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CHAPTER- 0 

INTRODUCTION 

0.1 Extensions and Absolutes 

An extension of a topological space X is a space that contains X as a 

dense subspace. The different kinds of extensions especially compactification 

formed a major area of study in topology. As per one method of construction, the 

points of the extensions are ultrafilters on lattices such as lattices of open sets, 

lattices of zero sets, and lattices of clopen sets. From the introduction of Stone 

Cech compactification in the thirties this area caught the attention of researchers 

and many papers appeared there after in this area. 

Related dual concepts of Absolutes due to I1iadis and Banaschewski also 

formed a major area of activity in Topology. Associated with each Hausdorff space 

always there exists an extremally disconnected zero dimensional Hausdorff space 

EX called the I1iadis absolute of X and a perfect irreducible 8 continuous sUIjection 

from EX on to X. In most of the constructions of absolutes the points of EX are 

ultrafilters on lattices associated with X. Thus extensions and absolutes although 

conceptually dual in nature are constructed using similar tools. 

Perfect continuous mappmgs always preserve certain topological 

properties. Therefore, whenever dealing with a new topological property P and 

if X has P we have to look for a space which is a perfect continuous image of 

X or that can be mapped on to X by a perfect continuous surjection. If it is 
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possible to find such a space we can study the properties of that space and 

from that we can infer the properties of X. 

If X is regular, always there exists such a space called Iliadis 

absolute of X. It can be mapped on to X by a perfect continuous surjection Kx 

which is irreducible, i.e. if A is a proper closed subset of EX then KxCA) is a 

proper closed subset of X. The space EX is zero dimensional and also 

extremally disconnected. That is every point of EX has a clopen basis and 

closure of its open sets are always open. 

Even though X is not regular, we can have an extremally 

disconnected space. This is called Banaschewski absolute of X denoted as PX. 

Here also there is a perfect irreducible surjection 7tx: PX~X. Since X is not 

regular PX is not regular and so not zero dimensional. When X is regular PX 

and EX coincide and so does Kx and 7tx . 

Since perfect continuous mappmg preserves some topological 

properties, PX and X have certain properties in common. More over there are 

certain properties which are preserved by the irreducibility of 7tx. Examples of 

such properties are cellularity, 7t weight, density character and feeble 

compatness [P;W]. 

The absolute EX of X arises in the following situation . Suppose with 

1\ 

each space X we can associate some algebraic object A (X). Let A(X) be the 
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algebraic completion of A (X). If X has certain nice properties, then A(X) IS 

isomorphic to A (EX). 

The original motivation behind the study of absolutes was the 

problem of characterizing the projective objects in the category of compact 

spaces and continuous functions. In 1958 Gleason [GL] solved this problem. 

He showed that the projective objects of this category are precisely the 

compact extremally disconnected spaces. He constructed EX (when X is 

compact) as a part of the solution of this problem. 

0.2 Fuzzy set theory 

The concept of Fuzzy sets introduced by the American 

Cybemeticist L.A. Zadeh started a revolution in every branch of knowledge 

and in particular in every branch of mathematics. Zadeh introduced the fuzzy 

set theory [ZA] in 1965 inorder to study the control problem of complicated 

systems and dealings with fuzzy information. This theory described Fuzziness 

mathematically for the first time. Fuzziness is a kind of uncertainty and 

uncertainty of a symbol lies in the lack of well-defined boundaries of the set of 

objects to which this symbol belongs. 

Since the 16th century probability theory has been studying a kind of 

uncertainty - randomness - i.e. the uncertainty of the occurrence of an event. 

But in this case the event itsel f is completely certain, the only uncertain thing 

is whether the event will occur or not. Fuzziness is another kind of 
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theory of fuzzy topology. Using fuzzy sets introduced by Zadeh, CL. Chang 

[CH] defined fuzzy topological space in 1968 for the first time. In 1976 

Lowen [LO] I suggested a variant of this definition. Since then an extensive 

work on fuzzy topological space has been carried out by many researchers. 

Many mathematicians while developing fuzzy topology have used 

different lattices for the membership sets like (1) completely distributive 

lattice with ° and 1 by T.E. Gantner, R.C. Steinlage and R.H. Warren [G;S;W] 

(2) complete and completely distributive lattice equipped with order 

reversing involution by Bruce Hutton and Ivan Reilly [H;R](3) complete and 

completely distributive non atomic Boolean algebra by Mira Sarkar [SA] (4) 

complete chain by Robert Bernard [BE] and F. Conard [ CO] (5) complete 

Brouwerian lattice with its dual also Brouwerian by Ulrich Hohle [HO] I (6) 

Complete and distributive lattice by S.E. Rodabaugh[RO] (7) complete 

Boolean algebra by Ulrich Hohle [HOb-

We take the definition of fuzzy topology in the line of Chang with 

membership set as the closed unit interval [0, I]. 

0.4 About this thesis 

The theory of extensions has got a rich parallel theory in fuzzy 

topological spaces. Mathematicians like Cerutti, U [CE], Liu Ying Ming and 

Mao-Kang Luo [Y,M] have done a detailed study in this area. But not much 

work has been done regarding the theory of absolutes. In our work we are 
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investigating this-fuzzy absolutes. In the development of a parallel theory 

based on fuzzy sets, here we can specifically notice many differences between 

the two theories. 

As a prelude to construction of fuzzy absolutes we have done a 

detailed study of the proper analogue in the fuzzy context for the concepts like 

Stone spaces, regularly closed filters and open filters. The concepts of fuzzy 

filters introduced by A.K. Katsaras [KA]] and fuzzy regular closed sets by 

K.K. Azad [AZh have been used for this purpose. 

0.5 Summary of the thesis 

The thesis is divided into six chapters including this chapter O. 

The general preliminary results which are used in the succeeding 

chapters are given in the next section of this chapter. Due references are given 

wherever necessary. Some of the preliminary results which are related to each 

chapter are given at the beginning of the corresponding chapter itself. 

The Stone duality theory was developed by Marshal H. Stone [ST] 

In 1937. Using the notion of ultrafilters he introduced the Stone space of a 

Boolean algebra and proved the Stone representation theorem. 

In the first chapter we are doing the fuzzy analogue of this concept. 

Here we define a function A: IX -t PCQCX)) where QCX) is the set of all fuzzy 

ultrafilters on X and prove some of its properties. Using this we have 
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introduced the Stone space of fuzzy sets denoted as f-S(X) and have proved 

the "Fuzzy Stone representation theorem". With suitable examples we point 

out the differences with the crisp situation. 

In Chapter 2 we have introduced the concept of fuzzy regularly 

closed filters (FRC-filter) similar to the notion of fuzzy filters introduced by 

A.K. Katsaras [KA 12- Then FRC ultrafilters are studied and an equivalent 

formulation for such filters have been given. M.A. De Prade Vicente in her 

paper [P;A] proved that every fuzzy ultrafilter is free. With suitable examples 

here we prove the existence of fixed FRC ultrafilters. Here we have also 

defined the s-fixed FRC ultrafilters in the same line as that by De Prade [P;A]. 

It is known that in the crisp situation the absolutes can be constructed 

using open ultrafilters also. So in the third chapter we introduce fuzzy open 

filters; and prove some of its properties. Also we define the fuzzy Hausdorff

closed spaces (f-H closed space) analogues to the concept of H-closed spaces. A 

characterization for f-H closed space has been given. Then we introduce an 

s-continuous mapping from a topological space to a fuzzy topological space and 

prove that the image of an H-closed space under an s-continuous mapping is f-H 

closed. Here we have also proved that the arbitrary product 1t~ and the sum EB~ of 

the s -continuous maps ~ are also s-continuous. 

Using the concepts in chapter 1 and chapter 2 in the fourth chapter 

we have introduced the fuzzy absolutes of a fuzzy topological space as a 
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subspace of fuzzy Gleason space which is the Stone space of FRC(X). Thus 

associated with each fuzzy Hausdorff space there is a pair (f-EX, Kr-x) 

consisting of a B- extremally disconnected zero dimensional space f-EX and 

an s-continuous mapping Kr-x which is compact (but not closed and hence not 

irreducible) from f-EX into X. Significant properties of the pair (f-EX, Kr-x) 

are given and have proved the uniqueness of the fuzzy absolutes. Fuzzy 

absolutes of sums and products of fuzzy topological spaces are also studied. 

Fuzzy absolutes also can be constructed using the strong fixed 

(s-fixed) FRC ultrafilters. Properties of fuzzy absolutes in this situation is 

studied and identifies the differences occurring in the two cases. 

In the fifth chapter we have given another construction for the 

fuzzy absolutes. Instead of using the fuzzy regularly closed subsets of X we 

can construct fuzzy absolutes by taking the pseudo-complemented lattice -c(X) 

of all fuzzy open subsets of X. It is denoted as f-E'X. Then the underlying set 

of f-E'X is the fixed f-open ultrafilters on X. Properties which are proved in 

chapter 4 are explicitly proved here for f-E'X. Suitable examples are given 

wherever necessary. 

0.6 Basic Definitions: 

The following definitions are adapted from [G;S],[CH],[LO]), 

[WOll, [G;K;M], [MA] , [P,W] [Y;Mh. 
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0.6.1 Definition:- Let /.l and y be fuzzy subsets of a non empty set X. Then 

/.l = y ~ /.l (x) = y( x) 't/ x EX. 

/.l ~ Y ~/.l (x) ~ y(x) 't/ x E X. 

/.l v Y = 11 ~ l1(X) = max(/.l(x), y(x)) 't/ x E X. 

/.l /\ Y = 8 ~ 8(x) = min(/.l(x), y(x)) 't/ x E X. 

/.l' = 'A ~ 'A(x) = I-/.l(x) 't/ x E X. 

More generally, VJli and (/\/.li) are defined as (V/.li)(X) =v(/.liCx)) and 

(/\/.li) (x) = /\(/.li(X)), 't/ x E X. 

The symbol ° is used to denote the empty fuzzy subset defined by 

J..L(x) = 0, 't/XEX and 1 is used to denote the whole set X defined by 

J..L(x) =1 't/XE X. 

0.6.2 Definition:- If /.l is a fuzzy subset of X, then {XEX:/.l(X» o} is called 

the support of J..L and is denoted as supp /.l or O"o(Jl) 

0.6.3 Definition: 

A fuzzy point xp in X is a fuzzy set in X defined by 

xp(y) = p (p E(O,I] ) for y = x 

= ° for y:tx. 

x and p are the support and value of xp. A fuzzy point xp belongs to a fuzzy set /.l 

in X if and only if p ~ /.l(x). In this case we use the notation XpE Jl. 

When p = 1, xp is said to be fuzzy singleton. 
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0.6.4 Definition [CH ]: A fuzzy topology on X is a subset 0 c IX such that 

i) 0,1 E o. 

ii) If /l, yE 8 then /lAy E 8 

iii) If/liE8 for each i, then Vi/liEO. 

8 is called a fuzzy topology on X and the pair (X, 8) is a fuzzy 

topological space or fts for short. Every member of 8 is called an open fuzzy 

set. A fuzzy set is closed if and only if its complement is open. 

0.6.5 Definition [LOh: 8 c IX is a fuzzy topology on X if and only if 

i) for all constants u, U E 8 

ii) for all /l, y E 8, /lA Y E 8. 

iii) If /liE8 for each i, then Villi E8. 

0.6.6 Definition: Let (X, t) be a fuzzy topological space. For Y c X and 

y :t ~, t / Y = {/l N, /l E 1} is a fuzzy topology on Y. Then (Y, 1 / Y) is 

called a subspace of (X, t). 

0.6.7 Definition: Let {Xu} UE I, be a family of fuzzy topological spaces with 

fuzzy topology 'ta. Let X = nXa be the usual product space and P a be the 

projection from X onto Xa. Then for 8 Eta, P;;' (8) is a tuzzy set in X. Let 

S ={p;;'(B) / BEta, uEI}. Let cB be the family of all finite intersections of 

members of 0 and "'C be the family of all unions of members of cB. Then t is a 
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fuzzy topology for X with CB as a base and S as a sub-base. Then (X, 't) is 

called the product fuzzy topological space. 

0.6.8 Definition: Let (X j, 'tj)jEI be a family of pair wise disjoint fuzzy 

topological spaces. Consider the set X=uaXa. Define the sum topology of 

{'ta, uEI} on IX i.e. Elha as follows. For every ~E IX. ~E EB 'ta if and only if 

11 / XaE'ta . Then (X, 'ta ) is called sum fuzzy topological space or sum fts. 

0.6.9 Definition: Let ~ be a fuzzy set in a fuzzy topological space 

(X, 't). Then the largest open fuzzy set contained in ~ is called the interior of 

11 and is denoted as "f-int ~" or 11°. 

The smallest closed fuzzy set containing ~ is called the closure of ~ 

denoted as 'f-cl ~' or Jj. 

i.e. P= A{A': AE't, A'~~}. 

0.6.10 Definition: Let (X, F) be a fuzzy topological space. A fuzzy subset 11 

on X is dense in (X, F) provided that clF(Il) =1. If (Y, H) is a fuzzy subspace 

of (X,F) then (Y,H) is dense in (X,F) provided Ily is dense in (X,F). 

0.6.11 Definition: A fuzzy topological space (X,8) is said to be fuzzy 

Hausdorff or IT 2 if for each distinct pair of points x and y in X, there exist 

open fuzzy sets ~ and y such that Il(x) = y(y) =1 and 11 A Y = O. 
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0.6.12 Definition: Let (X, 1) be a fuzzy topological space. A family j{ of 

fuzzy sets is a cover of a fuzzy set J.l if and only if J.l ~ v { A : A E j{}. It is an 

open cover if and only if each member of j{ is an open fuzzy set. A sub cover 

of A is a subfamily which is also a cover. 

0.6.13 Definition: Let (X,O) be a fuzzy topological space. Then the family 

[0] of supports of all crisp subsets in 0 is an ordinary topology on X. Then the 

topological space (X, [0]) is called the background space of (X,O). 

