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Chapter I

INTRODUCTION

1.1. RELIABILITY MODELLING.

The term reliability of an equipment or device is

often meant to indicate the probability that it carries out

the functions expected of it adequately or without failure

and within specified performance limits at a given age for a

desired mission time when put to use under the designated

application and operating environmental stress. A broad

classification of the approaches employed in relation to

reliability studies can be made as probabilistic and
deterministic, where the main interest in the former is to

device tools and methods to identify the random mechanism

governing the failure process through a proper statistical

frame work, while the latter addresses the question of

finding the causes of failure and steps to reduce individual

failures thereby enhancing reliability. In the
probabilistic attitude to which the present study subscribes



to, the concept of life distribution, a mathematical
idealisation that describes the failure times, is
fundamental and a basic question a reliability analyst has

to settle is the form of the life distribution. It is for

no other reason that a major share of the literature on the

mathematical theory of reliability is focussed on methods of

arriving at reasonable models of failure times and in

showing the failure patterns that induce such models. The

application of the methodology of life time distributions is

not confined to the assesment of endurance of equipments and

systems only, but ranges over a wide variety of scientific

investigations where the word life time may not refer to the

length of life in the literal sense, but can be concieved in

its most general form as a non-negative random variable.

Thus the tools developed in connection with modelling life

time data have found applications in other areas of research

such as actuarial science, engineering, biomedical sciences,

economics, extreme value theory etc.

The probabilistic behaviour of a device or system

is generally expressed in terms of the failure density



f(x;9) defined on the positive real axis specifying the
instantaneous probability of failure at a given time x. A

failure model, then consists of specification of the
functional forms of f and the values of its parameters.

This choice of a functional form of f can be accomplished in

several ways. When theoretical investigations is of

interest one can arbitrarily choose a well known classical

density and derive results that are of relevance to the

analysis. Alternatively, a density can be derived from

known physical properties of the components or system by

appealing to the well known practices and methods in

mathematical modelling. Most of the distributions thus

derived often turn out to have classical forms as seen from

for eg. from Mann, Schafer and Singpurwalla (1974), Barlow

and Proschan (1975), Bain(1978) and Marta and Waller (1982).

Another alternative is to fit a density to the existing
data, a method that can work even when knowledge about the

physical condition under which the system is designed and

operated is not substantial. However, the fact that a
particular data passes a test of fit with respect to a



model, by itself cannot be accepted as evidence to argue

that the underlying failure mechanism is dictated by such a

law. This is due to the fact that for data generated from

life tests, the observations at the tails are sparse so that

in the case of moderately skewed data-more than one of the

competing models like gamma, inverse guassian, Weibull or

lognormal may produce a satisfactory fit. Even when there

is a good fitting distribution it is essential to search
among the possible generating mechanisms for the most

appropriate explanation of the failure process. In the
present study the view held is that one has to identify

notions that can adequately explain the failure pattern in a

practical situation and thereby characterize the
probability distribution exhibiting the hypothesised
behaviour. The emphasis on characterization theorems made

here is prompted by the fact that, they are the only methods

by which an exact identification of a distribution is
possible.

1.2 RELIABILITY ANALYSIS IN DISCRETE TIME

With the advancement of technology, the increase



of high cost sophisticated equipments demands method of

analysis that could ensure some sort of assurance regarding

the period of their failure — free operation over a pre

designated mission time. The conventional analysis
developed over the last three decades pertaining to
reliability, treats the random variable representing life

time as continuous. The consideration along these lines

requires equally sophisticated measuring devices to generate

accurate observations. Xekalaki (1983) points out this

problem and advocates the use of discrete distributions when

measurements lack the accuracy {figneedu to undergo analysis

in continuous time. Gupta and Gupta (1983), Lawless (1982)

Shaked et.al (1995) cite situations where discrete random

variables arise naturally in association with reliability

studies. Further the existence of very good approximations

for continuous distributions via discrete models renders the

evaluation of reliability from the discrete set up to the

continuous one, if needed. The overall gains resulting from

man power requirements and the use of less advanced

measuring devices, (for example, if the number of failures



are observed only in completed units of time such as at the

stroke of each hour or at a fixed time every day) on many

ocassions, outweigh the marginal increase in accuracy gained

otherwise from continuous measurements. Thus there is a

strong case for looking at reliability aspects in the
discrete time domain and therefore, a development of

concepts and methods when length of life is treated as

discrete random variable appears to be in the right place.

1.3 REVIEW OF RESULTS.

As already pointed out, with the exception of a

few results most of the research work in life time model,

make use of continuous distributions. We briefly look into

the state of the art in the discrete time domain. Among

widely circulated publications Cox (1972), Kalbfleisch and

Prentice (1980) and Lawless (1982) have provided the basic

formulations to the study of discrete life distributions.

If f(x) is the probability mass function of a discrete
non-negative random variable, X and



R(x) = P(XZx), x = 0,1,2... (1.1)
is the survival function of X, then the failure rate is
given by

h(x) = p(xéx | xzx) = f(x)/R(x). (1.2)
The failure rate h(x) determines the life distribution
uniquely through the formula

x-1R(x) = n [1-h(y)]. (1-3)
Y=0

Xekalaki (1983) has shown that if X is a random variable

taking values in the set { O,1,2,...,m}, me[0,1,...]U[+m]

then h(x) = (a+bx)-1, iff X has geometric distribution for

b=0, Waring distribution for b>0 and negative hyporgeometric

distribution for b<O. With the help of the slope to mean

ordinate ratio, he has derived the beta and Pareto type II

models as continuous approximations to the negative

hypergeometric and Waring models. The mean residual life of

X.

r(x) E [X-x|x>x] (1.4)
on

E R(y)
y=x+1

[n(x+1>1”1



is another concept that can explain the pattern of failure,

which can be used either independently or in combination

with the failure rate. In terms of the mean residual
life

x-1 -1 -1am = n 5—‘“—l-— [1-f(0)] (1.5)“:1 r(u)

where f(0) is determined such that x f(x) = 1. (Nair and

Hitha, 1989). Further,

r(x) - 1E??? , X=0,1,2,...1-h(x+1) =

Hair (1983) has used the function r(x) to define the notion

of memory of life distributions and also to clarify them as

possessing no memory, negative memory and positive memory.

Salvia and Bollinger (1982) besides obtaining (1.3) proved

that for increasing failure rate distributions

k -hox
E (x) S (1-ho)/ho and R(x) S (1-ho) 5 e

where ho = h(o)
and f(x) defines a proper probability mass function if and

m

only if 2 h(j) diverges to +m. They also demonstrate some
I=0

limiting behaviour through the equations



-1 -1(R-1) , f=R and h = (r+1)'1 II

where

'1 ll lim r(x), h = lim h(x), f=lim(f(x)/f(x+1))

and R = lim [ R(x)/R(x+1) ]. The classification of discrete

life distribution through virtual age, virtual hazard rate,

mean remaining life etc were studied by Abouammoh (1990) and

Roy and Gupta (1992). Studies in the same direction are

available in Ebrahami (1986) who discusses the class of

discrete decreasing and increasing mean residual life
functions.

The increasing or decreasing nature of failure

rates can be subsumed into the concept of bathtub-shaped

rates in which the failure rate at first increases
(decreases) then remain constant and there upon starts

decreasing (increasing). The papers by Guess and Park

(1988) and M1 (1993) discuss the properties of the class of

discrete life distributions with bathtub-shaped failure
rates. Characterization of geometric distribution and
discrete IFR(DFR)distributions using order statistics are



10

estalbished in Neweichi and Govindarajulu (1979), while the

relation

m(x) = p+ (a0+ alx + azxz) h(x+1)

a ,a being real constants, p = E(x) and m(x) = E(X|X>x),0 1
is shown in Nair and Sankaran (1991) to characterize the 0rd

'32

family

f(x+1) - f(x) = - (x+d) f(x)/(b0+ b1x+ b2x2)
where

d=(a1 - 32' H)/(2a2+1)
and

bi = ai /(2a2+1), i=0,1,2.

The last result is a generalisation of a characterization of

the negative binomial distribution proved in Osaki and Li

(1988).

The probability mass function of a random variable

»Y with

P >= I Y=OI1I2"'
is called the distribution based on partial sums of X or the
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renewal distribution corresponding to X. Gupta (1979) has

shown that the failure rate of Y is the reciprocal of the
mean residual life function of X and further obtained

characterization of the geometric destrubution. Continuing

the work along these lines Nair and Hitha (1989) obtained

mutual characterizations of the distributions of X and Y

also that linear mean residual life (reciprocal linear
failure rate) characterizes the geometric (Waring, negative

hypergeometric) distribution when the slope is zero (greater

than zero, less than zero). some other ageing concepts used

in replacement problems such as NBU, NBUE etc are discussed

in Hitha (1991), Klefsjo (1981), Sankaran (1992) which are

not included here as they are not relevant to the present

study. An interesting feature of the extension of the
failure rate concept into higher dimensions is that there is

no unique way by which this can be done.

Nair and Nair (1988) considered the two
dimensional case by defining the mean residual life function

of the random Vector (x1,x2) in the support of
*={(x1,x2)|x1,x =0,1,2"J asI2 2
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5(x1. x2) = (r1(x1,x2)r2(xl'x2))
where,

ri(x1,x2) = E [Xi-xil xlkxl, X2Zx2] (1.7)

and proved that r(x1, x2) = (C1,C2), with Ci as constants

independent of xland X2 if and only if Xland K2 are
independent and geometrically distributed. Such models
being of no practical utility in dealing with two-component

system in which the component life times have association,

they looked at models with the property

5(x1. x2) = (a1(x2), a2(x1)) (1-8)
(i.e, mean residual lives of the components are locally

constant and characterized the bivariate geometric
distributin with survival function

x x x x1 2 1 2> > :P (X1_x1,x2_x2) P1 P2 6 (1.9)
0 < Pl,P2 < 1 , 05651 , 1-6 5 (1-p19)(1-P26).

The distribution (1.9) turns out to be the discrete analogue

of the bivariate exponential of Gumbel (1960). An identity
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that permits the conversion of the exponential probabilities

into geometric (1.9) and vice-versa was also derived in Hair

(1993). In an ehgigg1~ paper Nair and Nair (1990)
introduced a formal definition of a vector valued bivariate

failure rate as

2 (x1.x2) = (b1(x1,x2). b2(x1.x2))

where

P(Xi=xi , xjzxj)
bi(X1,X2) = § , 1,] = 1,2,‘ 131], (1.10)

and used the identity

r (t .t )., (t ,. , . 1- _1;;_1 1 2 1+r (t1+1,t2)

to prove that the (1.9) is the only bivariate geometric

distribution with failure rate (1.10), whichhas the form

(C1(x2),C2(x1)). Along with this the following are also
established in Nair (1990).

(i) A necessary and sufficient condition for the local lack

of memory property

P [Xi>xi+s X12x1,X2Zx2] = P[Xi>s | Xjzxj] (1.11)
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to hold for all non - negative integers x1,x2 and s is that

(x1,x2) has distribution (1.9).

(“)1 xlzxl, X22x2 3 = E [(xi)(k)| xjzxj](11) E [(xi-xi)

where, t(k) = t(t-1)....(t-k+1), holds if and only

if the distribution is (1.9).

(iii) The vector, b(x1,x2) of (1.10) determines the
distribution of (X1,X2) in the support of I; uniquely
through the formula

2
x x

P [x12x X Zx ] = E [ 1-b1(x1-r,x2) IE1 [ 1-b2(0,x2-r)]1' 2 2 r
The last result is very general as it is the key to
substantiate characterization of any bivariate distribution,

given the functional form of the failure rate. All these

results have been re-obtained by Roy (1993) also. We notice

that the definition (1.10) expressed in vector form treats

the two components separately. It is sometimes desirable to

have a single quantity (scalar) that represents the failure

rate, as provided for by Puri and Rubin (1974) (see also

Puri (1973)). They define a multi variate failure rate as
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a(x X X ) _ P(x1;x1, x2=x2, ...xn=x ) (1 12)1' 2"' n - P(X1>x,1X2>x2, ...Xn>xn '

and demonstrate that the only distributions of (x1,x2,..xn)

where each xi is non-negative integer valued, for which

a(x ,x , ...xn) = fl.;1 constant are mixtures of geometric1 2
distribution given by

n
1

.X - xn) - 3 ... I Q Pi H (dp1,...dpn),

where the probability measure H is concentrated on the set
P.

B={h(1_; )=fi, 0<pi<1, i-1,2,...n}. Other than providingi

this characterization, the paper does not throw any light on

the properties of a(xl,x ...xn) or its role in reliability2!

modelling. It appears that the denominator of (1.12) should

be modified to P (X1 2 x X 2 xn) to give a proper1,..., n
physical meaning to (1.12) as a rate and such a modified

version of (1.12) is discussed in the following Chapter.

A third alternative definition of a failure rate

is suggested in Kotz and Johnson (1991), who view it again

as a vector
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9(x1.x2) = (Cl(x1.x2) . C2(x1,x2))
where

P X.= ., X.= .( 1 X1 J X3)
P(X.Z x., X.=x.) '1 1 J JCi(x1,x2) = i,j=1,2; i#j. (1.13)

No formal discussion of this rate vis-a-vis its ability to

model discrete life times is made in their paper.

A comprehensive treatment of failure rates in the

multivariate setting is attempted in a recent work by Shaked

et. al (1995). If (X ,X2) is a random vector in N: where1

N+={1,2,...}, they define the bivariate conditional hazard

rate functions of (X ,X2) as1

A1(x) = P(X1=x, X Zxl X Zx, X Zx), x e N+2 1 2
k2(x) = P(X2=x, X Zxl X 23, X Zn)1 1 2

= : : > >A12(x) P(X1 x, X2 xl X _x, X2_x)1

2> :_x, X x2), x > x , (x,x2) e N+X1(x|x2) = P(X1=x,| X1 2 2
2: : >P(X1 x,| X1 x, X2_x), x > xl, (x1,x ) e N+K1(x|x1)

provided, the condition in the above conditional
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probabilities have positive probabilities. These rates

determine the distribution of (x1,x2) uniquely. Their paper
providesnecessary and sufficient conditions for the A's to

be the hazard rate of some discrete random vector (x1,x2),
along with applications of the rates to imperfect repair

modelling. The system of definitions generated through

the above five functions have all the desiderata for

evolving a good model as they characterize the model through

reasonable physical interpretation of the component life

times. However, one should not fail to notice that the

assessment of the reliability of the system is facilitated

through the behavior of five quantities which is a little

too much demanding. The definitions already given in terms

of vectors have lesser number of components and they could

be advantageous from the application point of view, once

their desirable properties are investigated and shown to

have requisites comparable to those of Shaked et.al (1995).

The review and discussion of the work available in

literature on modelling multivariate life time data in
discrete time, reveal that the work in this direction is
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still in the formative stages. Though various definitions

have been proposed in different contexts, a systematic study

of them have been lacking and therefore, for reasons

mentioned at the beginning of this section an attempt along

these lines is called for. The motivation towards
undertaking a discussion of the discrete case also arrives

from the wide acceptance received for the research in the

continuous case from scientists in different fields of

activity. Accordingly in the present thesis, our objective

is to introduce and examine the basic concepts and provide

the necessary theorems that enable a reasonable preliminary

theoretical setting for modelling multivariate discrete life

time data. The problems considered in this connection with

a summary of the main results are presented in the next
section.

1.4. ORGANISATION OF THE PRESENT STUDY.

The present work is organised into six chapters.

In chapter II, the bivariate scalar failure rate (1.12) with

the modification suggested in the discussion that followed
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the definition, is studied. It is shown that this rate, in

general, does not determine the life time distribution

uniquely. However the knowledge of the scalar rate
together with one of the marginal failure rates (or
equivalently one of the marginal distributions) is a
necessary and sufficient condition to arrive at a unique

survival function. Through examples we indicate the forms

of scalar rates that characterize bivariate geometric,

Waring and negative hypergeometric distributions.
Characterization of bivariate models that have independent

geometric marginals, bivariate geometric law and the

relationship the scalar rate has with the mean residual life

and bivariate lack of memory property are also proved.

The vector failure rates of Nair and Nair (1990)

and Kotz and Johnson (1991) form the subject matter in

Chapter III. The identities connecting the former with the

scalar rate and mean residual life are considered. Among

the various properties studied in this chapter, include the

result that there exist no bivariate model with dependency

among the constituent variables, which has a constant
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failure rate vector. Conditions on the rate and the mean

residual life that guarantee equivalence with the lack of

memory property are explored. Since constant failure rate

must imply independent geometric marginals, to generate a

meaningful law that ensures dependent life times for the

components, this condition is relaxed to one possessing

piece-wise constant rates. The geometric distribution

characterized by this form is identified. The second vector

rate discussed here is that in (1.13), referred to in the

current study as the conditional failure rate. A new mean

residual life that is in conformity with this rate is
introduced and their inter-relationship is derived. One

fundamental question that is examined with reference to any

definition of failure rate, is whether it can pave way for

the unique evaluation of the corresponding distribution. We

examine the conditions under which the answer to this

question is in the affirmative. This is followed by three

characterization theorems and a discussion of the
inter-relationship between the three types of rates already

under discussion.
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A standard problem in reliability modelling is the

demarcation of distributions based on the monotone behaviour

of failure rates, thereby giving rise to what are generally

called increasing or decreasing failure rate distributions.

In Chapter IV the vector failure rate and conditional

failure rates that guarantee one-one correspondence between

them and the corresponding life time distributions, are
considered for this classification. Unlike in the
univariate case, several modes of criteria exist that can

lead to an increasing (decreasing) failure rate.
Accordingly various criteria are introduced and the boundary

classes in each case is identified along with the chain of

implications existing between the different classes.

It is observed that geometric distributions that

exhibit constant, piece-wise constant and locally constant

failure rates have the property that they are both
increasing and decreasing. A bivariate geometric
distribution that serves as the discrete analogue of the

Marshall - Olkin (1967) distribution is studied in Chapter

V. After discussing the standard properties of the model,
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we establish some characterizations, and methods of

estimating its parameters.

In view of the simplicity of analysis bivariate

notions have been the objects of study in chapter II to IV.

The thesis is concluded in Chapter VI by pointing out
definitions and theorems in the general multivariate

setup.



Chapter II

SCALAR FAILURE RATE

2.1 INTRODUCTION

The discussions initiated in section 1.3 pointed

out that there is no unique generalization of the univariate

concept of failure rate into higher dimensions and as such

an extension can be accomplished on the basis of different

considerations on the manner in which the failure mechanism

is perceived. In the present chapter we look at the joint

behaviour of the component life times as our starting point

and define bivariate failure rate as a scalar quantity,
which is analogous to Basu's (1971) definition in the
continuous case.

Let L = (Xl,X2) be a discrete random vector
representing failure times of a two-component system in the

support of I; = [(xl,x2)| x1,x2=0,l,2,...] with joint
survival function
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and probability mass function

f(§) = P(z=g)

where g=(x ,x2) and 523 means Xjixj, j=l,2.1

Associated with X, we define the marginal survival function

of Xj with support I: = {x|x=0,l,2,...}
R. . = R ,,o = P x_z . , '=1,2J(xj) (xj ) [ 3 X3] 3

and the corresponding mass functions by

f. , = P X.= . = R. . - R, .+l .J(xJ) [ 3 X3] J(xJ) J(xJ )

Then from (1.2), the failure marginal rate of Xj is

hj(xj) = fj(xj)/Rj(xj), j=l,2.

2.2. SCALAR FAILURE RATE

Definition 2.1

The scalar failure rate is defined at those points

for which R(x)>O, by

a(3)=f(x)/R(§) (2-1)
R(x1,x2)-R(xl+l,x2)-R(xl,x2+l)+R(xl+l,x2+1)

R(xl,x2)
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Rewriting (2.1) as

a(§) = P[X =x , X2=x2|Xl2x
>1 1 ’x2’x2]’1

it is apparent that 0<a(g)Sl at all points in the support of

3 with the equality a(g) = l holding good only if (Xl,X2)
has a finite support. Further the last representation says

that for a two component system which has survived the time

point (x ,x2), the scalar failure rate provides thel

probability that the system fails at the time point (xl,x2).

