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ABSTRACT

This thesis is an outcome of the investigations carried out on the development of an

Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new

definition of 2-D DFT relation is presented. This new definition enables DFT computation

organized in stages involving only real addition except at the final stage of computation. The

number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual

representation of 2-D DFT coefficients. 2) A neural network approach.

The visual representation scheme can be used to compute, analyze and manipulate 2

D signals such as images in the frequency domain in terms of symbols derived from 2x2

DFT. This, in turn, can be represented in terms of real data. This approach can help analyze

signals in the frequency domain even without computing the DFT coefficients.

A hierarchical neural network model is developed to implement 2-D DFT. Presently,

this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2.

The model can be developed into one that can implement the 2-D DFT for any order N upto a

set maximum limited by the hardware constraints. The reported method shows a potential in

implementing the 2-D DF T in hardware as a VLSI / ASIC.
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Chapter

INTRODUCTION 1
When the only tool you have is a hammer, every problem you encounter tends to resemble a
nail

---Source Unknown

1.] DIGITAL SIGNAL PROCESSING

Simply stated, a signal is any medium for conveying information, and signal

processing is concerned with the extraction of that information. Thus ensembles of time

varying voltages, the density of silver grains on a photographic emulsion, or list of numbers

in the memory of a computer all represent examples of signals. A typical signal processing

task involves the transfer of information from one signal to another. For example, a

photograph might be scarmed, sampled and stored in the memory of a computer. In this case,

the information is transferred from available silver density, to a beam of visible light, to an

electrical waveform, and finally to a sequence of numbers which, in turn, are represented by

an arrangement of magnetic domains on a computer disk.

Whatever their form, signals are of interest only because of the information they

contain. In general, we may say that signal processing is concerned with basic tasks

information rearrangement and information reduction. Image scanning, image enhancement,

image debluring, spectral analysis are examples of information rearrangement. Information



reduction is concerned with removal of extraneous information - examples include, noise

removal, feature extraction, parameter estimation.

Digital signal processing is concerned with the processing of signals which can be

represented as sequences of numbers and multidimensional digital signal processing is

concerned with the processing of signals which can be represented as multidimensional

arrays, such as sampled images or sampled time waveforms which are received

simultaneously from several sensors. The restriction to digital signals permits processing

with digital hardware and it permits signal processing operators to be specified as algorithms

or procedures.

Digital methods are simultaneously powerful and flexible. Digital systems can be

designed to be adaptive and they can be made to be easily reconfigured. Digital algorithms

can be readily transported from an equipment of one manufacturer to another or they can be

implemented with special purpose hardware. They can be used equally well to process

signals that originated as time functions or spatial functions and they interface naturally with

logical operators such as pattern classifiers. Digital signals can be stored indefinitely without

error. Many operations that we might want to perform on multidimensional sequences are

also performed on 1-D sequences sampling, filtering and transform computation are

examples. The multidimensional signal processing can be quite different from one

dimensional processing due to the following reasons: 1) 2-D problems generally involve

considerably more amount of data than 1- D signals; (2) the mathematics for handling multi

dimensional systems is less complete than that of 1-D systems; and (3) multidimensional

systems have many more degrees of freedom, which give a system designer a flexibility not

encountered in 1-D systems.

In the early 1960s, many of the methods of 1-D digital signal processing were

developed with the intention of using digital systems to simulate analog systems. As a result,

much of the theory was modeled after analog systems theory. In time, the awareness that

digital systems can simulate analog systems very well and the strong push from the

technology of digital hardware, the multi-dimensional signal processing field has blossomed

and many of the methods in common use today have no analog equivalents. In late 1960s,

most 2-D signal processing was performed using separable 2-D systems. The volume of data

demanded by many 2-D applications and the absence of factorization theorem for 2-D



polynomials meant that many 1-D methods did not generalize well. The computer industry,

by making components smaller and cheaper, has helped to solve the data volume problem[ 1

Two new approaches are presented in this work for two Dimensional Discrete Fourier

Transform (2-D DFT) computation. One through visual manipulation and the other based on

the neural network concepts. The latter enables real time processing of 2-D signals in the

frequency domain.

1.1.1 Transforms

Transforms come in many forms, depending on the particular application. However,

the goal always the same: find an alternative domain where the processing or task at hand is

easier to perform. To name just one example, if convolution needs to be performed, the

Fourier domain is ofien preferred because of the complexity reduction so achieved [2]. Image

transforms are useful for computation of convolution, correlation, image compression, noise

reduction, edge detection and segmentation, image restoration and image fusion, template

matching and object recognition, texture analysis and synthesis, motion estimation, object

tracking etc.

Bulk of the applications in image processing is using linear transforms. Probably the

most important, both for theoretical and practical reasons, is the Fourier transform [3]. The

DFT is a fundamental tool in 1-D and multidimensional (m-D) signal processing. The DFT is

used for computational reasons since it is discrete in time and frequency domains and can

thus be implemented exactly. Moreover, there are fast algorithms that allow efficient

computation.

A particular transform is selected depending upon the application and computational

complexity. Joseph Fourier announced in 1807 that any 21:-periodic function could be

represented as a series of sines and cosines. Since then, the spectral analysis of functions

using Fourier series and integrals has been the source of numerous mathematical problems

[4]. With the development of Fast Fourier Transform (FFT), Fourier analysis has been

reduced to a readily available and practical procedure that can be applied without

sophisticated training or years of experience. Different digital filtering techniques, which is

one main application of signal processing, adopt different domains different to the input

domain that requires transforms for the required conversion.



1.1.2 Discrete Fourier Transform

The Discrete Fourier Transform forms the basis for many digital signal processing

techniques and is inherently a discrete time concept [5-8]. Fourier representation of finite

duration sequences is referred to as Discrete Fourier Transform. The DFT is itself a sequence

rather than a function of continuous variable, and it corresponds to samples, equally spaced in

frequency of the Fourier Transform.

1.1.3 One Dimensional DFT

Consider a finite duration sequence x(n) of length N samples so that x(n) = 0 outside

the range 0 S n S N-1. Then

X(k) = Nfx(n).w,‘;" ,0 s k s N—l
n=O

= 0 ,otherwise. .....(l.l)
"j;'x(n).w;,'m, 0 s n s N-1
l(=0Zl>—

x(n) =

= 0 , otherwise ....(1.2)
Equations (1.1) & (1.2) form the 1-D DFT pair.

1.1.4 Matrix representation of DFT
Consider the DFT relationN—1 _ V

X(k) = Zx(n).W§“, k= 0,l,2,....N-1 where W3" = e"2"""”‘
n=O

This describes the computation of N equations. For example, when N=4, WN = e'j‘2“""; the

equation can be written as

X(0) = x(O) W0 + x(l) W0 + x(2) w° + X(3) w°

X(1) = x(0) W + x(1) W‘ + x(2) w2 + x(3) w3

x(2) = x(O) W + x(l) W2 + x(2) W4 + x(3) wfi

X(3) = x(0) w + x(1) W’ + x(2) w‘ + x(3) W9

These equations can be more easily represented in matrix form:

x(o) = w° w° w° w° x(O) ’
x(1) = w° W‘ W2 W’ x(l)
x(2) = w° W2 w‘ w“ x(2)
X(3) = W0 W3 W6 W9 X(3)

or more compactly as X(k) = W"" x(n)



1.1.5 Twiddle factor

The DFT of a discrete-time signal x(n) is defined as
N—l

X(k) = 2x(n).w,3" ,k= O,1,2,....N-1
n=0

where WN=e'j2"’N is called the twiddle factor of the DFT. The twiddle factors are periodic and

define points on the unit circle in the complex plane. Fig. 1.1 shows the cyclic property of

the twiddle factors for an 8-point DFT. The twiddle factors are equally spaced around the

circle at frequency increments of %, where F5 is the sampling frequency of the input signal.

Therefore, the set of frequency samples, which defines the spectrum X(k) are given on a

frequency axis whose discrete frequency locations given by F k = k( S) , k =O,1,. . N-1.

\_ .,
W82: _Wa6

Fig. 1.1 The twiddle factors for N = 8

The frequency resolution of the Discrete Fourier Transform is equal to the frequency

increment E and is sometimes referred to as bin spacing of the Discrete Fourier Transform

outputs. The frequency response of any discrete Fourier bin output is determined by applying

a complex exponential input signal and evaluating the DFT bin output response as the

frequency is varied.



1.1.6 Two Dimensional DFT

The Discrete Fourier Transform representation of two-dimensional sequences is of

considerable computational importance in the digital processing of two-dimensional signals

such as photographs and seismic array data, where the task is more complex and the volume

of data is greater.

Consider a finite duration sequence x(nl, n2) of size N, x N, samples so that x(nl, n2)

= 0 outside the range 0 S n1 S N,-1, 0 S n2 S N,-l. Then the Discrete Fourier Transform

[1,9-10] relations are given by

Nf N2‘ x(n1,n2)w;j“w,:f“ , os kl s N,-1, 0 s k2 s N2-1 .....(1.3)nlO n20
X(k1,k2)

x(nl,n2) = $ 3 "x(k1,k2)w,;"‘*‘w,;"2“, os n1 s N,-1, 0 3 n2 s N,-1 .....(1.4)‘ kl =0=02I‘

1.1.7 Algorithms to implement 2 - D DFT

There are many algorithms for calculating 2-D DFT which vary considerably in their

computational complexity [1]. As will be evident from the literature survey presented in

chapter 2, there are a good number of approaches to implement the DFT. However, we shall

examine three algorithms in the following sections, to bring out the salient aspects of 2-D

DFT computation.

