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INTRODUCTION

There are two types of imprecision -:- vagueness and ambiguity. The

difficulty of making sharp distinctions is vagueness and the situation of two or

more alternatives not specified is ambiguity. An answer to capture the concept of

imprecision in a way that would differentiate imprecision from uncertainty,

L.A Zadeh [ZA] in 1965 introduced the concept of a fuzzy set.

In Mathematics a subset A of X can be equivalently represented by its

characteristic .function, a mapping XA from the universe X of discourse (region of

consideration) containing A to the 2 - value set {0,1}. That is to say x belongs to

A if arid only if .lA (x) =1. But the idea and concept of fuzzy set, introduced by

Zadeh, used the unit interval I =[0,1] instead of {0,1}. That is in "fuzzy" case the

"belonging to" relation .lA (x) between x and A is no longer "either °or

otherwise 1" but it has a membership degree, say A(x), belonging to [0,1].

The fuzzy set theory extended the basic mathematical concept of a set.

Fuzzy Mathematics is just a kind of Mathematics developed in this frame work. In

1967 I.A Goguen [G] introduced the concept ofL-fuzzy sets. Fuzzy set theory has

become important with application in almost all areas of Mathematics, of which

one is in the ~ea ofTopology.
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Fuzzy topology is a kind of topology developed on fuzzy sets. It is a

generalization of topology in classical mathematics, but it also has its own marked

characteristics. For the first time in 1968, C.L.Chang [Cl defined fuzzy

topological spaces in the frame work of fuzzy sets. In 1976, R.Lowen [LO I ] has

given another .definition for a fuzzy 'topology by including all constant functions

instead of just 0 and 1 (where 0 and 1 are fuzzy sets which takes every x E X
- - --

to 0 and every XE X to 1 respectively) of Chang's definition. In this thesis we

are following Chang's definition rather than Lowen's definition. Extensive work

on the area of fuzzy topology was carried out by Goguen [G], Wong [WO],

Lowen [LO], Hutton[HU] and others. More over this area of fuzzy Mathematics

has applications in Science and Technology.

In 1984 Kaleva.O and Seikkala.S [K;S] introduced the concept of

fuzzy metric. It provided a method for introducing fuzzy pseudo-metric topologies

on sets. Earlier in 1982,Deng Zi-ke [DZ] introduced fuzzy pseudo metric spaces.

In 1993 A. George and P. Veeramani [GV I ] modified the concept of fuzzy metric

introduced by Kramosil and Michalek [K;M]. Also M.A Erceg [E], G. Artico and

R. Moresco [A], B.Hutton and I. Reilly [HR] worked in this area. But not much

work seems to have been done on the topological properties of fuzzy metrizable

spaces.

The main purpose of our study is to extend the concept of the class of

spaces called 'generalized metric spaces' to fuzzy context and investigate its

properties.
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Any class of spaces defined by a property possessed by all metric

spaces could technically be called as a class of 'generalized metric spaces'. But

the term is meant for classes, which are 'close' to metrizable spaces in some

sense. They can be used to characterize the images or pre images of metric spaces

under certain kinds ofmappings.

The theory of generalized metric spaces is closely related to what is

known as 'metrization theory'. These classes often appear in theorems, which

characterize metrizability in terms weaker topological properties. The class of

spaces like Morita's M- spaces, Borges's wa-spaces, Arhangelskii's p-spaces,

Okuyama's a -spaces have major roles in the theory of generalized metric spaces.

They have appeared as a 'factor' in many metrization theorems. The first three

are similar in some sense, being equivalent in the presence of paracompactness.

In fact classes like 'p-spaces' generalize both metric spaces and compact spaces

and various theorems which hold for both of these classes can often be

generalized and hence unified by showing that they hold for p-spaces.

In this thesis we introduce fuzzy metrizable spaces, fuzzy

submetrizable spaces and prove some characterizations of fuzzy submetrizable
~

spaces. Also we introduce some fuzzy generalized metric spaces like fuzzy

wa-spaces, fuzzy Moore spaces,· fuzzy M-spaces, fuzzy k-spaces, fuzzy

a -spaces, study their properties, prove some equivalent conditions for fuzzy

p- spaces. Also we prove some theorems to show that these classes of spaces are

closely related to fuzzy metrizable spaces. The thesis is divided into six chapters,

including the preliminary chapter.
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In chapter 0, we collect the basic definitions, results and notations,

which we require in the succeeding chapters. We use C.L.Chang's [Cl definition

of fuzzy topology. For a topological' space (X, T) we denote by OJ (T), the set of

all lower semicontinuous maps f : X~ [0,1]. Then m(T) is a fuzzy topology

called the generated fuzzy topology. Also for a fuzzy topological space (X, F) the

associated topology is denoted by L(F) and is the weakest topology which makes

every member of F .lower semicontinuous. By Xa we mean a fuzzy point with

support x E X and value a E (0,1]. All the fuzzy topological spaces (X, F)

considered are assumed to be T1 (That is every fuzzy point in the fuzzy

topological space is a closed fuzzy set).

Metrizability is a very nice but restrictive property for topological

spaces. The notion of submetrizability by Gary Gruenhage [GG] is less restrictive

but retains much of this nicety. In chapter 1 we define fuzzy metrizable spaces,

fuzzy submetrizable spaces and prove some characterizations of fuzzy

submetrizable spaces. One of the property of a fuzzy metrizable space is that of

having a Ga -diagonal. We say that a fuzzy topological space (X, F) has a

Ga -diagonal if the diagonal /). is a Gs-set in (X2
, Fp), where Fpis the fuzzy product

topology. We prove someequivalent conditions for a fuzzy topological space

(X, F) to have a Ga-diagonal. Also we study the relation between fuzzy

paracompact spaces and fuzzy metrizable spaces.

The concepts like wa-spaces, developable spaces and Moore spaces

were extensively discussed by various authors as a part of the study of generalized

metric spaces.. In chapter 2 we introduce fuzzy wa-spaces, fuzzy Moore spaces,
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fuzzy submetacompact spaces, fuzzy subparacompact spaces and investigate some

of their properties. We prove that every fuzzy subparacompact .space is fuzzy

submetacompact. Also we prove that every fuzzy Moore space is fuzzy

subparacompact and a regular fuzzy topological space is a fuzzy Moore space if

and only if it is a fuzzy submetacompact w~-spaces with a Ga -diagonal.

The M- spaces, introduced by Morita, played a major role in the

theory of generalized metric spaces. This class is very much related to metrizable

spaces. In chapter 3 we introduce fuzzy M- spaces and study its relationship to

fuzzy metrizable spaces. We prove that every fuzzy M- space is a fuzzy wa-space

and is fuzzy submetrizable. Also we provethat an induced fuzzy topological space

is fuzzy metrizable ifit is a fuzzy M-space with a Ga -diagonal.

The class 'p- spaces' generalizes both metrizable spaces and compact

spaces. The concept of 'p-spaces' due to Arhangelskii is in terms of a sequence of

open covers in some compactification of the space rather than the space itself. We

v

referfMlh] for fuzzy Stone- C ech compactification. In chapter 4 we define fuzzy

p-spaces, strict fuzzy p-spaces and prove some characterizations of both fuzzy

p-spaces and strict fuzzy p-space~. We also define fuzzy analogue of k-spaces
-'

and show that every regular fuzzy p-space is a fuzzy k- space.

The concept of a network is one of the most useful tools in the theory

of generalized metric. spaces. The a -spaces is a class of generalized metric spaces

having a network. In chapter 5 we introduce fuzzy a -spaces and study its

properties. We prove that every regular fuzzy a -spaces is a fuzzy
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subparacornpact space. A regular fuzzy topological space is a fuzzy Moore space

if and only if it is a fuzzy a -space and a fuzzy w~-space with a Go-diagonal.

The idea of fuzzy sets introduced by Zadeh using the unit interval, to

describe and deal with the non-crisp phenomena was generalized by Goguen [G]

using some lattice instead of [0,1]. Although in this thesis we use [0,1] fuzzy set

up, most of the result could be extended to L-fuzzy setting.
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CHAPTER 0

I~R]~LIMINARIES AND BASIC CONCEPTS

The fuzzy set introduced by L.A.Zadeh, extended the basic

Mathematical concept - set. In view of the fact that set theory is the corner stone

of modem Mathematics, a new and more general frame work of Mathematics

was established. Fuzzy topology is a kind of topology developed on fuzzy sets.

In this chapter we collect the basic definitions, results and notations,

which we require in the succeeding chapters. Most of these are adapted from

'Fuzzy topology : Advances in Fuzzy Systems-Application and Theory' by Liu

Ying-ming and Luo Mao kang [Y;M] by specializing L to [0,1]. Also we have

used [ZA], [Cl, [MH 1] [MII2] [MH3] , [B], [B;W], [WL]'[P;Yl] for some

definitions and [GG] and [WI~ for some results in generalized metric spaces.

0.1 Basic Operations on Fuzzy Sets

Definition 0.1.1

Let X be a set. A fuzzy set on X is a mapping A :X~ [0,1]. For a fuzzy

set A, {x EX: A(x) > O} is callecl the support of A and is denoted by supp A.

Definition 0.1.2

Let A and B be fuzzy sets on X. Then

(i) A = B <=> A(x) = Bix) for all x E X.

7



(ii) A ~ B <=> A(x)~ B(x) for all x E X

(iii) AvB is a fuzzyset on X defined by (AvB)(x) = max {A(x), Btx) } for all xE X

(iv) AAB is a fuzzy set on X defined by (AAB)(x) = min{A(x), Btx) } for all xeX.

(v) For a fuzzy set A on X, its complement A' is a fuzzy set on X defined by

A'(x)= 1- A(x) for all XE X

Generally if {Ai}iel is any collection of fuzzy sets on X, then V Ai is a
IEI

fuzzy set on X defined by (.v Ai)(X) = sup { Ai (x) : X E X} and f\ Ai is a fuzzy
IEI iel leI

set on X defined by ( ./\ Ai)(X) = i nf { Ai (x) : X E X}.
IEI lel

Definition 0.1.3

For a e(O,I], xe X, a fuzzy point x., is defined to be the fuzzy set on

X defined by

. { if y = x
xa(Y) = ~ if y:# x

Notation

The set of all fuzzy sets on X is denote by IX. The fuzzy set which

takes every element in X to 0 is denoted by 0 and which takes every element in X

to 1 is denoted by 1 . N denotes the set of all natural numbers.
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0.2 Fuzzy Topological spaces

Definition 0.2.1

A collection F c IX is called a fuzzy topology on X if it satisfies the

following conditions

(i) 0, 1 E F

(ii) If A, B E F, then A /\ B E F

(iii) If Ai E F for each i E I, then i~ Ai E F.

Then (X, F) is called a fuzzy topological spaces and the members of

F are called fuzzy open sets. A fuzzy set is called fuzzy closed if its complement

is fuzzy open.