One of the important objectives in introducing the

notion of failure rate is to examine the possibility of

identifying the failure time distribution or equivalently to

explore means for assessing the reliability of the system,

once a realistic judgement of the behaviour of the failure

rate function is made out of physical characteristics
governing the system. In other words, the first question to

be settled is, given the functional form of the failure rate

would it be possible to determine the distribution of 3

uniquely? The following example shows that the answer is

not in the affirmative.
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Example 2.1.

Consider the survival functions

X1 X2 +
p (1-p) ; 0<p<1. 3 6 I2R(£)

and x x x x
1

(1/2)[-p l(l-p) 2 + (1-p) (p) 2 ]: 0<p<l. 561$G(r)

with the corresponding probability mass functions

xl+1 x2+1p (l-p) ; 0<p<1, 1 E If(r)

and X X X X
(p/2><1—p> [ p 1(1-p> 2 + <1—p> 1 p 2 J;

Q I'\ M \/
II

+

0<p<1, 3 6 I2
respectively. From (2.1) it is seen that both have the

same scalar failure rate, a(g) = p(l-p). This naturally
leads one to probe into the additional requirements that are

needed to ensure the unique determination of R(§). This is

settled in the following Theorem.

Theorem 2.1

One of the marginal failure rates,
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h. . = P x.= . x,2 , , '=1,2J(xJ) ( J XJI 3 X3) 3

(or equivalently a marginal distribution) along with a(g)

determine R(g) uniquely.

Proof:

We first derive a recurrence relation connecting

the failure rates and the survival function. Using (1.3)

first we have,

x -1 x2-1
R(xl,0) = n0[(l-hl(y)], R(0,x2) = n0[(l-h2(y)]y= y=

From definition 2.1,

f(1<.) = a(1<_)R(.x): .3 e 1;’.

when x2 = 0,

f(x1.0) = a(xl,0)R(xl,0),

xl-l
= a(x ,0) n [(1-h (Y)]1 Y=0 1

Thus f(xl,0) is determined.

Further, when x2 = 1
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R(xl,l) = R(xl,0) - P[Xl2xl, X2=0],

m:  ‘t §xl 1

= R(x1,0) - E R(tl,0)a(t1,0).
t1=xl

Making use of this specified value of R(x1,l) and proceeding

along the same lines for x2=2,3,4..., we arrive at the
recurrence relation

m

R(3) = R(xl,x2-1) - ; R(tl,x2-l)a(tl,x2-1). (2.2)

When the iteration is carried over xl, another equivalent
form is obtained as,

-l,t2)a(xl-l,t2). (2.3)
m

R(§) = R(xl-1,x2) - £ R(xlt =x2 2

The equation in (2.2), when used iteratively starting with

x2=l along with (1.3) establishes our assertion. If h2(x2)
is given then the result is established using equation (2.3)

and iterating on xl starting with xl=l. D
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Example 2.2.

If a discrete random vector X has scalar faiure rate of form

x +1 x +1
a<1> = [<1—p1e 2 ><1—p2e 1 >+e—1]6'

1

and the marginal failure rate of X is (1-pl), 0<p1<1 then,1

x +1 1 x1
t<x1,o) = [<1-p1e><1-pze 1 )+9—1]e' pl

From (2.2)

X CO
n<x ,1) = p 1 — 2 [<1—p e>(1-p e1*1>+e—1]e'1p1,1 1 1 2 1t=x

1X CO CO (I)1 -1 t t 1 t= p - (1-p 9)9 E p - E P 6(9p ) -(l- -) E p .1 1 t:x 1 t=x 2 1 6 t=x 11 1 1X X X1 1 111 P1 P29(6P1) 1 P1
= p — [<1—p e)/9J[ _ — _ ] — (1- —> _l 1 1 pl 1 p19 6 1 pl

X X1 1
- pl P29

Thus if,
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R(x1,x2-l) = p

we must have

R(x X ) _ xl x2-1 9xl(x2-l) _ i g t x2-1 et(x2-1)1’ 2 P1 P2 6 P1 P2t=x
1

X2 t+1
[(1'P19 )(l-1329 )-(1-9)].

_ xl x2-lax (x -1) _ [(l— 9x2)£ x2—1 m t 9t(x2-1)]’ P1 P2 P1 9 P2 2 P1t=x l

x x m t(x -1)
+ (l-p 9 )p 2 Qt pt 9 21 2 t=K 1'1

t(x -1). 1 *2 m 2
+(l-t3)§ p2 t); pl 9_xl

_ x1 x -l6xl(x2—l) - x -1 e(x2-1) x1 + x1 x2 exlxz" P1 P2 P2 P1 P1 P2
_ X1 “2 6”1“2P1 P2

Then by induction on X2 the form of the survival function of
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X2

5 is as in equation (1.9). Since R(0,x2)=p2 ; it follows

that 0<p2<l and from 0SR(g)S1 one must have 95951. Also
appealing to the probability mass function where f(0,0) Z 0,

x +1 x +1
[(1-p16 2 )(l-p29 1 )+6—1] Z 0, for all 561:,

it follows that

(l-pl6)(1-p26)+9-l]Z0
OI"

(1—ple)(1—p2e);1—e.

This is the bivariate geometric distribution of Nair and

Nair (1988) and we have thus established a characterization

of that model in terms of (a(g),hl(xl))

Example 2.3.

Let 3 have a scalar failure rate of the form

a(§) = n(n+1) , m,n>0, gel;(m+n+x1+x2+1)(m+n+xl+x2)

and a marginal failure rate

I1

h1"‘1) ‘ @171)
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Then for x2=0 equation (2.2) can be written as

R 1 _ 1_ n _ w t_1 l_ n n(n+1)
(x1’ )_yE0 m+n+y t§X YU0[ m+n+y (m+n+t+1)(m+n+t) 'l

(m)

_ xl _ w (m)t n(n+1)
' (m+n) t? (m+n)t (m+n+t+l)(m+n+t) ’xl -xl

(m)

_ X1 _ m (m)t _ 2(m+t) +(m+t)(m+t+1)
-(m+n)x t§x (m+n)t (m+n+t) (m+n+t)(m+n+t+1) ’1 1

(m)

_ xl - m (m)t 2 w (m)t+l — w (m)t+2
— (m+n)xl t§xl(m+n)t §x1(m+n)t+1 t§x1(m+n)t+2 I

(m) +1' , m,n>0,
(m+n)xl+1

where (a)x = a (a+l)....(a+x-1). Now if we can write

(m)x +x -11 2
R(“1'“2'1)= (m+n) '

xl+x2-1

then from (2.2)
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(m) (m)
R(x X )= xl+x2-1 - E t+x2-1 _ 2(m+t+x2-1)1' 2 (m+n) (m+n) (m+n+t+x -1)x +x -1 t=x t+x -1 2l 2 1 2

(m+x2+t-1)(m+x2+t)

(m+n+x2+t-l)(m+n+x2+t)

(m)xl+x -1 m (m)t+x -1 w (m)t+x2- — )3 + 2 2
(m+“)x1+x2—1 t=xl(m+n)t+x2-1 t=xl(m+n)t+

m (m)t+x +12 2
t=xl(m+n)t+x2+l

(m)x +x
= ————l——E— ' m n>O xeI+(m+n) I I I _ 2x +x

Then by induction the survival function of 3 has the
expression given in the last equation. The marginal
distributions are Waring and therefore, 3 has a bivariate

Waring distribution.

Example 2.4

Suppose that 3 has scalar failure rate
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k(k-1) k,n>O, x +x Sn,x2)(m+n-xl x2—l) 1 2
— o

Ia(x) —
— (k+n-xl

.,n

and a marginal failure rate

k

- , k,n>O, X -0,l,2,....
The marginal survival function of X1 is

1 k
= n [l- k+n_Y] I

k+n-xl k+n
[ ]/[ ], k,n>O, x =0,l,2,...,n.n-xl n 1

Then from (2.2),

k+n-tk+n-xl w
R(xl'l)= [ n-x ] _ E [ n-t ]1 t=x

1

m k+n-t-1 m k+n-t-2 k+n
+ 2 E [ n-t-1 ] E [ n-t-2 ] /[ n ]'t-xl t— 1
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Arguing as in the last two examples, with

k+n-x -x -11 2 k+n
R(x1'x2-1) - [ n—x1-x2-1 ]/[ n ]

and equation (2.2)

k+n-t-X2-2]
k+n-t-X2-1 + 2] [mm -2

— k+n-t-x2-3 / k+nn-t-x2-3 n '

k+"'”1'x2 k+n= / ; k,n>O,x +x Sn, x ,x =O,l,2,...n,n-x -x n 1 2 1 2l 2
The modelwhich is by induction the survival function of X.

specified by this survival function has a bivariate negative

hypergeometric form.

2.3. BIVARIATE MEAN RESIDUAL LIFE FUNCTION.

the failure rate, theAs an alternative to
bivariate mean residual life function defined as
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r(5) =(rl(§),r2(2r_))
where

rj(g) = Etxj-xj|z>;1, j=1,2. (2.4)
can also be used for modelling failure time data and

understanding the failure mechanism. Like the failure rate

function the bivariate mean residual life also determines

the distribution of failure times uniquely. The essential
differences between the two are

a) The former accounts only for the immediate future in

b)

done independently without access to the failure rate,

assessing the failure of the component whereas the latter

incorporates the failure pattern for the entire duration

after time t.

If the components progressively wear out the mean

residual life will be a decreasing function of time while

failure rate will be increasing in time. However,
decreasing mean residual life does not imply increasing

failure rate.

Although the analysis of mean residual life can be

there
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exist an identity connecting these two which permits the

study of the former once the behaviour of the failure rate

is known without having to calculate the mean residual life

separately. The relevant result is given in the following
Theorem.

Theorem 2.2.

For all §eI+ ,
2

r1(3)-1 r2(g)-1
l-a(x +1,x +1) = ——————————— + ———————————1 2 , ,rl(xl+1 x2) r2(x1 x2+1)

[r2(xl+l.x2)-l][rl(g)-1]
+ r (x +1 x +1) r (x +1 x )' (2'5)2 1 ' 2 1 l ' 2

Proof:

From (2.4) ,

w m
R(xl+l,x2+l)r1(g) = E E (t-xl)P[Xl=tl,X2=t2],x +1 x +11 2

m

= E (t-x )P[X =t,X >x ],t:x +1 1 1 2 2
1

m

= Z R(t,x2+l) (2.6)t=x +1
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r1(g)-1 _ R(xl+2,x2+l) (2 7)r1(xl+1,x2) — R(xl+l,x2+l) '
Similarly,

r2(g)-1 _ R(xl+l,x2+2) (2 8)r2(xl,x2+l) _ R(xl+l,x2+l) °
so that

r2(xl+l,x2)-1 - R(xl+2,x2+2) (2 9)r2(xl+l,x2+l) R(xl+2,x2+l) '

Equation (2.7) and (2.9) leads to

R(x1+2,x2+2) _ [r2(xl+l,x2)-l][rl(3)-1] (2 lo)
R(x1+l,x2+l) _ r2(xl+l,x2+1) rl(xl+1,x2) '

Now,

1_a(x +1 X +1) : [R(xl+2,x2+1)+R(x1+l,x2+2)-R(x1+2,x2+2)]1 ’ 2 R(x +l,x +1)1 2
(2.11)

Using (2.7),(2.8),(2.9) and (2.10), to substitute for the

ratio of R(.,.)'s we get (2.5). D
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2.4. CHARACTERIZATIONS USING SCALAR FAILURE RATE. (Asha and

Nair, 1994a)

In partial modification of the earlier assertion

in Theorem 2.1 giving the condition for the unique
determination of the survival function, in this section an

alternate set of requirements that enable characterizations

of models using the scalar failure ratechm explored.

A reasonable requirement for a bivariate
definition is that when the component variables are
independent, there should be a meaningful interpretation of

the bivariate concepts in terms of the established
univariate concepts. We now show that this is indeed the

case with the definition of scalar failure rate.

Theorem 2.3

The random variables X1 and X2 are independent if
and only if

a(r) = h1(xl)h2(x2)
Proof:

If X1 and X2 are independent, then from definition
(2.1)
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a(£)= f1(x1)f2(x2)/Rl(x1)R2(x2)

= hl(x1) h2(x2).

To prove the converse, we use the method of induction, by

first noting that from (2.2) we can see that the result

holds for x2=l. Let the result be true for x2.
(0

R(xl,x2+l) R(1) - E R(tl,x2)a(t1.x2),

R(g) - £ R(tl,0)h1(tl)R(0,x2)h2(t2)
t1:”1

R(xl,0)R(0,x2) - f2(x2) E f1(tl)

R(x1,0)[R(0.x2) - f2(x2)]

= R(xl,0)R(0,x2+l).

The last equation along with the induction argument

establishes that X1 and X2 are independent.

As has been pointed out already, assessment of the

functional form of scalar failure rate based on failure time
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data or physical conditions of the system is the starting

point in reliability modelling. However as the practice in

most mathematical modelling problems, certain standard forms

of scalar failure rate are worth consideration for
preservation and use in situations where the actual
behaviour coincides with the hypothesised models. Further

such investigations can also lead to forms of scalar failure

rate that characterize some well known bivariate
distributions whose properties are readily available. When

the simplicity of the final model is looked upon as
desirable criterion, it becomes apparent that the scalar

failure rate has to be assigned simple mathematical
structures that render ease in computation of the survival

function and other reliability characteristics. Accordingly

in the next few theorems we discuss the situations where the

scalar failure rate meets such requirements. The choice of

such forms are also motivated from the desire to develop

bivariate models that serve as extensions to the univariate

laws derived under similar conditions.
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Theorem 2.4

The functional forms a(g)=c, and hl(x1)=hl,

0<c<h1<l, where c and hl are constants for all gelg, if and

only if X1 and X2 are independent geometric variables with
1

parameters hl and chl respectively.
Proof:

When X1 and X2 are independent geometric random
variables with the given parameters

X X2
R<g>=<1—h1> 1 (1-ch;1> ; gel;

with
x1 _ +

Rl(xl) - (l—hl) , x ell

and x x
{(5): h1(1—hl) 1 chil (1-chil)

Thus a(g)=c and h1(xl)=hl. Conversely from (2.2),
w

R(g)=R(x1,x2-l) - c t ;x R(tl,x2—l).1"1

when x =1,
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m

R(x1,1) = R(x1,0) - c t ;x R(tl,0),1 1
xl-1 m tl—1= — - -h t ,
t|;|0 [1 h1(t)1 c tlgxl t[;|0 [1 1( )1x m t

1= [1—h 1 1 — c 2 [1-h 1 ,1 t _x 11' 1x x1 -1 1
- [1-hl] - chl [1-hl] ,

x1 -1
— [1-hl] [1-chl ].

Thus if for some integer x2-1,x x -11 -1 2
R(x1,x2 1) — [1 hl] [1-chl ] ,

then x x -1 w x -1-1 212(1): [1-h 1 1 [1-ch 1 2 - c ;; [1-h ]t [1—ch 1 ,1 1 1 1t=x
1x -1 x x-1 1 1

- [1-chl ] {(1-hl) - [c(l-hl) /hll},
x -1 x-1 1 -1

= [1-chl ] (1-hl) [1-chl ],
X

[1—ch;l1 2<1—h1) ,X1 xeI+‘ 2
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The conclusion follows by induction. D
Note.

That a(g)=c alone does not guarantee neither

independence nor geometric marginals is seen from the second

survival function in Example 2.1. Since the above model

does not work with systems in which the component life times

are dependent, we relax the condition on scalar failure rate

by requiring it to be piece—wise constant in the partitions

of the sample space defined by xl<x2, xl>x2 and xl=x2.

Theorem 2.5.

The scalar failure rate is of the form

cl xl>x2
a(g) = c2 x1<x2 (2.12)

c3 x1=x?,

where ci's are constants such that O<ci<l, i=l,2,3 and that

marginal failure rate hj(xj) is (1-pj) 0<pj<l, j=l,2 if and
only if the random vector x has the bivariate geometric law

with survival function.
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l+p p1+p2 0<p< pJ< 32 , S , 1, '=l,2,
where p=p1+p2-c3-1.
Proof:

(2.13)

when the distribution of K is specified by (2.13),

the probability mass function of 5 is obtained as

f(§) = R(§)-R(x1+1.x2)-R(xl,x

-1 X
(pl-p)(1-pl)p1 p

X

=4(p2-p)(1-p2)p2l p 1
X

(l+p-pl-p2)p
L

l+p? p1+p

Thus

< — )<1— flpl p pl plf(£) _1
a(1)= §T;) = (p2-p)(l-p2)p2

(l+p-pl-p2)

+1)-R(xl+l,x2+l)

0<pEpj<l, j=l,2.

2

x <x2

x1=x2

(2.14)
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Also the marginal distributions of (2.13) are obtained as

x

R(xl,0) = pll) 0<p1<l, xleli)
and

X
2

R(0,x2) =p2 ) 0<p2<1, xzel:

so that h, x.) = 1-p, , ' = 1,2.J( J J 3
Conversely, suppose that (2.12) holds. Then from (2.1) for

i=l,2,3

ci=[R(g)-R(x1,x2+l)-R(xl+l,x2)+R(xl+l,x2+1)][R(g)]_1 (2.15)

according as x1>x2,xl<x2 and xl=x2 respectively.

Consider the equation in the first region xl>x2. When x2=0,

clR(x1,0) = [R(x1,0)-R(xl,1)-R(xl+1,0)+R(xl+l,1)].

By the assumption of constancy of the marginal failure rates

the marginal distributions are geometric so thatx1 x
R(x1,0)=p1 and R(O,x2)=p2

Thus,

*1
R(x1,l)-R(xl+1,l) = pl [1-pl-cl].
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Summing over xl provides,
X

1

1

R(xl,1) = p [l-p -clJ[1-pl)" , x =1,2,... . (2.16)1

For x2=1

clR(xl,l) = [R(xl,1)-R(x1,2)-R(xl+l,l)+R(xl+1,2)]

xl=2,3,...

Substituting for R(xl,l) from equation (2.16),
X1 2 -1

R(x1,2)-R(x1+1,2) = pl (l—pl-cl) (1-pl)

and summation over xl provides
X

R(x1,2) = p11(1—p 2.1-c])2(l-pl)

Iterating for x2=3,4,...,xl-1 we obtainX X ‘X
R(x) = p11<1—p1—c1> 2 <1-pl) 2. (2.17)

Next observe that by putting xl=0 in (2.15)

c2 R(0,x2)=[R(0,x2)-R(0,x2+l)-R(1,x2)+R(1,x2+l)]. x2=l,2,...
(2.18)

Proceeding as above, by the assumption of geometric

marginals we get
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X

R(l,x2)-R(l,x2+1) = p22 (1-p2-C2).

Now summation over x2 provides,*2 -1
R(l,x2) = p2 (1-p2-c2)(1-p2) , x2=l,2,... (2.19)

and subsequently as continuation of the same process of

computation,

x2 x1 -x
R(§) = p2 (1-p2—c2) (1-p2) , x =0,l,2,...,x -1. (2.20)

Whenever x =x , we observe that for x =x =01 2 1 2
R(l,l) = pl+p2+c3-1 = p.

Specialising for xl=x2=x=1,2,3... it is seen that

R(x,x) = pi XEII
Also (2.16) and (2.19) reveal that

p = R(l,l) = [p +p +c -1] = pl(l-p1 2 3 —cl>/<1—p1> ,1

= p2(l~p2-c2)/(l-p2)- (2-21)

Using (2.21), the form of the bivariate geometric law (2.13)

is recovered and the proof of the theorem is completed.
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The lack of memory property of distributions, the

constancy of the failure rate and the constancy of the mean

residual life are well known characteristic properties of

the geometric distribution, among the class of distributions

in the support of the set of non-negative integers. Though

the results concerning each was established independently,

Galambos and Kotz (1978) points out the equivalence of these

properties in the continuous univariate case. In view of the

possibility of alternative definitions of failure rates in

higher dimensions it is of interest to examine the
implications of definition of failure rate to a meaningful

definition of bivariate lack of memory property. Therefore,

we propose one form of definition of bivariate lack of

memory property and examine its relationship with the

constancy of the failure rate being currently discussed.

