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ABSTRACT

Measurement is the act or the result of a quantitative comparison between a
given quantity and a quantity of the same kind chosen as a unit. It is generally
agreed that all measurements contain errors. In a measuring system where both a
measuring instrument and a human being taking the measurement using a preset
process, the measurement error could be due to the instrument, the process or the
human being involved. The first part of the study is devoted to understanding the
human errors in measurement. For that, selected person related and selected work
related factors that could affect measurement errors have been identified. Though
these are well known, the exact extent of the error and the extent of effect of
different factors on human errors in measurement are less reported.
Characterization of human errors in measurement is done by conducting an
experimental study using different subjects, where the factors were changed one at a

time and the measurements made by them recorded.

From the pre-experiment survey research studies, it is observed that the
respondents could not give the correct answers to questions related to the correct
values [extent] of human related measurement errors. This confirmed the fears
expressed regarding lack of knowledge about the extent of human related
measurement errors among professionals associated with quality. But in post-
experiment phase of survey study, it is observed that the answers regarding the
extent of human related measurement errors has improved significantly since the
answer choices were provided based on the experimental study. It is hoped that this
work will help users of measurement in practice to better understand and manage

the phenomena of human related errors in measurement.

The second part of this research work concentrated on the characterization of

errors observed during calibration done periodically (effect of time) of selected



sophisticated instruments and selected standards used in legal metrology. The
extent of errors due to passage of time and use, were found for some sophisticated
instruments and some standards used in legal metrology. These studies have
enabled the researcher to characterize errors in these instruments and thus add to
the understanding of measurement errors. In order to make the data collected more
useful, Regression and Artificial Neural Network [ANN] based models have been
developed to predict error [extent] for instrument type and standard types studied.
A theoretical method to determine the uncertainty budget through mathematical
model from the calibration data of Digital multimeter and Digital thermometer has

been also derived.

This research also investigates how to introduce the concept of uncertainty
in the criteria of conformity in type approval and verification by analyzing the type
approval and test data of non-automatic weighing instrument [NAWI]. It is
observed that, the uncertainty in type approval is different from the uncertainty in
the performance of measuring instruments. In type approval, if the uncertainty is
equal to or less than one-third of the maximum permissible errors, the uncertainty
should be included in the criteria of conformity. If the measurement values inclusive
of the uncertainty are within the maximum permissible errors, it will be categorized
as conforming, and if it is outside the maximum permissible errors, categorized as
non-conforming. Only what can be measured, can be controlled. Following this
logic, this thesis presents some studies to understand, measure and control

measurement errors.

Key Words: Human Errors, Characterization of Errors, Sophisticated Instruments,

Working Standards, Prediction of Errors, Artificial Neural Network.
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Chapter 1

Introduction



1.1 MEASUREMENT SYSTEMS

Measurement systems are used every day in manufacturing, research, and
commerce. They are a critical component in the quality of product and service
the company provides to its customers and is one of the areas of significant
investments [1]. Measurements are the window through which one can look at
products and processes, and it is necessary to know whether the image that is
seen is accurate or, perhaps, somewhat distorted [2]. Quality or accuracy of
measurement systems is essential to the quality of a manufacturing process,
because the measurement process itself is subject to variation, and excessive
variation in the measurement systems can make critical variation in the
manufacturing process [3]. Often measurements are made with little regard for
the quality of such measurements [4]. Yet all too often, the measurements are not
perfectly representative of the true value of the characteristic being measured
and this could be because the measurement system is not accurate enough or not
precise enough [5]. The moral is that before one embarks on using a new
measurement system for a characteristic which has not been previously
measured on it, one should perform a measurement system analysis because this
is critical to the success of every measurement and will ensure that future

measurements are representative of the characteristic being measured [6].

Measurement is a process of gathering information from a physical world
and comparing this information with agreed standards [7]. Measurement is
carried out with instruments that are designed and manufactured to fulfill given
specifications [8]. After an instrument is designed and prototyped, various
evaluation tests are conducted. These tests are typically made under reference
conditions or under simulated work environment conditions [9]. Some examples

of reference condition tests are accuracy, response time, drift, and warm up time
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[10]. Simulated environmental test are based on statutory requirements regulated
by government and other authorities [11]. Some simulated environment tests
include climatic test, drop test, dust test, insulation resistance test, vibration test,
electromagnetic compatibility (EMC) tests, and safety and health hazard tests
[12]. Many of these tests are prescribed by company, industry, national and
international standards [13]. Adequate testing and proper use of instruments is
important to achieve the accurate results when in use [14]. After instruments are
installed, regular calibration is necessary to ensure the accuracy over the period

of life of operation [15].
1.2 MEASUREMENT ERRORS AND ERROR CONTROL SYSTEMS

Measurement error is defined as the difference between the distorted
information and the undistorted information about a measured product,
expressed in the measurement units [16]. In short, an error is defined as real
(untrue, wrong, false, no go) value at the output of a measurement system minus

ideal (true, good, right, go) value at the input of a measurement system.
1e,; Ax =xr —xi (1.1)

where Ax is the error of measurement, x: is the observed measurement
value, and xi is the true value being measured. The aim is to make x:as close as
possible to xi. That is, reducing error to zero [17]. Besides zero error, an ideal or
perfect instrument would have perfect sensitivity, reliability, and repeatability
over the entire range of values measured [18]. However in practice, most
measurements will be imprecise and will give inaccurate results due to many
internal and external factors [19]. This departure from the expected perfection is
called the error. Often, sensitivity analyses are conducted to study the effect of

individual components that cause these errors [20]. Sensitivity analysis is



conducted by varying one parameter at a time while keeping the others constant.
This can be done physically by using the developed instruments or estimated
mathematically by means of appropriate models [21]. In instrumentation

systems, errors have been broadly classified as systematic and random error [22].
1.2.1 Systematic Errors

Systematic errors remain constant with repeated measurements [6]. They
can be divided into two basic groups: the instrument related errors and the
environment related errors [23]. Instrumental related errors are inherent within
the instrument, arising because of the mechanical structure, electronic design,
improper adjustments, wrong applications, and so on. These can also be sub
classified as loading error, scale error, zero error, and response time error [24].
Environmental errors are caused by environmental factors such as temperature,

humidity, etc. [25].
1.2.1.1 Types of Systematic Errors

The three most common types of systematic errors are: i. Instrumental

error ii. Operator error and iii. Method error.
i. Instrumental error

A common systematic error is an incorrectly calibrated instrument that
systematically gives results that are either high or low [26]. Calibration
determines the error associated with a measurement, and, if possible, reduces
that error [8]. This means that, calibration is more than just adjusting the
measurement capability of a device. Calibration improves measurement accuracy
and ensures that the product meets the required specifications [27]. Calibration

also provides a number of other benefits, such as: increased production yields,



overall measurement consistency, standardization [28]. To maintain

measurement quality, the measuring device must be calibrated at set intervals.
The calibration process includes three parts:

- verifying that the measurement capability of the measurement device

is within specifications;
- adjusting the device to reduce its measurement error;

- verifying the new measurement capability of the device to ensure

that is operating within specifications [29].
ii. Operator error

It is the error, which is observed during measurement process even after
the possibility of instrument error and method error is detached by proper
calibration of the instrument and with repeated measurements. Operator errors
may occur in the process of observations or during the recording and
interpretation of experimental results [30]. A large number of errors can be
attributed to carelessness, improper setting up of instruments, the lack of
knowledge about the instrument and the process, and so on [31]. These
systematic errors, sometimes cannot be traced, and often can create quite large
errors [32]. Though experimentation and observation, scientists are learning how
to minimize the human factor related measurement error. This is one of the

problems studied in this thesis.
iii. Method error

Systematic errors caused by measuring the same quantity using two
different methods and not getting the same result is known as method error [33].

As an example, if one measures a given voltage using two different methods -



analog and digital voltmeters and gets different readings, the error involved is

said to be method error.
1.2.2 Random Errors

The errors that remain after the instrument operator and method errors
have been removed may be called random errors. They are small and within the
limits for the measuring instruments. Random errors appear as a result of
rounding of reading, noise and interference, backlash and ambient influences,
and so on [15]. In measurements, the random errors vary by small amounts
around a mean value. Therefore, the future value of any individual measurement
cannot be predicted in a deterministic manner [34]. Random errors may not
easily offset electronically; therefore, in the analysis and compensation, stochastic
approaches are adapted by using the laws of probability [35]. Depending on the
system, the random error analysis may be made by applying different
probability distribution models [36]. This thesis presents a method of using

random error effect in uncertainty budget.
1.2.2.1 Types of Random Errors

- Transient qualities of the individual (mood, motivation, degree of

alertness, boredom or fatigue) [37]

- Situational factors involve the physical setting such as (noise level,

lighting, ventilation etc...), anonymity, presence of peers [38].

- Administrative factors involve the actual administration of the
instrument or the amount of subjectivity influencing the measurement

process [39].

Studies show that, in applied science and engineering, all observations

contain errors. It is reported that errors can be due to measurement device and/or
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due to the human being involved in the measurement process [40]. It is also
reported that humans are not very good at thinking logically (algorithmically),
but for measurement, following procedures is often necessary [41]. Deviations

from set procedure are a common source of error in measurement [42].

Literature review on measurement errors and discussions with
professionals also indicated that if error reduction techniques can be effectively
applied in the manufacturing and service industries, they would gain better
control over the processes and expenses [43][13]. It would also improve customer
satisfaction and thus strengthen their level of competitiveness [44]. Therefore, it is
evident that a clear understanding of the critical factors causing measurement
errors in method, measurement and instrument would help the implementation
of management practices to improve quality and enable better control over
processes and cost [45]. Motivated by these observations, the research problem,

objectives and methodology of the research work have been formulated.
1.3 RESEARCH PROBLEM

Measurement is essential for scientific investigations. It is so fundamental
and important to Science and Engineering that the whole science can be said to
be dependent on it. Instruments are developed for measuring and displaying
physical variables. Every act of measurement has to deal with errors [46]. Errors
can result in negative consequences [47] [example: loss of time, faulty products]
as well as positive ones [example: learning, innovation]. The large negative
consequences - for example, accidents such as the Chernobyl or Challenger
disasters — tend to be widely observed, and have been of high interest to scholars
and laypeople alike [48]. The scientific understanding of the negative effects of
errors is much better developed than that of the potential positive effects of

errors [49]. One way to contain the negative and to promote the positive
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consequences of errors is to use error management. This approach assumes that
human errors per se can never be completely prevented, and, therefore, it is
necessary to ask the question of what can be done after an error has occurred
[50]. Errors are not easily defined. Errors may be unintended deviation from
goals, standards, a code of behavior, the truth, or from some true value [51].
Literature review and discussions with professionals and experts was used to
identify the area of research as “Characterization of Human and Instrument
related Measurement Errors”. Measurement system in this research study can be

visualized as consisting of three parts as shown in Figure. 1.1.

Measurement Errors

A
\ 4

Errorin >! Error in Method &
Instrument «—— Measurement —

Measurement Device

: Person taking
Measurand X

measurements

Figure 1.1 Measurement system

Measurand is the physical parameter being measured. The measuring
device can be of different types such as Electrical, Electronic and Mechanical etc.
Measurement errors may be due to one or more of factors such as measuring
device and/or the method and the person involved in measurements.
Measurement error is defined as the difference between the output of the
measurement system and the reference [known, actual, true, master, and
standard] valuer The measurement system could be defined as only the
measuring instrument [narrow view] or as comprising of the measuring
instrument and the person taking or doing the measurement and reporting the

measured output [broader view used by us for this research]. Discussions with



test engineers and professionals in the area of measurement reveals that they
know that human related measurement errors exist and there is a possibility for
calibration error growth with ageing, they are unsure of the extent of such errors.
Therefore it is decided to conduct a study on these two factors. The next section
gives each of the objectives (in italics) and the methodology followed to achieve
it.

1.4 OBJECTIVES AND METHODOLOGY

. To study the effect of selected human related factors on measurement errors.

Experimental analysis on human related measurement errors was
conducted for understanding and quantifying the critical factors. Many experts
supervising production and quality control in different production environments
and engineering academicians were approached to find out the factors
influencing human error in measurement. Simple experimental setups and
experiments were designed and developed to analyze the impact of the
identified human related factors on measurement errors. Experiments were

conducted using subjects of different categories.

e  To study the perception of professionals on the extent [values] of human related

measurement errors.

A survey based research study was conducted to understand the perception
on extent of human related measurement errors among professionals associated
with measurement and testing. The survey instrument was developed after
discussions with experts to measure the understanding of human related
measurement errors. Survey research was done in two phases. Pre-experiment
survey was conducted in the first phase with two sets of questions. Section A

questions dealt with the human related factors that impact measurement error
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and section B dealt with quantification of these impacts. Answer choices were
given for section A while, open ended questions were used for getting the
perception of professionals about the range of values of possible human errors in
section B in this phase. The second phase was conducted as a post experiment
survey where answer choices was given for both section A and B. Pre experiment

survey results and Post experiment survey results were compared.

o To study measurement errors and characterize them for selected types of measuring

instruments.

Characterization of errors with respect to time was done by analyzing
calibration data of various sophisticated instruments such as digital multimeter,
digital thermometer, cathode ray oscilloscope, signal generator and pressure
gauge. Similarly effect of ageing was analyzed using the calibration data of
standards such as, non automatic weighing instrument, weight measures and

volumetric measures used in legal metrology.

o Todevelop a method for finding out uncertainty budget from the calibration data of

digital multimeter and digital thermometer.

Calibration results of DMM and digital thermometer were used to
determine uncertainty budget and then develop a theoretical method

determining uncertainty budget using a mathematical model.

o To study the uncertainty in type approval and verification using the calibration
data of non-automatic weighing instrument and to develop a system for comparison

of calibration and verification.

o To introduce the concept of uncertainty in the criteria of conformity in type
approval and verification using the type approval and verification data of non-

automatic weighing instrument.
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The above two objectives were achieved by taking the type approval and
verification data of Class I and II Non Automatic Weighing Instrument [NAWI].
Fifteen instruments, each in the category of class I and class II were taken from
three different companies which manufacture NAWI. Out of the four different
classes of NAWI, only class I and II have been taken for this study since the
influence of uncertainty is very large for class I and II where as for class III and

IV, it is negligible.

o To develop systems for predicting human related measurement errors using

artificial neural network [ANN].

The error data obtained from the experimental study on human related
measurement errors were used for developing, training and testing an ANN
model. The observations from the experiments were used as the input for the
error prediction model of human related measurement errors, for training and
testing ANN, and were built to predict the probable errors due to the influence of

various human factors under the circumstance of a typical measurement.

o To develop systems for predicting calibration errors of sophisticated instruments
and working standards in legal metrology using ANN prediction model and

regression analysis techniques.

A methodology similar to the one used above was used with the calibration
data of various sophisticated instruments and working standards in legal
metrology to develop, train and test the neural network prediction model. The

same input data was used in the regression model.
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1.5 ORGANIZATION OF THE THESIS

The thesis is presented in eight chapters. The chapters are organized as

follows:

The second chapter discusses the survey of literature relevant to the study.
In the third chapter, the experimental methods and results to quantify the extent
of human related factors on measurement errors are given. The fourth chapter
deals with the survey based study to understand the perception of professionals
on human related measurement errors. The fifth chapter is dedicated to
characterization of errors observed during calibration in terms of time for
selected sophisticated instruments and to suggest a theoretical method for
calculating uncertainty budget. The sixth chapter explains the effect of ageing in
selected standards used in legal metrology and describes the proposed
methodology of the concept of uncertainty in the criteria of conformity in type
approval and verification. The seventh chapter presents regression analysis and
artificial neural network based models for measurement error prediction. The
eighth chapter reports the research findings as a summary, lists the limitations of
the work and ends with scope for future research. The list of references comes
after this. The questionnaire, photograph of experimental set up, features of
instruments used in the experiment and the specification of the components used

in the pattern generator are given as an appendix at the end of the thesis.
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Chapter 11

Literature Review



2.1 INTRODUCTION

In this chapter, a review of literature is presented. Theoretical concepts in
the area of measurements, measurement errors and types of measurement errors
are reviewed. Since this work focuses on error in method, measurement and
error in instrument, for clarity of presentation, the literature review is divided
into three sections. Error in method and measurement is nothing but human
error. Being a practice dominated area; the impact of human errors, reported in
the literature is reviewed. Error in instrument is studied in this work by
characterizing errors observed during calibration and measurement uncertainties
of various sophisticated instruments and standards in legal metrology; a detailed
review has been done of this area. Prediction error model is developed in this
work using Artificial Neural Network. Estimation of errors is also done using
regression analysis technique. Therefore, concepts of ANN and Regression

analysis and the research work in this area are also reviewed.

It is explained in the literature that Measurement is a process of gathering
information from a physical world and comparing this information with agreed
standards [31]. Measurement is carried out with instruments that are designed

and manufactured to give correct measurement [7], [44].

Measuring instruments are supposed to maintain prescribed relationships
between the parameters being measured and the physical factors under
investigation [52]. Literature says that measurement is essential for observing
and testing scientific and technological investigations [47]. Instruments are
developed for monitoring the conditions of physical factors and converting them
into symbolic output forms. Measurement error might be because, the
measurement system is not accurate enough, or precise enough, or can be

because of the human being involved in the measurement [53].
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2.2 IMPACT OF HUMAN RELATED MEASUREMENT ERRORS

Measurement error can occur due to the human factor, because the
measuring system has a human component [54]. Literature says that, a human
factor is a physical or cognitive property of an individual or social behavior,
which is specific to humans and influences functioning of technological system
as well as human environment equilibriums [30]. Human factors involves the
study of all aspects of the way humans relate to the world around them, with the
aim of improving operational performance, safety, through life costs and/or

adoption through improvement in the experience of the end user [55].

Researches show that human factors study is a multidisciplinary field,
incorporating contributions from psychology, engineering, industrial design

statistics, operations research and anthropometry [56]. It is a term that covers:

e  the science of understanding the properties of human capability (Human

factor science)

e the application of the understanding to the design, development and

deployment of systems and services (Human factors engineering)[31]

e the art of ensuring successful application of Human Factors Engineering
to a program (sometimes referred to as human factors integration). This is

a part of ergonomics [57].
2.2.1 Human Factors

Human factors involve the study of factors and development of tools that
facilitate the achievement of these goals. After defining the problem there are five
different approaches that can be used in order to implement the solution [58].

These are as follows:
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Equipment design: changes the nature of the physical equipment with

which humans work.

Task design: focuses more on changing what operators do than on
changing the devices they use. This may involve assigning part or all of

tasks to other workers or to automated components [59].

Environmental design: implements changes, such as improved lighting,
temperature control and reduced noise in the physical environment

where the task is carried out.

Training the individuals: better preparing the worker for the conditions
that he or she will encounter in the job environment by teaching and

practicing the necessary physical or mental skills [60].

Selection of individuals: is a technique that recognizes the individual
differences across humans in every physical or mental dimension that is
relevant for good system performance. Such a performance can be
optimized by selecting operators who possess the best profile or

characteristic for the job [20].

Human error literature [61] has revealed several perspectives on the

nature and causes of human error. Some of the perspectives that have been

reported are cognitive, ergonomics and system design, psycho-social and

organizational [62]. In a cognitive model, the assumption is that information

progresses through a series of stages of mental operations (eg. Attention

allocation, pattern recognition and decision making) that mediate between

stimulus input and response execution [63]. Within this approach, errors occur

when one or more of these mediating operations fail to process information

appropriately. Literature gives a detailed development of taxonomic algorithm

-16-



for classifying various types of information processing failures associated with
the erroneous actions of operators [64]. According to the system perspective, the
human is rarely, if ever, the sole cause of an error or accident. Rather, human
performance (both good and bad) involves a complex interaction of several
factors. In fact, “System models recognize the inseparable link between
individuals, their tools and machines, and their general work environment” [65].
Some of the psycho-social models seen in the literature highlight the social and
interpersonal aspects of human performance within the context of measurement,
a perspective that has historically been overlooked by those in the industry [66].
Organizational approaches to human error have been utilized in a variety of
industrial settings for management of human errors. In fact, it is this emphasis
that organizational models place on the fallible decision of managers,
supervisors, and others in the organization that sets them apart from the other

perspectives previously discussed [21].

Human error is a topic that researchers and academicians in the fields of
human factors and psychology have been grappling with for decades. Indeed,
there are a number of perspectives on human error, each of which is
characterized by a common set of assumptions about the nature and underlying
causes of errors. Unfortunately, from the practitioner’s point of view, there often
appears to be as many human error models and frame works as there are people
interested in the topic [67]. Even worse, most error models, and frame works
tend to be theoretical and academic, making them of little benefit to the applied
needs of practitioners. Therefore, having been left without adequate guidance
and objective criteria for choosing a particular approach, many practitioners have
resorted to developing error — management programs based on intuition or “Pop

Psychology”, rather than on theory and empirical data. The end results are safety
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programs that, on the surface, produce a great deal of activity (eg. Safety
seminars and “Error awareness” training), but in reality only peck around the
edges of the true underlying causes of human error. This is the reason, why, it
was decided to conduct an experimental analysis, varying selected factors that
possibly influence human related measurement errors as part of this research

work.
2.3 MEASUREMENT ERRORS IN SOPHISTICATED INSTRUMENTS

Literature shows that the standard uncertainty associated with estimate
has the same dimension as the estimate itself [68]. In some cases, the relative
standard uncertainty of measurement may be appropriate, which is the standard
uncertainty associated with an estimate divided by the modulus of that estimate,
and is therefore dimensionless. This concept cannot be used if the estimate
equals zero [69]. The standard uncertainty of the result of a measurement, when
that result is obtained from the values of a number of other quantities is termed
combined standard uncertainty. An expanded uncertainty is obtained by
multiplying the combined standard uncertainty by a coverage factor [70]. This, in
essence, yields an interval that is likely to cover the true value of the measurand

with a stated high level of confidence.

Studies related to uncertainty and error analysis of sophisticated
instruments are very few and some of the research studies are as follows:
Literature gives a rigorous uncertainty analysis to compare the nose-to-nose
swept-sign and electro-optic-sampling system based calibrations [29]. They have
also reported that characterization of systematic error in the nose-to-nose
calibration is statistically significant. Study of memory soft error measurement
on production systems was reported [71]. An understanding on the memory soft

error rate demystifies an important part of whole-system reliability in today’s
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production computer systems [1]. It was reported in the literature, a technique
based on multiple linear regressions for predicting memory soft error rate [72]. A
method for diagnosing and correcting systematic errors in the spectral imaging
system was reported [23]. In that, several sets of imaging system calibration and
spectro-photometric targets can be employed to both diagnose and correct
systematic errors. In their study, the systematic errors were characterized as a
function of wave length. It is reported that, the R? value as an index of regression
fitting performed well in imaging system when imaging system calibration and

spectro-photometric correction targets were identical [73].

Literature gives a specific strategy to address the issue of taking into
account the error bars in the measurements used as inputs to fuzzy logic systems
[74]. This approach of considering the uncertainty of the measurements as an
independent axis of complexity, is conceptually sound for many real systems,
and provides a clear improvement in the performance of the fuzzy logic
classifiers, when the statistic of the noise is properly taken into account. They
clarify that the proposed analysis can provide an independent confirmation of
the error bars estimated for various measurements. They also say that with
regard to future developments, it would be better to confirm the potential of the
strategy for a concrete regression problem. Literature also explains different
types of errors in various sophisticated instruments like Digital Multimeter [75],
Digital Thermometer [76], Cathode Ray Oscilloscope [77], Signal Generator [78]

and Pressure Gauge [68].

2.4 MEASUREMENT ERRORS AND UNCERTAINTIES IN LEGAL METROLOGY

Correctness of measurements and measuring instruments is one of the most
important prerequisites for the assurance of the quality and quantity of products and

services, and the accuracy of the instruments must be consistent with their intended use.
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In compliance with the ISO 9000 standard series and the ISO/IEC 17025
standard, traceability of measuring and test equipment to the realization of SI
units must be guaranteed by an unbroken chain of comparison measurements to
allow the necessary statements about their metrological quality [79]. It is
reported that, the most important actions to ensure the correct indication of

measuring instruments are [80]:

e in industrial metrology : regular calibration of the measuring instruments
according to the implemented quality systems : and

¢ in legal metrology: periodic verification or conformity testing of the measuring
instruments according to legal regulations.

Both actions are closely related and are mostly based on the same measuring

procedures.

Historically, however, these actions have been established with separate
rules and metrological infrastructures and activities. Verification has become a
principal part of legal metrology systems and calibration is widely used in
quality assurance and industrial metrology. Accreditation bodies prefer
calibration as a primary action to provide proof of the correctness of the

indication of measuring instruments [81].

The relationship between the state and metrology is symbiotic. The State
needed measurements to provide the information necessary to organize, plan,
defend and tax system with efficiency. Such accounting depended on uniform
measurements across wide geographical areas and across a broad spectrum of
farming and manufacturing practices and work organization [14].Metrology on
the other hand required the mandate of the State to ensure conformity to
measurement requirements [82]. The fundamental requirement, to ensure
consistency, was that all measurement be derived from (royal) standards and this

can be defined as traceability [83].
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According to literature [84], one institutional aspect of the development of
metrology in the 20th century was the separation of metrology in many countries
into scientific metrology, led by the National Measurement Institute [NMI’s,] and
practical or legal metrology, administered by weights and measures authorities.
The need to ensure international consistency of trade and regulatory
measurements, and to “resolve internationally the technical and administrative
problems raised by the use of measuring instruments”, led to the establishment
in 1955 of a second metrology Treaty organization, the International
Organization of Legal Metrology (OIML) [85]. In the past, various interests as
well as regional and historical differences led to differing units and systems [26]
reported that as cross-border trade increased in significance, pressure grew for
harmonization; this resulted in the introduction of the SI system which not only
became the legal basis for official dealings and commercial transactions, but also
gained in importance in the non-regulatory field of industrial metrology. An
efficient metrological infrastructure is the basis of all modern industrial societies
and from this point of view; legal metrology was the pioneer of uniform
measurement [25]. In type approval tests, a design of a new type of specified
measuring instrument is examined in order to decide the conformity to technical
requirements [86]. Type approval tests consist of tests on the characteristics that
solely depend on the design. Therefore, one or a few samples of measuring
instrument are subjected to type approval tests. When type approval is obtained,
the design of this type of instrument shall meet the requirements of legal

regulation and perform adequately under the conditions of practical use [69].

According to literature [87], verification is carried out in order to decide
the conformity of individual items of type-approved specified measuring

instrument to the requirements for performance. Verification tests consist of the
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tests on characteristics that depend on each item [27]. If each item makes a major
instrumental error, some of the tests performed in type approval could be
applicable to verification as well. Actually, the test results of type approval can

be substituted in verification [88].

It is reported that, calibration is carried out in order to provide a
quantitative statement about the correctness of the measurement results of a
measuring instrument [89]. For economic reasons, laboratories strive for broad
recognition of their calibration and measurement results. Confidence in results,
therefore, is achieved through both establishing the traceability and providing

the uncertainty of the measurement results.

The International vocabulary of basic and general terms in metrology
(VIM) [90] defines a calibration as “a set of operations that establish, under
specified conditions, the relationship between values of quantities indicated by a
measuring instrument or measuring system, or values represented by a material
measure or a reference material, and the corresponding values realized by
standards”. This means that the calibration shows how the measured value or
the nominal value indicated by an instrument relates to the true or conventional
true values of the measurand. It is assumed that the conventional true value is

realized by a reference standard traceable to national or international standards.

Not only is the measurement uncertainty but also the environmental
conditions during the calibration has significant impact. Calibration is often
carried out in a place with standard environmental conditions, which leads to
low measurement uncertainties [69]. When the calibrated instrument is used in a
different environment the measurement uncertainty determined by the
calibration laboratory will often be exceeded if the instrument is susceptible to its

environment. There can also be a problem if instrument performance deteriorates
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after prolonged use. The user of the calibrated instrument must therefore

consider any environmental or secular stability problems [91]

It was observed from literature review that, research on the sophisticated
instruments are based and focused on calibration errors and other types of errors
in the instrument. Literature also provides a theoretical understanding of the
possible errors in various instruments. Measurement uncertainty study in
sophisticated instruments was not found. In legal metrology, measuring
instruments for commercial transactions and certifications are regulated by the
Measurement Law of the respective country and called "specified measuring
instruments". Calibration and uncertainty study of weigh-bridge and weighing
instruments were reported [79], [80]. Studies considering accuracy for deciding
instrumental errors in inspection of verification standard were reported [27].
Reliability studies which demonstrate the difference of scope in the measurement
of change [25] were also seen. No work-related to the characterization of
calibration errors of various instruments were found. Discussions with the
professionals and practitioners revealed that characterization of calibration errors
would help them to get an idea about the extent of error growth with ageing and
would enable them to decide about the period of calibration.  The legal
regulatory system demands that measuring instruments pass type approval tests
and be subject to verification before they enter the market. In the current type of
approval tests and verification, evaluation is only based on whether or not the
test results fall within the maximum permissible error on verification (MPEV)
specified by the Measurement Law [36]. Here the uncertainty of measurement is
not considered at all. The current criteria for deciding conformity has less
reliability because of the uncertainty of measurement. It is also reported that, to

improve the reliability, measurement uncertainty also needs to be taken into
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account [69]. Therefore the research work was extended to capture the concept of

the measurement uncertainty into the criteria for deciding conformity.
2.5 PREDICTION ERROR MODEL USING ARTIFICIAL NEURAL NETWORKS

An Artificial Neural Network (ANN) is inspired by the biological brain,
which consists of billions of interconnected neurons working in parallel. An
ANN is a network of highly interconnecting processing elements (neurons)
operating in parallel [92]. As in nature, the connections between elements largely
determine the network function. A subgroup of processing element is called a
layer in the network. The first layer is the input layer and the last layer is the
output layer. Between the input and the output layer, there may be additional
layer(s) of units, called hidden layer(s) [93]. Learning in ANNSs takes place
through an iterative training process during which node interconnection weight
values are adjusted. Initial weights, usually small random values, are assigned to
the interconnections between the ANN nodes. One can train a neural network to
perform a particular function by adjusting the values of the connections

(weights) between elements [94].