Remark 0.2.2

For a fuzzy topological space (X, T), the set of all lower semi

continuous functions from X to [0,1] generates a fuzzy topology on X, called the

generated fuzzy topology and is denoted by ea (T).
~~

Definition 0.2.3

The fuzzy set A c IX is called a crisp set on X if there exists an

ordinary subset U c X such that A =%u ·
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Given a topological space (X,T), F ={Xv : De T } forms a fuzzy

topology on X. Also given a fuzzy topological space (X, F), the set of supports of

crisp members of F forms an ordinary topology on X, called the background space

of (X, F) and is denoted by [F].

Definition 0.2.4

Let (X,F I) and (Y,F2) be .two fuzzy topological spaces and let

f: X~Y be a function. Then for a fuzzy set A on X, f(A) is a fuzzy set on

Y defined by f(A)(y) = {v {A(x):xEX,f(x)=y }:when r-I(y):;t:~
. 0: when [-I(y)=;

and for a fuzzy set B of Y, f- 1(B) is a fuzzy set on X defined by

f-1(BXx) = B(f (x) for all x E X.

Definition 0.2.5

Let (XI, F I) and ( X2, F2) be two fuzzy topological spaces. Let X =

XI X X2 and Pi : X~ Xi (i = 1,2) be the projections. Then the fuzzy product

topology on X is the fuzzy topology Fp, generated by {Pi-
1 (Ai): Ai E Fr, i = 1,2}.

(X, Fp) is called the fuzzy product space.

Definition 0.2.6

For a fuzzy topological space (X, F), the diagonal ~ is the fuzzy set

{
I if x =y

on XxX defined by ~(x, y) = .
o If x"* y
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Definition 0.2.7

Let (X,F) be a fuzzy topological space. Then a fuzzy set A on X IS

00

calleda Gs -set if A = /\ ~ for ~E F
i=1 '

Definition 0.2.8

Let (X, F) be a fuzzy topological space and A E F . Then A is said to

be a quasi coincident neighbourhoodof a fuzzy point Xa if A' (x) <a . The set of

all quasi coincident neighbourhood of Xa is denoted by Q(xa) .

We say that a fuzzy set A is quasi coincident with a fuzzy set B if

B'(x) < A(x) for some x E X. We denote it by AqB.

Definition 0.2.9

The fuzzy topological space (X, F) is said to be T2 (Hausdorff) if for

every two fuzzy points XA , yy with x"* y, there exists U e Q(xA) , Ve Q(yy) such

that U/\V =0

Definition 0.2.10

The fuzzy topological space (X, F) is said to be stronglyT2 (or s-T2) if

for every two fuzzy points XA and yy withx v y, there exists U e Q(xA), Ve Q(yy)

suchthat U(O)/\V(O) = <p where U(O) = {xeX : U(x) > A } and V(O) = {xeX : Vtx) y}
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Definition 0.2.11

The fuzzy topological space (X, F) is called a - T2 for a E (0,1], if for

every distinct points x,y E X there exists U E Q(xa), VE Q(Ya) such that UAV =0 .

(X, F) is called level-T2 if (X, F) is a - T2· for every a E (0,1].

Theorem 0.2.12

Let (X, F) be a fuzzy topological space. Then (X, F) is Hausdorff if

and only if the diagonal of (X2
, Fp), where F, is the fuzzy product topology, is a

closed fuzzy set on (X2
, Fp) .

Definition 0.2.13

A fuzzy topological space (X, F) is said to be regular if for each fuzzy

point x, and U E F with x., s U, there exists V E F such that Xa s V ~ V ~ U.

0.3 Stratified Spaces and Induced Spaces

Definition 0.3.1

A fuzzy topological space (X, F) is said to be induced if F is exact.ly

the family of all lower semicontinuous mappings from ( X, [F]) ~ [0,1] , where

[F] is the set of supports of crisp members of F.
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(X, F) is said to be weakly induced if every GeF IS a lower

semicontinuous mapping from (X, [F]) ~ [0,1].

Definition 0.3.2

Let (X, F) be a fuzzy topological space and Y be a set. Let f: x~Y be

a mapping. Then F/f= {V E IY
: r' (V) E F } is a fuzzy topology on Y and (Y, F/f)

is called the fuzzy quotient space with respect to f.

Theorem 0.3.3

Let (X, F) be an induced fuzzy topological space and (Y, F/f) be the

fuzzy quotient space with respect to the surjective mapping f: X~Y. Then

(Y, FIr) is also an induced fuzzy topological space.

Definition 0.3.4

Let (X, F) be a fuzzy topological space. Then the fuzzy topology F1

generated by Fu {a Ia E [0,1]} where a = a AXx, is called the stratification of F
- -

and(X, F1) is said to be stratified.

Theorem 0.3.5

Let (X, F) be a fuzzy topological space. Then (X, F) is stratified if and

onlyif F contains all the lower semicotinuous functions from (X, [F]) ~ [0,1].

13



Theorem 0.3.6

Let (X, T) be an ordinary topological space and let f: X ~ [0,1] be a

mapping. Then f is lower semicontinuous if and only if for every a E (0,1), f[a Iis

closed in (X, T), where f[al={XE X If(x) ~ a }.

Theorem 0.3.7

Let (X, F) be a weakly induced fuzzy topological space. Then the

following conditions are equivalent.

(i) (X, of) is s-T2

(ii) (X, F) is T2

(iii) (X, F) is level-T2

(iv) There exists a E (0,1] such that (X, F) is a - T2.

(v) (X, [F]) is T2•

0.4 Fuzzy Compact Spaces and Fuzzy Paracompact Spaces

Definition 0.4.1

Let (X, F) be a fuzzy topological space. For a fuzzy set G on X, a

family91 of fuzzy sets on X is called a cover of G if v91 ~ G. 91 is called a

cover of (X, F) if it is a cover of 1 and is an open cover if 91 cF.
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Definition 0.4.2

Let 31 and 13 be two families of fuzzy sets on ( X, F). We say that 31

is a refinement of 13 if for each G e 31there is an H e 13 such that G ~ H.

Definition 0.4.3

A fuzzy set A in a fuzzy topological space (X, F) is said to be fuzzy

compact if for every 31 c F with v31 ~ A and every E > 0, there exists a finite

subfamily31'c 31 such that v3l' ~ A -E. In particular X is fuzzy compact if 1

is fuzzy compact.

Definition 0.4.4

A family {At: t e 11of fuzzy sets on (X, F) is said to be locally finite

at XA" if there exists DeQ(xa) such that AtqU holds except for finitely many teT.

For a fuzzy set Aelx, 31 = {At: t e T }of fuzzy sets is called locally

finite in A, if 31 is locally finite at every xx , where A, is such that A, ~ A(x) for

some x eX.

Definition 0.4.5

Let (X, F) be a fuzzy topological space and a E (0,1]. A collection 13

of fuzzy sets is called an a - Q cover of a fuzzy set A, if for each fuzzy point Xa

15



with Xa 5: A, there exists B e 13 withB' (x) < a ( That is x, quasi coincident with B)

If 13 c F, then 13 is called an open a - Qcover of A.

Definition 0.4.6

Let (X, F) be a fuzzy topological space and let AeIx and a e [0, 1].

Then A is said to be a - fuzzy paracompact if for every open a - Q cover of31 of

A, there exists an open refinement 13 of 31 such that 13 is a locally finite in A

and is an a - cover of A.

A is called fuzzy paracompact if A is a - fuzzy paracompact for

every a e [0,1]. (X, F) is said to fuzzy paracompact if 1 is fuzzy paracompact .

Definition 0.4.7

Let (X, F) be a fuzzy topological space and let A be a fuzzy set. Then

~ = {At: t e 71 of fuzzy sets on X is called *-locally finite in A if for every XA,

where A is such that A 5: A(x) for some x eX, there exists U e Q(XA.) and a finite

subset Toof T such that t e T - lo =:) At /\ U =°.
Definition 0.4.8

For a e [0, 1], a fuzzy set A on (X, F) is said to be a·-fuzzy

paracompact if for every a - Q cover of 31 of A, there exists an open refinement

13 of 31such that 13 is * - locally finite in A and is an a - Qcover of A.
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A is * - fuzzy paracompact if A is a· - fuzzy paracompact for every

a E [0, 1]. (X, F) is * - fuzzy paracompact if 1 is * - fuzzy paracompact.

Theorem 0.4.10

Let (X, F) be a weakly induced fuzzy topological space. Then the

following conditions are equivalent.

(i) (X, F) is fuzzy paracompact

(ii) There exists a E (0,1) such that (X, F) is a - fuzzy paracompact.

(iii) (X, [F]) is paracompact.

Theorem 0.4.11

Let-X, F) be ~ fuzzy topological space and Ae IX. a e [0.1). Then

(i) A is a· - fuzzy paracompact => A is a - fuzzy paracompact.

(ii) A is * - fuzzy paracompact => A is fuzzy paracompact,

Theorem 0.4.12

Every T2 and fuzzy conwact fuzzy topological space is * - fuzzy

paracompact.

Remark 0.4.13

The concept of "good extensions" in fuzzy topological spaces was

introduced by Lowen [LO l ] . For a property P ·of ordinary topological spaces, a

property p* of fuzzy topological spaces is called a good extension of P, if for

17



every ordinary topological space ( X, T), (X, T) has property P if and only if

( X, T) has property P*.

Fuzzy compactness is a " good extension" of compactness in ordinary

topological spaces.

0.5 Some Results from Generalized Metric Spaces

Definition 0.5.1

Let X be a topological space . For x e X and a collection U of

subsets of X, st (x, U) = u { U e 11 : x e U } . For A c X, st(A, U) =

u {U e U : U (lA ;t ~}.

A cover 'V of a space X is called a star refinement of a cover 1.1 if

{st(x, '1') : x eX}is a refinement of U .

Theorem O.S.~

A T0- space X is metrizable if and only if X has a development (gn)

such that whenever G, G' E gn +1 and G (l G' ;t rp, then G u G' is contained ill

some member ofgn.

18



Theorem 0.5.3

A T0- space X is metrizable if and only if X has a development ({in)

such that for each n, {in +1 is a star- refinement of{in.

Lemma 0.5.4

Let ({in) be a sequence of open covers of X such that ({in +1) is a

regular refinement of {in for each n Then there is a pseudo metric p

on X such that

(i) p (x, y) = 0 if y e (l st(x, (in)

(ii) U is open in the topology generated by p if and only if for each x e U

there exists n eN such that st (x, (in) C U.

Lemma 0.5.5

Let Y be a submetacompact subspace of a topological space X. For

each n, let 'll« be a collection of open subsets of X covering Y. Then there exists

a sequence ('Vn) of open collections covering Y such that, for each ye Y

Theorem 0.5.6

A countably compact space with a Go- diagonal is compact, hence

metrizable.
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Theorem 0.5.7

A topological space X is a Moore space (respectively a metrizable

space) if and only if X is submetacompact (respectively a paracompact) wa-space

with a Go- diagonal.

Definition 0.5.8

A map f from a topological space X onto a topological Y is perfect if

it is continuous, closed and for each y E Y, r' {y} is compact.