1.1. 7.1 Direct computation
The direct calculation of 2-D DFT is simply the evaluation of the double sum

Nl—lN2—1

X(k1,k2) = Z Z x(nl,n2).W]:11kl.W,[‘1§k2 .....(1.5)
nl=0 n2=0

for O S k, S N,-1 & O S k, S N2—l where WN = e"”‘ ‘N

If we assume that the complex exponential in equation (1.5) have been pre-computed

and stored in a table, then the direct evaluation of one sample of X(k,, k2) requires N,N2

complex multiplications and a like number of complex additions. Since the entire DFT

involves N,N2 output samples, the total number of complex multiplications and complex

additions needed to evaluate the DFT by direct calculation is Nf N22



1.1. 7.2 Row-column decomposition
The DFT relation can be rewritten as

N,—l N,—i

X(k1,k2) = §0[ ;0x(n1,n2).w;f*’].w,:j“

N,-I

If we write G(n1,k2)= Z x(n1,n2)W§2z"2
n2=0

N'_' inthen, X(k1,k2)= 2 G(n1,k2)W,2,
nl=0

Each column of G is the 1-D DFT of the corresponding column of x. Each row of X

is the 1-D DFT of the corresponding row of G. Thus we can compute a 2-D DFT by

decomposing it into row and column DFTs. We first compute the DFT of each column of x,

put the results into an intermediate array, then compute the DFT of each row of the

intermediate array. Alternatively we could do the row DFTs first and the column DFTs

second.

If a direct calculation is used to compute the 1-D DFTs in a row-column

decomposition, then the evaluation of a 2-D DFT requires, C,,c,,i,,_,c, = N,N,(N,+N2) complex

multiplications and additions . If each of N is a power of 2, so that 1-D FFTs can be used, the

complex multiplications are further reduced to C,,c FFT = N,N2 (log N,N2)/2. The number of

complex additions needed is twice this number.

1.1. 7.3 Vector-radix Fast Fourier Transform

The 1-D FFT algorithm achieves its computational efficiency through a ‘divide and

conquer’ strategy. If the DFT length is, for example, a power of 2, the DFT can be expressed

in turn as a combination of two quarter-length DFTs and so on. The 2-D vector-radix FFT

algorithm is philosophically identical. A 2-D DFT is broken down into successively smaller

2-D DFTs until, ultimately, only trivial 2-D DFTs need be evaluated.

We can derive the decimation-in-time version of the algorithm by expressing an (Nx

N)-point DFT in terms of four N/2 x N/2 DFTS (if N is divisible by 2). The DFT summation

can be decomposed into four summations: one over those samples of x for which n, and n2 is

even, and one for which both 11, and n2 are odd. This gives us,

X(k,, k2) = S00(k,, k2) + S0,(k1, k2)WN“2 + S,o(k,, k2)WN“‘+ S,,(k,, k,)WN"2+"', where

N/2—lN/2-1

S00(k1,k2) = Z §jx(2m1,2m2)wN2m'“‘”"‘2“
ml=O ml=O



N/2—lN/2-1

Sm(k1,k2)= 2 Zx(2m1,2m2+1)wN2m‘*‘*’”’”
m1=O m2=0

N/2—lN/2-1

S]0(k1,k2) = 2 Zx(2m1+1,2m2)wN”"‘*‘”""“
ml=0 m2=O

S”(k1,k2) = N/i_]N%_ir(2m1+l,2m2 +1)w,f’“““*"-“"2
ml=0 m2=0

The arrays S00, S0,_ S,0, S“ are each periodic in (k,, k2) with horizontal a.nd vertical periods

N/2.

The above said equations expresses the samples of the NxN DFT, X(k,, kl), in terms

of four N/2 x N/2 DFTs. By analogy with the corresponding equations from the 1-D case, the

computation is represented by a butterfly, or more properly a radix (2x2) butterfly.

Each butterfly requires that three complex multiplications and eight complex

additions be performed. To compute all samples of X from S00, S0,, S10, S“ requires

calculation of N2/4 butterflies. This decimation process can be performed log0N times if N is

a power of 2. The number of complex multiplications that need to be performed during the

computation of a (NxN) point radix (2x2) FFT is

3 2
C,,,(m) = ZN log2N.

The foregoing discussion would have revealed that the 2-D DFT is computationally

quite intensive. While research have been progressing on speeding up the 2-D DFT, the

transform itself found many applications in image processing, which describes information in

two dimensions. Some of the issues in digital image processing is worth considering to stress

the diversity of the utility of 2-D DF T.

1.2 DIGITAL IMAGE PROCESSING

Digital image processing is a rapidly evolving field with growing applications in

science and engineering. Image processing holds the possibility of developing the ultimate

machine that could perform the visual functions of all living beings [10]. Interest in Digital

Image Processing methods stems from two principal application areas: improvement of

pictorial information for human interpretation, and processing of scene data for autonomous

machine perception. One of the first applications of image processing techniques in the first

category was in improving digitized newspaper pictures sent by submarine cable between



London & New York. Digital image processing has a broad spectrum of applications, such as

remote sensing via satellites and other space crafts, image transmission and storage for

business applications, medical processing, RADAR, SONAR, and acoustic image processing,

robotics and automated inspection of industrial parts. Typical problems in machine

perception that routinely utilize image processing techniques are automatic character

recognition, industrial machine vision for product assembly and inspection, military

recognizance, automatic processing of finger prints, etc [9].

A digital image is an image x(nl, n2) that has been discretized in both spatial

coordinates and brightness. A digital image can be considered as a matrix whose row and

column indices identify a point in the image and the corresponding matrix element value

identifies the gray level at that point. The elements of such a digital array are called pixels or

pels.

Processing of digital images involves procedures that are usually expressed in

algorithmic form. Thus with the exception of image acquisition and display, most image

processing functions can be implemented in software. The reason for specialized image

processing hardware is the need for speed in some applications or to overcome some

fundamental computer limitations. For example, an important application of digital imaging

is low-light microscopy. To reduce image noise requires performing image averaging over

numerous images at frame rates (30 images per second in most cases). The bus architecture

in all but a few high performance computers carmot handle the data rate required to perfomi

this operation. Thus today’s image processing systems are a blend of off-the shelf computers

and specialized image processing hardware, with the overall operation being orchestrated by

software running on the host computer [9]. Transforms are the fundamental tools that are

used in most image processing applications. Probably the most important transform, both for

theoretical and practical reasons is the Fourier Transform [1 1].

The different realms involved in Image Processing are briefly described below.

1.2.1 Image Enhancement

The principal objective of image enhancement techniques, classified as a

preprocessing operation, is to process an image so that the result is more suitable than the

original image for a specific application. Examples include contrast and edge enhancement

pseudocoloring, noise filtering, sharpening and magnifying. Image enhancement is useful in



feature extraction, image analysis and visual information display. This enhancement process

itself does not increase the inherent information content in the data. It simply emphasizes

certain specified image characteristics.

The enhancement techniques fall into two broad categories: spatial domain methods

and frequency domain methods. The spatial domain refers to the image plane itself, and the

approaches in this category are based on the direct manipulation of pixels in an image. The

image processing functions in the spatial domain may be expressed as

g(n1,n2) = T[f(n1,n2)]

where f(n1, n2) is the input image, g(nl, n2) is the processed image and T is an operator on f

defined over some neighborhood of (n1, n2).

Frequency domain processing techniques are based on modifying the Fourier transform of an

image. The foundation of the frequency domain techniques is the convolution theorem [9].

Let g(nl, n2) be an image formed by the convolution of an image f(n1,n2) and a linear

position invariant operator h(nl, n2), that is,

g(nl, n2) = h(nl, n2)* f(n1, n2).

Then, fi'om the convolution theorem, the following frequency domain relation holds:

G(k1, k2) = H(kl,k2)F(k1,k2)

where G, H, and F are the Fourier transforms of g, h and f respectively. Enhancement

techniques based on various combinations of methods from these two categories are also used

[9,1l].

1.2.2 Image Restoration

Any image acquired by optical, electro-optical or electronic means is likely to be

degraded by the sensing environment. Image restoration refers to removal or minimization of

known degradations in an image. This includes deblurring of images degraded by the

limitation of a sensor or its environment, noise filtering, and correction of geometric

distortion or nonlinearities due to sensors. Image restoration differs from image enhancement

in that the latter is concerned more with accentuation or extraction of image features rather

than restoration of degradations [10].
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1.2.3 Image compression

An enormous amount of data is produced when a 2-D light intensity function is

sampled and quantized to create a digital image. In fact, the amount of data generated may be

so great that it results in impractical storage, processing and communication requirements.

For instance, more than 25 gigabytes of data are required to represent the Encyclopaedia

Britannica in digital form [9].

Image compression addresses the problem of reducing the amount of data required to

represent a digital image by removing redundant data. Image data compression methods fall

into two common categories. The first, called predictive coding methods, that exploit

redundancy in the data. Redundancy is a characteristic related to such factors as

predictability, randomness and smoothness in the data. Techniques such as delta modulation

and differential pulse code modulation fall into this category. In the second, called transfonn

coding, the compression is achieved by transforming the given image into another array such

that a large amount of information is packed into a small number of samples. Other image

data compression methods exist that are generalizations or combinations of these methods.

The compression process inevitably results in some distortion due to the rejection of some

relatively insignificant information. Efficient compression techniques tend to minimize this

distortion.

Applications of data compression are primarily in transmission and storage of

information. Image transmission applications are in broadcast television; remote sensing via

satellite, aircraft, radar or sonar; teleconferencing; computer communications; and fscimile

transmission. Image storage is required most commonly for educational and business

documents, medical images used in patient monitoring systems, and the like [10].

1.2.4 Image Segmentation

This area of processing comes under image analysis. The first step in image analysis

is to segment the image. Segmentation subdivides an image into its constituent parts or

objects. The level to which this subdivision is carried depends on the problem being solved.

That is the segmentation should stop when the objects of interest in an application have been

isolated. For example, in autonomous air-to-ground target acquisition applications, interest

lies, among other things, in identifying vehicles on a road. The first step is to segment the

road fi'om the image and then to segment the contents of the road down to objects of a range
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of sizes that correspond to potential vehicles. There is no point in carrying segmentation

below this scale, nor is there any need to attempt segmentation of image components that lie

outside the boundaries of the road.

