils (Abou-Shanab et al., 2007). Studies on toxicity of
metals to bacteria frequently report that the bacteria have a wide range of resistance
mechanisms to—and intracellular uptake of—trace metals from seawater (Ross, 1988;
Ferris et al., 1999). For example, cadmium tolerant communities are likely to show
co-tolerant to Zn (Paulssonet al., 2000) and organo tin tolerance simultaneously
occurs associated with cadmium tolerance (Suzuki et al., 1992). Ivanova et al,
(2002)suggest that the tolerance of bacteria to a high concentration of a particular
metal does not always correlate with their tolerance to other metals. This may be due
to the existence of different mechanisms responsible for bacterial tolerance to heavy
metals (Nies,1999,2000, 2003 2007). These mechanisms may be encoded by
chromosomal genes, but more usually loci conferring resistance are located on
plasmids (Cervantes and Gutierrez-Corona,1994; Wuertz et al 1997). A few metals
such as lead, cadmium, mercury, silver and chromium with no known beneficial
effects to bacterial cells are toxic even at low concentrations (Nies, 2003). Mercury
resistance was not observed in bacterial isolates from both Vypin and Munambam. It
is interesting to note that 20 - 30% of the microbes retrieved from both soil and water
samples of Eloor exhibited resistance against Hg, though it was not detected in any of
the samples. This may be due the ability of the same microorganism to be resistant to
one or a group of heavy metals (Allen et al. 1977; Barkay et al. 1987; De et al., 2003;
Silver and Phung, 1996; Timoney et al. 1978) or the natural flora is adapted to Hg
resistance (Ramaiah and De , 2003). In the CE, almost all the isolates from water and
sediment samples of Eloor were resistant upto 0.5 mM AgNOs.A significant number
of Eloor isolates from water (~30 %) and sediment (~40 %) showed resistance upto
250 and 1000 mM, respectively. However, Vypin and Munambam isolates showed
resistance to AgNO; only up to a concentration of 1 mM. Bacteria from Vypin and
Munambam were the least resistant to AgNOs and only less than 40 % of isolates
showed any resistance up to 0.5 mM. This low resistant compared with other metals,
may be due to silver higher toxicity to microorganisms (Zhao and Stevens 1998) as
silver and its compounds have strong inhibitory and bactericidal effects. (Franke et al.
2001;;Lok et al. 2006; Cho et al. 2005; Silver 2003). The resistant to silver may be

due nontoxic NPs. It has been shown that thesilver resistant Pseudomonas stutzeri
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AG259 accumulates silver particles of particle size 35 to 46 nm, in their cell (Slawson
et al., 1992). However, the mechanism by which these microorganisms as such cell or
their products reduce metal ions to non toxic NPs is hitherto unknown. The possibility
of biological precipitation of the metal compounds in the periplasmic space is
suggested (Xie et al., 2007). The possibility of efflux pump in tendering resistant
cannot be ruled out. As the efflux pumps of gram negative bacteria are not specified
for a particular compound, the same pump can function for extruding excess
concentrations of any heavy metals or antibiotics or other compounds which are toxic
to bacteria (Silver and Phung, 1996; Ramos et al, 2002; Pumbwe et al., 2007;
Martinez, et al., 2009). The number of isolates resistant to multiple metals was high in
the sediment compared to water in the CE which may be due to exposure to different
heavy metals that are available either in solution or adsorbed on soil colloids (Gilleret
al., 1998) as discussed earlier. The concentration of metals in CE increased from
Vypin to Eloor in sediment and water which corroborated with high, percentage of
multiple metal resistant bacteria at the gross polluted site compared to the intermediate
and less polluted stations. It is evident from this study that the heavy metal pollution
in CE propagated the evolution of multiple resistant bacteria and the percentage of
MRB resistance in sediment could serve as a reliable indicator of environmental status
and level of pollution than water (Caccia et al., 2003). Krishnan et al., (2007) reported
that both autochthonous autotrophs and heterotrophs work in tandem in reducing Mn

and other related metal ions in mangrove sediments
5.3.3 Co-occurrence of antibiotic resistance

Metal contamination functions as a selective agent in the proliferation of
antibiotic resistance (Baker-Austin et al, 2006). MRB of the CE also demonstrated
resistance towards the antibiotics which belonged to different chemical classes.
Interestingly, 93.9 % of metal resistant microbial isolates had resistance to at least one
antibiotics used. In the CE, the antibiotic resistance was more prevalent among metal
resistant bacteria isolated from metal rich Eloor station and more in the sediment than in
water. More than 50% of the isolates from Eloor showed resistance against antibiotics
such as A, At, Ak, C, Cf, Na, Nf, T and Va. Fifty percentage of MRB isolates from Eloor
showed MAR index of 0.25 with water showing higher MAR index against antibiotics A,
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At, Ak, C, Cf, Na, Nf, T and Va compared to the less polluted isolates (10 %) from Vipin.
The percentage of isolates with higher MAR index decreased with sediment recording
higher index than water. Eloor showed higher MAR index compared to the other 2
stations a trend seen with multiple metal resistances. Such strong patterns of co-
occurrence between metal and antibiotic resistance in environmental settings have been
reported (Baker-Austin et al, 2006; De Souza et al., 2006; McArthur et al 2011),
including soils amended with Cu (Berg et al., 2005), freshwater microcosms amended
with Cd and Ni (Stepanauskas et al., 2006), and liquid pure cultures containing Cu and Zn
(Caille et al., 2007). There is substantial overlap between known mechanisms for metals
and antibiotic resistance, such as those for copper and tetracyclines, copper and
ciprofloxacin, and arsenic and b-lactams (Baker-Austin et al, 2006). Exposures of
microbes to metal have been shown to increase the incidence of bacterial antibiotic co-
resistance through the transfer of genetic elements containing both metal and antibiotic
resistance genes and also through the selection of organisms that contain elements, such
as non- specific eflux pumps, which can convey cross-resistance to both metals and
antibiotics (Summers 2002). Jacoby (1974) studied properties of R-plasmids determining
gentamicin resistance by acetylation in P. aeruginosa. He found that plasmids also
determine a number of other properties not previously known to be associated with
Pseudomonas R-factors, such as resistance to ultraviolet (UV) light, to Hg2+, and to
organic mercurial. It has been observed that bacteria which carrying resistant to metals are
also resistant to many antibiotics and other toxic chemicals by virtue of carrying plasmids
and/or transposons encoding genetically linked metal and antibiotic resistances. The gene
cascade responsible for metal resistance and antibiotic resistance reside in the same
mobile genetic platforms, resulting in the co-expression of resistance to multiple
antibiotics and metals (Novick and Roth, 1968; Foster, 1981; Baker-Austin, et al., 2006).
Study by Ramaiah and De ( 2003) on MRB from Indian coastal waters indicated that
increased use for industrial and agricultural practices and the subsequent effluent
discharges into marine regimes continuously increased metal concentrations. This might
lead to the selection of microbial assemblages capable of high tolerance to metal through
acquisition of plasmids and/or transposable elements. Co-resistance is a potential

mechanism of dual resistance in bacteria based culture result .Co-resistance was found to
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multiple metals and multiple antibiotics which suggests that co-selection is not limited to
a subset of metals or antibiotics in the CE. The co-resistance may be attributed to the
genes located together on the same genetic element such as a plasmid, transposon
or integron (Novick and Roth, 1968, Baker-Austinet al., 2006, Foster,1981; Chapman,
2003). The microhabitat sediment served as sources of metal and antibiotic resistance. It is
plausible that this elevated tolerance is a result of higher selective pressure imposed upon
microbial communities by elevated metal concentrations in sediments compare to water

within the CE.
5.3.4 Enzyme expression profile

Marine organic compounds provide a labile energy and carbon source to
heterotrophic bacteria. The bacterial degradation of high molecular-weight organic
compounds is initiated by the activity of extracellular enzymes (Hoppe andGocke 1993;
Chrost 1991). Enzymes are largely responsible for marine biogeochemical cycling, due
to the important and essential functions in various biochemical processes in marine
ecosystems. Breakdown by bacterial enzymatic hydrolysis is a crucial first step in
bacterial production to yield sufficiently small monomers from macromolecules of
polymeric organic matter (Hoppel991) enhancing regeneration of dissolved organic
matter, nutrients, and trace metals from particulate matter and organic aggregates (Azam
et al 1983). Enzyme activities, however, are quite sensitive to physicochemical and
environmental parameters, including metals (Revilla et al., 2005). Since heavy metals
severely affect the growth, morphology and metabolism of microorganisms through
functional disturbance, protein denaturation and destruction of the integrity of cell
membranes (Leita et al., 1995), heavy metals would directly affect the diversity,
activity and the community structure of the microbial population (Ellis et al., 2003;
Kandeler et al., 2000; Khan and Scullion, 2002). At low contamination level, activities
of some enzymes were least affected but significantly decreased the activities of some
other enzymes (Kandeler et al., 2000) which however, depended on the metal. For
instance, at high concentrations of Zn, the aminopeptidase activity is inhibited, but no
change is seen for trypsin and chymotrypsin (Bong et al, 2010). In the CE, the
concentration of Zn at Eloor was as high as 2758 mgkg™' in the sediment and 1159 mgL’

! the water and is apparent that this high concentration would be having an overall effect
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on the activities of enzymes. It was found that Zn inhibited amiinopeptidase an
important enzyme in the nitrogen cycle (Choudhury and Shrivastava, 2001). Though
aminopeptidase was studied in CE, Zn contamination would have also affected the
biogeochemical cycle in the CE. For the stability and co-existence of species in
different environmental conditions, bacteria trade-off abilities to perform one set of
function for another (Bohannan et al., 2002; Tilman, 2000). Therefore, it can be
reasonably concluded that the communities inhabiting the heavily polluted locations are
constrained in the functional diversity. Recent studies by Jessup and Bohannan (2008)
have shown that environmental changes can alter trade off shape, and the different
physiological mechanisms can lead to different sensitivities to environmental changes.
In relatively pristine Antarctic waters, De Souza et al,(2006) have reported trade off
mechanism among bacteria with respect to multiple enzymes and multiple metal
resistances. It was observed that 75 — 100% of the organisms retrieved from water and
sediment samples of Eloor region had low expression profile of amylase, protease,
lipase and gelatinase enzymes. The inhibition of proteolytic enzyme observed in this
study is consistent with the previous report on toxic effect of Zn at high concentration
that could involve masking of the catalytically active subunits of the enzyme or
substrate proteins, changing the conformation of the enzyme structure and competing
with cation activators connected with the formation of a substrate enzyme complex
(Silver and Ji, 1994). It should be noted that ~40% of the organisms isolated from soil
samples of Vypin region had high protease enzyme expression profile and 25 — 35% of
isolates had high expression profile of amylase, lipase and gelatinase enzymes. In the
CE, the heavy metal pollution significantly influenced the enzyme expression profile of
the same species of microorganism isolated from different sampling sites. It is known
that enzymatic hydrolysis of large dissolved and particular organic matter to micro-
molecules of less than 600 Da is the vital process in sustaining primary productivity in
the marine environment (Hoppe et al., 2002; Yamada and Suzumura, 2010). Therefore,
it can be assumed that the reduced enzyme expression profile of microorganisms in
Eloor region may be adversely influencing the biogeochemical cycle and productivity in

that region. However, further studies by integrating the molecular and biochemical tools
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are required to explain the correlation between heavy metal induced repression of

microbial enzyme profile and productivity in the CE.
5.3.5 Diversity of MRB

A primary objective within microbial ecology is the structuring of communities
on local and global scales (Jessup et al., 2004). In recent years, culture-independent
methods have been used in preference to traditional isolation techniques for microbial
community analysis. However, there is reservation regarding if uncultured organisms
are important for understanding the impact of metal on indigenous bacteria. This
study was based on bacteria isolated by traditional plate culture methods, as readily
culturable bacteria may be the most important in terms of both biomass and activity.
Ellis et al., (2003) found that metal contamination did not have a significant effect on
the total genetic diversity present but affected physiological status, so that the number
of bacteria capable of responding to laboratory culture and their taxonomic
distribution were altered. Thus, it appears that plate counts may be a more appropriate
method for determining the effect of heavy metals on soil bacteria than culture-

independent approaches.

In the CE, Gram negative and positive MRB were present. Sequestration of
heavy metals in cell wall is a common strategy in gram negative and positive
organisms (Haferburg and Kothe, 2007; Haferburg, et al., 2009). Because these metal
resistance determinants are commonly located on plasmids or on transposons, it has
been suggested that these genes may be spread to divergent bacteria by horizontal
transfer and there are evidences to show that these genes are shared both within as
well as across the gram positive and gram-negative bacteria communities (Bogdanova
et al., 1988). The major MRB groups in the CE were Proteobacteria, Firmicutes,
Actinobacteria and Bacteroidetes. Proteobacteria and Firmicutes were present at all
the stations. However, the number of groups in the CE was less than that in the Palk
Bay (southeast coast of India). Nithya et al., (2011) recorded Actinobacteria,
Bacteroidetes, Firmicutes, Proteobacteria (including alpha (a))-, gamma(y)-, delta(d)-,
and epsilon(g)-Proteobacteria), and uncultured bacteria in the Palk Bay sediments. The
decreased in diversity may be due to the high level of metal pollution in the CE.

Heavy metals are both naturally and artificially present in the aquatic ecosystems and
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have a high ecological significance due to their toxicity and accumulative nature.
Contamination of soil with heavy metals affects the qualitative and quantitative
structure of microbial communities resulting in decreased metabolic activity and

diversity (Giller et al. 1998; Del et al. 1999).

There was spatial variation in the diversity of MRB, the Gram negative MRB
being was more prevalent (64.2%) and increase of Gram negative bacteria with the
level of metal pollution. In Eloor the percentage of Gram negative bacteria was 86.7%
whereas in Vypin it was 47.5%. Studies have shown that gram-negative bacteria are
the dominant species in metal contaminated soils (Doelman and Haanstra, 1984; 1986;
Mata et al., 2012) as well as in regions of heavy metal occurrence such as deep sea
sediment and vents (Campbellet al., 2001; Haddad et al 1995). Highly specific efflux
pumps assist Gram negative bacteria to regulate their intracellular metal concentration
even if they are not specialized to grow in the presence of high concentrations of
heavy metals (Martinez, et al., 2009). The presence or absence of a metal ion
transporter of particular specificity depends on the metal ion, bacterial species and e
physiological status of the cell (Nies and Silver 1995). Concentration of heavy metals
significantly influenced the diversity of cultivable bacteria in the CE. At Eloor, the
overall diversity in water and sediment at group level was low compared to that at
Vypin and Munambam. Bacteriodetes and Actinobacteria were observed in less
polluted Munambam and Vypin. The diversity decreased at generic and species levels
with increased metal concentration in the CE. At Eloor, the number of genus and
species was less compared to that at Vypin. High Shannon indices (H”) of 3.1 and 3.3
in water and sediment respectively were recorded at Vypin. A contrasting perspective
has been recorded from sites contaminated with multiple heavy metals. Gillan et al.,
(2005), investigating the chronically polluted sediments within Norwegian fjords it
has been observed that elevated concentrations of Cd, Cu, Pb and Zn did not
significantly affect microbial community diversity along a concentration gradient.
Similarly, Sorci et al. (1999) employed 16S rRNA to monitor the bacterial diversity
within metal and organically polluted sites of New Bedford Harbor, Massachusetts
and recorded elevated microbial diversity within the contaminated sites, relative to

reference sediments. Muller et al., (2001) have reported that most of the dominant
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genera that occurred at the less polluted site were not observed at the grossly polluted
site because metal pollution can cause shifts in the composition of the bacterial
community. Metals had a significant impact on microbial community structure (Wang
et al., 2007). Sites contaminated by a single metal species such as mercury
(Rasmussen and Sorensen, 1998) or cadmium (Ganguly and Jana, 2002), showed low
microbial diversity. This is due to the distinctive selective pressures of the metal,
encouraging the growth of specialist metal-resistant organisms under a certain group.
Proteobacteria was dominant in the grossly polluted station (Eloor). Genome analysis
of marine Proteobacteria has revealed that these organisms have an array of metal
transport systems including detoxification mechanisms, depending on the bacterial
strain and the source of isolation, which facilitates their survival in an environment
containing elevated concentrations of heavy metals (Nakagawa et al, 2007).
Diversity of Proteobacteria retrieved from Eloor included 18 spp, where as only seven
were recorded at Vypin. Previous studies have noted the presence of Gamma
Proteobacteria in sediments contaminated with metal concentrations (Feris et al.
1999). The high tolerance of marine Proteobacteria to heavy metals has been reported
earlier and the mechanism has been attributed to the high concentration of
polysaccharides present in them (Ivanova et al., 2001). Another study showed that
thiolate peptides may be the primary regulators of cadmium homeostasis in marine
Proteobacteria (Ivanova 2002). Further studies have reported detoxification of heavy
metal induced superoxide anions with superoxide dismutase as another strategy in
E.colilineage of Proteobacteria for protection from heavy metal toxicity (Geslin, 2001;
Haferburg and Kothe, 2007). Increased levels of expression of genes encoding efflux
proteins have been observed when P. aeruginosa without any previous exposure to
heavy metals was subjected to heavy metal shock (Teitzel, et al., 2006; Martinez, et
al., 2009). In Eloor, the diversity of Firmicutes in soil sample was restricted to
B.cereus, B. filicolonicus, B. pumilus GC-Sub gpB, S.cohini, S. aureus and
S.gallinarum whereas the unpolluted samples collected from Vypin consisted of 17
species of cultivable Firmicutes which included 12 species of Bacillus 3 species of
Staphylococcus and 1 species each of Exignobacterium and Paenibacillus. Bacillus

and Streptomyces species also possess the capacity to adsorb high amounts of metals
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from solution using polysaccharides (Vijayaraghavan and Yun, 2008; Haferburg, et
al., 2009). Bacillus listeria and Staphylococcus survive in the presence of elevated
levels of cadmium by employing efflux “pumping” detoxification mechanism
facilitated by efflux ATPases (Gadd and Griffiths,1978). It could be hypothesized that
the proteobacteria with high diversity of metal resistance strategies survived in
sediment samples collected from Eloor, the most polluted area. However, higher
concentrations of heavy metals inhibit the growth of other marine bacteria and hence,
can impair the homeostasis of aquatic microbial communities. Although the adverse
effects of different metals on soil microbial communities have been reported (Said and
Lewis, 1991; Khan and Scullion, 2002) it is difficult to evaluate the effect of multiple

complex metal-mixtures on microbial communities.
5.4 Effect of AgNPs on MDR pathogenic MRB