A map f : X~ Y is said to be quasi perfect if it is continuous, closed

andf-1{y} is countably compact for each y E Y

Theorem 0.5.9

A topological space X is an M-space if and only if there exists a

metric space Y and a quasi perfect map from X onto Y.

Theorem 0.5.10

A T I-space is paracompact if and only if every open cover of the

spacehas an open star refinement,

20



CHAPTERl

FUZZY SUBMETRIZABILITY

1.1 Introduction

Metrizability is a very nice but restrictive property for topological spaces.

The notion of submetrizability (for details refer [G G]) is less restrictive but retains

some of tile nice properties of metrizability. A topological space (X, T) is

submetrizable if their exists a topology T' c T with (X, T') metrizable. In this chapter

we define analogously the concept of fuzzy metrizable spaces, fuzzy submetrizable

spaces and obtain some characterizations of fuzzy submetrizable spaces. Also we

study the relation between fuzzy paracompact spaces and fuzzy metrizable spaces .

1.2 Fuzzy Submetrzable Spaces

Definition 1.2.1

Let (X, F) be a fuzzy topological space.. Let L(F) be the weakest

topology on X which makes all the functions in F are lower semicontinuous.

Then the fuzzy topological space (X, F) is said to be fuzzy metrizable if (X ,L(F))

is metrizable.

* We have included some results of this chapter in the paper titled On Fuzzy Submetrizablity in

The Journal of Fuzzy Mathematics, Vol. 10 No. 2 (2002).

** Some Results mentioned in this chapter are published in the paper titled "Fuzzy Metrizablity and

Fuzzy Compactness" in theproceedings ofThe International Workshop and seminar on Transform

Techniques and Their Applications heldatSt.Joseph's College, Irinjalakkuda, Kerala (2001)
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Definition 1.2.2

The fuzzy topological space (X, F) is said to be fuzzy submetrizable

if there exists Fie F such that (X, F ') is fuzzy metrizable.

Example 1.2.3 - Fuzzy metrizable spaces

1. Consider X= R, the real line. Let F be the fuzzy topology generated by the set

{Xu IU open in the usual topology on R}. Then (X, F) is fuzzy metrizable.

2. Let (X, T) be a metrizable topological space. Then UJ(T)= { f I f: (X,T)

~[0,1] is lower semicontinuous } is a fuzzy topology on X ,called the

generated fuzzy topology and the fuzzy topological space (X, (J) (T) is fuzzy

metrizable .

Example 1.2.4 - Fuzzy Submetrizable Spaces

1. Consider X= R. For intervals ofthe type [a,b) define ~atb): X ~ [0,1] by

1 if xE (a.b]

f[a,b)(X) = .!. if x = a
2

o if x ~ [a,b)

Let F be the fuzzy topology generated by { ~atb)t X(a.b) Ia .b ER}. Now

the weakest topology L(F), which makes all elements of Flower semicontinuous,

is the lower limit topology, and (X , L(F» is not metrizable. Therefore (X, F) is

not fuzzy metrizable.
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If F I is the fuzzy topology generated by { X(a,b) I a,b ER}, then

(X, F') is fuzzy metrizable, since (X ,L{F1) , where L{F') is the usual topology, is

metrizable. Now F' c F. Therefore (X, F) is fuzzy submetrizable.

2. Consider X = R. For G ,H subsets of R ,G open with respect to the usual

topology on Rand H any subset of irrationals, define fG,H: X ~ [0 ,1] by

1 if X E G

fG,H (x) = .!.. ifx ~ G and x E H
2
o otherwise

Let T be the topology on R with basic open sets as { G u H I G

open with respect to usual topology, H subset of irrationals} .Consider F =

{fa,H IG ,H c R ,G open in the usual topology ,H any subset of irrationals} u

{o ,I}. Then the fuzzy topological space (X, F) is not fuzzy metrizable , since
- - .

(X ,T) is not metrizable and T = L(F) . Let F' = { fG,~ I G open in the usual

topology} u {O ,I} . Then the weakest topology L(F') , which makes every

member of F' lower semicontinuous, is the usual topology on R. Now

(X, L(F'» is metrizable. Therefore (X, F ') is fuzzy metrizable. Also F' c F.

Hence (X, F) is fuzzy submetrizable.

Remark 1.2.5

The concept of fuzzy metrizability and fuzzy submetrizability that we

have introduced above are 'good extensions' of the crisp metrizability and

submetrizability in the sense ofRLowenll.Or].
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Definition 1.2.6

The fuzzy topological space (X, F) is said to have a Go -diagonal if

the diagonal f1 is a Go -set in (X2
, Fp) where F, is the fuzzy product topology.

Definition 1.2.7

Let 31 be a cover of (X , F) . For a E (0,1] and a fuzzy point xa ,

stlxa ,31
n

) ='V{B: Be 31 and B(x) ~ a} and for a fuzzy set G, st(G, 31 ) =

v {B: BE 31 and B, AG;e o} .

Theorem 1.2.8

A.fuzzy topological space (X, F) has a Go -diagonal if and only if

there exists a sequence (31n) of open covers of (X ,F) such that for x ,y E X

with x*, y, a,pe(O,l] there exists ne Nwith Yt3 -$ stlx a ,31
n

} .

Proof

First suppose that (X ,F) has a Go -diagonal. Then f:1 = 1\ Gn
n

where each Gn is a fuzzy open set on (X2
, F, ). For each n EN, X E X and for

each a E (0,1] we have xa x xa s ~ s G; (here xa x xa ~ ~ maens that

L\(X,X) ~ a). Since Gn E Fp, there exists H,o,x E F
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cover of (X,F) .

For x, y E X with x ;I; y, a,p E (0 ,1] , we claim that there exists

Therefore xa x Yf3 s IFn .x x Wn,x s Gn. for each n . That is xa x Yf3 s /\ Gn = tl,
n

which is a contradiction. Thus (31n ) satisfies the conclusion of the theorem.

Conversely suppose that (31n) be a sequence of open covers which

satisfies the conditions mentioned in the theorem. Let Gn = v {A x A IA E 3ln} .

Then for a E (0 , 1], xa :S A for some A E 31n . Therefore xa x xa s Ax A.

Hence Ii = v( xa x xa ) :S v { A x A 1 A E 31n} = Gn for each n. Therefore Ii s

AGn . If
n

for eacha ,~ E (Q ,1] and x;I;y with xa x Yf3 s /\ Gn ,
n

we have xa x Yf3 s Gn for each n . Hence there exists An E 31n with Xa x Yf3 s

An x An. That is Y{3~ stlxa , 31n)' which is a contradiction. Therefore ~Gn =

v {(xa x X p ) .1 x E X and a, ~ E (0, }]}~ Ii. That is (X, F) has a Go -diagonal.
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Remark

We write $ and not >, although they are the same here, keeping in

mind the fact that the same concept of the theorem can be extended to L- fuzzy

topological spaces.

Remark 1.2.9

If (~n) is a sequence of fyzzy open covers with the property in

theorem 1.2.8, then for xE X, a E (0, 1], /\ sttxa ,~ ) = xa .
n n

Proof

Let y E support of ~st~a,~n) · Let ~ sttxa '~n ) (y) = p. Therefore

y~ ~/\sttxa'~ ) . Therefore y~ ~/\st'xa'~ ) for all n. Hence by the above
n n n \ n

theoremy=x. Therefore support of I\stlxa'~ )= {x}. Lety= /\sttxa'~ ) (x)
n \ n n n

(note that 'Y ~ .a> 0 ) .If'Y > a then by passing onto refinements we can form a

sequence of fuzzy open covers (3t~) such that~sttxa'~n) (x) = a . Hence
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Example 1.2.10

Consider X=R. For G, H subsets of R, G open with respect to the

usual topology on R and H 2'1y subsetof irrationals, define f G.II : X --)- [0,1] by

1 ifx E G

fG,H (x) = .!.. if x EO G and x E H
2
o otherwise

Let F = {fa,H I G, H. c R, G open in the usual topology, H any

subset of irrationals} u { 0, 1 }. Consider (X2
, Fp), where r, is the fuzzy product

topology. Basic fuzzy open sets in (X2
, Fp) can be written as f G H x f G H

l' 1 2' 2

where(f G H x f G H ) (x,y) = min{fG H (x), f G H (y) } · For each n,
l' 1 2' 2 l' 1 2' 2

take Then

(-1 -1)1 ifx,y E -;'-;

o otherwise

Then the diagonal Ii = /\ Gn . That is Ii is a Go-set . Therefore (X, F) is having' a
n

Go-diagonal

Definition 1.2.11

A sequence (3In) of fuzzy open covers of (X,F) is called a

Go -diagonal sequence, if for each x , ye X with x;t:y, a, f3 e (0,1] , there exists
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neN with Yf3 :J;st(Xa .9In) . That is -;{sttxa,.9In) = Xa • A space (X, F) has a

Go -diagonal if there exists a Go -diagonal sequence.

Definition 1.2·.12

A cover .91 of (X, F) is called a star refinement of the cover 13 if

{st(G, .91) : G e.9l} refines 13. That is for each Ge .91, there exists He 13 such

that st(G, .91) s H.

Definition 1.2.13

Let (X, F) be a fuzzy topological space. A fuzzy covering .9In+1 is a

regular refinement of the covering .9In if for G , He 3!n+1 with G AH ;f. Q, G V H

~ B, for some B, e .9In .

Theorem 1.2.14

The following are equivalent for an induced fuzzy topological space (X , F) .

. ~

(a) (X, F) is fuzzy submetrizable

(b) (X, F) has a Go -diagonal sequence (.9In) such that .9In+1 star refines .9In for

eachn

(c) (X, F) has a Go -diagonal sequence (.9In) such that .9In+1 is a regular

refinement of .9In for each n.
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Proof

(a)=:) (b)

Assume that (X, F) is fuzzy submetrizable. Then there exists F' c F

such that (X, F I
) is fuzzy metrizable. Therefore (X, L(F t

) ) is metrizable. Hence

(X, L(F')) is paracompact. Therefore each open cover of (X, L(F')) has an open star

refinement (see [WI]). By metrizability we can form a Go -diagonal sequence

(gn) for (X ,L(F')). For each Gn E gn, let Acin be the characteristic function of

Gn. Each Acin is lower semicontinuous and hence belongs to F'. We claim that

(9I"n) where 31gn = {Acin IGnE gn } forms a Go -diagonal sequence for

(X, F').

Consider x, ye X with x "* y, a ,p e (0, 1]. Since (gn) forms a

Go -diagonal sequence for (X, L(F')), there exists n EN such that y ~ st (x, gn).

Therefore st( xa , 31"n) (y)= 0 where as Yf3(Y)= (3. Therefore Yf3f:: st( xa , 31"n).