A novel approach to credit risk evaluation using a neural network is seen
in the literature [95]. In this approach they trained a three-layer supervised
neural network, which is based on the back propagation learning algorithm,
following seven learning schemes. A comparative research review of use of three
famous artificial intelligence techniques, i.e., artificial neural networks, expert
systems and hybrid intelligence systems, in the financial market were reported
[96]. Literature also gives the design of a hybrid intelligent system for credit
ranking using reasoning-transformational models [93]. Expert system as
symbolic module and artificial neural network as non-symbolic module are

components of this hybrid system. An ANN training algorithm inspired by the
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neurons' biological property of meta-plasticity was reported [94]. It is reported
that this algorithm is especially efficient when few patterns of a class are
available, or when information inherent to low probability events is crucial for a
successful application, as weight updating is overemphasized in the less frequent

activations than in the more frequent ones [97].

Although the long-term goal of the neural-network community remains
the design of autonomous machine intelligence, an important modern
application of artificial neural networks is in the field of pattern recognition [19].
In the sub-field of data classification, neural-network methods have been found
to be useful alternatives to statistical techniques such as those which involve
regression analysis or probability density estimation [8]. It is reported that the
potential utility of neural networks in the classification of multisource satellite-
imagery databases has been recognized for well over a decade, and today neural
networks are an established tool in the field of remote sensing [99]. The most
widely applied neural network algorithm in image classification remains the

teed-forward back-propagation algorithm [100].

It has also been shown that ANN can generalize traditional constitutive
laws well (e.g. a hyperbolic model) by considering their descriptive parameters
[101]. Despite their good performance on the available data, ANN models give
no clue on the way inputs affect the output and are therefore considered as a
black box class of model. The lack of interpretability of ANN models has
inhibited them from achieving their full potential in real world problems [102] as
the credibility of the artificial intelligence paradigm frequently depends on its
ability to explain its conclusion [103]. Therefore for verification of such models,

as well as the accuracy measuring of ANN based models with available data; a
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methodology should be adopted to extract the meaningful rule from the trained

networks, which are comparable with trends inferred from experiments.

2.6 PREDICTION ERROR MODEL USING REGRESSION ANALYSIS

TECHNIQUE

Regression analysis is a statistical tool for the investigation of
relationships between variables. Usually, the investigator seeks to ascertain the
causal effect of one variable upon another—for example the effect of a price
increase upon demand, or the effect of changes in the money supply upon the
inflation rate[104]. To explore such issues, the investigator assembles data on the
underlying variables of interest and employs regression to estimate the
quantitative effect of the causal variables upon the variable that they influence.
The investigator also typically assesses the “statistical significance” of the
estimated relationships, that is, the degree of confidence that the true
relationship is close to the estimated relationship. Regression analysis with a
single explanatory variable is termed “simple regression.” “Multiple regression”
is a technique that allows additional factors to enter the analysis separately so
that the effect of each can be estimated. It is valuable for quantifying the impact
of various simultaneous influences upon a single dependent variable. Further,
because of omitted variables bias with simple regression, multiple regression is
often essential even when the investigator is only interested in the effects of one
of the independent variables. At the outset of any regression study, one
formulates some hypothesis about the relationship between the variables of

interest [105].

Another common statistic associated with regression analysis is the R2

This has a simple definition—it is equal to one minus the ratio of the sum of
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squared estimated errors (the deviation of the actual value of the dependent
variable from the regression line) to the sum of squared deviations about the
mean of the dependent variable. R? statistic is a measure of the extent to which
the total variation of the dependent variable is explained by the regression [106].
The R? statistic takes on a value between zero and one. A high value of R?
suggesting that the regression model explains the variation in the dependent
variable well, is obviously important if one wishes to use the model for

predictive or forecasting purposes.

It is required to understand the capacities, assumptions, and applicability
of various approaches, and maximally exploit the complementary advantages of
these approaches in order to develop better intelligent systems. Such an effort
may lead to a synergistic approach which combines the strengths of ANNS,
regression analysis techniques and other approaches in order to achieve a
significantly better performance for challenging problems [107]. In such a
synergistic approach, not only are individual modules important, but a good

methodology for integration is inevitable [108].
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Chapter 111

Experimental Analysis of Human Related

Measurement Errors



3.1 INTRODUCTION

Human fallibility is natural. The internal and external factors that
aggravate human fallibility introduce the concept of vulnerability [109].
Humans are vulnerable to their internal make-up as well as external work
place factors. These factors are referred to in literature as performance
shaping factors, error precursors and error forcing contexts. Ability to
perform, in the presence of these negative conditions, decreases, and error
probabilities escalate [110]. Most of the time, these factors are neither good
nor bad, they are part of work reality, that must be managed. Management of
task and environment, primarily external concerns, are the simpler

performance shapers to identify and deal with [111].
A three dimensional framework is proposed at this stage. The models
must contain at least three critical elements:
i.  The human operator
ii.  His or her task
iii. The environment or context in which the task is performed [40]

There are also several task taxonomies that entail all or parts of these
elements. Human’s taxonomy has three major branches: environment, subject
and task [112]. The proposed three dimensional matrix for mapping human

errors and technological innovations is given below in Figure 3.1
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-Environment

Figure 3.1. Three Dimensional Frame Work of Human Taxonomy

However, while some address human error directly, others do so
indirectly. Some attempt to eliminate the occurrence of errors altogether,
whereas others look to reduce the negative consequences of these errors [113]. In
many works, personal error in a measurement procedure is calculated by taking
the ratio of estimated true score or universe variance to observed score variance
[114]. In some other practical approaches, the error was determined as the
estimated standard deviation of the score distribution that would be obtained if

an experiment is done by many examinees [115].

Human error is synonymous to human performance [ie. poor
performance or failure to perform] [116]. Bailey proposed a general qualitative
model of human performance that can be generalized to all performance

situations as given in Figure 3.2 [40].

It is clear that the model must contain at least three critical elements which
are, the human operator, his/her task, and the environment in which the task is
performed. Although the majority of these elements remain unknown at worst,
and poorly understood at best, and although the number of factors and their

potential interactions can be bewildering, this research work offers some startling
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benefits in linking such disparate realms as human performance and factors that

affect human performance.

Achivaly

Figure 3.2. Bailey’s Qualitative Model of Human Performance [40]

Production and quality control engineers who deploy human resource to
take readings from instruments need to understand the effect of various factors
on the errors induced by the human resource. Errors induced by human during

measurement can be further split into those:

(a) From human related factors
(b) From work related factors.

In order to identify the factors to be considered in this study, a review of
literature was done to identify the factors influencing human induced errors in
measurement. A survey was also carried out among experts supervising
production and quality control in different production environments and
engineering academicians to generate a list of possible factors usually found in
industry, the effect of which would be useful to explore. These two sources were
used to make the list of factors for the study. These factors were then classified
into stable and transient. Stable variables were those work related variables that
would remain the same over time for the experimental set-up [Voltage,
Resistance, Analog, Digital, A/c or Non A/c environments, Forenoon afternoon

etc.]. Transient variables would change over time for a given experimental set-up
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like instrument temperature, input values, ageing etc. A preliminary survey
among professionals also revealed that, they are aware that, human errors exist,
but they do not have any idea about the range of values of possible errors in
different person or work related environment. [Pre-survey and Post-survey
analysis results were given in Chapter IV.] Therefore an experimental study was
designed and conducted to identify and quantify the impact of a few selected
factors on the magnitude of measurement error. The subjects used for doing the
experiments were technicians conversant with measurement, inexperienced B.

Tech. and Diploma holders and B. Tech. students.

The factors that could possibly impact measurement errors were identified
and classified as follows:

Person related factor Work related factor

(Human) [Activity (A) and Context (C)]
1.Intelligent Quotient 1. Instrument differences (A)
2. Age 2. Time of work (C)

3. Experience 3. Task differences (A)

4. Gender 4. Time pressure (A)

5. Effect of training 5. Environment (C)

3.2 DESIGN OF EXPERIMENTS FOR TESTING HUMAN ERRORS IN

MEASUREMENT

In order to measure the effect of the Person, Activity and Context related
factors given above on measurement errors, experiments were designed. The
parameters chosen to be measured were Voltage, Resistance, Length and
Breadth. Experiments were conducted with all possible combinations of factors,

by varying one factor at a time. Twenty replications for each set of factor
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combination were taken using twenty subjects. The details of the experimental

setup and procedure are given below.
i. Voltage

To study the effect of different factors, there was a need to isolate the
effect of each factor, therefore in the experiments one factor was changed at a
time. In this case, all subjects were asked to do voltage measurement one by one.
A setup was made to generate predetermined set of 50 voltages, one after the
other to be provided as an input for the subject doing the experiment to measure

voltage using two types of voltmeters one analog and the other digital.

The test voltage generator was to ensure that all subjects were given the
same set of values. For doing this a Microcontroller based test pattern generator
which gives 50 different voltage outputs one after another on press of a button
was designed and used for the study. This setup kept errors due to system being
measured out of the experiment and the focus could be maintained on error due
to observation and noting. Different experiments were carried out using the
Microcontroller based test pattern generator where analog and digital meters
were used for measurement and the factors such as intelligent quotient, age,
experience, gender, effect of training, instrument differences, time of work, task
differences, time pressure, and environment of human resource were varied one

at a time.

A block schematic of digitally controlled Analog test pattern generator is
shown in Figure 3.3. This generator gave different prefixed voltages for each hit

of a switch.
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Figure 3.3 Test Pattern Generator

Display devices such as Analog Multi-meter (Make: SANWA, Model: YX-
360TRF) and Digital Multi-meter (Make: EZ Digital DM 333) were used for
testing Voltage Analog Parameter [VAP] and Voltage Digital Parameter [VDP].
In an experiment a subject had to push the switch for the next reading and make

note of fifty such readings consecutively.
ii. Resistance

A set of fifty different valued [code covered] resistances were used for
studying the effect of person related and work related factors on human errors in
measurement. Resistances numbered from 1 to 50 were given to subjects in the
experiments, where they used digital and analog multimeters to make the
measurements and note the same. In different experiments, the factors such as
intelligent quotient, age, experience, gender, effect of training, instrument
differences, time of work, task differences, time pressure, and environment were
varied one at a time. Though the method involved in this case is very simple, all
subjects were also trained in it to avoid the effect of difference in method of

measurement on the error generated.
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iii. Length and Breadth

Influence of human factors on measurement error was also studied by

providing fifty different sized serially numbered square metal pieces to the

subjects. The subjects were asked to measure the length and breadth using

analog caliper [Make : Swastik] and digital caliper [Make : Swastik] and to note

down the length and breadth of each metal pieces separately on the sheet

provided to the subjects.

3.3 SUBJECTS FOR THE EXPERIMENTS

Experiments were conducted using different sets of subjects. The key

differentiating factors of the subject groups are given below:

i

ii.

1ii.

iv.

Experienced Technicians [ET*] in the age group of 31 to 40 years and 41 to
50 years. Their IQ test showed that all were in the below average [IQ3]

category.

Inexperienced [IE] B. Tech. [Bachelor of Technology, four year engineering
degree program in India] and diploma holders in the age group of 21 to
30 years and with different IQ levels, above average [IQ1], average [IQ2]

and below average [IQ3] category.

B. Tech. students [17 to 22 years] with Kerala State [Country: India]
Engineering Entrance Rank between 1 and 5000 [ER1], 5001 and 15000
[ER2] and above 15000 [ER3].

First year [17 to 18 years] and final year [21 to 22] male and female B. Tech
students in ER1, ER2 and ER3 categories.

20 subjects from each of the different categories [e.g. ER1, ER2 and ER3]

and hence a total of 220 subjects were participated in the experiment. This
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was found to be statistically sufficient for the mean error measurement
which has been taken for analysis in this study [there is no significant
change in the measure of mean and standard deviation of the error when

sample was increased from 15 to 20].
3.3.1 Intelligent Quotient Test

The intelligent quotient was determined by conducting psychometric test
using questionnaire taken from Psychometric test work book and by conducting
an online test. The average score obtained by a subject for these two tests was
used to categorize the subjects into above average [IQ1 - score above 110],
average [IQ2 — score 100 to 110] and below average [IQ3 — score below 100]
[117,118].

3.4 EXPERIMENTS

The impact of person related and work related factors on human related
measurement error were studied by asking subjects to measure resistances,
voltages, length and breadth using analog and digital measuring devices. To
check the effect of intelligent quotient, subjects with different IQ levels such as
IQ1, 1Q2, IQ3 and engineering students in ER1, ER2, and ER3 categories were
asked to measure resistances, voltages, length and breadth using analog and
digital measuring devices. The effect of experience and age were studied by
comparing the measurement error observed in experienced technicians in the age
groups of 31 to 40 years, 41 to 50 years and with inexperienced subjects in the age
group of 21 to 30 years. The measurement error noticed in the first year and final
year B. Tech. students was also compared. The subjects were made to do the
experiments during forenoon, afternoon and night hours. The impact of

instrument differences was studied by comparing the errors that occurred when
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using analog and digital readouts. To check the influence of task differences
subjects were asked to measure resistances, voltages, length and breadth using
analog and digital measuring devices. The effect of the gender factor was
studied using first year and final year B.Tech. male and female students with
different engineering entrance rank ranges ER1, ER2 and ER3. First, the
experiments were done by the subjects without giving any training. But it was
observed that training reduces measurement error. The following procedure was

adopted for the experiments.

i. Twenty subjects of each category were selected.

ii. On a given day, one category subjects were made to take one set of
measurement (say only resistance measurement using analog device) both in
the forenoon and afternoon. This was repeated on different days till all
subjects had done all types of measurement experiments. Student subjects
were also asked to do the measurements during night hours.

iii. Subjects were asked to enter the readings of resistance measurement using
analog and digital devices on a laptop along with the preparation of hand
written record.

iv. The measurements were conducted within a time frame as given below :

a. 30 minutes to make fifty measurements when using analog device for
measuring both length and breadth.

b. 20 minutes to make fifty measurements when using digital device for
measuring both length and breadth.

c. 30 minutes to make fifty measurements when using analog device for
measuring both resistance and voltage.

d. 20 minutes to make fifty measurements when using digital device for
measuring both resistance and voltage
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e. 40 minutes to make fifty measurements when using analog device for
measuring resistances and voltages, and for both entering on to a laptop
and preparing hand written copy.

f. 30 minutes to make fifty measurements when using digital device for
measuring resistances and voltages, and for both entering on to a laptop
and preparing hand written copy.

g. Inexperienced subjects were also allowed to do the measurement in a
relaxed environment without time limit to complete the fifty
measurements

h. Male and female engineering students of first year and fourth year also
did the measurements.

i. The experiments were done in a normal laboratory environment and air
conditioned environment

j- No feedback on their performance was given to the subjects.
(Features of the components used in pattern generator, instruments and photograph of

experimental set up are given in Appendix I)
3.5 RESULTS AND DISCUSSIONS

The results from the experiments were analyzed and descriptive statistics
such as mean, standard deviation and coefficient of variance of error were
calculated. The mean percentage error for each category was used for further
analysis to remove the effect of random errors. Parametric analysis such as one
sample t-test, Paired sample t-test and ANOVA were carried out to understand
the effect of different factors on measurement error. The results of the analysis

are discussed factor-wise in the section that follows.
3.5.1 Person Related Factors
i. Experience

Human interaction with the task at hand is primarily driven by human’s

knowledge. Knowledge level is both fundamental knowledge and experience
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related: Training programs, lessons learned from reported events, and the use of
industry, operating experience applied in a continuous manner, establish a
minimum acceptable knowledge level and enable the development of better
mental models of operation over time. It can be proved by comparing the results
of experimental measurements carried out by the experienced technicians [IQ3],
inexperienced subjects [IQ1, 1Q2, IQ3] and first year and final year B. Tech.
students [ER1, ER2, ER3]. From this given in Table 3.1, the mean error is seen to
range from 2.0113% to 77.0453%.

Table 3.1 shows that experienced technicians in the age group of 31 to 40
are making less error than the IQ2 category and are comparable to IQI.
Experienced technicians in the age group of 41 to 50 years are better than IQ2

category.

Table 3.1 Comparison of Mean Percentage Error of ET, IQ, ER categories

Subjects RAP RDF VAP VDF

ET Age 31-40yrs [IQ3] 6.77 5.09 16 A3 3.61
ET Age 4l-50yrs  [103] 778 712 18.22 454
101 Age 21-30 yis 6.2 3.51 10.76 .37
102 Age 21-30 yrs 10.74 f.24 17 28 5.28
103 Age 21-30 yes 1293 724 3244 2.17
Final wear [ER1] 54216 | 20113 | 188743 | 20574
Final wear [ERZ] d23763 | 34151 | 356916 | LEA30
Final year [ER3] 221904 [ 28815 | SYTEIZ | B.E006
First year [ER1] 201475 [ 26696 [ I¥ 1661 | 43999
First year [ERI] 44439 | 33295 | 475379 | BE129
First year [ER3] 19 8820 | 24882 | TY0453 | 120510

The error reduction in the case of experienced technicians compared to
inexperienced subjects with intelligent quotient [IQ3] is about 10.96% for analog
devices and it is 3.66% for digital. Experienced technicians are making 15% and
27% less error than final year and first year students respectively in analog
measurements. The final year B. Tech. subjects are making 12.31% and 1.24% less
error than first years for analog and digital measurements respectively. It is

quite evident from the studies that experience reduces error irrespective of the
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subjects, measurement type, technological differences and intelligent quotient of
the human being.
ii. Training

Training is defined as the instruction or education, on the job or self
development provided to all personnel, and units enable them to acquire the
essential job skills and knowledge. Training is required to bridge the gap
between the target audiences existing level of knowledge and that required to
effectively operate, deploy/employ, maintain and support the system. Training is
particularly crucial in the acquisition and deployment of a new system. The
inexperienced subjects were initially asked to make measurements without
giving any training. Then they were given training and were asked to repeat the

measurements.

The Table 3.2 shows that training reduces error in both analog and digital
measurements. The error reduction is 9.5%, 14% and 9.6% respectively for 1Q1,
IQ2 and IQ3 in analog measurements. In digital it is 1.6%, 2.6% and 7.7%

respectively. The result is significant at 0.05 confidence level.

Table 3.2 Training

Category | Parameters Sig
Tramning Mean t {2-taled)
With traming 11,03 3.272 004
RAP - o
i Without training | 20.49
Q S With training 2.34) -2.149 045
With out training 3.90
With traming 1533 2.148 046
AP - =
i Without training | 29,31
Q i With training 389 -3.185 005
With out training &.50
With traming lé41| 3468 003
RAP - —
103 Without training | 25 96
EDP With training 305 -2.174 043
Without training | 10.75
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iii. Intelligent Quotient

The intelligent quotient of a person is indicative of his capacity to perform
any task especially technical and logical. The measurement error created by
subjects with intelligent quotient IQ1 (highest) is minimum in all the types of
measurements followed by 1Q2 and IQ3 in IQ category. In the ER (entrance test

rank) category, ER1 is making least error, then ER2 and the maximum by ER3.

IQ1 category is making 3% less error than IQ2 in the case of analog
measurement and 1% in digital measurement, IQ2 reduces analog measurement
error by 5% compared to IQ3 and 2% less error in digital. When IQ1 is compared
with IQ3, IQ3 is making 8% more error in analog measurement and 3% more in

digital measurement.

ER1 is making 9% less error compared to ER2 in analog measurements
and 1.23% in digital measurements; ER3 creates 5% more error compared to ER2
in analog and 1% in digital measurements where as the ER1-ER3 error difference

is 14% and 2% respectively in analog and digital measurements.

10 Vs. ER - Analog 10 Vs. ER - Digital
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Figure 3.4 Intelligent Quotient
The comparison of inexperienced subjects [IQ] with B. Tech. students [ER]

is given in Figure 3.4. It shows that ER1 is making 7% more error than IQ1 in

analog and 0.1% more in digital measurements. ER2-IQ2 error difference is 13%
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and 0.6% more in analog and digital measurements respectively. ER3 is
producing 13% more error than IQ3 in analog measurements where as IQ3 is
making 0.6% more error than ER3 in digital measurements. Hence it can be
observed that the engineering students are making 11% more error in analog
measurements and 0.05% more error in digital measurements than inexperienced

subjects.

ANOVA test was done to check the significance of error difference
between groups, within groups and it is found that in all the cases the error

difference is significant at 0.05 confidence level.

The multiple comparison test [Post Hoc Test] results also validated the
error difference among the inexperienced and student subjects. Hence it can be
concluded that intelligent quotient of an individual is one of the factors which
play a vital role in measurement errors. It can be safely said from the
observations that people with higher IQ tend to make less errors in

measurement.
iv. Age

The other person related factor, age, may also have impact on
measurements. To characterize error in terms of age, the measurement errors of
experienced technicians with intelligent quotient [IQ3] and in the age groups of
31 to 40 years and 41 to 50 years were evaluated. Then they have also been
compared with inexperienced subjects in the age group of 21 to 30 years and

having different IQ levels 1Q1, IQ2 and 1Q3.

The mean percentage error created by the technicians in the age group of
31 to 40 years is less than that of the age group 41 to 50 years with lesser within

variation than the later age group. Independent sample t-test was conducted to
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check whether the relation holds in the population or not. The results of the test
suggest that only in the case of RDP, there is a significant difference. Hence it is
concluded that the difference in the measurement error is only a sample
characteristic for the case of RAP, VDP and VAP. But In the case of RDP the
difference holds with p<0.05.

The first year and final year B. Tech. students in the ER1, ER2 and ER3
categories were asked to do the measurements. The first year students are
making more error than the final years in all the cases. The error increase with
tirst years compared to final years are 13.14%, 6.84%, 2.35% and 0.13%
respectively for VAP, RAP, VDP and RDP. It can also be observed that the first
years are making 10% and 1.25% more error than final year students in analog
and digital measurements respectively. B. Tech students are making 11% more

error than inexperienced subjects in analog measurements where as in digital it is

0.05%.
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Figure 3.5 Graph Showing Age Factor—1Q, ER, ET

It can also be noticed from Figure 3.5 that the mean percentage error
produced by Experienced Technicians in the age group of 31 to 40 years is 3.32%
less compared to Inexperienced B. Tech. and Diploma holders in the age group of
21 to 30 years in analog and 1.22% in digital. Experienced Technicians in the age

group of 41 to 50 years are making 1.27% and 1.48% more error compared to
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Experienced Technicians in the age group of 31 to 40 years for analog and digital
measurements respectively. Experienced Technicians in the age group of 41 to 50
years are making about 0.26% more error for digital measurement than
inexperienced B. Tech. and Diploma holders in the age group of 21 to 30 years.
This may be because of over confidence, poor vision and inability to maintain

concentration for a longer time.
v. Gender

Experiments have been conducted to study whether the gender factor has
any effect on measurement error. The analog and digital measurement errors of
male and female B. Tech. students in ER1, ER2 and ER3 categories were studied.
The female subjects in the ER1 and ER2 categories are making more errors than
male subjects in RAP, ER2 and ER3 female are making more errors than male, in
VAP and VDP. In all other cases male subjects are making more errors than
female. But when the average was taken female is making 6.2%, 3.2% and 0.2%
more errors than male, in RAP, VAP and VDP respectively. In RDP male is
making 0.4% more error than female. The t-test has been conducted and it shows

that the error difference between male and female is insignificant.
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First and final year male and female also has been compared to check the
gender influence. The Figure 3.6 shows that final year female are making 2.1%
and 0.1% more error than male in analog and digital measurements respectively,
whereas the first year male subjects are generating 0.3% more error than female
in digital measurements and the first year female subjects are making 7.3% more
error than first year male in analog measurements. But the error difference
between male and female is insignificant as per t-test. Hence it can be concluded

that the factor-gender does not significantly contribute to measurement errors.
3.5.2 Work Related Factors

i. Instrument Differences

Human errors can be related to various technologies. A common element
to both humans and technologies is task. Humans use technology as tools to
accomplish certain task, or technologies may require human to perform tasks on
them. To link human errors with technologies, the subjects with experience,
without experience and having different IQ levels and B. tech. students in ERI,
ER2 and ER3 categories were asked to do measurements using analog and digital

devices and to note these readings using pen and paper.
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Error occurring when using digital multimeter for measurement is very
less than analog multimeter as it is evident from Figure 3.7. Experienced
technicians [ET] reduce measurement error by 7.3% with digital multimeter. The
inexperienced subjects [average error of IQ1, IQ2 and IQ3 were taken] causes an
error reduction of 9.5%, whereas the student subjects on an average reduces
measurement error by 16.3% with digital multimeter. Hence the average of
experienced, inexperienced and student subjects shows that measurement using
digital multimeter makes an error decrease of 11% compared to analog

multimeter.

Inexperienced and the student subjects of various categories were asked to
measure length and breadth using analog and digital calipers. The average of
digital caliper measurement error that occurred in the case of inexperienced
subjects with different IQ levels 1Q1, IQ2 and IQ3 is 1% less compared to analog
calipers and it is 1.4% in the case of student subjects [ER1, ER2 and ER3] as is
given in Figure 3.8. Therefore the digital caliper measurement error on an average
is 1.2% less compared to analog caliper measurement error. It is observed that
the average errors with digital devices are always less than analog devices

irrespective of the experience, intelligence or age of the subjects.
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Figure 3.8. Instrument Difference — Calipers
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It is also noticed that the measurement error with digital devices in the
afternoon session for IQ1 category is even less than the measurement error
created by them in the forenoon with analog devices. Thus it can be concluded

that digital measurement devices are better than analog devices.

ANOVA test has been carried out to check the effect of technology
(instrument difference). It was observed that in all the cases it is significant at
0.05 levels. Multiple comparison tests also show that Digital measurement is

superior to Analog Measurement.

Measurement error observed due to technological differences can also be
called as method error. Method error is a systematic error and can be found by
measuring the same quantities using two methods and not getting the same

results.
ii. Environment

The 1Q1, IQ2 and IQ3 categories did the measurements of resistance both

in normal and in better conditions.

Figure 3.9 gives that, better environment provides error reduction of 12%,
28.2% and 17.3% respectively for 1Q1, IQ2 and IQ3 categories in measurements
using analog devices. In the case of digital measurements it is 1.1%, 1.6% and

1.4% respectively.
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Figure 3. 9. Environment
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iii. Time pressure

Inexperienced subjects in the IQ1, IQ2 and IQ3 categories were also asked
to do the resistance measurement using analog and digital multimeter without
any upper time limit for completing the work. Table 3.3 shows that with relaxed
time the analog measurement causes an error reduction of 13.4%, 18.6% and

21.3% respectively where as for digital it is 1.4%, 0.6% and 0.8%.

The results of the t-test leads us to conclude that there is significant
reduction in error when the time limits for doing the work was not constrained
and the work environment was relaxed, in the case of analog measurement of
resistance. But in digital measurement, there is a significant error difference only
in the IQ1 category. Similar results are observed in the case of forenoon and
afternoon sessions. Thus it can be concluded that relaxed time gives better result
especially when a keen observation is involved in measurements [as in analog

meter] rather than just read out [as in digital meter].

Table 3.3 Time Pressure — t-test

Hig.

