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Abstract Partial moments are extensively used in actuarial science for the analysis
of risks. Since the first order partial moments provide the expected loss in a stop-loss
treaty with infinite cover as a function of priority, it is referred as the stop-loss trans-
form. In the present work, we discuss distributional and geometric properties of the
first and second order partial moments defined in terms of quantile function. Relation-
ships of the scaled stop-loss transform curve with the Lorenz, Gini, Bonferroni and
Leinkuhler curves are developed.
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1 Introduction

Let X be a random variable with distribution function F(x) and finite moment of order
r . Then the r th partial moment about x is defined as

αr (x) = E(X − x)r+ =
∞∫

x

(t − x)r d F(t) (1.1)

where

(X − x)+ =
{

X − x, if X ≥ x

0 if X < x .
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168 N. U. Nair et al.

The random variable (X − x)+ is interpreted as the residual age in the context of life-
length studies (Lin 2003) and the first two moments of (1.1) are extensively employed
in actuarial studies for the analysis of risks (Denuit 2002). When X represents the
income of an individual and x is the tax exemption level (X − x)+ represents the
taxable income, (1.1) is quite useful in the assessment of income tax.

Chong (1977) has developed a characterization result using (1.1) for exponential
and geometric distributions. Gupta and Gupta (1983) discussed general properties of
(1.1). They proved that (1.1) determines the underlying distribution uniquely for any
positive real r . The survival function F̄(x) of X can be written in terms of αr (x) as
(Navarro et al. 1998; Sunoj 2004)

F̄(x) = (−1)r

r !
drαr (x)

dxr
.

Sunoj (2004), Gupta (2007) have discussed properties of (1.1) with respect to length
biased and equilibrium distributions.

The properties and applications of (1.1) discussed in the above papers are studied
using the distribution function. An alternative approach for modelling and analysis of
statistical data is to use quantile function defined by

Q(u) = inf
x

{x : F(x) ≥ u}, 0 ≤ u ≤ 1

Many of the quantile functions used in applied work do not have tractable distribution
function, see Ramberg and Schmeiser (1974), Freimer et al. (1998), van Staden and
Loots (2009), Hankin and Lee (2006), Nair et al. (2011). In such cases, the distribution
function has to be evaluated through numerical methods to find u = F(x), for chosen
values of x = Q(u). This renders the analysis of the analytical properties of the distri-
bution using definitions based on the distribution function difficult. Moreover, many of
the concepts used in the present work are in terms of quantile functions. This motivates
us to formulate (1.1) in terms of quantile functions. Such a formulation will provide
alternative tools for the analysis of statistical data. In view of this, we discuss properties
of (1.1) based on quantile functions in the context of risk and income analysis.

The text is organized as follows. In Sect. 2, we give basic properties of quantile
version of partial moments. Distributional and geometric properties of the measures
are discussed in Sect. 3. The quantile partial mean is studied as a measure of income
inequality in Sect. 4. In Sect. 5, the measure is related to Bonferroni curve and Lein-
kuhler curve. Finally Sect. 6 provides various other applications of the measure.

2 Basic results

We assume that X is a non-negative random variable with absolutely continuous dis-
tribution function F(x) and probability density function f (x). When F(x) is strictly
increasing, the quantile function Q(u) is the solution of F(x) = u as x = Q(u).
We take Q(0) = 0 generally, and an adjustment has to be made in the results when
Q(0) > 0. The mean of the distribution assumed to be finite, is
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Quantile based stop-loss transform 169

μ =
1∫

0

Q(p)dp (2.1)

which is same as
∫ 1

0 (1 − p)q(p)dp, where q(u) = d Q(u)
du is the quantile density

function.
When F(x) is strictly increasing, f (x) > 0 so that the quantile density function

exists by virtue of the relations

f (Q(u))q(u) = 1.