That is (31"n) forms a Go -diagonal sequence for (X, F'). Since gn+l star refines

gn, it follows that 31gn+1 star refines 31gn .
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(b) =>(c)

Let (~n) be a Go -diagonal sequence for (X, F) such that ~n+l star

refines ~n for each n. Let G , H E ~n+.l be such that G /\ H* 0 . Since ~n+l

star refines ~n .there exists An E~n such that G~ st(G, ~n+l) ~ An. Since

G /\ H* Q, H~ st(G, ~n+l). Therefore GVH~ st(G,~n+l) ~ An E~n. Hence

:f{n+l is a regular refinement of~n for each n..

(c) => (a)

Let (X, F) has a Go -diagonal sequence (~n) such that ~n+l is a

regular refinement of~n for each n . For each An E ~n ,let Gn = U A:'(a, 1])
ae(O,I]

Then (1n = {Gn} forms Go -diagonal sequence for (X , L(F» . Since F IS an

~

induced fuzzy topological space [F] = L(F) . Take Gn+1 , G~+I E (1n+1 with

andGn+l = U A:~I(a,l]), G~+I=
ae(O.1]

U ,.1 (a'l]). A n+1 ' .
ae{O.I]
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By assumption An+1 V A;l+l ~ An for some An e 3In . Therefore

u {A~~I (a,I]u A~~I (a,I]) c U A~I(a,In · That is Gn+ 1U G:1+1 c Gn.
ae(O.l] ae(O.I]

Thus the sequence (gn) of open covers are such that gn+l IS a regular

refinement of gn . Therefore by the Lemma 0.5.4, there exists a pseudometric

p on X such that U is open in the topology generated by p if and only if

for each xeU ,there exists ne N such that st( x, gn) C U. Now {x} =

(l st(x, gn) .Therefore p is metric on X [ by part(i) of Lemma 0.5.4]. Also by
n

part (ii) of the Lemma 0.5.4, the topology generated by p, say T1
, is contained in

the topology L(F) . Therefore (X , L(F» is submetrizable . Let ro{T') be the

collection of all lower semicontinuous mappings from (X, T1
) --) [0,1]. Now

T' C L(F) and since F is induced ro(T') c F. Therefore (X, ro(T'» is fuzzy

metrizable. Hence( X , F ) is fuzzy submetrizable .

1.3 Fuzzy Compactness, FuzzyParacompactnessand FuzzyMetrizability

In this section we connect fuzzy paracompact spaces with fuzzy

submetrizable spaces. Also we prove some relationship between fuzzy metrizable

spaces and fuzzy compact spaces
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Lemma 1.3.1

If (X, F) is an induced fuzzy paracompact space, then the generated

topological space (X,c(F)) is paracompact .

Proof

Since (X, F) is induced, [F] = L(F). Also as (X, F) is a fuzzy

paracompact space, (X, [F]) is paracompact [see theorem 0.4.10]. That is (X, L(F))

is paracompact .

Lemma 1.3.2

Let (X, F) be an induced fuzzy topological space. If (X, F) is fuzzy

paracompact with a Go-diagonal then it is fuzzy submetrizable.

Proof

Let (3I n) be a Go-diagonal sequence for the induced fuzzy

paracompact space (X, F). Then by lemma 1.3.1 (X, L(F)) is paracompact.

Therefore every open cover of (X, L(F)) has an open star refinement [see

Theorem 0.5.10].

Consider (In= {Gn I Gn= U An-1(a,1], AnE3In}. Then ((In)
ae(O,l]

forms a Go-diagonal sequence for (X, L(F)). For if x, y e X, x * y and there

exists no n eN with y ~ st(x, (In),then we have y e st(x, (In) for all n.
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For each n, y e st(x,gn) => x, ye Gn, for some Gn e gn.

=> Y e A:1(P,1], x e A:1(a,1] for some a,p e(O,l]

=>An(y) > p, An(x) »a

=> yp< An and xa < An for some An e3tn.

This is a contradiction as (3tn ) is a Go-diagonal sequence for (X, F).

As (X, T) is paracompact, there exists a Go-diagonal sequence say

({jn') such that, gn+l' star refines gn' (see[GG]). Corresponding to each gn',

form 3tn' where 3tn' ={Xan' , an' egn' }. Then (3tn') forms a Go-diagonal

sequence for (X,F) such that 3tn+l' star refines 3tn' . Therefore by theorem

1.2.14(b), (X, F) is fuzzy submetrizable.

Theoreml.3.3

Let (X,F) be an induced Hausdorff fuzzy topological space. If (X, F)

is a fuzzy compact space with a Go-diagonal, then it is fuzzy metrizable.
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Proof

Let (X, F) be an induced Hausdorff fuzzy compact space with a

Go-diagonal. . Then (X, F) is a fuzzy paracompact space [see Theorem 0.4.11and

Theorem 0.4.12]. Since (X, F) is induced, by theorem 1.3.2 ,it follows that (X, F)

is fuzzy submetrizable. Therefore there exists Ft c F such that (X, Ft) is fuzzy

metrizable. Now, as (X, F) is induced, L(F) = [F]. Then (X, L(F)) is a compact

Hausdorff space [see Theorem 0.3.7 and Remark 0.4.13]. Also( X,L(F'») c

(X, L(F)) and (X, L(F'») is metrizable. But a topology which is strictly weaker than

a compact Hausdorff topology cannot be Hausdorff. Therefore L(F') = L(F) so

that Ft= F. Hence (X, F) is fuzzy metrizable.
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CHAPTER 2

FUZZY WA- SPACES AND FUZZY MOORE SPACES

2.1 Introduction

The notion of generalized metric spaces IS closely related to

metrization theory. The concepts like wa-spaces, developable spaces and Moore

spaces were extensively studied by various authors, as a part of the study of

generalized metric spaces. In this chapter we introduce fuzzy submetacompact

spaces, fuzzy subparacompact spaces, fuzzy w~-spaces, , fuzzy Moore spaces and

investigate some of their properties.

2.2 Fuzzy sub metacompact spaces.

A topological space X is submetacompact if for each open cover 1.1 of

X there is a sequence ('VD) of open refinements. of 11 such that for each x E X,
.~

there exists ne N such that x is in only finitely many elements of 'VD. In this

section we define fuzzy submetacompact spaces and study some of its properties.

We have included some results of this chapter in the paper titled 'On Fuzzy wn-Spaces and fuzzy

Moore Spaces' Journal of Thripura Mathematical Society Vo1.4 (2002) 47-52.
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Definition 2.2.1

A sequence (310 ) of fuzzy open covers of a fuzzy topological space

(X, F) is called a Go· - diagonal sequence if for each x E X, a E (0, 1]

-istlxa,3In)= ,;st(Xa,31 J=xa ·

Definition 2.2.2

A fuzzy topological space (X, F) is said to be fuzzy submetacompact, if for

each fuzzy open cover 31 of X, there exists a sequence ('Vn) of fuzzy open

refinements of 31 such that, for each fuzzy point xa ' X E X, a E (0, 1], there

exists nEN such that xa ~ Vn E\Vn holds for finitely many elements of\Vno

Theorem 2.2.3

A regular fuzzy submetacompact space with a Go - diagonal has a

Go * -diagonal.

Proof

Let (X, F) be a regular fuzzy submetacompact space with a

Go -diagonal. Then there exists a sequence (3In) of fuzzy open covers of (X, F)

such that for a fuzzy point xa' -istlxa,3In) = Xa . Consider 311. Then by sub

metacompactness of X, 311 has a sequence of open refinements say (U1n)neN,



such that for each fuzzy point xa there exists neN such that xa is only in

finitely many elements of 'll,« .Let U I I be one such open refinement

corresponding to the fuzzy point xa • By regularity of X, for each U 1n, we can

find an open refinement, say 1//1,0 such that, for xa ~ U l n e U 1n, there exists

Similarly for 312, by submetacompactness, there exist (~2n)neN and by

regularly each ~2n has an open refinement 1I2n • Then take (1//2,0 )neN as follows.

1//2,0 = 1I2n A 1//1,1 = { U A V IU e 1I2n, Ve 1//1,1 } .For 31 3, by sub

metacompactness, there exists a sequence of open refinements (~3n)neN and by

regularity each ~3n has an open refinement 1I3n••Take (1//3,0 )neN as follows.

Repeating this process (or each rn, we have a sequence (1//01.0) neN of

opencovers of (X, F) such that

(i) ( If!run ) DeN is a refinement of each I//ij such that i < m, j < m and for each

fuzzy point x~ there exists neN such that xa is in only finitely many

members of If!m.n •

37



(ii) If V E If/rn,n and ij < m there exisnw E Ij!jj such that, V ~ W and for

k s m there exists A E 3I K such that V s A.

Let Ya~· ~st(xa ,,,,,,),forthefuzzypoints xa,Yu. Fix i andj and let
IJ 't" IJ

m > max {i,j}, Now the fuzzy point xa is in only finitely many members of If/m.n for

somen EN.

Therefore (Ij!jj )ijeN is a Go*- diagonal sequence for (X, F). Hence (X, F) has a

Go*- diagonal.

2.3 Fuzzy wA-Spaces and Fuzzy Developable Spaces.

In this section we define fuzzy developable spaces, fuzzy wa-spaces

and find some relationship between them.
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Definition 2.3.1

Let (X, F) be a fuzzy topological space. A fuzzy point Xa , a e (0,1] is

said to be a cluster point of the set {(xn)a : n e N}, where (xn)a is a fuzzy set with

support x, and value a, if for each fuzzy set G e F such that x, ~ G, there exists

Definition 2.3.2

A fuzzy topological space (X, F) is called a fuzzy wa-space if there

exists sequence(31n)of fuzzy open covers of X such that for each ne N, fuzzy

has a cluster point.

Definition 2.3.3

A sequence (31n) of fuzzy open covers of (X, F) is a fuzzy development

for X, if for a e (0, 1], a fuzzy point Xa, the set {st (xa , 31n) : n e N} is a base at Xa -

A fuzzy topological space (X, F) is fuzzy developable if it has a fuzzy development.
~

Example 2.3.4

Consider X = R with usual topology T. Let F be the topology

generated by the set {Xu I U open in the usual topology on R} .For each x e X,

consider X(x-;.X+;) and form
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J{n = { X(x_;.x+;) Ixe x }.Then (.9tn)forms a sequence of fuzzyopen coversof

(X, F). For a E (0, 1], a fuzzypoint Xa , st (xa , .9tn)= v { An E.9tn IAn(x) ~ a }

= v {X(x_~,x+~) IX(x_~,x+.!.)(x)~ a}
n n n n

= X( 2 2)·X--,X+-
n n

If G is an open fuzzy set in (X, F) and Xa .~ G, then there exists U E T such

. (2 2)that xa:s; XU ~ G .NowxeU so that there exists ne N such that x - -;;-' x + -;;- c U.

Therefore Xa~ X(x_;.x+;)~Xu ~ G. Hence the set {st (xa, .9tn):n e N} is a base

at x, .Therefore (X,F) is a fuzzy developablespace.

For a E (0, 1], if we choose fuzzy pointstx.), with (xn)a ~ st(xa, .9tn) ,

then Xa is a cluster point of the set {(Xn)a : ne N} . Therefore (X,F) is a fuzzy

wa-space .

