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INTRODUCTION

There are two types of imprecision — vagueness and ambiguity. The
difficulty of making sharp distinctions is vagueness and the situation of two or
more alternatives not specified is ambiguity. An answer to capture the concept of
imprecision in a way that would differentiate imprecision from uncertainty,

L.A Zadeh [ZA] in 1965 introduced the concept of a fuzzy set.

In Mathematics a subset A of X can be equivalently represented by its
characteristic function, a mapping y, from the universe X of discourse (region of
consideration) containing A to the 2 - value set {0,1}. That is to say x belongs to
A if and only if x4 (x) =1. But the idea and concept of fuzzy set, introduced by
Zadeh, used the unit interval I =[0,1] instead of {0,1}. That is in “fuzzy” case the
“belonging to” relation y4 (x) between x and A is no longer “either 0 or

otherwise 1” but it has a membershi;ﬁ degree, say A(x), belonging to [0,1].

The fuzzy set theory extended the basic mathematical concept of a set.
Fuzzy Mathematics is just a kind of Mathematics developed in this frame work. In
1967 J.A Goguen [G] introduced the concept of L-fuzzy sets. Fuzzy set theory has
become important with application in almost all areas of Mathematics, of which

one is in the area of Topology.



Fuzzy topology is a kind of topology developed on fuzzy sets. It is a
generalization of topology in classical mathematics, but it also has its own marked
characteristics. For the first time in 1968, C.L.Chang [C] defined fuzzy
topological spaces in the frame work of fuzzy sets. In 1976, R.Lowen [LOy] has
given another definition for a fuzzy topology by including all constant functions

instead of just 0 and 1 (where 0 and 1 are fuzzy sets which takes every xe X

to 0 and every xe X to 1 respectively) of Chang’s definition. In this thesis we
are following Chang’s definition rather than Lowen’s definition. Extensive work
on the area of fuzzy topology was carried out by Goguen [G], Wong [WO],
Lowen [LO], Hutton[HU] and others. More over this area of fuzzy Mathematics

has applicatiohs in Science and Technology.

In 1984 Kaleva.O and Seikkala.S [K;S] introduced the concept of
fuzzy metric. It provided a method for introducing fuzzy pseudo-metric topologies
on sets. Earlier in 1982,Deng Zi-ke [DZ] introduced fuzzy pseudo metric spaces.
In 1993 A. George and P. Veeramani [GV,] modified the concept of fuzzy metric
introduced by Kramosil and Michalek [K;M]. Also M.A Erceg [E], G. Artico and
R. Moresco [A], B.Hutton and I. Reilly [HR] worked in this area. But not much
work seems to have been done on the topological properties of fuzzy metrizable

spaces.

The main purpose of our study is to extend the concept of the class of
spaces called ‘generalized metric spaces’ to fuzzy context and investigate its

properties.



Any class of spaces defined by a property possessed by all metric
spaces could technically be called as a class of ‘generalized metric spaces’. But
the term is meant for classes, which are ‘close’ to metrizable spaces in some
sense. They can be used to characterize the images or pre imagces of metric spaces

under certain kinds of mappings.

The theory of generalized metric spaces is closely related to what is
known as ‘metrization theory’. These classes often appear in theorems, which
characterize metrizability in terms weaker topological properties. The class of
spaces like Morita’s M- spaces, Bé)rges’s wA-spaces, Arhangelskii’s p-spaces,
Okuyama’s o -spaces have major roles in the theory of generalized metric spaces.
They have appeared as a ‘factor’ in many metrization theorems. The first three
are similar in some sense, being equivalent in the presence of paracompactness.
In fact classes like ‘p-spaces’ generalize both metric spaces and compact spaces
and various theorems which hold for both of these classes can often be

generalized and hence unified by showing that they hold for p-spaces.

In this thesis we introduce fuzzy metrizable spaces, fuzzy
submetrizable spaces and prove some characterizations of fuzzy submetrizable
spaces. Also we introduce somg fuzzy generalized metric spaces like fuzzy
wA-spaces, fuzzy Moore spaces, fuzzy M-spaces, fuzzy k-spaces, fuzzy
o -spaces, study their properties, prove some equivalent conditions for fuzzy
p- spaces. Also we prove some theorems to show that these classes of spaces are

closely related to fuzzy metrizable spaces. The thesis is divided into six chapters,

including the preliminary chapter.



In chapter 0, we collect the basic definitions, results and notations,
which we require in the succeeding chapters. W¢ use C.L.Chang’s [C] definition
of fuzzy topology. For a topological space (X, T) we denote by @ (T), the set of
all lower semicontinuous maps f : X— [0,1]. Then @(T) is a fuzzy topology
called the generated fuzzy topology. Also for a fuzzy topological space (X, F) the
associated topology is denoted by L(F) and is the weakest topology which makes
every member of F lower semicontinuous. By x, we mean a fuzzy point with
support x€X and value a e(0,1]. All the fuzzy topological spaces (X, F)
considered are assumed to be T; (That is every fuzzy point in the fuzzy

topological space is a closed fuzzy set).

Metrizability is a very nice but restrictive property for topological
spaces. The notion of submetrizability by Gary Gruenhage [GG] is less restrictive
but retains mych of this nicety. In chapter 1 wc; define fuzzy metrizable spaces,
fuzzy submetrizable spaces and prove some characterizations of fuzzy
submetrizable spaces. One of the property of a fuzzy metrizable space is that of
having a Gs -diagonal. We say that a fuzzy topological space (X, F) has a
G; -diagonal if the diagonal A is a Gs—set in (X?, Fp), where F,, is the fuzzy product
topology . We prove some equivalefit conditions for a fuzzy topological space
(X, F) to have a Gs—diagonal. Also we study the relation between fuzzy

paracompact spaces and fuzzy metrizable spaces.

The concepts like wA-spaces, developable spaces and Moore spaces
were extensively discussed by various authors as a part of the study of generalized

metric spaces.. In chapter 2 we introduce fuzzy wA-spaces, fuzzy Moore spaces,



fuzzy submetacompact spaces, fuzzy subparacompact spaces and investigate some
of their properties. We prove that every fuzzy subparacompact space is fuzzy
submetacomp;act. Also we prove that every fuzzy Moore space is fuzzy
subparacompact and a regular fuzzy topological space is a fuzzy Moore space if

and only if it is a fuzzy submetacompact wA-spaces with a Gs —diagonal.

The M- spaces, introduced by Morita, played a major role in the
theory of generalized metric spaces. This class is very much related to metrizable
spaces. In chapter 3 we introduce fuzzy M- spaces and study its relationship to
fuzzy metrizable spaces. We prove that every fuzzy M- space is a fuzzy wA-space
and is fuzzy submetrizable. Also we prove that an induced fuzzy topological space

1s fuzzy metrizable ifit is a fuzzy M-space with a G5 —diagonal.

The class ‘p- spaces’ generalizes both metrizable spaces and compact
spaces. The concept of ‘p-spaces’ due to Arhangelskii is in terms of a sequence of

open covers in some compactification of the space rather than the space itself. We

refer[MH,] for fuzzy Stone-é ech compactification. In chapter 4 we define fuzzy
p-spaces, strict fuzzy p-spaces and prove some characterizations of both fuzzy
p-spaces and strict fuzzy p-spaces. We also define fuzzy analogue of k-spaces

and show that every regular fuzzy p-space is a fuzzy k- space.

The concept of a network is one of the most useful tools in the theory
of generalized metric spaces. The o -spaces is a class of generalized metric spaces
having a network. In chapter 5 we introduce fuzzyo -spaces and study its

properties. We prove that every regular fuzzy o -spaces is a fuzzy



subparacompact space. A regular fuzzy topological space is a fuzzy Moore space

if and only if it is a fuzzy o -space and a fuzzy wA-space with a G; ~diagonal.

The idea of fuzzy sets introduced by Zadeh using the unit interval, to
describe and deal with the non-crisp phenomena was generalized by Goguen [G]
using some lattice instead of [0,1]. Although in this thesis we use [0,1] fuzzy set

up, most of the result could be extended to L-fuzzy setting.



CHAPTER 0
PRELIMINARIES AND BASIC CONCEPTS

The fuzzy set introduced by L.A.Zadeh, extended the basic
Mathematical concept — set. In view of the fact that set theory is the corner stone
of modern Mathematics, a new and more general frame work of Mathematics

was established . Fuzzy topology is a kind of topology developed on fuzzy sets.

In this chapter we collect the basic definitions, results and notations,
which we require in the succeeding chapters. Most of these are adapted from
‘Fuzzy topology : Advances in Fuzzy Systems-Application and Theory’ by Liu
Ying-ming and Luo Mao kang [Y;M] by specializing L to [0,1]. Also we have
used [ZA], [C], [MH,;] [MH;][MH;], [B], [B;W], [WL)'[P;Y:] for some

definitions and [GG] and [WI1 for some results in generalized metric spaces.

0.1 Basic Operations on Fuzzy Sets

Definition 0.1.1

Let X be a set. A fuzzy set on X is a mapping A : X— [0,1]. For a fuzzy
set A, {x € X : A(x)> 0} is called the support of A and is denoted by supp A.

Definition 0.1.2
Let A and B be fuzzy sets on X. Then

(1) A=B o Ax)=Bx)forallx € X.



(i) AS B Ax S Bx) forall x e X
(iii) AVB is a fuzzy set on X defined by (AVB)x) = max {A(x), Bx) } forallxe X
(iv) AAB is a fuzzy set on X defined by (AAB)(x) = min{A(x), B(x) } for all xeX.

(v) Forafuzzyset A onX, its complement A’ is a fuzzy set on X defined by

A'x=1- Ax) forallxe X

Generally if {A;}ic| is any collection of fuzzy sets on X, then WA Ajisa
fuzzy set on X defined by (ievIAi)(x) =sup { Aj(x) :x € X} and A A is a fuzzy
iel

set on X defined by ( lE/\I Adx) = intl' {Ai(x) :x e X}.

Definition 0.1.3

For a €(0,1], xe X, a fuzzy point X, is defined to be the fuzzy set on
X defined by

) e if y=x
Xo = .
Y 0 if y#x

®

Notation

The set of all fuzzy sets on X is denote by IX. The fuzzy set which

takes every element ih X to 0 is denoted by 0 and which takes every element in X

to 1 is denoted by 1. N denotes the set of all natural numbers.



0.2 Fuzzy Topological spaces

Definition 0.2.1

A collection F < I¥is called a fuzzy topology on X if it satisfics the

following conditions

G 0,1eF

(i) IfA,BeF,then A ABeF

(ili) If A eF foreachi e, then VA eF.

Then (X, F) is called a fuzzy topological spaces and the members of
F are called fuzzy open sets. A fuzzy set is called fuzzy closed if its complement

is fuzzy open.
Remark 0.2.2

For a fuzzy topological space (X, T), the set of all lower semi
continuous functions from X to [0,1] generates a fuzzy topology on X, called the

generated fuzzy topology and is deﬁnoted by o (T).
Definition 0.2.3

The fuzzy set Ac I* is called a crisp set on X if there exists an

ordinary subset U< X such that A = X



Given a topological space (X,T), F ={ X, UeT } forms a fuzzy

topology on X. Also given a fuzzy topological space (X, F), the set of supports of
crisp members of F forms an ordinary topology on X, called the background space

of (X, F) and is denoted by [F].