Silver nanoparticles have emerged as an alternative therapy to control the
multiplication of multiple antibiotic resistant bacteria as silver and its compounds
have strong inhibitory and bactericidal effects on bacteria, fungi, and virus (Franke et
al., 2001; Morones et al., 2005; Lok et al., 2006; Lara et al., 2010; Liet al., 2010; Cho
et al., 2008; Silver., 2003) but lower toxicity to mammalian cells (Zhao and Stevens
1998). An important feature of nanoparticles is that, on a mass basis, more atoms are
available at the particle’s surface to interact with its surroundings. At this scale,
unique physicochemical characteristics appear, and the reactivity is largely increased
in comparison to the nanoparticles’ bulk counterparts (Luoma, 2008). As compared to
the antibiotics, the bacterial resistance against ionic silver has been observed only
rarely and does not constitute any significant implications (Silver 2003). Studies on
the effect of AgNPs on marine MDR pathogenic bacteria are not available in
literature. MDR pathogenic MRB of the CE was inhibited by AgNPs except S. aureus.
The level of susceptibility of MDR pathogens differed with the concentration of
AgNP. Studies have shown that AgNPs have an antimicrobial effect on clinical E.
Coli, V. cholera, P.aeruginosa, S.aureus, S. typhus and the multiple drug resistant P.
aeruginosa, the ampicillin resistant E. Coli and the erythromycin resistant S.
pyogenes (Lara et al., 2010; Shrivastava et al., 2007;Morones et al., 2005). AgNPs

inhibitory property can be attributed to the higher surface area per unit volume and
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subsequent enhancement in surface reactivity (Luoma, 2008; Ji et al., 2007), which
provides better contact area on microorganisms to penetrate the cell membrane of the
cells below the size range of 10 nm (Sondi and Salopek-Sondi, 2004; Xu et al., 2004).
Even though the antimicrobial properties of AgNPs are receiving greater attention, the
mechanism by which they kill microorganism is not well understood (Choi and Hu,
2008; Morones et al., 2005; Nel et al., 2006; Pal et al., 2007). It was evident from the
SEM images in the present study that morphology of the gram negative isolates has
changed after AgNPs treatment with severe damage to E. coli and P. aeruginosa.
Microscopic observations of the treated MDR cells showed distinct morphological
changes in cell shape or morphology of the sensitive MDR pathogenic MRB. This was
similar to the morphological changes observed in E. coliby Jung et al., (2008). Recent
electron microscopy studies have revealed that majority of AgNPs were localized in
the membranes of treated E. coli cells (Sondi and Salopek-Sondi, 2004). SDS assay
showed that the cell wall integrity of all the strains except S. aureus was reduced
drastically after 120 minutes of incubation with AgNPs. After 80 minutes of
incubation V. alginolyticus, P. aeruginosa and E. coli losttheir cell wall integrity.
Possible mechanisms of AgNPs interaction with cell wall can be that AgNPs attach to
the cell membranes, causing changes in membrane permeability and redox cycle in the
cytosol (Lok et al., 2006; Morones et al.,2005;Sondi and Salopek-Sondi, 2004). The
smaller and uncharged Ag nanoparticles with higher surface areas could interfere with
cell membrane function by directly reacting with cell membrane to allow a large
number of the Ag atoms to attack or easily enter the cells (Nel et al., 2006; Morones et
al., 2005). Intracellular fatty acids are of particular importance in the maintenance of
a number of biological processes. The phospholipid portion of the bacterial membrane
may also be the site of action for the silver species (Lok et al., 2006). In response to
stress the total fatty acid content in bacteria may decrease or increase (Guckert et al.,
1986; Guerzoni et al., 2001). An earlier report (Chattopadhyay and Jagannadham,
2003) has shown nearly exclusive role of branched fatty acids for adaptations towards
environmental toxicity where the ratio of anteiso/iso fatty acid was used as one of the
most important determinant for bacterial cell membrane fluidity and consequentlytheir

adaptation towards environmental stress. Since the MDR isolates were also multiple
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metal resistant, it is expected that the isolates have changed fatty acid composition for
tolerating heavy metals. Interestingly, there was change in fatty acid composition to
AgNPs. The response of sensitive MDR pathogenic MRB was different. In the case of
gram negative E. coli and Vibrio sp composition of short chain fatty acid (12:00 and
14:00) was more. In the case of Gram positive multiple resistant B. subtilis there was
over production of branched fatty acids ie 17:0 and 15:0 iso-fatty acid to combat stress
condition which is in agreement with previously published report on resistant B.
subtilis (Hosonoand Hahn, 1986). In case of B.subtilis an increase in anteiso/iso ratio
was observed during its growth at extremely low temperatures (Klein et al., 1999). It
is paradoxical, why sensitive MDR B.subtilis MRB produced more of the branched
fatty acid. Studies have shown that the first site of action of AgNPs is the cell wall
where it induces a chain of reactions including the expression of a number of envelope
proteins (OmpA, OmpC, OmpF, OppA, and MetQ) and disruption of the barrier
components (Lok, et al., 2006). It appears that AgNPs unique property of higher
surface area per unit volume and subsequent enhancement in surface reactivity would
have induced over production of certain fatty acids which would have caused
instability to the membrane and affected barrier components. However, further study
is required to substantiate this hypothesis. Considering that the bacterial plasma
membrane is the site of active transport, respiratory chain components, energy
transducing systems, membrane stages in the biosynthesis of phospholipids,
peptidoglycan, LPS and capsular polysaccharides, and the anchoring for DNA, an
alteration of the membrane’s integrity would have a great impact on sensitive bacteria.
It was observed that the metabolic activity of the four sensitive MDR was affected on
exposure to 20 ugml” concentration of AgNPs. AgNPs also induced DNA damage. It
was high in E. coli and P. aeruginosa, wherein more than 45 and 65 % cells were
affected. The extent of DNA damage was less in B. subtilis and V. alginolyticus (ca
15%). AgNPs are reported to follow the same mode of action as other silver
derivatives but not that of antibiotics (B-lactamics, quinolones, aminoglycosides,
trimethoprim-sulfamethoxazole, and vancomycin) mode of action. Silver ions are
known to bind to sulfthydryl groups, which lead to protein denaturation by the

reduction of disulfide bonds (S—S — S—H + H-S) Besides, silver ions can complex
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with electron donor groups containing sulfur, oxygen, or nitrogen that are normally
present as thiols or phosphates on amino acids and nucleic acids(McDonnell, 1999).
Storz et al., (1990) proposed that oxygen associates with silver and reacts with the
sulthydryl (—S—H) groups on cell wall to form R—-S—S—R bonds there by blocking
respiration and causing death of cells. The mechanism by which AgNPs kills MDR
pathogenic MRB may be as follows. AgNPs pass through trans membrane porins
(typical internal pore size in nm) for transport across cell membranes to cause the
damage of cellular constituents and metabolism. Inside the cytoplasm AgNPs form
low molecular weight regions (Li et al., 2010) which interfere with respiratory chain
reaction (Schreuers and Rosenberg, 1982; Dibrov et al., 2002), nucleic acid stability
(Ghandour et al., 1994; Fenget al., 2000; Lok et al., 2006), cell division and finally
leading to cell death (Rai et al., 2009; Li et al., 2010). Resistant strains have not
been reported against AgNPs until now, as AgNPs have different plasmon resonance
and scattering properties at nanoscale (Merchan et al., 2006; Pandian Panacek et al.,
2006; Lechiguerra et al., 2005; Srivastava et al., 2007; Yoon et al., 2008; Ayala-
Nunez et al., 2009; Rai et al., 2009). MDR S.aureuswas resistant to AgNPsupto
100p ml™". Resistance towards organic solvents and aromatic compounds is associated
with alteration of bacterial cell morphology and composition of total cellular fatty acid
(Isken and De Bont 1998; Sardessai and Bhosle 2002; Nair et al., 2005; Zahir et al.,
2006). SDS assay showed the cell wall of S. aureus was highly resistant to AgNPs and
maintained more than 75% integrity after 120 minutes of incubation in 100 pg ml
'AgNPs. Jung et al., (2008) suggested that the thickness of the peptidoglycan layer of
Gram-positive bacteria may prevent to some extent the action of the silver ions.
Higher inhibitory activity of AgNPs was more in E. coli than S. aureus. Stress
conditions can regulate the membrane fluidity and stability by adjustments of
membrane lipid or fatty acid composition (Navarilzzo et al, 1993). There was
increase in 17:0 and 15:0 iso-fatty acid in the resistant S. aureus. This is in agreement
with the report that gram positive bacteria is more tolerant due to the over production
of branded fatty acids during metal stress conditions as previously reported (Hosono,
1982; Hazel and Williams 1990; Pennanen et al., 1996). Since S. aureus maintained

more than 75% of integrity after 120 minutes of incubation in 100 pg mI" AgNPs, it
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appears that AgNPs failed to bind and disturb the bacterial cell membrane activity
(Sondi and Salopek-Sondi, 2004). Hence on exposure to 20 ugml” concentration of
AgNPs, the metabolic activity was not affected S. aureus. Interestingly, no significant
changes in the metabolic activity of S.aureus were observed even at the highest (100
pgml™) concentration of AgNPs. Genetic material of MDR cell of S. aureus was not
affected by AgNPs as most of the cells (98%) were under low or no damage class in
comet assay. The role of efflux pumps in rendering resistance to S. aureus to AgNPs
cannot be ruled out as studies have shown that efflux pumps responsible for resistance
in number of bacteria (Lix et al., 1998; Isken and De Bont, 2000; Tokunaga et al.,
2004). Efflux pumps are recognized as the active systems in both gram negative and
positive bacteria, which render them resistance against antibiotics and metals
(Chuanchuen, 2001; Martinez, 2009; McMurry, 1980; Paulson, 2003; Sanchez, 2005;
Zgurskaya, 2000). It was interesting to note that more than 60% of S. aureus cells
treated with AgNPs and Verapamil incurred damage to DNA. Verapamil, derivative
of phenylalkylamine has been reported as an inhibitor of several bacterial ABC efflux
pumps including LmrA and calcium channel antagonists (Poelarends et al., 2002,
Zechini and Versace, 2009, Kannan et al., 2009). Bacterial ABC transporters have
been assigned for the translocation of nutrients across the cell membrane and the same
can be shared for conferring resistance towards toxic compounds (Locher et al., 2002).
It can be postulated that the efflux pump of S. aureusis versatile enough to protect it
from deleterious effect of AgNPs.

This study on the metal microbe interaction in the CE provided important
insights on the abundance, diversity, metabolic functions of metal resistant bacteria.
The urban discharge has resulted in the increase of autochthonous and allothonous
resistant Proteobacteria and Furmicutes. Most of the MRB were tolerant to multiple
metal ions and functioned as an agent in the proliferation of antibiotic resistance. The
mode of resistance of MRB was the efflux system. The study on the effect of AgNPs
on MDR pathogenic MRB showed that AgNPs is an alternative and effective
antibacterial agent. However resistance of MDR S. aureus to AgNPs points to the

necessity for imparting control over the wide spread applications of AgNPs.
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SUMMARY AND CONCLUSION

The thesis entitled “Studies on metal resistant bacteria in Cochin estuary and its
response towards antibiotics and silver nanoparticles” is the first study that deals with
the metal —microbe interaction in a heavy metal polluted Indian estuary.

Scope

Estuaries are buffer zones with one end opening to the ocean and the other end
receiving fresh water. It is also the final repositories for runoff pollutants including
metals that are introduced into the system due to anthropogenic activities from the
urban and industrial areas. The direct impact of heavy metal pollution on microbial
ecosystem includes the alterations in the abundance, physiology and diversity which
will have an adverse effect on several biogeochemical cycles of the coastal waters.
Understanding the effect of trace metals in heavy metal polluted estuaries is a major
goal for the microbial ecologists. In recent years, due to inputs from industries,
sewage and excessive use of pesticides and fertilizers, the Cochin estuary (CE) is now
categorized as a heavy metal polluted estuary. Comprehensive information on the
adaptation/response for bacterial tolerance towards high concentrations of heavy
metals in either aerobic or anaerobic marine environments around India is limited.
Studies on metal - microbe interaction are hitherto not undertaken in this estuary. This
study hypothesize that long-term heavy metal pollution will affect the abundance,
diversity and activity of the bacterial community and this pattern also persists along

the metal concentration gradient in the estuary.
Accordingly, the following objectives have been proposed for the study:

1. Distribution and enzyme expression profile of metal resistant bacteria along a

pollution gradient in the Cochin Estuary.

2. Differential response of metal resistant bacteria towards antimicrobial agents.
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3. Mechanisms of metal resistant bacteria towards silver nanoparticles.
Approach

Three stations with varying levels of heavy metal contamination in estuary
were selected .viz. highly polluted Eloor, intermediate polluted Munambum and least
polluted Vypin, to understand the effect of metal concentration on the bacterial
parameters. In this study two common microhabitats viz. sediment and near-bottom
water were selected to represent different degree of metal exposure and bacterial
density. Sediment harbours higher bacterial densities than water column due to the
availability of organic matter. It is also the site of high metal deposition compared to
water and hence will be conducive for the selection of resistant genes. These two
habitats will indicate which microhabitat is likely to be the favourable source of

resistance.

The physico-chemical parameters of the water (temperature, salinity, pH, DO,
nitrite, nitrate, phosphate) and metal concentration (Zn, Hg, Co, Cd, Cu, Ni) in both
water and sediment were measured using standard techniques. Bacterial variables (TC,
TVC, TCC) in water and sediment were enumerated and the composition of metal
resistant bacteria (MRB) was studied using MIS. The response of heavy metal
resistant bacteria to antibiotics and silver nanoparticles were studied using standard
method. The data were processed using the software Primer 6.