Lemma2.3.5

Let (X, F) be a fuzzy topological space. Suppose {Us} is a decreasing

sequence of fuzzy open sets such that 1\ U, = 1\ U, and for a E (0,1], fuzzy
n n

points (xn)a with (xn)a ~ U, implies ,the set {(xn)a : n E N} has a cluster point.
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Then {Un} is a base for the fuzzy set /\ Un. (That is for every open fuzzy set V
n

with /\ U, S V, there exists some U, such that U, S V) .
n

Proof

Suppose that {Us} satisfies the hypothesis of the lemma, but not the

conclusion. Then we can find a fuzzy open set V such that /\ U, S V and for each
n

decreasing, anycluster pointof {(xn)a : n e N} mustbe in /\ U, and/\ U, = /\Un. But
n n n

as /\ U, S V, this implies that the set {(Xn)a : n e N} has no cluster point, which is a
n

contradiction. Thusforeveryopenfuzzy set V with /\ U, S V, there exists U, suchthat
n

Theorem 2.3.6

A regular fuzzy topological space (X, F) is Fuzzy developable if and

onlyif it is a fuzzy wti -space with a Go * -diagonal.

Proof

First suppose that (X, F) is a fuzzy developable space. Let (3In) be a

fuzzy development. Then fora e (0,1], a fuzzy point Xa with (xn)a S st (x.; 3In) ,

the set {(xn)a.: n eN} has a cluster point 'xa ' . This is because the set
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{st (Xa,31n) : n e N} forma a base at x, . Therefore if x; ~G with G eF there exists

neN such that Xa ~ st (xa , 3ln) ~G . Hence (xn)a ~ G. Therefore (X, F) is a

fuzzy w!1 - space. Also for x "* y .a e (0,1], {Yale is an open fuzzy set and x.,

some n. Since (X, F) is regular it follows that

(X, F) has a Go* - diagonal .

1\ st (x a ,tZI ) = Xa. Therefore
n J' n

Conversely assume that (X, F) is a fuzzy wa-space with a

Gs * - diagonal. Let (31n) be a sequence of fuzzy open covers of X such that, for

a e (0,1], a fuzzy point Xa with (xn)a ~ st (xa , 3ln), the set {(xn)a: n eN} has a

cluster point and /\ st (xa , 3ln ) = Xa . In lemma 2.3.5, take Un = st (xa , 3ln). By
n

passing onto refinement, one can make {Us} decreasing. Therefore by lemma 2.3.5

{st(Xa,31n) : n e N} is a base at Xa • Thus (31n) is a fuzzy development for (X, F).

Hence(X, F) is fuzzy developable.

2.4 Fuzzy Moore Spaces

A topological space X is said to be subparacompact if for each open

cover 11 of X there exists a sequence (\fin) of open covers such that, for each

X E X, there exists n e N such that st (x, \fin) is contained in some members of U.
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In this section we define fuzzy subparacompact spaces, fuzzy Moore spaces and

study their properties.

Definition 2.4.1

A fuzzy topological space (X,F) is said to be fuzzy subparacompact if

for every fuzzy open cover 11 of X, there exists a sequence (~n) of fuzzy open

covers of X such that for a E (0,1], a fuzzy point of xa , there exists n E N

such that st (xa, ~n) S Un for some U, E 11 .

Remark 2.4.2

Every fuzzy subparacompact space is.a fuzzy submetacompact space.

Proof

Let U be any fuzzy open cover of the fuzzy subparacompact space

(X, F). Then by the definition there exists a sequence (~n) of fuzzy open covers

of X such that for a E (0,1], a fuzzy point of xa , there exists n E N such that

~

Then (\IIn) forms a sequence of open refinements of 11 such that for each fuzzy

point of Xa, there exists only one st (xa, ~n) such that Xa $; st (xa,~n) E \IIn-

Therefore (X,F) is a fuzzy submetacompact space.
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Definition 2.4.3

A fuzzy topological space (X, F) is said to be a fuzzy Moore space, if

it is regular and fuzzy developable.

Remark

By Theorem 2.3.6 it follows that (X, F) is a Moore space if and only if

it is a fuzzy wli -space with a Go * -diagonal.

Example 2.4.4

In Example 2.3.4 {st (xa, ~n) : n e N} forms a base at Xa. Let 11 be

any open cover of X. Then for fuzzy point Xa there exists Ue11 such that x, ~ U.

Then there exists ne N such that st (Xa, ~n) ~ U. Therefore (X, F) is fuzzy

subparacompact. Also (X, F) is regular and fuzzy developable . Therefore it follows

that(X, F) is a fuzzyMoore space.

Remark 2.4.5

Every fuzzy Moore space is Afuzzy subparacompact space.

Proof

Let (X, F) be a fuzzy Moore space. Let (~n) be a development for X

and let 11 be any open cover of (X,F). For a e (0,1], a fuzzy point of Xa ,

{st (xa, ~n): n e N} forms a base at Xa . Therefore if x, ~ U with U e 11
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there exists n E N with st (xa, Sin) ~ U . Hence (X, F) IS a fuzzy

subparacompact space.

Theorem 2.4.6

A regular fuzzy topological space (X, F) is a fuzzy Moore space if and

only ifit is afuzzy submetacompact, fuzzy w~- space with a Go -diagonal.

Proof

First assume that (X, F) is a fuzzy Moore space. Then (X, F) is fuzzy

subparacompact [by remark 2.4.5]. Therefore (X, F) is fuzzy submetacompact [by

Remark 2.4.2]. Since (X, F) is fuzzy developable, by Theorem 2.3.6, it is a fuzzy

w!:1 - space with a Go* - diagonal and hence a fuzzy w~ - space with a

Go - diagonal .

Conversely assume that (X, F) is a fuzzy submetacompact, fuzzy

we-space with a Go - diagonal. By Theorem 2.3.3, (X, F) has a Go· -diagonal.

Therefore it follows that (X, F) is a fuzzy w~ - space with a Go*- diagonal and

hence fuzzy developable, by Theorem 2.3.6. Hence as (X, F) is regular, it is a

fuzzy Moore space. .,
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CHAPTER 3

FUZZY M-SPACES AND FUZZY METRIZABILITY

3.1 Introduction

The M-spaces, introduced by Morita, is one among those vital in the

theory of generalized metric spaces. This class is very much related to that of

metrizable spaces. In this chapter we introduce the fuzzy M- spaces, fuzzy quasi

perfect maps' and study their relationships to fuzzy w~-spaces and fuzzy

metrizable spaces. We prove that an induced fuzzy topological space is fuzzy

metrizable ifit is a fuzzy M- spaces with a Go -diagonal.

3.2 Fuzzy M- spaces and Fuzzy quasi perfect maps

In this section we define fuzzy M-spaces, fuzzy quasi perfect maps

and study their relationships to fuzzy wa-spaces and fuzzy metrizable spaces.

Definition 3.2.1

A fuzzy topological space (X, F) is said to be weakly countably fuzzy

compact if each countable infinite set of fuzzy points clusters at come fuzzy point.
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Definition 3.2.2

Let (X, F.) and (Y, F2) be two fuzzy topological spaces. A mapping

f: X~Y is called a fuzzy quasi perfect map if

(i) f is fuzzy continuous

(ii) f is fuzzy closed

(iii) for each fuzzy point v« of Y, f-1{Ya} is weakly countably fuzzy compact.

Definition 3.2.3

A. fuzzy topological space (X,F) is called a fuzzy M- space if there

exists a sequence(31n) of fuzzy open covers of X such that

(i) for a e(O,l], if (xn)a are fuzzy points with support x, and value a and

(Xn)a ~ st(Xa, 31n) for each nE N, then the set {(xn)a : ne N} has a

cluster. point

(ii) each 31n+I star refines 31n.

Remark 3.2.4

~

Every fuzzy M- space is a fuzzy wa-space.

Theorem 3.2.5

Fuzzy paracompact fuzzy w~-spaces are fuzzy M-spaces
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Proof

Let (X, F) be a fuzzy paracompact fuzzy wzx-space .Then by the

definition of . fuzzy wa-space there exists a sequence (31n) be a sequence of

fuzzy open covers of X which satisfies condition (i) for a fuzzy M- space. Then

by the fuzzy paracompactness of (X, F), we can modify (31n) to satisfy (ii) also

[see proof ofTheoreml.2.14, part (a)] . Thus (X, F) is a fuzzy M- space.

Theorem 3.2.6

Let (X, F1) and (Y, F2) be two fuzzy topological spaces with (Y, F2)

fuzzy metrizable. If f from (X, F 1) onto (Y,F2) is a fuzzy quasi perfect map, then

(X, FI) is a fuzzy M-space.

Proof

Since (Y, F2) is fuzzy metrizable, (Y, L(F2) ) where L(F2) is the weakest

topology which makes every members of F2 lower semicontinuous is metrizable.

Therefore Y has a development (Un) such that, for each n , U n+1star refines l1n

[see Theorem 0.5.3].For eachUe 1fn, define Av : Y ~ [0,1] by

{
.!. if ye U

Au(Y)= n
1 if y ~ U

Then:1ln~{ A u : U E Un } forms a fuzzy cover of (Y,F2) such that
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sequence of fuzzy covers of (X, F I ) such that ~n+l star refines ~n. Fora E (0,1],

fuzzy point xa'and fuzzy pointstxs), with (xn)a ~ st(xa, ~n) for each n, we show

that the set {(xn)a : ne N} has a cluster point. If there are infinitely many (x.);

with (xn)a ~ f- I (Ya) where Ya= f(xa), by weakly countably fuzzy compactness of

r' {Ya}, the set {(xn)a : ne N} has a cluster point. Otherwise for each n, choose

(xn)a with (xn)a i: r' (Ya). Then f«xn)a) s st (f(xa), 3ln) = st(Ya, 3ln) , so that

f«Xo)a) ~ f(xa). Since f is fuzzy closed, it follows that the set {(xn)a : ne N} has

a cluster point in r' {Ya}. Therefore (X, Ft) is a fuzzy M-space.

Theorem 3.2.7

If (X, F) is a stratified. fuzzy M-space, then there exists a fuzzy

metrizable space Y and a fuzzy quasi perfect map from X onto Y.

Proof

Let (X, F) be a stratified fuzzy M- space. Let (3ln) be a sequence of

fuzzy open covers of X satisfying (i) and (ii) in the definition of fuzzy M- space.

Let T, = [F],. be the set of supports of crisp members of F. Consider {In =

{suppA; A E 3lo}. Then ({Jo) forms a sequence of open covers of (X, Tt) such

that {Jo+l star refines {Jo and if Xn e st(x, (In) for each n e N, then (xn) has a

cluster point. Therefore (X ,Tt) is an M- space. Hence there exists a metrizable

space Y and a' quasi perfect map f from X onto Y [see Theorem 0.5.9]. Let T be

~~5~~
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the metric topology on Y and let to (T) be the generated fuzzy topology on Y.

Then (Y,m(T)) is fuzzy metrizable. We show that f :(X, F)~ (Y, meT)) is a

fuzzy quasi perfect map, which will complete the proof of the theorem.