Time Mlean t (2-tailed)

101 |RAP |Mormal 20 4850 5802 = 001
Felaxed time T1237

RDF |Mormal 37471 2775 01z
Felaxed time 2.3405

102 |RAP |Mormal 25 EEa00 11012 =.001
Felaxed time T.3075

RDF |Hormal 26338 -923 369
Felaxed time 3.0521

I03 |RAP |Hormal 29 3066 4113 om
Relaxed time 20431

RDF |Mormal 46823 -1.191 249
Felaxed time ZEEAS
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iv. Time of work

It is observed that subjects are making more error in the afternoon
irrespective of their experience, intelligent quotient, instrument differences and
the different tasks they are carrying out. It can be noticed from Figure 3.10 that,
in the case of Experienced Technicians, the error increase for analog devices in
the afternoon compared to the forenoon is about 2.6% and for digital devices it is
1.3%. But for the inexperienced subjects with IQ levels 1Q1, IQ2 and IQ3, the
error increase is in the order of 9.74%, 15.7% and 26.6% respectively with analog
devices. For the digital devices it is 1.4%, 2.3% and 5.7% respectively. It can also
be noticed that even though the inexperienced B. Tech. and Diploma holders
with IQ above average [IQ1] is making less error compared to the Experienced
subjects, the error increase in the afternoon is very high with inexperienced
subjects. This may be because of, the experienced technicians are more tuned to
long and tiring working hours and the increased room temperature in tropical
climate afternoons and therefore make fewer errors in adverse working

conditions when compared to inexperienced subjects.
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The t-test also has been conducted to check the significance of the error
difference between the forenoon and afternoon sessions for different types of

measurements and found that it is significant at 0.05 levels in all the cases.
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Figure. 3.11. Time of Work - B. Tech. Students [ER]

The student subjects were also asked to do the voltage measurements
using Analog and Digital Multimeter during forenoon afternoon and night hours
[Figure 3.11]. It was noticed that the error is maximum during afternoon in all the
cases. ER1 is making 8.6% and 2.2% more measurement errors in the afternoon
and night hours compared to forenoon. ER2 creates 7.5% and 1.12% more
measurement error, each during afternoon and night compared to forenoon. But
for ER3, the measurement error is minimum during night hours, 3.42% less
compared to forenoon and is 6% more in afternoon compared to forenoon. The t-
test also shows that the results are significant and thus it can be concluded that

time of work has a significant impact on measurement errors.

Error observed in the experiments is maximum during the afternoon
irrespective of the subjects, task differences and instrument differences. It is an
indicative of the transient qualities of individual such as mood, motivation,
degree of alertness, boredom or fatigue which affects measurements [15].

Measurement error caused by the experienced technicians with 1Q, IQ3, in the
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afternoon is less than inexperienced subjects even though their I1Q is above
average. This may be because the former are conscious about their work and
have a mind set about the work they have to do. But the Inexperienced and B.
Tech. student subjects may have an impression that they are not supposed to do
this type of work in their subconscious mind. This may be the reason why the
boredom or fatigue affects more in the measurements of inexperienced and
student subjects with higher intelligent quotient. Errors due to analog measuring
devices are more in the afternoon than the digital measurements. This is also
pointing to the transient qualities of human being. Attention on a task can only
be sustained for a fairly short period of time, depending on the specifications of

the task, after which fatigue sets in and errors are more likely to occur.
v. Task differences

The other work related factor is the difference in parameters to be
measured. In this study the parameters measured were resistance, voltage,
length and breadth using both analog and digital devices, thus there were eight
tasks. It can be noticed that irrespective of the subjects experience or IQ, the
errors are maximum for comparatively simple voltage measurement task as is
given in Figure 3.12. But the error difference is not significant in IQ1 category and

experienced technicians with IQ level IQ3 [Figure 3.12] .
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The results of paired sample test shown in Table 3.4 shows that there is
significant change in error when doing both resistance and voltage
measurements using digital and analog devices. Error difference between the

measurement of resistance and voltage using digital devices is not significant at

.05 levels.

An interesting observation in this experimental work is that though the
voltage measurement work is simpler compared to resistance measurement,
more errors are seen in voltage measurements. A possible explanation could be
that when a simple task is given subjects may pay less attention to the work and

thus human errors could become higher.

Table 3.4 Task Differences

Paired Samples Test

t df | Sig. {2-tailed)
Pair 1 RAP - RDF 5.087 59 =.001
Pair 2 RAP - WAP -4.224 59 =.001
Pair 3 RAP - YDP F.BR3 59 =001
Fair 8 ROP - AP -6.268 59 =.001
Fair 9 RODP - YDF 1.048 59 299
FPair14 |YAP - YDP B.158 59 =.001

The comparison of the length — breadth measurement error between the
inexperienced subjects with different IQ levels and student subjects with
different state entrance ranks[ER] given in Figure 3.13 shows that, the error rate is
more with the measurement of breadth parameter using analog and digital
devices. Length measurement error is 0.7% less compared to breadth. The reason
for this may be because the smaller quantity measurement creates more error

than a larger quantity.
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Since computers are now used widely to process quality related data and
their use requires data entry, randomly selected subjects from ER1, ER2 and ER3
categories were asked to enter the measured resistance values into a laptop

computer. The error in typing is found to be around 0.03%.
3.6 CONCLUSION

Error is an inevitable part of any kind of measurements. Measurement
errors can be due to different factors. One of the important factors is the human
being involved in measurement. Human error depends on many factors. In this
experimental research work, an attempt has been made to identify some of these
factors and characterize them as person related and work related factors. Simple
experimental setups and experiments have been designed and developed to
study the impact of the above factors on measurement errors. Descriptive
statistics and parametric analysis such as t- test, Paired sample test and ANOVA

were carried out to study the significance of each factor.

The outcome of a manual measuring system includes the results produced
by the measuring device and what is observed and noted by the human subject

involved in the manual measurement exercise. This study focused on the effect of
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a few person related factors such as experience, training, intelligent quotient, age
and gender, and work related factors such as type of instruments used, time of
work, task, time pressure and environmental differences when experiment was
done. Using a standardized setup for the experiments, and only changing one
parameter at a time, the measurement error in this study has been reduced to
human errors in observation and noting. It is seen from the experiments
conducted that, humans produce significant errors in measurement. The human
errors due to observation and noting ranged from a minimum of 0.5 % to a
maximum of 31.87%. It was necessary to study and bring out these values, since
knowing the values would help in dealing with the errors when they are
significant for the system. This study brings out values of human errors under
different person and work related factor combinations. These may be taken as

expected error values under those conditions for work system design.

In the decreasing order of influence on human errors, the person related
factors are: Experience, Training, Intelligent quotient, age and gender. The
ascending order of influence of work related factors on humans errors are
instrument differences [digital, analog], working environment, time pressure,
time of day and type of work. The practitioners who rely on measurement for
research, control and production, and quality control would be benefited by the
identification of the above parameters and especially the assessment of the extent
of errors they produce. This work has also demonstrated a simple methodology
that can be used for such work. It is hoped that this work will help users of
measurement in practice to better understand and manage the phenomena of

Human errors in measurement.
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Chapter IV

Survey to Analyze Perception on Human Errors

Among Professionals



4.1 PURPOSE OF THE SURVEY

The quality revolution, which is spreading all over the world and into all
types of organization, makes error management a potential area of research. The
primary objective of the study is to identify the critical factors affecting human
errors in measurement, from the professional’s perspective, based on an
empirical analysis. Such an empirical study demands a rigorous research
methodology using reliable and valid instruments. This can be achieved by
measuring the perceptions of the practitioners in the industry. A questionnaire
survey is widely accepted as an appropriate tool for assessing the perceptions of
individuals on a particular subject. The results of this survey provided factors
affecting human errors in measurement that was used in designing the

experimental study presented in chapter III.
4.2 DESIGN OF THE QUESTIONNAIRE SCHEDULE AND SAMPLE SURVEY

Factors that could have possible impact on human related measurement
errors were identified from the literature survey and through discussions with
professionals in industry, calibration and testing laboratories and academic

institutions. Details have been discussed in Chapter III.

Since there is no comprehensive instrument available to measure the
critical factors of human related measurement errors from the professional’s
point of view, an instrument has been developed in this study. The instrument
development is based on the critical dimensions of human errors identified
based on literature review and discussions with the professionals in the
calibration laboratories and quality control engineers in the industry. The

questionnaire which has been designed has two sections:
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Section A.

This section contains questions related to the impact of factors of human

related measurement errors. These factors are:
i. Different types of equipments
ii. Different hours of the day
iii. Different tasks
iv. Subjects with different IQ levels and experience
v. Subjects with different age groups
vi. Subjects with different gender
Section B.

Questions in Section B were formulated to get the perception of
professionals on the range of probable mean percentage human error in

measurement caused by a given factor (given in Section A.)

A pilot survey was done using 25 respondents (five from each class). The
instrument has been refined based on the findings of the pilot study, and based
on the comments and suggestions of the experts [119]. The survey instrument
that was finally developed and used consists of 37 items [30 questions and 7
subdivisions]. The complete instrument consisting all these 37 items, that
epitomize the ten critical factors of human related measurement errors on
measurement is presented in Appendix II. The items were jumbled and
presented in a random order when given to the respondents [120]. The

respondents have been asked to indicate their answers based on their perception.
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4.2.1 Validity Analysis

Validity is defined as the extent to which any measuring instrument
measures what is intended to measure [121]. Different validity terms are used to
illustrate various aspects of construct validity [122]. The validity types that are
relevant for this study are, face and content validity. The two aspects of validity,

namely, face validity and content validity has been tested as explained below.
4.2.1.1 Face Validity

Generally, a measure is considered to have ‘face validity’, if the items are
reasonably related to the perceived purpose of the measure [123]. Face validity is
the subjective assessment of the correspondence between the individual items
and the concept through rating by expert judges [124]. In face validity, one looks
at the measure and judges whether it seems a good translation of the construct

under study.

The face validity can also be established through review of the instrument
by experts in the field [124]. The questionnaire used in this study has been given
to five groups of experts in the area, namely, Design Engineers, Production and
Control Engineers, Professionals in calibration laboratories, Quality Control
Engineers and Engineering Academicians. Five each from each group were
briefed about the purpose of the study and its scope. The experts were then
requested to scrutinize the questionnaire and to give their impressions regarding
the relevance and contents of the questionnaire. They have also been asked to
critically examine the questionnaire, and to give objective feedback and
suggestions with regards to comprehensiveness/coverage, redundancy level,

consistency and number of items in each variable. In the initial questionnaire,

-58-



there were 42 items. Based on the feedback from experts, five items were

dropped, leaving 37 items in the questionnaire for the study.
4.2.1.2 Content Validity

Content validity of an instrument refers to the degree to which it provides
and adequate depiction of the conceptual domain that it is designed to cover
[124]. In the case of content validity, the evidence is subjective and logical, rather
than statistical. Establishment of content validity warrants sound logic, good
intuitive skills and high perseverance on the part of the instrument designer
[123]. Content validity can be ensured if the items representing the various
constructs of an instrument are substantiated by a comprehensive review of the
relevant literature [125]. The instrument used in this study has been developed
on the basis of a detailed literature review and consultations with experts, so as

to ensure the content validity.
4.3 DATA COLLECTION AND SAMPLE

The survey population consists of professionals such as, Design Engineers,
Production Engineers, Technicians, Quality Control Engineers and Academicians
(the five classes of respondents) with more than two years experience. The
population could not be determined hence random sampling method was not
adopted. A stratified random sampling technique has been used for sample
selection [126]. Twenty five respondents each were selected at random from each
of the five classes (given above). The respondents were briefed about the
purpose of the study and were given instructions on how to mark responses in
the questionnaire before they were asked to give their responses. Survey research

has been done in two phases with respondent sample selection as given below.
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Phase-1:Pre-experiment Survey: Pre-experiment survey was conducted
by framing 17 different questions in section A and 19 questions in section B.
Answer choices were given for section ‘A’, but for section ‘B’, open ended
questions were used. The questionnaire was given to ten subjects each from the
five different categories of experts as is given in Table 4.1. Section B questions
were used for getting the range of values of human related measurement errors

produced by the selected factor.

Phase-2:Post-Experiment Survey: After phase-1 of the survey, the
experiment described in chapter III to quantify the human related measurement
errors was conducted. From the results of the experiments, multiple (three)
answer choices were made, for marking answers to questions in section B. Then
the second phase of the survey was carried out, using the modified set of
questions, which gave answer choices to both section A and B. The numbers of
respondents were also increased in the second phase by adding 15 more subjects

to each of the five different categories as shown in Table 4.1.

Table 4.1. Respondents of the Survey

Respondents Pre Experiment* Post Experiment*

[Without Answer Choice] [With Answer Choice]
Design Engineers 10 25
Production Control Engineers 10 25
Technicians 10 25
Quality Control Engineers 10 25
Engineering Academicians 10 25
*Experimental analysis on human errors

4.4 METHODS OF ANALYSIS

Survey questionnaire responses were statistically analyzed and the
validity of the results were confirmed with t test and using receiver operating

characteristic (ROC).
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Receiver Operating Characteristic (ROC)

In signal detection theory, a receiver operating characteristic (ROC), or
simply ROC curve, is a graphical plot which illustrates the performance of a
binary classifier system as its discrimination threshold is varied [127]. It is
created by plotting the fraction of true positives out of the positives (TPR = true
positive rate) vs. the fraction of false positives out of the negatives (FPR = false
positive rate), at various threshold settings. TPR is also known as sensitivity, and

FPR is one minus the specificity or true negative rate.

The ROC is also known as a relative operating characteristic curve,

because it is a comparison of two operating characteristics (TPR and FPR) [128]

A ROC space is defined by FPR and TPR as x and y axes respectively,
which depicts relative trade-offs between true positive (benefits) and false
positive (costs). Since TPR is equivalent with sensitivity and FPR is equal to 1 -
specificity, the ROC graph is sometimes called the sensitivity vs (1 — specificity)

plot.

The best possible prediction method would yield a point in the upper left
corner or coordinate (0, 1) of the ROC space, representing 100% sensitivity (no
false negatives) and 100% specificity (no false positives). The (0, 1) point is also
called a perfect classification. A completely random guess would give a point
along a diagonal line (the so-called line of no-discrimination) from the left bottom

to the top right corners (regardless of the positive and negative base rates) [129].

The diagonal divides the ROC space. Points above the diagonal represent
good classification results (better than random), points below the line poor
results (worse than random). Note that the output of a consistently poor

predictor could simply be inverted to obtain a good predictor.
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The closer a result from a contingency table is to the upper left corner, the
better it predicts, but the distance from the random guess line in either direction
is the best indicator of how much predictive power a method has. If the result is
below the line (i.e. the method is worse than a random guess), all of the method's
predictions must be reversed in order to utilize its power, thereby moving the

result above the random guess line [130].

Area under Curve:

The area under curve (AUC), when using normalized units, is equal to the
probability that a classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one (assuming 'positive’ ranks higher than
negative'). It can be shown that the area under the ROC curve is closely related
to the Mann-Whitney U, which tests whether positives are ranked higher than
negatives. It is also equivalent to the Wilcoxon test of ranks [130]. The AUC is
related to the Gini coefficient (G1) by the formula, G1=2AUC-1, where:

G, =1-3 (X, = X, )Yy +Yy1) (4.1)

In this way, it is possible to calculate the AUC by using an average of a
number of trapezoidal approximations. The machine learning community most

often uses the ROC AUC statistic for model comparison.
Other Measures:

In engineering, the area between the ROC curve and the no-discrimination
line is often preferred, due to its useful mathematical properties as a non-

parametric statistic. This area is often simply known as the discrimination.
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4.5 RESULTS AND DISCUSSIONS

4.5.1 Pre-Experiment Survey

In the pre-experiment survey phase, ten respondents each from five
different categories of subjects as given in Table 4.1 participated. Section A
questions were used to collect the general know how about the possibilities of
human related measurement errors, when they do the measurements using
different devices (analog or digital), different hours of the day (FN, AN and night
hours) and when they are assigned different tasks (simple, difficult, large sized
and small sized objects). This set of questions also collects responses of the
possibility of human related measurement errors in subjects with different 1Q
levels, age, experience and gender. Respondents being technical professionals,
majority of them were able to give the correct answers about the human related
measurement errors in the above conditions. The pre-experiment survey answers
of section A question is similar to the responses of the post-experiment phase of
the survey. Therefore the detailed analysis of each response to each question in

section A is included in post-experiment survey analysis.

In section B, nineteen different questions were there to get the range of
possible values of human related measurement error causes by selected factors.
Analysis of the responses to section B questions clearly indicates that the
respondents do not have a fair idea about the extent of human related
measurement error causes by selected factors. This justifies the experimental

study explained in chapter III.
4.5.2 Post Experiment Survey results

The analysis of responses related to Section A of the questionnaire is

presented next. In the question of comparison of digital and analog devices
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error, 52.8% of the respondents answered that digital multimeter [DMM] makes
minimum measurement error, 45.6% replied digital storage oscilloscope [DSO]
makes minimum error and 1.6% thinks that analog multimeter creates minimum
error, 97.6% answered that digital calipers makes minimum error compared to
analog calipers. The experiments on different subjects reveal that error is
minimum with digital multimeter and maximum with Analog multimeter.

Similarly Digital calipers shows very less error compared to Analog calipers.

In the question of possible errors in different hours of the day, 91.2%
subjects responded that, the measurement error will be minimum during
forenoon, 7.2% are of the impression that the error will be minimum during
night hours and 1.6% think that the error is minimum during afternoon hours.
76.8% think that the measurement errors will be maximum during afternoon

hours.

The experiments show that the measurement error is minimum during
forenoon and maximum during night hours. The questions regarding the effect
of task differences, 96.8% says that task difference will have effect on
measurement error. The 67.2 percentage of the participants thinks that
measurement of smaller quantities may create more error than larger quantities.
Experiment proves that, smaller quantities create more error than larger

quantities.

The Questions were asked to compare the measurement error dependence
on subjects” Intelligent Quotient. It is observed from the questionnaire analysis
that, 84% of the respondents feels , subjects with average 1Q [IQ2] make more
error than subjects with above average IQ [IQ1] and 95% believes that subjects
with below average IQ[IQ3] make more error than IQ1 both in analog and digital

measurements. The experimental findings also confirm with this.
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Questions for comparing the measurement errors of experienced
technicians whose IQ is below average [ET-IQ3] with inexperienced engineers
and diploma holders with above average 1Q [IQ1], average IQ [IQ2] and below
average IQ [IQ3] were also analyzed. 72.8% respondents feel that the experienced
technicians with below average IQ [ET-IQ3] are comparable to inexperienced
engineers and diploma holders with average 1Q [IQ2]. 14.4% and 12.8%
respectively thinks that ET-IQ3 is comparable to IQ1, and IQ3 categories. The

experimental results show that ET-IQ3 is comparable to 1Q2.

In the comparison of Engineering Students with State Engineering
Entrance Rank between 1 and 5000 [ER1] with inexperienced engineers having
different IQ level, it is observed that 56.8% feels that ER1 is comparable to 1Q2,
42.4% feels that ER1 is comparable to IQ1. 68.8% equates ER2 to 1Q2 and 28%
equates them to 1Q3. 71.2% of the respondents feels that the performance of
student subjects with state entrance rank above 15000 [ER3] is comparable to IQ3
and 11.2% feels that the performance of ER3 is not comparable to either IQ1 or
IQ2 or IQ3. The experimental results shows that ER1 category is comparable to
IQ2 , ER2 is comparable to IQ2 and ER3 is not comparable to any of the three
categories IQ1, IQ2 and IQ3 being lower.

912% of the respondents feel that first year students make more error
than final year students and it matches experimental results. The experimental
study shows that the measurement errors with experienced technicians in the age
group of 41 to 50 [ET2-IQ3] is more than experienced technicians in the age
group of 31 — 40 [ET1 to IQ3]. 78.4% of the respondents also agree with the above
findings.

72% of the respondents said that there won’t be any measurement error

difference according to the gender of the subjects, 14.4% says that male creates
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more error and 13.6% feels that female makes more error. But in the experimental
study, it is observed that female makes slightly more error than male. However,
the t-test showed that the error difference between male and female is
insignificant. 58% of the participants in the pre-experiment questionnaire
schedule believe that, difficult task will result in more error, where as 53% of the
respondents are of the impression that simple task is more error prone.
Experimental study shows that there are more errors in simple tasks. The
outcome of experiments on human errors in measurement is that, the possible
mean error that may be created by subjects with different IQ levels, experience,
subjects in different age group, gender and when the subjects were provided
with different equipments and tasks were found out. Using these values three
choices were included as part of the question in section B. The post experiment
questionnaire analysis of the section B related questions shows that 43.76% of the
respondents could give correct answers against 7.34% of pre experiment

questionnaire response. The details are given in the following section.
4.5.3 Comparison of Pre and Post Questionnaire Analysis

i. Section A category questions

The pre and post experiment questionnaire analysis of questions related to
section A and B categories were compared separately. The comparison of pre and
post experiment questionnaire analysis of six type of questions in section A
shows that the questionnaire answers are similar in both the phases of survey

with a small aggregate variation of 1.76%, which is insignificant.

The ROC curve given in Figure 4.1 shows that there is not much difference

between the pre experiment and post experiment questionnaire analysis for the
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questions related to section A category. The t-test result given in Table 4.3

confirms that the variation between the two sets is insignificant.

Table 4.2 Comparison of Pre and Post Questionnaire Analysis

Category Group Mean N Std. Deviation
Design Engineers First set 43.0000 |10 2.16025
Second set |43.0000 [10 2.10819
Total 43.0000 |20 2.07745
Production and Control Engineers  First set 42.0000 |10 2.26078
Second set |42.0000 [10 2.30940
Total 42.0000 |20 222427
Technicians First set 41.7000 |10 1.49443
Second set |41.4000 (10 1.71270
Total 41.5500 |20 1.57196
Quality Control Engineers First set 43.4000 |10 1.71270
Second set |43.0000 [10 1.56347
Total 43.2000 |20 1.60918
Engineering Academicians First set 41.9000 |10 1.96921
Second set |41.7000 [10 1.88856
Total 41.8000 |20 1.88065
Total First set 42.4000 |50 1.97949
Second set |42.2200 |50 1.97215
Total 42.3100 |100 1.96790

Table 4.3 t-Test Showing the Comparison of Pre And Post Experiment Survey Analysis

Std.
Deviatio Sig. (2-
Group Mean n T Df tailed)
total score First set 42.4000] 1.97949 456 98 .650
Second set| 42.2200] 1.97215

The ROC curve is given in Figure 4.1. The area under the curve is found
out as .474. Since the area under the curve is only .474, which indicate that there

is no much difference between the two groups.
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ROC Curve

ROC Curve

1.0

Sensitivity
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1 - Specificity

Diagonal segments are produced by ties.

Figure 4.1 ROC Curve -Pre and Post Survey Analysis — Questions in Section A

ii. Section B category questions

The pre and post experiment questionnaire answers related to second

category of questions were compared as given in Table 4.4.

Table 4.4 Comparison of Pre and Post Experiment Survey Analysis

Without choice With Choice
[pre experiment] | [post experiment]
Design engineers 10.5 42
Production Control Engineers 8.5 40.8
Technicians 8.6 40
Quality Control Engineers 4.7 52.6
Engineering Academicians 44 434
Average 7.34 43.7

It can be observed from Table 4.4 that on an average only 7.34% could give
correct answer when no choices about the possible range of measurement errors
that can be caused by subjects having different experience, 1Q, age, gender, in

different type of measurements, in different time of day, in different
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environment for measurement and using different technology for measurement,

were given [pre experiment survey].

The experimental study conducted after the pre experiment survey
provided the possible mean percentage error values for answer choices. Then for
the nineteen questions in second category, choices of range of mean percentage
error were given and 25 subjects from each of the above said categories were
asked to answer to the questions as schedule. It can be observed from Table 4.4
that, on an average 43.7% could answer the question correctly against 7.34%
when choices of answers were given post-experiment survey. Quality control
engineers scored maximum and the mean percentage of 19 questions is 52.6% as
can be noticed from Table 4.4. Technicians scored minimum and the mean

percentage is 40%.

ROC Curve
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o
o
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Sensitivity

2
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1
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0.0 5 T T T T
0o 0z 0.4 08 0.8 1.0

1 - Specificity

Diagonal segments are produced by ties.

Area under the Curve =0.970

Figure 4.2 ROC Curve Showing the Significance of the Difference Between Pre and Post
Survey Analysis — Questions in Section B
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The ROC curve for comparing the analysis results of questionnaire related
to section B category questions of pre experimental and post experimental survey
is given in Figure 4.2. It can be observed that the area under the curve in this case
is 0.97 which is close to 1, therefore, it can be concluded that the difference
between the pre experiment and post experiment survey analysis of section B
questions is significant. Section B questions, being to provide the perception of
professionals on the extent of human related measurement errors under various
circumstances, it can be said that the results derived out of the human error in

measurement analysis experiment is quite useful.
4.6 CONCLUSION

In this survey research study the questionnaire has Sections A and B.
Section A category, which being, questions to study the relative importance of
various factors which influences the human related measurement error. It is
observed that there is no significant difference between the pre-experiment and
post-experiment survey responses, and that the largest fraction of the
respondents, is able to give the correct answers, though they are not a large
majority. This leads us to the conclusion that the factors that result in human
related measurement error are understood by a large fraction of the respondents
but not by a large majority. This justifies the effort to identify and study the

factors and then widely share the findings.

In section B, the questions were to study the extent of human related
measurement errors. There is a remarkable difference between pre and post
experiment survey responses. Pre-experiment survey analysis shows that only
7.34% of the respondents could give correct answers regarding the extent of
errors, whereas in post-experiment phase, on an average 43.7% could give correct

answer for section B questions. Receiver operating characteristic and t-test also
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establishes the significance of the difference between the pre and post survey

responses to the section B category questions.

The large fraction of respondents was also able to arrange factors
according to their relative importance. From the pre-experiment survey research
it was observed that the respondents could not give the correct answers to
questions related to the correct values [extent] of human related measurement
errors. This confirmed the fears expressed regarding lack of knowledge about the
extent of human related measurement errors among professionals associated
with quality. This is the gap that has been addressed by the experimental study

presented in chapter IIL

In the post experiment phase, based on the experimental analysis, the
choices of answers to the questions related to the quantification of errors [Section
B] were provided and the survey responses collected. This when analyzed
showed that the answers to the questions dealing with extent of errors improved
significantly in all categories of respondents. This shows that doing experiments
and providing inputs to professionals helps improve their perception (judgment)

regarding effect of different factors on extent of human errors in measurement.
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Chapter V

Measurement Uncertainties in Sophisticated

Instruments



5.1 INTRODUCTION

Quality of measurements has assumed great significance in view of the
fact that measurements (in a broad sense) provide the very basis of all control
actions. Incidentally, the word measurement should be understood to mean both
a process and the output of that process. Uncertainty of measurement is a
parameter, associated with the result of a measurement that characterizes the
dispersion of the true values, which could reasonably be attributed to the
measurand. The parameter may be, for example, the standard deviation (or a
given multiple of it), or the half-width of an interval having a stated level of

confidence.

Errors in the observed results of a measurement (process) give rise to
uncertainty about the true value of the measurand, as is obtained (estimated)
from those results [131]. Both systematic and random errors affecting the
observed results (measurements) contribute to this wuncertainty. These
contributions have been referred to as systematic and random components of
uncertainty respectively. Random errors presumably arise from unpredictable
and spatial variations of influence quantities, such as, the way connections are
made or the measurement method employed uncontrolled environmental
conditions or their influences, inherent instability of the measuring equipment,
personal judgment of the observer or operator, etc. These cannot be eliminated

totally, but can be reduced by exercising appropriate controls.

Various other kinds of errors, recognized as systematic, are also observed.
Some common types of these errors, are due to those reported in the calibration
certificate of the reference standards /instruments used and different influence
conditions at the time of measurement compared with those prevalent at the

time of calibration of the standard (quite common in length and direct current
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measurements etc.). It should be pointed out that errors, which can be recognized
as systematic and can be isolated in one case, may simply pass of as random in

another case.
5.2 CALIBRATION AND UNCERTAINTY EVALUATION

Calibration determines the error associated with a measurement, and, if
possible, reduces that error. This means that calibration is more than just
adjusting the measurement capability of a device. Instead, the calibration process
include three parts namely, verifying that the measurement capability of the
measuring device is within specifications, adjusting the device to reduce its
measurement error, and verifying the new measurement capability of the device
to ensure that, it is operating within specifications. The most basic requirement of
a calibration is proof of traceability. The traceability is defined an unbroken chain
of comparisons, all having stated uncertainties between the measurement and

some national or international standard.