0.6.14 Definition: A function f:X~I is lower semi continuous if and only if 

for each aEf' (a,l] is open in X. The characteristic function XA:X~[O,l] is 

lower semi continuous if and only if A is open in X. 

0.6.15 Definition: A space X is zero dimensional if and only if each point of 

X has a neighbourhood base consisting of clopen sets. 

For the elementary definitions and results in topology references 

may be made to [WJ], [10]. For the theory of Stone space and absolutes to 

[P;W],[WA]. 

************ 

• 
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CHAPTER-I 

STONE SPACE OF FUZZY SETS® 

1.0 Introduction 

Using the notion of ultrafilters, Marshal H. Stone [ST] introduced 

in 1937 the concept of Stone space of a Boolean algebra and developed the 

Stone duality theory. The set of all clopen subsets of an arbitrary space fonns 

a Boolean algebra with respect to the unions and intersections. He proved that 

any Boolean algebra is isomorphic to the Boolean algebra of clopen sets of a 

unique compact zero dimensional space. This is tenned as Stone 

representation theorem. The absolute of a topological space X, constructed by 

Iliadis in 1963, mainly based on the Stone space of the set of all regular closed 

subsets on X. So as a prerequisite for the construction of fuzzy absolutes, in 

this chapter we are doing the fuzzy analogue of the concept "Stone space". 

If X is any non empty set, the set of all fuzzy subsets of X i.e. IX 

fonns a pseudo Boolean algebra with pseudo complement defined as 

1l'(X) = 1- Jl(x), x EX, So the concept of Stone space can be extended to IX. 

The notion of fuzzy filters introduced by A.K. Katsaras in [KA]] has been 

used for this purpose. 

ID An earlier version of this chapter has been published in the proceedings of the Annual Conference of 
Kerala Mathematical Association and National Seminar on Analysis and Applications, 
26-29 March 1999. 
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In the first section of the chapter we give the necessary preliminary 

ideas. In section 1.2 we define a function A: rX ~ P (0 (X)) and prove some 

of its properties. Here O(X) denotes the set of all fuzzy ultrafilters on X. Using 

this we introduce the fuzzy analogue of the concept "Stone space" 

In the third section we prove the "Fuzzy Stone representation 

theorem". Since we have only pseudo components in rX and not complements, 

some results in crisp theory have no proper analogue in the fuzzy setting. With 

suitable examples we point out these differences. 

1.1 Preliminaries 

We use the notations 1-1, y, 8 etc to denote the fuzzy subsets on X, P 

to fuzzy filters and U. 'Cl etc to fuzzy ultrafilters. 

1.1.1 Definition [KAJt: A fuzzy filter P on X IS a non empty subset of 

I x satisfying 

i) X E P, 1-1 ~ A imply 1-1 E P. 

ii) A, 1-1 E P implies A /\ 1-1 E P. 

iii) 0 ~ P. 

1.1.2Definitions [P;A]: A non empty subset (}3 of IX is a base for some fuzzy 

filter if i) for BJ, B2 E {}3, there exists B3 E (}3 such that B3 ~ B\ /\ B2 

and ii) 0 ~ {}3. 
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The collection q:={F El x /:3 B ECB: F;::: B} IS a fuzzy filter. 

q: is said to be generated by CB. 

A subset CB of P is a base for P if for each F E P, there IS some 

B E cB such that B ~ F. 

If P I and P 2 are fuzzy filters on X, P, is said to be finer than P 2 if 

and only if PI :::J P 2. 

A fuzzy filter P on X is a Fuzzy ultrafilter [f-ultrafilter for short] if 

there is no other fuzzy filter finer than P. That is it is a maximal filter with 

respect to the inclusion relation. 

1.1.3 Result [KA) 2: 

i) Every fuzzy filter is contained in a fuzzy ultra filter 

ii) If u is a fuzzy ultrafilter on X, then for every 11 E IX, either 11 E U 

or 1-11 E U. 

Hi) A fuzzy filter P is a fuzzy ultra filter if and only if every A E IX with 

A /\ 11 ;f. 0 for all IlE P belongs to P. 

1.1.4 Result [S; G): If u is a fuzzy ultra filter on X, then A VilE U ( A ,11 E IX) 

if and only if A E U or 11 E U. 
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1.2 The Stone space of Fuzzy sets 

1.2.1 Definition: Let (L, v, !\) be a lattice with 0 and 1 as the smallest and 

largest element respectively. Then L is said to be pseudo complemented if for 

each a E L, there is associated a unique a' such that 

i) (a')' = a for every aE L 

ii) 0' = 1 and l' = 0 

iii) (a v b)' = (a' !\ b') and (a!\ b)' = a' v b' 

Note: If further a v a' = 1 and a!\ a' = 0 V a EL then L is complemented. 

1.2.2 Definition: A distributive lattice which is pseudo complemented IS 

called a pseudo Boolean algebra (or p-Boolean algebra for short). 

Note: IX, the set of all fuzzy subsets of X fonns a pseudo Boolean algebra. 

1.2.3 Definition: If A and B are any two p-Boolean algebras, then a function 

f: A~B is said to be a p-Boolean homomorphism (or homomorphism for 

short) if 

i) f(a v b) = f(a) v f(b) 

ii) f(a!\ b) = f(a)!\ f(b) 

iii) (f (a) )' ~ f (a') 

Let f be bijective. If both f and f -I are homomorphisms, then f is 

called a p-Boolean isomorphism or just isomorphism. 
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1.2.4 Definition: A p-Boolean algebra is complete if it is complete as a lattice. 

1.2.5 Definition: Let X be any non empty set and O(X), the set of all fuzzy 

ultrafilters on X. For J.! E IX, define A(J.!) = {u E 0 (X): J.! E u}. 

Then A is a function from IX into P (0 (X)) 

1.2.6 Result: For any J.!, y E I X • 

i) A(O) = 4> and A( 1) = O(X) 

ii) A (J.! v y) = A (J.!) u A (y) 

iii) A (J.!A y) = A (J.!) n A (y) 

iv) (A (J.!))' cA (J.!') 

Proof: 

i) A (0) = {U E 0 (X): 0 E U } 

Since there is no ultrafilter containing zero, A (0) = 4>. 

When 0 !i!: U, by 1.1.3 (ii), 1 E U. Therefore every ultrafilter 

contains 1. i.e. A (1) = 0 (X). 

ii) U E A (J.! v y) ~ Il v Y E U. 

~ Il E U or y E U (by 1.1.4) 

~ U E A (Il) or U E A (y) 

~ U E A (Il) u A (y) 

'V E A (Il) u A (y) ~ V E A (Il) or V E A (y) 
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~ Il E 'V or y E 'V 

~ Il V yE 'V (by l.l.l.(i)) 

There fore A (Il v y) =A (Il) u A (y) 

iii) U EA (Il /\ y) ~ Il /\ yE U 

~ Il E U and y E U (by l.l.1 )(i) 

~ U EA (Il) and U E A (y) 

~ U E A (Il) n A (y). 

V E A (Il) n A (y) ~ 'V E A (Il) and 'V E A (y) 

~ Il E 'V and y E 'V 

~ Il /\y E 'V (by 1.1.1.(ii) ) 

~ 'V E A (Il /\ y) 

Therefore A (Il /\ y) = A (Il) n A (y) 

(iv) Let U E (A (Il))'. Then U!2: A (Il) 

i.e 1l!2: U. Therefore by l.l.3 (ii) Il' E U. i.e. U EA (Il'). 

Therefore (A (Il))' c A (Il'). 
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1.2.10 Note: For any set Y, S(Y) represents the set of all c10pen sets in Y. 

Therefore, {All): IlE I x } c S(f-S (X». 

1.3 Stone representation theorem for fuzzy sets 

1.3.1 Definition [P;W]: A space X is zero dimensional if SeX) is an open 

base for X. 

1.3.2 Tbeorem:- Let X be any set and f- S (X) be as defined in 1.2.8. Then 

Proof: 

a. f- S (X) is a compact. T 2, zero dimensional space. 

b. {A(/1):/1EI X } =R(f-S(X» 

c. A is a homomorphism from I x onto R (1'-S (X)) 

a. Let I}' be a filter of closed sets in f-S (X) and 

G = {IlE I x: A(/1) ::J F for some FE I}'} 

{A(Il) :Il E IX} is a base for closed sets in f-S(X) 

:. (l P =n {A(y):y EG} 

Let Ill> 112 EG. Then there exist FI and F2 in I}'such that A (Ill)::::) FI 

::J FI n F2, where FI n F2 E I}'. 

:'~II\ 112 E G. 
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Let ~ E G and ~I ~ ~. Since ~ E G, there exists FIE P such that 

:.)ll E G and hence G is a fuzzy filter. 

So by 1.1.3(i) there exists an f-ultrafilter U E f-S(X) such that G c U . 

Therefore ~E U and so U E A(~); ~EG. 

Therefore, U E (I {A(~): ~EG} . i.e. U E (IF. 

Therefore (IF * ~. Hence f-S(X) is compact. 

Let U and 'V E f- S(X) such that U * 'V 

Therefore there exists ~ E I x such that ~E U but not belongs to 'V. 

i.e U E A (~) and ~~ 'V. 

Since ~~ 'V, by 1.1.3(iii), there exists y E 'V such that ~ Ay =0. 

Therefore A (~ AY) = ~ 

i.e. A (~) (I A (y) = ~ where U EA (~) and 'VEA (y). Also A (~) and A (y) are 

open in f-S(X). 

Therefore f- S (X) is Hausdorff. 

By result 1.2.9, A (~) is clopen in f-S(X) and {A (~): ~E IX} fonns 

a base for f-S(X}. Therefore by definition 1.3.1 f-S(X) is zero dimensional. 

That is f-S(X) is a compact, T 2, zero dimensional space. 
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b) By note 1.2.10 we have { A (~):~ E IX } cB (f-S(X) ) -(I ) 

Now, let C E B (f-S (X) ) 

Since C is open, there exists a non empty subset D ofl X such that 

c = u {A (~) : ~ E D} 

C is also closed and so compact. Therefore there exists a finite subset H of D 

such that 

C = u{ A (y) : y E H} 

= A (v y : y EH) by result 1.2.6 (ii) 

= A (T]) where T] = v {y: yE H} E IX 

Le, C E {A (~) :~ E IX} 

... B (f-S(X)) c { A (~) : ~ E I x } 

Hence B (f-S(X)) = {A (~): ~ E IX } 

(c) By part b) we have B (f-S(X)) = { A (~) : ~E IX } where 

A (~) ={ U EQ(X) : ~E U } 

Therefore, A is a function from IX onto B (f-S(X) ) 

-(2) 

Also by the result 1.2.6 A is a homomorphism. Therefore A is a 

homomorphism, from I X onto B (f-S(X)) . 

1.3.3 Remark: The function A from IX onto B (f-S(X) is not one to one In 

general. 

Example:- Let X be any non empty set. 
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Define Il and y from X to [0, I] as Il(X)= y(x) for every X:I; Xo and Il(Xo) > y(xo). 

Then Il:l; y. 

Let fF" E A (Il). i.e. IlE P. 

Therefore Il /\ F :I; 0 for every FE P. 

i.e. F(xo) :I; 0 for every FE P. 

There fore (y/\F)( xo):I; 0 , V F E P. 

I.e. y /\ F :I; 0, V FE P. 

There fore by 1.1.3 (iii) y E P and so P EA (y). 

:.A (Il) c A (y) 

Similarly the reverse inclusion also holds. 

So A (Il) = A (y) , but Il :I; y. 

1.4 B- extremally disconnected space 

1.4.1 Definition: A topological space X with a clopen basis (]3 is said to be 

B- extremally disconnected if and only if the closure of every open set in X is 

contained in a basic open set. 

1.4.2 Result: Any dense subset of a B-extremally disconnected space is also 

B- extremally disconnected. 
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Proof: 

Let X be a B-extremally disconnected space and H be any dense 

subset ofX. 

Let V be any open set in H. Then V =H (1 W \ where W \ is open in X. 

Therefore clx V = cl (H (1 W \ ) 

= cl (H) (1 cl W \ 

= X (1 cl (Wd = cl (W\) 

Since W \ is open in X and X is B-extremally disconnected, there 

exists a basic open set W2 in X such that cl (W\) c W2. 

H (1 clxV c H (1 W2 ,where H (1 W2 is a basic open set in H. 

That is clHV c H (1 W2. 

Therefore H is B- extremally disconnected. 

1.4.3 Theorem: Let X be any non empty set. Then f-S(X) , the fuzzy Stone 

space of X is B-extremally disconnected. 

Proof: Let U be any arbitrary open set in f-S(X). Since {A (1l):IlE IX} is an open 

basis, there is a non empty subset 0 of IX such that U = u{A (Ili) : Ili EO}. 

IX is complete. Therefore v Ili exist. 
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Let v {Ili: lliED}= y. Then Ili ~ Y for every i. 

So uA (Ili) cA (y), A (y) is clopen 

i.e. U c A (y) 

:.cl (U) c A (y) -(i) 

Hence f-seX) is B- extremally disconnected 

1.4.4 Note: The reverse inclusion of (i) does not hold in the case of non 

crisp sets. 

Example: 

Let X be any non empty set with at least two distinct points Xo and XI. 

Define Ill: X-+[O,l] as 111("0)= 1/3 and Ill(x) = 0, V X * Xo. 

Now U [x] = {IlE IX: Il(x) > O} is a fuzzy ultrafilter on X. 

Let f- seX) be the Stone space of X. Then {A {Il) : 11 E I x } is a basis 

for open sets in X. 

Consider the open set U= A (Ill)' 

This open set will contain the ultrafi Iter U [xo] 

Define 112 : X -+ [0,1] as 112 (x) = 1/3 for every x E X 

Then III ~ 112· Therefore A (Ill) c A (112)' 

That is U c A (J.!2) ,where U= A (J.!I) 
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Therefore cl (U) c A (~2) (1) 

Now let V = { ~ Er: ~(XI) > 0, for XI;t:O} . Then V is a fuzzy 

ultra filter on X. 

