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The paper summarizes the design and implementation of a quadratic edge detection filter based on
Volterra series. The filter is employed in an unsharp masking scheme for enhancing fingerprints in a dark
and noisy background. The proposed filter can account for much of the polynomial nonlinearities
inherent in the input image and can replace the conventional edge detectors like Laplacian, LoG, etc. The
application of the new filter is in forensic investigation where enhancement and identification of latent
fingerprints are key issues. The enhancement of images by the proposed method is superior to that with
unsharp masking scheme employing conventional filters in terms of the visual quality, the noise
performance and the computational complexity, making it an ideal candidate for latent fingerprint
enhancement.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

As crime rate increases steadily, fingerprint enhancement and
consequent identification always remain key areas of research.
Fingerprint is the impression left on a surface by the friction
caused by the ridges on a finger or any part of hand and is a unique
biometric identifier. The print is composed of dark ridges and light
valleys [1,2]. Identification of fingerprints [3–5] is a key process in
access control and in forensic sciences. In the former case, the
fingerprints are less noisy and do not require much preprocessing.
But the prints taken from crime scenes are blurred and noisy and
so require enhancement of ridges to ease identification. The ridges
in fingerprints carry significant amount of biometric information
and they can be enhanced by improving the edge features of the
image. Edges in images are formed by discontinuities in spatial,
geometrical or photometric properties of objects [6]. Although
edges are formed by high frequency components, simple high pass
filtering does not suffice in detecting and improving edges as it
blurs the image. Segmentation of images is done based on texture
[7–9] and mathematical morphology [10,11]. Generally, edges are
detected by the computation of the derivative of the image. This
computation is very noise sensitive as noise appears as false edges
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in an image. So the chief performance criterion of an edge detector
becomes the invulnerability to noise. The gradient based edge
detectors [6,12] in the linear domain are
1.
 Laplace filter

2.
 Sobel filter

3.
 Laplacian of Gaussian (LoG)

4.
 Canny filter
Although Sobel filter has the advantage in speed, it suffers from
lack of edge resolution. The Laplace filter and Canny filter have
reasonably good edge resolution but are highly susceptible to
noise. LoG filter had good resolution of edges as well as moderate
noise invulnerability. But even the LoG does not suffice to enhance
edges in images mixed with noise. Under such conditions, poly-
nomial filters [13] perform better in detecting edges with high
enough resolution. Images are formed by nonlinear processes and
human vision is inherently nonlinear. So employing polynomial
methods for image processing and analysis become a natural
alternative. Much of the nonlinearities can be modeled by the
quadratic term alone and hence the efforts in the design and
implementation of quadratic filters. The present work proposes a
quadratic filter based on Volterra series for enhancing noisy
fingerprints. Although the idea of modeling nonlinearities by
power series was proposed a century back by Vito Volterra, the
practical applications were hampered by the large computational
complexity. Recently, with increase in computational resources,
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interest is renewed in developing Volterra systems for signal and
image processing with consequent enhancement of features that is
otherwise not achievable with linear filters.
2. Literature survey

Fingerprint preprocessing falls into two categories, the spatial
domain filtering techniques and the transform domain techniques,
the latter type being more popular. The second category mostly
uses Gabor filters [14,15] for fingerprint classification and
enhancement. Directional Fourier filtering has been proposed
[16] for automatic fingerprint identification system. In the spatial
filtering domain, directional median filter [17] is used for finger-
print enhancement. Use of quadratic filters based on Volterra
series, which current work is relied on, for fingerprint preproces-
sing has not been reported.