Salient Findings:

» The near-bottom water characteristics of the 3 stations were not very
different from the earlier reported values of the CE. Station Eloor being
close to the Periyar River and near the estuary’s headwaters, showed fresh
water influence with low salinity of 19 and high nitrate 0f19.35 pmol N-NO3
L™,

»  The concentration of all five metals was high in the CE. There was a gradient
not only in the concentration of metals but also in the number of metals
recorded at the 3 stations. Heavy metal concentration was in the order of Zn
> Ni > Cd >Cu >Co at all the stations. Station Eloor being close to industrial
belt, recorded the highest concentration of all the metals both in sediment and
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water whereas at Vypin which is located near the mouth of the estuary had
low concentration of all the metals studied. The source of heavy metals in
the CE is mostly from industrial and domestic wastes. The 3 way ANOVA
showed significant difference in metal concentration between water and
sediment (F (110) = 5.144 P<0.05), between metals (F 10y =7.784,P<0.05)
and between stations (F(,10) = 10.01 P<0.05).The tidal forcing and river water
flow brings about a gradient in metal concentrations in the CE.

0% cells 9*and in water it was

Total bacterial counts in the sediment was 1
10%° cells “* at the three stations. It was in the same order as reported for
pristine estuaries. However, the culturable fraction was affected by metal
concentration. TCC was low in polluted Eloor station (6.3 + 0.5 x 10° cells -
1) compared to the least polluted Vypin (1.3 + 0.13 x 10* cells L™).

MRB population in the sediment ranged between 10°“*cfu g and in water it
was 10%%cfu L™ . MRB population at Eloor was high and ranged between 2.5
+0.13 x 10* and 6.3 + 0.4 x 10cfu g in sediment and 6.0 + 0.21 x 10° and
4.2 +0.9 x 10°cfu L™ in water. At Vypin and Munambam, the MRB was one
order less than that at Eloor, and was 10%cfu g* and 10* cfu L™in sediment
and water, respectively.

Bacterial resistance to different metals increased along the metal
contamination gradient in the CE. Percentage of multiple metals resistance
was high at Eloor (~80%) compared to Vypin (>20%) and Munanbum
(~30%).Resistance was more predominant in sediment than in water at each
station due to higher metal bioavailability in the sediment.

Antibiotic tolerance among MRB showed the same trend. Approximately
40% of the bacterial isolates from Eloor sediment showed Multiple Antibiotic
Resistance (MAR) index of above 0.75while more than 60% of the isolates
from Vypin and Munambam sediment showed MAR index of below
0.25.This supports the hypothesis that metal contamination directly selects
the metal tolerant bacteria and co-selecting the antibiotic tolerance. Majority
of the metal and antibiotic MRB were pathogenic.
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>

The level of heavy metal pollution exerted a reduction/ adaptation in the
diversity and enzyme expression profile of MRB.

The MRB of water and sediment expressed 7 hydrolytic enzymes. There was
variation in the number and extent of expression with respect to station. It
was observed that >80% of the organisms retrieved from Eloor region had
low level of protease, amylase, gelatinse and lipase enzyme expression
compared to Munanbam and Vypin. This variability in enzyme expression
profile may have been brought about either due to the suppression of the
expression of certain enzymes of the same bacteria occurring at different
stations or that the heavy metals actually selected different bacteria with
different enzyme expression profile.

There was spatial variation in the diversity of MRB, the Gram negative MRB
being more prevalent (64.2%) and increased with the level of metal pollution.
MRB were affiliated to Phyla Firmicutes, Proteobacteria, Actinobacteria and
Bacteriodetes. The number of phyla decreased with increased metal
concentration. A total of 26 genera and 46 species were recorded from the
CE and the number varied within the phylum and between the stations. Eloor
showed the lowest Shannon Weiner index (H’) of 2.8 and 2.7, in sediment
and water, respectively. Proteobacteria was the major group of MRB and the
percentage increased with the level of pollution. At Eloor, Proteobacteria
accounted for 71% of the MRB compared to less polluted Vypin (48 %) and
Munambam (59 %). %). Among the different phyla, Firmicutes was the
dominant phylum in the water samples of Vypin (56.4%) and Munambam
(53%). The 3 way Analysis of Variance (ANOVA) of Proteobacteria showed
significant difference between water and sediment, between the three stations
and between the species. However, such a significant difference was
observed for Firmicutes only in the water of Eloor and Vypin.

AgNPs has emerged as an alternative therapy to control the multiplication of
multiple drug resistant (MDR) bacteria. This is the first study on the effect of
AgNPs on marine MDR pathogenic bacteria. MDR pathogenic MRB
followed differential response to AgNPs. Gram negative isolates were
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inhibited by AgNPs by sequential interaction with cell wall, metabolism and
genetic stability. Gram positive Staphylococcus aureus (S. aureus) was
resistant to AgNPs. The ABC efflux pump system of S. aureus was versatile

enough to protect the cells.
Conclusion:

o Estuaries are ecologically sensitive ecosystems and this work is an
important contribution to the understanding of how and at what level
pollutants such as metals can interfere with the natural environmental
variability and influence the abundance and structure of the microbial
communities in these environments. It also provides information on the
level of metal pollution and identifies locations within the estuary that are
likely to serve as reservoirs for tolerant bacteria.

o Trace metals are significant contaminant in the CE due to industrial and
agricultural inputs. This study concludes that in the CE, metal concentration
encourages the selection and adaptation of different microbial populations.
Although, statistically it is demonstrated that metal contamination accounted
for a significant amount of variability in the community composition, other
possible factors contributing to the determination of the microbial composition
have not been quantified in the present study. Controlled contaminant
exposure experiments in microcosms are essential to test this hypothesis and
remove the background variability present in the estuary. Nevertheless, this
study provides significant insights into the bacterial diversity and its response

to different levels of metal contamination.

To the best of my knowledge this is the first report on the metal-microbe
interaction in the CE. Anthropogenic-derived metals are implicated as
mechanisms maintaining metal resistance in the estuarine environment. This
study has also shown the prevalence of multiple metal/ antibiotic resistant
bacteria and their differential response towards metal nanoparticles. From this
study it can also be postulated that the presence of metal in the environment
can maintain the property of antibiotic resistance in the bacteria.
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. The knowledge about the mechanisms of microbial resistance to heavy
metals will be applicable in environmental biotechnology to mitigate heavy
metals from polluted environment in order to restore ecological niches.

Future Line of Work

. Future work based on culture independent bacteria and molecular approaches
is needed to address specific mechanisms involved in the association between
metal exposure and antibiotic resistance. Quantification of genetic elements
that are involved in these mechanisms would yield pertinent information
regarding the frequency of antibiotic and metal tolerance genotypes in the CE.
A range of novel methods based on RNA and DNA analysis are applied in
marine microbiology. Few of these are 16SrDNA for molecular
phylogenetic, 454 pyrosequencing, MALDI TOF, DNA microarrays, use of
functional probes etc. Microbial rRNA genes extracted from samples can be
sequenced and detected directly. These sequences can then be compared with
those from other known microorganisms. Additionally, group and taxon-
specific oligonucleotide probes can be developed from these sequences
making direct visualization of microorganisms in habitats. Another approach
IS in situ activity measurements.

o One potential link between local metal contamination and global climate
change phenomena is the inhibition of bacterial nitrous oxide reductase by
metal toxicity. This leads to incomplete denitrification and accumulation of the
potent greenhouse gas N20O known to interfere with the ozone layer. As excess
emission of nitrous oxide leads to climate change, future work will involve the
measurement of N,O concentration along the pollution gradient of CE.

. Metal contamination represents a long-standing, widespread and recalcitrant
selection pressure for both environmental and clinical bacteria. Since metal
resistance is linked to antibiotic resistance it leads to spread of antibiotic
resistant bacteria. Stringent control on use and discharge of metal and
antibiotics into the environment should be implemented to avoid the spread of
MRB. Spread of MRB can also be controlled by using metal accumulation and
bioremediation capacity of microorganisms. Pre-treatment of effluent by
consortia of metal resistant bacteria can be exploited to remove, concentrate
and recover metals from industrial effluents.
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APPENDIX

Readymade Hi-media (Mumbai) was used wherever mentioned.

MEDIA

All

preparations are in 50% sea water. Composition of the medium are in grams per liter.

Nutrient Agar
Peptone

Beef extract
Sodium chloride
Agar

pH

5.0

3.0

5.0

15.0

7.3+0.2

Peptone Yeast extract Tryptone (PYT 80)

Peptone
Yeast Extract
Triptone
Agar

pH

Starch Agar
Peptone

Beef extract
Sodium chloride
Soluble starch
Agar

Ph

0.08

0.08

0.08

15.0

7.3+0.2

5.0

10.0

5.0

2.0

15.0

7.3+0.2
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Lipid Hydrolysis Medium
Peptone

Beef extract
Sodium chloride
Calcium chloride
Tween

Agar

pH

Gelatin Medium
Peptone

Beef extract
Sodium chloride
Gelatinase

Agar

pH

Phenolphthalein Phosphate Agar

Peptone

Beef extract

Sodium chloride
Sodium phenolphthalein
phosphate

Agar

pH

10

10

5.0

0.1

1%

12.0

7.3+0.2

10.0

10.0

5.0

4.0

15.0

7.3+0.2

5.0

3.0

5.0

0.012

15.0

7.3+0.2
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DNase Agar W/ Toludine Blue
Tryptose

Deoxyribonucleic acid

Sodium chloride

Toludine blue

Agar

pH

Soyabean Casein Digest Agar (SCDA)

Casein enzyme hydrolysate
Peptic digest of Soyabean meal
Sodium chloride

Agar

pH

Christensen Urea agar base — Urease

Peptone

Dextrose

Sodium chloride
Disodium phosphate
Monopotassium phosphate
Phenol red

Agar

pH

Luria Bertani Broth
Sodium Chloride

Tryptone

20

2.0

5.0

0.10

15.0

7.3+0.2

15.0

5.0

5.0

15.0

7.3+0.2

1.0

1.0

5.0

1.2

0.8

0.012

15.0

7.3+0.2

10

10

Studies on Metal Resistant Bacteria in Cochin Estuary and Its Response towards Antibiotics and Silver Nanoparticles



Chapter 6 Summary and Conclusion

Yeast Extract - S)
pH - 7.3£0.2
STAINS
e Acridine Orange
Acridine orange - 0.1g
Formalin (5%) - 100ml
BUFFERS
e Buffered formalin
38% Formalin - 100 ml
Hexamin - to saturation

Filter through 0.22um pore size filter and store at room temperature

SOLUTIONS
e Antibiotic Cocktail
Nalidixic acid - 8mg
Piromedic acid - 4mg
Pipemedic acid - 4mg
Saturated NaOH solution - 50ul
Distilled water - 10ml

Dissolve the antibiotics separately in saturated sodium hydroxide solution and
mix with water. Sterilize by filtration through 0.22um pore size filter and store in
autoclaved vials at 4° C in a refrigerator.
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REAGENTS
Nitrate
1. Reagent A

N (1-napthyl ethylenediaminedihydrochloride):
0.5g of amine in 500ml distilled water.

2. Reagent B

Sulphanilamide solution:

Dissolve 10g sulphanilamide in a mixture of 100ml conc. HCI and 500 ml
distilled water. Make up the volume to 1000ml with distilled water.

3. Reagent C

Conc. Ammonium chloride solution: Dissolve 125¢g of AR quality ammonium
chloride in 500ml of distilled water.

4. Reagent D

Mercuric chloride solution: Prepare 1% mercuric chloride solution by dissolving
1g of HgCI2 in 100ml distilled water.

Phosphate
1. Reagent A
Ammonium molybdate solution:

15g of reagent grade ammonium paramolybdate dissolved in 500mldeionized

water.

2. Reagent B

Sulphuric acid solution: (4.5M)

250 ml of Conc. Sulphuric acid added into 750 ml deionized water.
3. Reagent C

Potassium antimonyltartarate solution:

0.34g of potassium antimonyl tartarate in 250ml deionized water.
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MIS

4. Reagent D

Ascorbic acid solution:

279 ascorbic acid in 500ml deionized water.
5. Mixed reagent:

Mix together 100ml ammonium molybdate solution, 250ml sulphuric acid

solution, 50ml potassium antimony!| tartarate.

Reagent 1 - Saponification Reagent

Sodium hydroxide (certified ACS) - 45¢
Methanol (HPLC grade) - 150 ml
Deionized distilled water - 150 ml

Combine water and methanol. Add NaOH pellets to the solution while stirring.
Stir until the pellets dissolve.

Reagent 2 - Methylation Reagent
6.00N Hydrochloric Acid - 325 ml
Methanol (HPLC grade) - 275 ml
Add acid to methanol while stirring.

Reagent 3 - Extraction Solvent

Hexane (HPLC Grade) - 200 ml
Methyl tert-butyl ether (HPLC Grade) - 200 ml
Add the MTBE to the hexane and stir well.

Reagent 4 - Base Wash

Sodium hydroxide (certified ACS) - 10.8¢g
Deionized distilled water - 900 ml
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Add NaOH pellets to the water while stirring. Stir until the pellets are
dissolved.

e Additional Reagents
Saturated NaCl: Dissolve 40g ACS NaCl in 100 ml distilled water.
Comet assay
e Lysis solution:
0.15M NaCl
10mM TRIS (pH10)
100 mM EDTA
Triton X (1%)

Preparation: 5 ml of lysis solution was prepared by adding150ul of 0.15M
NaCl, 50 ul of 20mM TRIS (pH10), 500 pl of 100 mM EDTA.
50pl of 1% Triton X was added fresh before the experiment by
stirring for 10 minutes at room temperature. The final volume

was made up to 5ml with milli Q water (3750pl).
e Enzyme digestion solution
0.15M NaCl
10mM TRIS (pH7.4)
10 MM EDTA
Proteinase K

Preparation : 5 ml of enzyme digestion solution was prepared by adding
150ul NaCl (0.15M), 50ul Tris (pH 7.4,10 mM), 50ul of
10mM EDTA and 250ul of 1mg/ml Proteinase K. The volume
was made up to 5ml with milli Q water (4500pl).

e Eletrophoretic buffer:

300mM Sodium Acetate
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1. 00 mMTris

Preparation: 150 ml of Sodium acetate (300mM) and 50 ml of 200mM Tris
was mixed and the pH was adjusted to 9.The final volume was

made to 500 ml with distilled water.
e 0.1M ammonium acetate in ethanol:
1M ammonium acetate
Absolute ethanol
e SyBr Green

1ul of the DNA dye SyBr Green (Sigma Aldrich Cat.No: S9430) was diluted
2000 times with the staining solution buffer. Staining solution buffer contained
50 pl of 20mM Tris and 5ul of 1 mM EDTA. Volume made up to 5 ml with

Milli Q water as per the manufacturers’ instruction.
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STANDARD GRAPHS
NUTRIENTS

1. Nitrate

R2=10.9998

0.90 -
0.80 -
0.70 -
0.60 -
0.50 -
0.40 -
0.30 -
0.20 -
0.10 -
0.00 T T T T )

0.0 5.0 10.0 15.0 20.0 25.0

Concentration

2. Nitrite

R2=10.9969
0.14 ~

0.12 +
0.10 +
0.08 -
0.06 -
0.04 -

0.02 +

0.00 T T T T T )
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Concentration

3. Phosphate

R2=0.997

0.06 -

0.05 +

0.04 +

0.03 +

0.02 -

0.01 -

0.00 T T T T T 1
0.0 0.5 1.0 15 2.0 2.5 3.0
Concentration
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MIS -CHROMATOGRAM AND COMPOSITION - |
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RT Response Ar/Ht | RFact ECL | Peak Name Percent | Comment] Comment2

0.480 584 0.051 4.859 < min rt

1.169 114 0.017 6.392 < min rt

1.464 3.064E+8 0.023 7.048 SOLVENT PEAK < min rt

1.584 11015 0.015 1317 < min rt

1.664 11202 0.018 7.494 < min rt

1.692 9623 0.020 1556 < min rt

1.759 5029 0.022 1.107 < min rt

1.839 378 0.021 7.883 < min rt

2.664 228 0.023 9.720

3543 | 1.136 11.150 10:0 20H < min ar/ht

4.256 162 0.021 1.083 12.001 12:0 0.10 ECL deviates 0.001 Reference -0.002
4.907 740 0.034 1.049 12.613 13:0is0 0.46 ECL deviates -0.001 Reference -0.005
5.763 398 0.051 13.345

5.979 17 0.026 13513

6.115 2008 0.035 1.001 13.619 14:0 iso 1.19 ECL deviates 0.000 Reference -0.004
6.606 1554 0.039 0.986 14.000 14:0 0.91 ECL deviates 0.000 Reference -0.004
151 96695 0.035 0.963 14.624 15:01iso 55.02 ECL deviates 0.001 Reference -0.004
7.652 34740 0.035 0.960 14.713 15:0 anteiso 19.71 ECL deviates 0.000 Reference -0.005
9.082 6079 0.036 0.933 15.627 16:0 iso 3.35 ECL deviates 0.000 Reference -0.005
9.680 7102 0.039 0.924 15.999 16:0 3.88 ECL deviates -0.001 Reference -0.006
9.876 451 0.041 16.115
10.125 333 0.030 16.263
10.743 18340 0.040 091 16.629 17:0/is0 9.87 ECL deviates -0.001 Reference -0.005
10.898 8266 0.043 0.910 16.722 17:0 anteiso 444 ECL deviates -0.001 Reference -0.006
11.725 103 0.014 17.207 < min ar/ht
11.842 261 0.023 17.274
13.100 177 0.019 0.891 18.001 18:0 0.09 ECL deviates 0.001 Reference -0.002
13.901 2107 0.142 0.887 18.464 19:Tiso | > max ar/ht
14.729 136 0.017 18.943
14.836 520 0.044 0.884 19.005 19:0 0.27 ECL deviates 0.005 Reference 0.003
15.603 482 0.045 19.452
15.647 34 0.037 19.477
15.756 753 0.064 0.881 19.541 18:0 30H 0.39 ECL deviates -0.009
16.045 198 0.020 19.710
16.538 613 0.048 0.881 19.997 20:0 0.32 ECL deviates -0.003 Reference -0.003
17.913 185 0.022 20.797 > max rt
18.376 20551 0.138 21.067 > max rt

Library Sim Index Entry Name

TSBA6 6.00 0.703 Bacillvs-pumilus
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CHROMATOGRAMS OF MDR PATHOGENIC MRB
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Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south
west coast of India. Here we studied the distribution, diversity and enzyme expression profile of cul-
turable micrebial population aleng a pollution gradient. The distribution of resistance against 5 mM
concentration of Zn, Co, Ni and Cu was observed among 90—100% of bacterial isolates retrieved from
highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was
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Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved
from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution
in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression
profile of bacteria, which may impart adverse impacts on ecosystem [unctioning.