Then 'Vcontains ~2 but not ~I . 

:. 'V E A(~2) and V ~ A(~I) = U 

Therefore A(~2) et U. 

1.4.5 Conclusion 

Let X be any non empty set and A be any (crisp) subset of X. If F is 

an ultrafilter on X and A E F, then A C ~ F since A n A C = <1>. But in the case of 

fuzzy ultrafilter u on X, )lE U does not imply that ~'~ U as ~ /\ ~' need not 

be equal to zero. Due to this inherited draw back in fuzzy filters, some results 

in the crisp set theory may not be true in the fuzzy context. 

************ 
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CHAPTER-2 

FUZZY REGULARLY CLOSED FIL TERS® 

2.0 Introduction 

A subset A of a topological space X is said to be regularly closed if 

A = cl (int A) and regularly open if A = int (clA). The analogous concept 

"Fuzzy regularly closed sets" wa:; introduced by K.K. Azad in [AZ] 2. He 

proved that the closure of every fuzzy open set is fuzzy regularly closed and 

interior of every fuzzy closed set is fuzzy regularly open. 

Corresponding to a given a topological space (X,T), always there is 

a generated fuzzy topology co(T) consisting of all lower semi continuous 

functions from [X,T] to [0, I]. Similarly corresponding to each fuzzy 

topological space (X,F) there is an associated topology I(F) which is the 

weakest one such that every element of F is lower semi continuous. If A c X 

is regularly closed in X, then XA is fuzzy regularly closed in the corresponding 

generated fuzzy topology and conversely if XB is f-regularly closed in the 

fuzzy topological space (X,F), then B is regularly closed in the corresponding 

associated topology. 

FRC(X)- the set of all fuzzy regularly closed subsets of X is a partially 

ordered set with respect to the usual '~' relation. Also it becomes a hlttice with 

'/\' and 'v' defined by IlV Y = Il U Y and Il /\y=f-cl(f-int (Il n y)).For Il EFRC(X), 

® Some results of this chapter were communicated to fuzzy sets and system. 
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taking the complement as Ile = fOod (1-11) = 1- f-int 11, in the first part of section 

2.2. we prove that (FRC(X), /\,v) is pseudo complemented and complete. 

In [BI] it was proved that the set of all fuzzy regularly closed 

subsets of a B-fuzzy topological space fonn a fuzzy Boolean algebra. 

In the next section we define the fuzzy regularly closed filters 

(FRC-fiIter for short) similar to the notion of fuzzy filters introduced by 

A.K. Katsaras. The FRC ultrafilters are defined and an equivalent formulation 

has been given for such filters. Properties of fuzzy filters given by 1.1.3 and 

1.1.4 hold good for FRC filters also. 

M.A. De Prade Vicente in her paper [P;A] proved that every fuzzy 

ultrafilter is free. In the third section of this chapter with suitable examples we 

prove the existence of fixed FRC-ultrafilters and we obtain a characterization 

for such ultrafilters. 

2.1 Preliminaries 

Throughout this chapter (X,'!) or simply X represents a fuzzy 

topological space in Chang's sense [CH]. Also we use the notation 'v' and '/\' for 

lattice union and intersection, and 'u' & 'n' for fuzzy union and intersection. 

2.1.1 Definition [AZh: A fuzzy subset 11 of (X, 't) is said to be fuzzy regularly 

closed if 11 =? and fuzzy regularly open if 11= P.°where 11° = V{A: AE'!, A ~ Il} 

and jl = /\ { Y : y' E"C , Y ~ Il}· 
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2.1.2 Result: 

a. Given a topological space (X,T) and B regularly closed in (X,T), then XB is 

fuzzy regularly closed in the corresponding generated fuzzy topology (X, FT). 

Conversely, given a topological space (X,T) and XB fuzzy regularly closed in 

(X, FT)' then B is regularly closed in (X,T). 

b. Given a fuzzy topological space (X,F) and B regularly closed in the 

associated topology /(F), then XB is fuzzy regularly closed in (X,F). 

Conversely given (X,F) and XB fuzzy regularly closed in (X,F) then B is 

regularly closed in /(F). 

2.1.3 Definition [P;A): A fuzzy ultrafilter u on X is said to be free if /\ U = 0 

and is fixed if /\ U *0 

2.1.4 Proposition [P;A): Every fuzzy ultrafilter is free 

2.1.5 Definition [P;A): A fuzzy ultrafilter P is strong free (or s-free) if and 

only if n{supp F / F E P} = ~ and s-fixed if n{supp F / F E P} *~. 

If n {supp F / F E IF} * ~ and IF is a fuzzy ultrafilter, then the 

intersection must be reduced to a single point. The only s-fixed fuzzy 

ultrafilters are 3 x = { FEr / F (x) > O} called tivial f-ultrafilters. 

2.2 Fuzzy regularly closed filters 

2.2.1 Definition: Let FRC (X) denote the set of all fuzzy regularly closed 

subsets of a fuzzy topological space X. Then for I-l, Y E FRC (X) define I-l ~ Y 
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if and only if Il(x)~ y(x) for every x EX. Then '~' is a partial order on FRC(X) 

and hence FRC(X) is a poset. 

If 11 and y E FRC (X), 11 u y is fuzzy regularly closed. But j.l (l Y 

need not be fuzzy regularly closed. So define j.lV Y = j.l u y and j.l 1\ Y = f-cl 

(f-int (~(l y)). Then (FRC(X), ~ ) is a lattice. 

2.2.2 Result: For a fuzzy topological space X, (FRC(X),~) IS pseudo 

complemented. 

Proof: For 11 E FRC(X), take I-{= f-cl(l-j.l) = 1--( f-int (j.l)) 

(a) (IlC)C = f-cl( I-j.l C) = f-cl (1-f-cl( I-j.l)) 

f-cl (1- (1-f-int j.l)) 

= f-cl (f-int j.l) = j.l 

(b) (Il/\yt = f-cl (1- ( 11 1\ y)) 

f-cl(1-f-cl (f-int (j.l (l y))) 

= f-cl (f-int (l-f-int (11 (l y))) 

f-cl (f-int ((1- f-int j.l) U (1- f-int y))) 

= f-cl ( f-int (j.lc U yC)) 

= (j.lc u l) = j.lcvyc 

(c) (Ilvyt = f-cl (1- ( !.1 v y) = f-cl(1- (j.l U y)) 

f-cl(1- f-cl( f-int (j.l U y))) 

= f-cl (l-[f-cl ( f-int j.l) U f-cl ( f-int y)] ) 

= f-cl ([1- f-cl (f-int j.l)] (l [1- f-cl (f-int y)] ) 

f-cl [f-int (1-f-int j.l) (l f-int (1- f-int y)] 
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= f-cl (f-int [ (l-f-int~) n (l-f-int y)]) 

= f-cl ( f-int (~C n yC)) = ~c 1\ l 

:.(FRC (X), ~) is pseudo complemented. 

2.2.3 Result: For a fuzzy topological space X, (FRC(X), ~) is a complete 

lattice. 

Proof: Let Aa be members of FRC(X). Then we show that, 

a) Put 11= f-cl (f-int (naAa)). Then 11 E FRC(X). 

n A.a ~ Aa for every u. 

:. f-cl (f-int (nAa )) ~ Aa. I.e. 11 ~ Aa. 

Therefore 11 is a lower bound of Aa. 

Let 0 E FRC(X) such that 0 ~ Aa for every u. 

Therefore 0 ~ n Aa . 

Therefore f-cl (f-int 0) ~ f-cl ( f-int (n Aa)). 

i.e. 0 ~ f-c1( f-int (n Aa)). 

i.e. 0 ~ 11. 

:.11 is the greatest lower bound. 

Hence I\a Aa= f-c1( f-int( nuAa))· 

b) Now put ~ =f-c1 ( f-int (uaAa)). Since ~ is the closure of a fuzzy open set, 

~ is fuzzy regularly closed. ie. ~E FRC(X). 



32 

Ua A.a ~ A.a for every u. 

i.e. f-cl ( f-int( Aa)) ~ f-cI (f-int (UaAa» . i.e. Aa ~ ~. 

:. !l is an upper bound of Aa. 

Let Y EFRC (X) such that Aa ~ y for every u. 

Then (uaAa) ~ y. 

:.f-c1 ( f-int (uaAa» ~ f-cl( f-int y ) = y. i.e. ~~ y. 

Therefore ~ is the least upper bound 

:. vaAa=f-cl ( f-int (uaAa». 

Therefore ( FRC(X), ~) is a complete lattice. 

2.2.4 Definition: A fuzzy regularly closed filter (FRC -filter for short) P on X 

is a non empty subset ofFRC(X) satisfying, 

i) A E P and ~E FRC(X) such that ~A imply ~E P. 

ii) A, ~E P implies A /\~ E P. 

iii) 0 ~ P. 

The following definitions are analogous to those by M.A. De Prade [P;A] 

2.2.5 Definition: A subset (]j of FRC(X) is a base for some FRC filter if and 

only if (]j:t- $ and (i) if ~J, ~2 E (]j then ~3 ~ ~1 /\ ~2 for some ~3 E (]j. (ii) 0 ~ (]j. 

The collection P = {~ E FRC (X): ::3 y E (]j and ~ ~ y} is an FRC 

filter. Then P is said to be generated by (]j. 
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A subset (Jj of FRC(X) is a base for P if and only if for each 

/lE P, there is ayE (Jj and y~l1. 

If P I and P 2 are FRC filters on X, P I is said to be finer than P 2 if 

and only if PI:::) P 2. An FRC-Filter P on X is an FRC ultra filter if there is 

no other FRC filter finer than P. 

2.2.6 Definition: Let P be an FRC filter on X. Then a (crisp) regularly 

closed subset Y of X is said to be included in P if and only if every fuzzy 

regularly closed subsets of X with support Y is an element of P. 

2.2.7 Theorem: If P is an FRC-Filter on X, then the following are equivalent. 

i) Pis an FRC-ultrafilter 

ii) Let JlE FRC(X). If 11 ~ P then there is some Y E P such that Jl /\ Y = o. 

iii) Let Y be a (crisp) regularly closed subset of X. Then either Y or Yc is 

included in P where Yc = cl (XN). 

Proof:- i) =>ii) Let Jl ~ P. If Jl /\Y ;;; 0 for every yE P the collection 

B = {/lA Y: yE P} is a base for an FRC filter which is fmer than if', contradicting i). 

Therefore there exists at least one yE P such that Jl /\ Y = o. 

ii) => iii) Let Y be a regularly closed subset of X. Suppose both Y and 

ye were not included in P. Therefore there exist )1, Y E FRC (X) with supports 
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Y and ye respectively such that both do not belong to if'. By part ii) if fl II P, 

there exists a 8 E if' such that fll\ 8 = O. Similarly there is an T] E if' such that 

y 1\ 11 = O. 

Supp fl = Y. Therefore fleX) *0 for every XEY. 

So 8(x) = 0 for every XEY. 

Supp y =VC :. y(x) * 0 for every XEYc and so T](x) = 0 for every XEVC. 

:.(81\T])(x) = 0 for every XEX. 

i.e. 8 I\T] = 0 which is not possible since 8, T] E if'. Therefore either 

Y or VC is included in if'. 

iii) ~ (i) If if' is not an FRC -ultrafilter, let G :::J if'. Let yEG such 

that yll if' and supp y =Y. Therefore Y is not included in if'. Hence by (iii) Yc 

is included in if'. That is any fuzzy regularly closed set 8 with support VC 

belongs to if' and hence in G. Therefore y 1\8 E G which is not possible since 

y 1\ 8 = O. Therefore if' is an FRC ultrafilter. 

2.2.8 Proposition: Every FRC filter is contained In some FRC-ultrafilter. 

Proof:- Follows from Zom's Lemma. 

2.2.9 Proposition: If u is an FRC ultrafilter on X then for every flEFRC(X) 

either flE U or flCE U where flc = f-cl(1-fl). (Proof is similar to that for fuzzy 

filters by Katsaras [KA h ). 
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Proof:- Suppose both Jl and Jle do not belong to u. Therefore by theorem 2.2.7 

(ii), there exist y and 8 E U such that Jl/\Y = 0 and Jlc /\ 8 = O. 

:. ~ 1\ Y /\ 8 = 0 and Jlc /\ Y /\ 8 = 0 

i.e. ~ 1\ (y /\ 8 ) = 0 and Jlc /\(y /\8) = 0 

y 1\ 8 :;t. 0 since y and 8 E U. Therefore there exists at least one Xo E X 

such that (y /\ 8)(xo) :;t. O. 

:. ~(xo) = 0 = Jlc (xo) which is not possible since Jlc (xo) = f-c1 (l-Jl(xo)) :;t. O. 

Therefore either Jl or Jlc belongs to u. 

2.2.10 Remark: In general topology if CJ' is an ultrafilter on X, and if A is a 

regularly closed subset of X such that A E CJ', then A C It CJ' since A (lAc = cp. 

Here in the case of fuzzy regularly closed filters. If U is an FRC

ultrafilter, JlE U does not imply that Jlc It U. But if A is a (crisp) regularly 

closed subset of X such that A is included (in the sense of definition 2.2.6) in 

u then A C is not included in U. 

2.3 Fixed FRC-ultrafilters 

2.3.1 Definition: An FRC-ultrafilter U on X is said to be free if /\ U = 0 and is 

fixed if /\ U:;t. 0 Where /\ U =/\ {Jl : Jl E U } 

2.3.2 Note: Proposition 2.1.4 states that every fuzzy ultrafilter is free. But if 

we consider FRC ultrafilters on X such a result is not true. The following 

examples illustrate the existence of fixed FRC -ultrafilters. 
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2.3.3 Example: Let R be the set of real numbers with usual topology. 

Define III & 112 from R to [0,1] as 

IlI(O) =1/4, IlI(X) = 0 for every x:;cO. 

1l2(0) = 4/5, 1l2(X ) = 0 for every x :;co. 