Definition 0.2.4

Let (X,F,) and (Y,F,) be two fuzzy topological spaces and let

f: X—>Y be a function. Then for a fuzzy set A on X, f(A) is a fuzzy set on

Y defined by f(A)(y)= V{A(x):xeX,f(x)=y } :when £7'(y)=¢
' 0 : when f7'(y)=¢

and for a fuzzy set B of Y, f'(B) is a fuzzy set on X defined by

f'(B)x) =B(f ) forallxe X.
Definition 0.2.5

Let (X,, F)) and ( X, F,) be two fuzzy topological spaces. Let X =
Xy x X;and P; : X— X; (1 =1,2) be the projections. Then the fuzzy product

topology on X is the fuzzy topology Fp, generated by {Pi" (A): AieF,i= 1,2}.

(X, Fp) is called the fuzzy product space.

Definition 0.2.6

For a fuzzy topological space (X, F), the diagonal A 1s the fuzzy set

1 if x=y
on XxX defined by A(x,y)= .
0 ifxzy

10



Definition 0.2.7
Let (X,F) be a fuzzy topological space. Then a fuzzy set A on X is

called a Gg-set if A= A A, for AieF

Definition 0.2.8

Let (X, F) be a fuzzy topological space and A € F. Then A is said to
be a quasi coincident neighbourhood of a fuzzy point X, if A’ (x) <a. The set of

all quasi coincident neighbourhood of x, is denoted by Q(X)

We say that a fuzzy set A is quasi coincident with a fuzzy set B if

B'(x) < A(x) for some x € X. We denote it by A§B.

Definition 0.2.9

The fuzzy topological space (X, F) is said to be T, (Hausdorff) if for
every two fuzzy points x, , y, with x#y, there exists U € Q(x1), Ve Q(yy) such

that UAV =0

Definition 0.2.10

The fuzzy topological space (X, F) is said to be strongly T (or s-T5) if
for every two fuzzy points x;, and y, with x=#y, there exists U € Q(xx), Ve Q(yy)

such that Uy AV g) = ¢ where Ug) = {xeX : U(x) > A } and Vo) = { xeX : V(x)> v}

11



Definition 0.2.11

The fuzzy topological space (X, F) is called a- T; for a € (0,1}, if for

every distinct points x,y € X there exists U € Q(x4), V€ Q(ye) such that UAV =0,
(X, F) 1s called level-T; if (X, F)is a¢- T, forevery a € (0,1].
Theorem 0.2.12

Let (X, F) be a fuzzy topological space. Then (X, F) is Hausdorff if
and only if the diagonal of (X?, Fp), where F, is the fuzzy product topology, is a

closed fuzzy set on (X2, Fp).
Definition 0.2.13

A fuzzy topological space (X, F) is said to be regular if for each fuzzy

point X, and UeF with x4 < U, there exists ¥ € Fsuchthat x, < V < v <U.

0.3 Stratified Spaces and Induced Spaces

Definition 0.3.1

A fuzzy topological space (X, F) is said to be induced if F is exactly

the family of all lower semicontinuous mappings from ( X, {F]) —[0,1], where

[F] is the set of supports of crisp members of F.

12



(X, F) is said to be weakly induced if every GeF is a lower

semicontinuous mapping from (X, [F]) — [0,1].

Definition 0.3.2

Let (X, F) be a fuzzy topological space and Y be a set. Let f: X—>Y be
a mapping. Then F/f= {Ve I¥: f"(V)e F } is a fuzzy topology on Y and (Y, F/)

is called the fuzzy quotient space with respect to f.
Theorem 0.3.3

Let (X, F) be an induced fuzzy topological space and (Y, F/f) be the

fuzzy quotient space with respect to the surjective mapping f: X — Y. Then

(Y, F/) is also an induced fuzzy topological space.

Definition 0.3.4

Let (X, F) be a fuzzy topological space. Then the fuzzy topology F,

generated by FU {a| a e [0,1]} where a = a A)x, is called the stratification of F

and (X, F)) is said to be stratified.

%

Theorem 0.3.5

Let (X, F) be a fuzzy topological space. Then (X, F) is stratified if and

only if F contains all the lower semicotinuous functions from (X, [F]) — [0,1].

13



Theorem 0.3.6

Let (X, T) be an ordinary topological space and let f: X — [0,1] be a

mapping. Then f is lower semicontinuous if and only if for every ae (0,1), { [a]is

closed in (X, T), where £*/={xe X |f(x)<a}.

Theorem 0.3.7

Let (X, F) be a weakly induced fuzzy topological space. Then the

following conditions are equivalent.
1N X,F)iss-T,
(1) X,F)is T,
(1) (X, F) is level-T;
(iv) There exists a € (0,1] such that (X, F) is a- T».

W) X, [FDis T,

0.4 Fuzzy Compact Spaces and Fuzzy Paracompact Spaces

Definition 0.4.1

Let (X, F) be a fuzzy topological space. For a fuzzy set G on X, a

family A of fﬁzzy sets on X is called a cover of Gif VA > G. Ais called a

cover of (X, F) ifitis acoverof 1 and isan opencoverif A cF.

14



Definition 0.4.2

Let A and B be two families of fuzzy sets on ( X, F). We say that A

is a refinement of B if for each G € A thereis an H € B such t’hat G < H.

Definition 0.4.3

A fuzzy set A in a fuzzy topological space (X, F) is said to be fuzzy

compact if for every A c F with VA > A and everye > 0, there exists a finite

subfamily A'c A such that VA' 2 A -¢. In particular X is fuzzy compact if 1

is fuzzy compact.
Definition 0.4.4

A family {A,: t € T}of fuzzy sets on (X, F) is said to be locally finite

at xy, if there exists UeQ(x,) such that A;qU holds except for finitely many teT.

For a fuzzy set Ael¥, A = {A,: t € T }of fuzzy sets is called locally

finite in A, if A is locally finite at every X, , where A is such that A < A(x) for

®

some x €X.

Definition 0.4.5

Let (X, F) be a fuzzy topological space and & € (0,1]. A collection B

of fuzzy sets is called an a- Q cover of a fuzzy set A, if for each fuzzy point x4

15



with x, < A, there exists B € B withB'(x)< a ( That is x, quasi coincident with B)

If B cF, then B is called an open a - Q cover of A.
Definition 0.4.6

Let (X, F) be a fuzzy topological space and let AeI* and & € [0, 1].

Then A is said to be « - fuzzy paracompact if for every open a - Q cover of A of

A, there exists an open refinement B of A such that B is a locally finite in A

and is an « - cover of A,

A is called fuzzy paracompact if A is a- fuzzy paracompact for

everya € [0,1]. (X, F) is said to fuzzy paracompact if 1 is fuzzy paracompact .

Definition 0.4.7

Lét (X, F) be a fuzzy topological space and let A be a fuzzy set. Then

A = {A;: t € T} of fuzzy sets on X is called *- locally finite in A if for every Xy,

where A is such that A < A(x) for some x €X, there exists U € Q(x,) and a finite

subset Toof Tsuchthatt € T-Ty = A AU=0.

Definition 0.4.8

For a € [0, 1], a fuzzy set A on (X, F) is said to be a'- fuzzy

paracompact if for every a- Q cover of A of A, there exists an open refinement

B of A suchthat B is * - locally finite in A and is an a- Q cover of A.

16



A is * - fuzzy paracompact if A is a" - fuzzy paracompact for every

a €[0,1]. (X, F)is * - fuzzy paracompact if 1 is * - fuzzy paracompact.

Theorem 0.4.10

Let (X, F) be a weakly induced fuzzy topological space. Then the

following conditions are equivalent.
@) (X, F) is fuzzy paracompact
(i1) There exists @ € (0,1) such that (X, F) is a - fuzzy paracompact.
@) (X, [F]) is paracompact.

Theorem 0.4.11

Let (X, F) be a fuzzy topological space and Ae ¥, a € [0,1). Then
(i) Aisa - fuzzyparacompact = A is a - fuzzy paracompact.

(1) Ais *-fuzzy paracompact = A is fuzzy paracompact.

Theorem 0.4.12

Every T, and fuzzy compact fuzzy topological space is * - fuzzy

paracompact.

Remark 0.4.13

The concept of “good extensions” in fuzzy topological spaces was
introduced by Lowen [LO,]. For a property P of ordinary topological spaces, a

property P* of fuzzy topological spaces is called a good extension of P, if for

17



every ordinary topological space ( X, T), (X, T) has property P if and only if
(X, T) has property P*.

Fuzzy compactness is a *“ good extension” of compactness in ordinary

topological spaces.

0.5 Some Results from Generalized Metric Spaces

Definition 0.5.1

Let X be a topological space . For x € X and a collection U of
subsets of X, st(x, )=V {UeU:xeU}.ForAcX st(A, U=

U{UeU:UnA=¢}.

A cover y of a space X is called a star refinement of a cover U if

{st(x, ¥) : x eX}is a refinement of U .

Theorem 0.5.2

B

A To- space X is metrizable if and only if X has a development (Gn)
such that whenever G, G’ € G, + and G N G’ =@, then G U G’ is contained in

some member of G,,.

18



Theorem 0.5.3

A Ty- space X is metrizable if and only if X has a development (G;)

such that for each n, G, + is a star- refinement of G,.
Lemma 0.5.4

Let (Gn) be a sequence of open covers of X such that (Gn+1) isa
regular refinement of G, for each n. Then thereis a pseudo metric p
on X such that

O p&y)=0if y e nst(x, Gn)

(i) U is open in the topology generated by p if and only if for each xeU

there exists n e N such that st (x, G,) c U.

Lemma 0.5.5

Let Y be a submetacompact subspace of a topological space X. For

each n, let U;, be a collection of open subsets of X covering Y. Then there exists

asequence (y,) of open collections covering Y such that, for each ye Y

LY

nst(y,y,) = nst(y,y,)c nst(y, Un)

Theorem 0.5.6

A countably compact space with'a Gs- diagonal is compact, hence

metrizable.

19



Theorem 0.5.7

A topological space X is a Moore space (respectively a metrizable
space) if and only if X is submetacompact (respectively a paracompact) wA-space

with a Gs- diagonal.
Definition 0.5.8

A map f from a topological space X onto a topological Y is perfect if

it is continuous, closed and for each y € Y, f ' {y} is compact.

A map f: X— Y is said to be quasi perfect if it is continuous , closed

and f ' {y} is countably compact for eachy e Y

Theorem 0.5.9

A topological space X is an M-space if and only if there exists a

metric space Y and a quasi perfect map from X onto Y.

Theorem 0.5.10

AT i-space is paracompact if and only if every open covér of the

space has an open star refinemeng.