2.5. BIVARIATE LACK OF MEMORY PROPERTY

Definition 2.2

A random vector X is said to possess the bivariate

lack of memory property if it satisfies the equation



50

R(x+:) = R(§)R(t), for all g,L=(t,t):xeI;,téI:
or

P[X12x1+t,X2Ex2+t|X2x] = P(X12t,X2Zt) for all

t-(t t)° eI+ teI+3.I_" I I_¥ 2: 1
Theorem 2.6

If g is a discrete random vector in the support of

1:, with geometric marginals, then 3 possesses the bivariate
lack of memory property if and only if X is distributed as

the bivariate geometric law (2.13).

Proof:

When bivariate lack of memory property is
satisfied the equation

R(xl+t,x2+t) = R(g)R(t) (2.22)
holds for all gel; and t=(t,t),teI:.
The unique solution to (2.22) subject to conditions of

geometric marginals for g are obtained first by setting

xl=x2=x and R(x,x)=G(x) for all x in I:
Then (2.22) becomes the Cauchy functional equation

in (2.22).



51

G(x+t) = G(x)G(t), x,teI

whose only solution that satisfies the
survival function is

G(x) = px, for some 0<p<1.

Now, taking x2=O in (2.22),

R(x +t t) ' R(x 0) t1 I " 1! P I
xt 1

= p pl , 0<p1<l
Thus,

x2 xl-xR(g) = p p

Similarly,

R(z) n '0 *0

conditions

p 2 pll 2 pt x1+t2x2+t
R(x1+t,x2+t)= X X _x1 2 1 t .p p2 p xl+tEx2+t+ +

= R(g) R(L) 3612 and L=(t,t),teI .
which establishes the theorem.

of a
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The following theorem is a direct consequence of

the last two theorems.

Theorem 2.7

If 3 has geometric marginals then the piece-wise

constancy of the scalar failure rate is equivalent to the

bivariate lack of memory property.

The deliberations carried out in the present

chapter to define a failure rate in the two-dimensional

discrete time domain, viewed it as a scalar quantity,
providing a single over all index that depicts the pattern

of failure. However, in many cases as exemplified above, we

require additional information on atleast one of the failure

rates of the components to determine the distribution of

life lengths uniquely. Thus further development of the

analysis of failure time distributions based on scalar
failure rate appears to be complicated and alternative

formulations which are more productive seem to be in order.

These will be discussed in the following chapter.



Chapter III

VECTOR FAILURE RATES

3.1 INTRODUCTION

Following the observations made in the concluding

part of the previous chapter, in the succeeding sections

alternative formulations of the concept of bivariate failure

rate are taken up and their properties are studied. Instead

of providing a single cumulative index, the proposed

definitions build up the concepts through a mechanism that

evaluates the spot changes in the joint survival times in

terms of each of the component life times. Such an approach

has been successfully employed in the continuous case by
Marshall(1975a) and Johnson and Kotz (1975) to define vector

failure rates that are amenable to algebra and produce

reasonably good physical interpretation. Following this

lead, analogous definition in the discrete domain introduced

in Section 1.3 of Chapter I are further analysed and several

new results in this connection are established in the

present chapter.
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Recall from Section 1.3 that the vector failure

rate of a bivariate random vector X can be defined, (Nair

and Nair,(1990)) as

9(3) (bl(3).b2(3))
where

bj(§) = P(xj=x.|z 2 3), j=1,2. (3.1)
It follows that

1-b (g) = R(x +l,x )/R(g)and 1 1 2 (3.2)
1-b2(x) R(x1,x2+l)/R(x)

Other than defining this rate with the object of
characterizing certain distributions, Nair and Nair, (1990)

do not explicitly take up a discussion of the properties of

these rates. Accordingly we address to this problem in the

following section.

3.2 PROPERTIES OF THE VECTOR FAILURE RATE

Theorem 3.1

The bivariate mean residual life in Definition 2.4

is related to vector failure rate as
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1-bl(xl+l,x2+l) [xl(§)-1]/r1(xl+l,x2)and (3.3)
1-b2(xl+1,x2+l) [r2(x)-1]/r2(x1,x +1).2

Proof:

By definition,

_)x1’ X2>x2]’r1(x) = E [(X1-x1)l X]

Li’)

= [R(Xl+l,x2+1)]—l E (y Kl) P[X1=y.X2>x2],
yzx +1

1

_ 1 [xi
= [R(xl+l,x2+l)] f n P[Xl=xl+n, X2>x2],n=l

_. 1 (D= [R(x +l,x +1)] E R(x +n, x +1),1 2 1 2
11:1

or
w

r1(x)R(xl+1,x2+1)= E R(xl+n, x211). (3.4)n=l

Incrementing xl to x1+l,
([1

rl(x1+l,x2)R(xl+2,x2+l)= ngl R(x1+n+l, x2+l). (3.5)

Subtracting (3.5) from (3.4),

r1(g)R(x1+1,x2+1) - r1(x1+1,x2)R(xl+2,x2+1) = R(xl+1,x2+1),
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from which it is seen that

l-b1(xl+l,x2+l) [rl(g)-l]/rl(xl+1,x2).
Similarly,

1-b2(x1+l,x2+l) [r2(g)-1]/r2(xl,x2+l).

Theorem 3.2.

The scalar failure rate a(x) is related to the
vector failure rate h(g) as either

a(x) = bl(x)-bl(xl,x2+1) + bl(xl,x2+1)b2(g)
or

a(g) = b2(3)-b2(xl,x2+1) + bl(x)b2(xl+l,x2).
Proof:

The scalar failure rate

R(§)—R(xl+l,x2)-R(xl,x +l)+R(xl+l,x2+l)2a(;) = R”)
From (3.2), the assertion follows. D

Note: One cannot choose the components bl(x) and b2(§)
arbitrarily as they should satisfy the consistency condition

[1-b1(xl,x2+1)][l-b2(x)] = [1-b2(xl+1,x2)][l—bl(x)].
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3.3. CHARACTERIZATIONS USING VECTOR FAILURE RATE. (Asha and

Nair, 1994a).

Our objectives in developing characterization
theorems of distributions in terms of failure rates have

been explained in connection with the discussion of similar

problem involving the scalar failure rate. The following

theorems relating to vector failure rate help spotting the

suitable models and also to describe the random mechanism

that generates such models.

Theorem 3.3.

The following statements are equivalent.

(i) X1 and X2 are independent
(ii) b.(x)= h.(x.): j=1 or 2. 3&1J J 3
Proof:

If (i) holds then by equation (3.1), (ii) is

verified. Conversely if (ii) holds for every gel; we have
from (1.2) and (3.1)

+P(X_=x. 3 2 3) = P(X.=x_ x. 2 x.), j=1 or 2, gel3 3' J 3' J J 2
In particular for j=l, this is equivalent to
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R(§) — R(xl+l,x2) = R(x) hl(xl)
or,

[1-h1(xl)] R(x) = R(xl+l,x2).

Thus

xl-1
R(.x) = R(0,x2) n [l-hl(r)]r=0

The second expression on the right is R(x1,0) by equation
(1.3). This means that

Rut) = R(xl,0) R(0,x2)

for every 561;. Thus X1 and X2 are independent D
Theorem 3.4

The following statements are equivalent.

(i) X1 and X2 are independent geometric variables.

(ii) hI£)= (b ,b2) where bgs are constants for all gelg.1

(iii) R(§+§) = R(g)R(§) for every 3 and §=(s1,s2) e I2.
Proof:

If (i) holds then (ii) follows from (3.1) and
Theorem 3.3. Conversely if (ii) holds, then from (1.3), we

obtain
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X X
Rm = [1-bl] 1 [1—b21.2

and therefrom (i) is established.

The equation (iii) follows from (i) directly. Now, if (iii)

holds then on setting xl,x2=x and sl,s2=s in (iii), it
reduces to the Cauchy functional equation.

G(x+s) = G(x) G(s)

where G(x)=R(x,x), whose only solution that satisfies the

conditions of a survival function isx +
G(x) = p , for some O<p<1, xell

Further when xj= sj= 0, (iii) once again reduces to the
Cauchy Functional equation giving a solution

x
1

R(xl,O) = pl , O<pl<l, xel:
and

R(0 x ) ‘ X2 0< <1 xFI+I 2 P2 I P2 ; — 1

Also s1=x2=0 implies, R(xl,s2) = R(x1,O)R(0,s2) for all

xl,s2 GI: , thus establishing (i). D
It becomes apparent from the above

that distributions wit}: hudopnndonl nun<H1u1ln demand

deliberations

for
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constancy of the vector failure rate. Thus there exist no

bivariate model in which the variables are dependent whose

vector failure rate exhibits constancy. The investigation

of the model in which the vector failure rate is locally

constant resulted in the bivariate model (1.9). The results

in this direction have already been reviewed. We further

proceed to realise another non-trivial bivariate
distribution toying with the idea of keeping the constancy

of the vector failure rate in some manner. The following

paves way for such a property.

Theorem 3.5

The bivariate lack of memory property is equivalent to, , _ + +
(1) bj(x+t)=bj(g), J=l,2 for all gelz and t=(t,t),teI1.__ + +
(11) r(g+t) = §(x), for all 3612 and t=(t,t),tEIl.
where r(.,.) is the mean residual life function defined in

equation (2.4).

Proof:

When the bivariate lack of memory property holds

(i) is seen to be true from (3.2). Conversely note that (i)

implies
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R(x +t+l,x +t) R(x +l,x )1 2 l 2 (3.6)
R(xl+t,x2+t) : R(x)

and

R(xl+t,x2+t+l) R(xl,x2+1)
R(xl+L,x2+t) = R(g) (3'7)

From the last two equations when xl=0, x2=0,
R(t+l,t)=R(l,0)R(t),

and

+

R(t,t+l)=P(O,l)R(t), for all téll.
Thus the bivariate lack of memory property holds for the

points (0,1) and (1,0) from which it follows

R(t+1,t+1) R(t,t+l)[R(l,l)/R(0,l)]
II R(l.l)R(t,t),

proving that it holds for the point (1,1). The generality

of the assertion is proved by the method of induction by

assuming that the result holds for (i+1,j) and (i,j+l).
Thus from (3.6) and (3.7) it follows that

R(i+t+2,j+t) = R(i+t+1,j+t)[R(i+2,j)/R(i+l,j)]_ _ +
= R(t,t)R(1+2,j), for all tell

and similarly

R(i+t,j+t+2) = R(t,t)R(i,j+2), for all teI:,
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which proves the bivariate lack of memory property.

Now, if (ii) holds, then from (3.3), it seen that (3.6) and

(3.7) are true which implies the bivariate lack of memory

property.

Conversely if the bivariate lack of memory property holds

then,

1

rl(x1+t,x +t) [R(x1+t+l,x2+t+l)]_2

£1’)

E (Y-X1) P[Xl=y+trx2>x2+t]r
y=xl+1

= [R(xl+l,x2+l)R(t,t)]_l
m

2 (y—xl) P[Xl=y+t,X2>x2+t],
y=x1+l

-1
= [R(x]+l,x2+l)R(t,t)]

w

E (y-xl)[R(y+t,x2+t+l)-R(y+t+l.x2+t+l)].
y=x1+l

1
ll

[R(xl+1,x2+1)]

(U

E (Y’X )[R(y.x2+1) - R(y+1.x2+1)].
y=x1+1 1
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C0

= [R(xl+1,x2+1>1‘1 2 <y—xl)P[xl=y.x1>x21,
y=x +1

1

= r1(g)

In a similar manner it can be proved that the bivariate lack

of memory property implies

Thus

Theorem 3.

(2.13) i

for all
Proof:

f

.i

£(a+5) =

(3)r2(xl+t,x2+t) = r2

g(_); for all gel; and t=(t,t),teI:.

A random vector 5 with support I: has distribution
and only if its vector failure rate is of the form

(a1’b1)’ x1>”2
= (a2,b2), xl<x2 (3.8)

(a1’b2)' ”1:“2
+in I , 0< a ,b <1, j=l,2.2 J 3

If X is distributed as (2.13) then by (3.1)

I



=1

2 1 2
P P1
x2 xl-x2

P P1

64
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giving

(1-p 1-pp_l) , x >x1' 1 2
b(x) — (1- '1 1- ) x <x_- PP2 r-P2 ; 1 2

(1-pl,1-p2) . xl=x2.
Now, if (3.8) holds, then from the recurrence relation

[1-bl(x)] R(x) R(xl+l,x2),

we get on iteration,

X1-x2-1
(1—al) R(x2+l,x2), xléxz

R(3) =
X1(1-a2) R(0,x?), x]<x2

Similarly,

1-b = , _[ 2(x)] R(x) R(x1 x2+1)
and

X2-x -1
(1-b2) R(xl,xl+1), xlhxz

R(x) =
X2(1-bl) R(xl,O), xl>x2.

Combining (3.11) and (3.12)

(3.9)

(3.10)

(3.11)

(3.12)
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_ X2-1 xl
(l—b2) (1-a2) R(0,l) , x <x

X2 x -1
(1-bl) (1-al) 1 R(l,0), xl>x

and

R(x,x)= (1-al)“'1(1—bl)“ R(1,0) = (1-a2)“(1-b2)“’1 R(0,l),

so that

' (l-b )x2_1 (1— )x1 R(0 1) *2 a2 ’ ’ x1'x2
R(x) : (l-b )x2 (1— )x1—1 R(l 0) x ‘X1 a1 ’ ’ 1‘ 2'

Also, -1 -1
R(0,0)=l=(l-al) R(l,O) =(l—b2) R(0,l)

giving

R(1,0) = (1-al) and R(0,l) = l-b2.

Thus for all x in I; we must have,x x2 1 ,(1 b2) (l—a2) x1_x2R(¥) : x x
(l-b ) 2 (1—a 3 1) Y 5x1 1’ ‘l_'2'

Specialising for xl=x2,

(l—al)(l-bl) = (l-a2)(l-b2).
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writing l-a1=p , l—b =p and (1-al)(1-bl)=p we get the form1 2 2
(3.8) and 0<pSpl,p2<l, l+p2pl+p2. D

From the above two results and Theorem 2.6, the

following result can be proved.

Theorem 3.7

The following statements are equivalent

1. b,(§+t) = b.(g), h (x.+t) = h.(x.).J 3 J J J J
for allx_eI+, _t=(t,t.); x.,u=_1+, j=1,2.2 J l

2. R(§+t)=R(r)R(t), R.(x.+t)=R.(x.)R.(t) for all 361J J J J J
+t= t,t , t, ,EI .._( ) X31

where R.(x ) = P(X. 5 x.).J J J 3
3. X has bivariate geometric distribution specified by

(2.13).

Proof:

That the statements (i) and (ii) are equivalent
follows from Theorem 3.5 and the analogous result in the

univariate case (See Section 1.3). The equivalence of (ii)

and (iii) follows from Theorem 2.6. D
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3.4 CONDITIONAL FAILURE RATE

There are practical situations (see Castillo and

Galambos,(l989)) cited in literature where the access to the

conditional distributions are more likely than to the joint

distribution, bringing to thervfore the problem of
determining the latter through the former. In life testing

situations the behaviour of each of the components
hypothesised by the survival time of the other component,

taken together, formed the basis of all definitions so far

considered. Instead of conditioning on the survival times,

in a new definition proposed by Kotz and Johnson, (1991),

the conditional event is taken to be the survival time of

the given component and failure time of the other component.

This definition too assumes a vector form given by,

£(£)=(Cl(£),C2(£))
where

. =9 x.= ,x =x ,x,—‘: ,, ',k=1,2 r.1s'¢1. 3.13cJ(z) (3 X3] k k 3 X3) :1 an J < ( )
The failure rate so defined will be for obvious reasons

called the conditional failure rate in the sequel. Notice



69

that cl(§) gives the probability of the failure of the first

component at time x], given that its life time is at least
x units of time and that the second component has survived

only upto time X2. An analogous interpretation is given for

c2(g)

From equation (3.13), we see that

c (5)1 P(X]=xl|Xl:x ,x =x ),1 2 2

f(L)

fl}FEG:3§fi3'

],x2+])|R(x1Il,x2+l)R(L)-R(x1+],xfi)~R(x

R(gT3§Z§i,x;+1)

Similarly,

R(g)—R(x1+l,x2)-R(xl,x +l)+R(xl+l,x2+l)2

R(g)—R(xl+1,x2)c2(g) =

Therefore, we have

]-(' (X) :
” '1 “ R(x)"R(xl,x2+1)and (3.14)

R(x1,x2+1)—R(xl+1,x2+l)

R(;3—R(xl,x2+1)
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The bivariate mean residual life defined in equation (2.4)

is related to the Conditional failure rate by

(r2(x1+1,x2)-1)][rl(g)-1] [ 1 "E;(§I11,x +1)2

1-cl(xl+l,x +l)=2 (r2(§)-1)
rl(&l+1,x2)[l~ L2(il,x2;i5]

and

(r1(x ,x +1)-1)l  ]
l—C (X +1 X +1): [r2(x) 1] [ t2(x1+1,x2+1)2 1 ' 2 (rl(x) 1)

‘2"‘1'“2”’[1‘ ‘;l7;l—+1,x2)]

In this connection it is worthwhile to observe

that the conditioning event in respect of the conditional
failure rate and bivariate mean residual life are different

and therefore while interpreting one in terms of the other

we are obviously speaking of different kind of events to

make comparision between the two rather inconvenient. But if

the requirement is the mean residual life function or
failure rate in question, then the relationship is useful.

However, if the purpose is the comparative behaviour of the

two concepts, it is more meaningful to have a new definition



for mean residual life function in which the conditioning

events are identical. Accordingly we propose the following

new definition of the mean residual life function.

Definition 3.1

The mean residual life of 3 in the support of I;
is defined as the vector

m(g) = (ml(i),m2(s))
where

ml(g) = E((Xl-xl)|X12xl,X2=x2)and (3.15)
m2(§) = E((X2-x2)|Xl=xl,X2Zx2).

Then

w

m1(g)[R(x)-R(x1,x2+l)]= E [R(y,x2)-R(y,x2+l)] (3-16)
y=xl+1

and

ml(xl+l,x2) [R(x1+l,x2) — R(x1+1,x2+l)]
m

= E [R(y,x2)-R(y,x2+l)]. (3.17)
y=x1+2

Subtracting (3.17) from (3.16),
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ml(5)[R(x)-R(x1,x2+l)]-m1(xl+l,x2)[R(xl+l,X2)-R(xl+1,x2+l)]

= R(xl+l,x2) — R(xl+l,x2+1).
Therefore,

R(g)-R(xl,x2+1)
m1(£) R(xl+l,x2)—R(xl+1,x2+l) _ l+ml(xl+1'x2)

From (3.14)
m (x

°1‘s’s" ‘ 1 ' I+nT(:“:i*'r)1 l ' 2
Similarly

m (x)
C2“) ‘ 1 ‘ ’i2inTZ'32i"','x"f1‘5'2 l 2

On the question of unique determination of the survival

function in terms of conditional failure rate we show in the

following theorem that the answer is not in the affirmative.

Theorem 3.8

In general, the failure rate g(g) need not
determine the distribution of g uniquely, but if f(§)>O for

all 351: then f(g) is determined uniquely by 9(3).
Proof:

The first part follows from the consideration of

the two distributions
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X 1 1 2 3
1 _L4 8 0

f(x)= __1_0 8 O
l0 j0 2

(ii)
X1 1 2 3

.1. .1.3 6 Of(3)= AO 6 0
A0 0 3

which are different but have the same conditional failure

rate viz

X2 1 2 3
1 (2/3,1) (1,l/2) (0,0)

c(z)= 2 (0,0) (1,1) (0,0)
3 (0,0) (0,0) (1,1)
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To prove the second part, note that

l—C (X) :1 “ H(§)
where

H(x) = R(x) - R(xl,x2+1),

= P[Xl£x1,X2=x2].