Comparison of Indications

—
Calibrator Ve R vr R Instrument under
Cl S Test ITI
Influence Ouantities Influence Quantities

Figure 5. 1 Calibration by Comparison Method
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The simplest method of calibration is comparison method. Figure 5.1
shows the calibration by means of the comparison method, i.e. by comparison of
the indication of the instrument under test, and the corresponding indication of
appropriate standards. Because standards maintained by national and
international bodies are well quantified and maintained, the ability to
demonstrate an unbroken chain of comparisons between the measurements and
these standards provides advantages such as, ability to trace the measurement
uncertainty back to a known and accepted standard, acceptance of the
instrument’s measurement capabilities between countries and the ability to
determine the maximum uncertainty associated with the measurements.
Calibration certificates for measuring instruments give the measurement
deviation, error correction, and the uncertainty of measurement. Only this
combination characterizes the quality of the relation of the measurement result to
the appropriate (SI) unit. This research work focuses on (1) characterization of
time dependant variations in sophisticated instruments using calibration data (2)
method for determining the uncertainty budget from calibration data (3)

development of error prediction models.
5.3 CHARACTERIZATION OF CALIBRATION DATA OF SOPHISTICATED
INSTRUMENTS

In order to understand the time dependant (in use) variation in the
measurement errors of sophisticated instruments it was decided to study the
calibration data for these from the records of accredited test and calibration

laboratories. The data from Sophisticated Test and Instrument Calibration (STIC)

centre, Kochi, Kerala and Fluid Control and Research Institute (FCRI), Palakkad,
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Kerala has been used for the study. Calibration data of a few selected
sophisticated instruments, Digital Multimeter (DMM), Digital Thermometer
(DT), Cathode Ray Oscilloscope (CRO), Signal Generator (5G) and Pressure
gauge (PG) were analyzed for finding out the effect of ageing, instrument to
instrument differences and the evaluation of the response of the instrument to
different applied input for calibration. The calibration data was collected for

number of instruments and time as given in Table 5.1

Table 5.1 Characterization of Calibration Data of Sophisticated Instruments

Name of instrument No. of instruments | No. of years of
data

Digital Multimeter 10 5
Digital Thermometer 10 5
Cathode Ray 10 10
Oscilloscope

Signal Generator 10 5
Pressure Gauge 10 5

Calibration data for ten years of ten different Cathode Ray Oscilloscopes
was collected and analyzed. The analysis was done with ten year data and five
year data. It was seen that there is no significant difference between the two
results. Therefore, the data collection was limited to five year calibration data for
remaining cases. In both the test centers, calibration is done by comparison
method. In comparison method, different input parameters are applied and the

outputs are compared with accepted standards.

Statistical analysis was carried out in all the cases to find out the mean and
standard deviation of error. The t-test and Post-hoc test were also done to check

the significance of error variations.
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5.4 UNCERTAINTY BUDGET FROM CALIBRATION DATA

Calibration data of digital multimeter and digital thermometer were used
to make a mathematical model, to derive the uncertainties for uncertainty budget

of the instrument.
5.5 MODEL FOR ERROR PREDICTION

It was found that the error prediction capability of professionals regarding
the change in extent of error in measuring instruments with use (time) was poor.
There is need to more accurately predict this, in order to schedule calibration
depending on requirement, and not always follow thumb rule like calibrate after
twelve months. To enable this using the calibration data collected it was decided
to build models for error prediction. Two approaches were taken, one based on
regression (time series) and the other using Artificial Neural Network (ANN)

These models are discussed in detail in Chapter VL
5.6 RESULTS AND DISCUSSIONS

Analysis of Calibration data of selected instruments such as DMM, Digital
thermometer, CRO, Signal Generator and Pressure Gauge is discussed here. The
calibration data of DMM and Digital thermometer are also used to determine
uncertainty and hence uncertainty budget. Five year calibration data of all the
five types’ instruments is used to characterize the measurement error and to find
out the effect of ageing, instrument to instrument differences and the error
variation within different range of inputs applied for calibration of a particular

instrument.
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5.6.1 Theoretical Method to Determine Uncertainty Budget

5.6.1.1 Calibration of a 6 Y digit Digital Multimeter

Calibration of a 6 %2 digit digital multimeter on its 1 Volt AC range at a
nominal 0.5 V level at 1 kHz can be done using 0.5 V calibrated thermal voltage
converter (TVC) . AC voltage from highly stable AC Calibrator is applied to both
digital multimeter (DUC) and the standard (TVC) connected in parallel via a
coaxial switch and a Tee adaptor for an indication of 0.500000 V on the digital
multimeter and the electromotive force (emf) ex indicated by the nanovoltmeter
is noted. AC Calibrator is replaced by a calibrated DC calibrator and the DUC is
disconnected. A DC voltage of positive polarity is applied to TVC and is adjusted
so as to repeat a reading of ex on the nanovoltmeter. The output of the DC
calibrator is noted as V*. The polarity of the DC voltage is reversed and above
process is repeated and DC calibrator output voltage V- is recorded. The whole

measurement process is repeated several times.
Mathematical model

Ve =Vpe + AV + AV )L+ 06) (

The mathematical model is 5.1)

VAC is the voltage estimated for an indicated value of 0.500000 V on
DUC, VDC=V*+ V-2 is average of two polarity DC voltage output of calibrator, &
is AC/DC transfer correction factor of the TVC at the frequency of calibration.
AVDC is error of DC calibrator due to its three months stability from the
manufacturer’s data, as the calibrator was calibrated three months before and
AVth is error due to thermal emf which comes from the fact that the polarity of
DC voltage is reversed. This is very small as compared to 0.5 V, being nearly

equal to 1 uV and can be neglected. So, finally the equation becomes

VAC=VDC+AVDC +dVDC + 0AVDC (5.2)
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The product d x AVDC is extremely small since &=0.008 and is neglected.
The assumption is that the drift in the values of o is small and is also neglected
and error of digital multimeter in 1 volt range due to + 1 count is + 1uV and is
also neglected. The precaution is that the interconnecting leads are coaxial
shielded and are kept very small. The reference plane of measurement (mid point
of Tee) is brought close to input plane of digital multimeter (DUC). These
precautions minimize the loading as well as transmission errors. At frequencies
up to 10 kHz, with above precautions taken, the error contributions by above

factors are very low (<2 to 3 x 10°) and can be neglected.
The inputs are:

1. The DC calibrator is regularly calibrated at intervals of six months.
For the range of 1V, the uncertainty in the calibrator from its calibration
certificate is al=+ 5.8 x 10 at 95 % confidence level. Three months’ stability data

from the manufacturer’s specifications is 5.0 x10°.

2. The AC /DC transfer correction factor for the thermal converter is

+0.000008. The AC/DC transfer uncertainty is + 0.01 at 95% confidence level.

The observations are average of two polarity DC voltages. Table 5.2 gives

the experimental observations.

Table 5.2 Calibration Results of DMM

Serial Number | Readings (V)
1 0.499986
2 0.499982
3 0.499991
4 0.499994
5 0.499993
Uncertainty evaluation
VAC =VDC + AVDC +dVDC (5.3)
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For uncorrelated input quantities, the combined standard uncertainty is

2
2 = ZLii} ()
(5.4)

The components of total measurement uncertainty comprise of

ul (V) = DC calibrator’s applied voltage uncertainty as mentioned in its
calibration certificate

u2 (V) = DC calibrator’s uncertainty due to its stability

u3 (V) = Uncertainty in the AC/DC transfer and

u4 (V) = Uncertainty due to repeatability and the corresponding sensitivity

coefficients are

c, = z“ =1c, = ;AVAC =1,and,c, = 5\5/3c =1
DC Dc (5.5)
Type A evaluation

Mean DC Voltage = 0.499989 V,
Standard deviation SD = 0.0000005 V,

Standard deviation of mean or standard uncertainty

_ 0.000005 _ 2 93%1.0-°V

s(a)
V5 (5.6)
Degrees of freedom = oo

Vi=5—1=4 (57)

Type B evaluation

1. The Uncertainty of DC calibrator from its calibration certificate gives that the
distribution is normal and the coverage factor for 95 % confidence level is

1.96.
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& oD =28 x05v =148,

w0 =196"" =106 5.8)

Degrees of freedom = <
2. It can be observed from DC calibrator’s specifications that, uncertainty due to 3
months stability data a2 = +5.0 x 10%. For rectangular distribution, the

standard uncertainty.

u, (V) =22 xsD =20 %05, = 1.44,7

V3 V3 (5.9)

Degrees of freedom = oo

3. From AC/DC transfer at 95 % confidence level az = 100 x 10, distribution is

normal and coverage factor = 1.96.
Standard uncertainty

U, (V) = -2 xsD = 290 30 5,0 = 2550
1.96 1.96 (5.10)

Degrees of freedom = oo
Combined standard uncertainty

There is a dominant factor =25.5 V.

Ue =255+ Jul +ul +ui =25.5+./(1.48)" + (1.44)° + (223)" (515

=25.5+3.04=285uV (5.12)

Effective degrees of freedom (vet)

_ [u.]’ _
T, W) W) ()
- 0 % 4 (5.13)
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Expanded uncertainty

The expanded uncertainty for 9545 % level of confidence, and for a

coverage factor of k =2, is

U =ku, (V) = 2x28.5 =57/

(5.14)
Table 5.3: Uncertainty Budget:
Source of | Estimates | Limits + A xi | Probability Standard Sensiti | Uncertainty | Degree
Uncertainty xi V uv Distribution Uncertainty | vity Contribution | of
Xi - Type A or B - | u(xi) uV coeffici | ui (y) pV freedom
Factor ent ci Vi
w 0.5 29 Normal 1.48 1.0 1.48 o0
-Type B
-1.96
w 0.0 2.5 Rectangular 144 1.0 1.44 oo
-TypeB
~3
u 0.0 50.0 Normal 25.5 1.0 255 o0
-Type B
-1.96
Repeatability Normal 285 4
-Type A
uc(Vac) 28.5 oo
Expanded k=2.0 570 o0
uncertainty
Outcome

The measured average AC Voltage corresponding to 0.500000 V indicated

by the Digital Multimeter,

VAC = VDC [1 + §] + AVDC

0.499993V + 57 uv

5.6.1.2 Calibration of Digital Thermometer

(5.15)

0.499989 (1 + 0.000008 ) V £ 57 uV =

A digital thermometer with a Type K thermocouple was used to measure

the temperature inside a temperature chamber. Temperature controller of the

chamber was set at 500°C. Digital thermometer has a resolution of 0.1°C and type
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K accuracy [1 year] of + 0.6°C.Type K thermocouple in the thermometer is
calibrated every year. The last calibration report provided an uncertainty of +
2.0°C at confidence level of 99 %. The correction for the thermocouple at 500°C is

0.5°C.

hdeasurenlentrecord
When the temperature chamber indicator reached 500°C, the readings
were taken after a stabilization time of half an hour. Ten measurements were

taken as recorded in Table 5.4.

Table 5.4: Measurements Record
Measurement (i) | T in °C
500.1
500.0
501.1
4999
4999
500.0
500.1
500.2
4999
500.0

O |0 (NN |U W IN |-

—
e}

The mathematical model is represented as follows:

T =D + Correction (5.16)
Where

T= Temperature measured.

D = Displayed temperature of the digital thermometer.

Correction = Correction due to the digital thermometer and Type K

thermocouple
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Analysis of Measurement uncertainty components

Combined standard uncertainty (uc) includes uncertainties of the
repeatability of the displayed readings, the digital thermometer and the

thermocouple. This is represented by the equation below:

U, =U/ +Uu +u? (5.17)

where, uc = combined standard uncertainty in the measurement,
w1 = standard uncertainty in the repeatability of measured readings,
w2 = standard uncertainty in the digital thermometer,
us = standard uncertainty in the thermocouple
Type A evaluation
(A) Standard uncertainty in the readings (u1)

Table 5.4 shows the data obtained from the experiment. The mean value

can be calculated from the above experimental data as given below:

— 1 10
T =T =500.12
10i=1 (518)

Where Ti is the ten measurements taken as listed in Table 5.4. The

temperature of the chamber after taking into consideration the correction of the

thermocouple is 500.5°C.

The variance is calculated as follows:

S2(T,) = —=— 3T, ~T)? =+ (0.096) = 0.0106°C?
n-1 9 (5.19)

Standard deviation
s(T,) =0.103°C (5.20)
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Standard deviation of the mean is as follows:

5(T,) _ 0.103°C _ o oo
vn 410 (5.21)

ui=s(T) =

Thus the standard uncertainty (ul) is equal to 0.03°C.

Degrees of freedom (vi)=n-1=10-1=9

Type B evaluation
Standard uncertainty (uz)

From specifications, the uncertainty in the digital thermometer is + 0.6°C.
Assuming rectangular distribution, the standard uncertainty in the digital

thermometer (u2) is,

u, =28 _0350C

V3 (5.22)
Degrees of freedom (vi) = e
Standard uncertainty (us)

From calibration report, with a confidence level of 99 % (k = 2.58), the

uncertainty in the thermocouple is + 2.0 °C.

o, =22 _0.78°C
2.58

(5.23)

Degrees of freedom (vi ) = e
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Combined standard uncertainty

The value of the combined standard uncertainty is calculated using

Equation 5.17

u, =4/(0.03) +(0.35)% + (0.78) =0.85°C

(5.24)
Effective degrees of freedom
4
v, = (0.85)4 —
(0.03)
9 (5.25)

Expanded uncertainty

U=kxu.=2x085=17°C; k=coverage factor=2 (5.26)

Apportionment of standard uncertainty

Uncertainty analysis for a measurement, called the Uncertainty Budget of
the measurement, include a list of all sources of uncertainty together with the
associated standard uncertainties of measurement and the methods of evaluating
them. For repeated measurements the number n of observations also has to be
stated. For the sake of clarity, the data relevant to this analysis is presented in the
form of a table given in Table 5.5. In this table all quantities is referenced by a
physical symbol x;, or a short identifier. For each of them the least estimate xi, the
associated standard uncertainty in measurement u(xi), the sensitivity coefficient
ci and the different uncertainty contributions ui(y) is specified. The degrees of
freedom are also mentioned. The dimension of each of the quantities is also

stated with the numerical values in the table.

-86-



Table 5.5 Statement of the Uncertainty Budget

Source of Estimate | Limits | Probability | Standard | Sensitivit | Uncertain | Deg. of
Uncertainty | s xi°C *A xi Distribution | Uncertai |y ty freedo
Xi °C -Type Aor |ntyu(xi) | coefficien | contributi | m vi
B °C tci on ui
- Factor (y) °C
Digital 0.6 0.3 Rectangular | 0.35 1.0 0.35 oo
Thermomete -Type B
r -\3
Thermocoup | 2.0 Normal 0.78 1.0 0.78 oo
le -Type B
-2.58
Repeatabilit Normal 0.03 1.0 0.03 9
y -Type A
-~10
Combined uc 0.85 oo
uncertainty
Expanded U k=2 1.7 oo
uncertainties

5.6.2 Characterization of Errors Observed During Calibration

Digital Multimeter is used to measure direct current voltage [DCV],
Alternate Current Voltage [ACV], Direct Current [DCC] and Alternating current
[ACC], resistance and capacitance. The calibrations of Digital Multimeter were

carried out by applying different inputs as is given in Table 5.6.

The DC voltage, AC voltage, DC current, AC current, Capacitance and
Resistance calibration data of Digital Multimeter were analyzed separately. The
effect of age in calibration error and instrument to instrument difference were

studied by analyzing five years calibration data of ten Digital Multimeters.

-87-




Table 5.6 Digital Multimeter Calibration

DC Voltage DC Current Capacitance
Group (V) Range (V) | Group (A) Range (A) Group Range (nF)
(nF)
04 .04,0.2, .004 0.004,0.002, 4 5,2,3.6
0.36 .0036
4 4,2,3.6 4 .0004, .002, .0036 | 40 4,20, 36
40 4,20, 36 10 1,5,9 400 40, 200, 360
400 40, 200, 360 | AC Current 4000 400,
2000,2600
1000 100, 500, Group (A) Range (A) 40000 4000, 20000,
900 36000
AC Voltage 004 .0004, .002, .0036 | Resistance
Group (V) [Range (V) | 4 .0004, .002, .0036 | Group Range (kQ)
(kQ)
4 4,2,3.6 10 1,5,9 4 0.04, 0.2, 0.36,
40 4,20, 36 4 04,2,3.6
400 40, 200, 360 40 4,20, 36
750 75,375, 675 400 40, 200, 360
4000 400, 2000, 3600
40000 4000, 20000,
36000
Table 5.7 Error Growth with Agein
DC Voltage DC Current Resistance
Input (V) Error growth | Input (A) Error growth | InputkQ Error growth (%)
(%) (%)
04 70 .004 37 04 85
4 91 4 19 4 99
40 98 10 86 40 97
400 80 AC Current 400 76
1000 86 Input (A) Error growth | 4000 96
(%)
AC Voltage .004 45 40000 92
Input (V) Error growth | 4 86 Capacitance
(%)
4 30 10 94 Input (nF) ‘ Error growth (%)
40 89 4 39
400 78 40 58
750 71 400 73
4000 91
40000 81
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Mean percentage of error growth after five years is given in Table 5.7. It is
noticed that the minimum error growth rate is with DC current and the

maximum is with Resistance.
5.6.2.1 Digital Multimeter —
a. Direct Current Voltage [DCV]

Direct current voltage calibration of digital Multimeter were carried out
by applying, five different groups of voltages as given in Table 5.6. In each group,

three separate voltages were used for calibration.

DMM DC Voltage - effect of Ageing
0.12
0.1 OMean —
osD

0.08 -
S
= 0.06 -
i

0.04 -

0.02 1 [ ':':'

0 L N a I b B
Year 1 Year 2 Year 3 Year 4 Year 5

Figure 5.2 Effect of Ageing in Digital Multimeter - DCV mode

The mean error grows by 81% after five years with an average standard

deviation of 0.06530 as shown in Figure 5.2.

DMM DC Voltage - Effect of ageing within group of voltage
—— 0.4V
0.14
—a— 4V
0.12 40v /
01 —— 400V
5 —x— 1000V
= 0.08
w
j =
& 0.06
=
0.04 -
0.02
0 ® T T e T " X
Year 1 Year 2 Year 3 Year 4 Year 5

Figure 5.3 Effect of ageing within applied group of voltages for calibration - DMM DCV
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Mean error growth after five years is different for different group of
applied voltages for calibration. But the mean error growth is seen to be less with
higher voltage group compared to smaller voltage group and is significant only

in the 0.4V range used for calibration is shown in Figure 5.3

Table 5.8 Digital Multimeter - DC Current - ANOVA

Sum of

Squares Df Mean Square (F Sig.
Between Groups|0.009 2 0.004 49.616  [<0.001
Within Groups [0.020 222 0.000
Total 0.029 224

Table 5.8 showing ANOVA test results, confirms that there is a significant

difference between the errors in the groups [five ranges of applied voltages].
b. Digital Multimeter — Alternating Current Voltage [DM - ACV]

Alternating current voltage mode of Digital Multimeter is calibrated by
applying four different groups of voltages as is shown in Table 5.6. Mean error
growth of 67% and an average standard deviation of 0.29271 are observed after

five years.

Instrument to Instrument error difference for different groups of applied
calibration voltage is significant only for two instruments as can be observed

from Figure 5.4 (also confirmed by ANOVA test).
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DMM AC Voltage - Effect of ageing
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Figure 54 DMM AC Voltage — Instrument to Instrument Differences

Table 5.9 Multiple Comparison - AC - Voltage

95% Confidence Interval
Mean Difference
(I) GROUP (J) GROUP (3)! Std. Error (Sig. Lower Bound |Upper Bound
4V 40V -01172 04256 993 -1217 .0983
400V -.04218 04256 755 -.1522 .0678
750V -.32889* 04256 *.000 -4389 -.2189
40V 4V 01172 04256 993 -.0983 1217
400V -.03046 04256 891 -.1404 .0795
750V -31717% 04256 *.000 -4271 -.2072
400V 4V .04218 04256 755 -.0678 1522
40V .03046 04256 891 -.0795 .1404
750V -.28671* 04256 *.000 -.3967 -.1767
750V 4v .32889*% 04256 *.000 2189 4389
40V 31717% 04256 *.000 2072 4271
400V .28671% 04256 *.000 1767 3967

* The mean difference is significant at the 0.05 level.

Error is not in the same ratio at different levels of measurement in the
working range on a measuring instrument. In order to explore whether the error
differences at different levels is significant, multiple comparison Tuskey HSD

test was carried out. Multiple comparison Tuskey HSD test results given in Table
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5.9 shows the significance of error difference between different groups of applied
voltage. It can be observed from the Table 5.9 that, the higher voltage group

[750V] shows a higher mean error difference when compared with other groups.
c. Digital Multimeter -DC current.

Calibration results of DC Current mode of operation of ten Digital
multimeter for five years have been analyzed to study the effect of ageing and
instrument to instrument differences. In direct current calibration three different
groups of currents which are, 0.004A, 0.4A and 10A were used. Within each
group, three different currents are used for calibration as can be noted from Table
5.6 and the errors are recorded. From the analysis, it is observed that the mean
error grows in five years by 79% of the error noted during calibration in the first

year.

Table 5.10 Digital Multimeter DC Current - Effect of ageing— ANOVA test

Sum of

Squares Df Mean Square (F Sig.
Between Groups|.002 4 001 4.101 .003
Within Groups [.027 220 .000
Total 029 224

ANOVA test proves that the error growth is significant at 0.05 confidence
level as can be noted from Table 5.10. ANOVA test also gives that the errors
created by three different groups of DC current used for calibration is significant
at 0.05 confidence level. But the difference in error growth between instruments

is not significant.
d. Digital Multimeter-AC Current

Calibration of the AC current mode of Digital Multimeter is similar to DC

current mode. It is observed that, the error observed during calibration grows
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after five years in AC current mode of digital Multimeter by 94% and ANOVA
test also gives that the error growth is significant at 0.05 confidence level. The
error difference within the three different groups [in each group three different
currents were used for calibration as can be noticed from Table 5.6] is significant
as per ANOVA test and the error growth among different instruments is also

significant.
e. Digital Multimeter — Capacitance mode

Calibration of digital multimeter in capacitance mode is done by using
tive different capacitance groups [each group having three different capacitance

values] as shown in Table 5.6.

DMM Capacitance Efect of ageing
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Figure 5.5 Effect of Ageing — DMM Capacitance Mode

Analysis of five years error observed during calibration shows that there
is 80% error growth with ageing as it is evident from Figure 5.5. The error growth
rate is significant only at higher ranges of capacitance values i.e. for 4000 nF and
40000 nF as can be noticed from Figure 5.6. It is also observed that, there is error

growth difference between instruments.
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Figure 5.6 Difference in Error Between Different Applied Capacitances for Calibration

f. Digital Multimeter — Resistance Mode

Resistance mode of Digital Multimeter is calibrated by using six different
groups of resistances and in each group three resistance values were used as can
be seen in Table 5.6. The error grows at a rate of 92% after five years and the

ANOVA test proves that the error growth is significant.

Instrument to instrument error difference can be analyzed using Post Hoc
Test and the multiple comparisons of five equipments. It is observed that, the
first equipment shows a significant error difference when compared with 2nd,
3rd and 5th equipments. Similarly, when the fourth equipment is compared with
2nd, 3rd and 5th gives a significant error difference. All other multiple
comparison results stand insignificant. The error difference in six different
groups of resistances used for calibration is also significant at 0.05 confidence

level.
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g. Error Correction Techniques
System Cabling Errors

To reduce interference, one must try to minimize the exposure of the
system cabling to high-frequency RF sources. If the application is extremely
sensitive to radio frequency interference (RFI) radiating from the multimeter, use
of common mode chokes in the system cabling helps to attenuate multimeter

emissions.
Thermal EMF Errors —

It is a good idea to take the necessary precautions to minimize
thermocouple voltages and temperature variations in low-level voltage
measurements. For this the best connections are formed using copper-to-copper

crimped connections.
Noise Caused by Magnetic Fields —

Noise caused by magnetic fields can be reduced by routing, cabling away
from magnetic fields, which are commonly present around electric motors,

generators, television sets and computer monitors.

In addition, when operating near magnetic fields, one should be certain
that the input wiring has proper strain relief and is tied down securely. Use of
twisted-pair connections in multimeter helps to reduce the noise pickup loop

area. Another way is to dress the wires as closely together as possible.
Noise Caused by Ground Loops —

The best way to eliminate ground loops is to maintain the multimeter’s

isolation from earth; do not connect the input terminals to ground. If the
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multimeter must be earth-referenced, be sure to connect it and the DUT to the

same common ground point.

This will reduce or eliminate any voltage difference between the devices.
Also, whenever possible, make sure the multimeter and DUT are connected to

the same electrical outlet.
Loading Errors Due to Input Resistance —

To reduce the effects of loading errors, and to minimize noise pickup, set
the input resistance to greater than 10GQ for the 100 mVdc, 1 Vdc, and 10 Vdc
ranges. The input resistance is maintained at 10 MQ for the 100 Vdc and 1000
Vdc ranges. The same grounding techniques described for dc common mode

problems are recommended to minimize ac common mode voltages.
AC Loading Errors —

It is desirable to use only low capacitance cable when measuring high

frequency signals.
Temperature Coefficient and Overload Errors —

This additional error is automatically removed when you remove the

overload condition and then change functions or ranges.
5.6.2.2 Digital Thermometer

Digital thermometers are special purpose digital volt meters. Because of
the fact that temperature is industry’s most measured quantity, therefore digital
thermometer is popular. Instrument accuracies are consistent with the quoted
resolutions; however, accuracy of the actual temperature measurement will be
considerably less, because of deviations caused by the individual thermocouple

[TC].
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Thermocouple is calibrated by applying different temperatures -50°C, 0°C,
500°C and 950°C. Error growth with ageing is observed as 51% after five years as

shown in Figure 5.7.

Digital Thermometer - Effect of Ageing
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Figure 5.7 Digital Thermometer — Effect of Ageing

It is also observed that, the maximum error growth of a particular
instrument is 67% and minimum is 37%. ANOVA test shows that, the instrument
to instrument difference is significant. The error variation with respect to

different temperature inputs is significant as is evident from Figure 5.8.
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Figure 5.8 Different Temperatures — Digital Thermometer
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ANOVA test also gives that, error variation when different temperatures
were applied to digital thermometer for the purpose of calibration is significant

at 0.05 level of confidence.
a. Error Correction Techniques
In-Homogeneity Error

Experimental tests on digital thermometer can reveal the presence of in-
homogeneity, allowing one to discard defective thermocouples. Note that
removing a suspected unit and carefully calibrating it in a metrology lab will not
correct errors due to in-homogeneity since the lab environment does not
duplicate the use environment. An in situ calibration, when possible, will correct
such errors, but only if the “use” environment (such as immersion length,

clamping forces, etc) is not changed.

The in-homogeneity errors problem can be eliminated by using
thermocouples consisting of two (or more) materials. The simplest and most
common situation is just two materials and such pairs are described by their
relative Seebeck coefficient, which is just the difference of their absolute

coefficients.
5.6.2.3 Cathode Ray Oscilloscope
a. Vertical Axis Measurements

Error growth with ageing of ten different Cathode Ray Oscilloscopes” has
been analyzed. The analysis was carried out by taking ten years calibration data.
Calibration of Cathode Ray Oscilloscopes was done by applying DC voltages

and square wave of different ranges as is shown in Table 5.11.
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Table 5.11 Cathode Ray Oscilloscope-Calibration Details

DC Voltage (mV/
div.)

AC
(mV/div.)

Voltage

Time (ps)

Rise Time at 1V

1, 2, 5, 10, 20, 50,
100, 200, 500, 1000,
2000, 5000

1 kHz Square wave
with Amplitude 1,
2, 5,10, 20, 50, 100,
200, 1000, 2000, 5000

0.005, 0.01, 0.02,
0.05,0.1,0.2,0.5,
1, 2,5, 10,20, 50,
100, 200, 500,
1mS, 2, 5, 10, 20,
50, 100, 200, 500,

1S

1 mHz + 25

Cathode Ray-Oscilloscope -DC Voltage Calibration.

Error observed during calibration of Cathode Ray Oscilloscope, when DC

voltage of different range is applied, grows with ageing and the error growth in

ten years is shown in Figure 5.9. Mean error growth after ten years is 74.5% with

the standard deviation varying from 44.9524 to 148.011. ANOVA test proves that

error growth is significant at 0.05 confidence level.
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Figure 5.9 Effect of Ageing - CRO

Mean instrument to instrument error growth in ten different Cathode Ray

Oscilloscope samples ranges from 33.66 [68%] to 51.74 [85%]. The standard

deviation ranges from 69.51 to 127 47.
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It can be observed from Table 5.12 that, among the different ranges of
applied DC voltages for calibration, the middle range [i.e. 50 mV/div. to 1000
mV/div] shows maximum error and the upper range 2000-5000 mV/div shows

minimum error.