In general, autonomous segmentation is one of the most difficult tasks in image

processing. This step in the process determines the eventual success or failure of the analysis.

In fact, effective segmentation rarely fails to lead to a successful solution. For this reason,

considerable attention should be given to improve the probability of rugged segmentation.

Segmentation algorithms for monochrome images generally are based on either discontinuity

or similarity properties of gray-level values.

1.2.5 Image Description and Representation

After an image has been segmented into regions, the resulting aggregate of segmented

pixels usually are represented and described in a form suitable for fI.lI‘thCl‘ computer

processing. Basically, representing a region involves two choices: (1) represent the region in

terms of its external characteristics (its boundary) or (2) represent it in terms of its internal

characteristics (the pixel comprising the region). Choosing a representation scheme is only a

part of the task making the data useful to a computer. The next task is to describe the region

based on the chosen representation. For example, a region may be represented by its

boundary with the boundary described by features such as its length, the orientation of the

straight line joining the extreme points and the number of concavities in the boundary.

Generally, an external representation is chosen when the primary focus is on the shape

characteristics. An internal representation is selected when the primary focus is on

reflectivity properties, such as color and texture. An important approach to region description

is to quantify its texture content. The three approaches to describe the texture of a region are

statistical, structural and spectral.

1.2.6 Image Recognition and Interpretation

Image recognition and interpretation are related primarily to applications requiring

automated image analysis. Image analysis is a process of discovering, identifying, and

understanding patterns that are relevant to the performance of an image based task. One of

the principal goals of image analysis by computer is to endow a machine with the capability

to approximate, in some sense, a similar capacity in human beings. Thus an automated image
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analysis system should be capable of exhibiting various degrees of intelligence. The concept

of intelligence is somewhat vague, particularly with reference to a machine. However,

conceptualizing various types of behavior generally associated with intelligence is not

difficult. Several characteristics come immediately to mind: (1) the ability to extract

pertinent information from a background of irrelevant details; (2) the capability to learn fi'om

examples and to generalize this knowledge so that it will apply in new and different

circumstances; and (3) the ability to make inferences from incomplete information.

1.2.7 Computed Imaging

Advances in the design and fabrication of imaging detectors, combined with

increasingly fast computers, has fueled the development of a spectacular variety of computed

imaging systems. Such systems use numerical algorithms to transform measured data into an

image. In most of these imaging systems, collect measurements of line integrals of the

unknown image or samples of its Fourier transform [11]. The projection slice theorem is the

fimdamental result that is used to reconstruct images from their projections. This
reconstruction is based on 2-D DFT.

The work described in this thesis is suitable for the areas of image processing

described above.

1.3 NEURAL NETWORKS

1.3.1 Definition of Neural Networks

A neural network structure can be defined as a collection of parallel processors

connected together in the form of a directed graph, organized such that the network structure

tends itself to the problem being considered [12]. Now the term neural network, or more

properly artificial neural network, has come to mean any computing architecture that consists

of massively parallel interconnection of simple “neural” processors [13].

1.3.2 Neural Network Models

Neural Networks is a computational strategy that is radically different from the

notions of ordinary, serial computing. It is a powerful tool for applications where the
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processing is to be done in parallel. They are rough models of the human mental processes.

These models are based on the use of large numbers of elemental processors interconnected

in manners reminiscent of human neural networks and they exhibit powerful learning,

memorization and associative recall capabilities of pattern formatted information. Because of

their massive parallelism, neural networks can process information and carry out solutions

almost simultaneously. They learn by being shown examples and expected results or they

form associations without being promoted or reprimanded. Thus, they are good at solving

many problems.

Neural networks offer the following specific advantages.

a) Adaptive leaming: This is learning to perfonn specific tasks by undergoing training with

illustrated examples. Due to this feature, one does not need to have elaborate a priori

models or a need to specify the probability distribution fimction.

b) Self organization: Neural networks use self organizing capabilities to create

representations of distinct features in the presented data. This leads to generalization of

features.

c) Fault tolerance: Neural network is the first computational method which are inherently

fault tolerant. Networks can learn to recognize noisy and incomplete data and also exhibit

graceful degradation when part of the network itself is destroyed.

d) Real-time operation: This is due to its parallel distributed structure. For most networks

operating in the real time environment, the need for training is minimal and is the only

time consuming aspect of the operation.

The human brain has more than 10 million neural cells, which have complicated

interconnections and constitute a large scale network. Hence, uncovering the neural

mechanisms of the higher functions of the brain is not easy. Modeling neural networks

[14] is useful in explaining the brain and also in Engineering applications. Researchers have

reported various general purpose and special purpose models. But these are useful for

classification type problems rather than computational problems. These have the fiinction of

self-organization and can learn to recognize pattems. Many are hierarchical networks

consisting of layers of neuron-like cells. The ability to process information increases in

proportion to the number of layers in the network.

Various paradigms are available. But, different paradigms are suitable for different

kinds of tasks. The first step in matching an application and a neural network is to weigh the
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characteristics, requirements, and drawbacks of each. Some of the important paradigms are

briefly described below.

1.3.2.1 Perceptron Model

The perceptron was the first neural network to emerge. The original perceptron

model was strictly feed forward. The learning algorithm for the perceptron allowed it to

distinguish between classes of output if they were linearly separable in terms of decision

space.

The neuron model was proposed by McCulloch and Pitts in 1943. Their model

stemmed from their research into the behavior of the neurons in the brain. It specifically

does not take any account of the complex patterns and timings of actual nervous activity in

real neural systems, nor does it have any of the complicated features found in the body of

biological neurons. This ensures its status as a model, and not a copy, of a real neuron, and

makes it possible to implement on a digital computer. The model neurons, connected up in a

simple fashion were given the name 'Perceptrons' by Frank Rosenblatt in 1962.

The perceptron model consists of a single layer of neurons [15,16]. The neurons are

connected to the inputs through weights. The inputs can be binary or continuous. The output

of each neuron is a binary value based on the weighted sum of inputs compared with a fixed

threshold value.

A perceptron can learn anything it can represent [16]. The basic capability of the

perceptron is that, it can distinguish between linearly separable decision spaces. However, an

XOR function cannot be realized, since it is linearly inseparable. In spite of such drawbacks

like linear separability requirement, indeterminacy of the number of steps required to train

the network and the slow training algorithm, the Perceptron forms the foundation for many

other models of neural networks. It is suitable for pattern recognition applications like

classification of shapes, character recognition and robot vision systems.

1.3.2.2 Multilayer Perceptron : Backpropagation Network

As mentioned in the previous paragraph, the criterion that the function should be

linearly separable, strictly limits the use of the perceptron model. Linearly inseparable

functions can be implemented by using multilayer networks. This is also referred to as the

backpropagating multilayer network or simply, backpropagation network. It is a feed
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forward network — the first layer is called the input layer, the last one is the output layer and

the layers in between the input and output layers are called the hidden layers [16-17].

The network is trained by the backpropagation algorithm [17]. This involves two

passes, a forward pass and a backward pass. In the forward pass, the error is computed and in

the backward pass, the error is minimized by modifying the weights. In the back propagation

algorithm, the transfer function is required to be differentiable anywhere and usually a

sigmoid function, instead of a step function, is used. This also provides automatic gain

control. Along with the set of inputs, the corresponding desired outputs are also given and

hence, the training is supervised.

Backpropagation networks have been applied successfully to a wide variety of

applications. The main drawbacks of this method are the local minima and the long training

time and the stability of the learned patterns. The backpropagation algorithm tries to adjust

the weights to yield a minimum error with the desired outputs. But, the network can get

trapped in a local minimum when there is a much deeper minimum nearby. This yields a less

accurate solution. This algorithm also requires lots of supervised training and there is no

guarantee that the system will converge. The backpropagation network has been successful

in solving problems in the areas of feature extraction, pattern classification, and advanced

control problems.

1.3.2.3 Hopfield Network Model

The Hopfield network is a recurrent network in which the output of each neuron is

fedback to the input and thus modifying the states. The output is then re-calculated and the

process is repeated again and again until a stable output is reached. Each neuron is connected

to every other neuron and forms a fiilly interconnected network [12,16]. The learning is

supervised.

The input pattern is read directly into the single network layer. A neuron is chosen at

random and the weighted sum of inputs is thresholded to get the output. This procedure is

continued till all the neurons are stable, that is, none of them change value when the

procedure is repeated. The output will be the state of each neuron in the network. The

weights in the network are symmetric.

Difficulties with the Hopfield network may arise if the patterns selected for storage do

not form stable states in the iterative convergence procedure. Another property is that this
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network is not adaptive - it cannot learn in real time. The maximum number of patterns that

can be stored is about 15 percent of the total number of neurons in the network [18]. If the

patterns are close to each other, the network will not converge to a stable state which

distinctly represents each pattern. Finally, it is possible that a noisy pattern presented to the

network may converge.

The Hopfield network has been useful in performing content addressable recall,

solving optimization problems, robotic control systems, target identification and retrieving

complete data from fragments.

1.3.2.4 Adaptive Resonance Theory (ART) Model

ART networks are radically different from other networks. These networks work on

binary or real valued inputs. Their ability to create a new pattern classification when it

observes a new type of pattern makes it highly attractive for applications such as automatic

target recognition and other spatio-temporal and spatial pattern recognition tasks. The ART

network solves the stabilty-plasticity dilemma encountered in other network models. A feed

back mechanism is introduced between the two layers of the network and this facilitates

learning of the new information without destroying existing ones, automatic switching

between plastic and stable and stabilization of the encoding of the classes done by the

neurons. In the ART network, information in the form of neuron inputs reverberates back and

forth between layers. If proper outputs develop, a suitable oscillation ensues, which is the

neural network equivalent of resonance and during this period, learning or adaptation can

occur.