20



CHAPTER 1
FUZZY SUBMETRIZABILITY

1.1 Introduction

Mf:trizability is a very nice but restrictive property for topological spaces.
The notion of submetrizability (for details refer [G G]) is less restrictive but retains
some of the nice properties of metrizability. A topological space (X, T) is
submetrizable if their exists a topology T' < T with (X, T') metrizable. In this chapter
we define analogously the concept of fuzzy metrizable spaces, fuzzy submetrizable
spaces and obtain some characterizations of fuzzy submetrizable spaces. Also we

study the relation between fuzzy paracompact spaces and fuzzy metrizable spaces .

1.2 Fuzzy Submetrzable Spaces

Definition 1.2.1

Let (X, F) be a fuzzy topological space. . Let L(F) be the weakest
topology on X which makes all the functions in F are lower semicontinuous.
Then the fuzzy topological space (X, F) is said to be fuzzy metrizable if (X ,c(F))

is metrizable.

* We have included some results of this chapter in the pz.xpcr titled On Fuzzy Submetrizablity in
The Journal of Fuzzy Mathematics, Vol. 10 No. 2 (2002). )

** Some Results mentioned in this chapter are published in the paper titled “Fuzzy Metrizablity and
Fuzzy Compactness” in the proceedings of The International Workshop and seminar on Transform
Techniques and Their Applications held at St. Joseph’s College, Irinjalakkuda, Kerala (2001)
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Definition 1.2.2

The fuzzy topological space (X, F) is said to be fuzzy submetrizable

if there exists F'  Fsuch that (X, F") is fuzzy metrizable.

Example 1.2.3 - Fuzzy metrizable spaces

1. Consider X=R, the real line. Let F be the fuzzy topology generated by the set

{ x | U open in the usual topology on R}. Then (X, F) is fuzzy metrizable.
u

2. Let (X, T) be a metrizable topological space . Then w(T)= { f | £ (X,T)
—[0,1] is lower semicontinuous } is a fuzzy topology on X ,called the
generated fuzzy topology and the fuzzy topological space (X, @ (T)) is fuzzy

metrizable .

Example 1.2.4 - Fuzzy Submetrizable Spaces

1. Consider X=R. For intervals of the type [a,b) define fj,5): X —[0,1] by

1 if xe(a,b)
flap(x) = é— if x=a
0 if x ¢[a,b)
Let F be the fuzzy topology generated by { fis1), s |2,b€R}. Now

the weakest tobology L(F), which makes all elements of F lower semicontinuous,
is the lower limit topology , and (X, t(F)) is not metrizable. Therefore (X, F) is

not fuzzy metrizable.

22



If F' is the fuzzy topology generated by { x.» | ab € R}, then
(X, F') is fuzzy metrizable, since (X ,(F")), where L(F') is the usual topology, is

metrizable. Now F' = F. Therefore (X, F) is fuzzy submetrizable.

2. Consider X=R . For G ,H subsets of R, G open with respect to the usual

topology on R and H any subset of irrationals, define fgy:X —[0,1] by

1ifxe G
fonw = %ifxe Gand xeH

0 otherwise

Let T be the topology on R with basic open sets as{ G VH | G

open with respect to usual topology , H subset of irrationals} .Consider F =

{fon| G,H < R ,G open in the usual topology ,H any subset of irrationals} U

{0, 1}. Then the fuzzy topological space (X, F) is not fuzzy metrizable , since
(X ,T) is not metrizable and T = ¢(F) . Let F' = { f; ¢| G open in the usual
topology} w {0 , 1} . Then the weakest topology (F') , which makes every

member of F' lower semicontinuous, is the usual topology on R . Now
(X, L(F") is metrizable. Therefore (X, F') is fuzzy metrizable. Also F'c F.

Hence (X, F)is fuzzy submetrizable.

Remark 1.2.5

The concept of fuzzy metrizability and fuzzy submetrizability that we
have introduced above are ‘good extensions’ of the crisp metrizability and

submetrizability in the sense of R.Lowen[LO,].
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Definition 1.2.6

The fuzzy topological space (X, F) is said to have a G; -diagonal if

the diagonal A isa Gs-setin (X°, F, ) where F,, is the fuzzy product topology.

Definition 1.2.7

Let A be a cover of (X, F). For a ¢ (0,1] and a fuzzy point x_ ,
st(xa,ﬂn) =‘V{B: Be A and B(x) = a} and for a fuzzy set G, st(G, A )=

V{B: Be Aand B,AG=0} .

Theorem 1.2.8

A fuzzy topological space (X, F) has a Gj -diagonal if and only if

there exists a sequence (A,) of open covers of (X, F) suchthatfor x,y € X

with x # y, a,f e (0,1] there exists ne Nwithy; ¢ st(xa,.?ln).

Proof

*

First suppose that (X, F) has a G;-diagonal. Then A= /n\Gn

where each G, is a fuzzy open set on (X*, Fy). Foreachn e N,xe Xand for

each a e (0,1] we have x, xx, < A <G, (here x, xx, <A maens that

A(x,x) 2a). Since Gye F,, there exists H,"x € F such that x, < H,%
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and Hy" xxHy,*x = Gy,. Then A, ={ H,°x| xe X ,ae(0,1] } forms an open
cover of (X,F) .

For x,y € Xwithx # y, a,f € (0,1}, we claim that there exists

ne N withyz ¢ stha',ﬂn ) For otherwise suppose that y; < st(xa ,ﬂn) for all n
. Then yg s H'y x for some y € (0, 1] and H', x < st(xa,ﬂn) . Also x, < H' «

Therefore x, x ys < H', x x H x = G, foreachn. Thatis X, xyg = AGy=A,
n

which is a contradiction. Thus (A, ) satisfies the conclusion of the theorem .

Conversely suppose that'(.?ln) be a sequence of open covers which

satisfies the conditions mentioned in the theorem .Let G, =v {AxA| A € A,)}.
Then for a€(0,1], x, < A for some A € A, Therefore x, »x, S AxA.

Hence A=wv(x, xx,) v { AxA|A e A,} =G, for each n. Therefore A <
AG, . If for eache B e (9 ,1] and x#y with x, x ys = AG, ,
n = n

we have x_ x yg < G, for each n . Hence there exists A, € A, with x, x yz s

A, x A, That is yz< st(xa,ﬂn), which is a contradiction. Therefore /n\Gn =

v{(x, xx;) |xe Xand a,Be (0, }]}< A. That is (X,F) hasa G;-diagonal.
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Remark

We write £ and not >, although they are the same here , keeping in
mind the fact that the same concept of the theorem can be extended to L- fuzzy

topological spaces.

Remark 1.2.9

If (A,) is a sequence of fyzzy open covers with the property in

theorem 1.2.8, then for xe X, a € (0, 1], é\st(xa,ﬂn) = Xq .

Proof

Let y € support of é\st(xa,ﬂn) . Let /I}st(xa,ﬂn)(y) = B. Therefore

<
¥ _/n\st(xa,,ﬂn ) . Therefore yp S/n\st(xa,.?{n ) for all n. Hence by the above
theorem y = x. Therefore support of {l\st(xa ,.?In‘) = {x}. Lety= /n\st(xa,\?(n ) (x)
(note thaty 2 a>0) Ify> « theﬁ by passing onto refinements we can form a

sequence of fuzzy open covers (.?("n) such that{l\st(xa,ﬂn ) (x) = a . Hence

/n\st(xa,ﬂn) = Xq -
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Example 1.2.10

Consider X=R. For G, H subsets of R, G open with respect to the

usual topology on R and H any subset of irrationals, define ¢ : X — [0,1] by

l1ifxe G
£ - |1.
G,H (x) EleE Gand xeH

0 otherwise

Let F = {fgu|G, H. c R, G open in the usual topology, H any

subset of irrationals} U { 0, 1}. Consider (X?, F,), where F, is the fuzzy product
topology. Basic fuzzy open sets in (X, F,) can be written as f G H, * f Gy H,
where(fGl,Hl “f6,.1, )(x,y) = min{fG,,H,(x)’sz,Hz(Y) } . For each n,

take G“=f(:lll_%)_¢"f(",l),¢ . Then

nn

. ) -1 -1
1 - =
Gixy)= 4 XY € (n’ nj

0 otherwise

Then the diagonal A=A, - That is A is a Gs-set . Therefore (X, F) is having a
n

Gs-diagonal

Definition 1.2.11

A sequence (A,) of fuzzy open covers of (X,F) is called a

G;s -diagonal sequence , if for each x, ye X withx#y, a, f € (0,1], there exists
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neN with y; #st(xq Ap). That is {l\st(xa,ﬂn) = Xqo. A space (X, F) has a
Gs -diagonal if there exists a G; -diagonal sequence.

Definition 1.2.12

A cover A of (X, F) is called a star refinement of the cover B if
{st(G, A) : G € A} refines B. That is for each Ge A, there exists He B such

that st(G, A) < H.

Definition 1.2.13
Let (X, F) be a fuzzy topological space. A fuzzy covering A, is a

regular refinement of the covering A, if for G, He An+ withGAH 20, GV H

<B, for some B,e A,

Theorem 1.2.14

The following are equivalent for an induced fuzzy topological space (X, F) .

(@ X, F)is fuzzy'submetrizabfe
(b) (X, F) has a G; -diagonal sequence (Aj) such that Ay, star refines A, for

each n

(¢) (X, F) has a G; -diagonal sequence (A,) such that A, is a regular

refinement of A, for each n.
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Proof

(@)= (b)

Assume that (X, F) is fuzzy submetrizable. Then there exists F' < F
such that (X, F') is fuzzy metrizable. Therefore (X, L(F")) is metrizable. Hence
(X, L(F")) is paracompact. Therefore each open cover of (X, ((F")) has an open star

refinement (see [WI]). By metrizability we can form a Gs-diagonal sequence

(Gn) for (X ,.L(F')). For each G, € G, , let Ag, be the characteristic function of

Gn. Each Ag, is lower semicontinuous and hence belongs to F'. We claim that

(Agn) where Agn={ Agn |Gne G, } forms a  Gs-diagonal sequence for

(X, FY).

Consider x, ye X withx # vy, a,B e (0, 1]. Since (G, ) forms a
Gs -diagonal sequence for (X, (F"), there exists n € N such that y ¢ st (x, Gy).
Now x, # yz and st(x,, Agn) =V{ Bon | BaneHAgn and Ben(x) 2a}.
Therefore st(x,, HAgn) (¥)= 0 whc:re as yp(y)= B. Therefore ys¢ st(x,, HAgn).

That is (Ag,) forms a Gs -diagonal sequence for (X, F'). Since G+ star refines

Gn it follows that Agyy1 star refines Agy, .
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(b) =(c)

Let (A,) be a Gs-diagonal sequence for (X, F) such that A+ star
refines A, for each n.Let G, H € Ay be such that G A H# 0 . Since Ansy
star refines A, there exists A, A, such that G< st(G, Anr1) < A, . Since
G AH#0, HS st(G, Aps1). Therefore GVHS st(G,Ant1) < An € A, Hence

A+ is a regular refinement of A, for each n..