(i) f is fuzzy continuous

Take Be m (T). Then r:' (B) (x) = B(f(x»). Therefore f " (B) =Bof, is

lower semicoIitinuous as f is continuous and B is lower semicontinuous. Therefore

r-1(B) e F, since (X, F) is a stratified fuzzy topological space. Hence f is fuzzy

continuous.

(ii) f is fuzzy closed

Take Ae F and put B = f(A). Then for a e (0,1), as f is onto,

= {y e Y Iv{A(x) : x e X, f(x)=y }~ a }

= {f(x) e Y IA(x) ~ a }

= {f(x) eY Ixe A' a] }

= f(Al a]).

Since A is lower semicontinuous, by Theorem 0.3.6, Ala] is closed in

(X, T1) . Since fis closed B[a] = f(Al~]) is closed in Y. Therefore B e meT) again by

Theorem 0.3.6. Since f is onto, f (A') = f(A) , = B' is closed in

(Y, meT)). Therefore fis fuzzy closed.

(iii) f- I {Ya} is weakly countably fuzzy compact for each fuzzy point Ya in Y.

Let (xn)a ~ f- I {Ya for each ne N

(xn)a s f- 1({Ya}) => (xn)a(xn) s f " ( {Ya}) (xn) = Ya (f(xn»)
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~ y = f(xn) ~ x, E f- 1(y).

Since f is quasi perfect, [-1 {y} is countably compact. Therefore (xn)

has a cluster point, say x. Then the fuzzy point x, is a cluster point of the set

{(xn)a : nE N}. Hence the theorem.

Remark 3.2.8

From Theorem 3.2.6 and Theorem 3.2.7 it follows that a stratified

fuzzy topological space (X, F) is a fuzzy M-space if and only if there exists a

fuzzy metrizable space Y and a fuzzy quasi perfect map from X onto Y.

3.3 Fuzzy M-spaces and Fuzzy metrizability

In this section we prove some connection between fuzzy M-spaces

and fuzzy metrizable spaces.

Theorem 3.3.1

An induced fuzzy topological space is fuzzy metrizable if it is a fuzzy

M- space with a Gg-diagonal ..~

Proof

Let (X, F) be an induced fuzzy M-space with a Gg-diagonal. Then by

Theorem 3.2.7, there exists a fuzzy metrizable space Y and a fuzzy quasi perfect

map f from X onto Y. Then if Fv is the fuzzy topology on Y, the fuzzy quotient

space with respect to f (Y, FIt) = (Y, Fv), Since (X, F) is induced by
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Theorem 0.3.3, (Y, Fv) is also induced. Therefore (Y, Tv), where Tv = [Fy], is a

metrizable space. Take [F] = Tx. We prove that f from (X,Tx) onto (Y,Ty) is a

quasi perfect map.

(i) f is continuous

Let VeTv, then Xv e Fv. Since f is fuzzy continuous, f-1(Xv) e F. Now

f-1(Xv) = Xv (f) . Therefore x e Supp( f- 1(Xv» <=> Xv(f(x» > 0

<=> f(x) e V

<=> x e r' (V)

Hence f- 1(V).e Tx so that f is continuous.

(ii) f is closed

Let A be a closed set in (X, Tx). Then "lA'e F where "lA' denotes the

compliment of "lA. Therefore "lA is a closed fuzzy set in (X, F). Since f is fuzzy

closed, f(XA) is a closed fuzzy set in Fy. Therefore supp f(XA) is a closed set in

(Y,Ty ) .

<=> V {"lA (x) Ix e X, f(x) =y}~ 0, (since f is onto)

<=> X e A and f(x) = y

<=> y e f(A)

Hence f(A) =supp f(XA) is closed in (Y, Tv), Therefore fis a closed map.

(iii) r-1 {y} is countably compact for each yeY .
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Let y e Y and x, e f'" (y) for neN.

For each neN , x, e f"' (y) => Y= f(xn)

Since r' {Ya} is weakly countably fuzzy compact, the set {(Xn)a : ne N}

has a cluster point, say Xa and Xa ~ f- I {Ya}. Therefore (xn) has a cluster point at x.

Thus ffrom (X, Tx) onto (Y, Tv) is a quasi perfect map with (Y, Tv) metrizable.

Let (31,J be a Go-diagonal sequence for (X, F) Then for each An e 31n

define Gn by Gn = U An-I (a, 1]. Then (gn) where Gn E gn . forms a
ae(O.I)

Go-diagonal sequence .for (X, Tx) .Therefore (X, Tx) is compact [see Theorem 0.5.6].

Hence f is a perfect mapping. Therefore (X, Tx) is paracompact and hence

metrizable [seeTheoremO.5.7] Therefore (X, F) is a fuzzymetrizable space.
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CHAPTER 4

FUZZY P- SPACES

4.1 Introduction

The class of 'p- spaces' generalizes both metrizable spaces and

compact spaces. Various theorems which hold for both metrizable spaces and

compact spaces can often be generalized and hence unified by showing that they

hold for p- spaces. The concept of 'p- spaces' due to Arhangelskii is in terms of a

sequence of open covers in some compactification of the space rather than the

space itself (for details, cf[GG] ) . In this chapter we define fuzzy p-spaces, strict

fuzzy p-spaces and prove some characterizations of both of these spaces. We refer

v

[MH}] for fuzzy Stone- C ech compactification. We also define fuzzy k-spaces and

establish some relation between fuzzy p- spaces and fuzzy k-spaces . We say that

a fuzzy topological space( X, F) is completely regular if the topological space

(X, L(F» is completely regular, where L(F) is the weakest topology on X which

makes every member of Flower semicontinuous function fromCX,LCF»~[O,l].

All the fuzzy topological spaces ~~ considered in this chapter are assumed to be

completely regular .

4.2 Fuzzy P- Spaces

Definition 4.2.1(Fuzzy compactification) [MH}]

Let (X, F) be a fuzzy topological space. Let CPX, T) be any compact

topological space which contains (X, L(F» as a dense subspace. Then FT, the set of

54



all lower semicontinuous mappings g : (PX, T) ~ [0, 1] such that g Xx E F, is a

fuzzy topology on pX and (PX, FT) is fuzzy compact.

v

If (PX, T) is the Stone- C ech compactification of (X, L(F)) then

v

(~X, FT) is the fuzzy Stone- C ech compactification of (X, F).

Definition 4.2.2

A. completely regular fuzzy topological space (X, F) is called a fuzzy

p- space if there exists a sequence (!En) of families of fuzzy open sets on (PX, FT)

such that

(i) for each n, ( vB) ~ 0/ •
BE~ A- X

n

(ii) for each x eX, a e (0,1], ~st(xa,!En) s Xx' If we also have

(iii) for x e X, a e (0, 1] , ~ st (xa, !En ) =~ st (xa,!En ) , then (X, F) is

said to be a strict fuzzy p- space.

Theorem 4.2.3

Afuzzy topological space (X, F) is a strict fuzzy p-space if and only if

there exists a sequence (31n) of fuzzy open covers of (X, F) such that for each

X E X, a E (0,1]

(a) CXa = Ast (xa , 31n ) is fuzzy compact.
n .
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(b) {st(xa ,31n ) ' : n e N} forms a base for CXa .(That is if' Cx, ~ G e F,

there exists some Do such that st(xa, 31n 0) s G).

Proof

(Necessity)

First suppose that (X, F) is a strict fUZZy p- space. Then there exists a

sequence (13n) of families of fuzzy open sets on (PX, FT) which satisfies (i), (ii)

and (iii) in the definition of a strict fuzzy p-space. We can assume that 13n+1

refines 13n . For if (13n) ' s are not so, then (13n') where 13n' = { /\ Bi IBi E 13 i }
t s n

will do so.

For each B, E 13n choose An E F such that An = B, XX and denote

such collection of An by 31n .By (i) (31n) forms a sequence of fuzzy open

covers of (X, F). By (iii) Ast (xa , 13 ) <»: st'(xa ,13n ) is closed in (PX, FT)
n . n n

and hence fuzzy compact. Therefore CXa = -;; st (xa ,31 n ) = ~ st (xa ,31
n

) is

v

fuzzy compact in (X, F), since (PX, FT) is the fuzzy Stone- C ech compactification

of (X, F). This proves (a). Also as 13n+1 refines 13n , we have31n+1 refines 31n•

Take U, = st (xa ,31 n). Now /\ U, = /\ Un and as CXa = /\ U, is fuzzy
n n n

compact, {(xn)a : n eN }has a cluster point, whereix.), are the fuzzy points with
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support x, , value a and (xn)a ~ U,..Therefore by lemma 2.3.5, {Un} is a base for

the fuzzy set ~Un. That is {stlxa,.7ln): n EN} is a base for Cx., . This

proves (b).

(Sufficiency)

Conversely assume that (.7ln) is a sequence of open covers of (X, F)

satisfying(a) and (b). For each Ane.7ln, we can find a BAneFT and can form (~n)

in the following way.

•
For each ae (0,1], take V

a
= An.-

l (a, 1] EL(F). Let V = PX-cl(X-V).
a px a

• •
Then Va e T and Xz =Va fl X. Define BAn ex ~ [0, 1] by BAn(x) =

•
sup{a: x e Va }. Then for xeX, BAn (X) = sup{a: x e Xz } = An(x). Therefore

BAn %x = An. Now we show that BAn'S are lower semicontinuous. Take

b e [0,1]. Let.G =BAn-
l(b,I].

Then x eG => BAn(x) > b

=> BAn(x) > a > b for somea e(O,I)

•
=> X E Va C BAn-l(~,I] = G.
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Therefore G ~ T . Hence BAn is lower semicontinuous. That is BAn e FT. Take

13n= { BAn IAn e 3In}. Then (13n) forms a sequence of families of open fuzzy sets

on (~X, FT) which satisfies condition (i) of a fuzzy p-space.

* • {An [x] for x E X
For each An e3In , define An as An (x) =

. 0 for x E PX -X

•
We show that C Xa = 'i st (xa , 13

n
) =~ st (xa ,13n ) · This gives conditions (ii)

and (iii) for strict fuzzy p- space.

•
since each Be 13nis such that B Xx=Ae3In.Supposethat ~ st (xa ,13n ) 1: CXa

. *
. Then there exists some Y e ~X with (/\ st (xa ,13n ) )(y) >C Xa (y). Let

n

•
y = (/\ st (xa ,13n ) )(y) · Therefore Yy s /\ st (xa ,13n ) but Yy 1:C Xa. Since

n n
~

•
Cx, is fuzzy compact C Xa is also fuzzy compact, Therefore there exists some open

•
fuzzy set W on (~X, FT) such thaty, ~ W and W 1\ C Xa = Q . Also as the

{sttxa , 3In)·: ne N } forms a base for Cx, , {st(xa ,:lin) :ne N } forms a base
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for CXa. Therefore there exists some meN such that st(x(l ,.9lm ) /\ W =Q Hence

*
yy:S;~ st (xa,~.n) . Thus CXa ~~ st (xa'~n) ~(2).