Let F be the fuzzy topology generated by usual crisp topology R, III 

and 1l2. Now consider the associated topology /(F) of F. i.e. / (F) is the smallest 

topology on X which makes every element of F lower semi continuous. III 

and 112 are lower semi continuous only if {O} is open in / (F). Therefore / (F) is 

the topology generated by usual open intervals in R and {O}. Then the closed 

intervals in Rand {O} C are regularly closed in /(F). Let U be the set of all 

regularly closed sets in / (F) containing zero. Then U is a fixed ultrafilter in 

I (F) and n u ={O}. 

Let IF = { XA: A E U }. 

Then Pis an FRC-filter. Therefore by proposition 2.2.8 there exists 

an FRC ultrafilter U containing P. Then U contains elements of F and fuzzy 

regularly closed sets formed by Ill' and 1l2'. Since X{O} E U, 1\ U is always a 

fuzzy point with support zero. Also 1\ U (0)=1/5. i.e. 1\ U :;cO. 

Therefore U is fixed. 

2.3.4 Example: Consider R with usual topology .Define Il: R ~[O, 1] as 

~(O) = 114 and Il(X) = 0 for every x :;cO. Let RF be the fuzzy topology generated 
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by usual crisp topology R and ~. Then f-closed sets in R F are of the form 

XK, ~', XK /\ ~'where K is any closed set in R 

Let Ko= [a,b] be any closed interval in R where a:l:- 0 or b:l:- O. 

f-int XKO = f-int X [a,b] = X (a,b) 

f-cl (f-int X[a,b]) = X[a.b] = Xko 

:, Xko is fuzzy-regularly closed in R F. 

Ifb = 0, f-int X [a,O] = X (a,O) v ~ . 

Therefore f-cl(f-int X [a,O] ) = X (a,O) /\~' . 

That is X [a.O] is not f-regularly closed. Similarly X [O,b] is also not 

f-regularly closed. 

f-int ~'= X R\ (O) V ~ 

f-cl (f-int ~' ) = ~' 

:.).1' is f-regularly closed. 

In a similar manner we can prove that X{O}, XK /\ ).1', 1,0 are 

f-regularly closed in R F• Let FRC(R F) be the set of all fuzzy regularly closed 

subsets of RI" 

Define P = { ).1 E FRC (RF): ~(O) >3/4}, 

Then P is an FRC -filter. Let u be the fuzzy ultrafilter containing P. Then 

1\ u(O) = 3/4, 

:. /\ U :1:-0. Therefore, U is a fixed FRC-ultrafilter. 
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2.3.5 Result: 

0"0 (;\U) C n{ 0"0 (llhlEU } where 1\ U = 1\{1l: 11 E U }and 0"0 

(11) = {x E X: Il(x) >O}. 

Proof: Let x Eo"O (AU) . Then (AU )(x) -:;; O. 

That is Il( x) -:;; 0 for every 11 E U. 

i.e. x E 0"0 (11) \;j IlE U. 

i.e. x E n { 0"0 (11) : 11 E U } 

:·0"0 (AU) c n{ 0"0 (11) :IlE U } 

2.3.6 Theorem:- If U is a fixed FRC-ultrafilter on X, then 

i) n {0"0(1l) :11 E U } contains exactly one point 

ii) A U is a unique fuzzy point. 

Proof: 

i) By the result 2.3.5 0"0 (AU) C n {0"0(1l):1l E u} . Since U is fixed, 

A U -:;;0. Therefore there exists atleast one XEX such that AU(X)-:;;O. 

So O"O(AU) -:;;~. Hence n {(0"0(1l):1l E U} -:;;~. 

Suppose n{ 0"0(11): 11 E U } contains two points x and y and x-:;;y. Let 

A be a regularly closed subset of X containing x but not y. Since U is an FRC

ultrafilter by 2.2.7 (iii) either A or A C is included in U. If A is included in U, 

then the set of all fuzzy regularly closed subsets of X with support A belongs 

to u. Therefore no fuzzy regularly closed subsets of X with ACas support can 



39 

belong to U .So y cannot belong to n(O'o(/l):/lEu}.Therefore n{O'o(/l):/lEU} 

contains exactly one point. 

ii) By part i) and result 2.3.5 O'o(I\U) is a singleton .. '. I\U is a fuzzy point. 

Let 0'0 (I\U) = Xo and p, q be two distinct fuzzy points with support Xo. 

Choose /l ( *- ° and 1) belonging to FRC(X) such that p E f-int /l and q ~ /l. 

i.e. p(xo) ~ f-int /l(xo) and q(xo) > /l(xo). 

Let p E I\U. 

Then p(xo) ~ (I\u)(xo). 

Therefore, p(xo) ~ Y(Xo) , V yE U. 

i.e. p(xo) ~ (f-int (/lI\Y)) (xo) 

:. f-int (/ll\ y) *-0. 

Hence /ll\ Y *-0 V yE U . So by theorem 2.2.7, /lEU . But q~/l . Therefore 

q (l I\U. 

Hence 1\ U is a unique fuzzy point. 

2.3.7 Definition:- An FRC-ultrafilter U on X is said to be strong fixed or 

s-fixed if I\U = ° and { O'O(/l):/lE U } *-~. 

2.3.8 Remark:- In this case also we can prove that {O'o(/l):/lE u} is singleton. 

Then such ultrafilters are only of the form U [x] = {/lEFRC(X):/l(x»O} which 

are called trivial FRC-ultrafilters. 
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CHAPTER-3 

F-OPEN FILTERS AND F-H CLOSED SPACES® 

3.0 Introduction 

It is known that in the crisp situation the absolute of a topological 

space can be constructed using the open ultrafilters also [P;W]. The set '((X) of all 

fuzzy open subsets of X fonns a pseudo complemented lattice with 

IlC= 1- f-cl(Jl) = f-int (1- Jl). Therefore as in the case of topological spaces fuzzy 

absolutes also can be constructed using f-open ultrafilters. So in the first section 

of this chapter we introduce fuzzy open filters. Fuzzy open ultrafilters are defined 

and an equivalent formulation for such ultrafilters has been given. Using the 

concept of adherence of an f-open filter we define fixed f-open ultrafilters and 

they are used to characterize the convergence property of a filter. Here also some 

results in the crisp topology are not true in the fuzzy context. Counter examples 

are given where strict analogous results are not possible. 

A space X is said to be H-closed if it is closed in every Hausdorff 

space containing X as a subspace. In section 3.2 we give the fuzzy analogue of 

this concept "Fuzzy Hausdorff closed" or (f-H closed) spaces. The 

characterization for f-H closed spaces given here establishes the relationship 

between the f-H closed spaces and their f-open filters. 

® Some results of this chapter were presented in the Annual Conference of Kerala Mathematical 
Association at Kottayam, December 200 I. 
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In the third section we introduce an s-continuous mapping from a 

topological space to a fuzzy topological space and prove that the image of an 

H-cIosed space under an s-continuous map is f-H closed. Here we have also 

proved that the arbitrary product 7tti and the sum EB~ of the s -continuous maps 

~ are also s-continuous. 

3.1 f-open filters: 

3.1.1 Definition: Let (X,8) be a fuzzy topological space. Then Pc 8 is said to 

be a fuzzy open filter or f-open filter if it satisfies the following conditions. 

i) AE Pand ~E 8 such that ~ > A imply ~ E P 

ii) A, ~E Pimplies A /\ ~ E P. 

iii) O~ P. 

3.1.2 Note: The f-open filter basis and f-open ultrafilter can be defined as 

in 2.2.5. 

3.1.3 Definition: Let P be an f-open filter on X. Then a crisp open subset Y 

of X is said to be included in P if and only if every f-open subset of X with 

support Y is an element of P. 

3.1.4 Theorem: Let P be an f-open filter on (X.8). Then the following are 

equivalent. 

i) Pis an f-open ultrafilter. 

ii) Let ~ E 8. If ~ ~ P, then there is some Y E P such that ~ /\ Y = 0 
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iii) Let Y be a crisp open subset of X. Then either Y or ye is included in 

Cf' where ye = X \cl(Y) 

Proof: Similar to that of theorem 2.2.7. 

3.1.5 Note: Propositions 2.2.8 and 2.2.9 also hold good for f-open ultrafilters. 

3.1.6 Definitions: 

-
a. An f-open ultrafilter u on X is said to be fixed if a( u ) = A { /..l : /..l E U } :;cO and 

free if a (u) = O. a (u) is called the adherence of f-open ultrafilter u. 

b. IfXp is a fuzzy point in (X, 8 ) with support x, then N(xp) = {/..lE 8 :p::; /..l(x)} 

is called the set of neighbourhoods of xp. 

3.1.7 Definition: Let xp be an f- point in X. Then an f- open filter Cf' on X is 

said to converge to xp if N (xp) c Cf' and it is denoted as Cf' -)- xp. The point 

Xp is said to be a cluster point of Cf' if /..l A F:;c 0 for all FE Cf' and /..lE N (Xp). 

3.1.8 Lemma: 

Let X be a fuzzy topological space and U be a fixed f-open ultra 

filter on X. Let xp be a fuzzy singleton in X. Then xp E a (u) ~N (xp) c u. 

Proof: 

Suppose xp E a (u) where a (u) = A {~ : /..lE u} 

Then a (u) (x) = I. 

That is 1\ {il: I..l E U }(x)=1 
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Therefore, j:i(x) = 1 for every IlE U. 

Let 8 E N(xp) and y be any arbitrary element of u. Then 8 (x)=1 and y(x) = 1 

Therefore (8/\ y) (x) =1 and so 6/\ fi; O. 

y (x) :s; 8c (x), for every x E X which is not possible. 

There fore 6 /\ Y i; 0 

i.e. 8 /\ Y i; 0 for every yE U. 

Therefore 8E U (by the theorem 3.1.4(ii) ) 

Therefore N(xp) cU. 

3.1.9 Remark: In the case of non crisp sets the converse of 3.1.8 need not be 

true as is seen from the following example. 

3.1.10 Example: Let X ={a, b, c}. 

Define Ill, 112 and 113 from X to [0,1] as 

I 
~2(b) =-, 1l2(a) = 1l2(C) = 0 

2 

topology on X. Then the closed sets are {O,l, Ill" 1l2' 1l3', (IlIVIl2)', (1l2VIl3)', 
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ultrafilter. 

a (u) = /\ { ~ : IlE U } 

Now, consider the fuzzy singleton al. Then 

N(al) = { IlE't(X) : Il(a) = I} = { 1 } 

:. allt a (U). 

3.1.11 Result: Let U be an f-open ultrafilter and XpE a (u) . Then xp is a 

cluster point of u. 

Proof: 

If u is an f-open ultrafilter and XpE a (u) then by lemma 3.l.8 

Therefore Il /\ F t= 0 for every IlE N (xp) and FEU. 

That is xp is a cluster point of u. 

3.1.12 Lemma: Let C(u) denote the set of all cluster points of u. If u is a 

fixed f-open ultrafilter then C(u) contains exactly one point. 

Proof: Since U is fixed a (u) ::;: 0 and so C (u) ::;: <1>. 
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Let Xl and Yl be two distinct fuzzy singletons such that both belong 

to C (u). Since X is fT2, we can have !J.E N (Xl) and yE N (Yl) such that 

~ /\ Y = O. If Xl and Yl are cluster points, then !J. /\U ~ 0 and Y /\U ~ 0 for every 

U E U. Therefore!J.E u and yE U which is not possible. 

Hence C(u) contains exactly one point. 

3.2 f-H closed spaces: -

3.2.1. Definition: A fuzzy topological space (X,8) is said to be closed in (Y;t) 

ifClyX = X. (Closure is with respect to the fuzzy topology of Y). 

X is said to be fuzzy Hausdorff closed or (f-H closed) if X is closed 

in every fuzzy Hausdorff space containing X as a subspace. 

3.2.2. Theorem:- For a fuzzy topological space X , the following are 

equivalent. 

i) X is f-H closed 

ii) Every f-open filter on X has a non empty adherence. 

iii) For every f- open cover of X , there is a finite subfamily whose 

union is dense in X 

Proof: 

i)::::::>ii) Let (X, 8) be f-H closed and P be an f-open filter on X 

-
such that a (P) = 0 where a (P) = /\{ !J. :!J.E P}. 

Let Y = X u { P}. 
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Define I.l to be f-open in Y and write I.lEt if I.l/\ X is open in X 

and PE I.l implies I.l /\ X E CF. 

Then J.!I and 1.l2 Et=> 1.l1/\ X E 8 and 1.l2/\ X E 8. 

:. (J.!I /\1.l2) /\X E 8. 

if E 111/\ 1.l2 => CF E I.lI and CF E 1.l2 

=> (1.l1/\ X) E CFand (1.l2/\X)E CF. 

=> (J.!I /\ 1.l2) /\ X E CF. 

:·I.lI/\ 1.l2 Et. 

!li Et=> I.li /\ X E 8 and CF E I.li implies I.li /\X E CF. 

Then (Vl.li) /\ X = V (I.li/\ X ) E 8 and (Vl.li /\ X) E CF. 

Therefore v I.li Et. 

That is (Y,t) is a fuzzy topological space and X is not closed in Y. 

Since X is fuzzy Hausdorff, for every distinct fuzzy points in X we 

can have disjoint f-open sets in Y. 

Let xp be a fuzzy singleton in X with support x. Since a( P) = 0, 

a(l})(x) = 0 for every XEX. i.e. there exists some Y E CFsuch thaty (x) = 0, i.e. 

y(x) = O. Then there exists an open neighbourhood 11 of xp such that Y/\11=O. 

Therefore, Y u {CF} and 11 are disjoint open neighbourhoods of CF and xp in Y. 

Therefore Y is Fuzzy Hausdorff. But X is not closed in Y. Thus X 

is not f-H closed. 
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Therefore, X is f-H closed ~ a (rr) :t:. O. 

ii)=:>i) Suppose every f-open filter on X has a non empty adherence. To 

show that X is f-H closed. 

Suppose X is not f-H closed. i.e., there exists a fuzzy Hausdorff 

space Y such that X is a subspace and cly ( X ) :t:. X. Let xp be a fuzzy singleton 

in cly ( X ) \ X with support x. 