© =@
Let (X,F) has a Gjs-diagonal sequence (A,) such that A, is a

regular refinement of A, for each n . For each A,e A, let G, = U A;.l (a.1))

ae(0,1]
Then G, = { G,} forms Gs -diagonal sequence for (X, t(F)) . Since F isan
induced fuzzy topological space [F] = L(F) . Take Gp+1, G.,, € Gn+r1 With

G!,, NGp1 # ¢. Then there exists A+, € Anrt with Apsy A AL #0

n+l n+l

andGn+1— U A ntl a 1] n+| U A +| al

ae(0,4] ae(0,1)
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By assumption A,y VA!, < A,for some A,eA,  Therefore

U {AL (1] A (a,1]} < U A:(a,l]) .Thatis G, U G',, < G,.

n+l
ae(0,1] ae(0.1)

Thus the sequence (G,) of open covers are such that G, is a regular

refinement of G, . Therefore by the Lemma 0.5.4, there exists a pseudometric

p on X suchthat U is openin the topology generated by p if and only if

foreach xeU ,there exists ne N such that st(x,G,)c U. Now {x} =

N st(x, Gn) .Therefore p is metric on X [ by part(i) of Lemma 0.5.4]. Also by

part (ii) of the Lemma 0.5.4, the topology generated by p, say T', is contained in

the topology ¢(F) . Therefore (X , L(F)) is submetrizable . Let o(T') be the
collection of all lower semicontinuous mappings from (X, T') - [0,1]. Now
T'cu(F) and since Fis induced o(T") c F. Therefore (X, o(T")) is fuzzy

metrizable. Hence( X , F ) is fuzzy submetrizable .

by

1.3 Fuzzy Compactness, Fuzzy Paracompactness and Fuzzy Metrizability

In this section we connect fuzzy paracompact spaces with fuzzy
submetrizable spaces. Also we prove some relationship between fuzzy metrizable

spaces and fuzzy compact spaces
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Lemma 1.3.1

If (X, F) is an induced fuzzy paracompact space, then the generated

topological space (X, L(F)) is paracompact .

Proof

Since (X, F) is induced, [F] = (F). Also as (X, F) is a fuzzy
paracompact space, (X, [F]) is paracompact [see theorem 0.4.10]. That is (X, ¢(F))

is paracompact .

Lemma 1.3.2

Let (X, F) be an induced fuzzy topological space. If (X, F) is fuzzy

paracompact with a  Gj -diagonal then it is fuzzy submetrizable.

Proof

Let (A,) be a Gs-diagonal sequence for the induced fuzzy

paracompact .space (X, F). Then by lemma 1.3.1 (X, ¢(F)) is paracompact.

Therefore every open cover of (X, ¢(F)) has an open star refinement [see

Theorem 0.5.10].

Consider G,= { G, | G, = U A (a,1], Aye A, }. Then (G)

ae(0,1]

forms a Gs-diagonal sequence for ( X,.(F)). For if x,y € X, x# y and there

exists no n eN withy ¢ st(x, G,),then we have y € st(x, G,) forall n.
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Foreachn, y € st(x,G.) = x, ye Gy, for some G, € Gn.

=>yeA(B,1],x €A (a,1] for some a, f€(0,1]
=Any) > B, An(X) >a

= yp<Anand x_ <A, for some A, eA,.

= Yp < St(Xe, An ).

This is a contradiction as (A, ) is a Gs-diagonal sequence for (X, F).

As (X, T) is paracompact, there exists a Gs-diagonal sequence say

(G.) such that, G,+1' star refines G,' (see[GG]). Corresponding to each G,
form A, where A, ={Yan' , o €Gn' }. Then (A, forms a Gs-diagonal

sequence for (X,F) such that An+' star refines A,'. Therefore by theorem

1.2.14(b), (X, F) is fuzzy submetrizable.

Theoreml1.3.3

Lét (X/F) be an induced Hausdorff fuzzy topological space. If (X, F)

is a fuzzy compact space with a Gs-diagonal, then it is fuzzy metrizable.
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Proof

Let (X, F) be an induced Hausdorff fuzzy compact space with a
Gs-diagonal. - Then (X, F) is a fuzzy paracompact -space [see Theorem 0.4.11and
Theorem 0.4.12]. Since (X, F) is induced, by theorem 1.3.2 ,it follows that (X, F)
is fuzzy submetrizable. Therefore there exists F' < F such that (X, F') is fuzzy
metrizable. Now, as (X, F) is induced, (F) = [F]. Then (X, ¢(F)) is a compact
Hausdorff space [see Theorem 0.3.7 and Remark 0.4.13]. Also( X,.(F")) <
(X, L(F)) and (X, L(F") is metrizable. But a topology which is strictly weaker than
a compact Hausdorff topology cannot be Hausdorff. Therefore ((F') = L(F) so

that F'=F. Hence (X, F) is fuzzy metrizable.
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CHAPTER 2
FUZZY WA- SPACES AND FUZZY MOORE SPACES

2.1 Introduction

The notion of generalized metric spaces is closely related to
metrization theory . The concepts like wA-spaces, developable spaces and Moore
spaces were extensively studied by various authors, as a part of the study of
generalized metric spaces. In this chapter we introduce fuzzy submetacompact
spaces, fuzzy subparacompact spaces, fuzzy wA-spaces, , fuzzy Moore spaces and

investigate some of their properties.

2.2 Fuzzy sub metacompact spaces.

A topological space X is submetacompact if for each open cover U of
X there is a sequence (y,) of open refinements of U/ such that for each x € X,

there exists ne N such that x is in only finitely many elements of y,. In this

section we define fuzzy submetacompact spaces and study some of its properties.

We have included some results of this chapter in the paper titled ‘On Fuzzy wA-Spaces and fuzzy
Moore Spaces’ Journal of Thripura Mathematical Society Vol.4 (2002) 47-52.
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Definition 2.2.1

A .sequence (A of fuzzy open covers of a fuzzy topological space

(X, F) is called a Gs* - diagonal sequence if for each x € X, a € (0, 1}

/r}st(xa,ﬂn)= /n\st(xa A n) = Xq.

Definition 2.2.2

A fuzzy topological space (X, F) is said to be fuzzy submetacompact, if for

each fuzzy open cover A of X, there exists a sequence (y,) of fuzzy open
refinements of A such that, for each fuzzy point x_, x € X, a € (0, 1], there
exists neN such that x_, < v, ey, holds for ﬁnitely many elements of y,,.

Theorem 2.2.3

A regular fuzzy submetacompact space with a Gs - diagonal has a
Gs * - diagonal.
Proof

hY

Let (X, F) be a regular fuzzy submetacompact space with a

Gs -diagonal. Then there exists a sequence (A,) of fuzzy open covers of (X, F)

such that for a fuzzy point x_, /n\st(xa,,ﬁ‘(n ) = Xq Consider A, Then by sub

metacompactness of X, A, has a sequence of open refinements say (Uin)nen,
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such that for each fuzzy point x, there exists neN such that x, is only in

finitely many elements of U, .Let U, be one such open refinement
corresponding to the fuzzy point x, . By regularity of X, for each U\, we can

find an open refinement, say y/,, such that, for x, < Ui, € Uy, there exists

Vin €Y, with x, < V,,<V,, SUn.

Similarly for Aj, by submetacompactness, there exist (B;n)nen and by

regularly each B,, has an open refinement U5, . Then take (W3 dnen as follows.

Won =Un Ay, ={UAV|Ue Un Ve y,, } For A 3, by sub
metacompactness, there exists a sequence of open refinements (Bsy)nen and by

regularity each B3, has an open refinement Us,.. Take (Y, , Jnen as follows .

Vin= Usa A Vin AWV 2 AW AW,

Repeating this process for each m, we have a sequence (¥, ) nen Of

open covers of (X, F) such that

() (W) nen is a refinement of each y/; such that i <m, j <m and for each
fuzzy point x_there exists neN such that x_, is in only finitely many

members of i/, .
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(i) IfVey,, and ij<m there exissw € y;; such that, V< W and for

k<m there exists A € A ¢ suchthat V<A.

Let yq < Ast(xa ,V/,J),fortheﬁlzzypoints X,,Yo. Fixiandj and let
1) i

m >max {i, j}. Now the fuzzy point x, is in only finitely many members of v, for

somen € N.

Therefore y, < st(xa ,Wm) = v{V: X, SVewy.,}

IA

Viw:x, V< V<wewid), by (ii)

st (X,, V)
Therefore, for each ij € N, y, < /\st(xa ’Wij) =y, < st (Xa"//u)-

Therefore by using (i) Gst(xa , y/u)= Ast (xa , l//iJ) < /n\st(xa,ﬂn)= Xoo

Therefore (¥;;)ijen is a Gg*- diagonal sequence for (X, F). Hence (X, F) has a

%

Gs*- diagonal.

2.3 Fuzzy wA-Spaces and Fuzzy Developable Spaces.

In this section we define fuzzy developable spaces, fuzzy wA-spaces

and find some relationship between them.
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Definition 2.3.1

Let (X, F) be a fuzzy topological space. A fuzzy point x,, ace (0,1] is
said to be a cluster point of the set {(x,)s : ne N}, where (X,), is a fuzzy set with
support x, and value o, if for each fuzzy set Ge F such that Xq < G, there exists

nee N with X0 #x and (Xno)a < G.
Definition 2.3.2

A fuzzy topological space (X, F) is called a fuzzy wA-space if there

exists sequence(Ay)of fuzzy open covers of X such that for each neN, fuzzy

points(Xp)q w1th support X,€ X and value @ and (Xn)x < St(Xq, An), set {(Xn)a: ne N}

has a cluster point.

Definition 2.3.3

A sequence (A,) of fuzzy open covers of (X, F) is a fuzzy devclopment

for X, if for a € (0, 1], a fuzzy point X, the set {st (Xo, An) : n € N} is a base at Xq.

A fuzzy topological space (X, F) i§ fuzzy developable if it has a fuzzy development.

Example 2.3.4

Consider X = R with usual topology T. Let F be the topology

generated by the set { ¥, | U open in the usual topology on R}.For each xe X,

1 1
X=—, X+—
noon

consider Z( ) and form
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A= { Z( m ) | xe X } .Then (A,) forms a sequence of fuzzy open covers of

X=—=, X+
n

(X, F). For a € (0, 1]; a fuzzy point Xg, st (Xe, An)=V { ApeAn |AX) 2> a }

-V b L a}
{Z[x_;‘”_) |Z(x_ ) )()

s
n n n

If G is an open fuzzy set in (X, F) and x, < G, then there exists U € T such

that X4 < ¥, <G .Now x€U so that there exists ne N such that (x - 2 , X+ EJ cU.
n n

Therefore x4 < )j( )S Xu < G. Hence the set {st (xo, An) : n € N} is a base

2 2
X==, X+—
n n

at x4 .Therefore (X,F) is a fuzzy developable space .

For a € (0, 1], if we choose fuzzy points(xn)e With (Xp)a < st(Xa, Ap),

then x, 1is a cluster point of the set {(x,) : ne N} . Therefore (X,F) is a fuzzy

wA-space .