Since the first two partial moments are generally in use, we confine the discussions to
the cases r = 1 and r = 2 in (1.1). Setting F(x) = u in (1.1)

Pr (u) = αr (Q(u)) =
1∫

u

(Q(p) − Q(u))r dp. (2.2)

When r = 1,

P1(u) =
1∫

u

(Q(p) − Q(u))dp

=
1∫

u

(1 − p)q(p)dp. (2.3)

Also

P1(u) =
1∫

u

Q(p)dp − (1 − u)Q(u) (2.4)

As P1(u) provide the expected loss in a stop-loss treaty with infinite cover as a function
of priority, it is called the stop-loss transform in risk analysis. We also have

P2(u) = α2(Q(u)) =
1∫

u

(Q(p) − Q(u))2dp. (2.5)

The variance of (x − X)+ becomes

V+(u) =
1∫

u

(Q(p) − Q(u))2dp − P2
1 (u) (2.6)
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170 N. U. Nair et al.

which on simplification gives

V+(u) =
1∫

u

Q2(p)dp − (Q(u) + P1(u))2 + uQ2(u). (2.7)

From (2.4),

P ′
1(u) = −(1 − u)q(u). (2.8)

Differentiating (2.7) and simplifying with the help of (2.8), we obtain

V ′+(u) = 2u P1(u)P ′
1(u)

1 − u
. (2.9)

Thus P1(u) determines V+(u) as

V+(u) = −
1∫

u

2pP1(p)P ′
1(p)dp

1 − p

= 2

1 − u
P2

1 (u) +
1∫

u

P2
1 (p)dp

(1 − p)2 .

(2.10)

Conversely, from (2.9), we get

P2
1 (u) = −

1∫

u

(1 − p)V ′+(p)

p
dp

showing that V+(u) determines P1(u) also. Expression of P1(u) for various distribu-
tions that appear in the sequel are presented in Table 1.

Theorem 2.1 The expression Q1(u) = μ − P1(u) is the quantile function of a distri-
bution on [0, μ].
Proof Let Q1(u) = μ − P1(u) = ∫ u

0 (1 − p)q(p)dp. Then Q1(u) is continuous,
strictly increasing with Q1(0) = 0 ans Q1(1) = μ and hence it is the quantile func-
tion of a random variable Z on [0, μ].
Example 2.1 When X is exponential with parameters λ

P1(u) = 1 − u

λ
, where μ = 1

λ
.

Thus Q1(u) is the quantile function of the uniform distribution on [0, 1
λ
].
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Quantile based stop-loss transform 171

Table 1 Quantile stop-loss transforms of distributions

Distribution Quantile function P1(u)

Exponential −λ−1 log(1 − u) λ−1(1 − u)

Generalized lambda λ1 + λ−1
2 (uλ3 − (1 − u)λ4 ) 1

λ2

[
λ4

1+λ4
(1 − u)1+λ4

+ 1−uλ3+1

1+λ3
− (1 − u)uλ3

]

generalized Pareto b
a

[
(1 − u)

− a
a+1 − 1

]
b(1 − u)

1
a+1

van Staden-Loots λ1 + λ2

[
1−λ3
λ4

(uλ4 − 1) λ2

[
1−λ3
λ4

(
1−u1+λ4

1+λ4

− λ3
λ4

((1 − u)λ4 − 1)
]

−(1 − u)uλ4 ) + λ3
1+λ4

(1 − u)1+λ4
]

Govindarajulu σ
[
(β + 1)uβ − βuβ+1

]
σ

β+2

[
2 − (β + 1)(β + 2)uβ

+2β(β + 2)uβ+1 − β(β + 1)uβ+2
]

Half logistic σ log 1+u
1−u 2σ log 2

1+u

Exponential geometric 1
λ

log
(

1−pu
1−u

)
1−p
λp log

(
1−pu
1−p

)

Linear hazard quantile (a + b)−1 log
(

a+bu
a(1+u)

)
1
b log

(
a+b

a+bu

)

Power αu
1
β α

[
1 − u

1
β − (β + 1)−1

(
1 − u

1+ 1
β

)]

Example 2.2 Suppose X has power distribution specified by

Q(u) = αu
1
β

on [0, α]. Then μ = αβ
β+1 ,

P1(u) = α

1 + β

[
β − (1 + β)u

1
β + u

1
β
+1

]

and Q1(u) = αβ

1 + β

[(
1 + 1

β

)
u

1
β − 1

β
u

1
β
+1

]
(2.11)

However, (2.11) is the quantile function of the Govindarajulu distribution with param-
eters (μ, 1

β
) and support [0, μ]. Note that in the first example Q1(u) has a tractable

distribution function, while in the second it is not the case.