It is a two layer network, one being the input layer and the other the output layer [19

20]. The output layer has a finite number of neurons that are used only when needed. At any

time, some output neurons will be in use while the others wait until needed. Once all the

output neurons are used, the network stops adapting. If the network has previously learnt to

recognize an input pattern, then a resonant state will be reached quickly, when the pattern is

presented. During resonance, the adaptation process will re-reinforce the memory of the

stored pattern. If no match to the input pattern is found, the network will enter a resonant

state whereupon the input pattern will be stored for the first time.

Thus, the ART network is a self organizing network. It creates new categories when

new patterns are presented. These can be useful when recognizing new patterns and
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classifying them as such. However, in ART, the categories evolve over time. Thus, we do

not have absolute control over category representation that we have when we ourselves

choose the categories. Thus ART is useful in pattern recognition problems where the number

of categories or pattern classes are not known in advance. Another drawback is that ART

cannot handle shified or distorted data.

Major applications of ART networks include speech recognition and generation,

recognition of visual patterns and radar image detection.

1.3.2.5 Sel_f Organizing Map (SOM)

The self organizing maps are the networks of choice for applications involving

mapping distributed sensory information into a two dimensional or three dimensional

representation. They may also be used for robotic arm control and optimization application.

These mappings preserve topographic relations that may have existed among input data. This

process can be used for reducing the dimensionality of complex input data and for pattern

recognition.

The SOM is an auto-associative network having a single, highly interconnected layer

and is a recurrent network [21,22]. Thus it uses the unsupervised learning method. Weights

must be initialized and both weights and inputs must be normalized. Neurons compete for

the privilege of learning. In a Winner-Take-All learning rule, the neuron with the highest

response and its nearest neighbors all adjust their weights. As time passes, the size of the

neighborhood reduces. Neighborhoods become similar in their response properties and a

global organization begins to take place. The overall effect is to move the output neurons to

positions that map the distribution of the training patterns. After training, each neuron's

weights model the features that characterize a cluster in the data.

SOM finds natural clusters and similarities from unlabeled input data. Applications

include data compression, feature extraction and pre-processing weights or data for other

networks. Other uses are in speaker identification and signal processing.

1.3.2.6 Neocognitron Model

The Neocognitron model, proposed by Kunihiko Fukushima of NHK Broadcasting

Science Research Laboratories, Japan in 1982, is a powerful tool for visual pattern

recognition [23-27]. The network is self organized by 'leaming without a teacher’, and
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acquires an ability to recognize stimulus patterns based on the geometrical similarity of their

shapes without being affected by their positions. After completion of self organization, the

network has a structure similar to the hierarchy model of the visual nervous system. The

network consists of an input layer (analogous to the photo-receptor array), followed by a

cascade connection of a number of modular structures, each of which is composed of two

layers of cells connected in cascade. The first layer of each module consists of 'S cells‘ which

show characteristic simple cells, and the second layer consists of ‘C cells’ for complex cells.

The feed forward synapses to each S cell have plasticity and are modifiable. Afier repetitive

presentation of a set of input patterns, each stimulus pattern is able to elicit an output only

from one of the C cells of the last layer, and conversely, this C cell has become selectively

responsive only to that stimulus pattern. That is, none of the C cells of the last layer responds

to more than one stimulus pattern. The response of these cells is not affected by the position

of the input patterns. Neither is it affected by a small change in shape nor in size of the

stimulus pattern.

But, when two or more patterns are shown simultaneously, the Neocognitron does not

always correctly recognize them, because there was no provision for multiple recognition.

Fukushima proposed the Modified Neocognitron model to circumvent this hurdle in 1984.

1.3.2. 7 Modified Neocognitron Model

In this modified model, specially designed to accomplish multiple character

recognition, backward connections are added to the conventional Neocognitron, which had

only forward connections [28-29]. This model is enshrined with the ability of selective

attention in visual pattern recognition. This can automatically segment and recognize

individual patterns presented simultaneously. This can also restore imperfect patterns and

eliminate noise from contaminated patterns. The process of recognition is achieved by the

feed forward path same as that in the Neocognitron model. Backward path is used for

switching attention and segmentation of input patterns.

When a composite figure consisting of two or more patterns are presented to the

model that has finished learning, the model selectively focuses its attention on one pattern

afier another, segments the patterns from others and recognizes it separately. Even if noise or

defects affect the pattern, the model can recognize it and recall the complete pattern in which

the noise has been eliminated and the defects corrected. Perfect recall does not require that
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the pattern be identical in shape to the training pattern the model learned. A pattern distorted

in shape and changed in size can be correctly recognized and the missing portions restored.

The stimulus pattern is presented to the lowest stage of the forward paths, the input layer,

which consists of a two dimensional array of receptor cells. After the process of learning

ends, cells of the recognition layer work as gnostic cells (grand mother cells).

The output of the recognition layer is sent to lower stages through the backward

paths. The forward and backward signals interact with each other in the hierarchical

network. The backward signals facilitate the forward signals, and at the same time, the

forward signals gate the backward signal flow. This process resembles that of the adaptive

resonance theory in the sense that the forward and backward signals interact with each other,

but the method of interaction differs. The result of the associative recall appears at the lowest

stage of the backward paths, the recall layer. We can also interpret the output of the recall

layer as the result of segmentation. The response of the recall layer is fed back to the input

layer. At each stage of the hierarchical network, several kinds of cells exist.

1.3.2.8 Cellular Neural Networks

The Cellular Neural Network (CNN) is a class of information processing systems

proposed by L. O. Chua and L. Yang in 1988. Like neural network, it is a large-scale

nonlinear analog circuit which processes signal in real-time. Like cellular automata it is

made of a massive aggregate of regularly spaced circuit clones, called cells, which

communicate with each other directly only through its neighbors. Cells not directly

connected together may affect each other indirectly because of the propagation effects of the

continuous-time dynamics of cellular neural networks. Each cell is made of a linear

capacitor, a nonlinear voltage controlled current source and a few resistive linear circuit

elements [30].

Cellular neural networks share the best features of both worlds; its continuous time

feature allows real-time signal processing found wanting in the digital domain and its local

interconnection feature makes it tailor made for VLSI implementation. [31] shows some of

the applications of cellular neural networks in image processing and pattern recognition. For

such applications, the network functions as a two-dimensional filter. However, unlike

conventional two-dimensional filters, the cellular neural network uses parallel processing of

the input image space and delivers the output in continuous time.
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1.4. MOTIVATION FOR THE PRESENT WORK

1.4.1 Why Neural Networks in Signal Processing ?

The recent resurgence of interest in neural networks has its roots in the recognition

that the brain performs computations in a different manner than do conventional digital

computers. Computers are extremely fast and precise at executing sequences of instructions

formulated for them. The human information processing system is composed of neurons

switching at speeds about a million times slower than computer gates. Yet, humans are more

efficient than computers at computationally complex tasks such as speech understanding,

visual information processing etc. Unfortunately the understanding of biological neural

systems is not developed enough to address the issues of functional similarity that may exist

between the biological and man made neural systems [15].

During the past decade neural networks have begun to find wide applicability in many

diverse aspects of signal processing, for example, filtering, parameter estimation, signal

detection, system identification, pattern recognition, signal reconstruction, time series

analysis, signal compression and signal transmission. The signals concerned include audio,

video, speech, image, communication, geophysical, sonar, radar, medical, musical and others.

The key features of neural network involved in signal processing are their asynchronous

parallel and distributed processing, nonlinear dynamics, global interconnection of network

elements, self organization, and high speed computational capability. With these features,

neural networks can provide very powerful means for solving many problems encountered in

signal processing [32].

Although neural networks can serve to further the understanding of brain functions,

engineers are interested in neural networks for problem solving. As an engineering

technique, neural networks have their own advantages, disadvantages and assumptions. The

natural question is: What can neural networks do that traditional signal processing techniques

can’t do? Certainly speed of computation is a factor. In traditional Von Neumann

computers, speed is limited by the propagation delay of the transistors. Neural networks on

the other hand, because of the massively parallel distributed processing, can perform

computations at a much higher rate. Because of their adaptive nature, neural networks can

adapt to changes in the data and learn the characteristics of input signals [13].
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1.4.2 Problems in Present Day DFT Computation

Speed of computation is very important in real-time applications. This can be

improved by reducing the number of multiplications and/or by parallel processing. The DFT

is a useful analytical tool and there are a number of techniques used for reduction of

computation in DFT [5-7]. Literature shows that FFT is the most popular algorithm to

implement DFT, which is highly efficient in the case of 1-D signals. The N-point sequence

requires N2 complex multiplications and N(N-l) complex additions in the case of direct DFT

where as Nlog2N complex operations in the case of FFT when N is a power of 2 [5]. The

reduction in computation is more predominant when N is large.

In the DFT computation, the data will be real values where as DFT coefficients will

be complex values. In present day DFT computation schemes, the data will also be converted

to complex form and the computations will be in complex form, which increases the

computation time and the memory requirement. One complex multiplication requires 4 real

multiplications and two real additions. Two memory locations will be required to store one

complex data. Also, the computation time will be more for multiplication than addition. Thus

the speed of computation can be improved by reducing the number of complex

multiplications. The speed of computation can also be increased by implementing the

computations in parallel.

For 2-D signals, the FFT method is highly time consuming since it requires a large

number of complex multiplications [1]. Due to the computational complexity of the Fourier

Transform, it is not in much use in 2-D signal processing applications. Parallel computation

also increases speed and may render real time applications possible.

2-D FFT computation is normally done using the Row-Column method, which uses 1

D FFT computation, or Vector Radix method. These methods require the length of the

sequence N to be a power of 2. If N is not a power of 2 the sequence will be padded with

zeros, but this will vary the frequency components and in many applications this is
undesirable.

Also, in many applications, we may need only a few DFT coefficients rather than the

complete set of DFT coefficients. In such cases also, the complete coefficients will be

computed using FFT or similar other algorithms. So a new approach based on visual

manipulation of the data / 2x2 DFT coefficients represented in the form of pictures is

developed. This method is suitable when a few DFT coefficients need be computed. This will
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help in visualizing the influence of data at different time / spatial index over a particular

frequency.