A st (xa ,~n) .Therefore (X, F) is a strict fuzzyp- space.
n

Corollary 4.2.4

Every fuzzy Moore space is a strict fuzzyp- space.

Proof

Let (X, F) be a fuzzy Moore space. Let (310 ) be a fuzzy development

for (X, F). Therefore for a e (0, 1], a fuzzy point xa, {st~a' 31 n): n e N}

forms a base for Xa . Let {B, liE I} ,where I is an index set, be an opencover for

CXa = ~ st (Xa , 3ln ) . Then there exists some Bio such that xa:s; B le- Since

{sttxa , 3ln): n e N} is a base at x, , there exists meN such that Xa :s;

sttxa ,3l ) s B ie- Hence CXa s B io" so that CXa is fuzzy compact.
m .

For any fuzzy open set G with CXa ~ G, we can also have Xa ~ G.

Therefore there exists no such that xa:s; sttxa , 31nO) s G. Hence
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{stlXa ,31 n) :n e N} is a base for Cx., Thus (X, F) satisfies conditions (a) and

(b) of theorem 4.2.3. Thus (X, F) is a strict fuzzy p- space.

Corollary 4.2.5

Every strict fuzzy p- space is a fuzzy wA-space.

Proof

Assume that (X, F) is a strict fuzzy p- space. Then by theorem4.2.3,

there exists a (31n) a fuzzy open covers of X such that {stlxa ,31 n): n e N}

forms a base 'for CXa =/\ st (xa , 31n ) and CXa is fuzzy compact. Therefore if
n

we choose fuzzy points (xn)a with (xn)a ~stlxa' 31n)' {(xn)a: n eN }has a

clusterpoint in CXa . Thus (X, F) is a fuzzy wA-space.

Theorem 4.2.6

Every regular fuzzy submetacompact, fuzzy p-space is a strict

fuzzy p- space.

Proof

Let (X, F) be a regular fuzzy submetacompact space which is also a

fuzzy p-space. Let (13n) be a sequence of families of fuzzy open subsets on

(PX, FT) which satisfies conditions (i) and (ii) for the fuzzy p-space. For each B,

e 13n, choose An e F such that An = B, %X and form 31n. Then (31n) forms a
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sequence of fuzzy open covers of X. Consider 311. By the fuzzy sub

metacompactness of X, 311 has a sequence of open refinements, say (Uln) neN,

such that for afuzzy point xa , there exists ne N such that Xa ~ Uln e 'll,« holds

only for finitely many elements of 'll:«. Let U I I be one such open refinement

corresponding to the fuzzy point Xa - By regularityof X , for each U ln, we can find

an open refinement, say ~In , such that, for Xa ·~ Ur- e 'llv« there exists Aln

e3lln with Xa ~ Aln ~ AID ~ Uln - Similarly for 312, by fuzzy

submetacompactness, there exists (U2n) neN and by regularly each U 2n has a

refinemen~2n _Then take (3I2n) neN as follows

:lI2n= 132n A 3111 = {B A U / B e 132n, U e3l 11} _ For 313, by fuzzy

submetacompactness , there exists a sequence of open refinements (U3n)neN and

by regularly each U 3n has an open refinement 133n-Take (3I3n) neN as follows

Repeating this process for each m, we have a sequence (3Im,n) neN of

fuzzy open covers of X such that
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(a) (91m,n) neN is a refinement of each 91i j such that i < m, j < m and for every

fuzzy point Xa , there exists ne N such that Xa is in only finitely many

members of 91m,n.

(b) If V e 91m,n and i, j < m ,there exists w e 91i j such that V:s; Wand for

k S m there exists A e 91K such that V s A.

Let Ya:$; !\st(xa .91
i
.J.Fix i and j and let m > max {i, j}. Then

I,J

there exists n e N such that Xa is in only finitely many members of91m,n

S V {w : x., s V S V < we9l i j ) , by (b)

Therefore for each ij eN {;s{:ca. 91i.J=l\s{xa,91 i
.J :$; ~s{xa,91n).

i,j

Corresponding to each~j e 91i j , we can find a BAij e FT such that ~j =

BAi j Xx and can fonn 13 i j · That is 13i j = { BAi j I~ j e 91i j }. Now
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(
.) ( ) • = {An (x) for x E Xs An st Xa ,3In ~I\n st Xa , ~n where A, (x)

o for x E f3X - X

• •
and 3In = {An I AnE3In }.Therefore ~st (xa, ~n) =~ st (xa'~n) · That

is (X, F) is a strict fuzzy p- space .

Theorem 4.2.7

Every regular fuzzy paracompact, fuzzy p-space is a fuzzy M-space.

Proof

Let (X, F) be a regular fuzzy paracompact space, which is also a fuzzy

p- space. Since every fuzzy paracompact space is a fuzzy subparacompact space

and hence submetacompact space, it follows from theorem 4.2.6 that (X, F) is a

strict fuzzy p- space. Hence by corollary 4.2.5, (X, F) is a fuzzy w ~- space. Also

fuzzy paracompact, fuzzy w~- spaces are fuzzy M-spaces, since using fuzzy

paracompactness one can modify (310 ) such that 3In+1 star refines 310 . Thus

(X, F) is a fuzzy M-space.

4.3 Fuzzy P-Spaces and Fuzzy K-Spaces.

In this section we prove some characterizations for fuzzy p-spaces and

prove some relationship between fuzzy p-spaces and fuzzy k-spaces.
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Theorem 4.3.1

A fuzzy topological space (X, F) is a fuzzy p-space if and only if there

exists a sequence (~n) of fuzzy open covers of (X, F) satisfying the following

conditions. If for each n, fuzzy point Xa with support XE X , value a E (0,1] and

(a) /\ An is fuzzy compact
n

(b) {/\ Ai IneN} is an outer network for the fuzzy setx An That is for every
iSn n

-
fuzzyopen set Gwith /\ An s G, thereexistssome /\ Ai with /\ Ai s G.)

n t s n t s n

Proof

(Necessity)

Assume that (X, F) is a fuzzy p-space. Let (13n) be a sequence of fuzzy

open sets in (~X, FT) which satisfies (i) and(ii) in the definition of fuzzy p-space.

Then we can choose a sequence (~n) of fuzzy open covers of (X,F) such that

• {An(x) for x eX
An (x) = ° for xepX-X
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Let {Gi} be a fuzzy open cover of /\ An .For each Gi , choose Hi e FT
n

1/' -.such that Gi= Hi A"X • Now these Hi s forms a fuzzy open cover of ';i An and

hence possesses a finite subfamily which cover /\ A~ .The corresponding Gi'S
n

-
then form a subfamily of {Gij which cover /\ An. Therefore /\ An IS fuzzy

n n

compact, which proves (a) .

Let G be any fuzzy open set in (X, F) with /\ An ~G. Suppose that
n

for each n, /\ Ai $ G. Take Kn= /\ Ai . For each n, choose x, e X such thatKn(xn) >
is n i s n

G(Xn) . Let an = Kn(xn) . Then the fuzzy points (xn)an , where (xn)an is a fuzzy point

with support Xn and value an' are such that (xn)an ~ K, and (xn)an "$ G . Since

sequence (Kn) is decreasing, the set of fuzzy points {(xn)an: neN} has a cluster

point, say Xa. Now /\ Kn = /\ An which is fuzzy compact, so that Xa ~ /\ Kn. That
. n n n

is Xa ~ /\ An ~G, which is a contradiction to the choice of (xn)an.Thus for some n,
n

/\ Ai ~ G , which proves (b).
r s n

(Sufficiency)

Assume that there exists a sequence (3tn) of fuzzy open covers of

(X, F) with satisfies (a) and (b) . Let An e 3tn • Then for each a e [0, 1] ,
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An-1(a ,1] e L(F),. Take V( a) = An-1( a ,1]. Then V( a ) C X and let V·( a) =

• v

PX-cl (X-Vca». Now U c a) eT, where (PX , T) is the Stone- C ech
px

compactification of (X,L(F)) and Uca)=U*(a> (\ X . Define BAn: pX ~ [0, 1] by

BAn(x) =SUp{ Cl: X eU*ca> }. Then for xe X, BAn (X)= sup{a: X e Uca) } = An(x).

Therefore BAn X X = An. Now BAn'S are lower semicontinuous [see sufficiency

part of theorem 4.2.3] .That is BAn e FT. Take e. = { BAn IAn E 3ln}. Then (l3 n)

forms a sequence of families of fuzzy open sets on (PX, FT) which satisfies

condition (i) for a fuzzy p- space.

Now we show that /\ st (x, ,13n) ~X for every fuzzy point Xa with
n x

•support x E X and value a e (0,1] .For An E 3ln we have An ~ BAn where

• {An (x) for x eX
An (x) = ° for xepX-X

Now suppose that 1\ st (x, ,13n) "$ 1\ A: .Then there exists some y
n. n

E~X such that 1\ st (x, ,13n)(y) >1\ A: (y) . Let 1\ st (x, ,13n) = y . Therefore yy:S
n n n

1\ st (x, ,13n) , but Yy"$ 1\ A: .Since x A: is fuzzy compact ,there exists a fuzzy
n n n
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open set W in ~X with v, 5 W and W 1\( /\ A~ ) = o. Therefore W 1\(./\ A~) =
n - lsn

o ~(2) by (b) . We claim that W 1\(/\ st(xa.j[j*)) = 0 where s; =
- . Isn -

-* -* -*Therefore we can choose Ai e 9{ i with Ai (z) > 0 for all i = 1,2, n , which

is a contradiction to equation (2). Thus W 1\(.A st(xa , j[i* »= o. In particular
. lsn-

Yy $ /\ st (x, ,130 ) ,which is a contradiction.
n

* . *Hence x An > A st (x, ,130 ) ~(3) .Thus from (1) and (3)lt follows that A An =
n n n

/\ st (x, ,13n) • For xe X, A~ (x) = An(x) and /\ An is fuzzy compact .Therefore it
n n

follows that A st (x, ,130 ) ~ 0/ , which is condition (ii) for a fuzzy p- space-
n Ax

.Hence (X, F) is a fuzzy p- space .

Definition 4.3.2

A fuzzy topological space (X, F) is called a fuzzy k- space if the fuzzy set

A is closed in (X, F) whenever (A AK)/v :Y~[O,l] is a closed fuzzy set in (Y,Fy) ,

where Y = supp K and Fy= { Alv IAe F } , for each compact fuzzy set K.
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Theorem 3.3

E~ery regular fuzzy p- space is a fuzzy k- space.

Proof

Let (X, F) be a fuzzy p-space. Let A be not a closedfuzzy set on (X, F).