The theory of Volterra functionals was developed by Vito
Volterra to model nonlinear systems as parallel combinations of
linear and polynomial systems of increasing order, in the year
1887. Weiner applied Volterra series to Brownian motion [18] to
develop analytic functionals. The work in polynomial systems was
relegated for a long time because of the lack of resources to handle
the increased computational complexity. Towards the end of 1980s
work in implementation of polynomial systems was revived with
the help of increased computational resources. Inherent nonlinea-
rities in images can be modeled with polynomial systems and
many classes of quadratic filters were developed for edge preser-
ving noise smoothing, edge extraction, image interpolation, etc.
Quadratic filter was employed for edge detection [19] and proces-
sing document images. A similar strategy has been used in this
work to enhance noisy ridges.
3. Discrete Volterra series

Although the theory of linear systems is very advanced and
useful, most of the real life and practical systems are nonlinear.
Mild polynomial nonlinearities can be modeled by Volterra power
series. An Nth order Volterra filter [20,21] with input vector x½n�
and output vector y½n� is realized by

y½n� ¼ h0 þ ∑
∞

r ¼ 1
∑
N

n1 ¼ 1
∑
N

n2 ¼ 1
⋯ ∑

N

nr ¼ 1
hr ½n1;n2;…;nr �:

x½n−n1�x½n−n2�⋯x½n−nr� ð1Þ
h0 is the output offset when no input is present and r indicates the
order of nonlinearity. The impulse response term hr½n1;n2;…;nr � is
the rth order Volterra kernel, identification of which is one of the
key issues in polynomial signal processing. The condition r¼1
results in an LTI system and h1 defaults to the impulse response.
A quadratic filter results when r¼2, which can cover much of the
nonlinearity. One key advantage in using Eq. (1) is that the
quadratic filter can be added in parallel with the linear filter.
Although higher order terms can be added similarly, computa-
tional complexity becomes formidable. For a quadratic system,

y½n� ¼ h0 þ ∑
N

n1 ¼ 1
h1½n1�x½n−n1�

þ ∑
N

n1 ¼ 1
∑
N

n2 ¼ 1
h2½n1;n2�x½n−n1�x½n−n2� ð2Þ

or equivalently by the matrix equation:

Y ½n� ¼ h0 þ XT ½n�H1 þ XT ½n�H2X½n� ð3Þ
where

X½n� ¼ ½xðnÞ xðn−1Þ ⋯ xðn−N þ 1Þ�T ð4Þ
H1 ¼ ½h1ð0Þ h1ð1Þ ⋯ h1ðN−1Þ�T ð5Þ
and

H2 ¼

h2ð0;0Þ h2ð0;1Þ ⋯ h2ð0;N−1Þ
h2ð1;0Þ h2ð1;1Þ ⋯ h2ð1;N−1Þ
h2ð2;0Þ h2ð2;1Þ ⋯ h2ð2;N−1Þ

⋮ ⋮ ⋱ ⋮
h2ðN−1;0Þ h2ðN−1;1Þ ⋯ h2ðN−1;N−1Þ

2
6666664

3
7777775

ð6Þ

3.1. 2-D quadratic filter

The two dimensional quadratic filter is governed by the
equation

y½n1;n2� ¼ ∑
N1−1

m11 ¼ 0
∑

N2−1

m12 ¼ 0
∑

N1−1

m21 ¼ 0
∑

N2−1

m22 ¼ 0
h1½m11;m12;m21;m22�

�x½n1−m11;n2−m12�x½n1−m21;n2−m22� ð7Þ
Eq. (7) can be represented in the matrix form as

y½n1;n2� ¼XT ½n1;n2�H2X½n1;n2� ð8Þ
The quadratic kernel H2 has N1N2 � N1N2 elements and each
element consists of N2