Table5.12 Cathode Ray Oscilloscopes-DC Voltage Calibration

Parameter Range |Mean N Std. Deviation |Mean of error growth after 10 years
1mV /Div. .30481000 100 |.262490238
2mV /Div. .28054000 100 |.275918720
5mV /Div. .39582000 100 |.661140129 66%
10 mV / Div. .38113600 100 |.486291085
20mV / Div. .91533000 100  |.828013237
50 mV / Div. 2.56860000 100 |1.742924525
100 mV/ Div. 3.91550000 100 |4.902043972
200 mV / Div. 8.67100000 100 [6.219292970  |95%
500 mV / Div. 29.20357000 100 |2.121370632E1
1000 mV /Div. 50.67192000 100 |5.624519343E1
2000 mV / Div. 1.44520000E2 |100 |6.881441592E1 469%
5000 mV / Div. 2.68100000E2 100  (1.493107058E2

Total |42.49401883 1200 {9.358777179E1

Cathode Ray Oscilloscope - AC Voltage calibration

AC calibration of Cathode Ray Oscilloscope were done with 1 kHz square
wave signal having different voltages, ranging from ImV to 5000 mV as can be
observed in Table 5.12. Mean error growth after ten years is 65% and standard
deviation increases from 1.465 to 3.34. Error growth is significant at 0.05

confidence level as per ANOVA test.

It is observed that, the mean instrument to instrument error growth
difference in 10 different Cathode Ray Oscilloscope samples ranges from 33% to
82%. Among the different range of AC voltages applied for calibration, the

lowest range, that is from ImV to 50 mV, shows minimum error growth where as
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the maximum error growth is with the range staring from 1000 mV to 5000 mV

as can be observed in Table 5.13.

Table 5.13 Cathode Ray Oscilloscope AC Voltage Calibration — for Different Voltage

Ranges
PARAMETER Mean % error growth after
RANGE Mean Std. Deviation 10 years
1mV /Div. 1.58114000 777081123 31%
2mV /Div 1.36066000 .816050469
5 mV/ Div. 1.99418000 1.137552293
10 mV / Div. 2.27100000 1.449164510
20 mV / Div 2.47640000 1.247118311
50 mV/ Div. 2.30837000 1.594374148
100 mV / Div. 11.14330000 7.206339529 40%
200 mV / Div 11.28930000 8.299401251
500 mV/ Div. 18.83820000 1.994349089E1
1000 mV / Div. 1.34240000E2  ]7.945828205E1 82%
2000 mV / Div 4.60080000E2  ]2.824649323E2
5000 mV/ Div. 7.67630000E2  |3.428460400E2
Total 1.17934379E2  ]2.670082769E2

b. Horizontal Axis Measurements
Calibration of Time Measuring Parameter of Cathode Ray Oscilloscope

Time parameter of Cathode Ray Oscilloscope can be calibrated by
applying constant amplitude square wave with different time period ranging
from 0.005us to 1 second as given in Table 5.11. Mean error growth after ten years
is 90% as can be observed from Figure 5.10. The figure also shows that the error
growth is only 45% during the first three years. Error growth with ageing is
significant as per ANOVA test. Mean error growth after ten years in ten different
Cathode Ray Oscilloscope [instrument to instrument difference] ranges from a

minimum value of 0.45725us to a maximum value of 5.0204us. Out of the
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applied signals, with different time period, the upper time period range starting

from 500us to 1 second shows the minimum error growth with ageing.
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Figure 5.10 Cathode Ray Oscilloscope Time - Effect of ageing

5.6.2.4 Signal Generator

Signal Generator is calibrated by applying square wave of different
frequencies. The frequencies are grouped as 0.4 kHz, 4 kHz, 40 kHz, 400 kHz and
2000 kHz. In each group, there are three frequencies, so that fifteen different

frequencies are used to calibrate Signal Generator.

Calibration data of ten different Signal Generators for five consecutive
years has been analyzed to study the effect of ageing, instrument to instrument
difference and the variations in different applied frequencies used for calibration.
In the normal calibration procedure, the unit under test [UUT] reading is
compared with standard reading for different ranges of frequencies and the

deviation for each UUT reading is found out.
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Figure 5.11 Signal Generator — Effect of Ageing

It is observed from the Figure 5.11 that, the mean error increases by 81%
after five years in a Signal Generator. Standard deviation change is from 0.04149
to 0.24681. In this study the deviation also has been found out for different
frequency groups such as 0.4 kHz, 4 kHz, 40 kHz, 400 kHz and 2000 kHz. Within
each group three different frequencies [eg. 0.4 kHz group, 0.39999 kHz, 0.1999992
and 0.3599986] were compared with standard reading. It is observed from Table
5.14 that, error grows with ageing for all the groups and also there are variations
in the percentage of error growth among different applied frequencies for

calibration.

Table 5.14 - Signal Generator — Difference in Error Growth with Different Applied

Frequencies

Signal Generator

Frequency range Error growth
0.4kHz 50%

4 kHz 94%

40 kHz 89%

400 kHz 67 %

2000 kHz 90%

Post Hoc test (multiple comparison test) was conducted to study the effect
of error variations in different groups of frequencies. It is observed that, there is a
significant difference when 0.4 kHz is compared with 2000 kHz, 4 kHz is
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compared with 2000 kHz, 400 kHz is compared with 2000 kHz and also in the
comparison of 2000 kHz with all other frequencies. Hence, it can be concluded
that the error growth difference is significant, when higher range of applied
frequencies for calibration are compared with lower frequencies. Error growth
difference with ageing from instrument to instrument was also studied. It is

observed, that the maximum error growth is 72% and the minimum error growth

is 48%.
a. Error Reduction Techniques
RF Level

Calibration of the RF level can be performed using the manufacturer’s
adjustment procedure and a power meter. Calibration becomes more complex as
the RF level is reduced. When attenuator pads are switched in they are unlikely
to be precisely their nominal value. As a result additional correction data is
applied to correct for the pads. Each attenuator pad is designed to operate in a
perfect 50Q2 system but the reality is different. As more attenuator pads are
added their mismatches interact and cause errors that are dependent on which
combination of pads are in use, and the distance between each of them. These are
called “stacking’ errors. It becomes harder to calibrate the attenuator. Therefore
the worse the VSWR of the attenuator, the more complex the correction factors

that need to be applied and the more complex the test procedure.

User problems increase when a Signal Generator has poor output VSWR
but tight RF level accuracy specifications. Calibration of the generator requires
increasingly complex test and correction routines to be performed with very

demanding load accuracy conditions.
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Attenuator Compromises

Attenuators are typically implemented using either electronic or
mechanical switches. Generally speaking mechanical attenuators are likely to
have better VSWR (and therefore better uncorrected accuracy), are not prone to
linearity errors and will be more robust (in terms of accidentally applied reverse
power). The mechanical switches can be either implemented using commercially
available sealed switch assemblies or using an edge line switch structure. In
general, sealed switches provide longer life, while the benefits of edge line
structures are higher frequency cover, lower insertion loss and often better

repeatability.

Electronic attenuators typically use either PIN diodes or FET's as
electronic switches. The FET designs provide much better low frequency cover
than PIN diodes, but their performance is rather less predictable (especially at
low frequency) and they act as fast acting fuses if they are not protected from
external power sources. PIN diode designs can be extended to higher frequencies
and lower loss than FET's, but require complicated drive arrangements, because

of the need for heavy forward current, if non-linear behavior is to be avoided.

The insertion loss of electronic attenuators is generally higher than their
mechanical equivalents, and this makes it more likely, that switched high power
amplifiers are required, if restrictions in output level are to be avoided (the
linearity issues also make this more likely). Electronic attenuators typically have
a much longer life than mechanical attenuators, have good repeatability, but are
more likely to suffer changes in performance with temperature. The linearity of
solid state attenuators and their loss can have a major effect on the design of the
Signal Generator, especially when complex modulation schemes or combining

systems are deployed.
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5.6.2.5 Pressure Gauge

Pressure Gauge is calibrated in the testing centre by applying seven
different pressures namely 60kg/cm? 100 kg/cm? 200 kg/cm? 300 kg/cm? 400
kg/cm? 500 kg/cm?, and 600 kg/cm? in increasing as well as in decreasing order. It
can be observed from Figure 5.12 that there is 70% growth in error with ageing
for the increasing order and 57% error growth for the decreasing order after five

years.

Pressure Guage Effect of ageing

@ Increasing O Decreasing

Mean Error

Figure 5.12 Effect of Ageing - Pressure Gauge
ANOVA test also proves the significance of error growth at 0.05

confidence level. It is observed that the error growth with ageing from

instrument to instrument is significant.
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Figure 5.13: Pressure Gauge: Range of Inputs
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Error growth with ageing for different input pressures for calibration is
different as can be noticed from Figure 5.13. It can also be noticed that, the error

growth is more for higher level of pressures.
5.7 CONCLUSION

Instrument calibration is the act of determining the uncertainty associated
with the instrument’s measurement. If possible, the instrument is adjusted to
reduce the overall uncertainty associated with the measurement. Calibration
quantifies the equipment’s time in service, instrument to instrument differences,
temperature, humidity, environmental exposure, and abuse and when required
and possible, adjusts the device’s measurement capability to decrease error. This
study describes how the errors in selected measuring instruments change with
use (over time). It also discusses how this measurement error data is used to
compute the effect of the errors upon the measurement result, and how this
effect is reduced or even minimized by rational use of the observations and by

experimental design.

In this research work, the calibration data of Digital Multimeter and
digital thermometer has been used to determine the uncertainty budget using
mathematical model. Six different modes of operation of Digital Multimeter were
calibrated separately. On an average there is an error growth of 82% with five
years of ageing. Instrument to instrument error growth differences and the error
variations in different ranges of applied voltages and currents for calibration are
also significant. This shows that these factors have to be considered seriously.
Error growth with ageing of digital thermometer is found as 51% after five years
and the error growth rate is different for different applied input temperatures for
calibration. Vertical axis calibration of Cathode Ray Oscilloscope is done by DC

and AC voltages of various amplitudes. It is observed that, the mean error
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growth is 74.5% and a standard deviation change from 4.495 to 148.011 after 10
years for DC voltages. An error growth of 65% and standard deviation change of
146.52 to 334.047 is noticed for AC voltage calibration after 10 years. Horizontal
axis calibration of Cathode Ray Oscilloscope was done by applying 1Volt square
wave of different time period starting from 0.005us to 1 second. The mean error
growth is 90% after 10 years. Signal Generator is calibrated by applying different
frequencies from 0.4 kHz to 100 kHz and it is found that there is an error growth
of 81%. Pressure Gauge is calibrated by applying seven different pressures in the
increasing and decreasing order. It is observed that, there is a 70% and 57% error
growth with ageing in the increasing and decreasing order respectively of the

applied pressure.

Controlling errors is an essential part of instruments and instrumentation
systems. Various techniques are available to achieve this objective. Error control
begins in the design stages by choosing the appropriate components, filtering,
and bandwidth selection, by reducing the noise, and by eliminating the errors
generated by the individual subunits of the complete system. In a good design,
the errors of the previous group may be compensated adequately by the

following groups.

The accuracy of instruments can be increased by post-measurement
corrections. Various calibration methods may be employed to alter parameters
slightly to give correct results. In many cases, calibration figures, mathematical
equations, tables, the experiences of the operators, and the like are used to reduce
measurement errors. In recent years, with the application of digital techniques
and intelligent instruments, error corrections are made automatically by

computers or the devices themselves.
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Chapter V1

Errors and Uncertainties in Type Approval and

Verification in Legal Metrology



6.1 INTRODUCTION

Quality of measurements has assumed great significance in view of the fact
that measurements [in a broad sense] provide the very basis for trade of goods. These
measurements need to be consistent. One method to ensure this is to link all measures
from a common [royal] standards and this is called traceability [132]. This is more of a
requirement now when trade is more international. In order to reach the objectives of
legal metrology, both preventive and repressive measures are needed. Preventive
measures are taken before the instruments are placed on the market or put into use
and include pattern approval and verification. Market surveillance is an example of a
repressive measure, and involves inspection of the instrument at the supplier’s,
owner’s or user’s premises. Competent body has to examine at least one instrument,
to ensure compliance with the legal requirements. Approval tests and calibrations are
carried out, and the results show whether the given requirements are met. It is
particularly important to determine whether the maximum permissible errors
[MPE’s] at rated or foreseeable in situ operating conditions are likely to be met.
Sample instrument is also subjected to quality tests which should guarantee its

reliability in use.

For reasons of efficiency, verification usually only requires a single
measurement (observation) to be carried out. It is therefore important that the
spread or dispersion of measured values is determined during the type approval
tests. This determination of so-called apriori characteristic values forms the
justification for the evaluation of the uncertainty of measurement on the

subsequent verifications [133].

European harmonization allows the manufacturer to carry out conformity
assessment on new instruments as an alternative to verification by a verification

body. This leads to the need to harmonize the measuring and testing methods,
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including determination of the measurement uncertainties and accounting for

them in conformity assessments.

This study aims to analyze five years calibration data of various standards
used in legal metrology such as Non-Automatic Weighing Instrument (NAWI),
weight measures and volumetric measures, to study effect of ageing and
instrument to instrument error difference. For the conformity study, initial type
approval test and verification data of NAWIs from different manufactures were
used. NAWI is selected for this purpose, because the number of applications
submitted for type evaluation and approval is the largest in this category among
all specified measuring instruments. Therefore the objectives of this part of
research study Errors and Uncertainties in Type Approval and Verification in

Legal Metrology are:

e To study the effect of ageing on measurement error in selected Working
and Commercial Standards using calibration data.

e To study the limits of maximum permissible errors on verification (MPEV)
and uncertainty.

e To study methods of calculating the measurement uncertainty based on
the statistical interpretation on type evaluation, approval and verification
specified by the Measurement Law and to propose to legal metrology,

criteria with the uncertainty of measurement for deciding conformity.

e To make a comparison between calibration and verification
6.2 EFFECT OF AGEING ON MEASUREMENT ERROR
6.2.1 Maximum Permissible Errors on Verification and in Service

In many economies with developed legal metrology systems, two kinds of

error limits have been defined:
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e The maximum permissible errors (MPE) on verification; and
¢ The maximum permissible errors (MPES) in service.

The latter is normally twice the first. MPES on verification equal “MPE on
testing” that are valid at the time of verification. For the measuring instrument
user, the MPE in service are the error limits that are legally relevant. The values
of the error limits are related to the intended use of the respective kind of
instrument and determined by the state of the art of measurement technology

[84].

Different instrument standards used in legal metrology are - reference
standards, secondary standards, working standards and commercial standards.
Verification and testing of a particular standard is done with respect to
immediate superior standard, for example working standard is compared with
secondary standard, which is preserved at the State Legal Metrology Laboratory
[134] and commercial standard is compared with working standard during
calibration. Commercial standards are the instruments used in shops and
establishments and will have a direct impact on customers. Therefore it was
decided to characterize measurement error observed during calibration of

working standards and commercial standards as a part of this study.
6.2.2 Working Standard

Working standards in legal metrology are used as the standards to
calibrate commercial standards. Maximum permissible errors taken for such
working standards are maximum permissible error on service (MPES) and will
depend on the type of working standards. In legal metrology laboratory, the
working standards of different centers are compared with secondary standards

as is shown in Figure 6.1.
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Indication Iws
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Indication Is

Figure 6.1. Example of Calibration by Comparison Method

Verification and test data of working standards from the legal metrology

laboratory for five consecutive years was collected for the following working

standards:
i. Non-Automatic Weighing Instrument(s)
ii. Weights Measures
iii. Volumetric measures

Table 6.1 shows the sample of working standards used for this study.

Table — 6.1 Samples of Working Standards

Working Denomination of measures No. of Items
Standards
NAWI -- 20
Weicht measures 20000, 10000, 5000, 2000, 1000, 500, 200, 100., 50, 20, 20each
'ei8 10,5, 2, 1, .500, .200, .100, .050, .020, .010, .005, .002,
(in gms)
.001
Volumetric 20each
: 10000, 5000, 2000, 1000, 500, 200, 100, 50, 20, 10
measures (in ml)

6.2.2.1. Non-Automatic Weighing Instrument (s)

Non-automatic Weighing Instrument(s) [NAWI] used in the study is the
electronic balance. Electronic load cell type balance uses the principle that a force

applied to an elastic element produces a measurable deflection. The elastic
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elements used are specially shaped and designed. The block shapes can be
cylindrical, rectangular ring proving frame, parallelogram-cut proving frame and
octagonal-cut proving frame. The design aims are to obtain a linear output
relationship between the applied force and the measured deflection and to make
the measurement insensitive to forces which are not applied directly along the
sensing axis. Displacement transducer, strain-gauge, is used to measure the
deflection of the elastic elements. This instrument is to be recalibrated from time
to time otherwise it will lead to significant measurement errors in the form of a

bias on all readings [76].
Test procedure during verification and inspection of NAWI [134] are:
Evaluation of error

At a certain load L, the indicated value, I is noted. Additional weights of
say 1/10e are successively added until the indication of the instrument is
increased unambiguously by one scale interval (I+e). The additional load AL
added to the load receptor gives indication P, by using the formula:

P=I+ %2 e AL, where ¢ = readability

The erroris: E=P-L=1+%e-L-AL<mpe .................. (6.1)

b. Weights
Standard weights used for verification of an instrument shall not have an
error greater than %5 of the maximum permissible error of the instrument for the

applied load.
i. Weighing tests

Apply test loads from zero up to and including maximum and similarly
remove the test loads back in steps to reach zero. Test loads selected shall include

maximum, minimum and values at or near those at which the maximum
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permissible error occurs. When loading or unloading, the weights shall be
progressively increased or decreased. If the instrument is provided with an
automatic zero-setting device, it shall remain in operation during test. Error is

calculated using the formula 6.1.
ii. Eccentricity Test

Large weights should be used in preference to several small weights. Load
shall be applied centrally in the segment if several weights are used. The location
of the load shall be marked on a sketch in the report. Automatic zero-setting

device shall not remain in operation during the test.

In the case of instruments with a load receptor having more than four points of
supports, the load shall be applied over each support on an area of the same order of
magnitude as the fraction of 1/n of the surface area of the load receptor, where n is the

number of points of support.
6.2.2.2. Weights

Weights starting from 20kg to 1mg, (23 different weights within the range
of 20kg to 1mg) have been utilized for the study. Each of these is compared with
the secondary standard weights and the difference is found out. Difference so
obtained is the error. Corrections have been done if the error exceeds maximum

permissible error (MPE).
6.2.2.3 Volumetric measures

Volumetric measures starting from 10 liters to 10 milliliters (10 different
volumetric measures within 10 liter to 10ml) have been utilized for the study.
Various measures are compared with secondary standards and the errors in each

case were found out. If it exceeds MPE, corrective measures have been taken.
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6.2.3 Commercial Standard

Commercial standards are

calibrated with respect to working

standards. Maximum permissible error for

such commercial standards is in-fact

maximum permissible error on service
(MPES) and will depend on the type of

commercial standards. MPES of

commercial standards are two times

Table - 6.2 Sample of Commercial

Standards
Commercial | Denomination of | No. of
Standards measures Ttems
NAWI - 25
20000, 10000, 5000,
. 2000, 1000, 500,
K:;gszzes 200, 100., 50, 20,10, | 25
. 5,2, 1, .500, .200,
(in gms) 100, 050, .020,
.010, .005, .002, .001
Volumetric | 10000, 5000, 2000, 25
measures 1000, 500, 200, 100,

compared to the MPES of working standard. In taluk legal metrology laboratory,

the commercial standards of different shops and establishments are compared

with working standards. Verification and test data of commercial standards for

five consecutive years of the following were collected:

1. Non-Automatic Weighing Instrument(s)

2. Weights Measures

3. Volumetric measures

Calibration data of twenty five commercial standards of each category have been

collected as given in Table 6.2.

Analysis

Five years verification and test data of working standards and commercial

standards such as non-automatic weighing instruments, weights and volumetric

measures were used for year-wise and instrument-wise analysis.
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Descriptive statistics such as mean, standard deviation and coefficient of
variations has been found out. ANOVA tests, multiple comparison test and

regression analysis on the data has been carried out.

6.3 LIMITS OF MAXIMUM PERMISSIBLE ERRORS ON VERIFICATION AND

UNCERTAINTY

According to the VIM [135] measurement uncertainty is a “parameter,
associated with the results of a measurement, that characterizes the dispersion of
the values that could reasonably be attributed to the measurand”. Measurement
uncertainty is usually made up of many components, some of which may be
determined from the statistical distribution of the results of series of
measurements and which can be characterized by experimental standard
deviations [79]. The other components, which can also be characterized by
standard deviations, are evaluated from assumed probability distributions based

on experience or other information [136].

Contributions to the measurement uncertainty are: the standards used, the
test equipment used, the measuring methods, the environmental conditions,
susceptibility to interference, the state of the object to be measured or calibrated
and the person performing the measurement or calibration [80]. The Guide to the
Expression of Uncertainty in Measurement (GUM) ISO [135] and document [11]

gives detailed information on the determination of measurement uncertainties.

6.3.1 Relationship Between Legally Prescribed Error Limits and

Uncertainty

If a measuring instrument is tested for conformity with a given

specification or with a requirement with regard to the error limits, this test used
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consists of comparisons of measurements with those resulting from use of a

physical standard or calibrated standard instrument.

Lower Upper
limit limit
MPE MPE

Specification zone

Hm”""‘HHHH""‘HHHH""‘HHHH""‘HHHH"‘HHHHHHHHHHHH Increasing
uncertainty of
measurement

Lower limit Upper limit
of
Conformance
Conformance Non-conf
Non-conformance} «— —» - on-conformance
— 1 zone
zone zone

dl
«

AN b

Uncertainty zone

Figure 6.2. Specification And Measurement Uncertainty [According To ISO 14253-1] [ 91]

Uncertainty of measurement inherent in the measurement process then
inevitably leads to an uncertainty of decision of conformity. Figure 6.2 (taken
from the standard ISO 14253-1) [91] makes this problem quite clear: between the
conformance zones and the upper and lower non-conformance zones there is in
each case an uncertainty zone whose width corresponds approximately to twice
the expanded uncertainty of measurement at the 95% probability level [86].
Uncertainty comprises contributions of the standard(s) used and the instrument
under test, as well as contributions that are related to the measuring procedure,
and to the incomplete knowledge about the existing environmental conditions.
Because of the uncertainty of measurement, measurement results affected by

measurement deviations lying within the range of the uncertainty zones cannot
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definitely be regarded as being, or not being, in conformity with the given

tolerance requirement.

6.4 UNCERTAINTY IN TYPE APPROVAL TEST AND CONFORMITY

DECISION

If a measuring instrument is tested for conformity with a given
specification or with a requirement with regard to the error limits, this test
consists of comparisons of measurements with those resulting from use of a
physical standard or calibrated standard instrument. The uncertainty of
measurement inherent in the measurement process then inevitably leads to an

uncertainty of decision of conformity.

6.4.1 Test Requirements of Type Approval and Verification for

Weighing Instruments

Tests of type approval and verification on NAWIs stipulated in the
current Measurement Law are shown in Table 6.3. MPEV is specified in each test.
If the measurement errors are within the specified MPEV in every test, the test
result is decided as conforming. If the errors exceed MPEV, it is decided as
nonconforming. Thus, only a NAWI that passes all tests will be accepted, and

one that fails to pass any one of the test will be rejected:

Table 6.3. Test Requirements of Type Approval and Verification

Type Approval Verification
Weighing test Weighing test
Repeatability test with series of Repeatability test with series
loading of loading
Eccentricity test Eccentricity test

Discrimination test

Creep test

Tilting error test

Temperature characteristics test

Zero error test just after
switching on

Instrumental error test
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There are different methods for estimating the measurement uncertainty.

Two ways of estimating the measurement uncertainty are discussed as follows:

[1] Uncertainty of performance of NAWIs [Eq.6.2]

[2] Uncertainty in type approval tests on NAWIs [Eq. 6.3]

u= \/Vr +Vd +Vs+ (Ve +Vt)w? ... (6.2)
u=+Vd +Vs e (63)
where:

u: standard uncertainty in each test

Vr: dispersion of repeatability

Vd: dispersion of rounding error

Vs: dispersion of the mass of weight

Ve: relative dispersion by eccentric load

Vt: relative dispersion by temperature characteristic

W: load on a receptor

In type approval tests, every factor of error related to the performance of
NAWIs is tested one by one. Other factors are small enough to be ignored when
estimating the total uncertainty under the standard condition. As shown in
Equation (6.3), error factors of the uncertainty of NAWIs are the dispersion of

rounding errors and that of the mass of weights.

The reason why the dispersion of rounding errors should be considered as
a factor of the measurement uncertainty is because if repeating the measurement
six times gave the same values, each value might fall in one scale interval but

could be spread within the interval: Therefore the dispersion within one scale
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interval should be considered. In this respect, dispersion of rounding errors
should be included in the factors of the uncertainty of the type approval test.
However, if all the values measured six times are totally different, rounding
errors are naturally included and they do not need to be included in the
uncertainty of the type approval test. Here, assuming that all the values are
almost equivalent, rounding errors should be included in the factors of

uncertainty of the type approval test.

Table 6.4 Relationship Between Accuracy Class of
Domestic NAWIs and Uncertainty

Accuracy | Scale No. of scale intervals | Influence of
class Intervals(e) [n=max/e] uncertainty
I 0.001gm<e 50000<n Large
I 0.001gm<e<0.05gm | 100=n<100000

0.lgm<e 5000=n<100000
I 0.lgm<e<2gm 100=n<10000

5g <e 500<n<10000
v 5g<e 100<n<1000 small

Regarding the specified measuring instruments whose conformity is
decided based on the average of measurement results or standard deviation, the
dispersion of repeatability is included in the factors of the uncertainty- But in the
case of NAWIs, it is not included instead a series of six times of measurement is
taken and the results of each time are assessed separately. In other words, even if
one of the six measurement result fails to pass the test, the instrument will be
rejected as a nonconforming item. Therefore, the average or standard deviation
of measurement results is not used for assessment of NAWIs. This is why the
dispersion of repeatability is not included as a factor of the measurement

uncertainty here

Market surveillance was carried out focusing on the performance of the
NAWIs which are practically in use. Classes of NAWIs are shown in Table 6.4.
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Their accuracy is classified from class I to class IV. A NAWI of class I has the
narrowest range of MPEV, whereas one of class IV has the largest. As to NAWIs
of class III and class IV, the range of MPEV is larger, while measurement
uncertainty is quite small. Therefore, measurement uncertainty does not affect
conformity decision of the instruments of class III and class IV. Measurement
uncertainty will greatly affect the conformity decision on NAWIs of class I and
class II. Therefore NAWIs of class I and class II were taken for the conformity
studies. By the voluntary co-operation of 3 companies, the instrumental error
tests in type approval were carried out on thirty NAWIs of class I [15 samples]

and class I1 [15 samples].

6.5 RESULTS AND DISCUSSIONS
6.5.1 Effect of Ageing on Measurement Error In Standards Used in Legal
Metrology

Analysis results based on the calibration data of selected working and

commercial standards are discussed in this section.
6.5.1.1 Working Standards
i. Non-Automatic Weighing Instrument(s)

Verification and test data of twenty different centers from the central
laboratory for legal metrology was collected. Five years data of each centre was
collected and analyzed. In the laboratory, three different tests such as weighing
test, eccentricity test and repeatability test are done as part of the verification and

test procedure of non-automatic weighing instruments [NAWIs].
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a. Weighing test

Table 6.5 Comparison of Different Tests in NAWI - WS

Weighing Test Eccentricity | Repeatability
(mpe =0.1gm) Test Test

Year Errorup |Error down (mpe=0.2mg)| (mpe=0-5me)
1 |Mean 0.01051 0.1177 0.0053 0.0013
SD 0.00597 0.0673 0.00389 0.0016
cv 56.8316 57.1453 73.3962 122.3077
2 |Mean 0.01536 0.1581 0.0066 0.0017
SD 0.00849 0.0894 0.0038 0.0017
cv 552539 56.5465 57.5758 101.7647
3 |Mean 0.05812 0.05857 0.0078 0.0030
SD 0.011149 0.010883 0.00463 0.0018
cv 91.8324 85.8101 59.3590 58.6667
4 |Mean 0.06833 0.07077 0.0097 0.0054
SD 0.11090 0.11414 0.00493 0.0026
cv 62.3065 61.2873 50.8247 47.7778
5 [Mean 0.08521 0.08828 0.0116 0.0070
SD 0.12789 0.12921 0.0044 0.0017
cv 50.0833 46.3672 37.9310 23.8571

In this test, standard load from 5 gm to 6200gm is applied and the error is
found out (up error). Then the load is removed from the receptor one by one to
get the down error. The various weights that were used for calibration are 5gm,
500gm, 2000gm, 5000gm and 6200gm. It is observed from the analysis that, the
error exceeds maximum permissible error (MPE), error increases with ageing
and varies from instrument to instrument. The MPE on service (MPES) is 0.1gm.
It can be observed from Table 6.5 that the error is maximum with weighing test
followed by eccentricity test and repeatability test. In the weighing test the error
down is 3% more than error up. Weighing tests error is 98% more compared to
the eccentricity test and 99% more compared to repeatability test. Instrument to

instrument error difference is evident from Figure 6.3.
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It is seen that, there is an annual average growth (AAG) of error of 91%
and 87.831% for weighing test-up and weighing test-down respectively. It can
also be observed from Table 6.5 that there is a significant error growth with
respect to year. One-way ANOVA, two way ANOVA and multiple comparison
test were also conducted to confirm the significance of the error difference found.