Solving (3.18),

xl-1
H(z) = n [1-cl(r,x2)]H(0,x2),r=0

xl-1
= n [1-c1(r,x2)] P[X2=x2].r=0

Thus

xl-1> : : _P[Xl_x1|X2 X2] n [1 cl(r,x2)],
r=O

or

xl—1

P[X1=x1|X2=x2] = n [1-cl(r,x2)]c1(x).
r=O

Similarly
x2-1

P[X2=x2|Xl=xl] = n [1—c2(xl,r)]c2(g).

(3.18)

(3.19)

(3.20)
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Thus c(g) determines the conditional distribution of X j

given Xk = xk uniquely for j,k=l,2 and jik. Since f(§)>0
for all 3, it follows from Gourieroux and Monfort, (1979)

that the conditional distributions uniquely determine f(g).

An alternative set of conditions that ensures the
determination of f(g) through the conditionals is provided

in the following theorem.

Theorem 3.9

A necessary and sufficient condition for the

conditional densities f(xl|x2) and f(x2|xl) in (3.19) and
(3.20) to determine the joint probability mass function is

that

f(xl|x2)/f(x2|xl) = A1(x1)/A2(x2),

where Aj(xj) are positive with finite sums over the set of
non-negative integers satisfyingm m

fl A (x ) = E A (x ).
xl:O 1 1 x2:O 2 2

The proof of this result is on lines similar to
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that in the continuous case given in Abrahams and Thomas,

(1984).

Let f(g) be a joint probability mass function with

conditionals f(x1|x2) and f(x2|x1). Then,

f(x1|x2)f2(x2) = f(x2|x1)f1(xl),

or

f(xl|x2)/f(x2|xl) = f(xl)/f(x2) = Al(xl)/A2(x2),

where A1 and A2 are obtained after cancelling common factors

if any in fl,f2. Conversely, writing

f(x1|x2) - A1(xl)/ZAl(xl)
f(x2[il) A2(x2)/EA2(x2)

and defining

f. _ = , . E , _ , ‘=1, ,J(xJ) AJ(xJ)/ AJ(xJ) J 2

fl and f2 are probability mass functions and the joint
density is obtained either as f(x1|x2)f2(x2) or asf(x2|x1)fl(x1). D
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3.5 CHARACTERIZATIONS USING CONDITIONAL FAILURE RATE. (Asha

and Nair, 1994a)

Theorem 3.10

+For a random vector X in the support of I the

following statements are equivalent

(i) Xland X2 are independent
(ii) c.(x) = h.(x_) for j=1 or 2 and xeI+J ‘" J J 2
Proof:

If X1 and X2 are independent then by (3.13) it
follows that

9(g)=(hl(xl).h2(x2))- (3-21)
Now consider

cl(x)=hl(xl), for all xeI:.

Then from (3.14),

R(x1+l,x?)-R(xl+l,x2+l)
R(x)-R(x ,x +1) = 1"h1(“1)'l 2

That is

H(xl+l,x2)=[l-hl(xl)]H(x)
where

H(x) = [R(3)-R(x1,x2+l)]
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which gives
xl-1

H(x) = n [1-h1(r)]H(0,x2).
r=O

Therefore

xl-1
P[Xl2xl|X2=x2] = H [l—hl(r)] for all gel; (3.22)

r=O

= P[Xl:xl],

from Section 1.3. Thus X1 and X2 are independent. D

Corollary 3.1

Xland X are independent geometric variables if
and only if

9(3) [(hl(x1),h2(x2)]

(cl,c2) (3.23)
where 0<cj<1, j=l,2 are constants.
Proof:

If X1 and X2 are independent geometric variables
(3.23) follows from (3.13). The converse is obtained by

substituting for hl(xl) in (3.22) and analogous result forc2(x). D
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Theorem 3.11

For all 3 e I; and t ., j=1,2 the,, s_=0,l,2,..J J
following statements are equivalent.

(1) 2(3) = [cl(x2).c2(xl)]

(ii) P[Xj2tj+sjlXjZsj,Xk=xk] = P[XjZtjIX =x ], j=k=1,2, j¢k
(3.24)

(conditional lack of memory property)

(iii) _g has a bivariate distribution specified by
probability mass function

f(g) = G pl p2 6 , 0<pj<1,j=l,2;0<9S1, (3.25)
where

Proof:

The equivalence of (ii) and (iii) are established

in Nair and Nair (1991). If x is distributed as (3.24)

which has the form (i). Conversely if
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9(5) = [c1(x2),c2(x1)]
then from (3.19),

x

P(XlZxllX2=x2) = [1-cl(x2)] 1 (3.26)
from which. X1

P(X1Zx1|X2=x2) = [1-c1(x2)]

and similarly

X2

P(X2Zx2|Xl=xl) = [1-c2(xl)] c2(xl). (3.27)
From the equations (3.26) and (3.27), it follows that

xl+t> Z L‘ P(X1_xl+t|X2 x2) [1 c1(x2)] ,
X

[1—c1<x2>1 1[1—cl<x2>1t,> : I :
P(Xl_XllX2 X2)P(XlZt|X2 M2),

for all ge I; and t=0,l,2,... and
x +t

P(X22x +t|Xl=xl) = [1-c2(xl)]2

P(X2£x |x =xl)P(X2£t|X1=x1)2 1

for all 36 I; and t=0,l,2,...

which is the conditional lack of memory property and
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therefore, from Nair and Nair (1991), the distribution of 3

should he of the form (3.25). D
Theorem 3.12

A random vector X defined on I: has the bivariate
geometric distribution (2.13) if and only if its conditional

failure rate is of the form

(°11’°11)’ x1>x2= , , 3.29(3) (C21 C22) x1<x2 ( 8)
(°31'°32)’ x1=x2

where 0<cij<l,i=l,2,3 and j=l,2.
Proof:

If 9(5) is of the form (3.28), then from (3.14) for

Xl>X2,

3’ : : - 3' :
P[X1_X1+1,X2 X2] (1 Cl1)P[Xl_X1,X2 X2],

X'X_ _ 2 > _.- (1 c ) P[X1_x2+1,X2—x2], (3.29)11

From (3.28) we have

P[X1:x2+1,X2=x2] = (1-C31) P[X1:x2,X2=x2],
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which on substitution in (3.29) gives

Xl'X2
P[X1Zxl+l,X2=x2] = (1-cll) (l—c31)P[Xl:x ,X2=x2]

or equivalently

xl—x2-13' : : - — T’ :P[Xl_xl,X2 X2] (1 C11) (1 c3l)P[Xl_x ,X2 X2],

xl2x2. (3.30)
Also, : 3' : — : -5' 3'P[Xl xl,X2_x2+1] (1 cl2)P[Xl xl,X -x2], x _x +1.2 l 2
Summation over xl reduces the above to

R(x1,x2+l) = (1-cl2)R(£), xl2x2+l
x +1

= (1-C12) R(xl,0), xl:x2+1
or equivalently

X2

R(x) = (1-C12) R(x1,0), xlkxz. (3.31)

Setting x2=0 in (3.30)

xl-1> : : —- - :P[Xl_xl,X2 0] (1 C11) (1 c31)P[X2 O]
or
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xl-1>
P[X1_x

> — > P : —
1,X2_0] P[Xl_Xl,X2_l] (1 C11

Substituting from (3.31), the

the equation (3.32) yields

x1—1
R(xl,0)c12 = (1-cll) (1-c3l)P[X2=0]

Since R(0,0) = l,

1- - ‘1 (1— ) P(X -0)C11” C12 C13 2'
Thus from (3.33) 1 _

R(xl,0) — (1-C11) , Xl=Il
Substituting in (3.31)

R(x) - (1-c )x2(1— )x1 x *~— ' 12 C11 ’ 1‘“2'
Proceeding in the same manner with c2(x)

x1<x2,

M > - (1— )x2(1— )x1X ' C22 C21 ’ x1“x2
From (3.34) and (3.35)

) :(1'°22)(1_C21

) (1-c31)P[X2=°]

(3.32)

terms in the left hand side of

(3.33)

(3.34)

in the region

(3.35)

R(1,1)
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and so
xR(x,x) = [R(1,1)]

Writing

pl: (well), p2: <1—c22)
and

p = (1-cl2)(l-c ) = (1-c22)(l-c )ll 21
we obtain the form (2.13). The conditions on the parameters

follow directly since 0<cij<l, i=1,2,3 and j=1,2.
Conversely by direct calculations from the survival function

(2.13)

(1-9 ,1-pp_1), x >x1 1 1 2
c(x) ‘ (1- -1 1- ) x <x._ . _  I  I 1 2

[fiififz ““%”2] X1_ I _ _’—‘__:’ I 1'1 p2 1 pl 2
This completes the proof. 0
3.6 INTER-RELATIONSHIPS AND THEIR IMPLICATIONS.

From the definitions of a(§),b(g) and c(g) it can

be noted that
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c (;)b1 (3) = c2(x)b1(x) = a(x)2

The vector failure rate and the conditional failure rate

reduce to the vector of univariate failure rates of the

individual components in the case of independence while

scalar failure rate is the product of the marginal rates in

the same situation. Thus a(x) becomes the products of the

components of the vectors when X and X are independent.1 2
We now prove that the converse is also true.

Theorem 3.13

IE, the relationshipITIFor all x

a(z) b (x)b (g) = c1(i)c2(x) (3 36)l ‘ 2

holds only if X1 and X2 are independent.
Proof:

The equation (3.36) is equivalent to

£(x) R(x +l,x ) R(x ,x +1)
_.__ 1 - ___l__._Z_ 1 - ___l__3___R(1) R(g) R(£)

and f(§) f(l) f(:)
R(z) _ R(3) -R(xl,x2+l) R(a) -R(x1+1,x2)
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Simplification of these equations lead to the

equation,

R(xl+l,x2+l)R(x) = R(x1+1,x2)R(xl,x2+l)

+

for all x 6 I2
But (3 37) implies,

R(x1+l,x2) _ R(x1+l,0)
R(x) R(x1.0)
R(x) R(x1)

R(xl-l,x2) R(x1—l,0)
so that

R( > - R< o) R(x1_l'x2) ’1‘ *1’ R(?—1_,fi

: R(x 0) R(xl-2,x3) )1' R(x -2,0)
1

= R(xl,0)R(0,x2)

Thus X1 and X2 are independent.

Corollary 3.2

+

For all 3 E 12, the relationship

a(§) = b1(x)b2(3) = c

functional

(3.37)
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where 0<c<1, holds if and only if X1 and X2 are independent
and geometrically distributed.

The proof follows directly from Theorems 2.4, 3.4,

3.13 and Corollary 3.1. U
Theorem 3.14 + . .

If X in support of I2 has geometric marginals with

parameter pi and if the additional assumption R(x,x)=px for

some 0<pSpj<1, j=1,2, then the relationship

a(_x) = bl(,x)b2(x) = c1(x_)c2(_>_c_) (3.38)

holds for all g in I'= {g=(x ,x2)|x ix , xj=0,1,2..., j=1,2}1 1 2
if and only if X has bivariate geometric distribution (2.13)

Proof:

Under the condition (3.38), it is readily seen

that for x #x , equation (3.37) continuous to hold. Solving1 2
under the assumption of geometric marginals, for xl=0

R , = ,(1 x2+1) R(1 X2) p2' x x2 2'   -  7 X2 ' 1/2!
On putting xl=1 in (3.38),



x -2
R(2,x2) = R(2,2) p2 , x2=2,3,

In general
R -x_ 1 .

R(x) = R(xl,xl) p2 7 , x2ix1
x x -x1 2 1 x- p p2 , x2;xl. (3.39)

Interchanging the argument xj in the above equations in the

region xl>x2 we get

2 , 2 3.40x1 X2 ( )
From (3.39) and (3.40), the form (2.13) is recovered. The

conditions on the parameters follow directly from the

assumptions.

The theorem provides an important and interesting

feature when compared with Theorem 3.13 and its corollary.

The fact of independent distributions for the component life

times can be modified to impart dependence to them once the

sample point that falls on the line x =x is singled out and1 2
are given arbitrary geometric probabilities.



Chapter 1V

CLASSES OF BIVARIATE LIFE TIME MODELS

WITH MONOTONE FAILURE RATES

4.1 INTRODUCTION:

In the choice of life distributions in modelling

equipment behaviour various notions of aging play
fundamental role. The different concepts that describe wear

out or aging are conveniently expressed in terms of failure

rates or mean residual life. The classes of life
distributions based on the monotonicity of the failure rate

function, when life lengths are continuous, have been

treated in Barlow and Proschan (1975), Brindley and

Thompson (1977), Harris (1970), Marshall (1975), Buchanan

and Sinqpurwalla (1977). Consistent with the criteria and

notions discussed in these investigations we discuss the

corresponding results in discrete time. A treatment of such

classes in the discrete case described here have not

appeared in the literature so far and this motivates the
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discussion of the topic in the subsequent sections, although

the concepts developed in the present study have close

resemblance to the basic approach made in the continuous

case. Since we have already distinguished three types of

failure rates, naturally there exist separate
classifications of distributions based on each definition.

However in the light of our finding that a(x) cannot by

itself determine the corresponding distribution uniquely the

classification based on this type of failure rate is not

extensively studied in our subsequent investigations.

In the possible classes that are considered in the

sequel, it is assumed that monotonicity of the failure rate

reflects the extent of aging or wear out of the components

of the system. The different notions envisaged here take

into consideration two aspects of the system, viz. the

present age which is equivalent to the intensity of aging

and the time point at which the wearing out is reckoned.

This leads to the following three different cases.

(i) The age of each component are different and they wear



91

out with different intensities. This is accommodated

by comparing the failure rates at times (x1+t1,x2+t2)
and x.

11) The ace of components are different and wearing out

of only one of them is considered at a time. In this

case the failure rate at (xi+t,xj) are compared with

that at (xi,xj), i,j=1,2, i#j.

(iii) The components have different ages initially but they

wear out with the same intensity. Here the objects of

comparison are the rates at (x ,x2) and (x1+t, x2+t).1

4.2 CLASSES WITH MONOTONE VECTOR FAILURE RATE (Nair and

Asha 1994a)

4.2.1 b-IFR1 (b-DFR1) CLASS

Definition 4.1

The distribution of a random vector 3 in the

support of I; is defined as a b-IFR (b-DFR1) distribution1

if for all 5_,§ = (s1,s2)in I3,
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bibs ta) 2 (S) bj(_I_r_). J'=1.2 (4-1)

The physical interpretation of (4.1) is the aging behaviour

indicated as (i) above. From (4.1) it is clear that 3 is

b-IFR1 (b-DFR1) if the ratios

R(x +s +1,x +s2)1 1 2
R(x1+1,x2)

and

R(x1+s1,x2+s2+1)

R(x1,x2+1)

are non-increasing (non-decreasing) in each xj, j = 1,2. A
matter of primary interest in any criteria of
classification, is to investigate whether there exist a

boundary class separating the b-IFR1-b-DFR1 classes or one

that is both b-IFR1 and b-DFR1. In the continuous univariate
theory, the definitions of notions of aging are so fashioned

that the exponential distribution exhibiting a constant

failure rate becomes the only distribution that belongs to

the boundary class. In the discrete case analogously one

would expect a bivariate geometric law to be the only model

that is both, b-IFR1 and b-DFR1. Thus corresponding to each
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definition we seek the bivariate geometric distribution

characterized by that property. The answer corresponding to

Definition 4.1 is covered in the following theorem.

Theorem 4.1

The only class of distributions in I; which is

both b-IFR1 and b-DFR1 is the bivariate geometric
distribution with independent marginals.

Proof:

Let 3 be such that

. . . '=1;21 2 O<pJ<1 3

Then b(g) = (1-p1,1-p2) implies
+, I .K §5 2h(a +§) = 9(5) for all

Conversely if §(g+§)=p(g), then b(g)=b(Q), where Q=(0,0).

Then by Theorem 3.4, the joint distribution of g is given by

1 2 , 0<pj<1, j=1,2.

From a practical point of view, the implication of

Theorem 4.1 is that the Definition 4.1 highly restrictive

in the sense that it represents a system in UJu€l\ the
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components are independent of one another. A more realistic

situation would be that in which the life of one component

depends on the life of the other. Thus we are led to the

following modified definitions.

4.2.2. b-IPR2 (b-DPR2) CLA33

Definition 4.2

The distribution of 3 is said to have a b-IFR2

(b-DFR2) distribution if for all g e 1; and t e 1:,

b1(x1+t,x2) Z (S) b (5)1and (4.2)
b2(x1,x2+t) Z (S) b2(;).

According to this definition a system functioning at age x

has a higher failure rate whenever any one of its components

is replaced by an older one. The bivariate geometric

distribution, that serves as the boundary of the b-IFR2 and

b-DFR2 classes is the one which satisfies

b1(x1+t.x2) =b1(L) and b2(x1,x2+t) =b2(;).

for all 5 e I: and t e 1:.
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From section 1.3 it is easily seen that this distribution is

that specified by equation (1.9).

4.2.3 b-IFR3 (b-DFR3) CLASS

An alternative way of relaxing the Definition

4.1 is realised by assuming that the failure rate of the

system with two components of different ages are observed

after each component has worked through the same time. Thus

we have

Definition 4.3

The distribution of the random vector 3 in the

support of I+ is defined as a b-IFR2 3 (b-DFR3) distribution
if and only if

hj(xj+t) 2 (S) hj(xj)
and

bj<;+g> 2 (5) bj<;>, j=1.2

for all 5 e I; and t=(t,t), t e 1:. (4.3)
In the following theorem we identify the bivariate
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geometric distribution which forms a boundary class for the

b-IFR3 class and b-DFR3 class.

Theorem 4.2

A bivariate distribution with support I; is both

b-IFR3 and b-DFR3 if and only if it is a bivariate geometric
with survival function (2.13).

Proof:

By definition, a bivariate distribution in support

of I; is both b-IFR3 and b-DFR3 if and only if

id‘?

h, . t i= h. . f 11 .,'=1,2, t IJ(xJ+ ) J(xJ) or a x] 3 e
and

P04bj(g+t) = bj(g), for all g e I and t=(t,t), tel:

The assertion follows from Theorem 3.7.

It is possible to have a stronger class than that

provided by equation (4.3) by defining it as 3 belongs to

b-IFR4 (b—DFR4) class if and only if

+> < ':hj(xj+t) _ (_) hj(xj) for all xj, t e 11, 3 1,2
and
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b (§+;) > (<) bj(g), where 3 =(x,x) and t=(t,t) for all

But there is no characterization of the corresponding
boundary class.

4.3 INTER-RELATIONSHIPS

From the definitions given above it is clear that

(1) b-IFR2 4-— b-IFR1 -=> b-IFR3 -9 b-IFR4
and

(ii) b-DFR2 ¢== b-DFR1 -=> b-DFR3 =9 b-DFR4

Further the following counter examples illustrate that there

exist no other implications between the different classes.

Example 4.1

Consider the bivariate geometric law specified by

equation (1.9) with survival function

‘G

0<pj<1, O 1 1+p1p29 pl+p2 g E I2SSS , Z , ,
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whose vector failure rate isX X
p<;> = [1-pla 2 , 1—p2e 1] . x e 1;.

Since for all 3 in 12+ and t in 1:,
x

2

b1(x1+t,x2) =1-pl 6 Z b1(g).
and

"1
b2(x1,x2+t) =1-p2 6 2 b2(;).

R(g) exhibits b-IFR2 property. Also
X +5 X +5

1

[1—p1e 2 2 ,1-p 9 1.b(x +s1 1'“2252)

2 [1-pie 2 .1—p 6 1= 2(5),

which proves that R(g) is b-IFR1. But

[1-p1r9x+t.1-p29x+t],§(x+t,x+t)

+ t1—p1e‘,1—p2e“1,

b(x,x).

Thus R(g) is not b—DFR4. Hence we conclude that

b-IFR2 ab b-DFR4 and b-IFR1 #9 b-DFR4

Example 4.2

Consider a random vector g distributed in the
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bivariate Waring form specified by

(m)x +x1 2 +
R(_) - (m+n) ; m,n >0 ,3 e I2.x +x

where (m)x = m(m+1)...(m+x-1).