Let P= {Jl/\ X: Jl Ft, Jl(X) = I}. Then 0 ~ P. 

Therefore Y\/\Y2 E P. 

If8 > Y and Y E P, then OE P. Therefore P is an f-open filter on X. 

-
a(q;)=t\{ Jl:JlEP}. 

Y is fuzzy Hausdorff. Therefore for every distinct fuzzy singleton 

in Y, there exist f-open sets Y and 0 such that y/\o=O 

Therefore a (rr)= 0, which is a contradiction. 

Hence X is f-H closed. 

ii)::>iii) Suppose every f- open filter on X has a non empty adherence. 

Let C = { Jli: iEI} be an open cover for X such that for any finite subset A of 

C, cl(VYi: Yi EA) :t:.1. 
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Let CF= {8 : 8 open and 8 ~ 1- CI(VYi), YiEA} 

Then O!l CF. 

:. Jll /\ Jl2 E CF. 

Let 11 be an f-open set such that 11 ~ Jl and JlE CF. 

Then 11 E CF. Therefore CF is an f-open filter on X. 

Therefore ax (1) :j; 0 ::::::> C has a finite sub family whose union is dense in X 

iii)~ii) Let CF be a fuzzy-open filter on X such that a (1) = O. That is 

- -
I\{ Jl: JlE P }=O. So {1- Jl :JlE CF} is an f-open cover for X. Then for a 

finite subset eft of P, { l-y:y Ej{ } is a finite sub family of this open cover. 

f-cl {v {l-y : YEA} = v (f-cl( 1- y) : YEA}. 
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= v {1- f-int(f-c1y): yE Jt} 

~ 1- (I\Y: yE ;.:{) -7:1 (since I\{Y: yE Jt } -7: 0) 

which is not true by iii) 

Therefore ax (p) -7: 0 :~ /5 . .1 :.: ~: '0 .. ? ~ 
fl!~ 

3.3 s-continuous mapping:-

3.3.1 Definitions: Let X be a fuzzy topological space and {Pi} be a set of 

fuzzy points in X. Then for any fuzzy set Y in X, {Pi} is said to be subordinate 

to y denoted as {Pi} C Y if and only if Pi ~ Y for every i. 

3.3.2 Definition: Let X be a topological space and Y be a fuzzy topological 

space. A mapping f from X to the set of fuzzy points in Y is said to be 

s-continuous at XoEX if for every f-open set y such that f(xo) E y there is an 

open neighbourhood U of Xo such that f(el(U)) c el(y). If f is s-continuous at 

every XoEX, then f IS s-continuous on X. 

3.3.3 Example: Let X = R be the set of real numbers with usual topology and 

Y be the fuzzy topology generated by usual crisp topology in R and ~ where 

11: R -+ [0,1] is defined as ~(O) =~ and ~(x)=O V x -7: O. 
4 

Define f from X to the set of fuzzy points in Y as f(x) =(X2)~ 

(fuzzy point with support x2 and value 12 ). Let xER and (a,b) be an open 

interval such that X2 E (a,b). Therefore X(~,b) is an f-open set in Y containing X2. 
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Correspondingly there is an open set U=( -la, -lb) in X such that f ([ -la, -lb]) is 

subordinate to X[a.b). i.e. f( el (U) ) c elX(a.b). 

3.3.4 Definition(s-regular): A fuzzy topological space X is said to be strong 

regular (or s-regular) at XEX if for each f-open set y such that y(x) =1 there 

exists a crisp open set U containing x in X such that U c cl U c y. 

3.3.5 Result: Let SeX, Y) denote the set of all s-continuous mappings from 

the topological space X to the fuzzy topological space Y. If Y is s-regular then 

S(X,Y) = C(X,Y') where C(X,Y') is the set of all continuous functions from 

X to Y' - the back ground space of the fuzzy topological space Y. 

Proof: Let fE S(X,Y). Let XoEX and V be any open set in Y' such that 

f(Xo)E V.(Then V is an f-open set). Since f is s-continuous there exists an 

open set U containing Xo such that f(el(U» c el(V).i.e. feU) cV. Therefore, 

f is s-continuous. 

:.S(X,Y) c C (X,Y') (1) 

Now let f E C (X,Y') and y be an f-open set in Y' such that f{Xo)EY. 

-
Since Y' is s-regular there exists an open set V in y such that f(xo) E V C V c y. 

f is continuous. Therefore there exists an open set U in X such that XoE U and 

- -
feU) cV. Therefore f(el(U)) cV c y c y. 

i.e. f is s-continuous. 

Therefore C (X, V') c SeX, Y) (2) 

Hence sex, Y) = C (X, V') 
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3.3.6 Remark: The result holds also when Y has the associated topology 

instead of the background topology. 

3.3.7 Result: Let f be an s-continuous mapping from the topological space X 

to the fuzzy topological space Y. If X is H-closed, then Y is f-H closed. 

Proof:- Let C be an open cover for Y. For each XEX, there is an open set 

IlE C such that f(x)E I-l. Since f is s-continuous, there exists an open set say 

U (x) in X such that f(clU(x)) c cl(I-l). 

X is H-closed. Therefore for every open cover of X, there is a fmite 

family whose union is dense in X. Therefore there is a finite subset F such that 

x cl (u {U (x):xEF}) 

= u cl{U (x):xEF} 

Therefore f(X) = u (f {clU(X):XEF}) 

~ v (clJ.!i), i=1,2 .... n, n =IFI 

That is Y ~ v cl(l-li), I-li E C 

:. The open cover C of Y has a finite sub cover whose union is 

dense in Y. Therefore Y is f-H closed. 

3.3.8 Theorem: Let {Xi,iEI} be a set of topological spaces and {Vi, iEI} be a 

set of fuzzy topological spaces. Also for each i El, let ~ be s- continuous 

from Xi onto the set of fuzzy singletons in Vi. Then 
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b) $~: EBXi~ EBYi are both s-continuous . 

Proof: 

al For each i, fi' s are s-continuous from Xi to Vi. Therefore if Xi E Xi and Yi' s 

are open sets in Yi such that ~(Xi) EYi, then there exist open sets Ui containing 

Xi such that fi (Ui) is subordinate to Yi. 

n 

SinceYi's are open in Yi. Y = /\ tr,-I (Yi) is open in Y=nYi 
,=1 

Let x E X = 7tXi 

Therefore f(x) E Y and Y is open. 

Then U is an open set containing x. 

t{U) =f(UI xU2x ........ Dn x X x X ... ) 

= (fl ( D I), f2 (U2) , ... ) 

Each fl( UI), f2 (U2) etc are subordinate to,.Yi, 12 .... 

Therefore f( U) is subordinate to y. 

Hence 7t~ = f is s-continuous. 

b) Now f = EB ~ defmed from EBXi to EBYi as nx) = f~(x) if x E Xi 

~, otherwise, 
~ s-continuous since each ~ is s-continuous . 

************ 
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CHAPTER-4 

FUZZY ABSOLUTES®n 

4.0 Introduction: -

The set R(X) of all regularly closed subsets of a topological space 

X form a Boolean algebra, with complement defined as A C = cl (X \ A) for 

AE R(X). The absolute of a topological space X introduced by Iliadis in 1963 

involves the Stone space of R(X) which is based on its ultrafilters. 

IX -the set of all fuzzy subsets of X fonns a pseudo Boolean algebra 

with pseudo complement as ~' = 1-~. In chapter 1 we have constructed the 

Stone space of fuzzy sets. In chapter 2 we proved that the set FRC(X) of all 

fuzzy regularly closed subsets of X is a pseudo complemented lattice which 

is also complete. Assuming the distributivity, we can say that FRC(X) is a 

pseudo Boolean algebra and hence the concept of absolutes can be extended 

to fuzzy context. But in the case of fuzzy sets, FRC(X) becomes distributive 

in fuzzy topological spaces satisfying the following property. 

" If J...I. is fuzzy regularly open and y is any fuzzy open set in X such 

that f-cl ~ = f-cl y, then for any fuzzy open set 8 in X, f-cl (~ 1\ 8) = f-cl (y 1\ 8)." 

[At the moment we do not know whether this IS a necessary 

condition for distributivity]. 

@ Some of the results in this chapter were communicated to Indian Journal of Mathematics, Allahabad 
Mathematical Society. 
J Some results of this chapter were published in the proceedings of the U.G.c. Sponsored National 
Seminar on Fuzzy Mathematics and Applications at U.C.College , Aluva March 1999. 
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A fuzzy topological space having this property is calIed B-fuzzy 

topological space [BI]. In [BI] it was proved that FRC(X) is a fuzzy Boolean 

algebra by considering Lowen's fuzzy topological space [LO]I and by taking 

the complement of J.lE IX as the unique element J.l' such that J.l /\ J.l'~~ 
2 

1 
and J.l v J.l' ~-

2 

Throughout our work we are usmg Chang's fuzzy topological 

space. So in the first section of this chapter we are giving examples to B-fuzzy 

topological space in Chang's sense. Using this we prove distributivity in 

FRC(X). Therefore considering the B-fuzzy topological space, the set FRC(X) 

becomes a pseudo Boolean algebra. 

In the second section of the chapter we introduce fuzzy absolutes as 

the Stone space of FRC(X). For constructions we are making use of the fixed 

FRC ultrafilters obtained in chapter 2. 

The third section proves the uniqueness and some properties of the 

fuzzy absolute. In section 4 we are constructing fuzzy absolutes by using 

s-fixed FRC ultra filters instead of fixed FRC ultra filters. Its properties are 

proved with suitable examples. 

In the last section we introduce the fuzzy absolutes of sums and 

products of fuzzy topological spaces. 
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4.1 Pseudo Boolean algebra of fuzzy regularly closed sets 

4.1.1 Definition: A fuzzy topological space X ( in Chang's sense )satisfying 

the following condition (A) is called B-fuzzy topological space. 

Condition A:- If!..l is fuzzy regularly open and y is fuzzy open in X such 

that f-c1!..l = f-c1 y then for any fuzzy open set 8 in X , f-c1 (!..l/\ 8) = f-c1( y /\ 8). 

4.1.2 Example: 

Let R be the set of real numbers with usual topology. Define !..ll and 

1 
~2 from R to [0,1] as !..l1(0) = -, !..l1(X) = 0 V x:;tO and 

4 

2 
!..l2(0 ) =5' !..l2 (x)=O V x:;tO. 

Let F be the fuzzy topology generated by usual crisp topology in R 

and !..ll and !..l2· 

- , 
- X{O) /\ !..l2 

f-int ( f-cl (Ill) ) = 1l2· 

f-cl (1l2) = X{O} /\1l2' and f-int ( f-cl (1l2) )= 1l2' 

:.!l2 is fuzzy regularly open and III is open in F such that f-cl (Ill) = f-cl (1l2). 

IfOE(a,b), then X{a,b} /\ III = III and 

X(a.b} /\ 112 = 112 

:. f-cl(X{a,b} /\ Ill) = f-cl (X{a,b) /\ 1l2) 

Also, 
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'If O<l(a,b), X{a.b} /\ ~I X{a.b} /\ ~2 = O. 

X{a,b) V ~I and X{a,b) v ~2 are open sets. 

All the fuzzy regularly open sets and f-open sets are of these types 

and so the condition is satisfied for all f-open sets and f-regular open sets 

Therefore F is a B- fuzzy topological space. 

4.1.3 Example: 

Let X = {a,b,c}. Define ~I, ~2 and ~3 from X to [0,1] as 

~2(a) = 0, ~lb) =1, ~2(C) = 0 

Then t = {0,1'~h~2' ~3} is a fuzzy topology on X. 

f-int (f-cl(~3) = f-int ~I' = ~3 
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Therefore ~3 is fuzzy regularly open and ~2 is f open such that 

111/\ ~2 = 0. Therefore. f-cl (~I 1\~2) = ° 
111/\ ~3 = ~I' Therefore, f-cl(~1 /\ ~3) =f-cl ~I = ~3' 

Hence f-cl (~I 1\ ~2) ~ f-cl (~I 1\ ~3) . 

Therefore (X;t) is not a B-fuzzy topological space. 

4.1.4 Example. 

Let X={ a, b}. Define ~I and ~2 from X to [0,1] as 

2 1 
~2(a) = -, ~2(b) =-

5 2 

Then 't = {a, 1, ~(, ~2, ~lv~2, ~11\~2} is a fuzzy topology on X. 

f-cl (~I) = 1, f-cl (~2)= ~2' , f-cl(~11\~2) = ~2' 

f-int (f-cl ~2)= f-int ~2' = ~2' 

:. ~2 is fuzzy regularly open and ~II\ ~2 IS f-open such that 

f-cl(~2) = f-cl(~11\~2)' 

f-cl«~1 V ~2) 1\ ~2) = f-cl«~1 V ~2) 1\(~11\~2))' 

Here ~2 is the only f- regularly open set and so this exhausts the 

various possibilities. Therefore (X,'t) is a B-fuzzy topological space. 
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4.1.4 Theorem: Let X be a B-fuzzy topological space. Then the set FRC(X) of 

all fuzzy regularly closed subsets of X is a complete pseudo Boolean algebra. 

Proof: 

By proposition 2.2.2 and 2.2.3 we have FRC(X) is a pseudo 

complemented lattice which is complete. Therefore it is enough to prove that 

the distributive law holds in FRC(X). 

For A, /-1E FRC(X), A v /-1 = A U /-1 and A /\ /-1 = f-cl (f-int CA n /-1». 

:. f-cl (f-int (AV/-1 » = A v /-1 = f-cl(f-int A) U f-cl(f-int /-1 ) 

= f-cl [f-int A U f-int /-1] 

Since X is a B-fuzzy topological space, for any open set 8 in X, 

f-cl (8 /\ f-int (A v /-1 ) )= f-cl[8/\ (f-int A U f-int /-1)] 

Now, f-cl[f-int (A n( /-1 v y)] 

f-cl [f-int A n f-int (/-1 v y)] 

= f-cl [f-int A n (f-int /-1u f-int y) 

f-cl [(f-int A n f-int /-1) u(f-int A n f-int y )] 

f-cl (f-int (A n/-1» u f-cl (f-int (A n y» 

= (A /\ /-1) U (A /\ Y ) 

( A /\ /-1) v ( A /\ Y ). 