3 Properties

The stop-loss transform P1(u) can be used to describe the basic properties of the dis-
tribution like measure of location, dispersion, skewness and kurtosis. This is achieved
by evaluating the first four L-moments of the distribution in terms of P1(u). The first
four L-moments of X given in Hosking (1996) are
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L1 =
1∫

0

Q(u)du = μ = P1(0)

L2 =
1∫

0

(2u − 1)Q(u)du =
1∫

0

P1(u)du

L3 =
1∫

0

(6u2 − 6u + 1)Q(u)du =
1∫

0

(4u − 1)P1(u)du

and

L4 =
1∫

0

(
20u3 − 30u2 + 12u − 1

)
Q(u)du

=
1∫

0

(
1 − 10u + 15u2

)
P1(u)du

Note that the above formulae for L2, L3 and L4 are obtained in terms of P1(u) after
integrating by parts the first expressions in each case then and substituting the identity
(2.8). Of these L2 is twice the mean difference

Δ = 2

∞∫

0

F(x)(1 − F(x))dx .

Thus L2 is a measure of spread. The L-skewness and L-kurtosis are respectively
given by

τ3 = L3

L2
and τ4 = L4

L2
.

When P1(u) is known, the above relationships help in computing the distributional
characteristics without using the quantile function or the distribution function.

In order to study the geometrical properties as well as for comparison purposes it
is convenient to consider the scaled version of the stop-loss transform defined by

S(u) = P1(u)

μ
. (3.1)

From (2.8), the derivative of (3.1) becomes

S′(u) = − (1 − u)q(u)

μ
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showing that S(u) is decreasing. Since P1(0) = μ and P1(1) = 0, we see that S(0) = 1
and S(1) = 0. Hence the curve S(u) lies in the unit square. In the exponential case
S(u) = 1 − u is the diagonal of the unit square joining the points (0, 1) and (1, 0).
The curve can be concave or convex or partly concave and partly convex. For example
when X is rescaled beta

S(u) = (1 − u)
1
α
+1

is convex. On the otherhand, the Pareto distribution has

S(u) = (1 − u)−
1
c +d

which is concave. The Govindarajulu distribution given in Table 1 with parameters
σ and β (σ, β > 0) has mean μ = 2σ(β + 2)−1 and hence

S(u) = μ

2

[
2 − (β + 1)(β + 2)uβ + 2β(β + 2)uβ+1 − β(β + 1)uβ+2

]
.

Then

S′′(u) = μβ(β + 1)2(β + 2)

2
(1 − u)

(
u − β − 1

β + 1

)
uβ−2.

It is easy to see that S(u) is convex for 0 < β < 1.
For β > 1, S′(u) attains a minimum at u = β−1

β+1 so that S(u) is concave in (0,
β−1
β+1 )

and convex in (
β−1
β+1 , 1).

Remark 3.1 The above result is in contrast with the behaviour of α1(x). In fact from

α1(x) =
x∫

0

F̄(t)dt

we get

α′′
1 (x) = f (x) > 0

indicating that α1(x) is both decreasing and convex.

4 Measures of income inequality

In the context of income analysis α1(x)(P1(u)) has an interpretation. Although poverty
is studied mostly with aid of income distributions there is equal interest in knowing
the level of affluence in a population. For instance, Sen (1988), Belzunce et al. (1998)
have developed the methodology to analyze the the inequality incomes among the
rich individuals and proposed indices for their measurement. When X represents the
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income of an individual and x , the level of income above which the individual is
considered affluent., α1(x)(P1(u)) represents the average residual income beyond the
affluence level (beyond the 100 (1 − u)% of the distribution of X .).