The evaluation of DFT coefficients in the form of pictorial representation discussed in

chapter 3 shows specific patterns that can easily be implemented in a parallel distributed

scheme as explained in chapter 4 and can be extended to any order N. This approach will be

highly useful in the analysis and processing of 2-D signals that exhibits repetition of blocks.

1.5. BRIEF SKETCH OF THE PRESENT WORK

The scheme of the work presented in this thesis is given below:

A review of the important research work done in the field of signal processing, neural

networks and image processing relevant to the work are presented in chapter 2. Special

emphasis is given to 2-D DFT and the different neural network models.

Chapter 3 describes the 2-D DFT computation through visual manipulation. The

details of construction of the pictorial representations are presented in this chapter. The

analysis of the pictorial representation for different order is carried out for the 2-D DFT

computation and manipulation.

Chapter 4 gives details of the development of a neural network model for the 2-D

DFT computation. The neural network approach is derived based on the results in chapter 3.

The simulation results of the model are also included in this chapter.

The discussions and conclusions drawn from the investigations on the development of

a neural network model and the visual manipulation approach for the 2-D DFT computation,

their applications and the scope of further work in the field are discussed in chapter 5. The

possible hardware implementation of the neural network model is also presented in this

chapter.

The relation between 6x6 point DFT coefficients and 2x2 point DFT coefficients are

presented in Appendix A. Appendix B deals with important results useful in the derivation of

the algorithm used in the chapter 4.
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Chapter

REVIEW OF PAST WORK IN THE FIELD 2

Joseph Fourier announced in 1807 that any 211-periodic function could be represented

as a series of sines and cosines. Since then, the spectral analysis of functions using Fourier

series and integrals has been the source of numerous mathematical problems [4]. A

fundamental advancement in the field of signal processing occurred in the mid-1960s with the

discovery of an efficient algorithm (FFT) for computing the sampled spectrum of a signal

[33, 34]. There were further developments to improve the speed of computation in many

applications, especially in 1-D signal processing, by modifying the algorithms or using

parallel implementations [35-41]. But in many applications based on 2-D or m-D signals, the

computational speed is a bottleneck. For instance, the image processing applications involve

processing of bulk data in a short time and the existing algorithms for 2-D DFT computation

are not quite suitable in many cases and hence the use of frequency domain processing is less

popular compared to time domain processing. In this context, the introduction of the artificial

neural networks in computational applications appears to be of great advantage since it is

based on parallel and distributed processing in tenns of very simple elements called neurons.

The idea to develop an approach to compute 2-D DFT based the neural network concepts

shows a good promise in improving the computation time. The work reported here thus

evolves a new approach to implement 2-D DFT based on the neural network concepts. A

review of the related literature is therefore in order.
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2.1 DISCRETE FOURIER TRANSFORM

The literature shows that an enormous amount of work has been carried out on 1-D

DFT where as that on 2-D or multidimensional DFT is less. One reason is that DFT is

linearly separable and hence can be implemented using 1-D DFT. However the literature is

rich with good publications on 1-D and 2-D DFT. This section presents a review on the work

in this area of computation. The following are few of the publications related to Discrete

Fourier Transform.

Winograd [42] developed an algorithm to compute 1-D DFT based on polynomial

reduction, with the length of the sequence as a prime number.

In [43] Auslander et al. modified the 1- D Winograd algorithms to derive an

algorithm for DFT (p; k), the DFT on a k-dimensional data set with p points along each array,

where p is a prime.

Rajan [44] presented a parametric representation of a composite operation consisting

of transformation, conjugation and modulation suitable for the study of the properties of

multidimensional Fourier transform. A class of properties of m-D Fourier transform is

established using these properties.

Gertner [45] presented an algorithm to compute 2-D DFT based on the geometric

properties of the integers and with feasibility to parallel implementation.

In [46] Rayfield et al. presented an implementation of 2-D DFT on a loosely coupled

parallel processing system made up of a large number of identical processing nodes with

reconfigurable point - to - point communication network.

Rajan [47] modified the general Winograd algorithm for 3x3 size data to take into

account of diagonal symmetry present in the data for the evaluation of DFT of diagonally

symmetric 2-D data of size NxN where N is a prime number.

In [48] Sorensen et al. presented a method for computing only a few (P) output points

of a length-N 1-D DFT. It permits the computation of any consecutive set of P points where

P should be a power-of-two. It is based on a factorization of DFT where one part is

computed using standard power-of-two FFT and the other uses a technique similar to

Geortzel algorithm.

Babic et al. presented an interpolation technique for computing more DFT coefficients

than the number samples of the sequence [49]. The conditions and solutions for perfect

interpolation of the DFT are considered.
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In pursuit of the methods to implement DFT efficiently, systolic implementation

techniques were tried out.

Wang et al. presented a systolic implementation of the DFT algorithm by using a

double decomposition method to create two 4-point systolic processors for a direct linear

DFT implementation [50]. The entire hardware implementation is connected in a pipeline

with O(N) throughput.

Chen et al. [51] proposed a 2-D Systolic array for performing 2-D DFT based on the

use of Goertzel algorithm in a row-column or column-row fonnat, with the features of

regularity, modularity and concurrency that are suited for VLSI implementation.

Subsequently, Yang [52] presented a decomposition in which the 2-D DFT can be

converted to a series of the odd DFT using the discrete Radon transform (DRT). A fast DRT

(FDRT) algorithm with reduced number of additions, greater regularity and parallel for

computing DRT is also presented. In parallel implementation, the FDRT based algorithm

increases the speed greatly.

In [53] Gertner et al. proposed a parallel algorithm for 2-D DFT computation which

eliminates inter processor communications and uses only O(N) processors for NXN DFT.

They have discussed the mapping of the algorithm on to architectures with broadcast and

report capabilities. The performance on these machines are expressed in terms of N, channel

bandwidth C, time A for an addition, and time to perform a 1-D DFT.

Concentrating on the VLSI implementation of DFT, Julien et al. presented a

systematic application of linear projection and scheduling to Dependence Graph (DG)

algorithm representations are used to generate asymptotically optimum DFT layouts in a

VLSI computing model [54]. Two stage prime factor maps are used to generate regular and

minimum Area Period (AP) architectures. They found that systematic multi projection of six

dimensional 3-factor DGs and eight-dimensional 4-factor DGs generate successively faster

AT2 optimal and regular architectures, but with increasing wire area.

Further, in [55] Miyanaga et al. proposed a single chip 400 MFLOPS 2-D FFT

processor VLSI architecture that is designed using O.8p.m CMOS technology. This processor

integrates 3,80,000 transistors in an area of 11.58xl1.58 mm2 with a typical machine cycle

time of 25 ns. The 24 bit floating point processor executes 2“x2“ point 2-D DFT in real time.

Exploring further into structure of DFT, Ma demonstrated an algorithm for computing

DFT(2"; k) based on ring structure [56]. This uses the principle of permuting the DFT matrix
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into block structured matrix with circulant blocks corresponding to the disjoint cosets of

kernel group K being the direct product of a group of order 2 and cyclic group of order 2"‘

2(2*-1).

In [57] Rajarevivarma et al. presents a modification to the Vector-Radix 2-D DFT

computation algorithm when real-valued sequences are used so that 50% saving in

computation compared to the complex computation. They are saying that the saving will be

of the order of 75% if the 2-D input sequence is centro-symmetric or anti-symmetric.

Ju [58] presented an equivalent relationship and unified indexing of FFT algorithms.

The paper shows that the same vector matrix form can represent the multidimensional FFT as

the 1-D FFT. Also, shows that the addressing sequences of the M-D FFT is the subset of the

1-D FFT. Also stated that both 256x256 2-D FFT and 64K 1-D FFT can be finished within

6.56 milliseconds by implementing on array processor chip set LH9l24/LH9320.

In [59] Gupta et al. presented the scalability analysis of parallel (1-D) FFT algorithm

on mesh and hypercube connected multi computers using the isoefficiency metric. They

found that the hypercube architecture can obtain linearly increasing speed up with respect to

the number of processors with a moderate increase in problem size. They also states that FF T

can not make efficient use of large-scale mesh architectures unless the bandwidth of the

communication channels is increased as a function of the number of processors.

In [60] Fragopoulou et al. presented parallel algorithm for the computation of DFT on

n-star graph network. They are claiming that the algorithm requires O(n2) multiply - add steps

for an input sequence of n! elements.

In [61] Pihl presented a review of what trade-offs exist between bit-parallel and bit

serial architectures with special interest in VLSI designs for high performance digital signal

processing. Parallel and serial architectures are compared in tenns of area, delay and power

conception and it is found that bit-serial and bit-parallel architectures are comparable by area

time measure but substantial difference exists in power conception. Bit-serial designs are not

as efficient from a power conception point of view.

In [62] Shin et al. proposed a parallel architecture based on linear arrays for high

performance implementation of FFT. They said that it offers constant I/O bandwidth and high

parallel processing capability. It is based on half butterfly which maximizes the utilization of

processing elements.
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2.2 NEURAL NETWORKS

The work on artificial neural network models has a long history. Development of

detailed mathematical models began more than 40 years ago with the work of McCulloch and

Pitts [63], Hebb [64], Rosenblatt [65], Widrow [66] and others. More recent work by

Hopfield [67-69], Rumelhart and McClelland [70], Sejnowski [71], Feldman [72], Grossberg

[73] and others has led to a new resurgence of the field. Though the neural networks evolved

from the field of pattern recognition and optimization, implementors were fascinated by the

PDP capability of neural network.

A number of neural network models are proposed by different research groups and

used in various applications. A review of the basic models of the neural network is presented

below to evolve the utility of Parallel Distributed Processing (PDP). It shall be demonstrated

that the PDP capability has found extensive use in the present work.

Neuron models

Hopfield [68] proposed a modification to the McCulloch-Pitts neuron model by

introducing sigmoid input-output relation so as to mimic the real neurons. A continuous,

deterministic neuron network of interconnected neurons with graded responses has been

analyzed.