Two-way ANOVA results are given in Table 6.6.

1.4
1.2
O Error
1
B os
m
0.6
0.4
0.2 {
el llm g =@ 0@
1 2 3 4 5 6 7 8 9 10
Instrument

Figure 6.3 Graph Showing Instrument To Instrument Error
Differences

Table 6.6 Two —way ANOVA

w=-error (LTT)

Source of Variation|[DF == L F r

Vear 4| 4371 1.093 2524 0058
S 19| 21.488 2387 5.5l4| <0001
Fesidual 75| 15587 0,433

Total 99 41,444 0.846

w=-2rror (DOWT)

Source of Variation|DF o = F P
vear 4 4596 1.14% 254 0,058
N8 T 19 21,242 235 B Z1E| <0001
Fesidual 7B 16 282 0,452

Total 99 4212 0.86
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b. Eccentricity test

In the eccentricity test, for calibration, large weights are usually used in
preference to several small weights. Same load [in this case 2000gm] is placed at

different locations of the receptor of the electronic balance as shown below.

Receptor

Maximum permissible error on service [MPES] as per the rule is 0.2gm.
Mean eccentricity test error exceeds MPES by 4%. Eccentricity error varies from
instrument to instrument [typical mean error variation of 0.0034 to 0.0158 is

observed]. Annual Average Growth [AAG] is 21.9% for eccentricity test.

Eccentricity test error growth with ageing is evident from Table 6.5 and
Two-way ANOVA test also confirms the significance of error growth. Multiple
comparison tests also validate the difference between various instruments.

Eccentricity test error is 55% more compared to the repeatability test error.
c. Repeatability test [r-test]

In repeatability test two series of weighing shall be performed, one with a
load of about 50% and one with a load close to 100% of maximum. Readings
shall be taken when the instrument is loaded, and when unloaded. Here 3000gm

and 6000gm have been used. Each weight is loaded and unloaded 5 times.
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Year

Figure 6.4 Graph Showing Error Growths with Ageing — r- Test for NAWI

Maximum permissible error on service [MPES] of repeatability test is 0.3.
Figure 6.4 shows that error grows with ageing. There is an instrument to
instrument variation. MPES prescribed by the department is maximum with
repeatability test and minimum with weighing test. It is observed that the mean

error increase is minimum with repeatability test.

Average annual growth [AAG] of repeatability test error is 54.81%. Two-

way ANOVA test confirms the significance of error growth with ageing.
ii. Weights

Working standard of solid weights starting from 20kg to 1mg having 23 different
dominations within the range was yearly subjected to verification and testing and the

error were found.
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Figure6.5 Graph Showing Error Growth with Ageing — Weight measures

If the error exceeds maximum permissible error on service [MPES]
,corrective measures have been taken to keep it within MPES. Five years
verification and test data of twenty different working standards, each having 23
denominations has been analyzed. It is observed that, the mean calibration error
increases with year as it is evident from Figure 6.5. Mean error variations from
working standard to working standard ranges from 2.1194 to 11.9431. It is also
observed that there is an average annual average growth of 30.31% in the case of

weight measures. If the observed error exceeded MPES, the same was corrected.
iii. Volumetric Measures [v-error]

In this study five years calibration data of 20 conical measures has been
collected and analyzed. Conical measures are fabricated from galvanized steel
sheets, aluminum alloy sheets, copper sheets, brass sheets, stainless steel sheets
or tin plate. The measures are so designed that, when they are tilted 120 degree

from the vertical, they become empty.
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Twenty working standards of liquid measures have been taken for the
study. Each working standard consists of ten different liquid measures which is
capable of measuring from 10000ml to 10ml. Table 6.7 shows the MPES and error

of a typical working standard.

Table 6.7 Typical Error with Respect to MPE for Volumetric Measures

Volume (ml) | Error (ml) | MPE(s) (ml)
10000 7 8
5000 3 4
2000 1.7 2
1000 1.2 1.5
500 0.9 1
Volume (ml) | Error (ml) | MPE(s) (ml)
200 0.65 0.8
100 0.36 0.6
50 045 0.5
20 0.35 04
10 0.18 02

Mean error with ageing of volumetric measures is shown in Figure 6. 6. Annual
average growth of error is 23.82% and it is minimum compared to weight measures and
non-automatic weighing instrument. One-way ANOVA confirms the significance of

error increase with year.
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Figure6.6 Graph Showing Error Growth With Ageing- Volumetric
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It is also observed that, there is a significant error difference from working
standard to working standard. Mean error from instrument to instrument ranges

from 0.2323 to 1.2893.
6.5.1.2 Commercial Standards

Analysis of the calibration data of selected commercial standards such as
Non-Automatic Weighing Instrument (NAWI), weight measures and volumetric

measures were carried out on in the same manner as that of working standards.
i. Non-Automatic Weighing Instrument(s)

Verification and test data of 25 commercial standards for five years were
collected and analyzed. Three different tests weighing test, eccentricity test and
repeatability test were done as part of the verification and test procedure of

NAWIs.
a .Weighing test

Table 6.8 shows that, the error is maximum with weighing test followed by
repeatability test and eccentricity test. Weighing test error is 98.9% more
compared to the eccentricity test and 98.6% more compared to repeatability test.
Between instruments there is a minimum error difference of 2% and a maximum
of 15%. Maximum permissible error on service (MPES) of commercial standard

NAWTis 0.2gm.
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Table 6.8 Comparison of Different Tests In NAWI - CS

Weighing Test Eccentricity Test| Repeatability Test
(mpe = 0.1gm) (mpe=0.2mg) (mpe=0.3mg)
Year Error up | Error down
1 |Mean| 0.04572| 0.03741 0.0066 0.00802
SD 0.01517| 0.08972 0.0029 0.0034
Ccv 38.56 24.72 45.01 43.33
2 |Mean| 0.06439| 0.04733 0.0098 0.0078
SD 0.02074| 0.01049 0.0023 0.0026
Ccv 32.887| 21.4743 31.0412 34.02
3 |[Mean| 0.05829| 0.05722 0.0056 0.0076
SD 0.01589| 0.01203 0.00256 0.0022
Ccv 26.784 20.498 48.1808 28.44
4 |Mean| 0.05572| 0.06845 0.00604 0.008
SD 0.01651| 0.01477 0.00264 0.0019
Ccv 29.97 21.216 44 .63 24.92
5 |[Mean| 0.06278 0.0787 0.0056 0.0092
SD 0.05498| 0.01556 0.0026 0.0022
Ccv 25.31 19.479 47.3869 24.18

It is also observed that, there is annual average growth (AAG) of error of
21.12% and 21.5% for weighing test-up and weighing test-down respectively.
Significance of error variation with respect to time and the commercial standards
in different centers has been separately studied and found that, in all cases it was

significant.
b. Eccentricity test

In the eccentricity test, for calibration, large weights are usually used in
preference to several small weights. Same loads [in this case 2000gm] are placed
on different locations of the receptor of the electronic balance. Maximum
permissible error on service [MPES] is 0.4gm. Mean eccentricity test error growth
after five years is 98.9%. Error observed during eccentricity test varies from
instrument to instrument [typical mean error variation of 11.9% to 66.27 % was
observed]. Annual average growth [AAG] of error is 33.87% for eccentricity test.
Error variation with respect to year and commercial standard to commercial
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standard is observed as significant. Multiple comparison tests also validate the
difference between various instruments. Eccentricity test error is 98.9% more

compared to the weighing test error.
c. Repeatability test [r-test]

In repeatability test two series of weighing are performed, one with a load
of about 50% and one with a load close to 100% of maximum. Readings are taken
when the instrument is loaded, and when unloaded. Here, 3000gm and 6000gm

have been used for calibration. Each weight is loaded and unloaded five times.

Maximum permissible error on service [MPES] of repeatability test is
0.6gm. There is an instrument to instrument variation with a minimum of 2.4%
and a maximum of 29%. MPES prescribed by the department is maximum with
repeatability test and minimum with weighing test. Mean error growth with
ageing is minimum with eccentricity test. Average annual growth [AAG] of error
observed during repeatability test is 20.58%. Two-way ANOVA test shows the
significance of error variation. A non-automatic weighing instrument is accepted

only if it shows an error less than MPES in all the above three tests.
ii. Weight Measures

Commercial standard solid weights starting from 20kg to 1mg having 23
different dominations within the range are subjected to verification and testing. Five

years data regarding errors observed during test has been taken for the study.

If the error exceeds maximum permissible error on service [MPES] corrective
measures are taken to keep it within MPES. Five years verification and test data of
weight measures from 5 different taluk-centres , each having 23 denominations were
collected for the study. From each taluk centre, 5 sets of weight standards were collected
and analyzed. Mean error increase after five years is observed as, between 46.4% and

91.6% for weight standards from different taluk centers. Mean error variations from
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commercial standard to commercial standard ranges from a minimum of 0.2% to a
maximum of 20.1%. It is also observed an average annual average error growth of
176.56. Multiple comparison and two-way ANOVA test also supports the above

observations.

iii. Volumetric Measures [v-error]

In this study five years verification and test data of 25 conical measures has been
collected and analyzed from 5 different taluk centers. Each standard consists of 10

different liquid measures which are capable to measure from 10000ml to 10ml.

Error growth in volumetric measuring standard after five years is shown in
Figure 6.7. Annual average growth of error is 51.18%. Error variation with respect to
instrument ranges from 2.4% to 32.3%. Significance of the observations is confirmed by

two-way ANOVA test.
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Figure 6.7 Graph Showing the Effect of Ageing — Volumetric Measure
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6.5.2 Limits of Maximum Permissible Errors on Verification and

Uncertainty

Measuring instruments are considered to comply with the legal

requirements for error limits if:

e the absolute value of the measurement deviations is smaller than or equal
to the absolute value of the legally prescribed MPES on verification when

the test is performed under prescribed test conditions; and

e the expanded uncertainty of measurement of the previous quantitative
metrological test, for a coverage probability of 95 %, is small compared

with the legally prescribed error limits .

The expanded measurement uncertainty at the 95% probability level, U0.95, is

usually considered to be small enough if the following relationship is fulfilled:

where MPEV is the absolute value of the MPE on verification.

Umax [Uoss] is, therefore, the maximum acceptable value of the expanded

measurement uncertainty of the quantitative test.
6.5.2.1 Relationship upon Testing of Working Standards

In legal metrology, working standards are the standards that are used
routinely to verify measuring instruments. In several economies, some of the
working standards used in legal metrology must be tested or verified according
to special regulations. MPES of such working standards depend on their
intended use. In general, they should be significantly lower than the expanded

uncertainties that are required by equation (6.3).
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Figure 6.8 Relationship Between MPES and Measurement Uncertainty Upon
Conformity Evaluation in Calibration [137] and Testing of Working Standards.

Ys : conventional true value

Y: best estimate of the measurement deviation, E

MPEws- : Lower limit of maximum permissible error of working standard
MPEwst+ : Upper limit of maximum permissible error of working standard
I[y]: Acceptance interval with respect to the measurement deviationy.

Usually, a working standard, e.g. non-automatic weighing instrument is
considered to comply with the respective requirements for legal error limits if the
difference between its indication, or measured value, and the corresponding
value realized by a reference standard is equal to or less than the difference
between the prescribed error limits, MPEws, and the expanded uncertainty of

measurement, Uo.ss:
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[ Tws — Ys| S MPEws— U095 ..ucvvvinniniiniiniiiiiiiiiiia, (6.5)
where:

Iws = the indication of the working standard under test;

and

ys = the value provided by a reference standard.

In practice, this means that with respect to measurement deviations, a
tolerance band is defined that is significantly reduced when compared with the
range between the legally prescribed error limits [MPEws- to MPEws+] (see Figure
6.8). The magnitude of this tolerance band may be described by the interval
[MPEws-+ U to MPEws: — U].

This approach is consistent with the prescribed procedures for statements

of conformity on calibration certificates.
6.5.2.2 Uncertainty Contribution of Verified Instruments

In practice, it is often desirable or necessary to determine the uncertainty
of measurements that are carried out by means of legally verified measuring
instruments. If only the positive statement of conformity with the legal
requirements is known, for example in the case of verified instruments without a
certificate, the uncertainty of measurements for such instruments can be derived
only from the information available about the prescribed error limits (on
verification and in service) and about the related uncertainty budgets according

to the requirements established by equation 6.4 and section 6.6.2 earlier.

On the assumption that no further information is available, according to

the principle of maximum entropy, the following treatment is justified:

e The range of values between the MPES on verification can be assumed to

be equally probable.
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e Due to uncertainty in measurement, the probability that indications of
verified instruments are actually beyond the acceptance limits of the
respective verification, declines in proportion to the increase in distance
from these limits. A trapezoidal probability distribution according to
Figure 6.9 can, therefore, reflect adequately the probable dispersion of the

deviation of verified measuring instruments.

e Immediately after verification, the indications of measuring instruments
may exceed the MPES on verification by the maximum value of the

expanded uncertainty of measurements at most.

e After prolonged use and under varying environmental conditions, it can
be assumed that the expanded measurement uncertainty, compared with

its initial value, may have increased significantly.

a)  Trapezoidal distribuation
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Figure6.9 Suggested Probability Distributions for Evaluating the Standard Uncertainty

Contribution of Verified Measuring Instruments.
a : immediately after verification
b : after prolonged use
MPEYV : absolute value of the maximum permissible error on verification
MPES : absolute value of the maximum permissible error in service
Yi, m : indication of the verified instrument when using for measurements
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In particular, the following evaluation of the uncertainty contribution of

verified instruments seems to be appropriate:

(i) Immediately after verification, the trapezoidal probability distribution
of the errors [138][139] according to plot (a) of Figure 6.9 can be taken as a basis

for the determination of the uncertainty contribution of the instruments.

The following may, therefore, be assumed for this standard uncertainty

contribution Uinstr :

Upnge = /(+ B7)/6 ~ 0.70MPEV/| ..o, (6.6)

where a =1.33|MPEV/| B= %

MPEYV is the absolute value of the MPES on verification.

(ii.) After prolonged use and under varying environmental conditions, it
can be assumed that, in the worst case, the measurement error extended by the
measurement uncertainty will reach the values of the MPES in service. The
resulting trapezoidal distribution could more or less be represented by plot (iii.)
of Figure 6.9. In this case, the following may be assumed for the standard

uncertainty contribution:

U= a/(L+ B%)/6 ~ 0.90MPEV | .......coooovvnin. (6.7)

where: a=2 |MPEV | ,  p=

N |-

6.5.3 Uncertainty in Type Approval Tests and Conformity Decision

Conformity study and the influence uncertainty on conformity decision of
newly manufactured Non Automatic Weighing Instrument (NAWI) were

discussed in this section.
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6.5.3.1 Assessment of Compliance

In practice, measuring instruments are considered to be in compliance
with the legal regulations - if the value indicated is smaller than or equal to the
maximum permissible error on verification [MPEV] when the test is performed
by a verification body under unified test conditions. Type approval test data of
30 samples of NAWIs were analyzed. Figure 6.10 shows the relationship between
measurement result, uncertainty, maximum permissible error on verification

(MPEV) and criteria of conformity of 6 typical cases out of the observed data.
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Figure 6.10 Illustration of the Criteria for the Assessment of Compliance

MPEYV : absolute value of the maximum permissible error on verification

MPEV-: lower maximum permissible error on verification

MPEV+ : upper maximum permissible error on verification

MPES- : lower maximum permissible error in service

MPES+ : upper maximum permissible error in service

Unmax : upper permissible limit of the expanded uncertainty of measurement according to equation
y : best estimate of measurement deviation, E

I(y) : acceptance interval with respect to the measurement deviation, y

A = range of possible occurring measurement deviations

The following observations can be made from the Figure 6.10 :
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Case a and b: both measurement result and uncertainty lie within the

MPEV. In this case, the result is obviously conforming.

Case c: measurement result lies within the MPEV, but the uncertainty lies
outside. In the current legislation, the result is conforming, since the conformity
is decided only by the measurement value. If the measurement uncertainty is

considered, however, the result can be decided as non-conforming.

Case d: Measurement result lies outside the MPEV and it is not
conforming in current legislation. But if the measurement uncertainty is
considered, since the measurement result lies within the MPEV, and it is decided

as non-conforming

Case e: Both measurement result and uncertainty lie outside the MPEV. In

this case, the result is obviously non-conforming.

Case f: Measurement result is equal to the upper limit of the MPEV and
hence the result is conforming. If the measurement uncertainty is considered,

however, the result can be decided as non-conforming

Regarding case c and case d, a question about how to decide the

conformity considering the measuring uncertainty would arise.

In the 1SO14253-117, the criteria for deciding conformity of measurement
result including the measurement uncertainty are provided as follows: First,
discuss how to consider the measurement uncertainty and achieve a consensus
about the standard of acceptance among the parties involved. If a consensus
cannot be achieved, accept only cases a and b, as conforming for consumer
protection. In type approval and verification, the relevant parties are the
government (or organizations designated by the government) and private

companies that apply for type approval. Their relationship is not equal, as the
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position of the applying customer tends to be weaker. Since it is difficult to reach
a consensus through discussion between them, only cases a and b will be

accepted according to the ISO14253-1.

Regarding the maximum permissible error on verification (MPEV), it is a
concept which was introduced at the time when the uncertainty of measurement
had not been considered. To introduce the concept of the measurement
uncertainty, the MPEV should also be reviewed. It is possible to extend the range
of the MPEV in accordance with the measurement uncertainty. Nevertheless, the
measurement uncertainty will be reduced by the development of technology in
the future. It is not a worthwhile idea to review the range of MPEV periodically

in accordance with the measurement uncertainty.

In today’s legal metrology, the measurement uncertainty is usually
considered to be small enough if the so-called “one-third uncertainty budget” (U
(95%) < Y5 MPEV) is not exceeded. Consequently, this measurement uncertainty
becomes an uncertainty of the conformity decision. The criteria for the
assessment of compliance are illustrated in Figure 6.10. Compliance with the
requirements of the verification regulations is given in cases a, b, c and f. Cases d
and e will result in rejection, although all the values, including the uncertainty of
measurement, lie within the tolerances fixed by the maximum permissible errors

in service [MPES].
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Figure 6.11. Domestic NAWI-1 of Class-Il. Figure 6.12 Domestic NAWI-2 of Class-II
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Figure 6.13 Domestic NAWI-3 of Class-II. Figure 6.14 Domestic NAWI-4 of Class-I.
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Figure 6.15 Domestic NAWI-5 of Class-I. Figure 6.16 Domestic NAWI-6 of Class-I.

Consequently, the maximum permissible error on verification of a newly
verified measuring instrument will in the worst case be exceeded by 33%.
However, as the legally prescribed maximum permissible errors in service are
valid for the instrument users, there is therefore no risk in the sense that no
measured value - even if the measurement uncertainty is taken into account -

will be outside this tolerance band.

The relationship between measurement results, measurement uncertainty

and the MPEV of Classes I and II is shown in Figures 6.11 to 6.16. On the
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horizontal axis of each figure, the mass of weights loaded on the NAWIs are
shown. On the vertical axis, the deviation between the indication of the NAWIs
and the mass of a weight is given. The dashed line in each figure shows the range
of MPEV. If the deviation is within the dashed line, the instruments will be

decided as conforming.

In the case of Figure 6.11, weights of 100gm, 200gm, 300gm, 400gm and
500gm were loaded. When a 100 gram was loaded the indication was 100.0001,
with a deviation of 0.0001gm which is well below the MPEV 0.001gm. In this
manner the non-automatic weighing instrument of class II category NAWI-1,
NAWI-2 and NAWI-3 [Figure 6.11 to 6.13] can be decided as conforming. The
class I instrument, NAWI-6 [Figure 6.16] is also conforming. Since the
measurement deviation observed is equal to or less than MPEV. But in the case
of class I, NAWI-4 [Figure 6.14] for the mass of weights 100gms, 300gms and
500gms, the measurement deviation exceeds the MPEV. If the measurement
uncertainty is considered, in this case, the instrument cannot be accepted because
the proportion of the measurement uncertainty to the MPEV is less than one-
third. This value of one-third is based on the experience. In the case of class-I,
NAWI-5 [Figure 6.15] the measurement deviation exceeds MPEV in all applied
loads. Therefore as per the present legal metrology rule NAWI-5 is non-
conforming and would be rejected. If the uncertainty of measurement error is
taken into account, still it is nonconforming because 1.33 MPEV [here it is
0.00133gm] in two loads namely 300gm and 400gm exceeds the limit of
0.00133gm. It can be observed that, when 300gm was loaded the indicated value
was 300.00138 and when 400gm was loaded, it was 400.0014. Therefore NAWI-5

is non-conforming and therefore rejected.
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6.5.3.2 Manufacturer’s risk

When performing conformity assessments of measurement results to meet
legal requirements, the uncertainty of measurement leads to uncertainty of

decision. This leads to two effects which each have a definable probability,

- A small percentage of instruments which are actually acceptable , fail the

verification process.

Poha)
- A small number of Pu(ia)
. . ) Pyl
instruments which despite e
) . .. X— U
having (true) intrinsic A= -
U95%)=t4 MPEY
measurement errors which v
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Figure 6.17  Illustration Of The Change In The Probability Distribution.

Depending on the error spread of the instrument population to be tested,
the first effect can be expected to happen more often than the second. In view of
the large number of instruments to be verified, this involves an economic risk for
manufacturers, since it might appear that too many instruments fail the legal
requirements. It is the combination of these two effects which leads to the risk of

a financial loss for the manufacturer.

To obtain a reasonable estimate of the first effect, the (unknown) real error
spread of the respective instrument population can be compared with the
observed output scatter of the verification process. The probability distribution

to be expected for verified instruments, Po(x), can be calculated by convolution of

-143-



the actual distribution of the instrument population to be tested, Pp(x), and the

measuring process, Pu(x):

Pa(x)=Pp(x) *Pu (X) =JPp(Z).Pu(X'Z)dZ

Assume that both input probability plots have a Gaussian distribution and
the above equation applies [Figure 6.17].Calculation shows that for a population
of instruments for which the theoretical “true” acceptance rate should be 95%,
the actual acceptance rate will be 93.7%. This means that less than 1.5% of
instruments have been “unfairly” rejected due to the influence of the
measurement uncertainty. Consequently, the legal verification system involves

only a low risk that good quality products may suffer unwarranted rejection at

verification.

6.5.4 Comparison of Calibration and Verification Systems

Table 6.9 Comparison of Calibration and Verification Systems

Characteristics Verification Calibration
Bases Legal requirements Technical rules, norms, demands of
customers

Objective Guarantee of indications Relation between indication and
within MPE in service range conventional true value (at nominated
during the validity period defined accuracy level)

Prerequisite Admissibility for use in Broad recognition of calibration results
regulated area
Admissibility for verification Instrument should be able to be calibrated
directly or with type approval
if required

Validity of the Within the period fixed for At the moment of calibration under

results subsequent verification(as specific calibration conditions

regards MPE in service)

Evaluation of the
results

By the verifying body

By the user of the measuring instruments

Traceability

Regulated by the procedure

Calibration laboratory to provide evidence

Uncertainty of
measurement

U <% MPEV

Depending on the technical competence of
the laboratory and of the instrument
performance.
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Technical procedures followed in verification is equivalent to those used
in calibration and provides confidence in the correctness of indication of verified
instruments although no expert knowledge by the instrument’s user is required.
Verification therefore, may be considered a strong tool in both legal metrology
and quality assurance, when large numbers of measuring instruments are
involved. In particular, it excels as a single means by which enforcement can be
realized, and because the user is only affected by the MPES in service, it provides
a high degree of confidence over a long period of time. One disadvantage in
verification is that the influence of uncertainty on a decision of conformity of a
measuring instrument to specific requirements is not completely clear. In
comparison, traditional calibration is considered an important basic procedure
for legal metrology activities and also for fundamental measurement application
in scientific and industrial metrology. It is practically not limited as far as the
measurement task is concerned, but does require sound expert knowledge on the

part of the instrument’s user in carrying out and evaluating measurements.
6.6 CONCLUSION

The state metrological compliance system was developed to provide,
through legislative requirements, trust and confidence in the measurements and
minimize disputes and transaction errors. The different standards used in legal
metrology are reference standards, secondary standards, working and
commercial standards. Each of these standards is compared with immediate

superior measuring standards during periodical calibration and verification.

In this research work five years verification and test data of various
working standards such as non-automatic weighing instrument, weights and
volumetric measures were analyzed for time variance to check the error growth

with ageing. A study was conducted to find out the relationship between legally
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prescribed error limits and uncertainty, impact of inclusion of uncertainties in
conformity decision of NAWI. Comparison of calibration and verification is also

done.

In the verification and test data analysis, it is observed that the error on an
average increases with ageing of the instrument and there was a significant error
variation from instrument to instrument. Three tests namely weighing test,
eccentricity test and repeatability test were conducted in the verification
procedure of non-automatic weighing instrument. Annual Average Growth
[AAG] of error is maximum with weighing test and is 89.8% followed by
repeatability test where AAG is 54.81% and AAG is 21.9% in eccentricity test.
Verification results of twenty sets of working standards of weight measures, each
having 23 different solid weights ranging from 20kg to 1mg were analyzed. It is
observed that there is an AAG of error of 30.31%. It is also observed that AAG of
error is minimum with volumetric measure compared to weights and non-
automatic weighing instrument and is only 23.82%. One-way, two-way ANOVA
and multiple comparison tests confirm the significance of the findings.
Commercial standard being a standard used for calibrating the measures used in
shops and establishments directly, similar time based characterization of the
observations from periodical calibration were carried out. Regression models
were also developed out of the time based characterization results of the
observations from periodical calibration (details are given chapter VII).
Regression analysis curve can be used as a benchmark for the error growth with
ageing of the instrument. Verifying authorities may fit their observed values in
the regression curve and if these values are well above the regression curve, the
instruments can be rejected. More accurate ANN based prediction model is also

discussed in chapter VII.
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The maximum permissible error is a concept which does not take into
account the uncertainty of measurement. Type approval test and verification are
basic rules provided by the measurement law and related regulation. The study
proposes the following criteria for conformity decision: The measurement
uncertainty in the type approval tests is different from the measurement
uncertainty in performance of non-automatic weighing instruments (NAWIs).
The factors of measurement uncertainty in type approval tests are dispersion of
rounding error and dispersion of the mass of weights. If conformity decision in
type approval tests is based on the average or standard deviation of the
measurement values, the dispersion of repeatability should also be evaluated as
one of the factors of the measurement uncertainty. In type approval tests, if the
measurement uncertainty is equal to or less than one-third of the MPEV, the
measurement uncertainty should be considered in conformity decision. In this
case, if the measurement results including the measurement uncertainty lie
within the MPEV, it should be decided as conforming, otherwise declared
nonconforming. There is therefore, a certain risk for the manufacturer that
acceptable instruments might be rejected. In this study, the probability of this has
also been calculated from the uncertainty of measurement and the spread of the
errors of measurement of the measuring instrument population to be tested.
Before applying these criteria, the consensus among the manufacturers of each
instrument shall be achieved. In type approval tests, if the measurement
uncertainty exceeds one-third of the MPEV, the measurement uncertainty should

not be considered in conformity decision

The legal metrology department is handling all type of working
standards, which includes the working standard for weighing precious metals to

weigh bridge weighing tons. They follow uniform procedures for the conformity
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study of various types of working standards. The findings of this study of
uncertainty can be incorporated for the unsurpassed conformity, at least for the
instruments for low value. Efforts should be made to reduce the measurement

uncertainty. Incorporation of measurement uncertainly as stated above in legal

metrology testing scheme will improve its quality.
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Chapter VII

Models for Prediction of Measurement Errors Using

Regression Analysis and Artificial Neural Network



7.1 INTRODUCTION

Characterization of calibration errors of selected instruments (details
given in Chapter V and VI) shows that calibration errors grow with ageing. It is
also noticed that the error growth is different for different types of instruments.
Test and calibration engineers usually follow the prescribed rules for deciding
the period between calibrations, since they do not know the extent of error
growth of instruments in use before getting it calibrated. It was also found that
the error prediction capability of professionals, regarding the change in extent of
error in measuring instruments with use (time) was poor. Discussions with
professionals revealed that, an accurate prediction of errors would help them to
schedule calibration depending on requirement, and not always follow thumb
rule like calibrate after twelve months. To enable this, it was decided to build
models for error prediction using the calibration data collected. Two approaches
were taken, one based on regression (time series) and the other using Artificial
Neural Network (ANN) [140]. Time dependant errors observed during
calibration of selected sophisticated instruments, and some working standards
used for calibration in legal metrology, were used to build the models to predict
future value of such calibration errors in this research work. Artificial Neural
Network [ANN] technique also has been utilized to predict human related

measurement errors.
7.2 PREDICTION OF THE ERRORS USING REGRESSION ANALYSIS

Regression is the determination of a statistical relationship between two or
more variables. In simple regression there are only two variables, one variable
(defined as independent) is the cause of the behavior of another one (defined as

dependent variable). Regression can only interpret what exists physically, that is,
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there must be a physical way in which independent variable ‘x” can affect
dependent variable ‘y’. The regression analysis is a statistical method to deal
with the formulation of mathematical model depicting relationship amongst
variables which can be used for the purpose of prediction of the values of

dependent variable, given the values of the independent variable.
i. Simple Linear Model

Linear model can be derived when one variable, y called the dependent
variable is ‘driven by’ some other variable x called the independent variable. In
addition, suppose that the relationship between y and x is basically linear, but is
inexact: besides its determination by X, y has a random component, u, which is
called the “disturbance’ or ‘error’. In this research, the independent variable is
time and the dependant variable is measurement error of the instrument. The

regression model therefore becomes a time series model in this case.