@ 2011 Elsevier Led. All rights reserved.

1. Introduction

Microorganisms have been exposed to varying concentrations of
heavy metals presumably since the beginning of life (Silver and
Phung, 1996; Martinez et al,, 2009}, and have sustained by main-
taining a homeostasis between the available metal concentration
and microbial physiology (Hantke, 2001; Kosolapov et al., 2004;
Bong et al, 2010). However, in a contaminated environment, the
elevated concentrations of heavy metal impinge the conforma-
tional structures of nucleic acids and proteins, and consequently
form complexes with molecules, which render them inactive (Bong
etal, 2010). For example, at millimolar concentrations, Zn ions bind
with the cell membrane of bacteria and interfere with cell division
{Nies, 1999; Silver and Phung, 2005) in spite of being a micro-
nutrient (Wilson and Reisenauer, 1970).

Effect of heavy metal pollution on the diversity and dynamics of
microorganisms in marine environment is a topic of growing
envirenmental concern as it has direct and long lasting impact on
ecosystem functioning and are not easily degradable {Valsecchi
et al,, 1995; Bong et al., 2010). Recently, the anthropogenic contri-
bution of heavy metals to estuarine environment has increased

* Corresponding author.
E-mail address: shanta@nio.org (5. Nair)
¥ Present address: Universily of Texas, Department of Biclogy, San Antonio, TX
78249, UsA.

(268-7491/8 — see front matler @ 2011 Elsevier Lid. All rights reserved,
doel: 110716/j.envpol. 2011.05.0089

significantly through the discharge of industrial and domestic
wastes (Balachandran et al, 2006; Nair et al, 2006; Noah and
Oomori, 2006). In general, heavy metal pollution causes unin-
tended alterations in the functioning of marine ecosystems directly
or indirectly. The direct impact of heavy metal pollution on micro-
bial ecosystem includes the alterations in the physiclogy, diversity
and abundance of microorganisms, which indirectly affect the
biogeochemical cycles and ocean productivity {Haferburg and
Kothe, 2007; Chakravarty and Banerjee, 2008; Hoostal et al, 2008;
Bong et al., 2010). Hydrolytic enzymes secreted by bacteria are of
much importance in marine environment for the processing of
polymeric and particulate organic matter to dissolved organic
matter and facilitaring further passive transportation across the cell
membrane of bacteria (Chrost and Rai, 1994; Bong et al,, 2010).
Heavy metal pollution exerts a selective pressure on microbial
community leading to rthe emergence of resistant strains with
apparent reduction in the extracellular enzyme activity of that
particular ecosystem (Silver and Misra, 1984; McGrath et al., 2001;
Lasat, 2002; Li et al., 2006; Souza et al, 2006; Wang et al,, 2007}
Such inhibitory effects of Cd, Zn, Ni and Co on expression of bacterial
nitrous oxide reductase enzyme were reported, which may lead to
the accumulation of potent green house gas N0 and thus
contribute indirectly to global warming (Dickinson and Cecerone,
1986; Minagawa and Zumft, 1988; Sobolev and Begonia, 2008;
Haferburg and Kothe, 2010}, In addition, the biomagnification of
heavy metals may cause chronic and acute ailments in human
beings (Forstner and Wittmann, 1979}, Therefore, the heavy metal
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pollution and subsequent effect on estuarine microbial diversity and
function are of important topics of research.

Like most estuaries, the anthropogenic contribution of heavy
metals has increased significantly in Cochin estuary over the past
three decades through the discharge of industrial and domestic
wastes (Balachandran et al., 2005; Balachandran et al.,, 2006; Nair
et al,, 2006). In the present study we assessed the effect of heavy
metals, Zn, Cd, Hz, Ni, Cu and Co, on the distribution and diversity of
culturable bacteria along a pollution gradient in Cochin estuary. We
also investigated the effect of heavy metals on the extracellular
enzyme profile of bacterial isolates.

2. Materials and methods
21 Description of the study aren and sampling

Cochin estuary extends from Thanneermukkam bund in the south o Azhikode
at the north (9 3010 12'N and 76" 10/ =76 20'E). It covers an estimated length of
~G60 km and an area of ~21050 ha. It is connected to the Arabian Sea at two
locations, Fort Cochin (9 58N and Azhikode (10° 10°N) {Balachandran et al,, 2008).
And functions as a repository for effluents from more than 240 industries on the
banks of river Periyvar, the characteristics of which include fertilizer, pesticide,
radicactive mineral processing, chemical and allied industries, petroleum refining
and heavy metal processing and fish processing (Thyagarajan, 2004}, In order to
assess the effect of heavy metal on bacterial parameters, three stations lying
between the effluent discharge point and barmouth of Cochin estuary were s
The po ns of the sampling stations, Eloor, Vypin and Munambam a
Fig. 1. Eloor, designated as a grassly polluted station in this study, is at an intersection
where river Pertyar carrying industrial effluents join the Cochin estuary, Vypin is
situated near the Cochin barmouth and is designated as least polluted station.
M is an inter d station.

Sediment and water samples were collected from each station employing Van
Veen grab and 10 L capacity Miskin water sampler respectively. For microbiological
analysis, multiple samples of water and sediments were removed aseptically in to
sterile polypropyl bottles and d at 4 "C until further analysis. Samples
for chemical analysis were collected avoiding contamination from all possible
sources. Sediment samples were sealed in plastic bags and frozen till analysis. All
samples were transported in an ice chest o the laboratory for further analysis,

22 Metal analysis of sediment and water samples

1 endi v I

One gram of dred and fnely powd ples were di |
repeatedly with HF-HO04-HNOs, suspended in 0.5 M HC (25 mL) and analyzed for

Zn, Cd, Hg, Mi, Cu and Co using inductively coupled plasma atomic emission spec-
trometer (ICP-AES) following the standard protocol (Lorng and Rantala, 1977}
Known volumes of water samples were filtered through pre—weighed Millipore
filter paper (0.45 um) and the filtrate was acidified using concentrated hydrochloric
acid. The dissolved metals were extracted using Ammonium Pyrrolidine Dithiocar.
‘bamate (APDC) and Methyl lsobuly] Ketone (MIBE) at pH 4.5 and brought back to
aqueous layer by back-extraction with concentrated nitric acid and made up o
20 mL with sterile de-ionized water {Smith and Windom, 1972, The extracts were
analyzed in the flame for dissolved trace metals.

2.3. Kolation and identification of bacteria

Culturable bacteria present in sediment and water were retrieved on Nutrient
agar [(Hi-Media laborateries Pvt. Led, Mumbai, India) and Peptone Yeast extract
and Tryptone medivum (PYTE0) (Konopka and Zakharova, 1998} fellowing stan-
dard microbiclogy protocols. Nutrient agar iz a rich mediom which supports the
growth of fast g it T PYTR0 i facilitates the
growth of slow growing metal resistant bacteria, A tetal of 232 morphologically
different isvlates were purified and preserved in 20% glycerol for further studies.
The bacterial isolates were subjected 1o morpholegical and bicchemical tests viz
pigmentation, oxidase, catalase, MRVF, carbohydrate utilization, MOF, antibiotic
sensitivity, indele and 0/129 sensitivity etc. (Gerhardt et al, 1981) and identified
following the scheme of Oliver and Smith {1982), The identification was further
confirmed by Microbial Identification System (MIS) operating manual (MIDL USAL
Briefly, the whele cell fatty acids of the bacteria were extracted and methylated
according te MIDI protocel and analyzed using gas chromatography system
tAgilent GC 6950) and the peaks were compared with the library of Sherlock ve
(MIDL USA). Previous studies have shown that more than 80% identification of
bacteria by fatty acid profile is in accordance with 165 rRNA gene sequencing
method at genus level and more than 704 at species level (Osterhout et al, 1991;
Tang et al., 1998,

1E MICTOOTE,

24. Screening of metal resistance

Bacterial resistance to heavy metals was examined by the plate diffusion method
(Hassen et al, 19881 The glassware were leached in 2 N HNO3 and rinsed several
times with sterile de-ionized water before use to aveid metal contamination
Avolume of 500 gl of solution containing a final concentration of 5 mM metal salt
(Z05047H;0, HgCly, CoCly6H,0, €ACT, CuS0,"5H,0, NiCl) was poured in to the
central well of PYTS0 plates and was incubated at 28 + 2 °C for 24 h to allow
diffusion of the metal into the agar. Six strains of bacteria were streaked in a radial
fashion on each plate and incubated for seven days at 28 4 2 °C_ All the experiments
were done in triplicate and the bacteria which showed visible growth in seven days
were counted as metal resistant.

T E TEI00E TENUE

10 10°0°N; N aliad
v JUNAMBAM
- g ELOOR
® o
et Industrialzone i
Cochin - Ernakulam
£
SVYPIN
U_ l‘- 4 ’_ 12 1%
TOTE TEIOE TENTE

Fig. 1. Map showing study area and station locations,
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25, Enzyme assays Table 2
Percentage variation in the distribution of culturable bacteria isclated from water
The isolates were tested for amylase, gelatinase, lipase, and protease following and sedi les of Vypin, M t and Eloor.
the protocel described by Simbert and Krieg (1981). lsclates were spotted on .
nutrient agar medium different <, and the enzyme expression Phylum Water Sediment
profile was m.cas:l.md as the function of the ability of individual microorganisms to Vypin  Munambam  Eloer Vypin  Munambam  Eloor
prodiice clearing zones. Protechactena 30,0 308 Va3 50.0 476 €89
e . Firmicutes 63.0 615 174 385 38.1 111
A St st ngGALs Actinobacteria 5.0 00 43 33 95 ND
Bacteriodetes  ND 7.7 00 7.7 4.8 ND

Shannon diversity index (H') was used to assess the diversity and richness of
microorganisms [Shannon and Weaver, 1949). Student’s t-test was used to assess the
dilferences at p < 0.01 (Bailey, 1995).

3. Results and discussion
3.1. Heavy metal pollution in Cochin estuary

The concentration of heavy metals in water and sediment
samples is presented in Table 1. Here, we observed 2758 mg kg ™' Zn
in sediment samples collected from Eloor region, which is
approximately 2.5 times higher compared to values recorded from
previous observations. The heavy metal concentration was higher
in all sediment samples than respective water samples. Eloor with
its close geographical location to the industrial belt of Cochin
receives higher concentrations of heavy metals. The major
pollutant in Eloor was Zn with 2758 mg kg™! and 1159 mg L™! in
sediment and water respectively. Nickel with 259 mg kg~! and
123 mg L ! respectively, in the sediment and water was the second
major pollutant observed in Eloor region. Vypin, which lies outside
the reception point of industrial discharge, was found to be the
least polluted station with no detectable concentrations of heavy
metals except 16 mg kg~ ! Co in the sediment. The water samples
collected from Vypin was relatively unpolluted with all the heavy
metals below detectable limits. Munambam was the intermediate
region with 290 mg kg~' 7n and 109 mg kg' Ni as the major
pollutants in the sediment. Considering the concentration of all
metals, the gradation of pollution at the stations were
Vypin < Munambam < Floor. It is clear that heavy metal pollution
has proliferated substantially during the past three decades in
Cochin estuary (Balachandran et al, 2005; Nair et al., 2006). During
the period of 19762000, Zn concentration in sediments of Cochin
estuary has increased from 70 to 1266 mg kg~' (Venugopal et al,,
1982; Balachandran et al, 2006). If left unchecked, the harmful
effects of these heavy metals in the environment would be
permanent and irreversible.

3.2, Effect of heavy metal pollution on the distribution
and diversity of culturable bacteria

Percentage variation in the distribution of culturable bacteria
in water and sediment is given in Table 2. With increase in
heavy metal concentration, it was observed that the percentage of

Tahle 1
Concentration of heavy metal pollutants in the water and sediment samples
collected from different sampling lecations of Cochin estuary,

Heavy Concentration in water Concentration in sediment
metals  samples (mgL ') samples (mg Kg )

Vypin  Munambam Eloor  Vypin Munambam  Eloor
Zn BDL &0 1158 BDL 280 2758
cd EDL BDL 50 BDL 27 164
Hg BDL BDL EDL BDL BDL BDL
Mi EDL 56 123 BDL 108 259
Cu EDL BOL a7 BDL 42 145
Co EDL 21 50 16 &0 114

BDL — Below detectable limit.

ND-Not detected.

Proteobacteria increased irrespective of water or sediment. It was
observed that Protecbacteria dominated in Eloor with 78.3 and
88.9% in water and sediment respectively. Among the Proteobac-
teria thirteen genera were recovered from the study area (Table 3).
The high dominance of Proteobacteria may be facilitated by an
array of metal transport systems which was reported earlier by
genome analysis (Nakagawa et al, 2007). These highly specific
efflux pumps assist gram negative bacteria to regulate their intra-
cellular metal concentration even if they are not specialized to grow
in the presence of high concentrations of heavy metals (Martinez
et al, 2009). Increased level of expression of genes encoding
efflux proteins has heen observed when a Pseudomonas aeruginosa
without any previous exposure to heavy metals was subjected to

Tahle 3
Diversity of culturable bacteria of water and sediment in the Cochin estuary.

Bacterial species Water Sediment

Vypin Munambam Eleor Vypin Munambam Elcor

Proteohacteria
Acinetohacter baumannii — + - + + -
Chromobacterinm + - + - - -
vindacetm
Citrobacter koseri i
Comamonas acidovorans
Comamonas testosteroni
Kluyvera ascorbata
Listoneiia anguillarum
Proteus mirabitis
Peeudomonas aeruginosd
Fseudomonas huttiensis - +
Servatia marcescens
Shewanella pute faciens - -
Vibrio cholerae - -
Vibrio furnissii + =
Xanthomonas - -
arboricola-pruni
Yersinia pseudo l i i
tuberculosis
Firmicutes
Bacillus ceretis
Bacillus filicolonicus
Bacillus marinus
Bacillus mycoides
Bacillus oleronius
Bacilivs pumifus
Bagilins spheericus
Bagilius sp
Exiguobacterinm
acetylicum
Paenibacilius larvas
pulvifaciens
Staphylococcns + - + = = +
gallinanim
Actinobacteria
Celiwlomonas turbata
Bacteriodetes
Myroides odorarus - - + + -
Shannon H' 2788 2458 2774 3.087 2692 266

4+

]
b+ 4+ 4+ +
+ + 4+
b !