Hampson et al. [74] developed three different representations for a thresholded linear

equation neurons. A training algorithm is also proposed which can be learned much faster

compared to the perceptron algorithm

Habib et al. [75] proposed a neuron type processing element by cascading three

elements, one called the cell body with its dendritic inputs and synaptic junctions, another

representing the axon base and finally the axon circuit. The circuit performs input temporal

and spatial summation as well as thresholding. The entire neuron circuit is simulated and a

VLSI design is presented.

Habib et al. [76] proposed a digital neuron type processor using timed Petri net which

performs input temporal and spatial summation as well as thresholding, operates

asynchronously.

Meador et al. [77] describes CMOS electronic circuits, which emulate natural neurons

at a more detailed level than that typically employed by the artificial neural network models.

The short term neuron dynamics is realized by a pulse-firing circuit and long-terrn neuron
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dynamics is realized by fixed & programmable synapse circuits, thus implementing a

programmable impulse neural network.

Fukumi et al. [78] described a new neuron model and its learning algorithm for

speeding up the convergence in the learning of layered neural networks. The neuron is called

a saturating linear coupled neuron.

Glanz [79] presented the research news on the functioning of the brain and says that

by applying concepts from mathematical physics, researchers hope to understand the

collective dynamics of billions of neurons and perhaps control them in epilepsy. In this many

researchers have presented their observations, still the researchers are far from pinning down

the precise nature of the brain dynamics that lead to seizures.

Feed Forward Networks

Feed Forward neural networks have remained attractive to implementors due to the

simplicity of organization and ease of training. Since the present work centers itself around a

simple feed forward structure to build 2-D DFT, a review of feed forward neural network is

presented below.

Lippmann [80] provides an introduction to the field of artificial Neural Nets by

reviewing six neural net models that can be used for pattern classification. In addition to

describing these nets, a major emphasis is placed on exploring how some existing

classification and clustering algorithms can be performed using simple neuron-like

components.

Widrow et al. [81] described the practical applications of the adaptive neuron called

adaptive linear combiner (ALC) in signal processing and pattern recognition. They described

the system in detail giving its features and the functioning as well as the theory behind it.

Experimentally they verified the functioning of the system and found to be effective.

Touretzky et al. presented the importance of choosing the number of neurons in the

hidden layer of a feed forward neural network in [82]. They also explains what is the

function of the hidden layer neurons in learning.

Widrow et al. [83] reviewed fundamental developments in feed forward artificial

neural networks during 30 years. It describes the history, origination, operating characteristics

and basic theory of several supervised neural network training algorithms.
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In [84] Amari showed, by mathematical treatments, the capabilities and limitations of

information processing by various architectures of neural networks. It considered the

capabilities of transformations by layered networks, statistical neurodynamics, the dynamical

characteristics of associative memory, a general theory of neural learning, and self

organization of networks.

In [85] poggio et al. developed a theoretical framework for approximation based on

regularization techniques that leads to a class of three layer networks called regularization

network and include as a special case the radial basis function method. This generalizes the

theory of regularization networks to a formulation that turns out to include task dependent

clustering and dimensionality reduction.

In [86] Reeke et al. presented a synthetic neural modeling which is a multilevel

theoretical approach to the problem of understanding the neuronal bases of adaptive behavior

and uses simultaneous large-scale computer simulations of the nervous system, the

phenotype, and an environment of a particular organism to study events and their interactions

at these three levels. The automata discussed here deal first with certain abstract properties of

pattern recognition (Darwin I) and then with categorization and association (Darwin II)and a

description of an automation with sensory and motor systems and autonomous

behavior(Darwin III).

In [87] Braham et al. described an associative neural network whose architecture is

greatly influenced by biological data, with high parallelism and modularity.

Cellular Neural Networks

The cellular neural network uses the features of analog domain and digital domain. It

is largely based on the principles of cellular automata, where in the connections are made as

boolean fimctions, the cellular neural networks have become handy in the reported work. In

the basic computational model developed, the learning is proposed to be accomplished by

making and breaking connections. So a review on this model is useful.

This class of neural networks, used for computational applications, was proposed by

Chua and his group.

In [30] Chua et al proposed a novel class of information processing systems called cellular

neural networks. Like neural networks, it is a large-scale nonlinear analog circuit which

processes signals in real-time. Like cellular automata, it is made of a massive aggregat_e of
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regularly spaced circuit clones, called cells, which communicate with each other directly only

through its nearest neighbors. This model is suited for high-speed parallel signal processing.

The theory of this model is dealt with in this article.

In [31] Chua et al. presented some of the applications of the cellular neural network

model proposed in [30]. Some impressive applications of this model to areas such as image

processing and pattern recognition are demonstrated.

Rodriguez-Vazquez et al. [88] presented a unified, comprehensive approach to the

design of continuous-time and discrete-time cellular neural networks using CMOS current

mode analog techniques. Cell design relies on exploitation of current mirror properties for the

efficient implementation of both linear and nonlinear analog operators.

In [89] Varrientos et al. presented a current-mode implementation for a cellular neural

network using simple current mirrors and transconductors and discussed the strength and

wea.knesses of the implementation based on the experimental results.

In [90] Fruehauf et al. described the theoretical and practical aspects of an actual

hardware realization to implement the cellular neural network optically. The theoretical and

practical aspects of a Fourier optical CNN implementation with 25x25 neurons have been

outlined.

Roska et al. [91] presented algorithmically programmable analog array computer

having real time and supercomputer power on a single chip called the CNN universal

machine and supercomputer. In this the universal machine is described emphasizing its

programmability as well as global and distributed analog memory and logic, high throughput

via electromagnetic waves and also the use of it as a multichip supercomputer. The analogic

algorithms as well as the analogic software are explained.

Cimagalli et al. [92] described a generalized cellular neural network (GCNN) in which

the input is a two-dimensional picture that is processed continuously in order to detect in real

time trajectories of moving objects in a noisy environment. Also described the architecture,

its equations and the method of design. Also this compared with other paradigms of ANN.

Seiler et al. [93] presented an implementation of winner-take-all behavior in inputless

cellular neural networks which is defined as follows: the eventual output of the cell with the

largest initial state is +1, while all other cells is -1. Exact parameters are derived for winner

take-all CNN’s with an arbitrary number of cells, such that their robustness with respect to

the simplified structure is maximum. It is found that accuracy requirements increase with the
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number of cells, such that the largest winner-take-all CNN’s that can be reliably implemented

with current methods may consist of only about ten cells.

Harrer [94] presented a generalized architecture of cellular neural network that allows

multiple layers of different architecture, which can be combined in several interconnection

modes. Also this model permits time varying templates so that they can be defines as cyclic

and applied periodically and important templated are proved to be convergent.

In [95] Baktir et al. presented an analog CMOS circuit realization of cellular neural

network with transconductance elements, with the property that it can easily adapt to various

applications in image processing by choosing appropriate trance conductance parameters

according to the predetermined coefficients.

In [96] Sziranyi et al. proposed a hardware implementation of a character recognition

system based on cellular neural network architecture, called CNND. The CNND consists of

one or more analog cellular neural netwoks and some digital logic incorporating advantages

of fast analog Signal Processing and fast and easy decision capability of digital logics. It can

recognize multifont printed or handwritten characters.

Neocognitron Model

The Neocognitron model presents the property of hierarchically building the neural

network. The complex problem of 2-D DFT computation has been demonstrated to be

tractable in a hierarchy of computations in the present work. Relevant literature that triggered

the approach is reviewed below.

Fukushima and his group proposed a group of hierarchical neural network models that

are applicable to handwritten character recognition.

Fukushima [97] proposed a neural network model named Cognitron which uses

unsupervised learning, classified under competitive learning. It does not have the ability to

correctly recognize position shifted or shape distorted patterns. It recognizes the same pattern

presented at a different position as a different pattern.

Fukushima [23] proposed a hierarchical neural network model, with a nickname

‘Neocognitron’, for a mechanism of visual pattern recognition and uses self-organization with

the ability to recognize patterns based on the geometrical similarity of their shapes without

affected by their positions. This is a modification to the model ‘Cognitron’
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In [24] Fukushima et al. presented a new algorithm for the model given in [23] and

having the ability to self-organize by unsupervised learning to recognize stimulus patterns

according to the difference in their shapes.

Fukushima [25] modified the Neocognitron model by adding feedback connections so

as to add the function of associative memory and to recognize patterns. Pattern recognition is

performed hierarchically by integrating information by converging afferent paths in the

network and the associative recall is incorporated by distributing the integrated infonnation to

the lower order cells by diverging efferent paths.

In [26] Fukushima et al. suggested a modification to the Cognitron model by adding

feedback inhibition to increase the speed of self—organization. The network therefore quickly

acquires favorable pattern selectivity by the mere repetitive presentation of a set of learning

patterns.

In [14] Fukushima presented a modification to the Neocognitron model such that it

can successively pay attention to each pattern, segmenting it from the rest and recognizing it

separately when two or more patterns are presented simultaneously.

Fukushima [29] presents a modification to the neocognitron model such that it can

recognize patterns with selective attention, segmentation, associative recall and learn any set

of patterns.

In [27] Fukushima et al. discusses a pattern recognition system which works with the

mechanism of the neocognitron for the application of handwritten alphanumeric character

recognition. It offers techniques for selecting training patterns useful for defonnation

invaria.nt recognition of large number of characters.

White et al. [98] described a digital implementation of Neocognitron model with the

corresponding modifications in the algorithm. The performance of the new model is

compared with analog model.

Nellis et al. presented a modification to the Neocognitron model by replacing the

analog cells with digital processing elements [99]. They demand that it has reduced training

time and increased character throughput characteristics.