From (3.2), the vector failure rate is obtained as

b (X) : 1 — R(x1+1,x2)1 ‘ R(§)
(m)x +x +11 2— 1_
(m+n)x +x1 2

_ 1 R(x1,x2+1)
R(§)

= b2(5)
_ n
_ m+n+x1+x2

Note that for every 5, g in 1+ and t in I+,

bj(x1+s1,x2+s2) S bj(g); j=1,2
and

bj(x+t,x+t) S bj(g); j=1,2.

Also. b1(x1+t,x2) 1 b1(g) and b1(x1,x2+t) 1 b2(g)
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Thus, R(g) is both b—DFR1 and b—DFR2, giving the
implications

b-DFR2 # b-IFR and b-DFR2 afi b-IFR2 4'
Example 4.3

Consider the bivariate geometric distribution

discussed in Theorem 3.6 specified by the survival function

1+p 2 p1+p2, 0<pSpj(l, j=1,2, xelg,

whose vector failure rate is
-11 pl , 1 ppl x >x2

-1
2(5) " 1-ppz . 1‘P2 x1<x2

1-91 ’ 1_p2 x1=”2

That R(g) is both b-IFR3 and b-DFR3has been proved in

Theorem 3.6. It can also be noted that b1(x1+t,x2) and

b2(x ,x2+t) need not exhibit monotone behaviour. From which1

we infer that

b-IFR3 ah b—IFR2 and b-DFR3 fii b-DFR2.
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Example 4.4

Consider the negative hyper geometric distribution

specified by

[k+n-x1-x2]_ n-xl-x2 x Xk+n ' 1' 2
n

The vector failure rate is obtained as

= 0,1,2,...n;R(g) x1+x2Sn,k,n>0.

R(x +1,x )hm 1 21 R(£) '
[k+n-x1-x2—1]n—x1—x2-1

n-xl-x2F‘?
= 1 _ (k+n-xl-x2-1) ! k ! (n-x1-x2) !

k ! (n-x1-x2-1) 2 (k+n-x1-x2) ! '

_ k
k+n-xl-x2

similarly b (x) = k (k+n-x -x )’12 “ 1 2
Here

bj(x1+s1,x2+s2) 2 bj(g); for every 5 ,g = (s1,s2)e I; I
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so that R(;) is b-IFR But1.

__"___
k+n-x1-32-t

Ib1(x1+t,x2)

’FEiHT1—x—'

b (5)
I-"

and

b2(‘1"2*t) k+n-x1-x2-t

‘ma?

Also k k
k+n-2x-2t 'k+n-2x-2t§(x+t.x+t)

$ __E___ __E_._k+n-2x 'k+n-2x

h(x.x)

which proves that R(g) is neither b-DFR2 nor b-DFR4. Hence

b-IFR1 -H b-DFR and b-IFR1 +9 b-DFR2 4
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Example 4.5:

Consider the random vector X with bivariate

mixture geometric distribution specified by survival
function

x +x x
a p 1 2 + (1-a) p 1 , x12x2R(z)= xluz X2 *a p + (1—a) P . x S: ,o<p,a<1, 5 e I .1 2 2

The vector failure rate §(g) is obtained as

b (x)=1 - E£:l:E;:311 ‘ Ru)
1-p, x12x2+1

x1+1 x1
= 1-[[ap +(1—a)]/[ap +(1-a)]] , x1+1Sx21-p, x1=x2

and
R(x ,x +1)1 2

*’2‘—*’ ‘ 1 -@—

x2+1 x2
1-[Earn +(1-01)]/[up +(1-00]]. x1>x2= 1-p, x2>x11-p, x =x
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so that
xx2+1 2

1-p, 1-[ [up +(1-a)] / [up +(1-a)]] ,x1>x2
+1X

Q(;)= 1_[ [up 1

x

+(1-0)] / [up 1+(1-a)]]. 1‘P , x1<x21—p, x1=x2.
Observe that

h(x+t,x+t) (1-p,1-p)

h(x.x)

implying that R(g) is both b-IFR4 and b~DFR4. But §(;) does
not exhibit a monotone behaviour as g varies in the sub

regions x <x1 2 , x >x and x =x2. Thus we conclude that1 2 1
b-IFR4 4» b-IFR and b-DFR4 q» b-DFR3 3

Example 4.6

Consider a random vector 3 with a bivariate

geometric distribution whose survival function is specified

by X X K_ 1 1< 2R(;) - pl . pl -92
X X X2 1 +: > ':92 , pl -92 . 0<pj<1.J 1,2. 5 6 I2

Then the vector failure rate is



r 1-9110:

0: 1'P2r
x +1

P22= 1 J-‘P1 1' x I
P‘!

P 1+1
1- r 1-‘P2:

L P 2
Observe that

r 1-P1:

0.

b1(x1+t,x2) = < 1-p‘,

px‘+t+1
11- X ,

L P2’
>
— b1(£)

Also,

r°

1-92!

x +t+1
P22

b2(x1,x2+t) = 41- X ,
P11

1-p2,

2 b (L),
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x +1<
p 1- P22+1 x1 Z 2P1 P2

x x +1 x> <p 1 _ p22 , p11 _ 2

t x +1
( P22

t+1 2 x2
2

ts x ’ Px1+t >2 1 2
t x x +t+1> <_ p22 , p11 _

x +t+1
2

2

x +t
2 p22

x +t x x +t+1P 2 . —2

x «ft 1! +1 x 1-1‘., 1 < 22 1 2
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so that R(;) is b-IFR . But2

x+t < x +t+1[ 1 91.0. pi — P2
x+t+1 > x+t0’ 1 P2’ 1 2

x+t+12 x+t x+t+1: - -S < >
b(x+t,x+t) 1 1 p‘. 1 px+t . p1— P2 P1 2

1

x+t+1
1 x+t> x+t x+t+1< x+t

1 px+t ' 1 P2’ P1 ’ P2 ’ 1 2L 2
which does not exhibit a monotone behaviour on varying x or

t. Thus R(g) is not b—IFR4, so that

b-IFR2 1» b-IFR4.

The various implications of the examples are
summarised in Table I from which it is clear that no other

implications exist other than that made in the assertion.

4.4 CLASSES WITH HONOTONE CONDITIONAL FAILURE RATE (Asha

and Nair, 1994b)

4.4.1 C-IFR1 (C-DFR1) CLASS

Definition 4.4

A random vector 1 in the support of I: is defined
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to have c-IFR1 (c-DPR1) distribution if

hj(xj+t) 2 (5) hj(xj) , for all xj,j=l,2, ten: (4.4)
and

gym 2 (5) gm . for an 1:. . ;=<t1,t2) e 1;.

The physical interpretation of this type of
classification is same as in 4.2.1, but with obvious
difference in the meaning of the conditional failure rate.

We next identity the boundary class of the c-IFR1 and
c-DFR1 class.

Theorem 4.3

+

The only class of distribution in I2 which is both

c-IFR1 and (c-DFR1) is the bivariate geometric with
independent marginals.

Proof:

Let 5 be a bivariate geometric distribution with

independent geometric (pj) ,j=1,2 marginals. Then

'0

2(;) = [(1-p1).(1-p2)] for all 5 6 I2 .

from which it is clear that g is both c-IFR1 and c-DFR1.
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Conversely if 3 is both c-IFR and (c-DFR1), then,1

+ ‘u
hj(xj+t) - hj(xj) for all xj,t e 11, J-1,2 (4.5)

and

£(£+£) = 2(5) . for all 5.; = (t1.t2) 6 I; (4.6)

From (4.5) the univariate failure rate must be a

constant and hence each X has a geometric distribution, sayi

with parameter pj, j=1,2. Equation (4.6) implies: > : : : > :9 [x1 x1] X1_x , x x ] 9 [x1 o|x1_o,x2 0]1 2 2

= cl (a constant)
and = : > = = : >P [X2 x2| x1 x , x _x ] P [x2 o|x1 o,x2_o]1 2 2

= c2 (a constant)
From Corollary 3.9, the constancy of the

conditional failure rate implies the statement of the
Theorem.

4.4.2 C-IFR2 (C-DFR2) CLASS

Definition 4.5

The distribution of 3 belongs to c-IFR2 (c-DFR2)
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class if for all 5 e 1: and t e 1:

hj(xj+t) 2 (S) hj(xj) , j = 1,2
and

c1(x1+t.x2) Z (S) c (5)

c2(x1.x2+t) Z (S) c (5)

The boundary class of distributions of the

c-IFR2-c-DFR2 class is the one which satisfies

hj(xj+t) = hj(xj) , j = 1.2 (4.7)
and

c1(x1+t.x2) = c (g)

ll 0 pa N \/c2(x1,x2+t) 2 _ . (4.8)
From (4.7) it is obvious that the boundary class should be a

bivariate distribution with geometric marqinals. Also from

(4.8),

c1(;)

c2(z)

c1(0.x2)

c2(x1,0).

which has already been proved to be a characteristic
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property of 3.25 in Theorem 3.10. For this distribution to

have geometric marginals it is necessary and sufficient that

6 = 1. More precisely the bivariate distributions that are

both c-IFR and c-IFR are those with independent geometric1 2
marginals.

Having come to the conclusion ‘that the boundary

classes of c-IFR1 and c-IFR2 are the same, it remains to
prove that the two classes are not identical. For this refer

to Example (4.8) given below.

4.4.3. c-IFR3(c-DPR3) CLABB

Definition 4.6

The distribution of 3 belongs to the
c-IFR3(c-DFR3) class if for all 5,6 I; t=(t,t), tel:

h. . t Z S h. . , ' = 1,2J(xJ+ ) ( ) J(x3) J
and

s(_x+L) 2 (5) 2(5). (4-9)
The unique form of the bivariate law which emerges

as the boundary class defined by (4.9) appears to be
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lacking. However, from Theorem 3.7 it is seen that the

bivariate geometric (2.13) belongs to this class.

4.5 INTER-RELATIONSHIPS BETWEEN THE CLASSES

From the definitions given above it is clear that

(i) c-IFR2 «— c-IFR1 —» c-IFR3
and

(ii) c-DFR2 @- c-DFR1 -9 c-DFR3

The following examples illustrates that there

exist no other implications.

Example 4.7

Consider the bivariate geometric distribution in

Example 4.3 Since the marginals are geometric (pj), j=1,2,

the marginal failure rate hj(xj) = (1-pj), O<pj<1, j=1,2 and
the conditional failure rate

-1(1 pl). (1'PP1 ). x1>x2
-12(5) = (1-99: ). (1-P2), xlsxz

(1+p-p -p )(1-p )_1 (1+p-p p )(l-p )‘l x =x1 2 2 ’ 1 2 1 ' 1 2



112

+

= g(§+£) , for all 5 e 1; , ; =(t,t), t e 11
Thus by definition (3.4.3), R(g) is both c-IFR3 and c-DFR3.

,x +t), for allAlso notice that since c1(x 1 21+t,x2) and c2(x

t e I: and all 5 e I; need not exhibit a monotone
behaviour, c-IFR3 and c-DFR3 need not imply neither c-IFR2

DOE C 2-DFR .

Example 4.8

Consider the bivariate geometric distribution

(Pathak and Sreehari, 1981) specified by the probability
mass function

x1+x2 X1 X2 +
f(;)= [ X1 J pl p2 (1'P1‘P2)$ L612, 0<p1.p2<1.p1+p2<1

since the marginals are geometric (pj),
h. . =1‘ .I'=1I2J(xJ) pl J

and the conditional failure rate is given by

ll

F__q

H +
r__‘

I-5 + I + M H
N1.)

6
H

+ I
I-' D-‘

+ H
,__‘

H -0

>1 ‘PM H
\__J

U
H M

'0

I21]

I
0-!
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Also 1 x -12 1 2 2x x -12 1 2 2>

' [1+ [1 + x1+1]p1 + x1+1 [1 + x1+1]P1 + ' ]

+ +
- c1(£). for all _eI2, tell.

Similarly, x x -11 1 1 2x x -1
2 [1+ [1 + X i1]p1 + x1+1 [1 + i1]p: + ]2 2

+ +
— c2(x), for all gelz, tell.

so that g(g) is e IFR2. But g(;+;) does not exhibit any
monotone behaviour. Thus

c-IFR2 #9 c-DFR3

c-IFR2 q» c-IFR3

Example 4.9

Consider a random vector 3 specified by the
survival function
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n(;) = 2(x +x )'1, x = 1,2,3,...,j=1,21 2 j
The marginal survival function is specified by

1R _ = 2 _+1 _ , .= 1,2,...,'=1,2.j(xJ) (x3 ) x] J
and the marginal failure rate-1 -12 _+1 - 2 _+2(X3 ) (X3 )h.(x.) =3 3 2(x,+1) 1

J

-1: _+2(:3 )
for which h.(x.+t) S h.(x.) for all x. ,t = 1,2,...,j=1,2.J J J J J
From (3.14) the conditional failure rate is obtained as

2(5) = [ 1—(1+(2/x1+x2))'1, 1-(1+(2/x1+x2))-1].
Also

+

2(;+g) S 2(5) ; for all a.§=(s 21,s2)eI
and

c (x +t.x ) S c1(s).

+t) S c2(g), for all 5 e I; and te 1:.

Thus R(;) is c-DFR1 and c-DFR2 but not c-IFR2 and c-IFR3.



115

Example 4.10

Consider a random vector 5 with the bivariate

negative binomial distribution as in Example(4.4).

k+n-x -x
11-8‘)![ “JR(g)=—+:[n]

Then the marginal distribution is

k+n-x,[= J
Rj(x )j—‘T:+:—‘[n]

and the marginal failure rate
II I-0 \ N)hj(xj) = k / (k+n—xj) ; xi = 0,1,2,...n; j

for which . 1,2.1 Jh. . t 2 h.J(xJ+ ) J(x

From (3.14) the conditional failure rate is obtained as
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g(;) = [ (k-1)/(k+n-xl-x2-1) , (k-1)/(k+n-x1-x2-1) ]

for which

2(;+§) 2 9(5), for all §.s=(s1.s2) e 1;

Thus R(;) is c-IFR1. But since c1(x1+t,x2) S C1(;) and

c2(x1,x2+t) S c2(g) and g(g+t) S g(g), R(g) is not c-DFR2 or

c-DFR3. The above implications are presented in Table II.
In the discussions so far made in this chapter, we

have made only a brief study of the application of various

definitions of failure rates in describing alternative
criteria for aging of equipments or devices. The literature

in this area when time is treated as continuous is abundant

with different criteria as well as classification of life

distributions based on them. Analogous treatment in the

discrete time domain is an unresolved problem that requires

detailed investigation, which will be presented else where.
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Table I

Bifigfgife Distribution (h1(§),h2(g)) Example for
i) Bivariate Geometricx x x x x x1 2 1 2 2 1pl pz 9 (1 p19 ,1 p29 ) b IFR24+b DFR4

>

°<p1<1'1+p1p29‘P1+P2' b-IFR1-9b-DFR4x. = 0,1,... , i=1,2
1

ii) Bivariate Haring

(m)x +x2 m,n>0 n n b-Drnzqob-IFRZ
(m+n) + ;xi=0,1,.. m+n+x1+x2 'm+n+x1+x2 b_DFR b_IFR“1 “2 i=1,2 2*’ 4

iii) Bivariate Geometric when >x x -x p'p1p22 1 2 , (1-p ,1-p/p ) x >191 ’ 1‘”2 1 1 1 2 b-DFR —pb-DER3 2x x -x (1-p/p ,1-p ) x <x <P P ’ X Sx 2 2 1 2 when p-p1p22 1 2 (1-p 1-p ) x '10 S I . = I I r 0 - - I (P pi<1 X1 0 1 2 1 2 1 2 b—IrR34»b-IFR2
1+pZp1+p2, i=1,2

iv) Bivariate Negative
Hypergoemetric b-IFR14+b-DFR2

(“*“‘“1“2w1 [*— *—1“'”1'“2 “ k+“_”1'”2 k+“'“1”2 b-IFR1qbb-DFR4x +x Sn. x.=0,1,2,...,n1 2 1. . . x +1
v) Bivariate geometric a 2 + (1_a)mixture [1-p,1- pxx +x x up 2 + (1-a) _ _up 1 2+(1_a)p 1 X Zx b IFR41hb IFR31 2 x12x2+1x +x x1 2 - 

up +(1-a)p 2,x1Sx2 ~x1+1 b DFR4#»b DFR3
0<p,a<1,xi=0,1,2... [1— “PI * (1'°),1-p]1:1 2 up 1 + (1—a)

x1+1Sx2

(1-p. 1-p), x =x1 2



118

Bivariate Distribution (h1<;).h2(;>> Example for
vi) Bivariate Geometric

“1 "1 < “2pl . pl _ p2
X2 X1 > X2p2 , pl _ p2

O<pi<1,xi=0,1,2...i=1,2

x1 x +1
(1-p1,0). pl Spz

x +1 x1 2
x +1

P 2
21— , 1p 1
1

x1< X2 x1> x2+1
P1 —P2 ;P1 -P2

x +1
PI» :
P22

x x x +1 112 1 S 2P1 P2 .P1 P2

b-IFR24bb-IFR4
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Table II
Bivariate Distribution Marginal and Conditional

Failure rates
Example For

xeI+_ 2!

i) Bivariate Geometric
pxz px1_x2 >R(g)= 1 ' x1_x2
xx x2_x1 x <xP 91 ' 1‘ 2

_ , 0 S ,l+p>p1+p2 <p pJ<1

j=1,2.

ii) Bivariate Geometric

X +x X X1 2
f(3)=[ X ]p1‘p221

(1‘P1'P2)

zeI:.0<p <p2<1.p +p2<11 1
iii)

1

R(§) = 2(x1+x2)
x.=1,2,..., j=1,2.

iv) Negative Binomial

[k+n-x1-x2]n-x -x1 2
“‘¥""‘fi.T"“

n

x1+x Sn, k>0,

M"
x.=0,1,2,...,n.

J

h. . =1— .J(xJ) P]
1-p 1-pp_3 x >x1' 1 1 2

X (X-1
g(z)= 1-p2.1-ppz. 1 2

1+p-pl-p2 1+9-p ‘P21

1-92 ' 1'91
X1=X2

h. .=1—.J(xJ) P] x -1
21)p1+...]g<;)=([1+(1+x1+x2 -1

+1)p2+...] )[1+(1+x2

_ -1
hj(xj)-(xj+2)

-1gx] ]1 2
h. . = _ . IJ(xJ) k/(k+n xj)

x.=O,1,...,n
J
k-1

2

k-1

k+n-X1-X2-1

I

I

c-IFR31bc-IFR2

c-IFR319c-DFR2

c-DFR3++c—1Fa2

c-DFR349c-DFR2

c-IFR2#%c-DFR3

c-1FR2++c-IFR3

c-nFR2++c-IFR3

C-IFR1¥+c-DFR2

c-IFR17bc-DFR3



Chapter V

PROPERTIES OF A BIVARIATE GEOMETRIC DISTRIBUTION

5.1 INTRODUCTION

Arising from the discussions in the three
preceeding chapters we have been able to identify different

forms of bivariate geometric distributions that are
characterized by interesting functional forms of failure

rates and form the boundary class when these failure rates

exhibit monotone behaviour. Of these the bivariate form

specified by the survival function

P 2 P 1 2, X Ex1 1 2R(x) = x X _x (5-1)p 1 P 2 1’ X Ex2 1 2
(P DJ‘ +P Pl*P2 J 20 S , 1, 1 Z , '=1, ,

though have repeatedly appeared in literature in different

contexts, has not been subjected to a detailed investigation

viz-a-viz its distributional properties and
characterizations. The present chapter is an attempt in
this direction.
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Hawkes (1972) in his attempt to construct a
bivariate exponential distribution by generalizing to two 

dimensions a simple random shock model supposed that

two-components behave in such a way that the number of

shocks needed to lead to a failure follows a bivariate

geometric model which he derived as follows.