One popular measure of income inequality is Gini index given by

G = 2Δ

μ
.

= 4

μ

∞∫

0

F(x)(1 − F(x))dx (4.1)

From the definition of second L-moment, we can write G as

G = L2

μ
. (4.2)

Since first L-moment being the mean, G is the L-coefficient of variation.
The area under the S(u) curve is given by

1∫

0

S(p)dp = 1

μ

1∫

0

1∫

u

(1 − p)q(p)dp

= 1

μ

1∫

0

u(1 − u)q(u)du

= L2

μ
= G. (4.3)

The above formula provides an alternative expression to evaluate the Gini index and to
represent it as the area of the S(u) curve especially in terms of quantile functions. As
examples Tarsitano (2004), Haritha et al. (2008) proposed respectively the generalized
lambda and the generalized Tukey lambda distributions as flexible and adaptive models
of income. In the latter case,

S(u) = (1 − u)λ2

μ

[
(1 − u)λ4

1 + λ4
+ 1 − uλ3+1

λ3(1 − λ3)(1 − u)
− λλ3

λ3

]
.

Employing (4.3), the Gini index is

G = (μλ2)
−1

[
1

(λ2 + 1)(λ2 + 2)
+ 1

(λ2 + 1)λ4

]

where

μ = λ1 + 1

λ2

(
1

λ4 + 1
− 1

λ3 + 1

)
.
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A second popular measure of income inequality is the Pietra index given by

T = E |X − μ|
2μ

which is

T = μ−1

F(μ)∫

0

(μ − Q(p))dp. (4.4)

We deduce from (2.4) that

P1(u) = μ −
u∫

0

Q(p)dp − (1 − u)Q(u)

and

1

μ

u∫

0

Q(p)dp = 1 − S(u) − (1 − u)

μ
Q(u) (4.5)

From (4.4)

T = F(μ) − 1

μ

F(μ)∫

0

Q(p)dp. (4.6)

From (4.5) and (4.6), we have

T = F(μ) + S(F(μ)) − 1 + 1 − F(μ) = S(F(μ)).

Notice that the mean deviation about the mean can also be written in terms of P1(u)

as

E(|X − μ|) = 2P1(F(μ)). (4.7)

Another well known measure of income inequality is the Lorenz curve given by

L(u) = 1

μ

u∫

0

Q(p)dp (4.8)

which is predominantly used to study economic variables like income, wealth, land
holdings etc. The curve L(u) is increasing and convex with L(0) = 0, L(1) = 1 and
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L(u) ≤ u. The Gini index G is the area between the line of equality L(u) = u and
L(u), while the Pietra index is the maximum vertical deviation between L(u) and
L(u) = u. Since μL ′(u) = Q(u), Eq. (4.5) gives relationship between L(u) and S(u)

as

S(u) = 1 − L(u) − (1 − u)L ′(u). (4.9)

Taking (4.9) as a linear differential equation

L ′(u) + L(u)

1 − u
= 1 − S(u)

1 − u
,

we have

L(u) = (1 − u)

u∫

0

1 − S(p)

(1 − p)2 dp. (4.10)

The Eqs. (4.9) and (4.10) reveal that L(u) and S(u) determine each other uniquely.
Even though (4.10) is a general identity connecting L(u) and S(u), we can have

simple relationships between the two that characterize distributions. This is illustrated
in the following theorem.

Theorem 4.1 The relationship

L(u) = A + Bu + C S(u) (4.11)

holds for all u, if and only if X is distributed with

Q(u) = μB + μ
(C + A − BC)

C
(1 − u)

1
C , 0 ≤ u ≤ 1 (4.12)

provided that BC − A − C > 0.