P R S S S S e e

+
I
i

+
T
1

+ = + + + =
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heavy metal shock (Teitzel et al, 2006; Martinez et al., 2009).
lvanova et al. observed high resistance of Protenbacteria isolated
from different marine sources against heavy metals {Ivanova er al.,
2001}. In the case of Firmicutes it was observed that the percentage
distribution of phyla was higher in water compared to sediment
{Table 2}. Percentage distribution of Firmicutes was 3—4 times less
in Eloor compared to the other two stations. Similarly, diversity of
Firmicutes was less in Floor with Staphylococcus gallinarum and
Bacillus pumilus as the only isolates retrieved, whereas 10 species
were retrieved from water sample of Vypin. Shannon index showed
decrease from 3.09 to 2.66 between sediment samples of Vypin and
Eloor {p < 0.01), which indicates that the heavy metal had influ-
enced the richness and evenness of bacterial diversity.

3.3. Effect of metal pollution on enzyme expression profile

Heavy metal pollution is a major environmental concern which
may influence the bacterial activity and productivity in a system
through inhibiting the expression of hydrolytic enzymes (Dell’
Anno et al, 2003). Fig. 2 shows the histogram of hydrolytic
enzyme expression in bacterial isolates from water and sediment
samples. The enzyme expression profile was measured as the
function of the ability of individual microorzanisms to produce
clearing zones in substrate enriched solid media. Microorganisms

Amylase
Distribution of
microorganisms (%)

Low Medium High

Protease

Distribution of
microorganisms (%)
.
o

Medium High

Distribution of

Lipase
microorganisms (%)
F3
(=]

Medium High

ao
60
a0
20

Gelatinase
Distribution of

s

microarganisms (%)

00 5
Low Medium High

Enzyme activity

are classified based on the diameter of cearing zones into low
{0—10 mm diameter}, medium {10-20 mm diameter) and high
(=20 mm diameter} expression classes. It was observed that
75—100% of the organisms retrieved from water and sediment
samples of Eloor region had low expression profile of amylase,
protease, lipase and gelatinase enzymes. It is significant to note that
~40% of the organisms isolated from sediment of Vypin had high
protease enzyme expression profile and 25-35% of isolates have
high expression profile for amylase, lipase and gelatinase enzymes.
This variability in enzyme expression profile may be either due to
suppression of the expression of certain enzyme of same bacteria in
different stations or the heavy metal actually selected different
bacteriawith different enzyme expression profile. It was interesting
to note that same species of bacteria isolated from pollution
gradient has different enzyme expression profile (Supplementary
data Table S1). P aeruginosa and B. pumilus were selected as
candidate strains considering their presence in all the study areas.
P aeruginosa and B. pumilus isolated from sediment samples of
Vypin produced a protease activity of 22 mm diameter each,
whereas the same organisms isolated from Eloor could produce
only 8 and 6 mm diameter clearing zone respectively. It is known
that enzymatic hydrolysis of large dissolved and particulare organic
matter to micromolecules of less than 600 Da is the vital process in
sustaining primary productivity in marine environment {(Weiss

[ Vypin
] Munambam
Eloor

Low Medium High

100 B

80
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40
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microarganisms (%)
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100
a0
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40
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microorganisms (%)

20
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Distribution of
microorganisms (%)

Disiribution of
microorganisms (%)
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Fig. 2. Histogram showing the percentage distribution of hydrolytic engyme expression profile (450} of culturable bacteria isolated from (A) water and (B} sediment. Low

represents 0=10 mm. medium 10-20 mm and high =20 mm of clearing zone in media
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el al, 1991; Hoppe et al, 2002; Yamada and Suzumura, 2010}
Therefore, we assume Lhat the reduced enzyme expression profile
of microorganisms in Eloor may adversely influence the hydrolysis
of large organic matter and may further results in poor cycling of
organic nutrients, However, further studies integrating the
molecular and biochemical tools are required to explain the
correlation hetween heavy metal induced repression of microbial
enzyme profile and productivity in Cochin estuary.

34. Bacterial resistance lo metals

Fig. 3 shows the percentage of bacterial isolates resistant to
heavy metals Zn, Cd, Hg, Ni, Cu and Co. A significant population of
the bacterial isolates retrieved from sediment and water samples of
Eloor region exhibited resistance against all the metals used in the
present study. Microbial communities have been used to reveal the
long-term consequences of heavy metal contamination. A direct
relationship was observed between environmental metal concen-
tration and microbial community tolerance (Diaz-Ravina et al,
1994; Pennanen et al., 1996; Lock and Janssen, 2005). Thus metal
resistance among the bacterial isolates is a direct indication of the
exposure of microbial population to heavy metals. It is observed
that 90-100% of the bacteria retrieved from Eloor region are
resistant to 5 mM concentration of Zn, Co, Ni and Cu, 50—-60% to Cd
and 20-30% to Hg. The resistant population was restricted to below
20% in the sediment and water of less polluted Vypin and less than
30% in Munambham with an intermediate status of pollution.
Mercury resistance was not observed in bacterial isolates from both
Vypin and Munambam. Number of isolates resistant to metals was
high in the sediment compared to water. This increase might be due

120
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Fig. 3. Percentage of metal resistant bacteria isolated from water (A} and sediment [B)
samples of Vypin (blue), Munambam (red) and Eloor (Green), (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.}
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to the continuous accumulation of heavy metals in the sediment. It
is evident from this study that the heavy metal pollution in Eloor
region might have propagated the evolution of a microbial pop-
ulation highly resistant to heavy metals. IUis interesting to note that
20-30% of the microbes retrieved from hoth sediment and water
samples of Eloor exhibited resistance to Hg, a heavy metal which
was not detected in any of the samples analyzed. This may be due to
the ability of the same microorganism to be resistant to one or
a group of heavy metals (Silver and Phung, 1996; Barkay et al,
2003; De et al.,, 2003} or the natural flora is adapted to Hg resis-
tance {Ramaiah and De, 2003). It was demonstrated earlier that the
efflux pumps of gram negative bacteria are not specified for
a particular compound, rather the same pump can function for
extruding excess concentrations of any heavy metals or antibiotics
or other compounds which are toxic to bacteria (Silver and Phung,
1996; Ramos et al, 2002; Pumbwe et al,, 2007; Martinez et al,,
2009),

4. Conclusion

The present study concludes that in Cochin estuary the heavy
metal accumulation has resulted in reductionfadaptation of
bacterial distribution, diversity and enzyme expression profile and
this is proportionate to the extent of pollution. Therefore, the heavy
metal pollution and emergence of resistance strains in Cochin
estuary is an environmental problem which demands immediate
attention as it could have long-term influence on estuarine as well
as human health.
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Significance and Impact of the Study: Although the synthesis, structural characteristics and biofunction
of silver nanoparticles are well understood, their application in antimicrobial therapy is still at its
infancy as only a small number of microorganisms are tested to be sensitive to nanoparticles. A thor-
ough knowledge of the mode of interaction of nanoparticles with bacteria at subcellular level is man-
datory for any clinical application. The present study deals with the interactions of Ag-SiO;NC with the
cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, which would contrib-
ute substantially in strengthening the therapeutic applications of silver nanoparticles.
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Introduction

Abstract

The study was carried out to understand the effect of silver—silica
nanocomposite (Ag-SiO,NC) on the cell wall integrity, metabolism and genetic
stability of Pseudomonas aeruginosa, a multiple drug-resistant bacterium.
Bacterial sensitivity towards antibiotics and Ag-SiO,NC was studied using
standard disc diffusion and death rate assay, respectively. The effect of Ag—
SiO;NC on cell wall integrity was monitored using SDS assay and fatty acid
profile analysis, while the effect on metabolism and genetic stability was
assayed microscopically, using CTC wviability staining and comet assay,
respectively. Pseudomonas aeruginosa was found to be resistant to fi-lactamase,
glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes
of antibiotics. Complete mortality of the bacterium was achieved with
80 yig ml~' concentration of Ag-SiO,NC. The cell wall integrity reduced with
increasing time and reached a plateau of 70% in 110 min. Changes were also
noticed in the proportion of fatty acids after the treatment. Inside the
cytoplasm, a complete inhibition of electron transport system was achieved
with 100 ug ml™' Ag-SiO,NC, followed by DNA breakage. The study thus
demonstrates that Ag—SiO,NC invades the cytoplasm of the multiple drug-
resistant P. aeruginosa by impinging upon the cell wall integrity and kills the
cells by interfering with electron transport chain and the genetic stability.

nanoparticles (AgNPs) have been demonstrated against a
wide range of microorganisms (Sondi and Salopek-Sondi

Emergence of multiple antibiotic-resistant pathogenic bac-
teria due to the indiscriminate use of antibiotics has
necessitated the search for alternate strategies for control-
ling these pathogens. Antimicrobial properties of silver
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et al. 2011; Beer er al 2012}, and no decumented report
on the emergence of bacterial resistance to sibver nanopar-
ticles is available. However, 1t is not clear whether AgNEs
function similar to silver ions or differently. Silver ions
damage the membrane proteins, interrupt electron cycle
and induce DNA dimerization through the interaction
with thiol {S-H} groups of aminc acids and other com-
pounds {Feng et al 2000; Gunawan etf al 2011} It was
proposed that AgNPs upon contact with the cell wall of
Escherichia coli initiate a chain of reactions, induding the
expression of a number of envelop proteins {OmpA,
OmpC, OmpF, OppA and MetQ}, resulting in the forma-
tien of permeable pits {Vara 1952; Lok eral 2006} A
major prerequisite for achieving maximal antimicrobial
activity of AgNPs is to maintain their sensitive surface
chemistry, colloidal stability and nancsize (Jana et al
2007}, However, In many cases, the metal nanoparticles
showed aggregation in aquecus solutions, resulting in
retarded biclogical activity {fana et al 2007} Although
several strategies have been reported for producing bio-
functional AgNPs with enhanced water solubility and
moncodispersity, silica coating is the widely accepted one
tJana et ol 2007; Thomas et al 2008}

In this study, we investigated the effect of silver—silica
nanocomposite {Ag-SI0.NC} on the cell wall integrity,
metabolism and genetic stability of a multiple antibiotic-
resistant strain of Pseudomonas aeruginosa. Pseudomonas
aerisginosa is an aercbic, nonfermenting Gram-negative
rod bacterinm that is important in the aetiology of noso-
comial infections. This bacterium is notoricus for its abil-
ity to colonize varicus sites of the human body, induding
sputum, cornea, nasal mucosa and wet skin, causing a
range of diseases, from simple skin infection to fulminamnt
septicaemia {Lee et al 2012}, Being a nosocomial patho-
gen, it is possible that P. gerugingsa may be co-evolving
with the antibiotics, thus requiring more efficient strate-
gies for controlling the infections. Coating the surgical
devices with AgNPs has been propoesed as one of the effi-
cient methods for preventing the transmission of this
pathogen {Furne et al 2004}, Here, we report how Ag—
SiOuNC impinges upon the cell wall integrity and imter-
feres with electron transport chain and genetic stability of
a multiple antibiotic-resistant strain of P. agruginasa.

Results and discussion

Continuous evolution of antibiotic-resistant mechanisms
among nosccomial pathogens demands the identification
of alternate strategies for countering their threat to both
humans and animals. The experimental strain of P aeru-
ginasa showed resistance to all the cell wall {f-lactamase
and pglycopeptidase classes} and nucleic acid synthesis

{sulfonamide, quinclones and nitrofurantoin dasses}-

A Anas et &l

inhibiting antibiotics used in the study {Table S1}. It was
also resistant to the Macrolid dass protein synthesis
inhibitor, azithromycin, but was sensitive to the amino-
glycosides {amikacin and gentamycin}, tetracydines {tet-
racyclin and oxytetracyclin} and chloramphenicol class of
protein synthesis-inhibiting antibiotics. Recent reports on
co-evolution of antiblotic resistance among microorgan-
isms reiterate the importance of silver compounds with
AgNPs as a promising substitute {Rai et al. 2012}, Com-
pared to silver compounds, Ag-SiO.NC has better anti-
bacterial properties owing to their large surface area,
positive surface charge and monodispersity. Net positive
charge of 50 facilitates more number of nanoparticles
to interact with negatively charged surface of bacteria,
resulting in highly efficient antimicrobial activity {fana
et al. 2007}, [nterestingly, we observed that the death rate
of P. aeruginosa increased with increasing concentration
of Ag-SiO.NC {13-5% on exposure to 20 ug ml™"} and
attained 100% mortality with 80 g ml~" (Fig. 1.
Although the antimicrobial mechanisms of silver com-
pounds are well documented, the exact mode of action
of AgNPs remains undear {Gunawan etal 2011; Rai
gt al, 2012}, Here, we observed sequential mode of inter-
action of Ag-SiO.NC with the test bacterium at subce-
lular level Conmtinuous exposure of P, aerugingsa to Ag—
SIOUNC for 110 min reduced the cell wall integrity to
70% (Fig. 2}. Cell wall integrity is expressed as a func-
tion of its sensitivity towards detergent-mediated cell
lysis {Lok er al 2006}, Cell wall with damaged proteins
will be highly prone to detergents, showing sharp decline
in the optical density {OQDlg0} due to the leakage of cell
content. Sondi and Salopek-Sondi {2004} observed the
localization of AgNPs on the surface of E coli, while
particles below 10 nm size penctrated the cell mem-
brane. Cell membrane is the first site of action of Ag-
NPs, where they initiate a cascade of reactions, including

100
B0
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2 - .
2 20 40 &0 20 100

Concentration of Ag-Si0, NPs, pg rl=

o
=

Cieath rate (g), %

=

Figure 1 Responses of Feudomonas seruginess towards increasing
concenfrations of  Ag Si0MC. Results are expressed as  death
rate = S0
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Figure 2 Cell wall integrity of Pseudomaonas serugingss on expasure
to Ay S0ENC for different tirme intervals, Results are expressed ag cell
wall integrity {%) £50.

the expression of a number of envelope proteins {Lok
et al. 2006} and disruption of barrier compounds {Vara
1592 Lok et al 2006} We also observed major changes
in the proportion of fatty acids such as 3OH-100,
20H-12:0, 30H-12:0, 160, Cyde-17:0, Cyclo wic —
12:0, w7c-18:1 and w6c-18 in P, aerugingsa after treating
with Ag-8iO;NC, but no significant changes in their
profiles were seen {Table 1}, Bacterla maintain homoeo-
stasis between the external environment and cell physiol-
ogy by adjusting the membrane fluidity via altering the

Table 1 Carnparisan of the fatty acid cormposition of Feudomaonas
gerugingss befare and after treatrrert with Ag Si0NC

Prapartian of fatty acid {%)

Fatty acid Befare treatrient After treatraent
10:0 20H 447 Z.hh
12:00 306 O
11:0 30H 01 ML
12:0 20H 4.89 4.35
121 30H 0.53 0.7
12:0 30H 547 471
14:00 0.8 0.85
15:0 anteisa (153 041
16:00 33.91 35.08
17:1 50 wibc M 0.97
17:0 isa 011 013
17:1 wic 0.2 o.1g
17:0 rycla oy | 1.68
1700 022 0.24
18:00 074 081
19:0 oyl wie 368 284
Surnmed feature 3% 858 B.66
Surnrmed feature 8% 3017 3284

Results are presented as percentage of the total fatty acids,

wSurnrmed features represent groups of two ar three fatty acids that
canmat be separated by GC with the MIDI systern. Surnmed feature
three cantaing 16:1 w7o/16:1 whc; Surnmed feature eight containg
18:1 wic and 18:1 whr.
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proportions of fatty acids. However, severe alterations
may impinge upon the cell wall integrity, resulting in
the dissipation of transmembrane gradients of protons
and ions {Mrozik et al 2004). [n the present case, we
presume that the alteration in the propeortion of fatty
acids may be responsible for the translocation of Ag-—
SIONC in to the cytoplasm.