If A1 and A2 are two events with joint probability
distribution given by

“1 A1
A2 P11 901 P2

52 P10 900 Q2

91 Q1 1

Define Xj as the number of trails completed upto the first

occurence of the event Aj, then the probability generating
function is obtained as

P1oP2S2 P109151
¢(’1’52) = 5152 {p11+ 1-Q2s2 + 1-Qzsl + 900 ¢(S1's2)}
and hence
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1 2 1
P00 (P1o+Poo) x Ex1 2

R(g)= X X")!2 1 2 >Poo (po1+poo) x1‘“2

"here Poo+Po1+p1o+p11=1' P1o+P11<1 and Po1+P11<1'

For the relationship of the model 5.1 to that of

Paulson and Uppulari (1972) and other details we refer to

Block (1977) who also used this same model to generate

bivariate geometric and bivariate exponential distributions

introduced by various authors, through geometric
compounding. The bivariate geometric model (5.1) is a

slightly reparameterized form of the bivariate geometric

distributions considered above.

An alternative way of interpreting the model is by

the concept of non-aging. Assuming that (i), the
probability of survival of a two component system with

components of age x1 and x2 respectively is the same as that
of a new system or

p[x2x+t|x2t]= ptgzg]; 361;, ;=(t,t),te1: (5.2)
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and (ii) each of the components taken individually does not

wearout over time or

P X_2 _+t x,2t = P X.Z _ ,'=1,2. 5.3[ 3 x] I J J [ 3 x3] J ( )
The first condition simplifies to the bivariate

lack of memory property and the second is equivalent to

assuming that Xj is distributed geometrically. The unique
solution of (5.2) that satisfies (5.3) is the bivariate
geometric distribution (5.1). It may be recalled that this

fact has been proved in Chapter II.

The method of trivariate reduction can also be

employed to construct the bivariate geometric model by

making use of three independent geometric variables Y0, Y1

and Y2 with parameters 70, yl and 72 respectively and

defining X1=M1n(Y0,Y1) and X2 = Min(Y0,Y2). The
distribution of L can be observed as

> > > >
P[Y0_x1,Y1_x ,Y_x2], x _x1

> >
P[Y0_x2,Y _x ,Y

> <1 1 2‘x2]’ X X
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X X X717172 xixo 1 2 12
_ X X Xrzrlrz xixo 1 2 12

Writing r0y1y2=p, r0y1=p1 and y0y2=p2, the form of the
bivariate geometric is recovered. it should be noted that

this particular method always generates a bivariate

geometric for which pSplp2.

5.2 DISTRIBUTION THEORY

In the present section, we investigate the
distributional properties of the bivariate geometric
distribution.

1. The joint probability mass function of 3 is

f(g)=R(g)-R(xl+1,x2)—R(x1,x2+1)+R(x1+1,x2+1)

This is calculated as seen in Chapter two as

x x -x -12 1 2(pl p)(1 pl) p pl , xl>x2
x x2-x1-1

f(§) = (P2'P)(1‘P2) p 92 , x1<x2 (5.4)

(l+p-pl-p2)px , x1=x2=x
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From the condition of rectangular positively it is

evident that the parameter must satisfy the constraints

1+p2p1+p2 apart from the condition 0<pSpj<l, j=1,2.

2. As already mentioned, the marginal distribution of Xj isx.

geometric with parameter pj, j=1,2, therefore Rj(xj)=piJ

and the conditional probability mass function of Xi given
X =x_, j#i isJ J

,-1 X’ 1- , .
[ pxl [ P ] J ( p1)(p1 p) X >xi plpz (1-pj) 1 3

xi -(xi+1)f(xi|Xj) = 4 p pj (pj-P), xi<xj (5 5)
x.

(1+p p1 P2) P 3 X zx1-pj pj i j
The regression functions are accordingly

K.(1-p)(p1p2-p) P J P
E [“1'xj“j] ‘ <1-p )<1-p )(p -p) p * p —p1 2 5 j j

3. The correlation structure of 5 derives from

1E (x ,x) = plpz (5.5)1 2 (1-p1)(1-p2)(1-p)
and
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P'P P1 2

°°“ (“1'“2’ " <1-p1)<1—p2)<1—p) ‘5'7’

The coefficient of corelation r has the expression,

P"P P1 2Y = ---—j73-——- (5-8)
(plpz) (1-p)

Thus when p=p1p2 the variables are uncorelated in

which case X1 and X2 are independent as well. Notice that y
is an increasing function of p and attains its maximum value

and p . Thisunity, when p is the geometric mean between pl 2

happens when p=p1=p2 in which case the two components
survive or fail together. Further, 7 is minimum when p is

Max(0,p1+p2-1) in which case the corresponding values of 7
are

(1'P1)(1'P2)
/

/21

'(P1P2) and 1 2
(P192) (p1+p2 2)

4. The probability generating function of the bivariate

geometric distribution (5.1) is derived as

(1-p1)(pl-p)t1 (1-p2)(p2-p)t2
(1—t1p1)(1—t tzp) * (1—t p2)(1-tltzp)

s(t t ) =1' 2 1 2
+ (1+P'P1'P2)1-t t( 1 2p)
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5. A comparision of the relative life length of the
components in the system is offered by the following

probabilities

pl-p
P[X1>X2] = 1_p

p[x1<x2] = 1_p

1+9-p ‘P2
P[x1=x2] = 1-p

6. If Z=Min(X1,X2), the distribution of Z is geometric with

parameter p. On the other hand W=max(X1,X2) has a survival
function of the form

P[WZw] 1-P[W<w]

1- P[Max(X1,X2) <w]

= - _ > _ > > >
1 [1 P(X1_w) P(X2_w)+ P(Xl_w,X2_w)]

= w + w _ wP1 P2 P

7. The event Z=z is independent of the events x1<X2, X1>X2

and X1=X2. To prove this assertion we note that the
conditional probability mass function of Z given Xl<X2,
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£(z|x1<x2) P[min(X1,X2) = z|X1<X2]

= P[X1=z, X2>z|X1<X2]

= 113- p[x =z, x92-9 1 2Zz+1]

= §§§; [n<z,z+1) — n(z+1.z+1)1

= (1-9) pz

P[Z=z]

Thus Z=z is independent of X1<X2. The independence of the

other two events X1>X2 and X1=X2 with Z=z follows from
similar arguments. Our result implies that which of the two

components that fail first does not depend on the relative

maginitude of the life lengths of the components.

8. If 5 and 1 are two independent random vectors having

distribution (5.1) with plp2>p then the component wise
minimum of X and 1 also exhibit the distribution (5.1).

This can be proved as follows.

- > * >
P[M1n(Xl,Y1)_z1 , M1n(X2,Y2)_z2]
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I
"U

I—v
3

Also it follows that 0<p2Sp§<1 and since p1p2>p, 1+p22pf+p:
is implied, thus satisfying the conditions in the
parameters.

5.3 CHARACTERIZATIONS BY RELIABILITY CONCEPTS

In this section we establish some characteristic

properties of the bivariate geometric law 5.1.
Characterizations of the model by the form of its scalar

failure rate, vector failure rate and conditional failure

rates have already been proved in the previous chapters.

Another concept of direct relevance to reliability analysis

is that of residual life distribution (Nair and Asha, 1994).

When modelling equipment behaviour in reliability
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studies, concepts such as the mean residual life, variance

residual life etc... are extensively used in literature.
Such concepts and their functional forms provide
characterizations of various life distributions. Since

these functional forms arise as summary measure of the

distribution of residual life, the concept of residual life

distribution is more basic and revealing and provides deeper

insight into the failure phenomenon. It will be seen
shortly that the basic properties inherent in the residual

life distribution is responsible for the physical
characteristics governing the life length of the system.

Definition 5.1

Let X be a discrete random vector in the support+ I_ I I
of 12 — {x-(x1,x2), xj — 0,1,2,..., 3—1,2} with survival
function

+R(_x)=P[__X2§]. 22612 - (5-9)
The random vector

1(5) = (Y1(g).Y2(g)).
where

Y. = x.- ,x2 ,'=1,23(3) (JxJ|_ r) J



131

is defined as the residual life function corresponding to 3.

The distribution of 1(5) is specified by the survival
function

R(x +3’ .x +1’)1 1 2 2
s(Y1IY2Ix1Ix2) ‘ % I Y1rY2'or1r--

at all points 5 for which R(g)>0. The distribution of 1(5)

with survival function (5.10) is defined as the residual

life distribution corresponding to the random vector 5.

A most convenient property of the residual life

distribution that imparts reduction in effort to make
inferences is that the residual life distribution has the

same form as that of the orginal life distribution except

for a change in parameters. In other word the life
distribution is closed with respect to the formation of

residual distribution. It is easy to see from (5.10) that
the parent distribution and the residual life distribution

are identical in all respects if and only if X1 and X2 are
independent geometric variables, which does not provide a

meaningful bivariate model. Hence one has to relax the

condition of identical distribution for 3 and 1(g) in some
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meaningful manner so as to end up with bivariate
distributions having a dependence structure. In the
following theorem it is shown that the identical nature of

the survival functions of g and 1(3) in a subset of the

sample space is enough to characterize the bivariate

geometric model (5.1).

Theorem 5.1 (Asha and Nair, 1994 c)

If g is a bivariate random vector with a survival

function R(;) in the support of 1;, then

S(y1.y2:x1,x2) = R(1) (5.11)
for ever 3 , 1 in Qj , where

if and only if 3 follows the bivariate geometric model (5.1)

Proof:

By (5.10)

R(xl+y1, x2+y2)
S(Y1;Y2 5 Xlpxz) = —-—-——’§T;7—————

in Q
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_+ , ,+ _- ,
P 3-3 Y3‘) PX Y3 X3‘) Y3‘), _ jS(’1"2 ' "1'“2) x . x.-x

P 3-J P J 3-Jj

Y - Y.‘Y3- 3- .= p 3 p.) 3 . J=l.2
J

= R(1)

Conversely, let (5.11) be satisfied.

Then by definition of residual life distribution,

R(x1+y1.x2+y2) = R(§) R(1) (5-12)
for every 5 , 1 in Qj , j=1,2.

In particular, where x1=x2=x and y1=y2=y

R(x+y,x+Y) = R(x,x) R(y.y), (5.13)
implying X +

R(x,x) = p for some 0<p<1 and all x e I1 (5.14)

Also when x1=y1=0

R(0,x2+y2) = R(0,x2) R(0,Y2)
or X +

R(O,x2) = p2 for some 0<p2<1 and all x2 e I1 (5.15)
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similarly when x =y =02 2x1 +
R(x1,0) = pl for some 0<p1<1 and all X1 6 11 (5.16)

Now, the equation (5.10) is equivalent to

R(x1+y1.x2+y2) = R(x1.x2) R(x1-x2.0) R(y1.y2) R(Y1‘Y2.0)

for all x12x2 and yl2y2 (5.17)
and

R(x1+y1.x2+y2) = R(x1.x1) R(0,x2-x1) R(y1.y1) R(0.y2-Y1)

< <for all x1_x2 and y1_y2 (5.18)
Using (5.14), (5.15) and (5.16) in (5.17) and (5.18) and

replacing x +y by x and x +y by x the form of the1 1 1 2 2 2 '
bivariate geometric model (5.1) is recovered.

The next theorem establishes that stationarity of

the rth factorial moment of 1(g) is equivalent to the
bivariate lack of memory property.

Theorem 5.2:

If 3_is a discrete bivariate random vector in the

support of I; with survival function R(g) then
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where Y(r) = Y(Y-1)...(Y-r+1), for any two consecutive+ + _ ,
values of r and all 5,1 e 12, t e I1, if and only if 3
satisfies the bivariate lack of memory property.

Proof:

Consider

E z(‘)(;:_) = [ E Y§r)(;),E Y§”(g)]
where,

EY{"(;)=E<(xl—x1>“’Izzg),

-1 ‘’° (r)
=[R(£)] 2 Y1 [R(x1+y1.x2+y2)-R(xl+yl+1.x2+y2)1

¥1=0

When the bivariate lack of memory property is satisfied,

E Y§r)(x1+t,x2+t) = [R(xl+t,x2+t)]—l
GJ

goyir) [R(x1+y1+t,x2+y2+t) - R(x1+y1+t+1,x2+y2+t)],
Y1

=[R(§)R(t,t)]-1

m (r)
Y Eoyl R(t.t)[R(x1+y1,x2+y2)-R(x1+y1+1.x2+y2)J.

1

(r)
E Y1 (5)
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Similarly,

E Y;r)(x1+t,x2+t) = E Y;r)(g)

Thus condition (5.19) holds for any r=1,2... and 3, 1 e 1;,

teI:. To prove the converse, note that
(D

E r{"’<1> = tamfl 2 xi" [a<x1+y1.x2+y2>
y1=0

- R(x1+y1+1,x2+y2)].

= [l(r)-0(r)] R(x1+1,x2+1)

+ [2(')- 1(r)] R(x +2,x +2) + ... ,1 2
Q

' E [ yir)-(Y1-1)(r)[R(x1+y1,x2+y2).
y1=o

03

= r E [(yl-1)--.(Y1-r-1)[R(x1+y1.x2+y2).

(r)[R(x1+y ,x1 2+y2). (5.20)
(X)

= r 2 (Y1'1)

Changing xl to x1+1,

(r)(x +1 x )= E ( -1)(r-1)[R(x + +1 x + )1 1 ' 2 = ’1 1 Y ' 2 Y2
Y1 0

R (x1+1,x2) EY 1
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Subtracting the above from (5.20) we get

[R(;)]E Y§r)(g) — R (x1+1,x2) E Yir)(x1+1,x2)
on

= )3 (y —1>"‘1’[a<x +y x +y ) — nux +y +1 x +y )11 1 1' 2 2 1 1 ' 2 2 '
yl=0

= R (x +1 x ) E Y(')(x +1 x )1 ’ 2 1 1 ' 2 ’
which implies

R(x1+1,x2) - E Y§r)(;)
R(x1+t'x2+t) E Yir)(xl+1,x2) + E Y§r—1)(x1+1,x2)

When (5.19) holds

R(x +t+1 x +t) E Y(r) (x +t x +t)1 ' 2 _ 1 1 ’ 2
(“1+t’“2+t) E yir)(x1+t+1) + E Y§r"1)(x1+t+1,x2+t)

(r)_ E Y1 (3)_ (r) (r-1) '
E Y1 (x1+1,x2) + E Y1 (x1+1,x2)

R(x +1,x )_ 1 2 + +- R(£) for all 5 e 12 ,t e I1 . (5.21)

Similarly it can be proved that
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.1! +1)2 1 2 +
R(x1+t’x2+t) - R(£) for all 3 6 I2 , t e I (5.22)

R(xl+t,x +t+1) R(x
l‘+

That the equation (5.21) and (5.22) imply the

bivariate lack of memory property has already been proved in

Theorem (3.5) in Chapter III.

Corollary 5.1

If 3 has geometric marginals then (5.19) is
satisfied if and only if 3 has the bivariate geometric
distribution (5.1).

5.4 CHARACTERIZATIONS BY DISTRIBUTIONAL PROPERTIES

In the present section, we characterize the
bivariate geometric law using its distributional properties.

First we prove a characterization on the marginal and

conditional distributions of the same component, which

incidentally also provides a characterization of the
univariate geometric distribution in terms of the bivariate

distribution.
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Theorem 5.3.

If X is a random vector with support I; such that

the conditional distribution of X1 given X2 is of the form

(5.5), then X1 is geometric with parameter pl if and only if

X2 is geometric with parameter p2.
Proof:

If X2 is geometric, then its probability mass
function is

X
2f2(x2) - p2 (1 - p2), x2e I (5.23)I-'+

Using the expression for f(xl|x2) from (5.5) and

that of f2(x2), the joint probability mass function of X
turns out to be

f(x1,x2) = f (xl|x2)f2(x2)

r x1—1 P *2
pl [ 3 J (1-p1)(p1-P), x1>x21

x x -x -1
=<p11 (p2- p)(1 -p2)p2 2 1 x1<x2 (5.24)

X

L (1+p-pl-p2)p x1=x2=x.
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Summation of (5.24) over the support of X2 yields

"1fl(xl) = pl (1-pl). x =O,1,2,...

Conversely, assuming X1 to be geometric and f(x1|x2) to be
as in (5.5),

x x1_1 x -1 X2 (1-9 )(p -p)
(1-p1)p11 = P11 [——g‘] "jj%“jl-- f2(x2)x2=0 P192 92

1+p—p1-p2 P X1* :17 T f2"‘1’2 2
w x1 -(x1+1)

+ 2 P1 P2 (p2-p)f2(x2)- (5 25)x =x +12 1

When x1 = 0 we have from (5.25),1+ - - 
(1-9):  f (OH  Ef (X,1 1-p2 2 p2 x =1 2 2

2

Which is equivalent to writing

1*P‘Pl'P2 P2'P1- = —————————— 1-R 1 + ._—.—— R 1(pl) [ 1_p2][ 2()1 [ P2]2<>
On simplification

R2(1)=p2, so that
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f2(0)= 1-R2(1) = 1-p2.

Similarly when x1: 1, we have from (5.25),
P -p

p1(l-pl) = (1‘P1)(P1‘P)+P(1+P‘P1‘P2)+P[——fi3—-] R2(2)2

So that
2

R2(2) - 92.

In general let the result be true for x2=x1. Then from
(5-25).

x1 x1-1 “1'1 P *2 x1
(1-p1)p1 = P1 (1-p1)(p1-p) E [E—] + (1+p-pl-p2)px =0 1

2

P2‘? P X1
+ E———J P——J R2(x1+1)P2 P2

Thus
x +1

R2(x1+1) = p2 ,
which proves our assertion.

Corollary 5.3

The conditional distribution of X1(X2) given X2=x2

(X1=x1) is of the form (5.5) and X1(X2) is geometric is a
necessary and sufficient condition for 3 to have a bivariate

geometric law.
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The proof follows directly from Theorem 5.3 and

equation (5.5).

Theorem 5.4

The vector 3 has the bivariate geometric law 5.1

with p p <p if and only if there exist independent geometric1 2

variables Y1, Y2 and Y3 such that X1 = Min(Y1,Y3) and

X2=Min(Y2,Y3).

Proof:

If Y1, Y2 and Y3 are geometric with parameters yl,

r2 and r3, X1 = Min(Y1,Y3) and x2=Min(Y2,Y3) then,

X1 X2 X X >x71 72 73 ’ 1‘ 2
R(g) = P[Y12x ,Y Zx ,Y

> :1 2 2 ‘“a”(“1'"2)]3 x x2 x3 >71 72 73 ' “2“1

Taking p =r1r273, p1=y1y3 and p2=r2r3 the form of

the bivariate geometric in (5.1) is recovered. Conversely,

if K has the bivariate geometric law (5.1) with p1p2<p,

there exist number 0<rj<1, j=1,2,3 such that
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that satisfy the conditions on the parameters. To see this

note that

(1-r3)+(1-r1)(1-r2)r3 ++ l+r3{(1-r1)(1-72)-1}20

efi 1+Y3(Y1Y2‘Y1‘Y2}Z0

*” 1+717273"7173'72732°

e” 1+71727337173+7273Z°

## 1+pZp1+p2.

Also obviously p<pj, j=1,2 and p1p2<p. We can solve for rl,

yz and ya as: l : I :71 (P/P2) 72 (p/pl) 73 (plpz/p) ( )

Now choosing rl, y2 and y3 to be the parameters of
independent geometric random variables Y1, Y2 and Y3

respectively. We can write (5.1) with plp2<p as

"1 *2 "1 X >x71 72 73 ’ 1‘ 2
R(£) X 1'! X3 >71 72 73 ’ ”2‘“1

> > > >
P[Y1_x1,Y2_x2,Y3_x1], x _x

> > > >P[Y1_x1,Y2_x2,Y3_x2], x _x
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P[Min(Y1,Y3)Zx ,Y1 22x2], x >x> ' > >P[Y1_x1,M1n(Y2,Y3)_x2], x _x

+: ' 3* ° >P[H1n(Y1,Y3)_x1,M1n(Y2,Y3)_x2] for all §EI2 Hence
our assertion.

Note:

Let us consider the bivariate geometric

distribution p=1/8, pl=3/8 and p2=5/8. Evidently
o<p<p1,p2<1 and 1+p=9/8> p1+p2. But p1p2=l5/64 {1/8. In

this case there does not exist a representation of p,pj,
j=1,2 in terms of 0<yi<1, i=1,2,3 as in (5.27). Since
?1=(p/p2)=1/5, r2=(p/p1)=1/3 and r3=(p1p2/p)=15/8>1
Therefore it is necessary that p p1 2<p for 0<y3<1.