2 sub-matrices Hði; jÞ with N1 � N2 elements
given as

H2 ¼

Hð0;0Þ Hð0;1Þ ⋯ Hð0;N2−1Þ
Hð1;0Þ Hð1;1Þ ⋯ Hð1;N2−1Þ

⋮ ⋮ ⋱ ⋮
HðN2−1;0Þ HðN2−1;1Þ ⋯ HðN2−1;N2−1Þ

2
66664

3
77775 ð9Þ

where each sub-matrix Hði; jÞ is given by

Hði; jÞ ¼

hð0; i;0; jÞ ⋯ hð0; i;N1−1; jÞ
hð1; i;0; jÞ ⋯ hð1; i;N1−1; jÞ

⋮ ⋮ ⋮
hðN1−1; i;0; jÞ ⋯ hðN1−1; i;N1−1; jÞ

2
66664

3
77775 ð10Þ

The principal issues in Volterra systems are the identification of
the kernel H2 [22–24] and its computationally efficient implemen-
tation. Unlike in linear filtering, there are no general design
methods for finding H2. Design of two dimensional kernels for
specific applications can be done using methods like optimization,
bi-impulse response method [25], etc. The current work uses
optimization of mean square error using Powell method. The
second step is in realizing the kernel with minimum computa-
tional complexity [26,27]. Eq. (8) can be viewed as a filtering
operation on the Kronecker product of X½n1;n2� with itself by the
filter kernel H2. A feasible implementation can be done with
appropriate decomposition of H2 like LU or SVD decomposition.
4. Methodology

Enhancement of noisy fingerprints is made possible with
unsharp masking scheme in which a scaled version of the edges
separated from the fingerprints is added with the noisy prints. The
scheme as given in Section 5 is proposed for enhancing fingerprint
in noisy background. It relies on a quadratic edge detection filter.
The flow of work is as depicted in Fig. 1. The first phase of work is
in designing the edge detection kernel H2. The design is based on
the minimization of mean square error between a synthetic true
edge and its noisy version. The second phase is the computation-
ally efficient implementation of H2 based on singular value
decomposition. These phases are discussed in Section 6. In the
last phase, testing of the filter is done with standard images
corrupted by impulsive and Gaussian noise of different noise



Fig. 2. Unsharp masking with quadratic filter.

Fig. 3. Surface plot of the quadratic kernel.

Table 1
Structural similarity index of images on unsharp masking using various edge
detection filters for identical noise variances.

Fig. 1. Flow of work.
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variances and the model is validated in terms of edge preservation
in the presence of noise. The unsharp masking scheme based on
quadratic filter is applied on noisy fingerprints and the perfor-
mance is compared with schemes employing Gabor, Laplace,
Sobel, Canny and LoG filters in terms of the average signal to
noise ratio, peak signal to noise ratio and the visibility of ridges.
The experiments are detailed in Section 7. The results of various
experiments are detailed in Section 8.
Filter Mean SSIM (impulsive) Mean SSIM (Gaussian)

Quadratic 0.9824 0.9854
LoG 0.9821 0.9695
Canny 0.6660 0.8660
Gabor 0.5968 0.7509
Laplacian 0.0018 0.0012
5. Unsharp masking with quadratic filter

Unsharp masking is a contrast enhancement scheme [13] in
which a high pass filtered and scaled version of an image is added
with itself. The high pass filter enhances the edges and the
addition of edges improves the overall contrast of the image. The
chief difficulty with this scheme is that the edge detection high
pass filters commonly employed are very sensitive to noise as
noise appears as false edges. It is observed that quadratic edge
detectors are very noise immune and have better edge detection
characteristics than Laplacian and LoG filters. The unsharp mask-
ing scheme with quadratic edge detection filter is shown in Fig. 2.
The edges in the input image x½n1;n2� are separated by the
quadratic filter. They are then scaled by a factor Λ and are added
with the input image to yield the enhanced version ~x½n1;n2�. The
scale factor Λ is chosen in such a way that there is improvement in
~x½n1;n2� in respect of visual quality as well as in performance
criteria like SNR, PSNR, etc.
6. Design of quadratic edge detector

It is proposed that a quadratic filter can enhance the edges
better than Laplacian or LoG filter. The principal issue in employ-
ing a quadratic filter is the identification of its kernel H2. Powell
optimization [28] is used for obtaining H2 as this algorithm has a
fast rate of convergence. A synthetic edge with compressed gray
scale values added with noise denoted as x½n1;n2� of 9�9 dimen-
sion is simulated. A desired sharp synthetic edge yd½n1;n2� of
identical dimension is also simulated. Assume that the output of
the quadratic filter is y½n1;n2� ¼XT ½n1;n2�H2X½n1;n2�. Let the mean
square error between yd½n1;n2� and y½n1;n2� be ξ.