Hatakeyama et al. proposed an expanded Neocognitron model which can recognize

both shape and the location of an object [100]. They presented an improved mechanism of

local feature extraction and competitive learning.
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Adaptive Resonance Theory (ART)

The ART model has the basic feature of stability and plasticity in learning. Also the

number of classes that can be trained is dependent on the number of output neurons. Similarly

the number of cells in the planes of the neural network model, developed in this work, can be

set to a particular value that determine the maximum size of the input / output. The learning

algorithm is proposed to modify the connections in such a way that any order upto the set

maximum can be implemented. Hence the relevant literature is reviewed below.

Gail A. Carpenter & Stephan Grossburg proposed a group of network models based

on the resonance principle and they are of the self organizing type.

In [19] Carpenter et al. described a neural network architecture that self organizes and

self-stabilizes its recognition codes in response to arbitrary ordering of arbitrarily many and

arbitrarily complex binary input patterns for the learning of recognition categories. The

architecture possesses a context-sensitive self-scaling property which enables its emergent

critical feature patterns to form. A nonlinear matching law, nonlinear associative laws are

used. The architecture circumvents the noise, saturation, capacity, orthogonality, and linear

predictability constraints that limit the codes which can be stabley learned by alternative

recognition models.

Carpenter et al. [20] presented the features such as stability-plasticity, self-stabilized

learning in an arbitrary environment, learning rules etc. of the models ART1 and ART2. They

also described how ART systems provide a fertile ground for gaining anew understanding of

biological intelligence. They also suggest novel computational theories and real-time

adaptive neural network architectures with promising properties for tackling some of the

outstanding problems.

Kane et al. [101] proposed and demonstrated a hybrid opto-electronic implementation

of ART2-A (Algorithmic - ART) utilizing an optical joint transfonn correlator. They demand

that the resultant opto-electronic system is able reduce the number of calculations compared

to a strictly computer based approach.

For the sake of completion, the other relevant models are also reviewed below.
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Self Organizing Map (SOM)

Kohonen [21] presented the features of Self Organizing Map and stated that it has the

special property of effectively creating spatially organized internal representations of various

features of input signals and their abstractions. One novel result is that the self organization

process can also discover semantic relations hips in sentences.

Kohonen [22] described the use of neural network in building a phonetic typewriter

from the fundamentals to the hardware implementation. He says that the system developed,

forms a complete speech recognizer employing neural computing principles and has been

brought to a commercial stage.

Hopfield Associative Memory

McEliece et al. [18] presented a rigorous analysis on the capacity of the Hopfield

associative memory by applying techniques from coding theory.

In [102] Li et al. did a qualitative analysis of the behavior of the equilibrium points to

investigate the dynamic properties of a class of neural networks including the Hopfield

model. The result pertains to analysis and synthesis of the models.

In [103] Li et al. investigated qualitative properties of neural networks described by a

system of first-order linear ordinary differential equations which are defined on a closed

hypercube of the state space with solution extended to the boundary of the hypercube. They

modified the Hopfield model and says that it is easy to implement in analog integrated

circuits.

In [104] Palm presented the infonnation storing capacity of certain associative and

auto associative memories. He pointed out that the storage capacity of an associative memory

increases proportionally to the number of storage elements. The usefulness of the associative

memories as opposed to conventional memories is also discussed.

Chung et al. [105] proposed a digital multiplier based on unidirectional feedback type

neural network and is VLSI implemented. The feedback connections are half that of the

Hopfield model. They demands that the new multiplier is simpler than that designed by

conventional techniques.

Learning

In [106] whitcomb et al. presented a hierarchical learning algorithm for feed forward

neural networks that attempts to simulate structured learning. In structured learning, lower
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concepts are acquired first and then used to uncover higher level concepts. The procedure

dynamically builds a multilevel hierarchical structure of hidden nodes as concepts are learned

in the supervised manner.

In [107] Nitta et al. presented a complex numbered version of the backpropagation

algorithm that can be applied to neural networks whose weights, threshold values, input and

output signals are all complex numbers. This can be used to transform geometrical figures.

Barber et al. [108] reported a study of learning and retrieval algorithm for Hopfield's

pattern classifier network, multilayer backpropagation network, Kohonen's self organizing

feature map and ART-1 models. The algorithms are mapped on to the sequential pipelined

neuro emulator architecture.

Implementation

Lami et al. [109] presented an architectural level evaluation scheme by proposing

some performance indexes on idealized architecture classes. Some conclusions on the

advantages and disadvantages of the architectures are presented.

In [110] Masa et al. discussed a CMOS neural network integrated circuit designed for

very high speed applications. This full-custom, mixed analog - digital chip implements a fully

connected neural network with 70 inputs, 6 hidden layer neurons and one output neuron. This

digitally programmable, analog neural network classifies upto 70 dimensional vectors within

20 nano seconds, performing 20 billion multiply - and - add operations per second. They

demand that the circuit occupies 10x9 mm: silicon area with 1.5 pm CMOS process and

dissipates only 1W at 5V supply.

Distante et al. [111] presented a solution for mapping neural nets onto massively

parallel architectures, based on regular array structures, that can easily be implemented.

In [112] Watanabe et al. describes an implementation of error back-propagation on a

massively parallel cellular array processor, AAP-2, considering allocation of processors,

computing the activation value, with a table look-up method and communication between

processors.

Kung et al. [113] proposed a digital VLSI architecture based on programmable

systolic array for implementing a wide variety of artificial neural networks. The array is

meant to be more general purpose and may be used for a variety of algorithms.
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In [114] Graf et al. described the VLSI implementation of a connectionist

model to study feasibility of electronic implementation of the neural network models. The

network described provides a flexible tool because it can evaluate Boolean expressions and

arithmetic equations. They found that this network looks promising for building powerful

recognition systems.

Hutchinson et al. [115] showed that Optical flow can be computed by injecting

currents into resistive networks and recording the stationary voltage distribution at each node

and hence showed that appropriate computations map on to simple resistive networks. These

networks do not require a system-wide clock and rely on many connections between simple

computational nodes, converges rapidly and are quite robust to hardware errors and consume

moderate power.

In [116] Mostafavi presented a method for use in VLSI design of specialized

interconnection of multiprocessor architecture for implementing neural network models. A

simple feed forward design of interconnecting processing elements in a single building block

is presented. This building block is modular and can be used for building larger size neural

network system.

Heileman et al. [117] presented a framework for simulating neural network as discrete

event nonlinear dynamical systems. They considered the design and construction of

concurrent obj ect-oriented discrete event simulation environment for neural networks.

Torbey et al. [118] presented an automated architectural synthesis methodology for

implementing digital neural networks. The functional units used in these architectures, their

components and features are discussed.

Tam et al. [119] described a multi-chip analog neural network system capable of

prototyping networks with as many as 81920 synaptic connections and 1024 neurons. The

neural network architecture is reconfigurable by routing all neuron activation values through

a host computer which can re-map the network connectivity by simply changing a look up

table in memory.

In [120] Fu shows how to interpret neural network knowledge in symbolic form. In

this the scheme is explained and the interpretation algorithm is fonnulated. Formulated a

relationship between neural network and a rule-based system. Also, demonstrated that the

neural network generates rules of better performance than the decision tree approach in noisy

conditions.
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Gomez et al. [121] discussed the theory, design and implementation of a digital neural

network using ASIC technology. They have considered a Boolean network model to realize

Boolean functions.

Kung et al. [122] proposed a generic iterative model for a wide variety of artificial

neural networks: single layer feedback networks, multilayer feed forward networks,

hierarchical competitive networks, as well as some probabilistic networks. A unified

formulation is provided for both the retrieving and leaming phases. Based on the formulation,

a programmable ring systolic array is developed. The architecture maximizes the strength of

VLSI in terms of intensive and pipelined computing. They demand that this can be used as a

basic structure for universal neuro computer architecture.

Speckmann et al. [123] presented a system for automatic synthesis of special purpose

hardware for neural networks. Only an algorithmic description of the behaviour of the

hardware and a simulation environment have to be written by the designer using VHDL. This

description can be automatically mapped to the hardware. By using FPGAs with this system

it can be learned.

Vidal [124] presented networks of Boolean programmable logic modules as one

purely digital class of artificial neural nets. The approach contrasts with the continuous

analog framework. He found that programmable neural networks are capable of handling

many neural net applications and some of the limitations of threshold logic networks are

avoided.

2.3 APPLICATIONS IN IMAGE PROCESSING

Ramkumar et al. [125] presented a new FFT based technique of fractal image

compression which can significantly speed up the process of matching domain and range

blocks. In this method the isometric transformations of a domain block are chosen to permit

block matching through cross correlation of range and domain blocks, which is implemented

through the FFT.

In [126] Shalinie et al. proposed a neuro-fuzzy model for effective compression and

decompression of data used for image recognition. Contrast enhancement coupled with fi1zzy

procedures is used to preprocess the image. Counter propagation network is used to train few

image patterns. Using these image patterns, the neuro-fuzzy model compresses the unlearned

image data and recovers the image to full extent.
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Barros et al. [127] proposed an architecture for segmenting sequences of images in

gray levels at video rate. This architecture implements, on FPGA, an algorithm of image

segmentation by self—organizing feature maps. Performance, cost and reconfigurability of the

architecture are discussed.

2.4 Conclusion

The literature reviewed here has triggered the basic approach to develop the central

idea in the work reported. The chapters to follow shall illustrate this aspect.
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Chapter

VISUAL MANIPULATION OF SYMBOLS FOR DFT 3

The ability to see is one of the remarkable characteristics of living beings. It enables

them to perceive and assimilate in a very short time an incredible amount of knowledge about

the world around them. The scope and variety of information that can pass through the eye

and be interpreted by the brain is nothing short of astounding. Mankind has increased this

basic capability by inventing devices that can detect electromagnetic radiation at wavelengths

far outside the range of normal vision and at energy levels orders of magnitude below what

the eye is able to perceive by itself. By the use of X-rays or sound waves it is possible to see

inside objects and into places that have been invisible to living beings since the dawn of

creation. Ultra-fast photography can stop a speeding bullet or fi'eeze a flying humming bird’s

wing [l28].