Lemma 2.3.5 5

Let (X, F) be a fuzzy topblogical space. Suppose {U,} is a decreasing

sequence of fuzzy open sets such that AU, = AU_nand for a e (0,1], fuzzy

points (Xp)e With (Xp)a < Uy, implies ,the set {(xn). : n € N} has a cluster point.
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Then {U,} is a base for the fuzzy set AU_ . (That is for every open fuzzy set V

with AU_ <V, there exists some U, such that U, < V).

Proof

Suppose that {U,} satisfies the hypothesis of the lemma, but not the

conclusion. Then we can find a fuzzy open set V such that AU, <V and for each

n Jithere exists fuzzy points(xn)a With (Xn)a < Uy, but (Xn)a £ V . Since {Up} is

decreasing, any cluster point of {(X,), : n € N} must be in /n\ff: and/n\ U= "}ﬁ_n But
as A U, <V, this implies that the set { (x,)o :n € N} has no cluster point, which is a
contradiction. Thus for every open fuzzy set V with A U, <V, there exists U, such that
Un<V.

Theorem 2.3.6

A regular fuzzy topological space (X, F) is Fuzzy developable if and

only if it is a fuzzy wA -space with a Gs * - diagonal.

by

Proof

First suppose that (X, F) is a fuzzy developable space. Let (A,) be a

fuzzy development. Then fora € (0,1], a fuzzy point X, With (Xp)a < st (Xa» Hn)s

(3

the set {(Xn)a : n €N} has a cluster point Xa . This is because the set
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{st (Xo, Ay) : n € N} forma a base at x,, . Therefore if x, <G with G €F there exists

neN such that x, < st (Xq, An) <G . Hence (Xn)e < G . Therefore (X, F)is a

fuzzy wA - space. Also for x # y,ae (0,1], {y.}' is an open fuzzy set and X,

<{Ya}'- Therefore x4 < st (Xq, An) <{yo}' for some n. Hence yq % st (Xq, A,) for
some n. Since (X, F) is regular it follows that /\st(xa A “)= Xo. Therefore

(X, F) has a Gs* - diagonal .

Conversely assume that (X, F) is a fuzzy wA-space with a

Gs * - diagonal. Let (A,) be a sequence of fuzzy open covers of X such that, for
a € (0,1], a fuzzy point xq with (X3)s < st (Xq, An), the set {(Xn)o:n €N} hasa

cluster point and A st(x,,A,) = X, In lemma 2.3.5, take U, = st (xq, An). By

passing onto refinement, one can make {U,} decreasing. Therefore by lemma 2.3.5

{st (X0, An) :n € N} isabaseat X, . Thus (A,) is a fuzzy development for (X, F).

Hence (X, F) is fuzzy developable.

2.4 Fuzzy Moore Spaces

A topological space X is said to be subparacompact if for each open

cover U of X there exists a sequence ( \J/y) of open covers such that, for each

x € X, there exists n € N such that st (X, Wn) is contained in some members of U.

42



In this section we define fuzzy subparacompact spaces, fuzzy Moore spaces and

study their properties.

Definition 2.4.1

A fuzzy topological space (X,F) is said to be fuzzy subparacompact if
for every fuzzy open cover U of X, there exists a sequence (A,) of fuzzy open
covers of X such that for @ € (0,1], a fuzzy point of X, there exists n € N

such that st (xq, A,) < U, for some U, € U .

Remark 2.4.2
Every fuzzy subparacompact space is a fuzzy submetacompact space.

Proof

Let U be any fuzzy open cover of the fuzzy subparacompact space
(X, F). Then by the definition there exists a sequence (A,) of fuzzy open covers

of X such that for ¢ € (0,1}, a fuzzy point of x,, there exists n € N such that

st (Xq» Ap) < Uy for some Uy € U .Take Y, = { st (Xq, An) | xe X, @€ (0,1] }.
Then (y,) forms a sequence of opeg refinements of U such that for each fuzzy

point of Xg, there exists only one st (Xq, Ap) such that x4 < st (Xg, Hn) € Yh

Therefore (X,F) is a fuzzy submetacompact space .
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Definition 2.4.3

A fuzzy topological space (X, F) is said to be a fuzzy Moore space, if

itis regular and fuzzy developable.
Remark

By Theorem 2.3.6 it follows that (X, F) is a Moore spaceif and only if

it is a fuzzy wA -space with a Gs * - diagonal.

Example 2.4.4

In Example 2.3.4 {st (Xo, A,) : n € N} forms a base at x, . Let U be
any open cover of X. Then for fuzzy point x, there exists Ue U such that x, < U.

Then there exists ne N such that st (X, Ay) < U. Therefore (X, F) is fuzzy

subparacompact. Also (X, F) is regular and fuzzy developable . Therefore it follows
that (X, F) is a fuzzy Moore space.

Remark 2.4.5
Every fuzzy Moore space is & fuzzy subparacompact space.
Proof
Let (X, F) be a fuzzy Moore space. Let (A,) be a development for X

and let U be any open cover of (X,F). For a e (0,1], a fuzzy point of X,

{st (Xa, Ay) : n € N} forms a base at Xo. Therefore if x, < U withU € U
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there exists n € N with st (Xq, Ay) < U . Hence (X, F) is a fuzzy

subparacompact space.

Theorem 2.4.6

A regular fuzzy topological space (X, F) is a fuzzy Moore space if and

only if it is a fuzzy submetacompact, fuzzy wA- space with a Gs -diagonal.

Proof

First assume that (X, F) is a fuzzy Moore space. Then (X, F) is fuzzy
subparacompact [by remark 2.4.5]. Therefore (X, F) is fuzzy submetacomi)act [by
Remark 2.4.2]. Since (X, F) is fuzzy developable, by Theorem 2.3.6, it is a fuzzy
wA - space with a Gsg* - diagonal and hence a fuzzy wA - space with a

Gs - diagonal .

Conversely assume that (X, F) is a fuzzy submetacompact, fuzzy
wA-space with a Gs - diagonal. By Theorem 2.3.3, (X, F) has a Gs* -diagonal.
Therefore it follows that (X, F) is a fuzzy wA - space with a Gs*- diagonal and
hence fuzzy developable, by Theorem 2.3.6. Hence as (X, F) is regular, it is a

fuzzy Moore space.
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CHAPTER 3
FUZZY M-SPACES AND FUZZY METRIZABILITY

3.1 Introduction

The M-spaces, introduced by Morita, is one among those vital in the
theory of generalized metric spaces. This class is very much related to that of
metrizable spaces. In this chapter we introduce the fuzzy M- spaces, fuzzy quasi
perfect maps ‘and study their relationships to fuzzy wA-spaces and fuzzy
metrizable spaces. We prove that an induced fuzzy topological space is fuzzy

metrizable if it is a fuzzy M- spaces with a G; -diagonal.

3.2 Fuzzy M- spaces and Fuzzy quasi perfect maps

In this section we define fuzzy M-spaces, fuzzy quasi perfect maps

and study their relationships to fuzzy wA-spaces and fuzzy metrizable spaces.

5

Definition 3.2.1

A fuzzy topological space (X, F) is said to be weakly countably fuzzy

compact if each countable infinite set of fuzzy points clusters at come fuzzy point.
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Definition 3.2.2

Let (X, F,) and (Y, F,) be two fuzzy topological spaces. A mapping
f: X—>Y is called a fuzzy quasi perfect map if

(i) fis fuizy continuous
(i1) fis fuzzy closed

(iii) for each fuzzy point y, of Y, f - {ya} 1s weakly countably fuzzy compact.
Definition 3.2.3

A fuzzy topological space (X,F) is called a fuzzy M- space if there

exists a sequence(A,,) of fuzzy open covers of X such that

(1) for a €(0,1], if (x5), are fuzzy points with support x, and value o and

(Xn)a < st(Xq, Ap) for each ne N, then the set {(xn), : ne N} has a
cluster point

(i) each A,y star refines Aj,
Remark 3.2.4

LY

Every fuzzy M- space isa fuzzy wA-space.

Theorem 3.2.5

Fuzzy paracompact fuzzy wA-spaces are fuzzy M- spaces
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Proof

Let (X, F) be a fuzzy paracompact fuzzy wA-space .Then by the

definition of . fuzzy wA-space there exists a sequence (A,) be a sequence of

fuzzy open covers of X which satisfies condition (i) for a fuzzy M- space. Then

by the fuzzy paracompactness of (X, F), we can modify (A,) to satisfy (ii) also

[see proof of Theorem1.2.14, part (a)] . Thus (X, F) is a fuzzy M- space.

Theorem 3.2.6

Let (X, F)) and (Y, F,) be two fuzzy topological spaces with (Y, F;)
fuzzy metrizable. If f from (X, F,) onto (Y,F,) is a fuzzy quasi perfect map, then
(X, F)) is a fuzzy M- space.

Proof

Since (Y, F,) is fuzzy metrizable, (Y, L(F,)) where L(F,) is the weakest

topology which makes every members of F, lower semicontinuous is metrizable.

Therefore Y has a development (U,) such that, for each n , U+ istar refines U,

[see Theorem 0.5.3]. For each Ue Uy, define A, : Y —[0,1] by

1
— if yeU
Ay={n "7
1 if yeU

Thenﬂf{AU : U e U, } forms a fuzzy cover of (Y,F;) such that

Ansy star refines A, Now (B,) where B;={f"(A,) | A, € A,}, forms a
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sequence of fuzzy covers of (X, F,) such that B, star refines B, Fora € (0,1],

fuzzy point x, and fuzzy points(x,)s With (Xn)x < st(X,, B,) for each n, we show

that the set {(xn)a : ne N} has a cluster point . If there are infinitely many (Xq)q
with (xn)a < f™'(ya) where yo= f(xs), by weakly countably fuzzy compactness of

' {ya}, the set {(xn)o : n€e N} has a cluster point . Otherwise for each n, choose

(Xn)a With (X))o £ £ (Yo). Then f((xn)o) < st (f(Xa), An) = st(Ya, Ap), so that

f((x)a) = f(xo). Since fis fuzzy closed, it follows that the set {(Xxn), : ne N} has

a cluster point in £ {y,}. Therefore (X, F,) is a fuzzy M-space.

Theorem 3.2.7

If (X, F) is a stratified. fuzzy M-sj)ace, then there exists a fuzzy

metrizable space Y and a fuzzy quasi perfect map from X onto Y.

Proof

Let (X, F) be a stratified fuzzy M- space. Let (A,) be a sequence of

fuzzy open covers of X satisfying (i) and (ii) in the definition of fuzzy M- space.

Let T, = [F], be the set of suppdrts of crisp members of F. Consider G, =
{suppA; A € A,}. Then (G,) forms a sequence of open covers of (X, T,) such

that G+ star refines Gy, and if x, € st(x, G) foreachn € N, then (x,) has a

cluster point . Therefore (X, T,) is an M- space. Hence there exists a metrizable

space Y and a quasi perfect map f from X onto Y [see Theorem 0.5.9]. Let T be
G8SSS
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the metric topology on Y and let @ (T) be the generated fuzzy topology on Y.
Then (Y,w (T)) is fuzzy metrizable. We show that f :(X, F)— (Y, o (T)) is a

fuzzy quasi perfect map, which will complete the proof of the theorem.