ξ¼ E½jyd½n1;n2�−XT ½n1;n2�H2X½n1;n2�j2� ð11Þ
ξ is minimized to yield an optimum H2. H2 is plotted as in Fig. 3.
The kernel H2 is not completely isotropic. It becomes zero at the
co-ordinates ði;N−iÞ for 1≤i≤N−1, creating a wedge like minimum
parallel to the main diagonal. There are local minima parallel to
this. The H2 surface has high pass filter characteristics, making it
suitable for edge detection. Once H2 is computed, it is required to
implement it as a computationally simple structure. The direct
implementation as in Eq. (8) results in large computational
complexity. Instead, SVD decomposition [29] is performed on H2

to yield an approximation ~H2 as

~H2 ¼ ∑
ρ

i ¼ 1
λiSiS

T
i ð12Þ

where λi are the singular values with λi4λj for io j and each Si is a
9�1 eigen vector. The singular values and singular vectors of H2

are tabulated in Table 2. The value of ρ is selected in such a manner
that the Frobenius norm ∥H2− ~H2∥ is minimum. Each Si can be
resized as a 3�3 FIR image filter that is equivalent to Hði; jÞ in Eq.
(9). The outputs of FIR filters are squared and a weighted sumwith
λi values yields the filter output. The structure of the filter is as in
Fig. 4.
7. Design of experiment

The filter kernel ~H2 designed in the last section is simulated in
Python with the help of scipy and pylab modules. In the first
phase, ~H2 is tested for visual performance and quantitative
parameters with the help of known image edges that are
corrupted by impulsive and Gaussian noise of known variances.
The filter is then included in the unsharp masking scheme and
fingerprints are filtered. Two sets of fingerprints are used in the
experiment. The first set came from a fingerprint reader of
356�328 resolution and are not noisy. Hundred volunteers



Table 2
Table of singular values and singular vectors of H2.

λi S1 S2 S3 S4

3.2783 −0.3333 −0.3333 −0.3333 −0.3333
2.9284 −0.0570 0.4337 −0.3768 −0.0570
2.9284 0.4680 −0.1846 −0.2833 0.4680
2.8494 −0.0388 0.2723 0.4559 0.4262
2.8494 −0.4698 −0.3848 −0.1199 0.2013
2.8467 0.09977 −0.2513 0.3726 −0.4489
2.8467 −0.4607 0.3988 −0.2888 0.1440
2.7422 0.4690 0.0344 −0.4570 −0.1931
2.7422 −0.0478 −0.4702 −0.1155 0.4300

S5 S6 S7 S8 S9

−0.3333 −0.3333 −0.3333 −0.3333 −0.3333
0.4337 −0.3768 −0.0570 0.4337 −0.3768

−0.1846 −0.2833 0.4680 −0.1846 −0.2833
0.1971 −0.1243 −0.3875 −0.4694 −0.3317
0.4282 0.4547 0.2685 −0.0434 −0.3350
0.4711 −0.4364 0.3491 −0.2197 0.0638
0.0182 −0.1783 0.3168 −0.4171 0.4671
0.3900 0.3286 −0.2759 −0.4244 0.1285
0.2649 −0.3381 −0.38225 0.2053 0.4536

Fig. 4. Realization of H2 by singular value decomposition.

Fig. 5. Testing of unsharp masking.

Fig. 6. Fingerprint corrupted by impulsive noise variance 50.