Proof Assume that (4.11) holds. Then

L ′(u) + L(u)

1 − u
= 1

1 − u
− L(u) − A − Bu

C(1 − u)
(4.13)

or

L ′(u) + C + 1

C(1 − u)
L(u) = C + A + Bu

C

Writing (4.13) as

d

du
(1 − u)−

C+1
C L(u) = C + A + Bu

C
(1 − u)−

C+1
C −1
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and integrating over (0, u), we get

L(u) = C + A − BC

C + 1
+ Bu + BC − C − A

C + 1
(1 − u)

C+1
C .

Since Q(u) = μL ′(u), we have

Q(u) = μB + (C + A − BC)

C
μ(1 − u)

1
C . (4.14)

As Q(u) has to be an increasing function

BC − A − C > 0.

The converse is obtained by direct calculation of L(u) and S(u) from (4.8) and (4.9).

Remark 4.1 Setting B = 0, we have

L(u) = A + C S(u)

and

Q(u) = (C + A)μ

C
(1 − u)

1
C

= σ(1 − u)−α, C = − 1

α
,

(C + A)μ

C
= σ

the quantile function of the Pareto I distribution which is basic in income analysis,
where C+A

C > 0.

Remark 4.2 When A + C = 0, the left endpoint of the support is zero. In this case,
setting B = − 1

a and C = − a+1
a , satisfying B > 1

Q(u) = μ

a

[
(1 − u)−

C
C+1 − 1

]

the quantile function of the generalized Pareto model with parameters (a, μ). When
−1 < a < 0 we have rescaled beta and Pareto II for a > 0. The exponential distribu-
tion is not a special case of (4.11), but has to be worked out separately as

L(u) = u + (1 − u) log(1 − u).

5 Relationship to other curves

Another concept used to assess income inequality is the Bonferroni curve. It is defined
in the orthogonal plane (F(x), B1(x)) where

B1(x) =
∫ x

0 t f (t)dt

μF(x)
(5.1)
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The curve lies with in the unit square. We refer to Giorgi and Crescenzi (2001), Pundir
et al. (2005) for a detailed study of B1(x). In terms of quantiles (5.1) become

B(u) = B1(Q(u)) =
∫ u

0 Q(p)dp

μu
. (5.2)

Bonferroni curve is strictly increasing, but need not be concave or convex. If u is the
proportion of units whose income does not exceed x , then B(u) is the ratio between
the average income of this group and the population mean. A main difference between
L(u) and B(u) is that while the former represent fractions of total income, latter
indicate relative income level. Since

B(u) = u−1L(u). (5.3)

B(u) always be below L(u). Also B(u) determines the distribution of X uniquely
through (upto a scale factor)

Q(u) = μ(B(u) + u B ′(u)).

From (2.4),

P1(u) = μ −
u∫

0

Q(p)dp − (1 − u)Q(u)

= μ[1 − β(u) − u(1 − u)B ′(u)].

By virtue of (5.3), Eq. (4.10) provides an inversion formula

B(u) = 1 − u

u

u∫

0

1 − S(p)

(1 − p)2 dp. (5.4)

Characterizations by relationship between S(u) and B(u) are easily derived from those
between S(u) and L(u). Hence no separate treatment of such problems is attempted
here.

Our next object of comparison is the Leinkuhler curve which is closely related to
he other curves described above. It is defined as

K (u) = 1

μ

1∫

1−u

Q(p)dp = 1

μ

⎡
⎣

1∫

0

Q(p)dp −
1−u∫

0

Q(p)dp

⎤
⎦

= 1 − 1

μ

1−u∫

0

Q(p)dp

(5.5)
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A general definition of the curve is given in Sarabia (2008) and methods of generating
it is discussed in Sarabia et al. (2010). The curve is mainly used in studying concen-
tration of bibliometric distribution in information sciences. It also find applications
in economics as the plot of cumulative proportion of productivity against cumulative
proportion of sources. The following relationships between the various curves are
evident,

K (u) = 1 − L(1 − u)

K (u) = 1 − (1 − u)B(1 − u)

and K (u) = 1 − u

1−u∫

0

1 − S(p)

(1 − p)2 dp.