(1) fis fuzzy continuous

Take Be @ (T). Then f*(B) (x) = B(f(x)). Therefore f*(B) =Bof, is
lower semicontinuous as f'is continu&us and B is lower semicontinuous. Therefore
f'(B) € F, since (X, F) is a stratified fuzzy topological space. Hence f is fuzzy

continuous.

(1)  fis fuzzy closed

Take Ae F and put B = f(A). Then for a € (0,1), as f is onto,

B¥={ye Y|B@y)<a}

{yeY|Vv{AX):x e X, f(x)=y }<a}

{fx)eY|ARx)<a}

{f(x) eY | xeAl?}

fal?).

Since A is lower semicontinuous, by Theorem 0.3.6, Al is closed in
(X, T)). Since fis closed B®) = f{A™) is closed in Y. Therefore B € @(T) again by
Theorem 0.3.6. Since f is onto, f (A') = f(A)' = B' is closed in
(Y, @(T)). Therefore fis fuzzy closed.

(iii) f'{ys} is weakly countably fuzzy compact for each fuzzy point y, in Y.
Let (Xn)a < f™ {yq for eachneN

(xn)a < f ({Yu}) = (xn)a(xn) < £ ({Ya}) (%) = Ya (f(xn))
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= y=f(xa) = x€ ().

Since f is quasi perfect, "' {y} is countably compact. Therefore (x)
has a cluster point, say x . Then the fuzzy point x, is a cluster point of the set

{(Xn)o : ne N}. Hence the theorem.
Remark 3.2.8

From Theorem 3.2.6 and Theorem 3.2.7 it follows that a stratified
fuzzy topological space (X, F) is a fuzzy M-space if and only if there exists a

fuzzy metrizable space Y and a fuzzy quasi perfect map from X onto Y.

3.3 Fuzzy M-spaces and Fuzzy metrizability

In this section we prove some connection between fuzzy M-spaces

and fuzzy metrizable spaces.

Theorem 3.3.1

An induced fuzzy topological space is fuzzy metrizable if it is a fuzzy

M- space with a Gs-diagonal

Proof

Let (X, F) be an induced fuzzy M-space with a Gs-diagonal. Then by
Theorem 3.2.7, there exists a fuzzy metrizable space Y and a fuzzy quasi perfect
map f from X onto Y. Then if Fy is the fuzzy topology on Y, the fuzzy quotient
space with res‘pect to f, (Y, F/f) = (Y, Fy). Since (X, F) is induced by
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Theorem 0.3.3, (Y, Fy) is also induced. Therefore (Y, Ty), where Ty = [Fy], is a
metrizable space. Take [F] = Tx. We prove that f from (X,Tx) onto (Y,Ty) is a

quasi perfect map.

(1) f is continuous

Let VeTy, then (v € Fy. Since f is fuzzy continuous, f "(Xv) € F. Now

£ (Xv) = Yv (f) . Therefore x € Supp(f™'(Yv)) & Yv(f(x))>0
o f(x)eV
o xef'(V)

Hence f'(V).e Tx sothat f is continuous.

(i) f is closed

Let A be a closed set in (X, Tx). Then Y a'€F where Y A' denotes the
compliment of Y a. Therefore ¥4 is a closed fuzzy set in (X, F). Since f is fuzzy

closed, f((a) is a closed fuzzy set in Fy. Therefore supp f((4) is a closed set in
(Y,Ty).
yesuppfixs) < {20
o v{ax)|xeX, f(x)=y}20, (since f is onto)

o xeAand fx)=y
< ye f(A)

Hence f(A)=supp f () is closed in (Y, Ty). Therefore fis a closed map.

(iii) f'{y} is countably compact for each yeY .
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Lety € Y and x, € f(y) forneN.
ForeachneN,x, ef'(y) = y=f(xn)
= (Xn)a®Xn) £ Yo (fixn)) for a € (0,1].

= (Xn)oS Yo () = (Xn)a S £ {ya}.

Since f™' {y,} is weakly countably fuzzy compact, the set {(x,), : ne N}

has a cluster point, say X, and xq < f™' {y4}. Therefore (x,) has a cluster point at x.

Thus f from (X, Tx) onto (Y, Ty) is a quasi perfect map with (Y, Ty) metrizable.

Let (A,) be a Gs-diagonal sequence for (X, F) Then for each A, € A,

define G, by G, = U A, (@, 1] . Then (G,) where G, € G, . forms a

ae(0,1]

Gs-diagonal sequence for (X, Tx) .Therefore (X, Tx) is compact [see Theorem 0.5.6].
Hence f is a perfect mapping. Therefore (X, Tx) is paracompact and hence

metrizable [seeTheorem0.5.7] Therefore (X, F) is a fuzzy metrizable space.
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CHAPTER 4
FUZZY P- SPACES

4.1 Introduction

The class of ‘p- spaces’ generalizes both metrizable spaces and
compact spaces. Various theorems which hold for both metrizable spaces and
compact spaces can often be generalized and hence unified by showing that they
hold for p- spaces . The concept of ‘p.- spaces’ due to Arhangelskii is in terms of a
sequence of open covers in some compactification of the space rather than the
space itself (for details, cf{GG] ) . In this chapter we define fuzzy p-spaces, strict

fuzzy p-spaces and prove some characterizations of both of these spaces. We refer

[MH,] for fuzzy Stone- é‘ ech compactification. We also define fuzzy k-spaces and
establish some relation between fuzzy p- spaces and fuzzy k-spaces . We say that
a fuzzy topological space( X, F) is completely regular if the topological space
(X,c(F)) is completely regular, where ((F) is the weakest topology on X which
makes every member of F lower semicontinuous function from(X,c(F))—[0,1].
All the fuzzy topological spaces - considered in this chapter are assumed to be

completely regular .

4.2 Fuzzy P- Spaces

Definition 4.2.1(Fuzzy compactification) [MH;]

Let (X, F) be a fuzzy topological space. Let (BX, T) be any compact

topological space which contains (X, c(F)) as a dense subspace. Then Fr, the set of
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all lower semicontinuous mappings g : (BX, T) — [0, 1] such that g ¥ v €F isa

fuzzy topology on BX and (BX, Fr) is fuzzy compact.

If (BX, T) is the Stone—é‘ ech compactification of (X,.(F)) then

(BX, Fr) is the fuzzy Stone- é‘ ech compactification of (X, F).

Definition 4.2.2

A completely regular fuzzy topological space (X, F) is called a fuzzy

p- space if there exists a sequence (B,) of families of fuzzy open sets on (BX, Fr)

such that

1) fi hn,(_ v. B)> .
(1) foreac n(BeB ) y

n

(i) foreachx eX, a €(0,1], g\st(xa,Bn) <X, If we also have
(iii) for x € X, & € (0, 1], Ast (xa. B,) = st (xg,8,) , then (X, F) is
said to be a strict fuzzy p- space.

Theorem 4.2.3

A fuzzy topological space (X, F) is a strict fuzzy p-space if and only if

there exists a sequence (A,) of fuzzy open covers of (X, F) such that for each

xeX, a e (0,1]

(@) Cxa= Ast (xq » Ap) is fuzzy compact.
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() {st(x,,Ap) :n e N} forms a base for Cx, .(That is if Cx4 < G € F,

there exists some n, such that st(xq, Ans) <G).

Proof

(Necessity)

First suppose that (X, F) is a strict fuzzy p- space. Then there exists a

sequence (8B,) of families of fuzzy open sets on (BX, Fr) which satisfies (i), (ii)
and (iii) in the definition of a strict fuzzy p-space. We can assume that B,

refines B, . For if (By)’s are not so, then (B,") where B,' ={ A Bi|Bie 8}

isn

will do so.

For each B, € B, choose A, € F such that A, = B, X and denote

such collection of A, by A, By (i) (A, forms a sequence of fuzzy open

covers of (X, F). By (iii) Qst (xa , $n ) =A st‘(xa,ﬂn) is closed in (BX, Fr)

n

»

and hence fuzzy compact. Therefore Cxq =Ast (Xa > AL)= ﬁst(xa,ﬂn) 1s

fuzzy compact in (X, F), since (BX, Fr) is the fuzzy Stone- C ech compactification

of (X, F). This proves (a). Also as B+ refines B, , we have A+ refines A,.

Take U, = st (x, , A ;). Now AU, = AU, and as Cxq = A Uy is fuzzy

compact, {(Xn)o : n €N }has a cluster point, where(x,), are the fuzzy points with
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support X, , value @ and (x;)q < U,. Therefore b'y iemma 2.3.5, {U,} is a base for

the fuzzy set ﬁUn- That is {st(xa ,ﬂn): n € N } is a base for Cx, . This

proves (b).
(Sufficiency)

Conversely assume that (A,) is a sequence of open covers of (X, F)
satisfying (a) and (b). For each A,e A, we can find a Ba,eFr and can form (B,)
in the following way.
For each ae (0,1], take y = A,!'l (a, 1] €L(F). Let V, = BX-E)I{ (X-V)-
* *
Then V, e T and V, =V, X. Define Ba, : BX — [0, 1] by Bas(x) =

*
sup{a:x €V, }. Then for xeX, Ban(x)=sup{a:x € Y } = An(x). Therefore

Ban e A, Now we show that Bas’s are lower semicontinuous. Take

b € [0,1]. Let.G =Ba, " (b,1].
Then xeG = Ba(x)>b

= Ban(x)> a >b for somea €(0,1)

= xe V,cBa'(b1]1=G.
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Therefore G € T . Hence By, is lower semicontinuous. That is Ba, € Fr. Take

Bo={ Ban| Ay € A,}. Then (B,) forms a sequence of families of open fuzzy sets

on (BX, Fr) which satisfies condition (i) of a fuzzy p-space.

An (x) for x e X

* *
For each A, e A, , define An as An(x) = {
- 0 for xe BX-X

*

Denote a\st(xa , .ﬂn) as Cxq where A, ={A, | AgeA, }.

* —_—
We show that C x, =Ast (xa , Bn ) =A st (xq»B,) - This gives conditions (ii)

and (iii) for strict fuzzy p- space.

*

Now CXa=/n\St(xa , ﬂnjs Ast (xa, B )S A st (xq»Bq) ()

n

*

since cach Be B, is such that B y = AeA, Suppose that A st (xq>B4) £ Cxa

. . *
. Then there exists some y e BX with (n st (x¢»Bn) X0 >Cxa (). Let
Y= (a st (xq>Bn) Xy . Therefore y, < A st (xq>B,) but y, £Cxq. Since

*
Cxq is fuzzy compact Cx, is also fuzzy compact. Therefore there exists some open

—_ *
fuzzy set W on (BX, Fr) such that y, < W and WA Cx, = 0 . Also as the

*

{st(xa ,ﬂn).: ne N } forms a base for Cx, , {st(xa ,ﬂnj :ne N } forms a base
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* * _—
for C x, . Therefore there exists some m € N such that st(xa ,..?lm) A W =0 Hence

st(xa..?{*m) AW =0 . In particular st(xa ’Bm ’/\W=(_). Thisisa contradiction as

WA st(xg,8,) .Thus(“lx(}l 2 st (xg,8,) = ).

n

* *
From (1) and (2) Cxq =ﬁst(xa , .ﬂn)= Ast (xa, B )=
A st (xq>Bn) -Therefore (X, F) is a strict fuzzy p- space.