Theorem 5.5

The bivariate random vector g=(x1,x2) in the

support of I; with geometric marginals has the bivariate
geometric (5.1) if and only if

(i) Z=min(Xl,X2) is geometric.

(ii) Z is independent of V = (X1-X2).
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Proof:

Assume that 3 has bivariate geometric (5.1). Then

the probability mass function of g is

x x -x2-11(pl-p)(l-pl) p pl . x1>x2

x x2-xl-1
f(;) =< (P2‘P)(1‘P2) p P2 x1<x2

(1+p-P -p )px x =xL 1 2 1 2
Now the joint probability mass function of Z=Min(X1,X2) and

V=(X1-X2),

rp“ p“'1(1—p >(p —p> v>1l 1 1 —
r(z,v>= «pz p;‘"*1’<1-p2><p2-p> vs—1 (5.29)

Lpz (1+p-p1—p2) v=0

and zelg.
The marginal probability mass function of Z and V are

respectively
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{ V_1 (1-p1)(p1-p)p ————— v211 (1-9)1. ..
f (V): ‘ p—(v+1) Y p2)(p2 p) VS_11 2 (1-p)

1+9-pl-p2 v_0
L “P

and z +
f2(z)-p (1-p). zeI2.

Thus Z is geometric and further f(z,v)=fl(z)f2(v), which
implies that Z and V are independent. Conversely, if (i)

and (ii) holds, then for x2Zx1

> > = > > < < >
P[x1_x1,X2_x2] P[X1_x2,X2_x2]+P[x1_X1 x2,X2_x2],

= P[ZZx2]+P[x1SX1<x2,-X25-x2],

: > < < _. < ._
P[Z_x2]+P[x1_X1 x2,X1 X2_X1 X2],

K2-I

= P[ZZx2]+ E P[Z=z,VSZ-x2],
z=x1

xi:
= P[Z2x2]+ E P[Z=z]P[VSz—x2]. (5.29)

z=x1

Now,
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P[X1=x ,X2Zx2] P[X12xl,X22x2]-P[X12x +1,X 2x2],1 2
P[V:x -x2]P[Z=x1],1

X1

P[VSx1—x2]p (1-p).
Now consider

x2+t-I

R(x1+t,x2+t)= P[ZZx2+t]+ E P[Z=z]P[VSZ-(x1+t)]z=x +t
1

Also,

P[X =t,x 2x +t] = P[VS-x ]pt(l-p).1 2 2 2
P[x =t+1,x Zx +t] = P[VS1-x ]pt+1(1-p).1 2 2 2

P[X =t+i X >x +t] = P[V<i-x ]pt+i(l-p).1 ' 2- 2 - 2t . '
= p P[VS1-x2]p1(1-p).

' tP[X 'i X >x ]' P 1" ' 2‘ 2 '
Thereforem t m: ' 3' : : ' >
igx P[X1 t+1,X2_x2+t] p igx P[X1 1,X2_x2].1 1
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which implies

R(x1+t,x +t)=R(t,t)R(x1,x2) for x Sx .2 1 2
Proceeding in a similar manner for x1Zx2 we obtain

R(x1+t,x2+t)=R(x1,x2) R(t,t) for 5 e13.

That this functional equation which is the bivariate lack of

memory property along with geometric marginals gives the

unique solution for R(.,.) of the bivariate geometric law

has already been proved in Chapter II.

Theorem 5.6

Let 5 and 1 be two independent and identically

Z )distributed random vectors with support lg. Then z=(z1, 2

where Zi=Min(X ,Yi) i=1,2 has bivariate geometric law if andi
only if 5 and 1 are distributed as the bivariate geometric

law (5.1) with p1p2>p,

P[Z2z] P[ZZzl,Z22z ],2' > ' >
P[M1n(X1,Y1)_z ,M1n(X2,Y2)_z2],1

> > > >
P[X1_z1,Y1-z1,X2_z2,Y2_z2],

since 3 and 1 are independent.
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> : > > > >P[Z_z] P[x1_z ,X _z2]P[Y1_z ,Y -22]1 2 1 2
r 22 z1"z2 Z2 z1'z2
< P P1 P pl , 212 z2

pz1pz2_z1 P21 pz2_z1’ Z 3 Zx 2 2 1 2
Z Z ‘Z, 2 2 2 1 2 ,(P ) (pl) . zl- zz

=+ Z Z ‘ZL 2 2 1 <k (p ) (P2) . 21- 22
2 2 .

That the parameters satisfy the conditions o<p Spj<1, J=1,22 2 2 , . .
and 1+p 2p1+p2 follow directly. Hence Z has the bivariate2 2
geometric law with parameters pi, p2 and p . The converse
is obtained by retracing the steps.

Theorem 5.7

If Xland X2 are geometric variables and Z in the
support of non-negative integers is independent of X and X1 2
such that

_ > - > = _ > - > > >
P[X1 z_x1+t,X2 z_x2+t] P[x1 z_t,x2 z_t]P[x1_x1,X2_x2] (5.30)

for every x1,x2,t=0,1,2,... if and only if X has bivariate
geometric law (5.1).
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Proof:

= - Z , - Z , ' 5.30If S(x1,x2) P[X1 2 x1 X2 z X2] condition ( )

reduces to the functional equation

S(xl+t,x2+t)= S(t,t)R(x1,x2); 361:, tel: (5.31)

Now since

s( ) — s(0 0)R(t t)R( ) eI+ teI+xlrxz ' I I xlrxz I L 20 1
equation (5.31) becomes

++

R(xl+t,x2+t)S(0,0) - S(0,0)R(t,t)R(x1,x2), gelz, tell

which is the bivariate lack of memory property. The Theorem

is now evident.

The next theorem is a modification of the above

result in which we remove the, restriction on Z to be

independent of 3.

Theorem 5.8

Let 3 be a discrete random vector in the support

of I; with geometric marginals. Let Z = Hin(X1,X2). Then

the random vector (X1-Z,X2-Z) is independent of Z if and
only if X has bivariate geometric law 5.1.
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Proof:

The conditional distribution of(X1-Z,X2-Z) given
Z=z is

P[Xl=u1+z,X2=u2+z]P[z=z] (5.32)P[X1-Z=ul,X2—Z=u2|Z=z] =

When 3 is distributed as the bivariate geometric law by

direct calculation of the quantities involved in (5.32)

u u -u -11 2 1
(1 p2)(p2 P), u1<u2

P[X1-z=u X -z=u2|Z=z] = p p1. 2 (1-p1)(p1-p) u1>u2

which is independent of 2. Conversely let (x1—z,x2-z) be

independent of Z. Then G(u1,u2) = P[X1-z=u1,x2-z=u2|Z=z] 1s

a function independent of z for all gelg, zeI:.

+z,X =u +z] = G(u1,u2)P[Z2z], for all gelg, zeI+.P[x1=“1 2 2 1
Which is equivalent to

+

2, zeI:. (5.33)R[u1+z,u2+z) = G(u1,u2)R(z,z) for all gel
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In particular for z=0, from (5.33) we obtain
+

R(ul,u2)=G(u1,ui) for all geI2

Thus (5.33) can be rewritten as + +
R[u1+z,u2+z) - R(u1,u2)R(z,z) for all geI2, zell. (5.34)

which is the bivariate lack of memory property. As seen in

Chapter II the bivariate lack of memory property when solved

along with the assumption of geometric marginals yields the

bivariate geometric model (5.1).

Let (X,Y) be a continious non-negative random

vector admitting a survival function S(x,y) = P[x>x,Y>y].

Further assume that for some r, s>0 (xr,YS) be a discrete
4»

random vector in the support of I2 with= > >Rr S(u,v) P[Xr_u,Ys_v]I

P[X2ur,YZvs] = S(ur,vs) (5.35)
at points u,v for which 0<S(u,v)<1.

Theorem 5.9. (Asha and Nair 1995)

The distribution of (X,Y) is Marshall-Olkin
bivariate exponential with survival function
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—A x —A y-A max(x,y)
1

S(x,y) = e 1 2 12 , k1,A2,A12>0, x,y>0
if and only if for every r,s >0

Rr s(u,v) = S(ur,vs) (5.36)
where

pv p:_V. u2v

R ’s(u,v)=

PU p:‘U. uSv, 1+p2p1+p2.0<pSpj<1.j=1.2.p1p2<p

Proof: When condition (5.36) is satisfied

pv p:_v, u2vS(ur,vs)= (5.37)
P” p:*U, usv. l+p2p1+p2. 0<pSpj<l . j=1.2,

so that

P1 = S(r.0) , p2 = S(0.s) and p = S(r.s)
Thus

[S(r,s)]" [s<r,o>1“‘" uzvS(ur,vs)= (5.38)
[S(r,s)]" [s<o,s>J“'“ usv.

Setting v=0

S(ur,O) = [S(r,0)]u
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writ ing g(r) = [S(r,0)] we get

g<ur) = tg<r>1“ . r>o (5.39)
When r = 1/u ,

9(1) = tg<1/u)J“

1/u
9(1/u) = [ 9(1) ]

and for r = 1/m

g<u/m) = [g(1/m>1“

= [g(l)]u/m for m e 1:.
Define

a = -log g(1) = -log S(1.0)

Thus

g(y) = [g<1>1’

= e_aY , y>O, a>0,

where y is any positive rational number. Now there exist

sequences y; and y;' satisfying ya 5 x S y&' and
lim yé = lim y;' = x, for irrational x. Since g(.) is
non-increasing this would mean that g(r) = e_ar for all r>0

and some a>0. Similarly, by setting u=0.
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S(0,s) = e—bs , b>0, s>0

where b = -log S(0,1)

Equation (5.38) can now be written as

[S(r,s)]V e_ar(u_V) u2vS(ur,vs) = (5.40)
[S(r,s)]u e-br(v—u) uSv.

Now, v=u , r=s=x

S(xu,xu) = [S(x,x)]u (5.41)
with

G(x) = S(x,x) , equation (5.41) becomes

c<xu) = [G(x)]"

By similar arguments from (5.39)

em = tam)"
= e-ex , x>0, c>0

where c = -log G(1) = -log S(1,1) and x is some positive

real. Thus in (5.40) setting r=s=x

[S(x,x)]v e_ax(u_v) , uZv
S(xu,xv) =

[s(x,x)]“ e’b“("'“) , uSv
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-cxv -bx(u-v)e e , uZv

_ e-cxu e—ax(v-u) I usv.
or

-cyl -a(x1-Y1)e e , x 2y
1S(x ,y ) = (5.42)1 1 -cx -b(y -x )elell x<; 1-Y

Where xu=x1 and xv=y1. Since coordinate wise convergence of

rationals to reals is enough to guarantee such convergence

in n;={(x,y)|x,y2o} , it follows that (5.42) holds for all
reals.

Since S(x ,y,) is survival functions S(x,y)
decreases monotonically which implies

S(x,x) S S(x,0) 6» e~cx S e—ax #9 c Za

cx -bx
IA (D 1 0 IV D‘S(x,x) S S(0,x) +4 e

Let A2 = c-a and A = c-b and A12 a+b-c.1

Since S(.,.) is a survival function,

G(x) = 1- S(x .0) - S(0,x ) + S(x,x) Z 0, for every x
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—ax -bx -cxG'(x) = a e + b e — c e IV 0

lim G'(x) = a +b -c 20
x—+O

Thus A12 2 0. Since k12+Al+A2 = c , X +A =
a, the survival function (5.42) is

-(K1+K12)(x-Y) >e x_y
-(K2+R12)(y-x) <E )(_YS(x,Y)

—(A1+A2+x12)y-(k1+Al2)(x—y) >e x_y
—(Al+A2+x12)x-(X2+A12)(y-x) <e x_y

-klx-A= e
y—A max(x,y)2 12

,k1,X2,k12>0, x,y>0.

Conversely if for any r,s>0

mar(ur,sv)-X ur-A2sv—A12R (u,v) = e 1rs

Setting ur = xu

—A1xu —X2xv —X12x max(u ,v )R (u,v) = ers

b and A1+k12

+

and vs = xv‘ for somax>0 and u’, V E I2
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II (Dwhere r1 = e , r = e r = e and 3
Since the above two form of R(u,v) must agree at the

boundary for which u=v, one must have V3=W .4

pvlp;.ll_vl’ u'2v'

puVp:I_ul, u'Sv'

Where p = rlrzra, p1 = rlra , p2 = r2r3. Thus the proof is
complete.

5.5 ESTIMATION OF PARAMETERS.

When the process of model selection as the

bivariate geometric distribution (5.1) is completed either

on the basis of the physical characteristics of the problem

at hand or on the basis of the similarity to the properties

the model possess, the second stage is to examine its

reasonableness in the light of the data. While this can be

done exactly through an appropriate characterization
theorem, one often has to attend to the question of fitting
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the model to the given data. This requires some reasonable

estimates of the parameters and therefore problem of
estimation of the parameters of the bivariate geometric

distribution (5.1) is undertaken in this section for the

sake of completion of the modelling procedure. The

discussion aims only at providing some rough and ready

estimates rather than looking comprehensively into the

inferential procedures and assessing their relative merits.

5.5.1. METHOD OF MOMENTS

p of theFor estimating the parameters p, p 2ll
bivariate geometric distribution (5.1), by the method of

moments we make use of the fact that the marginals are

geometric with parameter p p and Z=Min(X1,X2) is also1' 2
geometric with parameter p. Therefore

: T I j1I2
and
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Let (X1i,X ); i=1,...,n denote a random sample2i

from the bivariate geometric (5.1) and Zi=Min(x1i,x2i).
Defining

' 1,2
n[~1::

N 0.:
u

and

and p of p , p and p are obtained bythe estimates p , p2, 11

solving the equations

j - .____. : x I J:]_’21- .P]

p = 1_p z.
Thus

- Ia].
Pj : _ I j=]-I21+x.

and

P = ——j
1+z

The sampling behaviour of these estimates will now

be investigated. From the earlier discussions, it follows

that Xli, X and Z1 follow geometric distribution with2i
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n

parameter pl, p2 and p respectively. Consequently 2 X11,n n 1:1
Z X21 and Z zi have negative binomial distributions withi=1 i=1

parameters (p1,n), (p2,n) and (p,n) respectively. Hence

- R.
E(p.) =E[ 3 JJ 1+x.

3t1 n
=E[ n+t ] where t1 = ‘E xli1 1=1
” t1 n+t -1 t1 n= E n+t 1 1 (1'p1)t1—0 1 t1m m t+t -2 1 1 +t -2 1= (1-9 )n E n - E n 1 p1 1 n+t 1t1=1 n-1 t1=1 1 n-1m tn 1 +t -2 1

= P1 ' (1-91) 2 n+t [n 1 ] 91t =1 1 n-1
1

Thus the bias in the estimator pl is given by

II F] »\ ‘OI
I-‘

ya
I

"UBias(p1)

09

= E 1 ["+t1'2] p11. (5.43)
1
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The bias of p2 and p follow in the same manner.

5.5.2 METHOD OF MAXIMUM LIKELIHOOD

a. If a two component system is connected in series,

the system fails when any one of the component fails and

accordingly in such a system the interest is in

Z=Min(X1,X2). when the life times follow the bivariate
geometric (5.1), in such a system, instead of the usual
procedure it is more advantageous to have a sampling scheme

in which Min(X1i,X ) is observed, which will be2i

called a series sampling.

n

In a series sample of size n, with n = E 6 .,1 1:1 11n n
n2 = -Z 62i and n3 = If 631 where1=1 1:1

1 if X, >x . .
éji : J1 (3 J)1' j:]’20 otherwise

and 631: 1-611-62i, the likelihood becomes

L(p.p1.p2|n1.n2.n.z)

_ :21 (1_ )n P1’P "1 P2"? “2 l+p_P1‘P2 """1'“2P P 1- 1—p 1-p
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and the likelihood equations are

aln L _ 221 _ “1 _ "2 "3 _
0p p P1'P P2'P 1*P'P1'P2

Bln L _ nl _ n3 _
091 pl-p 1+p-pl-92

aln L _ "2 _ "3 _a ’ - 1 — - ’p2 p2 p +9 pl p2

which when

22,
1

05 ) - n+Zz.
1

solved gives

n +22, ,A ‘ 1 and 'pl n+Zzi P2
n2+Zzi

n+Zz.
1A no

Notice that p is same as p the moment estimator of p.
n

Since 2 z., 11=1

and 6: (61,
A

E(p1)

where

= 2 has negative binomial with parameter (p,n)

Pl'P P2'P616 . I I'jI—‘_‘2 3) a mult1nom1al[1 1_p 1_p]
n +z

emn+z

+z

= E [E [D12 n n+2

n6 +zam2 n+z

2]]
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Bias(p1) = E(p1) - p1

= (1_ )n E 1 _ 23$ n+z-1 zP1 0 n+z-1 n+z n-1 P1

The bias of p2, can be derived in the same manner.

b. When the components are connected in parallel

apart from Z = Min( x ,X2) and 6=(61,62,63) we need observe1

) thenHax(X1,X2) also. If Wi= Max(X ) - Min(X1i,X1i'x2i 21
the joint probability mass function of(Zi,Wi,6) is given by

f(z,w,6,61,62) = f(z)f(61,62)f(w|61,62)- 5 - 5 - - 6
= pz (1_p) [P1 P] 1 [P2 9] 2 [1+P P1 P2 ] 31-p 1-p 1-p

wél 61 62 wé 6
p <1-pl) <1-p2) P2 2 [I<u=o)1 3.1
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Thus the likelihood isZ6 Z6 2 6
L = pzzi (P1‘P) 11 (P2'P)z62i (1+P‘P1‘P2) 3i plwi Ii

(1_ )z51i (lfl )z52i Zwézipl p2 P2 
The equations to be solved for the parameter values are

221 _ n1 _ n2 n3 
p P1'P P2‘P 1+P‘Pl‘P2

Z 6"1 _ "3 "i 11 _ "1 _0pl-p l+p-p -p2 pl 1-pl

n2 — n3 + ZW162 _ n2 :0
P2“P 1+P‘P1'P2 p2 1-P2

Let P[x1>X2]=9 P[X1<X2]=92 and P[X1=X2]=93=1-61-62.1!

in a sample of size n, the probability that there are n1

observations for which x1i>x2i, n2 observations for which

X1i< X21, 1s

n! 1 2 3
’*“’1'92'93 |“’ ‘  91 92 93

where n3 = n-nl-n2, the multinomial distribution, Thus
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61=nl/n, 62=n2/n, 63=n3/n inherit all the properties of the
maximum likelihood estimates of the parameter of a
multinomial distribution.



Chapter VI

SOME MULTIVARIATE EXTENSIONS.

6.1 INTRODUCTION

In connection with the study of life times in
discrete time, the main bivariate models encountered were

i) bivariate geometric with independent marginals specified

by the survival function , +
0<pj<l,]=1,2, gelz (6.1)

p 6 ; 0<9S1,0<pj<1,j=1,2,

1+p62p +p xeI+ (6.2)1 2' _ 2

iii) bivariate distribution with geometric conditionals

(Nair and Nair (1991)) specified by probability mass

function

"1 X2 x1“2
R(g) = apl p2 6 ; 0<6S1,0<pj<1,j=1,2, (6.3)
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where

m pr m P5O‘-1_ Z 1 = E 2r s
r=0 (1-p29 ) s=O (1-p19 )

and the

iv) bivariate geometric law specified by the survival
function

x x —x
2

p 2 p11 ; x1Zx2; 0<pSpj<lRm = X X _x (6.4)1 2 1_ < _ > ._P P2 , x1_x2. 1+p_p1+p2,J-1.2

These distributions arise as boundary classes of

monotone failure rates or are characterized by simple
functional forms of their failure rates.

It is of natural interest to explore the
extensions of the bivariate concepts so far discussed and of

the corresponding distributions in the general multivariate

cases. Though most of these multivariate generalizations

can be obtained as straight forward extensions, in some

cases the conditions attached to them become more

restrictive and demanding. In this chapter we briefly
sketch the multivariate forms of the definitions and models
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since the ideas were already conveyed in the bivariate case

itself. The proofs and explanations in the more general

cases are only touched up on in the following discussions.