Differentiating the last equation, we have

S(u) = K (1 − u) − (1 − u)K ′(1 − u).

The K (u) curve is continuous, concave and increasing with K (0) = 0 and K (1) = 1.
It determines the distribution through

Q(u) = μK ′(1 − u) (5.6)

An interesting result originating from (5.6) is that [μK 1(u)]−1 is the quantile function
of 1

X . This follows from the fact that

1

Q(1 − u)
= 1

μK ′(u)
.

The area under the Leinkuhler curve becomes

K =
1∫

0

K (p)dp = 1 − 1

μ

1∫

0

1−u∫

0

Q(p)dp

= 1 − 1

μ

1∫

0

(1 − u)Q(u)du

= 1 − 1

2u

1∫

0

(2u − 1)Q(u)du − 1

2

= 1

2
(1 + G).
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Thus the Gini index is G = 2K − 1. The area K is same as that above the Lorenz
curve. The Bonferroni index is defined us

B = 1 −
1∫

0

B(u)du

which is shown in Pundir et al. (2005) to have upper bound 1+G
2 . This gives B ≤ K .

Finally we have the total time on test transform defined in terms of quantile function
as Nair et al. (2008)

T (u) =
u∫

0

(1 − p)q(p)dp.

Obviously

S(u) = μ − T (u) (5.7)

The relationship between T (u) and L(u) with several properties in this connection
have been discussed in Chandra and Singpurwalla (1981), Pham and Turkkan (1994).
Various characterization results of probability distributions using T (u) and applica-
tions of T (u) in different areas can easily be converted in terms of S(u) using the
identity (5.7).

6 Discussion

As revealed through our discussions, α1(x)(P1(u)) can be used for the modelling and
analysis of lifetime data. Since P1(u) determines the underlying distribution uniquely,
various functional forms of P1(u) enable us to develop characterizations of lifetime
distributions. The measure P1(u) can be related to well known basic reliability con-
cepts such as hazard quantile function and mean residual quantile function introduced
in Nair et al. (2008). Accordingly the proposed measure can provide alternative def-
initions for ageing criteria in reliability theory. The work in these directions will be
reported in a separate paper. The relationship with other curves used in different con-
texts, makes the curve of P1(u) also as a useful alternative in such situations, with
appropriate interpretations.

In this context some remarks about the stochastic ordering of stop-loss transform
seems to be in order.

When X and Y are non negative random variables with finite expectations, X is
said to be smaller than Y in increasing convex order. X ≤icx Y if and only if

∞∫

x

F̄X (t)dt ≤
∞∫

x

F̄Y (t)dt, for all x . (6.1)
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or equivalently

1∫

u

Q X (p)dp ≤
1∫

u

QY (p)dp. (6.2)

It may be easy to see if αX (x) and αY (x) are stop-loss transforms of X and Y , the
dominance of Y over X , denoted by X ≤SL Y , is defined as αX (x) ≤ αY (x) for all x .
Hence

X ≤SL Y ⇔ X ≤icx Y.

In terms of quantile functions we can define X to be smaller than Y in stop-loss quantile
function denoted by X ≤SLQ Y if and only if

1∫

u

(1 − p)qX (p)dp ≤
1∫

u

(1 − p)qY (p)dp. (6.3)

Note that, by integration by parts (5.3) becomes identical to

1∫

u

Q X (p)dp − (1 − u)Q X (u) ≤
1∫

u

QY (p)dp − (1 − u)QY (u)

which is same as X is smaller than Y in excess wealth order, X ≤ew Y studied in
(Shaked and Shanthikumar, 2007, p.165). Thus X ≤SLQ Y ⇔ X ≤ew Y .

When the lower end of the support of X does not exceed that of Y, X ≤ew Y ⇔
X ≤icx Y . Thus the ≤SLQ order is stronger than the ≤SL order. Since the two stop-
loss transform orders are equivalent to two well known orders, their properties and
relationships with other orders can be obtained from Shaked and Shanthikumar (2007).
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