The bacterial metabolism was measured as the ability of
electron transport chain of metabolically active cells to
reduce 5-cyano-2,3-ditolyl tetrazolium chloride {CTC} into
red fluorescent formazan. A gradual decrease in the meta-
bolically active cells against increasing concentrations of Ag
—5i0.NC was recorded {Fig. 3}. When all the cells are met-
abolically active, the ratio of metabolically active/total cells
will be close to 1. High ratio of 0-8 was observed in the
control {without Ag-Si0:NC}, whereas in the presence of
Ag-SiO;NC, the ratio decreased dose to  zero
{100 g ml~"). Although metabolically active, the cultiva-
bility of the bacteria was completely lost at 80 pg ml™"
concentration of Ag-S10,NC. This discrepancy could be
attributed to cells being viable but non-culturable {YBNC}
due the bacteriostatic activity of Ag-SIONC as was
observed in the difference in bacterial counts between CTC
and death rate assay. Evidently, many bacteria are capable
of entering into VBNC state to protect themselves from
natural stresses {Oliver 2005 Griffitt et al. 2011}

It was observed that DNA of 68% of cells was damaged
after 1-h exposure to Ag—SiO;NC, whereas DNA of all the
cells in untreated group remained intact {Fig. 4}. This can
be attributed to the reactive oxygen species {ROS} gener-
ated through the release of Ag+ ions by Ag—SiO:NC on
contact with cytoplasmic proteins {AshaRani et al 2005}
[CP-MS analysis recorded 0-136 and (126 ppm of avail-
able silver ions from 80 and 100 ug ml™" concentrations of
Ag-8i0,NC, respectively {Fig. 51}. ROS are a group of
highly reactive species formed via the activation/reduction
of molecular oxygen and indudes singlet oxygen oL,

1.0

08
06
04

0.2

o0 \H—\J\
00 20 40 &0 a0 100
Concentration of Ag-Si0, MPs, pg mi-!

Ratio of active: total cells

Figure 3 Effect of Ag Si0;NC an metabolic adivity of Pseudomonas
aeruginess. Results are expressed as ratio of activetatal cells abserved
in deadlive staining.
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Figure 4 Comet assay histogram of fewdomonas seruginess 1a)
befare and {b) after treatment with Ag Si0;NC. Correts are classified
based an tail length into intact {0 10 pra) and darmaged $=10 uem)
qroups.

superoxide amion {Oy,7*}, hydroxyl radical {HO*} and
hydrogen peroxide {H, 0.}, Among the different proposi-
tions describing the antibacterial properties of AgNPs, the
release of silver ions and subsequent induction of ROS are
the prominent ones {Choi et al. 2008; Navarro et al, 2008;
Wigginton et al. 2010; Badawy et al. 2011}, Although mini-
mum concentrations of ROS are necessary for maintaining
the regular metabolism of cells, elevated levels can induce
DMA damage and breakage {Anas et al. 2008). Short life-
span {250 ns} and narrow diffusion power {45 nm} of
ROS {Asok er al 2012} demand AgSiO.NC placed in the
proximity of DNA to attain a substantial damage. Silver
ions form strong adducts with purine and pyrimidine bases
of DNA {Wang et al. 2010}, and therefore, the substantial
DMA damage observed here is a possibility. Ag-SiQNC -
induced DNA breakage in P. aerugingsa was confirmed in
the comet assay. In condusion, the study proposes that Ag
—SIuNC is a potential antibacterial agent, and follows
sequential interaction with the cell wall, metabolism and
genetic stability of the multiple antibiotic-resistant P. aeru-
ginasa, Ag-SI0.NC intrudes the cytoplasm by inducing
damages to the cell wall and kills the cells by interfering
with electron transport chain and genetic stability. An
extension of this work with species-specific marker conju-
gated Ag—SIOuNC, and targeting of specific pathogens is
proposed, which will have considerable positive impact on
antimicrobial therapy.

Experimental Procedures

Bacteria and nanoparticles

Pseydomonas aerugingsa strain was obtained from the

Marine Microbial Reference Facility {MMRF} of CSIR —

A Bnas et sl

Wational Institute of Oceanography — Regional Centre
Cochin India. Pseudomonas aeruginosa was inoculated
inte Luria Bertani {LB} media and grown ovemnight at
28 = 2°C on a shaker at 120 rev min~". Working cultures
of P, aerugingsa were maintained on LB agar slants and
subcultured every 2-3 wecks. The purity of the culture
was confirmed by the fatty acid profile.

Ag—SIO.NC was prepared using Ag-S5i0. sol and
employing tetracthyl orthosilicate-{TECQS), ethanol, dis-
tilled water and silver nitrate as precursors. The detailed
procedure of nanoparticles synthesis and its characteriza-
tion using X-ray powder diffractometer and Transmission
Electron Microscopy techniques are discussed elsewhere
{Thomas er al. 2008} Histogram of the particle sizes
obtained from transmission electron microscope showed
that the mean partide size was 56 nm. The available Ag
in Ag—8i0;NC phosphate-buffered saline {PBS} was mea-
sured using inductively coupled plasma mass spectrome-

try {ICP-MS).

Bacterial sensitivity towards antibiotics and Ag-Si0O.NC

Sensitivity of P aeruginosa to twelve antibiotics was tested
following standard disc diffusion technique. LB agar
plates were swabbed with overnight-grown P, aeruginosa
suspension cultures, and commercially available antibiotic
discs {Hihedia, Bangalore, India} were placed on the agar
and incubated at 28 = 2°C for 24 h. The zone of inhibi-
tion was recorded at the end of the incubation pericd
The antibiotics tested were ampicillin 25 g, azithromycin
15 ug, amikacin 10 ug, chloramphenicol 30 pg, ciproflox-
acin 10 ug, gentamycin 30 wg, vancomycin 10 ug, nali-
dixic acid 30 wg, nitrofurantoin 100 pg, oxytetracycline
30 pg, trimethoprim 10 pg and tetracycline 10 pg.

Sensitivity of P aesruginosa against Ag-Si0O.NC  was
tested following standard death rate assay (Asol et al
2012}, Briefly, the cowvernight-grown P. aeruginose cells
£10% cells mI™"} were mixed with different concentra-
tions of Ag-SiO.NC (0, 20, 40, 60, 80 and 100 ug ml_I}
and incubated at room temperature for 1h. Subse-
quently, 100-zl aliquots were plated in triplicate over
the surface of a nutrient agar plate and incobated at
28 £ 2°C for 24 b before enumerating total number of
colonies. Death rate =" was calculated, using the follow-
ing equation:

Death rate (e} = %)
Ny

% 100,
where N1 and N are the number of colonies grown on
the control and experimental plate, respectively.

Also, the number of metabolically active and dead cells
in the experimental groups was counted microscopically

after staining with BacLight Redoxsensor CTC viability kit
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{Molecular Probes; Invitrogen, Fugene, OR, USA), follow-
ing the protocols suggested in the product brochure.

Effect of Ag-Si0,NC on cell wall integrity and genetic
stability of Pseudomonas aeruginasa

The effect of Ag-SiO;NC on cell wall integrity and
genetic stability of P. aeruginesa was investigated by SDS
assay (Lok et @l 2006) and comet assay (Singh et al
1999}, respectively. For SDS assay, P. aeruginosa cells
from an overnight culture were washed copiously with
sterile PBS and dispensed in the wells of a sterile micro-
plate to a volume of 200 ul. After measuring the initial
absorbance, the test solution was supplemented with Ag-
SiO,NC and SDS (0-1%). Control wells without Ag-
Si0,NC also were maintained. The absorbance at 600 nm
was recorded every 15 min for a period of 2 h. The
decrease in absorbance compared to the initial reading
was plotted against time. All the experiments were carried
out three times in duplicate. The fatty acid profile of
P. aeruginosa before and after treatment with Ag-5i0.NC
was analysed. The log phase cells of P. aeruginosa were
treated with Ag-SiQ,NC for 3 h, and whole cell fatty
acids were extracted, methylated according to standard
protocols and analysed using a gas chromatography sys-
tem 16890N Network GC system, Agilent Technologies
Inc., Wilmington, DE).

For comet assay, 10° bacterial cells before and after Ag
~510,NC treatment were mixed with 100 ul of 0-5% low—
melting-point agarose prepared in TAE buffer containing
RNAse (5 g ml b, SDS  (0-25%) and lysozyme
(05 mg mI™"). Bacterial cells impregnated in agarose
solution were spread over a microscopic slide precoated
with thin layer of agarose {0-5%). The cells on the slides
were lysed at 37°C for 1 h, by immersing in a lysis solu-
tion, followed by incubation in an enzyme solution for
2 h at 37°C. Subscquently, the slides were equilibrated
with 300 mmol 1! sodium acetate and subjected for elec-
trophoresis at 25 V for 1 h. Following electrophoresis, the
slides were immersed in 1 mol 1! ammonium acetate in
ethanol for 30 min, and then in absolute ethanol for 1 h,
air-dried at 25°C, immersed in 70% ethanol for 30 min
and air-dried. The slides were stained with SYBR green
and comets were observed under a fluorescent micro-
scope. The nucleic acids were classified based on comet
length as intact (0-10 pm) and damaged (=10 um)
groups and expressed as % of incidence in the histogram.
The assay was repeated three times in duplicates.
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Abstract Reef-building corals encompass various strat-
egies to defend against harmful ultraviolet (UV) radiation.
Coral mucus contains UV-absorbing compounds and has
rich prokaryotic diversity associated with it. In this study,
we isolated and characterized the UV-absorbing bacteria
from the mucus of the corals Porites lutea and Acropora
hyacinthus during the pre-summer and summer seasons. A
total of 17 UV-absorbing bacteria were isolated and
sequenced. The UV-absorbing bacteria showed UV
absorption at wavelengths ranging from 4., = 333 nm to
Amin = 208 nm. Analysis of the DNA sequences revealed
that the majority of the UV-ahsorbing bacteria belonged to
the family Firmicutes and the remaining belonged to the
family Proteobacteria (class Gammaproteobacteria).
Comparison of the sequences with the curated database
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yielded four distinct bacterial groups belonging to the
genus Bacillus, Staphylococcus, Salinicoccus and Vibrio.
The absorption peaks for the UV-absorbing bacteria shifted
to the UV-A range (320-400 nm) when they were incu-
bated at higher temperatures. Deciphering the complex
relationship between corals and their associated bacteria
will help us to understand their adaptive strategies to var-
ious stresses.

Keywords Porites lutea - Acropora hyacinthus -
UV-ahsorbing bacteria - Coral - Firmicites

Introduction

Coral reefs are unparalleled in terms of both prokaryotic
and eukaryotic diversity. Bacteria associated with corals
occupy different niches including the surface mucus layer
(Ritchie and Smith 2004), tissues (Ceh et al. 2011) and
skeleton (Sweet et al. 2011a). The immense diversity of
bacteria associated with different species of corals was
reported (Rohwer et al. 2001, 2002; Koren and Rosenberg
2006; Bourne and Munn 2005). It was observed that coral-
associated bacteria were species specific regardless of their
geographical location (Rohwer et al. 2001; Bourne and
Munn 2005). The rich species diversity of microbes on the
surface of corals can be attributed to the presence of a
surface mucus layer, with the composition of mucus being
species specific for each coral (Meikle et al. 1988). The
mucus has the ability to trap particulate organic matler
from seawater and serves as an energy-rich substrate for
the heterotrophic activity of bacteria (Wild et al. 2004).
The mucus also aids the corals in coping up with excessive
sediment stress (Hubbard and Pocock 1972) and protects
them from fouling (Ducklow and Mitchell 1979).
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The nutrient-rich coral mucus supports the growth of
both beneficial and pathogenic bacteria, yet little is known
about the microbial population associated with corals and
their pathogenicity. The microbial communities associated
with corals exhibit antimicrobial properties and potentially
protect corals from pathogens by preventing their coloni-
zation via competition for space on the reel and deterring
their growth by releasing antimicrobial compounds (Nis-
simov et al. 2009; Orland and Kushmaro 2009; Rypien
et al. 2010; Orland et al. 2012). Raina et al. (2009)
emphasized the role of microbial communities in the bio-
geochemical cycling of sulfur and stated that dimethyl-
sulfoniopropionate (DMSP} and dimethylsulfide (DMS) are
potential nutrient sources for coral-associated bacteria.
Shashar et al. (1994) reported the presence of nitrogen-
fixing bacteria in the coral skeleton playing an important
role in the nitrogen recycling in the reef ecosystem. Coral
probiotic hypothesis suggested that the coral holobiont
could shift as an adaptive strategy of corals to the changing
environmental conditions (Reshelf et al. 2006). Recent
research on coral-associated bacteria suggested two con-
tradictory scenarios following a stress event. The first is an
irreversible replacement of the surface microbial biota with
potential pathogens that makes the coral deprived of anti-
microbial properties associated with the original microbial
community. This shuffling causes disease in corals (Jones
et al. 2010). The second, proposed by Garren et al. (2009},
suggests that the microbial biota replaced with pathogens
due to a stress is reversible in due course of time irre-
spective of the subsidence of the stress and mere presence
of pathogens does not cause disease in corals. This was
supported by experimental evidence by Sweet et al
{2011b), in which an adjusted coral microbial community
was restored back to its original composition after a time
period.

Ultraviolet (UV) radiation is one of the most dominant
stressors 10 a variety of marine organisms, affecting their
health and function of the marine ecosystems (Hader et al.
2011). UV radiation acts synergistically with elevated
seawater temperature to cause coral bleaching (Lesser and
Farrell 2004). UV-A radiation influences the productivity
of marine ecosystems by affecting interactions between
organisms at different trophic levels (Ochs and Eddy
1998). Most organisms synthesize UV-absorbing com-
pounds along with other UV-protective mechanisms like
photo reactivation and other repair mechanisms (Hader
et al. 2007; Rastogi and Sinha 2011; Bhatia et al. 2011).
Certain reef-building corals possess UV-absorbing com-
pounds such as mycosporine-like amino acids (MAA) that
include mycosporine, palythine and palythinol which pro-
tect them from harmful UV rays (Dunlap and Chalker
1986). MAA was originally isolated from cyanobacteria
and also synthesized by certain phytoplankton groups and
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macroalgae (Hader et al. 2011). In addition to MAA, the
calcium carbonate skeleton of corals also absorbs harmful
UV radiation and emits it as yellow fluorescence, signifi-
cantly reducing the tissue damage (Reef et al. 2009).
However, the concentration of UV-absorbing compounds
decreases during a sharp rise in temperature, which in turmn
increases the risk of the harmful effects of UV radiation to
both corals and zooxanthellae (Lesser et al. 1990). Corals
get external protection from harmful UV rays by the
presence of chromophoric dissolved organic matter
(CDOM) in overlaying waters which absorbs harmful UV
radiation; however, bleaching of the CDOM exposes corals
to the harmful UV rays (Anderson et al. 2001).

In this stady, UV-absorbing bacteria associated with
mucus of the massive coral Porires lutea and the table coral
Acropora hyacinthus were isolated, identified and charac-
terized phylogenetically. Their in vitro UV-absorbing
property under elevated temperature conditions was also
investigated.

Materials and methods
Description of the study site

Mucus was collected from the corals in Palk Bay, located
on the southeast coast of India (Fig. 1). Palk Bay is a
shallow basin with an average depth of 9 meters, and the
reef here occurs at a depth of 1- m. The reef itself is
narrow and runs parallel to the land lying between longi-
tdes 79°17"40"E and 79°8'E and latitude 9°17'N in an
east-west direction. It is composed largely of massive
boulder corals, belonging to the genera Porites, Favia,
Favites, Platygyra, Symphillia, mtermittent with sandy
patches. In addition, few colonies of Acropora sp. can be
found distributed in the reef crest.

Sample collection and isolation of bacteria

Mucus samples were collected from Porites lutea and
Acropora hyacinthus during pre-summer (March) and
summer seasons (May) in 2010 using sterile syringes at a
depth of 3 and 4 m, respectively. The syringes were
immediately transported in ice to the laboratory under
aseptic condition within 2 h of collection.