Fig. 7. Output with Gabor filter for impulsive noise variance 50.
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contributed their fingerprints, testing of which is done to establish
the statistical soundness of the values of performance parameters.
The second set of fingerprints are taken by a 12 mega-pixel Sony
cybershot digital camera. This set is of latent prints and are
naturally noisy. Both sets are imported into Python using the image
processing module and are subjected to unsharp masking to yield
enhanced ridges. The filtered images are compared with those
processed by unsharp masking based on edge detectors like
Laplacian, Laplacian of Gaussian (LoG), Canny, Gabor and Sobel
filters in terms of visual quality.

In the second phase of experiment, the performance of the
unsharp masking scheme with quadratic filter is determined as in
Fig. 5. Hundred fingerprints, each with dimension 356�328
pixels, corrupted by impulsive/Gaussian noise of known variance
are applied to Sobel, LoG, Canny and quadratic filters and the
outputs are compared. The improvement in signal to noise ratio is
computed. The structural similarity index (SSIM) and sharpness of
ridges are computed for all the 100 images for different additive
noise variances and the average values of the parameters are
computed. This is done to ensure the statistical soundness of the
values of performance parameters.

In the final phase of experiment, the time of computation for
various filters for input images of different dimensions is ascertained
and compared. The results of the experiments are in Section 8.
8. Results and analysis

The filtering experiments conducted on noisy fingerprints with
the quadratic filter yielded enhanced outputs that are visually better
than the ones yielded by unsharp masking with Laplacian, Sobel,
Canny or LoG filters. Testing with impulsive noise gave rise to the
results in Figs. 6–11. The input fingerprint corrupted by impulsive
noise of variance 50 is shown in Fig. 6. Fig. 7 shows the result of
unsharp masking based on Gabor filter. Although Gabor filter per-
forms well in noiseless cases, it does not enhance noisy ridges. The
reviewer pointed out the need for comparison with Canny edge
detector based unsharp masking. The scheme with Canny detector
offered more enhancement in contrast but yielded broken ridges,
especially in areas where the ridges are lost in noise as shown in
Fig. 8. LoG filter yields continuous ridges but with limited enhance-
ment as shown in Fig. 9. The gradient based Laplacian filter is very
noise prone and the corresponding unsharp masking scheme yields
no output as in Fig. 10. The output of unsharp masking using SVD
based quadratic filter is as in Fig. 11. The fingerprint is enhanced with



Fig. 8. Output with Canny filter for impulsive noise variance 50.

Fig. 9. Output with LoG filter for impulsive noise variance 50.

Fig. 10. Output with Laplacian filter for impulsive noise variance 50.

Fig. 12. Crispness of edges with impulsive noise.

Fig. 13. Crispness of edges with Gaussian noise.

Fig. 11. Output with quadratic filter for impulsive noise variance 50.
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visible ridges. Quadratic filter gives out enhanced ridges even at an
impulsive noise variance of 200, a noise level at which other filters do
not distinguish the ridges.

Fingerprint corrupted by Gaussian noise of variance 30 as in
Fig. 14 is subjected to unsharp masking based on various filters.
Unsharp masking using Gabor and Laplacian filters do not result in
any enhancement as both the filters are susceptible to noise. LoG
performs as shown in Fig. 15. Its ability to enhance ridges is decreased
with Gaussian noise even at lower variance than impulsive noise. The
result of scheme based on Canny edge detector is shown in Fig. 16.
SVD based quadratic filter gives a visually enhanced output as in
Fig. 17. It is imperative to quantify the visual quality of the outputs of
unsharp masking based on various edge detection filters. The four
parameters used for this purpose are
1.
 Signal to noise ratio.

2.
 Sharpness of ridges.

3.
 Structural similarity index [30].

4.
 Computational complexity.
8.1. Improvement in signal to noise ratio and peak signal to noise
ratio

The improvement in signal to noise ratio and peak signal to
noise ratio is computed as per the experimental setup in Fig. 5. The
SNR is expressed as

SNR¼ 10 log10
∑n1∑n2 r

2
½n1 ;n2�

∑n1∑n2 ½r2½n1 ;n2�−t
2
½n1 ;n2 ��

" #
ð13Þ



Fig. 14. Fingerprint corrupted by Gaussian noise variance 30.