Similarly A v (/-1/\ Y ) = (~v /-1) /\ (AV y) 

:. FRC(X) is a pseudo Boolean algebra. 
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4. 2 Fuzzy Absolute: 

4.2.1: Definition: Let X be a B-fuzzy topological space and Or(X) be the set 

of all FRC- ultrafilters on X. For IlEFRC(X), let Ar(ll) = {u E 0r(X) :Il E u} 

Then Ar is a function from FRC(X) onto P(Or(X)). 

4.2.2 Definition: The fuzzy Stone space of FRC(X) is called the fuzzy 

Gleason space of X (f- Gleason space in short) and is denoted as f-eX. 

Therefore the elements of f-eX are FRC-ultrafilters on X and a basis for open 

sets off-eX is {Ar(Il): IlEFRC(X)} 

4.2.3 Theorem: f-eX is a compact, T2, zero dimensional space. 

Proof: f-eX is the Stone space of FRC(X). There for the theorem follows 

from the theorem 1.3.2. 

4.2.4 Theorem: The fuzzy Gleason space f-eX is B-extremally disconnected. 

Proof: Since f-eX is a Stone space the theorem follows from 1.4.3. 

4.2.5 Remark: In crisp topology the Gleason space is extremally disconnected. 

But here, as in example 1.4.4 the reverse inclusion does not hold. Therefore the 

space is only B- extremally disconnected. 

4.2.6 Definition: A fuzzy topological space X is said to be weak regular if 

for each Xo E X and an f- closed set y not containing Xo in X, there exists a 

fuzzy regularly closed set A in X such that A (xo ) =1 and y /\A = 0 . 
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4.2.7 Definition: Let X be a B-fuzzy topological space which is weak regular. 

Then the space {UE f-eX : 1\ U :;t:0} equipped with a subspace topology 

inherited from f-eX, is called the fuzzy absolute of X and is denoted by f-EX. 

Therefore elements of f-EX are fixed ultra filters on X and a basis for open 

sets is {Ar(J-L) n f- EX: J-LEFRC(X)}. 

4.2.8 Definition: Let X be an fT2 space and p be a fuzzy singleton in X with 

support x. Then by F(P) we denote the family of all fuzzy regularly closed 

neighbourhoods ofp. i.e., F(p) = {J-LEFRC(X): f-int J-L(x)=]}. 

4.2.9 Result: F(p) is an FRC-filter. 

Proof: Let J-LI and J-L2 E F(p). 

Then f-int J-LI(X) = 1 and f-int J-L2(X) = 1. :. f-int (J-L11\J-L2) (x) = 1 

i.e. J-L \1\J-L2 E F(p). 

Let J-LI E F(P) and J-L2 ~ J-LI' Then f-int J-L2(X)= 1. 

:. 112 E F(P). i.e. F(p) is an FRC-fiIter. 

4.2.10. Definition: A fuzzy singleton which is regularly closed is called a 

fuzzy regularly closed point or frc- point. 

4.2.11: Lemma: Let p be an frc-point in X with support XO' Then there exists 

a U E f-EX such that 1\ U = p. 

Proof: Let F = {J-LE FRC(X): Il(Xo) =]}. Then F is an FRC -filter. Since every FRC-

filter is contained in some FRC-ultrafilter, there exists a U Ef-eX such that Fe U. 
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Therefore 1\ U ~ I\F . 

Thus (I\U )(xo) ~ (I\F)(xo). 

I.e. (I\U ) (Xo) ~ 1. 

If (1\ u) (xo) < 1 , there exists yE U such that y(xo) < 1. Therefore y is 

a fuzzy regularly closed set not containing p. Therefore by weak regularity of 

X there exists AE FRC(X) such that A(XO) = 1 and A 1\ Y = 0 .Since A(XO) =1, 

A E FeU. 

Therefore A 1\ yE U which is not possible. 

:. (/\ U) (Xo) = 1. i.e. (1\ u) ::j; 0 

Therefore, U E f-EX. By theorem 2.3.6, 1\ U is a unique fuzzy point. 

Therefore 1\ U = p. 

4.2.12 Note: Corresponding to every U E f-EX, there is a umque fuzzy 

singleton 'p' in X with support as that of 1\ u. This unique fuzzy singleton is 

denoted as Kf_X(U), This defines a mapping Kr-x from f-EX into the set of 

fuzzy singletons in X. Therefore we use the pair (f-EX, Kr-x) to denote fuzzy 

absolute of X. 

Now, by the above lemma if p is an frc-point in X, then 

correspondingly there exists a U E f-EX such that 1\ U = p. Therefore Kr-x 

becomes a surjection from f-EX to the set of frc -points on X. 
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This shows the difference from the crisp case .In the crisp case. 

corresponding to every XEX, there exists a U E f-EX such that n U = {x}. 

4.2.13 Theorem: f-EX is a dense, zero dimensional sub space of f-eX. 

Proof: f-eX is a zero dimensional space. Being a subspace of f-eX, f-EX is 

also zero dimensional. 

To show that f-EX is dense in f-eX, it is enough to show that for 

each IlEFRC(X) such that 11:1:- 0, f-EX n A r (ll) :I:- <1>. 

Choose an frc- point p with support "0 such that 11("0)=1. 

Let F = {y E FRC(X): Y("o) =1}. Then F is an FRC-filter which is 

contained in some FRC-ultrafilter (say) u. Then 11 E U. Therefore U E A r(Il). 

Also 1\ U :1:-0. :. U E f-EX. U E f-EX n Ar (11). 

i.e. f-EX n Ar (11) :I:- <1>. Hence f-EX is dense in f-eX. 

4.2.14. Note: f-EX is a dense subspace of f-eX and f-eX IS compact. 

Therefore f-eX is a compactification of f-EX. 

4.2.15. Theorem: f-EX is B- extremally disconnected 

Proof: By 1.4.2 any dense subspace of a B-extremally disconnected space is 

B- extremally disconnected. f-EX is a dense subspace of f-eX which IS 

B -extremally disconnected. Therefore f-EX is B -extremally disconnected. 

4.3 Properties of the pair (f-EX, K f-X) 

4.3.1 Proposition: Let U E f-eX and p be a fuzzy singleton in X with 

support Xc. If U E f-EX and Kf.X(u) = p, then F(p) c U. 
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Proof: F(P) = {J-LEFRC(X) : f-int J-L(x)=l} 

Suppose F(P) et. u .. Then there exists YEF (p) such that yf/. U. 

yE F (P) => f-int y(xo)=l. 

When Y f/. U, by theorem 2.2.7(ii) there exists a 8E U such that Y /\ 8 = o. 

Y(Xo) =1. Therefore 8 (Xo) = O. 

Therefore 8E U and 8 (Xo)=O. Therefore /\ U :top. i.e. Kf_X(U):to p. 

Hence ifu E f-EX and K f.X (u) = p, then F(p) c u. 

4.3.2 Proposition. If J-LEFRC(X), then Kf-X (f-EX n Ar (J-L) ) = {Pi} where {Pi} 

is subordinate to J-L. 

Proof: By definition 3.3.1 , {pd is subordinate to J-L if Pi:<::;; J-L for every i. 

Let U E f-EX n Ar (J-L) and Kf-X (u) = p where cr o(p) = {x} 

Then U E f-EX and U E Ar (J-L). 

That is /\ u:to 0 and J-L E U. 

Since Kf-X (u) = p, /\ U = P 

Therefore, J-L E U => J-L( x)= 1 . 

That is p:<::;;J-L. 

Therefore, Kf-X (f-EX nAr(J-L)) = {pd where Pi:<::;; J-L for every i. 

That is {pd is subordinate to J-L. 

4.3.3 Proposition: Let p be an frc-point in X with support x and J-LE FRC(X). 

Then /-lEF(p) => K~x (p) cAr (J-L). 

Proof: Let U E K~x (p). Then U E [-EX and Kf-X (u) = p. 
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Therefore by proposition 4.3.1 F(p) c u. 

Therefore, if Il E F(p) then Il E U. 

That is U E Ar (Il). 

:. K;=x (P) c ArCll)· 

The converse of this result IS not true as it IS seen from the 

following example. 

4.3.4 Example: Let R be the set of real numbers with usual topology. Define 

11]' 112 and 113 from R to [0,1] as 

3 
1l1(0) = - and Ill(x) = 0 \;j x ~ O. 

4 

3 
112 (0) = - and 1l2(X) = 0 \;j x ~O. 

5 

.1 ., r 
.\ ,..( 

'\ v 

'-. 
,.> 

Let R F be the fuzzy topology generated by usual crisp topology in 

Rand Ilhll2 and 1l3. Then as in example 4.1.2 R F is a B- fuzzy topology on R. 

Let K be any closed set in R. Then closed sets in R F are {K}, 

Ill" 1l2' ,{K} AIlI" {K}AIl2', 1,0. Let ~ be any closed interval in R with zero not 

an end point. Then as in example 2.3.4 X{Ko} is fuzzy regularly closed in R F. 

f-int 1l2' XR'IO} 

f-cl(f-int 1l2') = 1l2' 
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:. 112' is fuzzy regularly closed 

Similarly we can show that XKo;\ Ill" XKo;\ 112' are fuzzy regularly closed. 

Let f-eX = { U : U is an FRC ultrafilter on R F} 

and f-EX = { U E f -ex: ;\ U ~ O}. 

Let Kf-X be the mapping from f-EX onto the set of frc-points on R F. 

Take p = X{Q}. 

Then K~x (P) = { UEf-EX : ;\ U = p}. 

Let uEK~x(p).Then;\ U=p. 

That is 11(0) = 1, for every 11 E U. 

That is 113 E U ( by proposition 2.2.9). 

1 
i.e. 113 (0) =1 which is not true since 113(0) = 

2 

But, f-int 113' = X R \{Q} V 113· 

1 
:. f-int 113'(0) = ( X R \{Q} V 113) (0) = "2 ~ 1. 

Therefore 113' ~ F(P). 



66 

4.3.5 Remark: In the case of non crisp sets, the following converse holds. 

If p is an frc-point with support x and if K~x (p) c (Ar(I-{)t, then J.lEF(p). 

Proof:- Suppose J.l ~ F(p) where F(p) ={J.l EFRC(X) : f-intJ.l(x)=I}. 

If J.l~F(P), then f-int J.l(x):;t:l. 

Let UE K~x(P). Then Kf-X (U) = p. i.e. 1\ U = p. 

Suppose U~ Ar(J.lC). Then J.lc ~ U. Therefore by the theorem 2.2.7 (ii) there 

exists T] E U such that J.l C 1\ T] = o. 

TjE U => T](x)=1 

:.IlC(x) = O. But J.lC(x) = 1- f-int (x) :;t: 0 since f .. int J.l(x):;t: I. 

:. U E ArCJ.lC) 

i.e.Kr-x(P)c ArCJ.lC) 

:. IfJ.l~ F(P), then Kr-x(p) c Ar(J.lC) 

That is if Kr-x(p) r:t. Ar(J.lC) then J.lEF(p). i.e. if there is an ultrafilter U such 

that UE Kr-x(p) and U~ ArCJ.lC), then J.lEF(p). 

i.e. if UEK r-x (P) and UE(ArCJ.lC)t ,then J.lEF(p). 

There fore if Kr-x (p) c (Ar(J.lC)t , then J.lEF(p). 

4.3.6 Note: In the case of crisp sets, (Ar(I-1C)t = ArCJ.l). Therefore the above 

results becomes J.lE F(P)<=> K ~x (p) cArCJ.l)· 
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4.3.7 Theorem: The mapping Kf-X from f-EX into the set of f-singleton in X is 

s- continuous and compact. 

Proof: To prove the s- continuity of Kf-X . 

Let UEf-EX and y be an f-open set in X such that Kf_X(U)EY. 

Let Kf-X (u) = p. Then 1\ U = P and PEY. 

Let cro(P)={x}. 

Put 8 = f-cl(y). Then f-int 8 = y. 

:.pEy ~ pEf-int 8 ~ f-int 8 (x)=l 

:.8EF(p). 

Hence by proposition 4.3.3 K;=x (p) c ArC8). 

:. U E ArC8) .i.e. 8 E u. 

:. U E f-EX nArC8), where f-EX nArC8) is an open set. 

f-EXnArC8) is also closed. 

By proposition 4.3.2 Kf_x(f-EX nAr(8)) = {Pi}, where{Pi} is subordinate to 8. 

i.e. Kr-x (f-~X nAr(8)) is subordinate to 8 = f-cl(y). 

Therefore by definition 3.3.2 K f-X is s-continuous. 

To show that Kf-X is compact it is enough to show that K;=x (p) is a 

closed subset of f-eX. 

Let UE(K;=x (p)f Then Ufl K;=x (p) and so Kf-X( u):;t:. p. i.e. there 

exists a /lE U such that /l(x):;t:.l. Since /lE U, U EAr(/l) and Ar(/l) is open. 

Now we can show that Ar(/l) c (K;=x (p)t -
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If not, there exists an ultratilter say t£ in Ar (Il) and t£~(K ;~x (p)t. 

i.e. JlE Pand Kf-X (P) = p. i.e. JlE P and 1\ P=l 

.". (1\ P )( x)= 1 

i.e. y(x)=l for every yE P. Therefore Jl(x)=l which is not true. 

Hence (K ~x (P) t is an open set and so K ~x (p) is closed . 

.". The mapping Kf-X is compact. 

Note: Unlike crisp situation, the mapping Kf-X is not closed. 