The mucus samples were serially diluted (tenfold dilu-
tion) using filter sterilized and antoclaved seawater, plated
on ZoBell marine agar plates and incubated at 28 °C for
48 h. After incubation, the microbial population of each
plate was enumerated by counting the number of individual
colonies grown using a colony counter and the number of
colonies was expressed as cfu/m] of mucus. Colonies with
unique morphology were [urther purified by quadrant
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Fig. 1 Sampling sites in Palk
Bay, southeast coast of India.
(AcGIS v 9)
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streaking onto fresh nutrient agar plates prepared using
aged seawater.

Screening of UV-absorbing bacteria

Bacterial isolates with unique morphology were inoculated
individually into test tubes containing 50 ml nutrient broth
prepared in aged seawater. The broth was incubated for 24 h
at room temperature in an orbital shaker. After incubation,
the cultures were scanned in the UV range (200—00 nm)
with a double beam UV-Visible spectrophotometer (Shi-
madzu UV-VIS 2550, Japan) using a 5-cm path quartz
cuvette against sterile nutrient broth as a reference. The
isolates that showed an absorbance peak between 200 and
400 nm were selected for further studies. Each isolate was
given a unique code based on the time of collection (pre-
summer and summer), coral species and the number of the
isolate for the ease of presenting the data, for example,
PSPL1 meant pre-summer P. lutea isolate 1, PSAH1-—pre-
summer A, fvacinthus isolate 1, SPL1—summer P. litea
isolate | and SPH1-—summer A. Ayacinthus isolate 1.

Effect of temperature on UV absorption

The UV-absorbing bacterial isolates were inoculated in the
nutrient broth prepared in the aged seawater and incubated at
a gradient of temperatures (28, 30, 32 and 34° C) for a period
of 24 h. After incubation, the cultures were scanned between
200 and 400 nm wavelength as described previously.

79°10'0"E 79°20'0"E

Genomic DNA extraction and 168 rRNA sequencing

The isolates that showed UV absorption were subjected to
identification using 168 rRNA sequencing. Genomic DNA
was extracted from the cultures grown overnight following a
madified phenol-chloroform method, and the quality of the
product was checked in (L8 % agarose gel. Gene amplifica-
tion was done using the forward primer 27F (5AGA-
GTTTGATCCTGG CTCAG 3'; Weisherg et al. 1991) and
reverse primer 1492 R (5GGTTACCTTACGACTT 3;
Reysenbach et al. 1992). PCR was done in a thermocycler
(Applied Biosystems, USA}) using the following cyclic
program: initial denaturation at 94 °C for 5 min followed by
30 cycles of denaturation at 94 °C for 1 min; annealing at
55 °C for 1 min; extension at 72 °C for 1 min and final
extension at 72 °C for 10 min. The PCR products were
purified using polyethylene glycol precipitation as described
by Liss (1980). The purified PCR products were further
extended using the 27 F and 1492 R primers in a thermocy-
cler using the following program: initial denaturation at
96 °C for 1 min followed by 30 eycles of denaturation at
96 °C for 10 s; annealing at 50 °C for 5 s, extension at 60 °C
for 4 min and final extension at 60 °C for 1 min. The final
extension products were cleaned using the protocol descri-
bed by De and Ramaiah (2007). Sequencing was done using
an ABI sequencer (ABI PRISOM model No. 3700). Forward
and reverse sequences obtained were aligned using Se-
quencher V4.10.1. The sequences were then submitted in the
GenBank. The accession numbers are GQ 281097-GQ
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281107(pre-summer isolates} and KC431013-KC431018
(summer isolates).

Phylogenetic characterization

Aligned sequences were compared with the curated database
of type strains of prokaryotes present in Eztaxon server
(http://www .eztaxon.org; Chun et al. 2007) to determine
approximate phylogenetic affiliations. 165 rRNA gene
sequences were compiled and manually aligned using the
ARB software package (http://www.arb-home.de) (Ludwig
et al. 2004). Phylogenetic tree calculated with 16S rRNA
gene sequences for all target sequences and their close rel-
atives using the neighbor-joining (Saitou and Nei 1987)
method in ARB. The neighbor-joining (NJ) tree topology
was then evaluated by bootstrap analyses (Felsenstein 2004 )
based on 1000 re-samplings. The final phylogenetic tree was
constructed using the MEGAS (Tamura et al. 2011).

Results
Isolation and enumeration of bacteria

The culturable bacterial counts from the mucus sample
of P. hutea and A. hyacinthis were 4.1 x 107 and 12
x 107 cfu ml ™!, respectively, for the pre-summer season.
For the summer scason, the culturable bacterial counts
from the mucus sample of P. lutea and A. hyacinthus were
7 % 10" and 2.13 x 10 cfu ml™!, respectively. A total of
12 isolates from P. lutea and 31 isolates from A. hyacinthus
were obtained during the pre-summer season. Subsequently,
a total of 13 isolates from P. lurea and 20 isolates from A.
hyacinthus were obtained during the summer season.

UV-absorbing bacteria

Of the total 43 isolates obtained from P. lutea and A.
hyacinthus during pre-summer season, 6 isolates from P.
lutea and 5 from A. hyacinthus exhibited UV-absorbing
property (A = 333 nm; and 4, = 208 nm, respec-
tively). Only 6 isolates out of a total of 33 isolates obtained
during summer season exhibited UV-absorbing property at
arange of Ay = 282 nm 10 4., = 208 nm (3 each from
P. lutea and A. hyacinthus).

Phylogenetic analysis
The nearest phylogenetic neighbors of the UV-absorbing
isolates were identified following BLAST analysis of 168

rRNA gene sequence. The DNA sequences exhibited
<97 % identity to the nearest Eztaxon entry. 165 rRNA
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sequence analysis of the UV-absorbing isolates revealed
the presence of two major bacterial groups. Majority of the
UV-absorbing isolates were of Firmicutes (class Bacilli)
and the rest were of phylum Proteobacteria (class Gam-
maproteobacteria) in both P. litea and A. hyacinthus. Of
the 11 UV-absorbing isolates obtained during the pre-
summer, 8§ isolates PSPL 1, PSPL 3, PSPL 4, PSPL 5,
PSPL 6, PSAH 1, PSAH 2 and PSAH 3 were clustered
within the Firmicutes group (Fig. 2) comprising the genus
Bacillus and the rest belonged to the Gammaproteobacteria
comprising the genus Vibrio (PSPL 2, PSAH 4 and PSAH
5). In contrast, all the UV-absorbing bacterial isolates
obtained during summer were clustered within Firmiciutes
group comprising three different genus namely Bacillus
(SPL 2, SPL 3, SAH 1 and SAH 2), Staphylococcus (SPL
1) and Salinicoccus (SAH 3). To compare the levels of
novelty with other bacterial communities, we assembled
168 rDNA libraries from previously published data for
coral-associated bacteria. The phylogenetic tree con-
structed to determine their affiliations (Fig. 2) formed four
groups. Group A represented Bacillus species, the most
abundant bacterial species associated with the coral mucus
examined in this study. Group B and C represented
Staphylococcus and Salinicoecus, respectively. The isolates
related o Bacillus kochii (GQ281101; GQ281098;
KC431016), Bacillus gibsonii (GQ281102) and Bacillus
oceanisediminis (GQ281103; GQ281100) were not previ-
ously isolated from corals, and this is the first report of the
isolation of these species from corals. Group D represents
Vibrio species, the second most abundant bacterial species
associated with corals in the present study. The Vibrio sp.
(GQ281099; GQ281105: GQ281106) reported in this study
was 99 % similar to Vibrio owensii (JX127215), which is
reported to cause Montipora white syndrome in the
Hawaiian reef coral Montipora capitata (Ushijima et al.
2012). Groups A, B and D were aligned with representa-
tives of coral-associated bacteria found from previous
studies, whereas group C was not, as there were no pre-
vious reports of these bacterial sp. associated with corals.

Effect of temperature on UV absorbance

For UV-absorbing isolates incubated at 28 °C, peaks of
absorption wavelength were below 300 nm (ranging
between 208 and 282 nm), with the exception of four
isolates (PSPL 2, PSAH 4, SAH 1 and SAH 3) which
showed absorption peaks above 300 nm. Incubating all the
isolates at higher temperatures triggered additional
absorption peaks in the UV-A range (g, = 367 nm; and
Amin = 317 nm). The absorption wavelengths for the UV-
absorbing bacterial isolates during the pre-summer and
summer seasons incubated at different temperature are
presented in Figs. 3 and 4, respectively.
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Fig. 2 Neighbor-joining (NJ) phylogenetic tree for 165 tRNA gene
sequences showing the relationship between the coral-associated
bacterial strains (GENBANK sequences. in dark blue), UV-absorbing
bacterial isolates from this study [Acrepora fyacinting (green),

Discussion

The UV-absorbing bacterial commumity isolated from the
mucus of 2. lutea and A. hyacinthus during the pre-summer
and summer seasons was dominated by Bacillus and Vibrio
species. When comparing the distribution of the UV-
absorbing bacterial population, A. hyacinthus showed a
greater microbial diversity than P. [utea in both the pre-
summer and summer seasons. However, the abundance of
UV-absorbing bacteria was more or less equal between the
two species.

Shallow-water corals receive higher amounts of UV
radiation than those found at greater depths especially
during summer seasons and they showed to possess MAAs
to help protect them from UV rays. Shick et al. (1996)
reported that the coral surface mucus layer offers protec-
tion against UV rays, as it consists of MAAs secreted by
the algal symbionts. In addition, we reported the presence
of UV-absorbing bacteria in the coral mucus, which has the
potential to play an important role in protecting the corals
from UV radiation.

The number of UV-absorbing bacteria isolated was
significantly low relative (o the other heterotrophic bacteria
in coral mucus during the summer season for both A
hvacinthus and P. lutea as compared to the pre-summer
season. This could potentially be attributed to the rise in
seawater temperatures. When the corals were under ther-
mal stress, the population of algal symbionts was signifi-
cantly reduced which subsequently affected mucus
composition and secretion (Brown and Bythell 2005). Also,
Ritchie and Smith (1995) stated that the chemical nature
and quantity of mucus could change when the coral was

Porites lutea (purple} and reference strains (black)]. The sequence of
Aquifex pyrophius (MB3548) was used as an outgroup. Bootstrap
values =50 are indicated at corresponding nodes. Sequence accession
numbers are in parcntheses

stressed. The bacterial communities outcompete one over
the other during the incidence of high temperature and
bleaching (Ritchie et al. 1994). In our study, the change in
the composition of mucus (especially during an increase in
seawater temperature), would have favored other hetero-
trophic bacteria to outcompete the UV-absorbing bacteria
associated with the coral mucus. Currently, nothing is
known about the UV-absorbing properties and numerical
abundance of UV-absorbing bacteria within the un-cultured
mucus-associated bacterial population, and this should be
the focus of the next area of research on this topic. Rising
incubation temperatures for the UV isolates from 28 to
34 °C shifted the wavelength of UV absorption to a higher
range. This is of particular importance, as Gleason and
Wellington (1993) state that UV-A radiation at the wave-
length band of 280-400 nm is one of the major contrib-
uting factors in coral bleaching. Prevalence of these UV-
absorbing bacteria during an episode of brief warming
period could be an indication of the adaptive mechanism in
the corals to shuffle and proliferate a particular group of
bacteria that can absorb these lethal UV radiations.

It is not known whether the UV-absorbing property
exhibited by the bacterial isolates from our study was due
to the synthesis of UV-absorbing compounds like MAAs.
MAAs (mycosporine-like amino acids) is a collective term
given to a group of amino acids synthesized as secondary
metabolites in the shikimic acid pathway involved in the
synthesis of aromatic amino acids that protect aquatic
organisms against harmful solar radiations. MAAs consists
of cyclohexenone or cyclohexinimine chromophore con-
jugated with the nitrogen substituent of an amino acid

{Sinha et al. 1998). More than 20 different MAAs have
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been reported in various organisms each having their own
absorption maxima due to the difference in attached side
groups and nitrogen substituents (Singh et al. 2008).
Dumlap and Shick (1998) reviewed the presence of MAAs
in reef-associated organisms that either synthesize their
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own MAAs or acquired them from their algal symbionts.
Biosynthesis of MAAs via the shikimic acid pathway
(Favre-Bonvin et al. 1987} was reported to be absent in the
animal tissues (Bentley 1990), suggesting that zooxan-
thellae might be the source. Contrary to this, there are also
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reports of zooxanthellae not being the source of MAAs
{Banaszak and Trench 1995; Ishikura et al. 1997). How-
ever, in the majority of the studies, the same type of MAAs
was isolated from both the zooxanthellae and host animal
tissue indicating that they share this compound {Dunlap
and Shick 1998).

In general, heterotrophic bacteria lack UV-protective
pigments and compounds (Karentz et al. 1994), but Arai
et al. (1992) isolated and characterized UV-absorbing
compounds from a marine bacterium Micrococcus. In the
study presented here, bacteria isolated from coral mucus
and cultured independently under lahoratory conditions do
exhibit UV-absorbing properties, indicating the synthesis
of UV-absorbing compounds by the bacteria itsell. When
these UV-absorbing bacterial isolates were incubated at
temperatures higher than 28 °C, additional absorption
peaks appeared in the UV-A range (315-400 nm). This
may be due to the synthesis of additional UV-absorbing
compounds as previously described in cyanobacteria
(Sinha et al. 2001) and in the marine macroalga Chondrus
crispus (Karsten et al. 1998). The synthesis of UV-A-
absorbing compounds by these bacteria in response to
clevated temperatures suggests that a rise in temperature
could indirectly aid in diluting the effects of UV-A radia-
tion on coral hosts.

In conclusion, this study suggests that the UV-absorbing
bacteria associated with the coral mucus might play an
important role in protecting the corals during incidences of
increased UV radiation. Unraveling the complex relation-
ship between corals and their associated bacteria will help
us in understanding the adaptive strategies corals and their
associates use against various environmental stresses.
Moreover, in this study, only culturable bacteria were
shown to absorb UV radiation. Exploring the uncultured
bacteria associated with the coral mucus will show the
actual magnitude of the UV protection rendered by these
coral-associated bacteria.
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ABSTRACT

Bacillus species constitute a diverse group of bacteria widely distributed in soil and the
aquatic environment. In this study, Bacillus strains isolated from the coastal environment of
Cochin, India were identified by detailed conventional biochemical methods, fatty acid methyl
ester (FAME) analysis and partial 168 rDNA sequencing. Analysis of the data revealed that
Bacillus pumilus was the most predominant species in the region under study followed by B.
cereus and B. sphaericus. The B. pumilus isolates were further characterized by arbitrarily
primed PCR (AP-PCR), antibiotic sensitivity profiling and PCR screening for known toxin genes
associated with Bacillus spp. All B. pumilus isolates were biochemically identical, exhibited high
protease and lipase activity and uniformly sensitive to antibiotics tested in this study. One strain
of B. pumilus harboured cereulide synthetase gene cesB of B. cereus which was indistinguishable
from rest of the isolates biochemically and by AP-PCR. This study reports, for the first time, the

presence of the emetic toxin gene cesB in B. pumilus.

Keywords: B. pumilus, FAME; 16S rDNA; cesB; AP-PCR.
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INTRODUCTION

The Gram-positive, aerobic, rod-shaped endospore-forming bacteria of the Genus Bacillus are
the most widely represented organisms in the soil. Due to their ability to form spores and
withstand a range of variable environmental conditions, Bacillus spp. adapt easily to diverse
habitats (25). The diverse physiology of Bacillus spp. requires elaborate biochemical tests for
their identification (30). Advances in chromatographic analysis of whole cell fatty acid methyl
ester (FAME) profiles have made this technique sufficiently sensitive and reliable for grouping
of Bacillus at species level (31). Further, nucleic acid based techniques such as 16S rDNA (3.34)
and gyrase B (gyrB) sequence analysis have proved to be of immense value for phylogenetic
analysis of bacteria (35). Based on the 16S rDNA sequence analysis, 5 groups have been
identified within the genus Bacillus, of which the group 1 (B. subitilis group) comprises of B.
amyloliquefaciens, B. subtilis and B. pumilus (3,12).