Corollary 4.2.4
Every fuzzy Moore space is a strict fuzzy p- space.

Proof

Let (X, F) be a fuzzy Moore space. Let (A,) be a fuzzy development

for (X, F). Therefore for @ € (0, 1], a fuzzy point x,, {st(xa ,ﬂn): n € N}

forms abase for x,. Let {B;|i € I} ,where I is an index set, be an open cover for

Cxy = Ast (xq »Ay) . Then there exists some Bj, such that xo < B . Since
{st(xa ,.?In): n € N} is a base at x, , there exists meN such that x, <

st(xa R ﬂm ) < Bj. Hence Cxy < Bj,, so that Cka is fuzzy compact.

For any fuzzy open set G with Cx, < G, we can also have x4 < G.

Therefore there exists ng such that xo < st(xa , ﬂno ) <G. Hence
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{st(xa ,ﬂn) :n € N} is a base for Cx,. Thus (X, F) satisfies conditions (a) and
(b) of theorem 4.2.3. Thus (X, F) is a strict fuzzy p- space.
Corollary 4.2.5

Every strict fuzzy p- space is a fuzzy wA-space.

Proof

Assume that (X, F) is a strict fuzzy p- space. Then by theorem4.2.3,
there exists a (A,) a fuzzy open covers of X such that {st(x a ,5‘[“ ): n € N}
forms a base for Cxq =Ast (xq » Ap)and Cxq is fuzzy compact. Therefore if
we choose fuzzy points (Xp)e With (Xp)a 5st(xa ,ﬂn), {Xn)« : n €N }has a
cluster point in Cx, . Thus (X, F) is a fuzzy wA-space.
Theorem 4.2.6

Every regular fuzzy submetacompact, fuzzy p-space is a strict

fuzzy p- space.

Proof

Let (X, F) be a regular fuzzy submetacompact space which is also a

fuzzy p-space: Let (B,) be a sequence of families of fuzzy open subsets on

(BX, Fr) which satisfies conditions (i) and (ii) for the fuzzy p-space. For each B,

e B, choose A, € F such that A, = B, X, and form A,. Then (A,) forms a
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sequence of fuzzy open covers of X. Consider A;. By the fuzzy sub

metacompactness of X , A, has a sequence of open refinements, say (Uin) nens

such that for a fuzzy point x, , there exists ne N such that x, < Uj, € U, holds
only for finitely many elements of U,. Let U, be one such open refinement

corresponding to the fuzzy point x,. By regularity of X , for each U/}, we can find

an open refinement, say Ay, , such that, for x, < Uj, € U, there exists A,

eAnn with x4 < A, < X,— < Uln . Similarly for A, by fuzzy

n

submetacompactness, there exists (Ua,) nen and by regularly each U, has a

refinement®B,;, . Then take (Azn) nen as follows

Am=Bu AA1={BAU/B e By, U eA 11} . For As, by fuzzy
submetacompactness , there exists a sequence of open refinements (Zsn)nen and

by regularly each %3, has an open refinement $B;, . Take (Asn) nen as follows

"

Asn = BsnA AnAARAANAA .

Repeating this process for each m, we have a sequence (Amn) nen Of

fuzzy open covers of X such that
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(@) (HAmn) nen is a refinement of each A;; such that i <m, j <m and for every

fuzzy point X, , there exists ne N such that x, is in only finitely many

members of A,

(b) IfVe Ann and i, j <m ,there exists w € A;; such that V< W and for

k<m there exists A € Ak such that V <A

Let yo < Ast(xa,ﬂ, ) JFix iandjand let m>max {i, j}. Then
ij b

there exists n € N such that X, is in only finitely many members of Amn

VAV i X<V € Ann}

Thatis y, < st(xa.ﬂ )
m,n

V{W:xeSVSV <wedA;), by (b)

IN

st (XanHij)

Therefore for each IJ eN /\st(xa.ﬂ, j) =/\st(x WA ‘)s /\st(xa,ﬂn).
ij G 1 a i, ] n

ij
Corresponding to each A;j € A, we can find a By € Fr such that A;; =

Baij }, and can form Bij. Thatis Bij= { Baij | Aij e A} Now

A st (xg,By) =A st (xa,BiJ) =4st(xa , .;Ii‘j)

n ! iy ]
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ol * A fi X
< Ast(xa , ﬂn)S/\st (xa, B ) where A, (x) = (1) for xe
n n n 0 for xe X-X

and fin = {A‘n | ApeA, }.Therefore Ast (xa, Bn) =A m . That
is (X, F) is a strict fuzzy p- space .
Theorem 4.2.7

Every regular fuzzy paracompact, fuzzy p-space is a fuzzy M-space.

Proof

Let (X, F) be a regular fuzzy paracompact space, which is also a fuzzy
p- space. Since every fuzzy paracompact space is a fuzzy subparacompact space

and hence submetacompact space, it follows from theorem 4.2.6 that (X, F) is a
strict fuzzy p- space. Hence by corollary 4.2.5, (X, F) is a fuzzy w A- space. Also

fuzzy paracompact, fuzzy wA- spaces are fuzzy M-spaces, since using fuzzy

paracompactness one can modify (A,) such that Ay star refines A, Thus

(X, F) is a fuzzy M-space.

4.3 Fuzzy P-Spaces and Fuzzy K-Spaces.

In this section we prove some characterizations for fuzzy p-spaces and

prove some relationship between fuzzy p-spaces and fuzzy k-spaces.
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Theorem 4.3.1

A fuzzy topological space (X, F) is a fuzzy p-space if and only if there

exists a sequence (A,) of fuzzy open covers of (X, F) satisfying the following

conditions. If for each n, fuzzy point x, with support xe X, value a €(0,1] and

Xe SASA,

(@ A A:n is fuzzy compact

(b) { A A; | neN} is an outer network for the fuzzy setA A, That is for every

isn

fuzzy open set G with A A:n < G, there exists some A A, with A A <G)

isn isn
Proof

(Necessity)

Assume that (X, F) is a fuzzy p-space. Let (B,) be a sequence of fuzzy

open sets in (BX, Fr) which satisfies (i) and(ii) in the definition of fuzzy p-space.

N

Then we can choose a sequence (Aj,) of fuzzy open covers of (X,F) such that

A (x) forxeX

{A; |A eA,} refines B, where A, (x)= {0 for xc AX-X
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Let {G;} be a fuzzy open cover of A A, .For each G;, choose H; € Fr

such that Gi= H; Zx . Now these Hi’s forms a fuzzy open cover of A E and

hence possesses a finite subfamily which cover A E .The corresponding G;'s

then form a subfamily of {G;}which cover A A—n. Therefore A A-n 1s fuzzy

compact , which proves (a) .

Let G be any fuzzy open set in (X, F) with A A_n <G . Suppose that
foreachn, A Ki * G. Take K= A /_\i . For each n, choose x,€ X such that K,(x,) >
isn isnh
G(xs). Let a,= Kn(x,). Then the fuzzy points (Xn)on , Where (Xn)an is a fuzzy point

with support x, and value «,, are such that (X,)en< K, and (Xp)an % G . Since

sequence (Ky) is decreasing, the set of fuzzy points {(X;)an : €N} has a cluster

point, say Xq. NowG\ K.= A A, which is fuzzy compact, so that x, < A K,. That

1S X < A A, <G, which is a contradiction to the choice of (Xn)an. Thus for some n,

A 1_\i < G, which proves (b).

isn
(Sufficiency)

Assume that there exists a sequence (A,) of fuzzy open covers of

(X, F) with satisfies (a) and (b).Let A, e A, . Then for each a € [0,1],
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Al (a,1] € (), Take U = Ar'(@,1]. Then U, o , c X and let U’ 4 =

BX-cl (X-Ug). Now U''w e T, where (BX , T) is the Stone-Cech

compactification of (X,c(F)) and Ug=U'q, M X . Define Ba, : PX — [0, 1] by
Ban(x) ssup{@: x €U’ }. Then for xe X, Ban(x) =sup{a:x € Uia } = An(X).

Therefore Ba, y A,. Now Ba,’s are lower semicontinuous [see sufficiency
part of theorem 4.2.3] .That is Ba, € Fr. Take B,= { Bas] An € A,}. Then (B,)

forms a sequence of families of fuzzy open sets on (X, Fr) which satisfies

condition (i) for a fuzzy p- space.

Now we show that A st (Xq ,By) < P for every fuzzy point x, with

support x € X and value a € (0,1] .For A, € A, we have A:; < Ban Where

A = A (x) forxeX
n 9 0 for xe fX-X

Letxa <An< Ap. Then A A < Ast (%, Bn) (1)

Now suppose that;l\ st (X« ,Bn) % A A; .Then there exists some y
€BX such that Ast (Xa ,Bo)y) >A A:, (y) . Let Ast (X« ,Bn) =¥ . Therefore y, <

A st (Xq ,Bn) , but y, % A A; .Sinceé\ A:l is fuzzy compact ,there exists a fuzzy
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open set W in BX with y, < W and WA(Q Ay ) = 0. Therefore WA(-?n A)

0 —(2) by (b) . We claim that WA( A st(xa,A;)) =0 where A,
{A] |AieA;}. Forif {W/\(./S\n st(xe, A, )) }@ > 0 ,then W (z) > 0 and
(-?n st(xe, A, ) (z) > 0 Hence st(xq, A, ) ) > 0 forall i = 1.2, ...... n.

Therefore we can choose K: e A i* with K: (>0 foralli=1,2,...... n, which

is a contradiction to equation (2). Thus —W-/\(_/\n st(xq, A i* )) = 0. In particular
. 1S -

WA ({1\ st(x, A ;) = 0. Therefore W /\(4\\ st (Xa ,Bn)) = 0. Therefore

Yy EAst (Xa ,Bn) ,which is a contradiction .

Hence{]\ A:, > A st (Xa ,Bn) = (3) .Thus from (1) and (3)it follows that A A; =

A st (Xq ,Bn) . Forxe X, A:, (x) = Ap(x) and A A_n is fuzzy compact . Therefore it

follows that A st (Xo ,Bn) < X which is condition (ii) for a fuzzy p- space-.
Hence (X, F)isa fuzzy p- space.

Definition 4.3.2

A fuzzy topological space (X, F) is called a fuzzy k- space if the fuzzy set
A is closed in (X, F) whenever (A AK)/Y :Y —[0,1] is a closed fuzzy set in (Y. ,Fy) ,

where Y =supp K and Fy= { A/Y|Ae F }, for each compact fuzzy set K.
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Theorem 3.3
Every regular fuzzy p- space is a fuzzy k- space.
Proof

Let (X, F) be a fuzzy p-space. Let A be not a closed fuzzy set on (X, F).