Let i index the observations on the data pairs(x, y). The simple linear

model formalizes the ideas just stated:
Yi = Bo + BiX + U [7.1]

The parameters (30 and : represent the y-intercept and the slope of the

relationship, respectively [141].

Measurement Errors observed during Calibration of selected sophisticated
instruments and working standards used in legal metrology, over five years
were used as the dependant variable, time as the independent variable, for each
type of instrument and models were developed. Details of the five years
calibration data of the sophisticated instruments, is shown in Table 5.1 of chapter

V and the same for working standards is shown in Table 6.1 of chapter VI. These

-151-



were used for development of the models for prediction of errors that can be

observed during calibration.
7.2.1 Details of the Regression Based Models Developed

Using the five year data discussed above, Regression equations, curves
and R? values were found out in each case. These equations can be used for

prediction.
7.2.1.1 Sophisticated Equipments

Regression based models of selected sophisticated instruments such as
Digital Multimeter, Digital Thermometer, Cathode Ray Oscilloscope, Signal

Generator and Pressure gauge were discussed in this section.
i. Digital Multimeter -DMM

DMM is basically used in six different modes of measurement. They are
DC voltage, AC voltage, DC current, AC current, Resistance and Capacitance.
Separate models were made for measurement error prediction in each mode. For
each model, five years error observed during calibration (calibration data) of 10

instruments were used.
a. DMM - Direct Current Voltage(DCV)

DC Voltage mode can measure five different ranges of input voltage as is
given in Table 5.6 of chapter V. Five year’s calibration data of ten different
instruments is used for regression analysis. Regression equations, curves and R?

values have been found and are given in Figure 7.1
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Figure 7.1 Graph Showing Regression Curve, Equation and R? Value

Similar set of regression equations, curves and R? values were found out

for all operating ranges of voltage.
b. DMM Alternating Current voltage (ACV)

Calibration of ACV mode of DMM is done by using four different groups
of AC Voltages and within each group; three different voltages were applied to
the DMM as given in Table 5.6. Regression analysis equation with the R? value for

a single group is given below as a sample.
Y=0.0002 x + 0.0003; R?=0.891 for 4V group

Mean residue (difference between actual and predicted measurement
error value) for the four different ranges of ACV operation of DMM is obtained

as 0.0008424.
c. DMM DC Current

Calibration of DC Current mode of DMM is done by applying three
different ranges of current as shown in Table 5.6. Regression equation with R?

value for 0.004A range of operation is as follows:

Y =0.00000016 x +0.0000016; R2=0.9817 for 0.004A
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d. DMM AC Current

DMM in alternating current mode is calibrated in the same manner as that
of DC Current mode by applying different currents given in Table 5.6. Regression

equation with R? value for 0.004A is as follows:
Y =7E -07 x + 3E-06; R2=0.8278 for 0.004A
e. DMM - Capacitance mode

Capacitance mode of DMM is calibrated by applying five different
capacitance groups as given in Table 5.6. Regression equation and R? value for

4nF group is given below:

Y =0.0664 x +0.1593; R2=09157, for 4nF
e. DMM - Resistance mode

Resistance mode of operation of DMM is calibrated by applying six
different groups of resistance. Regression equation for 0.4kQ of applied input

resistance for calibration is given below:

Y =0.0002 x —0.0001; R?=0.9891 for 0.4kQ

ii. Digital Thermometer

Digital Thermometer using thermocouple is calibrated by applying four
different temperatures. Regression equations and R? value for the applied

temperatures are given below:

Y= 0.1309x +0.0433; R?=0.9567 for -50°C
Y =0.0869x + 0.0758; R%2=0.9324 for 0°C

Y =0.1289 x + 0.6115; R?=0.9963 for 500°C
Y =0.1751x + 0.6557; R?2=0.9782 for 950°C
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Thermocouple total
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Figure 7.2 Regression Curve, Equation and R? value - Digital Thermometer

Cumulative regression equation, regression curve and R? value is given in
Figure 7.2 Actual and predicted values of errors are very close with a minimum
residue as can be observed from the above figure. It can also be observed that the
predicted error values are more accurate for higher range of applied input

temperature for calibration.
iii. Cathode Ray Oscilloscope

Cathode ray Oscilloscope is calibrated in the vertical axis, horizontal axis
or frequency axis mode by applying different voltages and square wave with

different frequencies and voltages as given in Table 5.11 of chapter V.
a. Vertical Axis Mode Calibration

In vertical axis mode, calibration is done for DC and AC voltages

separately.
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CRO-DC Voltage Calibration

It is observed that, prediction of errors using regression model for
different dc voltages used for calibration is accurate with R? value in all the

cases close to 0 .9.
CRO AC Voltage Calibration

AC Voltage calibration of CRO is done by applying 1 kHz square-wave of

different amplitudes as given in Table 5.11.

cro b ac range total

200.00000000

y = 13.654x + 42.837
2
150.00000000 = 0849?/./‘
. 2

100.00000000 /

50.00000000

error

.00000000
0 2 4 6 8 10 12

year

Figure 7.3 Graph Showing Regression Curve, Equation and R? Value-CRO

Total regression analysis equation, R?* value and regression curve are
shown in Figure 7.3. It can be observed from the Figure that the predicted errors

almost follow the actual errors. R? value is also close to one.
b. Horizontal axis calibration

CRO Time Calibration

In the time-calibration 26 different frequencies are applied as is given in
Table 5.11. Residue of error estimation is more for the horizontal axis calibration
in low time period or high frequency range of applied inputs. R? value is also less

than 0.5 starting from .005uS to 1pS.
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iv. Signal Generator

Signal generator is calibrated by applying four different groups of
frequencies which are 0.4 kHz, 4 kHz, 40 kHz, 400 kHz and 2000 kHz. It is
observed that for the lower frequency ranges 0.4 kHz and 4 kHz, the residue is
more and the R? value is less than 0.9. In the higher range of applied input
frequencies the R? value is close to one and the residue is less and thus predicted
errors are close to the actual value of errors. This indicates that the use of
regression model for error prediction will yield more accurate results when

applied frequency range is higher.
v. Pressure Gauge

Pressure gauge is calibrated by applying different pressures in the
increasing and decreasing order. Different pressures applied are 60kg/cm?, 100

kg/cm? 200 kg/cm?, 300 kg/cm?, 400 kg/cm?, 500 kg/cm?, and 600 kg/cm?.

Pressure guage range total

2.0000

y = 0.3067x + 0.2999
1.5000 R? = 0.9864

error

1.0000

.5000

.0000

year

Figure 7.4 Regression Curve, Equation and R? Value-Pressure Gauge - Increasing

Total pressure gauge regression equation, R? value and regression curve
for increasing order of applied input pressure for calibration is shown in Figure

7.4. Mean residue is 0.044036.
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7.2.1.2 Working Standards Used in Legal Metrology

Errors observed during calibration of selected working standards such as
Non Automatic Weighing Instrument, Volumetric Measures and Weight

Measures were used for error modeling.
i. Non Automatic Weighing Instrument (NAWI)

Regression equation, regression curve and R? value which predicts the
time dependant error for the three different tests, the weighing test [up and
down], eccentricity test [e-test] and repeatability test [r-Test] used for calibrating
NAWI is shown separately in Figure 7.5. Figure shows that the residue is

minimum with R-test [0.0036] and maximum with weighting test [0.453]. R2

value is close to one except for W-test (down).

Working standard w-test error (down)
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w error
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Year

Working standard r-test error

.0080000
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r error
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E error

.0140
.0120
.0100
.0080
.0060
.0040
.0020
.0000

Working standard e-test error

y = 0.0016x + 0.0035
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Figure 7.5 Regression Curve, Regression Equation and R? value - NAWI
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ii. Volumetric Measures

Future possible errors that can be observed during calibration of working
standards used for volumetric measurement are given in Figure 7.6. Figure shows

that the predicted values are close to the actual values with an R? value of 0.9974.

.9000

Volumetric- verror

verror

.3000

.6000 —

y = 0.1081x + 0.2301
R? = 0.9974

/

.0000

year

Figure 7.6 Regression Curve, Equation and R? Value-Volumetric Measure

iii. Working Standard for Weight measurement

The regression parameters of the prediction model for weight measure are

given in Figure 7.7. The R? value is 0.9257.

250.0000

200.0000

150.0000

Ws4

100.0000

50.0000

.0000

Weight-1 WS4

y = 47.669x - 46.441

L

Year

Figure 7.7 Regression Curve, Equation and R? value-Weight Measure
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7.3 PREDICTION MODELS USING ARTIFICIAL NEURAL NETWORKS

Advances have been made in developing tools for “intelligent" computer
programs, a category of which have been inspired by biological neural networks,
these are called artificial neural networks (ANNSs). Researchers from various
scientific disciplines are using artificial neural networks (ANNSs) to solve a
variety of problems in decision making, optimization, prediction, classifications
and control [142]. The second set of measurement error prediction model,

developed in this thesis uses ANN.

7.3.1 Modeling of Time Dependant Errors Using ANN

The recent increase in usage of artificial neural networks has proven that
neural networks have powerful pattern classification and prediction capabilities

[143]

Numerous efforts to develop “intelligent” programs based on Von
Neumann’s centralized architecture have not resulted in general-purpose
intelligent programs [144]. Inspired by biological neural networks, ANNs are
massive parallel computing systems consisting of an extremely large number of
simple processors with many interconnections [145]. ANN models attempt to use

some “organizational” principles believed to be used in the human brain [146].

Function approximation: Given a set of n labeled training patterns (input-
output pairs), {(x1; y1); (X2 y2); ....... (xn, yn)}, generated from an unknown
function p(x) (subject to noise), the task of function approximation is to find an
estimate, say , of the unknown function u [Figure 7.2]. Various engineering and

scientific modeling problems require function approximation [147].
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Prediction/forecasting: Given a set of n samples {y(t1); y(t2),....y(tn)g in a
time sequence, ti; t2; ..... tn, the task is to predict the sample y(t~1) at some future

time tn+1.

Prediction/forecasting have a significant impact on decision making in
business, science and engineering. Stock market prediction and weather

forecasting are typical applications of prediction/forecasting techniques.

et
[Ea=

over—fitting to
noisy training data

N\

true function

Figure 7.8 Function Approximation

7.3.2 Computational Models of Neurons

McCulloch and Pitts proposed a binary threshold unit as a computational
model for a neuron [148]. This mathematical neuron computes a weighted sum
of its n input signals, xj;j=1;2; ...... n, and generates an output of 1 if this sum is
above a certain threshold u and an output of 0 otherwise. Mathematically,

y=9(iwjxj _UJ [7.2]

i1

where 0(.) is a unit step function at zero, and wj is the synapse weight
associated with the j" input. For simplicity of notation, it is often considered the
threshold u as another weight w° = -u which is attached to the neuron with a
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constant input, x° = 1. Positive weights correspond to excitatory synapses, while

negative weights model inhibitory ones [149].

McCulloch and Pitts proved that with suitably chosen weights let a
synchronous arrangement of such neurons is, in principle, capable of universal
computation. There is a crude analogy here to a biological neuron: wires and
interconnections model of axons and dendrites, connection weights represent

synapses, and the threshold function approximates the activity in a Soma [150].

The model of McCulloch and Pitts contains a number of simplifying

assumptions, which do not reflect the true behavior of biological neurons.

The McCulloch-Pitts neuron has been generalized in many ways. An
obvious generalization is to use activation functions other than the threshold
function, e.g., a piecewise linear, sigmoid, or Gaussian. The sigmoid function is
by far the most frequently used function in ANNs [151]. It is a strictly increasing
function that exhibits smoothness and has the desired asymptotic properties. The

standard sigmoid function is the logistic function, defined by
g(x) = 1/(1 + exp (-BX)); [7.3]
where (3 is the slope parameter.

7.3.3 Network Architecture

An assembly of artificial neurons is called an Artificial Neural Network
(ANN). ANNs can be viewed as weighted directed graphs in which nodes are
artificial neurons and directed edges (with weights) are connections from the
outputs of neurons to the inputs of neurons [152]. Feed-forward network
architecture has been used in this research [153]. The most common family of
feed forward networks is a layered network in which neurons are organized into

layers with connections strictly in one direction from one layer to another.

-162-



Generally speaking, feed-forward networks are static networks, i.e., given
an input, they produce only one set of output Neural Networks values, not a
sequence of values [154]. Feed-forward networks are memory-less in the sense
that the response of a feed-forward network to an input is independent of the
previous state of the network. Recurrent networks are dynamic systems. Upon

presenting a new input pattern, the outputs of the neurons are computed [155].
7.34 Learning [training of neural network]

Ability to learn is a fundamental trait of intelligence. Although a precise
definition of learning is often difficult to state, a learning process in the context of
artificial neural networks can be viewed as the problem of updating network
architecture and connection weights so that a network can efficiently perform the
specific task for which it is designed [156]. Most of the time, the network must
learn the connection weights from the available training patterns. Improvement
in performance is achieved over time through iteratively updating the weights in

the network [157].

The ability of artificial neural networks to automatically learn from
examples makes them very attractive and exciting. Instead of having to specify a
set of rules, ANNs appear to learn them from the given collection of
representative examples [158]. This is one of the major advantages of neural

networks over traditional expert systems.

In order to understand or design a learning process, one must first have a
model of the environment in which a neural network operates, i.e., what
information is available to the neural network. This model is referred as a
learning paradigm [159]. Second, one must understand how weights in the

network are updated, i.e., what are the learning rules which govern the updating
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process. A learning algorithm refers to a procedure in which learning rules are

used for adjusting weights in the network.

Supervised learning paradigm has been used in this study. In supervised
learning or learning with a teacher, the network is provided with a correct
answer to every input pattern. Weights are determined so that the network can

produce answers as close as possible to the known correct answers.
7.3.5 Algorithm in MATLAB for Error Models

In the supervised learning paradigm, the network is given a desired
output for each input pattern. During the learning process, the actual output, y,
generated by the network may not equal the desired output, d. Error- correction
rules are followed in this algorithm. The basic principle of error-correction
learning rules is to use the error signal (d - y) to modify the connection weights

such that this error will be gradually reduced [160].

The well-known perceptron learning rule is based on this error-correction
principle. A perceptron consists of a single neuron with adjustable weights, wj; j =
1,2,....n, and threshold u. Given an input vector x = (x1; x2; ...... xn) t, the net

input to the neuron (before applying the threshold function) is
V=) WX;-U [7.4]
j=1
The output y of the perceptron is +1 if v > 0, and 0 otherwise. In a two-

class classification problem, the perceptron assigns an input pattern to one class

if y =1, and to the other class if y = 0. The linear equation ) w;X; —u =0 defines
j=1

the decision boundary (a hyperplane in the n-dimensional input space) which

divides the space into two halves.
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Note that learning occurs only when an error is made by the perceptron.
Rosenblatt proved that if the training patterns are drawn from two linearly-
separable classes, then the perceptron learning procedure will congregate after a
finite number of iterations [161]. This is the well known perceptron convergence
theorem. In practice, one does not know whether the patterns are linearly
separable or not. Many variations of this learning algorithm have been proposed
in the literature [162] [163]. Other activation functions can also be used, which
lead to different learning characteristics. However, a single layer perceptron can
only separate linearly separable patterns, as long as a monotonic activation

function is used.

Back-propagation learning algorithm, which is based on the error-

correction principle [164], is used in this research study.
Back-Propagation Algorithm

Initialize the weights to small random values;
Randomly choose an input pattern x®);
Propagate the signal forward through the network;

LN

Computes,” in the output layer (0, = y,")
of =g ()l - yi )
where h' represents the net input to the i unit in the €" layer, and g is the
derivative of the activation function g.
5. Compute the deltas for the preceding layers by propagating the errors

backwards;
| ! 1+1 ol+ _
5! =g'(h ZW” 6%, forl=(L-1),....,1
J
6. Update weights using
Alei = 775i| yle
7. Go to step 2 and repeat for the next pattern until the error in the output
layer is below a pre-specified threshold or a maximum number of

iterations is reached.

ANN based models were developed for doing the following, in this
research work:
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i. Prediction of time dependant error, in selected sophisticated
measuring instruments and, in working standards used in legal
metrology.

ii. Prediction of human error in measurement with given combination

of factor values. .

A typical feed-forward back propagation neural network used in this
model consists of three layers, the input layer, a hidden layer and the output
layer as shown in Figure 7.9 The feed-forward fully connected network was
trained in supervised manner. The input layer consists of twenty four neurons,
hidden layers consist of twenty neurons and the output layer consists of a single
neuron. The input and target samples are automatically divided into training,
validation and test sets. Training set was used to teach the network. Training
was continued as long as the network continues improving on the validation set.
Test set provided a completely independent measure of network accuracy. The
information moves in only one direction, forward, from the input nodes, through
the hidden nodes and to the output nodes. There are no cycles or loops in the

network.

Hidden Layer Output Layer

Input

24

Figure 7.9. Error Prediction Model Based on Neural Network.

The above network allows signals to travel one way only; from source to
destination. The hidden neurons are able to learn the pattern in data during the
training phase and mapping the relationship between input and output pairs.
Each neuron in the hidden layer uses a transfer function to process data it

receives from input layer and then transfers the processed information to the
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output neurons for further processing using a transfer function in each neuron.

The output of the hidden layer can be represented as equation
Ynxt =f(Wnomt X + bnia) [7.5]

where, Y is a vector containing the output from each of the ‘N’ neurons in
a given layer, W is a matrix containing the weights for each of the ‘M’ inputs for
all ‘N’ neurons, ‘X’ is a vector containing the inputs, ‘b’ is a vector containing the

biases and “f(.)" is the activation function[165][166]
7.3.6 Prediction Model for Calibration Errors

Prediction of calibration errors (errors that is observed during calibration)
in selected sophisticated instruments and in selected working standards which
are used for calibration in legal metrology, were done using Artificial Neural
Network [ANN]. The sophisticated instruments selected are digital multimeter,
digital thermometer, cathode ray oscilloscope, signal generator and pressure
gauge. Working standards selected for the study include, non-automatic
weighing instruments, weight measures and volumetric measures. As in the case
of regression based models, errors observed during calibration(five years) of the
sophisticated instruments given in Table 5.1 of chapter V and the errors observed
during calibration(five years) of working standards listed in Table 6.1 of chapter
VI were used for modeling. Residues [difference between actual and predicted
values] of prediction errors were also found out. A comparison of the residue of

prediction of regression analysis and artificial neural network is also given.

Back propagation algorithm used for developing code in MAT LAB neural

network for prediction of errors can be further interpreted as follows:

i. The errors observed during calibration for yearl to year 4 is the
training data.

-167-



ii.

1ii.

iv.

Vi.

Year 5 data is the target data.

80% of the data is taken for training the neural network and 20%
for testing the neural network.

As the errors observed during calibration increase in ascending
order, the training data and testing data were selected at random
and not in sequential order.

In order to compare one machine with another machine separate
folders were created for each machine and the .xls file inside the
folders were given identical file names and sheet names.

Math-Lab built-in functions are used to train and test the neural
network.

7.3.6.1 Sophisticated Instruments

i. Digital Multimeter

Prediction of errors using ANN was carried out for all the six modes of

operation of DMM. Out of the six different modes of operation of DMM, the least

residue of prediction result is with DMM-DC current (0.0000293) and the

maximum with DMM Capacitance (0.157).

DMM DC Volatage
0.003 +
0.002 - = .

o 4
-0.001 +
-0.002 ~
-0.003 +
-0.004 +
-0.005 ~
-0.006

0.4V av 40v 400V

-0 |9E-04| -0 |-0.01|0.0010.003/6E-04 -0 -0 -0

S
S

B Actual 3E-04|

(=)

1E-03|2E-04/-0.01|0.002/0.002| 7E-04

S

1E-03 -0

S

O Predicted | - 3E-04| -

Figure 7.10 Graph Showing Actual Vs Predicted Error Values Using ANN-DMM

In DMM- DC voltage mode, the maximum residue is with 40V range and

the residue is 0 with 400V and 1000V range as can be noticed from Figure 7.10

Minimum residue of DMM- AC Voltage is 0.0003533 and the maximum residue
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is 0.0006067. It can also be observed from the Figure 7.10 that the maximum

residue is with 40V range and the minimum residue is with 400V range.

In DMM-DC current mode, the minimum residue is with 0.004A
(ie.0.0000246) and the maximum is with 0.4A (0.00003463).In DMM-AC current
mode, the 10A range simulation gives minimum residue (0.00002) and maximum
is with 0.4A (0.0003115). Residue is minimum with 4kQ (0.0014894) and is
maximum with 40kQ (0.006733) in the resistance mode of operation of DMM.
Prediction of error in capacitance mode shows that, minimum residue of
prediction is with 40000nF (0.03485) and the maximum residue is for 4000 nF
(0.343419).

ii. Digital Thermometer

Figure 7.11 shows the comparison of actual and predicted values of errors with
digital thermometer. Residue is minimum with the calibration temperature of
950°C out of the four different temperatures used for calibration and the value is

0.016. Maximum residue is 0.2633 and is for the input -50°C

Thermocouple using Neural Network Instrument

1.6
1.4+
1.2

0.8
0.6 1
0.4 1
0.2 7

A Actual 0.85
0O Predicted 1.2367 0.388842034 0.809058156

Figure 7.11 Actual Vs. Predicted Values of Errors for Digital Thermometer
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iii. Cathode Ray Oscilloscope

a. Vertical Axis calibration-DC Voltage

Figure 7.12 shows the actual and predicted values of errors for twelve
different ranges of voltage used for calibration. Residue is minimum with 10 mV

range (0.01044) and the maximum residue with 100mV range(2.5972).

CRO DC

-120
-150
-180
-210
-240
-270
-300

im 2m 5m 10 20 50 100 200 500

| Actual 0.8(-4.1|-2.7/10.4|-1.3] 4 |-0.3/0.4|-3.7|0.2|-11|-0.2| -60|-268-229|-2.5| 0.9 | -1.1|-

[ Predicted | 0.7 |-4.8|-2.9/ 0.5|-1.4({ 3.8 |-0.3/ 0.4 |-3.8/ 0.2 | -10 (-0.2 -64 |-270-229|-2.1]| 0.8 | -1.5|-

Figure 7.12 Actual Vs. Predicted Values of Errors for CRO

AC Voltage

In AC voltage mode of calibration, the minimum residue is with 5V range
(0.083074) of applied input for calibration and maximum is with 200V (2.04263).
Generally it is observed that the prediction error (possible errors that can be

observed during calibration) values are close to actual error values.
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b. Horizontal Axis Calibration
CRO Time Mode Prediction

Prediction of errors that can be observed during calibration in the time
mode of CRO shows that the residue is minimum with 20us (0.0000044) and
maximum with 0.1ps (0.9056). It is also observed that the predicted errors using

ANN is almost equal to actual errors.

iv. Signal Generator

Signal Generator

2000.
00

0.40 4.00

& Actual 0.0001 0.0032 0.0005 0.0006 0.0041 0.0011 0.0008 0.0017 0.0002 0.0003 0.0018 0.0020 0.0002 0.
3 Predicted |0.0002 0.0038 0.0005 0.0006 0.0038 0.0017 0.0010 0.0019 0.0002 0.0003 0.0018 0.0018 0.

Figure 7.13 Actual Vs. Predicted Values of Errors for Signal Generator

Signal generator is calibrated by applying signals with five different
frequencies as is given in Figure 7.13. It is observed that the average residue is
0.00015 and in majority of the cases, residue is zero. It is also noticed that the
residue is minimum with signal generator out of the five different sophisticated

instruments studied in this research work.
v. Pressure Gauge

Pressure gauge is calibrated by applying seven different pressures in the

increasing and decreasing order. Figure 7.14. shows that, the difference between
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actual and predicted values of errors are generally less when the pressure is

applied in the increasing order for calibration rather than the decreasing order .

Pressure Guage - Increasing

H Actual
O Predicted

Pressure Guage- Decreasing

.50000 1

4.00000 -

3.50000 1
3.00000 -
2.50000 -
2.00000
1.50000 -
1.00000 -

0.50000

0000 - .. . L . . .
600 500 400 300 200 100 6

® Actual 3.04000 | 3.87000 | 4.05000 1.28000 | 4.48000 | 3.05000
O Predicted | 2.85273 | 3.46173 354904 | 1.32758 | 3.58020 | 3.

Figure 7.14 Graph Showing the Actual Vs. Predicted Values of Errors for Pressure Gauge

Average residue of increasing order is 0.058 and for decreasing order, the

average is 0.3233.
7.3.6.2 Working Standards Used in Legal Metrology

Neural network was trained using the errors observed during calibration
of working standards of non automatic weighing instrument, volumetric

measures and weight measures. Initially five years error observed during
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calibration of ten different standards were used to train neural network. Then to
check the effect of residue on the predicted errors, the data size has been
increased to ten years data of 50 working standards each from NAWI, volumetric
and weight measures. Increased data size reduces residue and is also included in

the following discussion.
i. Non Automatic Weighing Instrument (NAWI)

Neural network was trained, first with, errors observed during calibration
of ten NAWI and then with fifty NAWI for prediction of errors. Actual and
predicted values of errors observed during calibration when training is done
with ten instruments are given in Figure 7.15. It is observed that the average

residue with ten instruments is 0.002324 and with fifty instruments is .0015152.

WS_ NAWI

0.03

0.025

0.02

0.015 +

2 4

@ Actual 0.003576 | 0.008861 |0.0021485| 0.0269 0.00229 | 0.001645
B Predicted |0.0041941|0.0139813 |0.0048573 | 0.0274741 | 0.0045229 | 0.00.

Figure 7.15 Actual Vs. Predicted Values of Errors Using ANN for NAWI

It is also observed that, the residue with regression model is more than ANN

model by 0.0494 in the case of NAWI.
ii. Volumetric Measures

Errors that can be observed during calibration of the working standard,

volumetric measures were predicted by training neural network using five years
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error observed during calibration of ten instruments. To study the effect of
increased data size, the training data size was increased to ten years calibration
data (error observed during calibration) of fifty instruments. Average residue is
0.21257 for 10 instruments and when the neural network is trained with the
calibration data of 50 instruments the average value of residue is reduced to
0.05969. 1t is observed that the residue with ANN model is more compared to

regression model and the difference is 0.072298.
iii. Weight Measures

Error prediction model was trained, first with five years error observed
during calibration of ten weight measures standard and then training is done
with the calibration data (error observed during calibration) of 50 instruments as
before. Average residue with weight measures using ten instruments is 0.49342
and for fifty instruments it has reduced to 0.40226. Residues with regression

analysis are more by 0.563 than that of ANN.
7.4 COMPARISON OF REGRESSION AND ANN MODEL FOR ERROR
PREDICTION

Errors observed during calibration of selected sophisticated instruments
were utilized for predicting errors using Regression analysis technique and
Artificial Neural Network. Residue, which is an indication of error of model

output, is compared for regression and artificial neural network based models.

The results of the comparison are shown in Table 7.1.

-174-



Table 7.1 Comparison of Residues in Regression and ANN models

Residues
Instruments Regression Artificial Neural
Analysis Network

DMM -DCV 0.0003288 0.00028
DMM - ACV 0.0008424 0.00046
DMM -DCC 0.0001232 0.0000293
DMM - ACC 0.000600 0.00018
DMM - Resistance 0.0696 0.00614
DMM — Capacitance 0.2764 0.157
Digital Thermometer* 0.025764* 0.0854*
CRO-DC 0.682 0.654
CRO-AC 0.8099 0.678
CRO - Time 0.376 0.17925
Signal Generator 0.00148 0.00015
Pressure Gauge — Increasing 0.044036 0.058
Pressure Gauge — Decreasing 0.05248 0.03233

It can be observed from the residue comparison of sophisticated
instruments that except for Digital thermometer (*) in all other cases residue with
artificial neural network technique is less than regression analysis technique.

This indicates the superiority of ANN model in terms of accuracy of prediction.