Several species of Bacillus inhabit coastal and marine environments, though it is hard to strictly
classify them as indigenous to these habitats. Together with B. cereus and B. subtilis, B. pumilus
is considered as a major component of marine bacterial communities (8,15,22,27). Recently, B.
pumilus has also been reported to be the second most predominant Bacillus species in spacecrafts
(17). This bacterium is highly resistant to extreme environmental conditions such as low or no
nutrient availability, desiccation, irradiation, H-O, and chemical disinfections (19). The
ecological role of B. pumilus is emphasized by the fact that they do produce compounds
antagonist to fungal and bacterial pathogens (4.6). Thus, B. pumilus is of considerable research
interest to understand its physiological diversity, genetic relatedness with other Bacillus spp. and

the possible presence of toxigenic factors. In the study reported here, we describe 1) isolation and
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identification of Bacillus spp. from environmental samples by conventional methods, FAME and
16S rDNA sequencing and ii) further phenotypic and genetic characterization of B. pumilus, the

predominant Bacillus group of bacteria in the coastal region under study.

MATERIALS AND METHODS

Isolation and biochemical characterization of Bacillus spp.

Sea water, sediment, fish and shellfish were collected off Cochin, West coast of India and
processed for the isolation of Bacillus spp. Fish, shellfish or sediment samples were
homogenized in phosphate buffered saline (PBS 0.05 M, pH 7.2). serially diluted in the same
medium and spread plated on nutrient agar prepared in 50% seawater. One hundred micro liters
of seawater samples were directly spread plated on the same medium and incubated at 30 °C for
24-48 h. The colonies that came up on agar plates were purified and stored at -80°C in nutrient
broth containing 30% glycerol. For taxonomic identification, the isolates were subjected to a
series of biochemical tests (11), which included nitrate reduction, anaerobic growth, gas
production from glucose, Voges-Proskauer (VP), growth at different NaCl concentrations,
temperature and pH ranges, degradation of starch, casein, urea, tween 20, gelatin, chitin, acid
production from arabinose, mannitol, xylose, glucose, lactose, citrate utilization and production
of DNAse. The production of extracellular enzymes namely caseinase, chitinase, protease,
alkaline phosphatase, gelatinase and lipase was studied following the protocol described by

Smibert and Krieg (29)
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Fatty acid methyl ester (FAME) analysis

Gas chromatographic analysis of whole cell fatty acid methyl ester (FAME) was performed for
further identification and grouping of isolates. Fatty acid methyl ester extraction was performed
using standard procedures (28). The fatty acid profiles generated were compared against an
inbuilt Sherlock TSBA Library version 3.9 (MIDI Inc., DE, USA). A similarity index of >60%

was used for clustering of isolates at species level.

Antimicrobial susceptibility assay

The inhibition of B. pumilus strains by various antibiotics was tested by standard disc diffusion
technique (7). The cultures were grown in nutrient broth overnight and plated on Muller Hinton
agar (Hi-Media, Mumbai). The following antibiotic discs with their concentrations indicated in
parenthesis were used: amoxicillin (25 mecg), penicillin (10 mcg), ciprofloxacin (5 mcg).
gentamycin (10 meg), cotrimoxazole (25 meg), chloramphenicol (30 mcg), bacitracin (8 meg),

tetracycline (30 mcg). kanamycin (30 meg), erythromycin (15 meg). vancomycin (30 meg).

DNA isolation and purification

Pure genomic DNA was isolated following the method of Ausubel ef al. (5). Briefly, the cultures
were grown overnight in 3 ml nutrient broth with shaking at 30 °C. A 1.5 ml of the culture was
centrifuged at 12 000 g for 10 min and the resultant pellet was resuspended in 567 ul 1< TE
buffer (10 mM Tris pH 8.0, 1 mM EDTA). Proteinase K and SDS were added to final
concentrations of 100 pg/ml and 0.5% respectively, and incubated at 37 °C for 1 h. After
incubation, NaCl (5 M) and CTAB/NaCl (10% w/v cetyl trimethyl ammonium bromide in 0.7 M

NaCl) were added and incubated at 65 °C for 10 min. The mixture was extracted once each with
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an equal volume of chloroform-isoamyl alcohol (24:1) and phenol-chloroform-isoamyl alcohol
(25:24:1). DNA was precipitated from the aqueous phase using 0.6 volumes of isopropanol and
washed once with 70% ethanol. The DNA pellet obtained after final centrifugation was vacuum
dried and dissolved in 50 pl 1x TE buffer. DNA quantification was done using a UV-1601

spectrophotometer (Shimadzu Corporation, Japan).

16S rDNA sequencing and AP-PCR

The 168 rDNA of 4 strains (NIOB 005, NIOB 133, NIOB 485 and NIOB 525) were PCR
amplified using universal primers and PCR conditions described by Iwamoto ef al. (16) (Table
1). The resultant 454 bp products were purified using a PCR purification kit (Qiagen, Germany)
and sequenced. The sequences were subjected to homology search using BLAST programme (2)

of the National Center for Biotechnology Information (NCBI).

AP-PCR was performed using primer CRA22 described by Neilan (18) (Table 1). All the
reactions were carried out in 30 ul volumes consisting of a 10xbuffer (100 mM Tris-HCI, 500
mM KCI and 20 mM MgCl,), 200 uM concentrations of each of the four dNTPs, 30 picomoles
of primer, 3 U of Taq polymerase (MBI Fermentas). All PCR amplifications were carried out in
an eppendorf mastercycler (Eppendorf, Germany). In all the reactions, 300 ng of the pure
genomic DNA was used. The amplification products were separated on a 2% agarose gel, stained
with ethidium bromide and photographed. Amplification profiles obtained were analyzed and a

dendrogram was generated using BioNumerics version 4.6 software (Applied Maths, Belgium)
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PCR detection of cereulide synthetase genes
B. pumilus were screened for the presence of cereulide synthetase genes cesd and cesB using
primers previously described (Table 1). The expected amplicons with cesd and cesB gene-

specific primers were 188 bp and 635 bp respectively.

Nucleotide sequence accession numbers
The partial 16S rDNA and cesB sequences derived in this study have been deposited in GenBank
under the accession numbers EU283326, EU283325, EU283323, EU283322, EU283320,

EU283318, EU167933, EU283321, EU167932, EU167924, EU289221

RESULTS

Taxonomic identification of Bacillus spp. isolated from coastal environment of Cochin

Eighty-two Bacillus spp. were isolated and identified by biochemical tests and fatty acid methyl
ester analysis (FAME). These included B. pumilus (16), B. cereus (13), B. sphaericus (11), B.
subtilis (10), B. amyloliquefaciens (8), B. megaterium (6), B. lentimorbus (5), B. coagulans (4),
B. licheniformis (4), B. circulans (1), B. flexus (1) and Bacillus GC group 22 (1). The Bacillus
GC group 22 corresponds to the gas chromatographic profile of a Bacillus species in the
Sherlock TSBA Library version 3.9 (Microbial [D, MIDI Inc.), the 168 rDNA sequence of which
does not match any known species of the genus Bacillus. In our study, B. pumilus was the most

predominant species followed by B. cereus and B. sphaericus. Ivanova et al. (15) in their study
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found that B. pumilus and B. subtilis were the most abundant Bacillus spp. associated with

marine sponges, ascidians, soft corals, and seawater.

Characterization of B. pumilus

Sixteen B. pumilus strains isolated from different sources (Table 2) exhibited uniform
phenotypic properties (Table 3). Physiological tests revealed the production of detectable
protease and lipase but not amylase, phosphatase, DNase, gelatinase and chitinase. The partial
16S rDNA sequences (=300 bp) of B. pumilus determined in this study revealed 99-100%
homology with B. pumilus 16S rDNA sequences in the GenBank. The antibiotic susceptibility
profiles of B. pumilus were identical. All 16 isolates were uniformly inhibited by amoxicillin,
ciprofloxacin, gentamyein, cotrimoxazole, chloramphenicol, bacitracin, tetracycline, kanamycin,

erythromycin, vancomycin. All isolates exhibited resistance to penicillin.

AP-PCR typing of isolates

The random primer CRA 22, which consistently yielded 4-10 bands with B. pumilus, was chosen
for typing of isolates by AP-PCR. The analysis of AP-PCR fingerprints revealed heterogeneity
among B. pumilus isolates with 10 distinct patterns (Fig. 1). Despite this overall genetic
diversity, near identical profiles were obtained between strains NIOB 485 and NIOB 325 (from
crab), strains NIOBI111 (fish) and NIOB 426 (from sediment), strains NIOB096 (from crab) and

NIOBI169 (from fish). strains NIOB163 (from fish) and NIOB431 (from starfish).
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Detection of cereulide synthetase gene in B. pumilus by PCR

One isolate B. pumilus NIOB 133 isolated from an estuarine fish yielded 635 bp amplicon with
cesB-targeted primers EM1-f and EM1-r (Fig. 2). The product of cesB PCR was sequenced and
nucleotide sequence analysis of the PCR product revealed 96% similarity with corresponding
sequence of cesB of B. cereus (GenBank accession no. DQ889676) (26). while the deduced
amino acid sequence showed 92% homology with a few amino acid mismatches (Fig. 3). This

strain was negative by ces4d PCR using primers CER1 and EMTI.

DISCUSSION

This study on the diversity of Bacillus spp. isolated from a coastal environment by biochemical
assays, FAME analysis and 168 rDNA sequencing revealed that B. pumilus was the predominant
species followed by B. cereus. B. pumilus belongs to B. subfilis group of aerobic spore-forming
organisms, which has lately evoked considerable research interest due its involvement in cases
of food-poisoning. Recently, a pumilacidin-producing B. pumilus has been implicated in a case
of food poisoning (13). A study by Brophy and Knoop (9) reported experimental induction of
enterocolitis in guinea pigs, while some compounds produced by B. pumilus were reportedly
toxic to mice, eukaryotic cells and humans (20,21.24.32).

Sixteen environmental B. pumilus strains isolated from different sources (Table 2) exhibited
uniform phenotypic properties (Table 3). The identity of these isolates was further confirmed by
fatty acid methyl ester analysis with a similarity index of >60% (data not shown). The partial

168 rDNA sequences (=300 bp) of these strains revealed 99-100% similarity with B. pumilus
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16S rDNA sequences in the GenBank. Thus, a combination of conventional physiological tests
and genetic analysis enabled unambiguous identification of B. pumilus from coastal
environments of Cochin. None of the strains exhibited resistance to the antibiotics tested in this
study except to penicillin. This observation is interesting, since penicillin resistance has not been
reported in B. pumilus. Studies on antibiotic resistance of B. pumilus are limited, since the
organism is not considered infectious to humans and animals. However, some recent studies
have revealed that several Bacillus species including B. pumilus can cause infections, ranging
from skin infection to life threatening bacteremia in immunocompromised individuals (23,33).
Thus, more studies need to be performed to understand the human health significance of B.

pumilus, genetic basis of infections and resistance to antimicrobials.

The whole genome comparison of B. pumilus strains by AP-PCR demonstrated that B. pumilus
were genetically diverse. Though the isolates shared several common amplification bands,
overall heterogeneity among B. pumilus studied was apparent (Fig. 1). Despite this, some strains
isolated from similar sources during different points time exhibited identical or near identical
profiles. However, it was not possible to atiribute isolates to a particular source solely based on
the AP-PCR profiles, since some strains isolated from different sample types such as fish and
sediment also exhibited identical AP-PCR profiles. The random primer CRA 22 used in this
study has sufficient discriminating power and will be useful for studying genetic diversity among

the Bacillus group of bacteria.

In order to understand the toxigenic potential of environmental strains of B. pumilus, the isolates

obtained in this study were screened for the presence of cereulide synthetase genes cesd and
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cesB by PCR. Surprisingly, one strain (NIOB 133) was PCR positive for cesB-targeted gene
(Fig. 2). This strain however, did not harbour ces4d gene as revealed by cesd-specific PCR using
primers CER1 and EMT1. Cereulide is a small heat stable cyclic dodecadepsipeptide produced
by some strains of B. cereus which has high toxicity to humans (1,36). Cereulide is synthesized
by a non-ribosomal peptide synthetase, encoded by the ces genes located on a 270-kb pXOl-like
virulence plasmid named pCER270 (10.26). more often found associated with clinical isolates
of B. cereus. A recent study has reported the presence of cesd, but not cesB, in B. pumilus and B.
licheniformis isolated from bovine mastitis (20). However, the cesB-positive strain in our study
lacked cesAd. Therefore, it appears that cereulide-encoding genes may be distributed over a wide
species range within the Bacillus group of bacteria in the environment. The cesB-positive B.
pumilus 1n the present study was indistinguishable from the rest of the strains by biochemical
assays or by its fatty acid profile. Further, the AP-PCR profile of this strain was similar to other
non-toxigenic strains (Fig. 1). The production of toxin and the consequent ability of this strain to
initiate emetic symptoms need to be established by suitable animal feeding experiments. Our

study constitutes the first report on the presence of cesB in B. pumilus.

In conclusion, Bacillus spp. constitute key components of coastal-marine heterotrophic bacterial
communities owing to their diverse and flexible physiological properties. Isolation and
characterization of Bacillus spp. from these environments will help in identifying novel
mechanisms of environmental survival, diverse metabolic activities, production of
biotechnologically valuable compounds such as enzymes and antimicrobial substances and the
presence of putative toxigenic factors. In our study, a combination of methods involving FAME,

16S rDNA sequencing and biochemical assays enabled complete identification of B. pumilus.
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Though, the biochemical and enzymatic properties of B. pumilus isolated in this study were
uniform, intraspecific genetic diversity was evident from AP-PCR analysis. The detection of
cereulide synthetase gene cesB in B. pumilus is significant, since ces genes were previously
thought to be restricted to emetic strains of B. cereus. The organization of ces operon in B.

pumilus is a subject for further study.
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Table 1. PCR primers used in this study
Primer Sequence (57-37) Target gene Reference
EURB-F geacaageggtggagealgigg 165 rtDNA 16
EUB-R gccegggaacgtattcaceg
CER1  afcataaaggtgcgaacaaga Cereulide synthetase (ces4) 14
EMT1 aagatcaaccgaatgeaactg
EMI-F gacaagagaaatttctacgageaagtacaat  Cereulide synthetase (cesB) 10
EMI-r  gcagecttccaattactectictgecacagt
CRA22 cegeagecaa Random primer 18
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Table 2. Sources of B. pumilus strains isolated in this study

Strain Source
NIOBO005 Sediment
NIOBO014 Sediment
NIOB0O18 Sediment
NIOB026 Oyster
NIOB096 Crab
NIOBI111 Fish
NIOB113 Fish
NIOB133 Fish
NIOB137 Fish
NIOB163 Fish
NIOB169 Fish
NIOB190 Fish
NIOB426 Sediment
NIOB431 Starfish
NIOB485 Crab
NIOB525 Crab

20

Table 3. Growth and substrate utilization characteristics of B. pumilus observed in this study.

Characteristic B. pumilus phenotype Characteristic B. pumilus phenotype
Amylase + Substrate utilization

Protease I D-Glucose f
Lipase f L-Arabinose f
Phosphatase - D-Xylose +
DNase - D-Mannitol +
Gelatinase - Galactose +
Chitinase - Fructose +
Growth temperature 5-50°C Mannose f
Growth ph 5-11 Nitrate -
Nacl tolerance 10% Adonitol -
Oxidase + Duleitol -
Catalase f Sorbitol -
Indole production - Inositol -
Voges-Proskauer Urea -

Citrate utilization -
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Figure 1. AP-PCR patterns of B. pumilus obtained with primer CRA22. M= 100 bp DNA ladder

(GeneRuler, Fermentas).
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Figure 2. Detection of cereulide synthetase gene cesB in B. pumilis by PCR using primers EM1-
F and EM1-r.
M= 100 bp DNA ladder (GeneRuler, Fermentas). 1: B. pumilus NIOB133 cesB'; 2: B. pumilus

NIOB 137 cesB’; 3: B. cereus NIOB 020 (cesB" reference strain, environmental isolate).
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DQ839676 AHDIALNWMPLEHVGRIVMFHIKDTYLGRNQVQVRTQYVLSEPTRWLDLITTYKTTITWA
EU239221 --------------- G -------------------------------------- A -----

GMS

Figure 3. Alignment of deduced partial amino acid sequence of cesB dernived in this study from
B. pumilus strain NIOB 133 (EU289221) with the corresponding GenBank sequence of plasmid

pCER270 (DQ889676). Dots indicate identical amino acids.
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