Let §=(X1,...Xn) be a discrete random vector
representing failure times of a n—component system in the+ .
support of In={(x1,...,xn)|xk=0,1,...,k=1,2,...,n} with
joint survival function

Rn(g) = PIXZLJ

and probability mass function

f = P 2n(.zr.) [X .22]

where 5 =(x ,x ,...,xn) and 52; implies X Zxk k=1,2,...,n.1 2 k
6.2 SCALAR FAILURE RATE. . + . .

The scalar failure rate in In discussed in section
1.1 has the following properties.

fr(xl,x2,...,x )
1. If a (3) = —~——————————————: then a (5):r=1,2....nr R (x ,x ,...,x ) rr 1 2

determines the corresponding Rn(x1, x2, ., xn) uniquely.
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Proof:

An relationship analogous to (2.2) and (2.3) can

be obtained as

R (x) = R (xl, ,xk_l, xk-1, xk+1, ..., xn)

on 03 CD' E --- E E
t1‘“1 tk-1'"k—1 tk+1'”k+1

M

t Fx Rn(t1' "tk-1'xk_1'tk+1'tn)D II

a(t1,...,tk_1,xk-1,tk+1,tn)

for k=1,2,3,...,n; gelg. (6.5)

The proof follows in the same manner as the bivariate case

after noticing that Rn_1(x .x ) = Rn(xl,...,xn_1,0).1"' n-1

2. The random variable X1,X2,...Xn are independent if and
only if n +

an(z) = n h(xr); gel“r=1

3. The scalar failure rate

ar(g) = C for r = 1, 2, ... n
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if and only if Xl,X2,...,Xn are independent geometric
variables.

4. A random vector g in the support of I; has scalar
failure rate of the form.

3 (5) = r.i1,i2,.. ,1r '

xi >xi >...>xi =xi =...xi >...>xi ,k=1,2,...,r,l 2 k k+1 k+3 r
j=0,1,2,...,r-k, r=1,2,...,n (6.6)

for each (i ,i1 2,...ir) is the permutation of (1,2,...,r), if
and only if Rn(§) has a survival function of the form
specified by

x P1 1 *1 P1 1 1 *1 P1 1 1 1 “1i 1 2 2 1 2 3 3 1 2 3 n n1 1 1 1 11 P1 P1 1 P1 1 ..11 1 2 1 2 n—1
x Zx,Z .Zx (6.7)1 11 2 n

The parameters are such that

0<p, ,...,p, £...Sp_ , Sp ,p ,. ,p <111 1n 11,12 1 2 n
911,12, ,1k =P123.. k f°’ k=2""'“
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and

1- 3 p — g p +...+(—1)" p 20.kzl k k<1 kl 123...n
Proof:

The proof can be arrived at by the principle of
mathematical induction. That the result is true for n=1 and

n=2 has been proved in Theorem 2.5. Assuming that the

result holds for r=n-1, by repeatedly using 6.5, the result

can he arrived at as in the bivariate set up. To illustrate,

let x1) x2) ... >xn. Then if ar(g)=Cn'12.._n; x1>x2>...>xn
(6.5) can be written as

Rn(;) = Rn(xl,...,xn_1)

m m
_ on 12‘ n t ;x .t 2 _x R (t1,. .,tn_1,xn-1)1’ 1 n-1‘ n-1

For x =1
D

R (xl. ,xn_1,1) = Rn_1(x1. . ,xn_1)

m m
' Cn.12 .n E ‘ E Rn-l(t1' 'tn-1)t =x t =x

From (6.7)
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x- p x p x1 12 2 12... -1 -1
Rn(x1,...,xn_1,1) = pl [E——] ... [——————2——] n1 P12...n-2

°n.12...n P1P12 P12. .n-21- (1-9 )(p -p ) (p -p1 1 12 "' 12...n-1 12...n—1)

Repeating the above procedure for xn=2,3,..., xnml, we
obtain

*1 P12 *2 P12 ..n-1 xn-1R (5) = p ———" 1 P1 P12 n-2
Cn.l2...n p1pl2 "' p12...n-2 xn1' <1- >< - ) (p -pP1 P1 P12 "‘ 12...n-1 12...n—1)

for x >x >...>x1 2 n
Proceeding on similar lines for other regions,

Rn(g) as in (6.8) is recovered along with the conditions on
the parameters.

6.3 VECTOR FAILURE RATE.

An direct extension of the vector failure rate of

Nair and Nair (1990) to the multivariate case has the
following definition.



174

Definition 6.1.

The vector failure rate of a n dimensional random+ .
vector 3 in the support of In is defined as

h(g) = (b1(x)....,bn(;))

U’ /\ M \r
II P x,= _ xz[ 1 x1|_ 5]

1-[R(x1,...,x,1_1,xi+1,x_1+l,....xn)/R<;>1 (6.9)

1. The failure rate Q(g) determines the distribution of 5

uniquely through the formula.

x -1
1

Rn(x)—rU0 [1-b1(x1-r-1.x2.....xn)]

x2—l

:90 [1-b2(0,x2-r-1,. ,xn)]

xn-1

rflo [1-bn(0,0,...,0,xn-r-1)] (6.9)
as seen from (6.8).

The results concerning the behaviour of §(g) under

independence and the model characterized by constancy of
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b(g) can be obtained using the same logic as in the
bivariate case. However, multivariate model characterized

by the local constancy of b(g) as an extension of the
equation 1.9 needs some elaboration in View of the
conditions needed for its validity.

2. A random vector 3 has a multivariate geometric
distribution specified by the survival function

n xi xixj x1x2...xn
Rn(§)= (iglpi ) (igjpij ) ... (p12___n ) (6.10)

where

0<pi<l, 0<pij,pijk,...,p12_"n <1
and

D- - _ >
1 § pi §<§ pipjpij +,...+( 1) p12...n_0.

if and only if its vector failure rate is of the form

b(g)=(b1(g:),...,bn(§:)) for all 3 (6.11)
where

*

!k = (”1’ "xk-1'xk+1""'xn)
Proof:

When the distribution is as stated in (6.10)



176

1 b ( )— ( xi)( xixj) ( x1...,xi_1,xi+1, .xn)1¥‘Pi .".P1j U pijk ""’12...n1<3 i<3<k
(6.12)

which is independent of xi for all i = 1,2,...n. Thus the
conditions is necessary. To establish the sufficiency part,

we use the method of induction. In the bivariate case the

failure rate having the functional form* * +
h(s)=(b1(x1),b2(x2)) for all X612

characterizes the distribution (6.10) for n=2. Assume that

the conditions holds for every subset if m variables in X.

Then, let 1 b *i(x1,...,xm+1) —Bi(xi).
Thus,

* xi
R(x1,x2,...,xm+1)— [Bi(xi)] R(x1,...,xi_1,0,xi+1, ,xm+1)

* xi xj
- [Bi(xi)] ( n pj )

( n xjxk) ( x1x2,....,xi_1,xi+1, . ,xm+1)p, ... p
j<k 3k 12...m+1

j=l,2,...,m+1,j¢i. (6.13)
For i=1,2,...,n we can write equivalent expressions for

R(x1,x ,...,x ). Dividing each of them by2 m+1
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m+1 xi x xj x]x2...x

and taking (x x ... x )th root we find1' 2' ' m+1
-1(x x .x )

* x1 xlxj x1x3...xm+1 _1 1 2 m+1
B1("1)[P1(." P13‘ )"'("13...m+1 )1j#1

-1(x x x )
_ B (x*)[ x2( xzxj) ( x2x3...xm+1)]_1 1 2 m+12 2 P2 ." P23‘  P23...m+13#2

-1(x x )... 1 m+1* xm+1 xm+1xj x1 X -1
_[Bm+1(xm+1)[pm+l ( npm+1 3 )"'(p1. .m "5] J

j?1m+1

This however means that

-1

* xi xixj x1...xi...x"5 _1 (x1x2 'xm+1)Bi(xi)[Pi (.".Pij )"'(p1...i...m ] = a constant
3:11

lndependent of x1,...,xm+1, say, p12'..m+1. Then

* xi xj x1...xi_1xi+1...xm+1
Bi("i) "P1 (jgipij )"'("12...m+1 ) “'14)

Subtitituting (6.14) into (6.13) we recover the survival
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function (6.10) for n=m+1. The conditions on the parameters

are obtained from the relationships> ': _, Z_R(x1,...,xi_1)_R(x1,...,xi), 1 1,2,...,n and f(0,0,.. 0) 0

Multivariate lack of memory property.

Definition 6.2

Let 3 be a n - dimensional random vector with

survival function Rn (5) with support 1;. Then 3 is said to
possess the multivariate lack of memory property if and only

if

Rn(x1+t,....xn+t) = Rn(§)Rn(L)+ +
for all gel“ and t=(t,...,t) where tell.+ + _
3. For all xeln and t=(t,...,t); tell the following
statments are equivalent

(i) bj(x1+t,....xr+t)=bj(x1,....xr); j=l,2, r=1,2,...,n

(11) Rr(£+L) = Rr(x)Rr(L). r=1,2.....n

(iii) 3 has a multivariate geometric distribution specified

by survival function



179

for each permutation (i ,i1 2,...,1n) of the integers from 1
to m. The parameters are such that

S ... S , _ S , ,..., 1,
0<pi1,i2,...,im p11,12 P1 P2 pn<

. . . = . f '=2,...,
p11,12,...,1j P123...) or J n

and
n

1- )3p. — );}3p,k +  + (-1)“’1 p123 nzo.j=1 J j<k J ...
Proof:

We first prove (i) =# (ii) =4 (iii)

Let,

§(x1+t,...,xr+t) = Q(x .,xr) for all rSn. (6.16)1"'

First we prove that (6.16) is equivalent to the multivariate

lack of memory property (MLMP)

R(xl+t,...,xr+t)=R(x1,...,xr)R(t,...,t) for all rSn. (6.17)
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When (6.16) holds, from (6.8) for i=1,

R(x1+t+1,x2+t,...,xr+t ) _ R(x1+t,x2+t,...,xr+t)
R(x1+1,x2,...,xr) R(x1,...,xr)

R(t,x +t,...,x +t)= 2 ' (618)R(0,x2,...,xr) ' '

Similarly using the defintions of b2(x1,...,xr)

R(x1+t,x2+t,...,xr+t ) R(x1+t,t,...,xr+t)R(x x x ) = R(x O x x ) ' (6'19)1I2I"‘Ir ll I3I"'lr
Setting x2=0 in (6.18) and substituting in (6.19)

R(x1+t,x2+t,...,xr+t ) _ R(t,t,x3+t,...,xr+t)
R(x1,x2,...,xr) - R(0,0,x3,...,xr)

successively using b3,...,br and noting R(0,0,...,0)=1 we
obtain (6.17). The converse is obtained by using (6.17) in

the expression for b(;+t). To complete the proof it remains

to establish that the only solution of (6.17) is (6.15).
x.

For r=1, the only solution is R(xj) = pl) for some O<p1<1
and for r=f,

R(x1+t,x +t)=R(x1,x2)R(t,t).2

Setting x2=0,
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*11 R(t,t) (6.20)R(x1+t,t)=p
Further

R(y+t,r+t) = R(y.y)R(t,t)

t
gives R(t,t) = p12 for some 0<p12<1. Thus for xlZx2, from
(6.20) X X

R(x1.x2) = p11(p12/pl) 2- (6-21)

Assuming the solution (6.15) to hold for any r variables in

K.

R(x1+t,...,xr+t,t) = R(x1,x .,xr+1)R(t,...,t)2,..
specializes to

R(x1+t,x2+t,...,xr+t,t)=R(xl,x2,...,xr,0)R(t,...,t)x x x1 2 r
' P1 (P12/P1) "' (p1....r/Pl2...r-1) R(t""'t)

xl2x22 ... Zxr. (6.22)
Also,

R(y+t,...,y+t) = R(y,...,y)R(t,...,t)

R(t,... t) = pt O<p <1.' l2...r+1, 12...r+lx x x_ 1 2 r+1 > > >R1‘*)'p1 (P12/P1) "'(p1....:+1/P12...r) ”1'”2""‘"r+1'
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By induction we have derived the result for x1Zx2Z ...Zxr+1.

The expression for Rr(g) in other regions of the sample
space are similarly obtained as the bivariate case. The

converse is straight forward.

6.4 CONDITIONAL FAILURE RATE

We define the conditional failure rate of X as the

vector

9(3) = (C1(_x_),....cn(2c_)) (6-23)
where : : > : : ':ci(x) P[Xi xi|Xl_xl,...,Xi xi,...,Xn xn] 1 1,2,...,n.

As in the bivariate case it can be showed that

g(g) determines the univariate conditional distributions

through the relationship

X =xP[Xi=“i|x1=“1""’ 1-1 1-1'x1+1' i+1"' n

-1

[1-ci(x1,...,xi ,r,x ,...,xn)]ci(3);1=1,2,...,n.-1 i+1
K.

L

r=O

The above relationship is arrived at by noting that

H, ,..., ,+l,...,1(xl X1 xn)
1'°i(*’ = Hi(x)
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where : : > : _ , :"i(5) P[x1 *1’ 'xi‘“1'x1+1 1+1 xn “ 1
so that

Hi(;) = [1-ci(g)]Hi(x1. .x -1. .x )

xi-1
= n [1-ci(x1,- .xi_1,r,x +1, ,xn)]r=0

.....0,Hi(”1

xi-1
Hi(¥) = n [1_ci(x1r- lxi_1IrIx +1r IXn)]r=0

P[xi="i|x1:"1'""xi-1‘“1-1'x1+1= 1+1
Thus> : : : :P[xi‘“i|x1 ”1""’xi-1 xi-1'xi+1 "1+1 'xn xn]

xi-1= '1  Ix _-llrlx-+1!r=0

or

.: . = l"'I . : . r . = . Ix =P[x1 x1|x1 X1 x1—1 x1—1 x1+1 1+1 n Kn]

xi-1
=rUo [1-ci(x1.....x _1,r.x +1, ..xn)]ci(§);

(6.24)

Thus g(g) determines the conditional distributions
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of 3 uniquely. Appealing to the result by Gourieroux and

Monfort (1979) we conclude that g(g) determines the

corresponding distribution uniquely if and only if f(§)>0

for all ;eI+.n

The behaviour of the conditional failure rate

under independence of the components and the model

characterized by global constancy of the conditional failure

rate are direct extensions of the bivariate case and is

therefore, not pursued here.

In the next theorem we derive the multivariate

model which is characterized by the local constancy of g(§).

Theorem.

A random vector 3 the support on I; has the
conditional failure rate (6.19) of the form* *

_c_(_1E)"(C1(_X_l):---»Cn(.En))
if and only if probability mass function of 3

f(x)-a ( n xi) ( axixj) (9xlx2...xn) (6 26)," pi .n. ij  12...n '1=1 1<3
where
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..., S10<pi<l, o<9ij,9ijk, 6l2_ n
with n X X X X X, X.-1_ j j k k 1-1 1+1° ’ ,",Pj ,",9j "912...i—1,1+1,

51 J¢1 1<Jixj
1=1,2,

Proof:

When (6.21) holds

P X.=t,+ . X = ,...,X_2 _,...,X =[ 1 1 51' 1 X1 1 51 n xn]

= P[Xi=ti|Xl=x ,...,x =xn]1 n
or (t+ ' - t ') ")

tm * 1
pi(ti.xi) — [pi(§i)]

where

(t ')- P(x >c x'— *)P1 1'*1 ‘ 1“ ' i'“i
Thus

x* m 1 1f , , = . , , ,(xllxl) q1(x1) [p1(x1)]
where

. =1- . .qi( ) pi( )
For notational simplicity we shall present the

n=3. From (6.28) we have

. ,1}.

(6.27)

(6.28)

proof for
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* 1 X1 I
f(g) = ql(x1) [p1(z1)] f1(g1)

— * * x2 ' 6 29— q2(x2) [p2(x2)] f2(x2) ( . )
a m X3 *

= q3(x3) [p3(g3)] f3(g3)

Changing X3 to x3+1 and dividing the resulting equation by
(6.29)

f(x1,x2,x3+1) q1(x2,x3+1) [ P1(\2,x3+1) Jxl f1(x2,x3+1)f(§) q1(x2.x3) p1(x2,x3) f1(x2.x3)

_ q2(x1.x3+1) [ p2(x1,x3+l) Jxz f2(x1.x3+1)q2(x2.x3) p2(x1,x3) f2(x1.x3)
=p3(x1,x2)

so that

p3(x1+1,x2) p1(x2,x3+1)= = 9 (x ) (6.30)p3(x1.x2) p1(x2.x3) 13 2
and

p3(xl.x2+1) p2(x1.x3+l)p (x x ) : (x x ) : 923(x1) (6'31)3 1' 2 P2 1’ 3
The equations (6.30) and (6.31) together imply

3

p1(x2,x3) p1(x2.0)[613(x2)]X (6.32)
p2(x1.0)[623(x1)] 3p2(x1,x3)
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and x x
p3(x1,x2) = p1(x2.0)[613(x2)] 3 = p2(x1,0)[623(x1)] 3

Adopting the same procedure as above the last equation gives

9l3(x2+1) _ 623(x1+1) _
913(x2) — 623(xl) - 9123, a constant

so that
"2

913(”2) =[6123] 913and (6.33)
*1

923(“1) =[9123] 923

which on substitution in (6.32) gives

X X2 3
p1(“2'°)9123 913p1(x2.x3)

x1x3p2(x1,0)9123 623 (6.34)p2(x1.x3)

X283
P1(“2'°)9123 913P3(X1.X2)

x1x3 6123 23, 6p2(x1 0)

Proceeding on the same lines as above by incrementing X2 and

X1 to x2+1 and x1+1 respectively in (6.29) gives the
following
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XX X2 3 2
P1(x2’x3) ‘ P1(°'x3)9123 612

(6.35)
”1x3 *1

P2(*1’“3) = P2(°'“3)6123 912

The equations (6.34) along with (6.35) gives

3 2 ”3x2
P1(”2’“3) ' P1 913 912 6123

X X XX3 1 3 2
P2("1’x3) ' P2 623 912 9123

X X XX1 2 1 2, = 9 6P3(x1 *2) P3 13 23 6123

which substitution in (6.29) yields

X X XX X X XX3 2 3 2 3 2 3 2 ~
f(5) ‘[1 P1 913 912 6123 J [P1 913 612 9123 J f1(51)

X X Xx X X XX3 1 3 2 3 1 3 2 1
'[1_ P2 923 9 6 J [P2 623 612 9123 J P2(32)

X X XX X X XX1 2 1 2 1 2 1 2 w
"[1" P3 913 623 9123 J [ P 9 9 9 J P3(5 )

from which fi(g:) is solved as



=UP P1*)2(52 3 1

2
Pf ') 3(;3 —ap

and so

Compared to the vast literature available

P3
3 e
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”1“2 "1"3 ”2"3 “1”2“3
12 613

x x x x x x x -1-1 3 2 2 3 3 2 3 2
° = 2 P3 P2 923 [1' P1 613 912 9123 Jx ,x2 3

_ Z '3 *1 6x1 3 1_ 6x3 9x1 6”3”2 '1X X 93 P1 13 P2 23 12 1231' 3

- 2 x2 x1 9x1 2 1- 6x1 9x2 exlxz -1P2 P1 12 P3 13 23 123x ,x1 2

The case for n>3 follows by repeating the above logic.

6.5. PLAN FOR FUTURE WORK

in the
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continuous case pertaining to reliability concepts and
modelling, the attempt in the present work was confined to

explore the concept of failure rate in the bivariate
discrete set up and to offer discrete counter parts of what

are known as lack of memory models through some
characterization. Other concepts like mean residual life,

vitality function, variance and percentile residual life,

residual life distributions, memory and models based on them

need critical examination and detailed analysis in the
discrete time domain. Models based on their monotone

behaviour are also of interest. Concepts that are of
importance in replacement policy like NBU, HNBUE etc are to

be defined meaningfully and their properties investigated.

A third area that is of primary importance is the
development of discrete life time models which show marked

departure from the geometric laws already introduced in the

present study. Hopefully, the result in these and in other

related areas will be presented in a future work.
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