Fig. 15. Output with LoG filter for Gaussian noise variance 30.

Fig. 16. Output with Canny filter for Gaussian noise variance 30.

Fig. 17. Output with quadratic filter for Gaussian noise variance 30.

Table 3
Signal to noise ratio improvement for various filters.

Noise Filter SNR (dB) PSNR (dB)

Impulsive Quadratic 20.13 21.89
LoG 16.16 18.59
Canny 13.45 15.36
Laplacian 10.77 11.20
Sobel 7.79 10.22

Gaussian Quadratic 21.1 22.04
LoG 18.92 19.86
Laplacian 11.63 12.58
Sobel 10.56 13.50
Canny 9.33 12.10
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The peak value of the SNR is expressed as

PSNR¼ 10 log10
maxðr2½n1 ;n2�Þ

1
N1N2

∑n1∑n2 ½r2½n1 ;n2�−t
2
½n1 ;n2��

2
664

3
775 ð14Þ

where r denotes the reference image and t denotes the test image.
N1N2 is the size of the image. The improvement in signal to noise
ratio and in PSNR is tabulated in Table 3. It is seen that unsharp
masking with quadratic filter performs best with impulsive noise.
It has a ≈4 dB advantage in signal to noise ratio compared to LoG
filter. With Gaussian noise, the performance degrades for smaller
noise variances but quadratic filter offers ≈2 dB improvement in
SNR compared with LoG filter.
8.2. Sharpness of ridges

The sharpness of ridges in the enhanced fingerprint is decided
by the noise invulnerability of the edge detection filter. A numer-
ical figure of merit of the edge detection filter [31] is given as

κ¼ 1
N1N2

∑
n1
∑
n2

js2l½n1 ;n2 �test−s
2
l½n1 ;n2 �ref j

s2l½n1 ;n2�ref μl½n1 ;n2 �ref
ð15Þ

s2l½n1 ;n2 �test is the localized variance (here a 3�3 pixel window is

used to match the size of the filter mask) of the test image and
s2l½n1 ;n2 �ref is that of the reference image. The localized mean of the

reference image is μl½n1 ;n2�ref . For estimating the sharpness of ridges,

100 test images are formed by adding impulsive noise of variance
ranging from 200 to 300 in steps of 5 to the outputs of the
fingerprint reader. These input images are then normalized and
applied to unsharp masking based on Laplacian, LoG, Sobel, Canny
and quadratic filters. The normalized, noisy input image is taken as
the reference image and the normalized outputs of various filters
are taken as test images. The variances and mean values are
computed over a 3�3 pixel mask and summation is done all over
the area of image. The 100 values, each computed for 20 noise
variance values, are averaged and plotted as in Fig. 12. It is seen
that the parameter is the lowest for quadratic filter and it remains
fairly constant as noise variance increases. This is indicative of the
noise invulnerability and preservation of ridges of quadratic filter.
LoG filter has a higher value and shows fluctuations as noise
variance increases. Canny filter has a poorer value for κ. Laplacian
and Gabor perform worse than Canny. The plots in Fig. 12 are
consistent with the claim on visual quality based on Fig. 11. The
entire procedure is repeated for Gaussian noise of variance ranging
from 20 to 120 in steps of 5. The average sharpness of ridges for
100 fingerprints is plotted as in Fig. 13. The mean value of κ is
higher than that with impulsive noise, indicating the degradation
of performance in the presence of Gaussian noise. Here also, the
parameter is the smallest for quadratic filters. LoG filter performs
better than Laplacian, Canny and Gabor filters.