We find a compact fuzzy set K in X suchthat (A AK)/Y isnot aclosed fuzzy set on

(Y,Fy) . By theorem 4.3.1 there exists a (A,) of fuzzy open covers of (X, F) such

that for each n, fuzzy point x, with support xe X valuea €(0,1] and x, <A, <A,

(a) A A-n is fuzzy compact. (b) { AA; | neN} is an outer network for the fuzzy set

isn

ANA,.

n

Let ye support of (A) — support of (A) and @ €(0,1] . For each n,

choose a fuzzy point y, and a fuzzy open set G, with y,<G, and A, € A, such

that y4<Gpn <G,,, <G, < isAnAisiﬁ\nKi' Then AGn = A G, < A Ay . By (2)
A @n is fuzzy compact and hence{]\ G, is fuzzy compact . If (x,)q denote a fuzzy
point with support x;, and value a and (X,). <G, ,then by (b), {(xn)a :neN } has

a cluster point . This is because for every fuzzy open set W with A A_n < W there

exists some neN with A A, < W. Therefore all but finitely many fuzzy points of
isn

(Xn)a are such'that (x,)o £ W . Hence some point of A A, must be a cluster point.
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Hence by lemma 2.3.5, { G, | neN } is a base for the fuzzy compact set

K= A Gy, . If (A AK)/Y is not a closed fuzzy set on (Y, Fy), then the proof is over.

Suppose that (A AK)/Y is a closed fuzzy set on (Y,Fy) .Then there
exists a closed fuzzy set B on (X,F) such that(A AK)/Y =B/Y . Denote B as (A AK)
Let ( H,) be a sequence of fuzzy open sets such that y,< H, foralln and H ,, <

n+l

Hy and HoA(A AK) = 0. Then as above we can show that {GwAH,|neN}isa

base for the fuzzy compact set K'= /'}( GuA Hp). Also K'A A = 0 . Choose

fuzzy point (Xp)o With (Xn)e < GoA Hy A A, Let K” = K'v {(Xn)a | neN}. Then
we show that K" is fuzzy compact and K”"A A is not a closed fuzzy set on
(X,F), so that (K”A A )/Y is not a closed fuzzy set on (Y, Fy) , which will

complete the proof .

Now GpA Hj A A is decreasing and since K'= {1\( Gh A Hy) is fuzzy
compact , {(x.,)a| nehN} has a cluster point x, such that x,<K'. Therefore any
fuzzy open cover of K" contains a finite sub cover of the compact fuzzy set K’
and at least one member in the sub cbver, say G, is such that x4 < G .Therefore

all but finitely many (x,)q are such that (x,)q < G . Hence the finite sub cover of
K’ together with fuzzy open set corresponding to those finitely many (x,)a ¥ G,
forms a finite sub cover of the original cover of K" .Hence K" is fuzzy compact-

But K”A A is not a closed fuzzy set on (X, F), since the cluster point x, of

{(Xn)o | neN} is such that x,< K’ and K’ A A = 0 . Hence the theorem.
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CHAPTER 5
FUZZY o- SPACES AND FUZZY METRIZABILITY

5.1 Introduction

The concept of a network is one of the most useful tools in the theory
of generalized metric space. The o -spaces is a class of generalized metric space
having a network. Okuyama[referGG]defined these class of spaces as spaces
having a o -discrete network. In this chapter we introduce the fuzzy analogue of
o -spaces and investigate some of its properties. Also we study the relationship
between fuzzyo -spaces, fuzzy Moore spaces ,fuzzy p- spaces, fuzzy M-spaces

and fuzzy metrizable spaces.

5.2 Fuzzy o -spaces

A net work for a topological space is like a base , but its elements are not required
to be open. In this section we define fuzzy network , fuzzyo -spaces and study

the properties of fuzzyo -spaces .

Some results mentioned in this chapter are published in the paper titled ‘Fuzzy o-Spaces and Fuzzy
Moore Spaces’, in the proceedings of the Annual Conference of the Kerala Mathematical
Association’ and ‘the National Seminar on Mathematical Modelling’,at Beseluis College,

Kottayamn (2002)
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Definition 5.2.1

A fuzzy network for a fuzzy topological space (X, F) is a collection

C of fuzzy sets on X such that whenever x, is a fuzzy point and G is a

fuzzy open set with x, <G, there exists an element Ce C withx,<C <G.

Remark 5.2.2

For a regular fuzzy topological space, the set of closures of the

elements of a fuzzy network is also ? fuzzy network.
Example 5.2.3

Consider X =R with usual topology T.Let F be the set of all lower
semicontinuos mappings from (X, T) — [0,1].For each x €X, define

fun: X —>[0,1] by

Let Cp = { fin:x €X } .Then for eachn, C, forms a fuzzy network for (X, F).

Definition 5.2.4

A collection A of fuzzy sets on a fuzzy topological space (X, F) is

said to be discrete if. for every fuzzy point x, in X, there is a GeF with x, <G
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and G AA# 0 holds for at most one element A of A. If A = Oﬂn , where

n=|

each A, is discrete, then A is said to be a o -discrete collection.

Definition 5.2.5

A fuzzy topological space (X, F) is a fuzzy o -space if X has a

o -discrete fuzzy network.
Theorem 5.2.6
A regular fuzzy o -space is a fuzzy subparacompact space.

Proof

Let (X, F) be a regular fuzzy o -space. Let C be a closed o -discrete

fuzzy network for (X, F). Therefore C = U Cn where C,, is discrete. Let U be a
n=i

fuzzy open cover of (X, F) and let E, =v {C; | Cie C, }. Since (X, F) is regular
and C, is a closed discrete network, for each C,eC, we can choose Ug,e U such

that C,< Uc,. Take Ac,= A { UcAc] |c] €Cp} where c]denote the compliment
’ %N

of ¢; and An= { Ac | CeCr }|J {U AE, | UeU} where E, denote the
compliment of E;.Then (A,) forms a sequence of fuzzy open covers of (X,F). For

a fuzzy point x,, there exists at most one C, such that x, < C, < U for some UelU.
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Therefore for each n, st (xo,A,) < U for some UeU. Hence (X, F) is a fuzzy

subparacompact space.
Theorem 5.2.7

Every closed fuzzy set in a fuzzy o -space is a Gs-set.

Proof

Let A be a closed fuzzy set on a fuzzy o -space (X, F). Let

C= U (;1 be a o -discrete closed fuzzy network of (X, F) [see Remark 5.2.2]. For

n=1

¢ € Cy, let ¢’ denotes its complement. Let G, = A {c’' : ¢ € Chand c AA=0}.

Then A= A Gi. Therefore A is a Gs-set.

Theorem 5.2.8

Let (X, F) be a Hausdorff fuzzy topological space. If (X, F) is a

regular fuzzy o -space, then it has a Gs *-diagonal.

Proof

Let (X, F) be a regular fuzzy o -space. Let C =U6;1 be a o - discrete

n=]

closed fuzzy network of (X, F). If F, denote the fuzzy product topology, then

for X4 Fp), GCp= Ucnp where Cp, ={Cix¢C: C, C e Cn} and
n=1
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(Ci x G) (xy) =min { G (x), Ci(y) }, forms a o -discrete closed fuzzy network.

Therefore (XZ,'Fp) is also a fuzzy o -space.

Now by Theorem 0.2.12, the diagonal A is a closed fuzzy set on
(XZ,FP). Therefore by, Theorem 5.2.7, A is a Gg-set. Thus (X, F) has a
Gs -diagonal. Also by Theorem 5.2.6, (X, F) is a fuzzy subparacompact space.
Therefore (X, F) is a fuzzy submetacompact space [see Remark 2.4.2]. Since

(X, F) is regular it follows from Theorem 2.2.3 that (X, F) has a G;*-diagonal.

5.3 Fuzzy o-spaces, Fuzzy Moore spaces and Fuzzy Metrizability.

In this section we study the relation between fuzzy o -space, fuzzy

WA- spaces, fuzzy p- spaces ,fuzzy M- saces and fuzzy metrizable spaces.

Theorem 5.3.1

A regular fuzzy topological space is a fuzzy Moore space if and only

if it is a fuzzy o -space and a fuzzy wA- space with a Gs-diagonal.
Proof

Let (X, F) be a fuzzy Moore space. Then (X, F) is a fuzzy

subparacompact space [see Remark 2.4.5]. Let U be a fuzzy open cover of
(X, F) and let (A,) be a sequence of fuzzy open covers of (X, F) such that for

a € (0,1], a fuzzy point of X4, there exists n € N such that st (Xo,Ay) < Uy
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for some U, € U. Let Cy= { st (Xa,Ar) | x € X, @€ (0,1]}. Then each C,

<]
is discrete and UC is a o -discrete refinement of U. Hence each cover of
n=i

(X, F) has a o -discrete refinement. Let (B,) be a fuzzy development of (X, F).

Now each B, has a o -discrete refinement, say D,. Then D =(JD is a

o -discrete fuzzy network for (X, F).That is (X, F) is a fuzzy o -space. Also by

Theorem 2.4.6 (X, F) is a fuzzy wA- space, with a Gs-diagonal.

Conversely assume that (X, F) is a fuzzy o -space and a fuzzy
wA- space with a G; -diagonal. Since (X, F) is a regular fuzzy o -space it is a
fuzzy sub paracompact space[by Theorem 5.2.6] and hence a fuzzy sub
metacompact space [by Remark2.4.2]. Hence by theorem 2.4.6, (X, F) is a fuzzy

Moore space.
Theorem 5.3.2

Let (X, F) be a Hausdorff, regular fuzzy topological space. Then (X, F)
is a fuzzy Moore space if and only if (X, F) is a fuzzy o - space and a fuzzy

p-space.
Proof

Let (X, F) be a fuzzy Moore space. Then by Corollary 4.2.4, it is a
strict fuzzy p- space and hence a fuzzy p-space. Also by Theorem 5.3.1 (X, F)is

a fuzzy o -space.
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Conversely assume that (X, F) be a fuzzy o -space and a fuzzy
p-space. Since (X, F) is a fuzzy o -space, by Theorem 5.2.6, (X, F) is a fuzzy
subparacompact space and hence a fuzzy submetacompact space. By Theorem
5.2.8, (X, F) has a G; -diagonal. In a regular fuzzy submetacompact space, every
fuzzy p- space is a strict fuzzy p- space and hence a fuzzy wA-space [see
Corollary 4.2.5]. Thus (X, F) is a fuzzy submetacompact, fuzzy wA- space with a

Gs -diagonal and hence a fuzzy Moore space by Theorem 2.4.6.
Theorem 5.3.3

Let (X, F) be an induced regular fuzzy topological space. If (X, F) is a

Hausdorff fuzzy o -space and a fuzzy M-space, then it is fuzzy metrizable.
Proof

Let (X, F) be a Hausdorff fuzzy o -space and a fuzzy M-space. Then
by Theorem 5.2.8, (X, F) has a G; *-diagonal and hence a G -diagonal. Since
(X, F) is a fuzzy M-space, it follows from Theorem 3.3.1, that (X, F) is fuzzy

metrizable. Hence the theorem.
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