4.3.8 Example: Let R be the set of real numbers with usual topology. Define 

III and Jl2 from R to [0,1] as JlI(O) =~ and JlI (x) = 0 \;j x:;t:O, 
4 

Jl2(0) = ~ and Jl2 (x) = 0 \;j x:;t:O . 
5 

Let R F be the fuzzy topology generated by R , Jl JandJl2. Now 

as m example 4.3.4, RF is a B-fuzzy topological space with 

Let f-eX = { U : U is an FRC ultrafilter on R F} and 

f-EX = { UE f-ex : 1\ U :;t:O}. 

Let H = { UEf-EX: JlI'E u} 

= [-EX n Ar(JlJ') 

:. H is closed. 
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Now let UEH. Then UE f-EX and UE Ar(fll') 

:./\ u=t:Oandfll'E U. 

Therefore Kr-x (u) is a fuzzy singleton with support other than zero. 

:. Kr-x (H) c { Pi: Pi(O) = O} (1) 

That is Kr-x (H) is a sub set of the set of fuzzy singletons with a 

non zero support. 

Let q be any fuzzy singleton with support Xo =t: O. 

We have, f-int fll' = XR \{Ol. Therefore f-int fll' (Xo) =1, for Xo =t: 0 

:.fll' EF(q). 

Hence by proposition 4.3.3 K;::'x (q) c ArC fll') 

:.K;::'x (q)cH. 

i.e. qEK r_x (H). 

Therefore {Pi: piCO) = O} c K f -x (H) 

Hence Kr-x(H) = {Pi: Pi (0)= O} 

= R\{O} which is not closed. 

Therefore K r-x (H) is not a closed map. 

4.3.9 Uniqueness of Fuzzy absolutes 

(2) 

Theorem: Let X be a B-fuzzy topological space and Y be a B-extremally 

disconnected zero dimensional space of fuzzy sets detined on some set Y in 
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which every FRC filter is convergent. Let' f' be an s- continuous surjection 

from Yonto the set of frc points on X. Then there is a continuous mapping h 

from f-EX onto the set of fuzzy singletons in Y such that K f -x = foh. 

Proof: 

f-EX 

U I\U 

Y is a B- extremally disconnected zero dimensional space of fuzzy 

sets in which every FRC-filter is convergent. 

Let BE B(:Y) where B(:Y) is a clopen base in Y. Then B is both 

open and closed. Let YEB. Since f is s-continuous for every fuzzy open set Il 

in X such that f(Y)E Il, there is an open set B containing y in Y such that 

f(cl B) is subordinate to cl(ll) = y. i.e. f(cl(B) c y. i.e. f(B) c y. Then this y is 

f-regularly closed and yE U, for some U E f-EX. 

Define F= {Tr llEB, BEB(;}), f(B) c y, y EU}.Then Fwill form 

a filter base which will generate an FRC filter (say) P. Let u' be an FRC 

ultrafilter containing P. Then 1\ u' is a unique fuzzy point in :Y Let 1\ u' = xq. 



Define h from f-EX to Y as h(u) = I\U' = xq• 

Then (foh) U = f(h(u» = trl\U') 

~ f( l\{rrllEB; f(B) c y, y EU}) 

=1\{f(l1) : llEB, trB) ~ y, y EU} 

(foh) (u) ~ l\u=Kr_x(U). 

But Kr_x(u) is a fuzzy singleton. 

Therefore foh = K f-x. 

To show that h is closed. 

Let F be a closed set in f-EX. Then there exists a family {J.li, iEI} c FRC(X) 

such that F = n{ArCJ.li) n f-EX}. 

To each i, there is a BEB(;Y) such that f(Bi)~J.li' J.li EU, UEf-EX 

Then h(F) = h (n {Ar(J.li ) n f-EX}) 

= n {h (ArCJ.li) nf-EX)} 

= n {Bi: f(Bi) c J.ld which is closed in Y . 

Therefore, h is a closed map. 

To show that h is continuous. 

Suppose UEf-EX and BEB(.Y) where h(u)EB. 

When h(U)EB, f(B) ~ 11, 11 E U and so uEAr(J.l) 

Let WEAr (11). Therefore 11 E W. 



Then heW) E B, f(B)~ ~li, ~iEW. 

Let W' = {y:y E B, f(B)~ TJ, TJEW} 
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Then heW) = nW' = n{ Y : YEB, f(B)~ ~i '~iEW} E B. 

i.e. WEAr (TJ) ~ heW) EB, open 

:. heAr (TJ)) c B 

:. h is continuous. 

Now to show that h is onto. 

Let p be any fuzzy singleton in Y with support y and 

Then U [y] is a filter base which generate a filter say u'[y]. Let V(y) be the 

ultrafilter containing u'[y]. Then I\U '[y] = I\{~j: f(Bj) ~ ~d 

Therefore 1\ V(y) = f(Bk) 

Hence 1\ V(y);tO. 

That is V(y) E f-EX. 

= f(Bd, where f{Bd = min f(BJ 

:.corresponding to every pE Y there is a V(y) E f-EX such that h(V(y)) = p. 

Therefore the mapping h is onto. 

4.3.10 Note: The pair(Y,f )constructed in 4.3.9 is said to be equivalent to 

(f-EX, K f-X ) and is denoted by (f-EX, Kr-x ) - (Y,f). Then (Y,f) is the fuzzy 

absolute of X up to equivalence. 
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4.4 Fuzzy absolutes using s-fixed FRC ultrafilters 

Instead of taking the fixed FRC ultrafilters, the fuzzy absolutes also 

can be constructed using the strong fixed (s-fixed) FRC ultrafilters defined in 

(2.3.7). Then fuzzy Gleason space f-eX is defined as in definition 4.2.2. But 

the fuzzy absolute is defined as follows. 

4.4.1 Definition: Let X be a B-fuzzy topological space which is IT2. Then the 

set {u E [-ex: n{(JoC~): ~ EU} ;t:</>} = {u [x] E f-ex, XEX} equipped with 

a subspace topology inherited from f-eX is called the fuzzy absolute of X 

and is denoted by f- E'X. 

Therefore here f-E'X consists of fuzzy principal ultrafilters on 

FRC(X) viewed as subspace of f-eX. 

4.4.2 Lemma: Let X be B-fuzzy topological space. Then 

1) If U E f- E'X, then n { (J o( ~ hl E u} contains exactly one point. 

2) ifxEX, there exist UEf- E'X such that n{(Jo(~):~EU} = {x}. 

Proof: 

1) If UEf- E'X, then it is a principal FRC-ultratilter of the fonn 

U [x] = {~E FRC(X):~(x) > O}. Therefore, n{(Jo(~):~EU} = {x}. 

2) Let XEX. Then F(x)={~EFRC(X) : f-int ~(x)=l} is an FRC-filter. 

Therefore always there exists a U [x] in f-eX such that F(x) c U [x] and this 

u[x]Ef- E'X. Then ~(x»O, \;j ~EU [x]. 
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Therefore n {cro(~) : ~E u} = {x}. 

:.IfxEX, there exists UEf- F'X such that n{cro(~):~EU} = {x}. 

4.4.3 Note: If UE f-E'X, we denote the unique point of X belonging to 

n{ crO(~):~E u} by Kf-x{u), Therefore by lemma 4.4.2. Kf-x' is a well defined 

surjection from f-E'X onto the set of fuzzy singletons in X. So we use the pair 

(f-E'X, Kf-x') to denote the fuzzy absolute. 

4.4.4 Remark: In the case of absolutes using fixed FRC ultrafilter, we 

have Kf-x is a mapping from f-EX into X. In the lemma 4.2.8 it was proved 

that Kr-x is a surjection from f-EX onto the set of frc-points in X. But here 

Kf-x' is a surjection from f-EX onto the set of crisp points in X. 

As in the case of fixed ultrafilters, here also we can prove the 

properties of f-E'X. Some of them are explicitly proved here, to show the 

differences occurring in the two cases. 

4.4.5 Theorem: Let X be a BOo fuzzy topological space. Let uEf-8X and XEX. 

IfuE f-E'X, and Kr-x' (u) = {x}, then F(x) eU. 

Proof: F (x) = { ~ E FRC(X) : f-int ~(x)= 1 } 

Suppose F(x)cz: U .Then there exists a ~EF(x) such that ~{l U. Therefore there 

exists a yE U such that ~ /\ Y = 0. :.(~/\y)(x) = ° for every x. 

But ll(X):;atO. :. y(x)=O. 

i.e. yEU and y(x)=O. i.e. x {lcro(Y). 

Therefore n {cro(~): ~EU} :;at {x}. 



75 

:. if K f-x' (u) = {x}, then F(x) cU. 

Converse of this result is not true in the case of fuzzy sets. 

4.4.6 Example: Let X, {a,b,c}. Define ~J, ~2, ~3 from X to [0,1] as 

1 
~3(C)= -

2 

Then 1 = {a, 1, ~J, ~2, ~3, ~IV~2) is a fuzzy topology on X. Also 

as in example 4.1.4 (X, 1) is a B-fuzzy topological space. 

Here the closed sets are {a, 1, ~l' ~3, ~2" ~1'1\~2'} 

:. ~1'1\!l2' is fuzzy regularly closed. 

Similarly we can show that f-cl(f-int (~l) *- ~l. Therefore ~1 is not 

f-regularly closed. Also ~3 and ~2' are not fuzzy regularly closed . 

.'. FRC(X) = {a, 1, ~1'1\~2'} 

F(a) = {!lE FRC(X):f- int ~(a) =1} = {I} 

Therefore, F(a) cU. 

~(a) > ° for every ~E U. :. UE f-E'X . 

But Kf-x'(U) = n{cro(!l):~EU} = {a,b,c}*-{a}. 

Therefore even if F(x) cU, K f-x' (u)*- {x} 
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4.4.7 Remark: Converse of 4.4.5 is true only in the case of crisp sets. 

Proof: Let U E f-eX and F(X) c U. 

Let y E FRC(X) such that y(x)=O 

Then (1- y)(x) = 1 

i.e. f-int (f-cl(1- y)) (x) = 1 

i.e. f-int (yC)(x) = 1 

Therefore, lE F(x) cU. Therefore lE U. 

If y is not crisp, then y 1\ yC is not equal to zero. :. l E U does not 

imply y ~U. 

But ify is crisp, YC E U.~ Y ~ U. 

:. ify(x)=O, y~U. 

Hence for every yE U, y(x»O. 

:. U E f-E'X and n {crO(JlhlEU} = {x}. 

i.e. Kf-X-< u)= {x} 

4.4.8 Theorem:- If Jl E FRC(X), then K f-x' (f-E'X nAr(Jl)) = cro(Jl). 

Proof: Let JlE f-E'X and U E (f-E'X n ArCJl)). Then U E f-E'X and 

U E Ar(Jl). 

i.e. y(x» 0 for every y E U and JlE U. 

Therefore Jl(x» O. That is XEcro(Jl). 

i.e Kf-x' (u) = {x} and xEcro(Jl). 

Therefore K f-x' (f-E'X n ArCJl)) = cro(Jl). 
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Conversely, let XEO'o(Jl). Then Jl(x» O. 

Therefore, there exists u [x] E f-E'X such that Jl E U [x]. 

That is U [X]E( f-E'X (l Ar(Jl)) and Kf-x' (u [x])={x}. 

:. x E Kf-x' (f-E'X (l Ar(Jl)). :. Kf-x' (f-E'X (l Ar(Jl)) = O'o(Jl). 

4.4.9 Remark: Here corresponding to each XEX, there IS a umque 

U [X]E f-E'X such that Kf-x' (u)={x}. Therefore unlike in crisp topology this 

mapping Kf-x' is one to one in nature. But as in the section 4.3 Kf-x' is 

s-continuous and compact but not closed. 

If we consider the s-fixed FRC ultraflters, the mapping h defined 

in 4.3.9 becomes one to one. Therefore in this case the theorem 4.3.9 can be 

stated as follows. 

"Let X be a B-fuzzy topological space and Y be a B-extremally 

disconnected zero dimensional space of fuzzy sets defined on some set Y in 

which every FRC filter is convergent. Let f be an s-continuous surjection from 

Y onto the set of fuzzy singletons in X. Then there is a homeomorphism h 

from f-E'X onto the set of fuzzy singletons in Ysuch that Kf-x' = foh. 

So the absolute f-E'X is unique and we say (f-E'X Kf-x,) IS 

equivalent to (:y'f). i.e. (f-EX, kf-x) ~ ( :y'f). 

4.5 Fuzzy absolutes of products and sums: 

4.5.1 Theorem: If {Xi, i E I} is a set of fuzzy topological spaces, then 

(a) (f-EX, Kf-X) ~ (f-E(1tf-E Xi), 1t Kf-Xi 0 Kf-7t(f-E Xi) )where X=1tXi . 

(b) (f-E (EBXD,Kf(EBXi) ) ~ (EB f- EXi, EBKf-Xi) 
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Proof: Kf-Xi is an s-continuous sw:iection from f-EXi onto Xj and Kc-x is an 

s-continuous swjection from f-EX onto X where X=nXi .Since each KC-Xi is 

s-continuous, by theorem 3.3.8 nKC-Xi is s-continuous from n(f-EXi) onto nXi. 

f-EXi ' s are B-extremally disconnected and Hausdorff. Therefore 

n(f-EXj) is also Hausdorff and so f-E(n(f-EXi» is B- extremally disconnected. 

Kf-(7t(f-EXi) is s-continuous from f-E(n(f-EXi» onto n(f-EXi) .Therefore, 

nKf-Xi 0 Kf-7t(f-EXi) is an s- continuous surjection from f-E(n(f-EXi» onto nXi. 

Also f-E(n(f-EXj») is zero dimensional. Therefore, f-E(n(f-EXi)) is a fuzzy 

absolute of nXi = X up to equivalence. 

Therefore (f-EX , Kf-X) - (f-E(n(f-EXi)' nKf-xi 0 Kf-7t(f-EXi». 

a) Kf-Xi'S are s-continuous from f-EXi onto Xi . Therefore by theorem 3.3.8 

EB Kf-Xj is s-continuous from EBf-EXi onto EBX j • F-EXi's are B

extremally disconnected and zero dimensional. Therefore EB(f-EXi) is 

also B-extremally disconnected and zero dimensional. :. (f-E(EBXj), Kc

EBxD- (EBf-EXi,EBKf_xi). 