The parameter κ should be zero when no noise is present and it
increases monotonically as degradation of edges by noise
increases. Table 4 summarizes the values of κ for impulsive and
Gaussian noise. The performance parameter is the lowest for
unsharp masking with quadratic filter, indicating its noise invul-
nerability and the visibility of ridges.



Fig. 18. SSIM for impulsive noise.

Fig. 19. SSIM for Gaussian noise.

Table 5
Time of computation in seconds for various image filters.

Image size (pixels) Laplacian LoG Sobel Canny Gabor Quadratic
(SVD)

356�328 0.5615 0.70 0.0567 289 0.2753 0.2555
512�512 1.368 1.688 0.135 351 0.6369 0.5932

Fig. 20. Computational complexity for various filters.

Table 4
Sharpness of ridges for various filters.

Filter Impulsive Gaussian

κ κ

Quadratic 0.1432 1.3547
LoG 0.1962 2.5951
Sobel 0.2990 3.1510
Canny 0.2908 6.9900
Laplacian 0.4574 5.7358

V.S. Hari et al. / Pattern Recognition 46 (2013) 3198–32073204
8.3. Structural similarity index (SSIM)

A common measure that is used to quantify the quality of an
image is the mean square error [32–35] which has many demerits.
To overcome these demerits, Wang et al. [30,36] proposed the
structural similarity index (SSIM) to quantify the “visual quality” of
the image. The similarity index between the images x and y is
given as

SSIMðx;yÞ ¼ ð2μxμy þ C1Þð2sxy þ C2Þ
ð2μ2x þ 2μ2y þ C1Þð2s2x þ 2s2y þ C2Þ

ð16Þ

The parameters μx and μy are the means and s2x and s2y are the
variances of x and y respectively. s2xy is the covariance between x
and y. C1 and C2 are non-zero constants included to avoid unstable
results when s2x þ s2y or μ2x þ μ2y is very close to zero. When x and y
are identical, SSIM is unity and degrades when the structural
differences between x and y increases.

In the current experiment, SSIM is used to ascertain the
improvement in the quality of fingerprints on unsharp masking
using various edge detection filters. As shown in the experimental
set up in Fig. 5, impulsive noise of variance ranging from 30 to 100
is added with 100 test fingerprints (x) and the unsharp masked
outputs (y) using various edge detection filters are obtained. The
values of SSIM between x and y are computed with C1 ¼ C2 and
plotted for different noise levels. The plot is as shown in Fig. 18.
The expected values of SSIM are given in Table 1. It is seen that
SSIM, which is indicative of the ability to enhance the fingerprints
and the invulnerability to noise, is the largest for unsharp masking
using quadratic filter with the numerical value approximately at
0.98. LoG filter has the next best value of SSIM with the numerical
value approximately at 0.96. Also, SSIM for both quadratic and LoG
remain constant as noise variance increases. Canny filter has an
index approximately 0.3 below LoG and it increases as noise
variance increases. SSIM for Gabor filter is still below that of
Canny. The SSIM for Laplacian is far smaller and is not shown on
the graph.

The computation of SSIM is repeated for 100 fingerprints
corrupted by Gaussian noise of variance ranging from 30 to 100
using various filters and plotted as in Fig. 19. The graph shows a
clear advantage in using quadratic filter. The SSIM ranges from
0.99 to 0.98 as Gaussian noise power varies from 30 to 100. Its
mean SSIM is ≈0:16 above that of LoG and it falls as the noise
power increases. The SSIM for Canny filter is approximately 0.85
and is consistently above Laplacian and Gabor but below quadratic
and LoG filters. Laplacian and Gabor filters perform equally bad in
maintaining the structure of the image corrupted by Gaussian
noise. The relatively high structural similarity index arising from



Fig. 21. Computational complexity for Canny filter.