We finda compactfuzzy set K in X suchthat (A AK)/Y is not a closed fuzzy set on

(Y,Fy ) · By theorem 4.3.1 there exists a (~n) of fuzzy open covers of (X, F) such

that for each n, fuzzy point Xa withsupport xe X valuea e(O,I] and Xa ~An~~n,

(a) /\ An is fuzzy compact. (b) {I\Aj l·neN} is an outernetwork for the fuzzy set
n isn

Let ye support of (A) - support of (A) and a e (0,1] . For each n,

choose a fuzzy point Ya and a fuzzy open set Gn with Ya~Gn and An e ~n such

/\ Gn is fuzzy compact and hence x On is fuzzy compact. If (xn)a denote a fuzzy
n n

point with support x, and value a and (xn)a ~Gn,then by (b), {(Xn)a : ne N } has

a cluster point. This is because for every fuzzy open set W with A An ~ W there
. n

exists some ne N with 1\ Ai ~ W. Therefore all but finitely many fuzzy points of
t s n

(Xn)a are suchthat (xn)a ~ W . Hence some point of/\ An must be a cluster point.
n
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Hence by lemma 2.3.5 , { Gn I ne N } is a base for the fuzzy compact set

K =/\ Gn • If (A /\K)/V is not a closed fuzzy set on (Y, Fv), then the proof is over.
n

Suppose that (A /\K)/V is a closed fuzzy set on (Y,Fy) .Then there

exists a closed fuzzy .set B on (X,F) such that(A /\K)/V =B/v . DenoteB as (A AK)

Let (Hn) be a sequence of fuzzy open sets such that Ya~ H, for all nand H
II
+1 ~

a, and Ho/\( A /\ K) = o. Then as above we can show that { GnA ir, Ine N } is a

base for the fuzzy compact set K' = /\ ( Gn/\ Hn) . Also K' A A = 0 . Choose
n -

fuzzy point (xn)a with (xn)a <o, /\ ir, /\ A. Let K" = K'v {(xn)a Ine N}. Then

we show that K" is fuzzy compact. and K" /\ A is not a closed fuzzy set on

(X,F), so that (K" /\ A )/Y is not a closed fuzzy set on (Y, Fv) , which will

complete the proof.

Now Gn/\ H, /\ A is decreasing and since K' = /\ ( G, A Hn) is fuzzy
~ n

compact, {(xn)al ne N} has a cluster point Xa such that Xa~ K' . Therefore any

fuzzy open c~ver of K" contains a finite sub cover of the compact fuzzy set K'

and at least one member in the sub cover, say G , is such that Xa < G .Therefore

all but finitely many (xn)a are such that (xn)a < G . Hence the finite sub cover of

K' together with fuzzy open set corresponding to those finitely many (xn)a $ G,

forms a finite sub cover of the original cover ofK" .Hence K" is fuzzy compact ..

.But K" /\ A IS not a closed fuzzy set on (X, F), since the cluster point x, of

{(Xn)a IneN} is such that xa :5 K' and K' /\ A = 0 . Hence the theorem.
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CHAPTERS

FUZZY G- SPACES AND FUZZY METRIZABILITY

5.1 Introduction

The concept of a network is one of the most useful tools in the theory

of generalized metric space. The er -spaces is a class of generalized metric space

having a network. Okuyama[referGG]defined these class of spaces as spaces

having a a -discrete network. In this chapter we introduce the fuzzy analogue of

er -spaces an~ investigate some of its properties. Also we study the relationship

between fuzzy er -spaces, fuzzy Moore spaces ,fuzzy p- spaces, fuzzy M-spaces

and fuzzy metrizable spaces.

5.2 Fuzzy er -spaces

A net work for a topological space is like a base, but its elements are not required

to be open. In this section we define fuzzy network, fuzzy er -spaces and study

the properties of fuzzy er -spaces.

Some results mentioned in this chapter are published in the paper titled 'Fuzzy a-Spaces and Fuzzy

Moore Spaces', in the proceedings of the Annual Conference of the Kerala Mathematical

Association' and 'the National Seminar on Mathematical ModeUing',at Beseluis College,

Kottayam (2002)
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Definition 5.2.1

A fuzzy network for a fuzzy topological space (X, F) is a collection

C of fuzzy sets on X such that whenever x, is a fuzzy point and G IS a

fuzzy open set with x, ~G , there exists an element Ce C with x, ~ C ~G.

Remark 5.2.2

For a regular fuzzy topological space, the set of closures of the

elements of a fuzzy network is also a fuzzy network.

Example 5.2.3

Consider X =R with usual topology T . Let F be the set of all lower

semicontinuos mappings from (X, T) ~ [O,l].For each x eX , define

fx,n : X~ [0,1] by

fx,n (y) ={~ ify=x

ify~», :;t x

Let Cn = {fx,n : x eX } .Then for each n, Cn forms a fuzzy network for (X, F).

Definition 5.2.4

A collection :11 of fuzzy sets on a fuzzy topological space (X, F) is

said to be discrete if. for every fuzzy point x, in X, there is a Ge F with x, ~ G

71



QC)

and G 1\ A * 0 holds for at most one element A of 3'1. If 3'1 = U31n ' where
n=1

each 3tn is discrete, then 3'1 is said to be a (J' -discrete collection.

Definition 5.2.5

A fuzzy topological space (X, F) is a fuzzy (J' -space if X has a

a -discrete fuzzy network.

Theorem 5.2.6

A regular fuzzy a -space is a fuzzy subparacompact space.

Proof

Let (X, F) be a regular fuzzy er -space. Let C be a closed er -discrete

CIO

fuzzy network for (X, F). Therefore C = UC where Cn is discrete. Let 11be a
n=) n

fuzzy open cover of (X, F) and let En =v {c, ICie Cn }. Since (X, F) is regular

and Cn is a closed discrete network, for each cneCn we can choose vene1l such

that c.s Ven. Take Acn = 1\ { VenA C; IC; eCn} where c; denote the compliment
. i;tn

of cj and 3tn = { Acn IcneCn } U {u 1\ E~ IUe1l} where E~ denote the

compliment of En.Then (3tn) forms a sequence of fuzzy open covers of (X,F). For

a fuzzy point Xa, there exists at most. one c, such' that x, ::; Cn ::; V for some Ve1l.
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Therefore for each n, st (xa,~n) ~ U for some UeU. Hence (X, F) is a fuzzy

subparacompact space.

Theorem 5.2.7

Every closed fuzzy set in a fuzzy a -space is a Go-set.

Proof

Let A be a closed fuzzy set on a fuzzy a -space (X, F). Let

QC)

c = UC be a a -discrete closed fuzzy network of (X, F) [see Remark 5.2.2]. For
n=1 n

c e Cn, let c'denotes its complement. Let Gn = 1\ {c' : c e Cn and C 1\ A = 0 }.

Then A = 1\ Go. Therefore A is a Go-set.
n

Theorem 5.2.8

Let (X, F) be a Hausdorff fuzzy topological space. If (X, F) is a

regular fuzzy a -space, then it has a Go *-diagonal.

Proof

QC)

Let (X, F) be a regular fuzzy (J" -space. Let C =Uq, be a (J" - discrete
na l

closed fuzzy network of (X, F). If F, denote the fuzzy product topology, then

QC)

Cp="UC where Cnp = { Cj x Cj :
n=1 np

73



(c, X Cj) (x.y) = min { c, (x), Cj(Y) }, forms a a -discrete closed fuzzy network.

Therefore (X2,'F
p) is also a fuzzy (J' -space.

Now by Theorem 0.2.12, the diagonal I:! is a closed fuzzy set on

(X2,F
p) . Therefore by, Theorem 5.2.7, I:! is a Go-set. Thus (X, F) has a

Go -diagonal. Also by Theorem 5.2.6, (X, F) is a fuzzy subparacompact space.

Therefore (X, F) is a fuzzy submetacompact space [see Remark 2.4.2]. Since

(X, F) is regular it follows from Theorem 2.2.3 that (X, F) has a Go *-diagonal.

5.3 Fuzzy a-spaces, Fuzzy Moore spaces and Fuzzy Metrizability.

In this section we study the relation between fuzzy (J' -space, fuzzy

wll- spaces, fuzzy p- spaces ,fuzzy M- saces and fuzzy metrizable spaces.

Theorem 5.3.1

A regular fuzzy topological space is a fuzzy Moore space if and only

if it is a fuzzy a -space and a fuzzy wti- space with a Go -diagonal.

Proof

Let (X, F) be a fuzzy Moore space. Then (X, F) is a fuzzy

subparacompact space [see Remark 2.4.5]. Let U be a fuzzy open cover of

(X, F) and let (:1In) be a sequence of fuzzy open covers of (X, F) such that for

a E (0,1], a fuzzy point of Xa , there exists n E N such that st (Xa ,:1In) ~ U,
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for some Un e U. Let Cn = {st (xa,:1In) Ix E X, a E (O,l]}. Then each Cn

GO

is discrete and U(! is a a -discrete refinement of U. Hence each cover of
n=) n

(X, F) has a a -discrete refinement. Let (13n) be a fuzzy development of (X, F).

Now each !Bn has a a -discrete refinement, say V n• Then V =U~ is a
n

a -discrete fuzzy network for (X, F).That is (X, F) is a fuzzy a -space. Also by

Theorem 2.4.6 (X, F) is a fuzzy wIi- space, with a Go -diagonal.

Conversely assume that (X, F) is a fuzzy a -space and a fuzzy

wti- space with a Go -diagonal. Since (X, F) is a regular fuzzy a -space it is a

fuzzy sub paracompact space[by Theorem 5.2.6] and hence a fuzzy sub

metacompact space [by Remark2.4.2]. Hence by theorem 2.4.6, (X, F) is a fuzzy

Moore space.

Theorem 5.3.2

Let (X~ F) be a Hausdorff, regular fuzzy topological space. Then (X, F)

is a fuzzy Moore space if and only if (X, F) is a fuzzy a - space and a fuzzy

p-space.

Proof

Let (X, F) be a fuzzy Moore space. Then by Corollary 4.2.4, it is a

strict fuzzy p_o space and hence a fuzzy p-space. Also by Theorem 5.3.1 (X, F) is

a fuzzy a -space.
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Conversely assume that (X, F) be a fuzzy er -space and a fuzzy

p-space. Since (X, F) is a fuzzy er -space, by Theorem 5.2.6, (X, F) is a fuzzy

subparacompact space and hence a fuzzy submetacompact space. By Theorem

5.2.8, (X, F) has a GB -diagonal. In a regular fuzzy submetacompact space, every

fuzzy p- space is a strict fuzzy p- space and hence a fuzzy wA-space [see

Corollary 4.2.5]. Thus (X, F) is a fuzzy submetacompact, fuzzy w~- space with a

GB -diagonal and hence a fuzzy Moore space by Theorem 2.4.6.

Theorem 5.3.3

Let (X, F) be an induced regular fuzzy topological space. If (X, F) is a

Hausdorfffuzzy er -space and a fuzzy M-space, then it is fuzzy metrizable.

Proof

Let (X, F) be a Hausdorff fuzzy er -space and a fuzzy M-space. Then

by Theorem 5.2.8, (X, F) has a GB *-diagonal and hence a GB -diagonal. Since

(X, F) is a (tizzy M-space, it follows from Theorem 3.3.1, that (X, F) is fuzzy

metrizable. Hence the theorem.
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