************ 
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CHAPTER-5 

FUZZY ABSOLUTE AS A SET OF F- OPEN ULTRA FILTERS® 

5.0. Introduction 

If X is a fuzzy topological space, then -r(X) - the set of all fuzzy 

open subsets of X fonns a pseudo Boolean algebra with pseudo complement 

defined as, for ~E -r(X), ~c = 1 - f-cl(~) = f-int (l-~). In the third chapter we 

have already introduced fuzzy open filters (f-open filters for short), f-open 

ultrafilters and fixed f-open ultrafilters. 

It is known that in crisp topology, absolutes can be constructed 

using open ultrafilters on X. So in this chapter we are constructing fuzzy 

absolutes by taking -r(X), instead of the fuzzy regularly closed subsets of X. 

The absolute so constructed is denoted by f-E'X. Then the underlying set of 

f- E'X is the fixed f-open ultra filters on X. The second section of this chapter 

gives some properties of f-E'X. Though they are similar to that of f-EX in 

chapter 4, we are explicitly proving this to note the differences in the two 

cases. 

5.1. Fuzzy absolute using f-open uItrafilters 

5.1.1. Definition: Let X be a fuzzy topological space. Then the set of all 

convergent f-open ultra filters on X will be denoted by f-E'X. If xp is a fuzzy 

point in X with support x then N(xp) = {~E-r(X): p:::; ~(x)}. 

® Some results of this chapter were communicated to Ganitha Sandesh, Rajasthan Ganitha Parishad. 
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5.1.2 Lemma: 

Let X be a fuzzy topological space and xp be a fuzzy singleton in 

X. Let UE f-E'X. Then, 

i) if xp E a (u) , N (Xp) C u. 

ii) there is exactly one x E X such that a (u) (x)=I. 

Proof: 

(i) Since UE f-E'X it is a fixed f-open ultrafilter. Therefore the result follows 

from 3.1.8 

ii) By the result 3.1.11, ifxp E a(u) , then Xp is a cluster point. But by lemma 

3.1.12 C(u), the set of all cluster points of U contains exactly one point. 

Therefore. there exists exactly onc x E X such that xp E a( U) . i.c. there exists 

exactly one XEX such that a(u) (x) =1. 

5.1.3 Remark: From the example 3.1.10 we can see that the converse of5.1.2(i) 

need not be true in the case of non crisp sets. In the case of crisp sets 

corresponding to every XEX, there exists a U (x) EEX such that a(u (x)) = {x}. 

But because of the example 3.1.10 this is not true in the case of non crisp sets. 

5.1.4 Definition: Let X be a fuzzy topological space and let f-8 'X denote the set 

of all f- open ultrafilters on X. If Jl E "C(X), let O(Jl)= { U E f-8'X : JlE U }. 

Then f-E'X= { U E f-8 'X : a (u) :t:0}. 
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5.1.5. Lemma: Let IJ., yE "C(X). Then, 

(i) O(IJ.) = <I> if and only if IJ. = O. 

(ii) O(IJ.t\y) = O(IJ.) n O( y ) 

(iii) (O().!))C c O(IJ.C). 

(iv) O().!) = f- S'X if IJ. is dense in X and in particular O( I) = f-S'X 

(v) {O(IJ.): IJ.E "C(X)} is a base for a Hausdorfftopology on f-S'X 

Proof: 

i) Let IJ. = O. Since there is no ultrafilter contains zero. O(IJ.) = <1>. 

Conversely suppose IJ. ~ O. Then there exists x E X such that lJ.(x) ~ O. Let 

P= {y E 't(X): y (x»O}. Then Pis an f-open ultrafilter containing IJ.. 

i.e. PE O().!) :. O(IJ.) ~ <1>. 

i.e. O(IJ.) = <I> if and only if IJ. = O. 

ii). Let U E O( IJ. t\ Y ) 

U E O(IJ. t\ Y )<=> IJ. t\ Y E U 

<=> IJ.E U and yE U by definition of f-open ultrafilter. 

<=> U EO(IJ.) and U E O(y) 

<=> U E O(IJ.) n O(y) 

:. 0 (IJ. t\ y) = 0 (lJ.)nO(y) 

iii) Let U E( O(IJ.)t 

Then U ~ O().!). ie. IJ. ~ U. 

Therefore by note 3.1.5 IJ.c E U and so U E O(IJ.C) 

:. (O().!))C c O(IJ.C). 
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The reverse inclusion does not hold here. The example 1.2.7 will 

prove this since the set of all constant functions from X to [0, I] forms a fuzzy 

topology on X. 

-
iv) IfllE t(X), then I-Jl = 0 ifand only if Il is dense in X. 

Therefore, O(IlC) = cp if and only if Il is dense in X. 

But (O(Il))C c O(IlC). There fore(O(Il))C = cp if Il is dense in X .. 

That is 0 (Il) = f- S'X if Il is dense in X .. 

So in particular O( 1) = f-S'X 

v) By i), ii) and iv), the set {O(Il): IlE t(X)} forms a basis for f-S'X. 

Let U and V be two distinct f- open ultrafilters. Then U et V. 

Therefore there exists Il E U such that Il ~ V. 

Since f.1. ~ V, by theorem 3.1.4 there exists y E V, such that Il /\ Y = O. 

Therefore U E O(Il) and V E O(y) such that O(Il) (lO(y) = cp. 

:. f-S'X is Hausdorff . 

Note: By the above lemma, f- S'X can be regarded as a topological space 

with {O(Il) : Il E t (X) } is a basis for open sets. 

5.1.6. Definition: 

Let X be a fuzzy topological space. 
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The set f-E'X is topologised by glvmg the subspace topology 

inherited from the space f-S'X. That is {O (~) (\ f-E'X: ~F"c(X)} is an open 

base for the topology of f- E'X. This topological space f-E'X is called the 

fuzzy absolute of X. 

Note: To each U E f-E'X, there is a umque point x in X such that 

a (u)(x) = 1. This defines a function from f-E'X into X, which will be denoted 

by Kf-x' . i.e. Kf_x{u) = x. 

5.1.7 Result: For ~F"c(X), O(~) is clopen in f-S'X 

Proof: 

O(~) = { U E f-S'X : ~ E u} 

(O(~)t = { V E f-S'X : ~ ~ V} 

When ~ ~ V by theorem 3.1.4 there exists a yE V such that ~ 1\ Y = O. For 

every ~ ~ V there is some Y satisfying this condition. 

Therefore (O(~)) C = Ui(O(yJ), where ~ 1\ Yi = o. 

O(Yi) is open for every i and so is uO(yJ 

.". O(~) is closed. 

i.e. O(~) is clopen in f-S'X . 

Therefore {O(~) : ~F"c(X)} cB (f-S'X ) where B (f-S'X) is the set 

of all clopen sets in f-S'X. 
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5.1.8. Theorem: Let X be a fuzzy topological space. Then f-8'X IS a 

B-extremally disconnected, zero dimensional, compact space. 

Proof: Let U be any open set in f-8'X. Then there exists a finite subset D of 

't(X) such that U = u {O(lli) : Ili E D} 

Since 't(X) is complete Vlli exist. 

Let Vlli = y. Then yE D 

Ili <S: Y 

:. O(lli) c O(y) 

Therefore u O(lli) c O(y) 

O(y) is clopen by 5.1.7. 

:. cl U(O(lli)) c O(y). 

That is cl(U) c O(y). 

Therefore f-8'X is B- extremally disconnected. 

(1) 

By 5.1.7, we have 0(1l) is clopen in f-8'X . Also {O(Il):IlE't(X)} 

forms an open base for f-8'X. Therefore by definition 1.3.1, f-8'X is zero 

dimensional. 

To show that f-8'X is compact. 

Let P be a filter of closed sets in f-8'X and 

G = {Il E 't(X) :O(Il)cF for some FE P}. 
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{O(~):~E -c(X)} is a base for closed sets in f-S'X. 

Therefore nF= n{(O(~l):~EG}. 

Then G is an f-open filter. So there exists an f-open ultrafilter say 

u such that Gc u. 

Therefore ~E U for every ~EG 

That is, U E O(~) for all ~EG. 

Therefore, U E n {O(~):~EG}. 

:. U E n F. Hence n F *<1>. 

:. f-S'X is compact. 

5.1.9. Note: As in the case of f-EX, the reverse inclusion of (I) in the above 

theorem does not hold. As in example 1.4.4 we can prove this. 

Example: Let X be any non empty set. 

1 
Define ~1:X~[O,l] as ~I(O) =- and ~I(X) = 0, 'If x * O. 

3 

Consider the fuzzy topology -c on X generated by the set of all 

constant functions and ~ I. 

Let f-S'X be the collection of all f-open ultrafilters on X. Then the 

base for open sets in f-S'X is { O( y) : Y E -c(X) } . 

Consider the open set U= 0 (~I) = {u E f-S'X : ~I E u}. 
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Then the f-open ultrafilter u [0]= {!lE't(X):!l(O»O} will contain !ll. 

Let !l2: X~[O,l] be defined as )12(X) =~, V x ER 
3 

Let V [x] ={)1 E't(X):)1(x»O, x:;t:O}. 

Then V [x] is an f- open ultrafilter containing )12 but not )11. 

5.1.10. Result: 

B( f-S'X) = {O(Il) : Il E 't(X) } 

Proof: By the result 5.1.7, we have{O()1):)1E't(X)} c B(f-S'X) (1) 

Now let CE B(f-S'X) . Then C is both open and closed. Since C is 

open there exists a subset D of't(X) such that C = u{O()1):!l ED}. C is also 

closed. Therefore C is compact. Therefore there exists a finite subset H of D 

such that 

C = u{O()1): )1EH} 

c { O(V)1i) :)1 EH } 

E {O()1i}:)1jE't(X)}. 



Therefore, C E {O(~i): ~i E t(X)}. 

B(f-8'(X» c {O(~):~ E t(X) } 

Hence B(f-8'X) = {O(~):~E t(X)}. 
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5.2. Properties of the pair (f- E'X, K f-x' ) 

(2) 

5.2.1 Definition: A fuzzy singleton in X which is also f- open is called an 

f- open point in X 

5.2.2 Theorem: f-E'X is a dense B-extremally disconnected zero dimensional 

subspace of f-8'X. 

Proof: Being a subspace of f-8'X which is zero dimensional f-E'X is also zero 

dimensional. 

To show that f-E'X is dense in f-8'X . 

Let ~E1:(X) such that ~:;t:0. Choose an f-open point p in X such that p(x)=l 

Let P= {YE1:(X) :y(x)=l}. 

Then P is an f-openfilter and so there is an f-open ultrafilter say U such 

that Pc u. 

~E P, therefore ~ E u. i.e. U EO(~). 

If a (u) =0, then there is 11 E u such that ~ (x)=O . i.e·11(x)=O 

:.PA11=O, which is not true since pE u. 

:. a (u) :;t: o. i.e. U Ef-E'X. 
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Therefore, U E O(Il)nf-E'X. 

i.e. for llE'r(X), f-E'X nO(Il) :;t:~. Therefore f-E'X is dense in f-S'X. 

By result 1.4.2 ,any dense subset of a B-extremally disconnected 

space is B-extremally disconnected. f-E'X is a dense subspace of f-S'X which 

is B-extremally disconnected. Therefore f-E'X is B-extremally disconnected. 

5.2.3 Theorem: For 11 E -c(X), kr-AO(Il) n f-E'X) = {pd where {Pi} is 

subordinate to -;. 

Proof: Let U E (O(Il)nf-E'X) and Kr_Au) = P where p(Xo)=1 and p(x)=O 

for every x:;t: Xo . 

Then, U EO(Il) and U E f-E'X 

i.e. IlE U and a (u) :;t:0. 

Since Kf_x{u) =p, a (u) (xo)=1 

i.e. Y(Xo) =1 for every yE U. 

:. ~ (Xo) =1 , since IlE u. 

. < I.e. p -Il. 

Therefore, K f-x' (O(Il)nf-E'X) = {Pi} where Pi ::; Il for every i. 

Therefore by definition 3.3.1 {Pi} is subordinate to ~ . 
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5.2.4 Theorem: Let p be an f-open point in X with support x and ~E't(X). If 

pEf-int (f-c1(~», then K~xCp) c O(~). 

Proof: LetpE f-int (~). i.e. f-int ~(x)=1. Therefore, ~(x) =1. 

Let U E K~x'(p). Then Kr-Au) = P 

Therefore, a (u) (x)= 1. 

i.e. y (x) =1 for every yE U. 

~ (x) =1 . Therefore, 1-~ (x) :;tl. 

i.e. 1-~ ~ u. That is ~c~ u. Therefore, ~E u. 

That is U EO(~). 

:. K~x'(p) c O(~). 

Note: The converse of this theorem is not true in the case of non crisp sets. By 

an example similar to that of 4.3.4 , we can prove this. 

5.2.5 Theorem: The function K r-x' from f-E'X into X is s- continuous and 

compact. 

Proof: Similar to that of 4.3.7. 

5.2.6 Note: The mapping K f-x' is not a closed map. An example similar to 

that of 4.3.8 will serve the purpose. 

5.2.7 Definition: An f-open ultrafilter u on X is said to be strong fixed 

( s-fixed ) if a (u) = 0 and n {O"o( ~): ~E u} :;t <1>. 
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5.2.8 Remark: 

As in the case of s-fixed ultrafilters, if n {O"o( ~) : IlE u} *<j>, then it 

reduces to be a singleton. Therefore the only s-fixed f-open ultrafilters are of the 

fonn P [x] = {1lE''C(X):O Il(X»O}. They are called principal f-open ultrafilters. 

So as in section 4.4 we can construct the absolutes using the principal f-open 

ultrafilters. The results proved in section 4.4 hold in this case also. 

In such construction corresponding to every x E X, we can have 

U [x] belonging to f-E'X such that n {O"O(~):IlEU} ={x}. Therefore the 

mapping K f-x' becomes a surjection from f-E'X onto X. 

************ 
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