Fig. 22. Input fingerprints corrupted by impulsive noise (row 1) outputs of LoG filter (row
(e) output (LoG); (f) output (LoG); (g) output (LoG); (h) output (LoG); (i) output (quad)
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quadratic filtering as given in Table 1 and the plots in Figs. 18 and
19 are consistent with the enhanced visual quality of fingerprint in
Figs. 11 and 17.
8.4. Computational complexity

One major challenge in working with quadratic filter is the
computational complexity, the comparison of which is done by
estimating the time taken for filtering. A random N�N image is
subjected to unsharp masking based on various filters discussed and
the times of computation are found for different values of N and listed
in Table 5. The plot between time of computation and size of the
image is as in Fig. 20. Canny filter is the slowest in extracting edges. It
takes nearly 351 seconds to filter a 512�512 fingerprint image. The
complexity increases linearly with the size of the image as shown in
Fig. 21. The time of computation for Laplacian, LoG, quadratic and
Sobel is as in Fig. 20. LoG filter is the slowest followed by Laplacian
and Gabor filters. Complexity of LoG and Laplacian follows square law
relationship with size of the image (N) but that of Gabor filter
2) outputs of quadratic filter (row 3): (a) print 1; (b) print 2; (c) print 3; (d) print 4;
; (j) output (quad); (k) output (quad); and (l) output (quad).
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increases at a smaller rate with N. It is observed that the time of
computation for quadratic filter is consistently lower than LoG,
Laplacian and Gabor filters. It takes 0.5932 seconds to filter a
512�512 fingerprint image. The main disadvantage of quadratic
filters, viz. the computational complexity, is overcome by the SVD
based implementation. It has roughly half the computations com-
pared to Laplacian or LoG filters. Although Sobel filter is the fastest it
failed to enhance the fingerprints.

In the comparison of various edge detection filters, SVD
implementation of quadratic filter exhibits greater SNR and PSNR
and offers sharper fingerprint ridges. The largest structural simi-
larity between the uncorrupted fingerprint and the filtered version
and the small computation time required makes quadratic filter a
unique choice in the enhancement of latent fingerprints.
9. Inferences and conclusion

A simple unsharp masking scheme employing a quadratic
Volterra edge detection filter is used to enhance noisy fingerprints
Fig. 23. Input fingerprints corrupted by Gaussian noise (row 1) outputs of LoG filter (row
(e) output (LoG); (f) output (LoG); (g) output (LoG); (h) output (LoG); (i) output (quad)
similar to latent prints in crime scenes. The kernel of quadratic
filter H2 is designed by Powell method of optimization. As the
direct implementation of H2 is computationally challenging, sin-
gular value decomposition is performed on H2 to yield a multi-
channel implementation that performs fast filtering. The salient
feature of the unsharp masking is the noise invulnerability of edge
detector. Most edge detectors based on spatial gradient perform
poorly in presence of noise. The quadratic filter is found to have
better edge detection properties even under extremely noisy
conditions. The average signal to noise ratio by unsharp masking
with SVD based quadratic filter is approximately 2–4 dB above that
with conventional filters with nearly half the time of processing. It
also preserves the structure and the sharpness of ridges better
than other filters. The nearest competitor to quadratic filter is the
LoG filter. A comparison between the outputs of unsharp masking
based on quadratic and LoG filters that are driven by fingerprints
corrupted by impulsive noise of variance 200 is as shown in
Fig. 22. The ridges are enhanced by the quadratic filter much
better than that rendered by unsharp masking by LoG and other
filters. Fig. 23 shows the comparison between the outputs of
2) outputs of quadratic filter (row 3): (a) Print 1; (b) Print 2; (c) Print 3; (d) Print 4;
; (j) output (quad); (k) output (quad); and (l) output (quad).
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unsharp masking by quadratic and LoG filters driven by finger-
prints corrupted by Gaussian noise of variance 150. The scheme
based on quadratic filter has remarkable advantage in terms of
enhancement compared to those based on LoG and other filters. It
is thus concluded that the proposed quadratic filter based unsharp
masking scheme is well suited for enhancing latent fingerprints
from crime scenes and can outperform conventional filters.
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