Comparison of the prediction results of regression based model and ANN
based model for sophisticated instruments and working standards used in this
study shows that, the ANN based model is more accurate. At the same time, one
requires the MATLAB package and the model developed using ANN on a
computer, to predict the measurement error (this is expensive and requires
greater expertise to use). But in the case of regression model, just by substituting
the value of independent variable x in the regression equation will yield the
dependent variable Y, which is the measurement error to be estimated. For

example in the regression equation of a digital thermometer given below:
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Y =0.1289 x + 0.6115; R?=0.9963 for 500°C

Y =1.7716 for x=9. That means the digital thermometer will give a reading

of 501.7716°C for a true temperature of 500°C after 9 years.

Hence it is worth noting that the regression model is simple and easy to
use. Therefore, based on the requirement an appropriate model needs to be
chosen. If the relationship between x and y is non-linear, regression analysis can
only be successfully applied if prior knowledge of the nature of the non-linearity
exists. Because, the range of study has to be divided into sections of linear
segments, and regression equations made for each such segment. On the
contrary, this prior knowledge of the nature of the nonlinearity is not required
for ANN. In ANN, the degree of non-linearity can be also changed easily by
changing the transfer function and the number of hidden layer nodes. Hence
when linear relationship of the change in error with time is not seen it is safer to

use ANN model for prediction.
7.5 HUMAN RELATED MEASUREMENT ERROR PREDICTION MODEL

ANN model used for predicting calibration errors were modified and
prediction models for estimating human related measurement errors were
developed. ANN model is developed to predict the probable errors due to the
identified factors on human related measurement errors. Factors that have been
used for modeling are experience, intelligent quotient, age, instrument
differences and time of work. Feed-forward neural networks are used as before.
Weight-age factors for the output layer of the error prediction model for human

related measurement errors are given in Table 7.2 (only half of the table is shown).
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Table 7.2 Weight-Age Factors for the Output Layer [20 by one is reduced to 10 by one]

Experienced | 029955 | 0257678 | -0.31 0.128832 | -0.15527 | 0.574401 | 0.681581 | 0.23159 |0.004816 |-0.64912
IQ -0.34275 | 0.325156 [-0.21047 | -0.11961 | -0.54294 | 0.651265 | 0.36477 | 0.496829 (0.492116 |-0.61665
Age -0.14374 | 0.135488 0.095413 | -0.65776 | -0.25275 | -0.00641 | 0.291201 | 0.838691 | 1.0926 |-1.47869
Instrument

Differences -0.39471 | 0.290607 |-0.12279 | -0.16093 | -0.57177 | 0.512582 | 0.301061 | 0.514837 |0.711673 |-0.8694
Time of

work 0.585989 | -0.37959 |-5.15308 | 0.62126 | 1.037867 | 1.430809 | 0.266766 | 1.188384 |1.432843 |-3.17839

Weight-age factor in this model depends on the number of neurons. Since the
number of neurons in the input layer is twenty four (M=24) and the number of
neurons in the hidden layer is (N=20), then the weight-age matrix of the hidden
layer is 24 x 20. Similarly the weight-age matrix of the output layer is 20 x 1. Part
of the 20 x 1 weight-age matrix [10 x 1 as shown in Table 7.2] of output layer of

tive different features were shown in the Table 7.2 as a sample.

7.5.1 Details of Prediction Model of Human Related Measurement

Errors Using ANN

Prediction model for human related measurement errors was developed
using the observations from experiment on human related measurement errors
(already discussed in Chapter III). Observations (data) from the experiments on
measurement errors occurring with subjects, with known factor values for,
experience, age, 1Q, instrument difference and time of work, who did the
measurement, was used in the model. Training and testing of artificial neural
network model developed using MAT-LAB is able to predict the human related
measurement errors due to selected human factors such as experience, age, 1Q,
instrument difference, time of work. Table 7.3 shows the actual and predicted

values of human related measurement errors.
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Table 7.3 Human Related Measurement Errors Actual (From Experimental Results) Vs

Predicted Using ANN
[Human Errers - ANN
Experienced Vs,
Inexperienced Instrument
[%o] Intelligent Quotient [%0] | Differences [%a] Age [%0] Time of Work [%0]
ET IE 191 g2 gz Analog | Digital | 2148 | 4I-5§ FN AN

Actual .00092510.0017 N.0036170.00553] 0.00789 J0.003617) 0.00064 |0.000653]0.000954 | 0.00565 J0.008383

Predictedf0.0009220.001750.00371280.00568] 0.008045 J0.003712]0.00065%9 J0.0006&5) 0.00096% | 0.00571 J0.009439

Fesidue | 3E-06 | SE-05 0.00010110.00013]0.000155 j0.000101] 1.9E-03 10.000012)0.000015 ) AE-05 J0.001106

i. Experience

A three layer feed-forward network with twenty four inputs and twenty
sigmoid hidden neurons and a linear output neuron was created. The data set
contains 2400 samples. 1920 samples were used in training the network while 480
samples were used in testing the network. Training is done using scaled
conjugate gradient back propagation network. The scaled conjugate gradient
algorithm (SCG) developed by Moller (1993) was designed to avoid the time

consuming line search.

Best Validation Performance is 0,00037862 at epoch 32

J
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Best
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Mean Squared Error [mse)
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Figure 7.16 Prediction of Human related errors on Measurement - Experienced and
Inexperienced

-178-



This algorithm combines the model-trust region approach with the
conjugate gradient approach. Results of the error prediction model for predicting
errors due to experienced and inexperienced subjects, showed very good abilities

of the network to learn the patterns.

Results are good as can be seen from Figures 7.18 and 7.19. Best validation
performance is 0 .00037862 [mean square error] at epoch 32 as shown in Figure
7.16. Mean squared error (MSE) is the average squared difference between

outputs and the target. Lower values are better while zero means no error.

True Positive Rate

] A 02 03 04 05 08 07 08 09 1
False Positive Rate

Figure 7.17 Receiver Operating Characteristic Curve

Receiver operating characteristic is used to inspect the prediction
performance more closely as shown in Figure 7.17. By definition, ROC curve
shows true positive rate Vs false positive rate (equivalently, sensitivity Vs 1-
specificity) for different thresholds of the predicted output. One can use ROC, for
example, to find the threshold that maximizes the prediction accuracy or to
assess, in more broad terms, how the model performs in the regions of high

sensitivity and high specificity.
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Data sets containing a total of 2400 samples each were used for training
and testing ANN to predict human related measurement errors in the case of
experienced technicians (ET) and inexperienced (IE) subjects. Out of that 1920
samples (80% of the total samples) each were used in training the network while
480 samples (20%) were used in testing the network. It can be observed from
Table 7.3 and Figure 7.18 and 7.19 that the human error prediction model could
accurately predict the values of errors in the case of both experienced technicians
and inexperienced subjects. Residue in ET is only 0.000003 and in the case of IE it
is 0.00005.

Inexperienced - Prediction using ANN

=
5]

[ |
‘ ® Inexp. Actual ® Inexp. Predicted ‘

Mean Error [Ohm]

o N ®w » O ©® ~N © ©
I L L L L L L L L

1 4.7 1000 27 33 10 2.7 39 150 270W  680W 270  820W 560 ow
Resistance [kilo Ohm]

Figure 7.18 Prediction of human related measurement errors — Inexperienced subjects

Experienced - Predicted using ANN
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Mean Error [Ohm]
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Figure 7.19 Prediction of human related measurement errors — Experienced Technicians
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ii. Intelligent quotient

In this case the ANN prediction model was trained to predict the human
related measurement errors in subjects with above average 1Q (IQ1), average 1Q
(IQ2) and below average 1Q (IQ3). Data set contains a total of 3600 samples. 2880
samples were used for training the ANN while 720 samples were used fro testing
the network. Table 7.3 shows that, the prediction results are reasonably accurate
with residues 0.000101, 0.00013 and 0.000155 for 1Q1, IQ2 and IQ3 categories

respectively. It is observed that best validation performance is 0.079537 at epoch 7.
iii. Instrument Differences

Experimental analysis on one of the work related human factor,
instrument difference, was carried out by asking the subjects to make
measurements using analog and digital devices (details are given in chapter III).
In the prediction error model, the ANN was trained using 2880 samples and 720
samples were used for testing the network. Training of the neural network was
very effective as is evident from Table 7.3 Residue is 0.000101 for measurement
using analog instrument and it is only 0.000019 for measurement using digital
instruments. Best validation performance is 2.7139e-25 at epoch 100. Since the
MSE which is the mean squared difference between outputs and the expected

outputs is very close to zero the result is very accurate.
iv. Age

Estimation of human related measurement errors in subjects who belongs
to different age groups is done by training and testing ANN prediction model
using the experimental data of subjects in the age group of 31 to 40 years and 41
to 50 years. Difference between actual and predicted values of human related

measurement errors (residue) is only 0.000012 for the age group 31 to 40 years
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were as it is 0.000015 for the subjects in the age group of 41 to 50 years. Best
validation performance is 8.0189e-25 at epoch 100. Since the mean square error is
close to zero the result is close to the actual value. This shows that the prediction

model is quite efficient.
v. Time of Work

Transient qualities of human being such as fatigue, boredom etc. directly
depend on his or her time of work. Prediction error model of ANN was trained
and tested firstly by using forenoon session measurement error data then, using
the afternoon session measurement errors. Table 7.3 gives the residue for the
forenoon session as 0.00006 and the residue for afternoon session is 0.001106.

Best validation performance is 0.057823 at epoch 65.
7.6 CONCLUSION

In order to make the data collected more useful, Regression and Artificial
Neural Network [ANN] based models have been developed to predict error
[extent] for instrument type and standard types studied. Prediction models were
also developed for human related measurement errors. These can be used as
ready reference by practitioners wanting to estimate or predict measurement
errors. The comparison of the prediction results of regression based model and
ANN based model shows that the ANN based model is more accurate. It is also
worth noting that the regression model is simple and easy to use. Therefore,

based on the requirement an appropriate model needs to be chosen.
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Chapter VIII

Summary, Conclusion and Scope for Future work



8.1 SUMMARY

Instruments used in daily course of work are designed to provide reliable
and accurate (though extent of precision depends on requirement and the
measurand) measurement while at the same time being rugged enough to
withstand the harsh operating environment. Test engineers and professionals in
the field of measurement face a unique set of challenges, when they perform
measurement. A systematic (clearly defined process) and systemic (all
encompassing) approach is needed to identify every source of error that can arise
in a given measuring system. It is then necessary to determine their magnitude
and impact under the prevailing operational conditions. Measurement related
errors can only be defined in relation to a real specific measurement task.
Systematic error or bias is a permanent deflection in the same direction from the
true value. It can be easily corrected. Bias and long term variability are controlled
by monitoring measurements against a check standard over time. Systematic
errors or bias are repeatable errors existing with the specified source; these can
be adjusted out or compensated for, by periodical calibration of the instruments.
Random error is a short-term scattering of values around a mean value. It cannot
be corrected on an individual measurement basis. Random errors are studied by

statistical methods and expressed in statistical terms.

Measuring devices are of different types such as mechanical, electrical,
electronic etc. The electronic measuring instrument can be analog or digital.
Measurement error, which is the difference between the distorted information
and the undistorted information about a measurand, caused due to the
measuring device and/or the method and/or the person involved in the

measurement. However, research work on the experimental analysis of the effect
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of various factors on human errors was not found. Survey among test engineers
and professionals in the area of measurement revealed that, they know that
human related measurement errors exist and there is a possibility for calibration
error growth with ageing, but they do not have an idea about the factors that
influence human related measurement errors and the extent of human related
measurement errors and the quantum of error growth with ageing in

sophisticated instruments and working standards used in legal metrology.

Survey of literature on measurement errors showed that the application of
error reduction techniques has enabled the manufacturing and service industries
to gain better control over the processes and expenses, and also to improve
customer satisfaction and thus strengthen their level of competitiveness.
Therefore, it is evident that a clear understanding of the critical factors of
measurement errors in the method and the measurement would help the
implementation of management practices to improve productivity and enable
better control over processes, quality and costs. This research has brought out the
critical factors of human related measurement errors and also contributed a
model for prediction of human related measurement errors using ANN. The

contributions are given in detail in the next section.
8.2 RESEARCH CONTRIBUTIONS

The contributions of this research work are summarized as follows:

e Professionals and practitioners know that, there exist human related
measurement errors. They also agree with the general ‘say’ about human
related measurement errors, for example, human related measurement error
possibility is more with analog measuring instrument than digital, fatigue

will be more during afternoon, performance of human being depend on their
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IQ etc. From the pre-experiment survey research studies, it is quite clear that
the practitioners and professionals could not quantify the possible extent
(values) of human related measurement errors or error reduction or error
increase due to the influence of various factors. Based on the experimental
analysis, it was also observed that when the modified survey instrument,
wherein the choices of answers given to the questions related to the
quantification of errors, it helped to improve the perception of the

practitioners and professionals to a great extent.

Human related error in measurement is an ever present, generally significant
but not a much empirically studied phenomenon. Human related
measurement errors depend on many factors. In this experimental research
work, an attempt has been made to identify these factors and characterize
them as person related and work related factors. The upshot of a manual
measuring system is a combination of the results produced by the measuring
device and what was observed and noted by the human subject involved in
the manual measurement exercise. This study focused on the effect of a few
person related factors such as experience, training, intelligent quotient, age
and gender and work related factors such as type of instrument used, time of
work, task, time pressure and environmental differences, when measurement

was done.

Mean percentage of human related measurement error in each of the above
said factors were found out from the experimental study. It was necessary to
study and bring out these values, since knowing the values would help in
dealing with the errors when they are significant in the system. This study
brings out values of human related measurement errors under different

person and work related factor combinations. These may be taken as
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expected error values under those conditions for work system design. The
practitioners can use these results to design measurement systems (people

included) with the error within the given acceptable limits.

In the decreasing order of influence on human related measurement errors,
the person related factors are: Experience, Training, Intelligent Quotient, Age
and Gender. The ascending order of influence of work related factors on
human related measurement errors are instrument differences [digital,
analog], working environment, time pressure, time of day and type of work.
Identification of these factors and an assessment of the extent of errors they
produce will be of use to practitioners who rely on measurement for research,
control, production, and quality control. This work has also demonstrated a
simple methodology that can be used for such work. This work was carried
out with only few parameters, since taking too many parameters all at a time
would make the experiment very difficult to conduct and control. It is hoped
that this work will help users of measurement in practice to better understand
and manage the phenomena of Human related measurement errors in

measurement.

In the time based characterization of errors observed during calibration of
sophisticated instruments and the standards used in legal metrology, Annual
Average Growth (AAG) of error and instrument to instrument error
difference were found out. It is observed that instrument error grows with
ageing and there is instrument to instrument error growth rate difference.
Instrument calibration is the act of determining the uncertainty associated
with the instrument’s measurement. If feasible, the instrument is adjusted to
reduce the overall uncertainty associated with the measurement. Calibration

quantifies the equipment’s time in service, instrument to instrument
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differences, temperature, humidity, environmental exposure, and abuse and
when required, adjusts the device’s measurement capability to decrease error.
The study describes how the errors in different equipments are described
today. It also discusses how this description is used to compute the effect of
the errors upon the measurement result, and how this effect is reduced or
even minimized by rational use of the observations and by experimental

design.

In this research work, the calibration data of Digital Multimeter and digital
thermometer were used to determine the uncertainty budget through a
mathematical model. Controlling errors is an essential part of instruments
and instrumentation systems. The error control begins in the design stages by
choosing the appropriate components, filtering, and bandwidth selection, by
reducing the noise, and by eliminating the errors generated by the individual
sub-units of the complete system. In a good design, the errors of the previous
group may be compensated adequately by the following groups. The
accuracy of instruments can be increased by post-measurement corrections.
Various calibration methods may be employed to alter parameters slightly to
give correct results. In many cases, calibration graphs, mathematical
equations, tables, the experiences of the operators, and the likes are used to
reduce measurement errors. The application of digital techniques and
intelligent instruments, error corrections are made automatically by

computers or the devices themselves.

Estimation of errors was done using regression analysis. Regression Analysis
on the calibration data of various sophisticated instruments and working
standards used in legal metrology were done and regression curves were

plotted and the regression equations give the estimate of errors. The statistical
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significance of the regression analysis has been verified by determining the R?
value in each case. The regression analysis curve can be used as a benchmark
for the error growth with ageing of the instrument. Verifying authorities can
tit their observed values in the regression curve and if these values are well

above the regression curve, the instruments can be rejected.

ANN based models were also used for the estimation of errors. The code
written with MATLAB -NEURAL NET software has been used to predict
errors of several sophisticated instruments and working standards used in
legal metrology. Training has been optimized by varying calibration data
size. ANN model was developed for estimating human related measurement
under different factor combinations. These can be used as ready reference by
practitioners wanting to estimate or predict measurement errors. The
comparison of the prediction results of regression based model and ANN
based model shows that the ANN based model is more accurate. However, it
is also worth noting that the regression model is simple and easy to use.
Therefore, based on the requirement, an appropriate model needs to be
chosen. If the relationship between x and y is non-linear, regression analysis
can only be successfully applied if prior knowledge of the nature of the non-
linearity exists. Because, the study range has to be divided into sections of
linear segments, and regression equations were made for each such segment.
On the contrary, this prior knowledge of the nature of the nonlinearity is not
required for ANN. In ANN, the degree of non-linearity can be also changed
easily by changing the transfer function and the number of hidden layer
nodes. Hence when linear relationship of the change in error with time is not

seen it is safer to use ANN model for prediction.
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e Characterization and estimation of measurement errors would also enable to
quantify:
- the instrument’s time in service.

The observations during calibration can be applied in the error models
and if the error growth is abnormal, appropriate error correction
technique can be used or the instrument can be rejected. Eg: Test
engineers can fit the new calibration data in the regression curve and if it
exactly follows the regression curve developed in this study using the
previous year’s calibration data, then the instrument under calibration can

be accepted.
- Period of calibration.

An accurate estimation of Annual Average Growth (AAG) of errors
from the available calibration observations of instruments and also by
prediction of errors using the appropriate models would help to schedule
calibration depending on requirement, and not always follow thumb rules

like calibrate after twelve months.
- Error reduction / compensation.

Knowledge of the extent of error growth with instruments and the
instrument to instrument error growth differences would help the test
engineers and designers to apply appropriate error reduction and

compensation techniques in instruments.

e The legal metrology department is handling many types of working
standards, which varies from the working standard for weighing precious
metals and up to weigh bridge. They follow uniform procedures for the

conformity study of various types of working standards. The findings of this
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study of uncertainty can be incorporated for the unsurpassed conformity, at

least, for the instruments used for sophisticated measurements.
8.3 LIMITATIONS OF THE WORK

e The study was limited to errors in instrument and errors in method and
measurement. In error in method and measurement, the critical human
factors which influence measurement errors were identified and they were
analyzed using simple experiments. The experimental results were used for
error modeling using ANN. The study was limited to only certain factor
combinations. The other limitation of the study is that limited number of
subjects was asked to do only certain measurements using selected type of
instruments. In this research work the study was conducted in ordinary and

special laboratory environments; industrial environment is not used.

e Characterization of calibration errors in terms of only time was done in this
research. Only simple regression and ANN were used for error prediction in
this study. Complex time series analysis and other prediction /forecasting
tools were not explored in this study. Characterization is done only by
collecting the calibration data from selected testing and calibration
laboratories. It was beyond the scope of this study to analyze the parameters
which creates errors in a particular or some selected instruments. Some error
reduction techniques were suggested in this study, but a detailed error
reduction techniques study was not conducted especially in the challenging

environments.

e Hand book or directory showing complete table of human related
measurement errors due to various factor combinations and the complete

equations and curves of error prediction models based on regression and
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ANN are not brought out, even though the reasonable quantity and quality of

data has been collected and conclusions derived in this study.
8.4 SCOPE FOR FUTURE WORK

Study can be extended to identify more human factors like climatic
conditions, nationality/race, emotional status/quotient of the person, extent of
training/refresher training etc which influence measurement error. Type of
instruments and measurements can also be increased in number. The knowledge
acquired from the experimental analysis on human related measurement errors
and the instrument developed for estimating human errors can be utilized for
real time human error study in few other selected industries, so that it would be
possible to have a cross verification of the study and thus improve the results. It
would be interesting to study the possible improvement in measurement, when
the practitioners in industry, who make the measurement are given the feedback
(based on the study of experimental analysis on human measurement errors)
about the possibility of errors in the given work condition. Errors of
instruments in use and errors in practice can be studied by making a
comparative study of the measurement data obtained through the calibrated
standards and the actual calibrated instrument (instrument used by that

particular industry for measurement) in an industrial environment.

The reason and the extent of errors in various instruments can be studied
and simulated. For example, stacking error study in attenuator pads of signal
generator and its optimization would reduce calibration errors in signal
generator. The goal of system calibration is to quantify and compensate for the
total measurement error in the system. Manual calibration can be time-
consuming, costly and error prone due to human interventions. Automated

system can be developed and its effect can be studied. Techniques to reduce
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measurement errors can also be developed, for example a comparative study of
centralized approach of measurement and distributed measurement system can
be done, and an ideal method of measurement can be suggested. While this
study has brought out much new knowledge and insights, there is a need to
carry out multi-dimensional and time-series studies to create universal models

and precise prediction models.
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APPENDIX - |

SANWA - Analog multimeter

max. 1 000 V, max. 0.25 A | YX360TRF

Drop shock proof meter, Null (zero center) meter £5 / £25 in DCV, High resistance up to 200MQ
with low voltage

Protective body cover Capacitance, dB, Li measurement, Bandwidth : 30~100kHz (AC10V)

-205-



EZ Digital DM-333 Digital Multimeter

Features:

3 and 3/4 digit display, 3200 count, 0.5% basic accuracy on DC volts, Auto/manual range
select type
AC/DC volts/famps with analog bar graph, Resistance/Diode/Continuity check, Data hold,

Low battery indication/Auto power off, Overload protection/Safety rubber holster, Wrong
position protector in the 10A input terminal.

Range Resolution Accuracy

320mV 0.1mV o

oV - +(0.5%+2dgt)
DC Voltage 32V 10mV

320V 100mV +(1.0%+2dgt)

1000V v

32V ImV

32V 10mV .
AC Voltage 200V 100mV +(1.2%+4dgt)

750V v

320uA 0.1pA .

o 104 +(1.0%+2dgt)
DC Current 3200pA 1pA .

320mA 0.1mA +(2.0%+2dgt)

10A 10mA +(2.5%+5dgt)

320uA 0.1pA

3200uA 1pA

+(1.0%+2dgt

AC Current | 32mA 10pA (10%+2dgt)

320mA 0.1mA

10A 10mA +(2.5%+5dgt)

32002 0.1Q

3.2kQ 10 +(1.0%+2dgt)
Resistance 32kQ 10Q

32MQ 1kQ .

MO 10K +(35%+5dgt)
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Micro Controller 8951

- ; - PDIP
Pin Configurations
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P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INTO (external interrupt 0)
P3.3 INT1 (external interrupt 1)
P34 TO (timer 0 external input)
P3.5 T1 (timer 1 external input)
P3.6 WR (external data memory write strobe)
P3.7 RD (external data memory read strobe)
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Block Diagram
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12 bit Serial DAC AD5626

FEATURES AND BEMEFITS

8-lead MSOP and 8-lead LFCSP
packages

Complete, voltage output with
internal reference

1 mirhit with 4.085 % full scale
av single-supply operation

FUNCTIONAL BLOCK DIAGRAM FOR AD5626

Mo external components

required

I-wire serial interface, 20 MHz
data loading rate

Lowe pavwwer: 2.5 iy

] Vw'[

Vg
ADS626
[(OAC
DAC REGISTER 12-BIT DAC gﬂ:’;‘;‘;
LR
INPUT
REGISTER
CE SCLK SDIN GND
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Appendix - Il
Survey to analyze perception on Human Errors on Professionals
Name : ..oooiiiiiiii e, Designation : .........cccoeeueinininnnnn.e.

( Please tick [v'] the correct answer / fill in the blanks)

1. The ascending order of measurement error produced among the following display devices is:

a. Analog multimeter [ | b. Digital multimeter [ ] ¢. DSO[ ]

Write 1,2,3in the appropriate boxes to indicate the answer.

2. The ascending order of measurement error produced among the following mechanical devices is:

a. Analog Vernier Caliper [ ] b. Digital Caliper [ ]

Write 1,2,3in the appropriate boxes to indicate the answer.

3. The ascending order of measurement error produced depending upon the time of day is :
a.FN[],b. AN[ ], c. Night hours [ ]

Write 1,2,3in the appropriate boxes to indicate the answer.

4. The error produced in the measurementof ....... sized material is greater than ........ sized.

a. smaller, larger b. larger, smaller

5. Experience causes an error reduction in Analog measurements of about

a.0-5% b.6—-10% c. 11 -15%
6. Experience causes an error reduction in Digital Measurements of about
a.0-049% b.0.5-0.99% c.1-1.5%

7. Compare the Analog measurement error created by subjects with above average intelligent
quotient [IQ1] and average intelligent quotient [1Q2]
a. 1Q1 >1Q2 b.1Q2 > 1Q1 if so the range of difference in erroris ..............
a.0-2% b.2-4% c.4 -6%
8. Compare the Digital measurement error created by subjects with above average intelligent
quotient [IQ1] and average intelligent quotient [1Q2]
a. 1Q1>1Q2 b.1Q2 > 1Q1 if so the range of difference in erroris ..............
a.0-.99% b.1-1.99% c.2-2.99%
9. Compare the Analog measurement error created by subjects with above average intelligent
quotient [IQ1] and below average intelligent quotient [1Q3]
a. 1Q1 >1Q3 b. 1Q3 > 1Q1 if so the range of difference in erroris ..............
a.0-2.99% b.3-5.99% c.6 —9%
10. Compare the Digital measurement error created by subjects with above average intelligent
quotient [IQ1] and average intelligent quotient [1Q2]
a. 1Q1 >1Q2 b.1Q2 > 1Q1 if so the range of difference in erroris ..............
a.0-1% b.1.1-2% c21-3%
11. Whether the measurement error created by experienced technicians in the age group of 41 -
50 [ET2] is greater than the age group of 31 — 40 [ET1]

a.Yes b.No
12. The range of measurement error difference between ET1 and ET2
a.0-2% b.2.1-4% c.4.1-6%

13. The experienced technicians may make an Analog measurement error more in the afternoon
session than forenoon session in the range of
a. 0-2% b.2.1-4% c.41-6%
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14. The experienced technicians may make a digital measurement error more in the afternoon
session than forenoon session in the range of

a. 0-2% b.2.1-4% c.4.1-6%
15. Whether the measurement error produced by the inexperienced subjects in the afternoon
compared to forenoon is more than the same produced by the experienced technicians (Y/N )
........... , If so the percentage of error difference is .............

a.0-3.99% b.4-7.99% c.8-12%
16. The inexperienced subjects make an analog measurement error more in the afternoon than
forenoon in the range of

a.0-6.99% b.7-13.99% c.14 -21%
17. The inexperienced subjects make a digital measurement error more in the afternoon than
forenoon in the range of

a.0-3.99% b.4-7.99% c.8-12%
18. The mean percentage error produced by experienced technicians in analog measurement is
more compared to digital measurement by

a.0-3.99% b.4-7.99% c.8-12%
19. The mean percentage error produced by inexperienced subjects in analog measurement is
more compared to digital measurement by
a.0-6.99% b.7-13.99% c.14 -21%
20. Training shows an improvement in analog measurement error of about
a.0-6.99% b.7-13.99% c.14 -21%
21. Training shows an improvement in digital measurement error of about
a.0-3.99% b.4-7.99% c.8-12%
22. The performance of experienced technicians with below average IQ is comparable to
inexperienced with IQ level

a. above average b. average c. below average d. none of these
23. The performance of engineering students with Kerala State Entrance Rank 1 to 5000 in
measurements is comparable to inexperienced youngsters with IQ level

a. above average b. average c. below average d. none of these
24. The performance of engineering students with Kerala State Entrance Rank 5001 to 15000 in
measurements is comparable to inexperienced youngsters with IQ level

a. above average b. average c. below average d. none of these
25. The performance of engineering students with Kerala State Entrance Rank above 15000 in
measurements is comparable to inexperienced youngsters with IQ level

a. above average b. average c. below average d. none of these
26. Whether the measurement error produced by 1st year B. Tech. students is more than final year
B.Tech. students (Y/N)....... , if so what is the percentage ?

a.0-10% b. 11 -20% c.21-30%
27. Which among the following make more measurement errors

a.male b. female  c. no significant difference between male and female
28. If the subjects were not put under time pressure may cause an error reduction of about ........

a.0-10% b. 11-20% c.21-30%
29. Better environment causes an error reduction by

a.0-7% b. 8-15% c.16 -23%
30.A. Whether task difference will have any effect on measurement error ?

a. YES b. NO

b. If so, which type of task will create less error a. Simple b. Difficult
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