For thousands of years mankind has been creating pictures that attempt to portray real

or imagined scenes as perceived by human vision. Cave drawings, paintings and photographs

are able to stimulate the visual system and conjure up thoughts of far away places, imagined

situations or pleasant sensations. The art of motion picture has advanced to the point where

viewers ofien undergo intense emotional experiences. On-the-spot news coverage gives the

impression of actually witnessing events as they unfold. Thus the visual representation of a

problem will be easier to understand compared to other methods.
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The DFT computation is an approach for the analysis of signals and systems in the

frequency domain with well established algorithms that are in use for a long time. But still it

is not that efficient in the 2-D applications. Currently the software packages are also giving

more importance to the visual representations. Hence, a visual approach is developed in this

work to do the 2-D DFT computation and a pictorial representation of them so that the

analysis of 2-D signals in the fiequency domain will be easy.

3.1 BASIC THEORY
Let the NxN data matrix is

_ Ao,o Ao.1 A0, N -1 _
A1,o A1,1 A1,N -1

A =

AN—1,o AN—1.1 AN-1.N—1_

Let the DFT of the matrix A be the matrix Y given by

l Yo.o Yo.1 Yam .1 '
Y = Y1_o Y.,. Yl,N—I

_ YN—1,0 Y~-1,1 YN—l,N—1J

where Ykl,k2 = Nil I§Anl,n2.MIi1kl+n2k2 ,0 s kl, k2 s N-1 (3.1)
nl=0n2=O

In direct DFT, the computation of each coefficient Ymz requires N2 complex multiplications,

N(N-l) complex additions and there are N2 coefficients. But the computation of 2x2 point

DFT doesn't require any multiplications. Hence, if we can express the NxN point DFT in

terms of 2x2 point DFTs, the complex multiplications can be reduced. Therefore, the

matrix A is partitioned into non-overlapping 2x2 matrices as

A1” =[l?;: lit] ,A1o.. =[’2?.»: €132]
The DFT ofA10o is

X00 = A00 +Ao1+A1o +A11

Xo1=(Aoo+ A1o)'(Ao1+A11)

x1o=(Aoo+Ao1)'(A1o+A11)

x11=(Aoo+ A11)‘ (A1o+Ao1)
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Similarly, the DFT of other 2x2 matrices can be obtained. Then the DFT of the partitioned

matrices can be written as X

Xo.o X0.) X0,N — I
X1,o X1.1 XLN -1

X =

XN—1,o XN—r.r XN-l.N—1

The NxN point DFT coefficients, Y are expressed in terms of the elements of X bykl,k2 ’

using the relations for NxN point DFT & 2x2 point DFT as well as the property that

WTTLN/2 = —W£. The relation between the matrices X & Y for N = 6 is given in appendix

A. Thus, it is found that the NxN point DFT coefficients can be expressed as

Y“, = N§y§3>,k, W2, ,0s kl, k2 s N-1 (3.2)

where Yfjflz will be the sum of few 2x2 point DFT coefficients. Scaling factors of 1/4 or 1/2

respectively arise if 4 or 2 of the DFT coefficients from the respective 2x2 matrix are present

in Yf3?k2. Most of the coefficients Yfjfla depend on all the 4 coefficients from a 2x2 matrix.

This can be replaced with one data and hence the additions can be reduced. But for visual

manipulation, the pictorial representation in terms of 2x2 DFT shows regular patterns better

than the representation in terms of the data. So the pictorial representation is in terms of 2x2

DF Ts and computation of DFT coefficients are in terms of the data itself.

From the equations (3.1) & (3.2), a relation between Y{3_’k2 and the data can be

derived.

N—l N—l

Yk1,k2= Z ZAn1.n2.W§"k'+"z'k2
nI=0n2=0

N-l N-I

: Z ZAnl‘n2wSnl.kl+n2k2))N
nl=0n2=D

Since WN is periodic, with period N, n1. kl + n2. k2 in the above equation can be replaced by

((nl. kl + n2. k2))N. In equation (3.2) the factor WI: can be thought of as an N/2 dimensional

vector with Yffifia as the respective scaling factor. Comparing equations (3.1) & (3.2) and

using the periodicity and symmetry properties of the twiddle factor, Y§f}_’k2 can be expressed as

Yl(Fl,)|:2 = Z Anl,n2- Z An|.n2 (33)
V(nl.n2) z=p V(nl_n2)lz=p+N/2

where z = ((nl . kl + n2 . k2))N (3.4).
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Thus DFT computation using equations (3.2) & (3.3) can be interpreted as follows. The 2-D

data in the spatial domain with index (n1, n2) is mapped to the frequency domain with index

(kl, k2) in two steps. First, the data is mapped on to each of the vectors formed from the

twiddle factors W5 with the mapping function as ((n1. k1 + n2. k2))N = p. Since

WI?”/2 = —W§ , only N/2 dimensional vector is considered. The remaining N/2 fold over

with a sign reversal. The algebraic sum of the data that is mapped over to the vector W3 will

be the real va1ueYfj_’n. Then the weighted sum of these vectors WI’: and the corresponding

Yffijd gives the DFT coefficient Ykm.

Yffkz can be represented pictorially using a set of primitive symbols derived from the

relation between 2x2 data and 2x2 DFT coefficients. This gives a visual representation of

the relation between NxN point DFT and 2x2 point DFTS. This can be easily converted to a

visual representation in terms of NxN data by replacing the primitive symbols with the

corresponding data. Also a parallel distributed approach can be derived for the DFT

computation as explained in the next chapter.

3.2 DERIVATION OF THE PRIMITIVE SYMBOLS

Let A =[:‘:_';’ ‘rm,   be the 2x2 data and corresponding DFT matrices

respectively. Then

Ao,o+ Ao.1+ A1,o+A1_1 = xo,o LA 0

(Ao,o+ A1,o)’(Ao,1+A1,1)= xo,1 RA U

(Ao_o+ A0,: ) ' (A1,o+Ai,1) = x1.o LB 0

(Ao,o+ A|,1)'(A1,o+Ao,1)= XL1 R-B D

The corresponding mnemonic and the pictorial representations in terms of 2x2 DFT are

shown on the right side of the above equations. From the above four data - DFT relations we

can derive the following expressions.

Ao.0 + A0,: = [xo_o + x1,o]/ 2 VI-/P l

Ao,o + A1,o = [xo,o + Xo,1]/ 2 HAP —

Ao,o+ A1.l=i:x0.0 + X1,1]/ 2 DP \
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Ao,o

A0,:

AL0

Am + A,_0= [X09 — x,_.]/ 2 DPA “K.

Am +A,,, = [X09 — x0_,]/ 2 HAPL 0-‘

A1_0+A,_, = [X0_0 — x,‘0]/ 2 VLPA E

AM. AN = [xw + x,_,]/ 2 VRP |

Ao_0- A,_0= [x,_0 + x,_,]/ 2 HBP _

A0_o- A,_, = [x,_o + x0_, 1/ 2 CP /

A0_, - A”, = [xm — xo,,]/ 2 CPB

Am —A,_, = [xm — x,_,]/ 2 HBPL Q

Am-A,_, = [x0_, — x,,,]/ 2 VRPA j’
= [X09 + X,_0+x0_l + X,_,]/4 MP |:]

= [x0_0 + X”,-Xo_, — x,,,]/4 MPL l

= [xoyo + xm -x,_0 — x,,,]/4 MPA

= [X09 + x,_, —x,,_, — xm]/4 MPDA1,]

In order to understand the picture, in general,

“ indicates ‘+’ sign for the DFT coefficient.

“ - “indicates ‘-’ sign for the DFT coefficient.

Continuous lines indicate positive sign and dotted lines for negative sign.

The meaning of typical symbols and mnemonics used in the pictorial representation

are given below:

1. Symbol Cl named MP(for Matrix Bositive) indicates that all the four DFT coefficients

in the 2x2 DFT matrix are to be added to compute Yfjfkz. Equivalently, the same result will

be obtained if we consider the data at the top-left comer of the concerned 2x2 data matrix.

2. Symbol named MPL (for Matrix Bositive on the Lefi) indicates that the two DFT

coefficients on the lefi (i.e. (0,0)"‘ and (1,0)“‘ position) are to be added from which the sum of

DFT coefficients on the right (i.e. on the (0,1) "' and (1,1)"‘ position) of the 2x2 DFT matrix

are to be subtracted. Equivalently, we may consider the data on the top right position, i.e.

(O,1)"‘ position, of the 2x2 data matrix to compute Yffilkz.
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3. Symbol l is called by the name VLP (for Meitical Left Bositive). VLP indicates that
the two DFT coefficients on the left of the 2x2 DFT matrix are to be summed in the process

of finding Yfjfld . Equivalently, we may consider the sum of the (0,0) and (0,1) data elements

of the 2x2 data matrix.

4. The symbol j is called HAPL (florizontal Above- Bositive Lefi). HAPL indicates
that in a cell, the DFT coefficients on the top right position (i.e. (0,l)"‘ position) is subtracted

from the DFT coefficient on the top lefi(i.e. (0,0)"‘ position of 2x2 DFT) during the

computation of Yflfkz. Equivalently, the data in the (O,1)"‘ and (1,1)"‘ position of the data

matrix may be summed to get the same value.

5. The symbol \ called DP (Diagonal Bositive) when used indicates that in a cell,

the diagonal element occupying the bottom position, i.e. the ( 1,1)"‘ position is to be added to

the diagonal element at the top, i.e.,(0,0)"‘ position while computing Yififu . Equivalently, the

diagonal elements in the data cell may be added to get the same result.

6. The symbGl called LA, (Lefi Above) depending on its position in the 2x2 DFT

matrix indicates that only the DFT coefficient at its position has to be considered while

computing Y{('§"k2. Equivalently, to get the same result, all the 4 data elements have to be

summed for LA.

Also, generally, for the DF T matrix

(a) Whenever all the four DFT coefficients of a cell are involved, a scaling factor of 1/4

is to be applied to the result of computation.

(b) If only two coefficients are involved, a scaling factor of 1/2 has to be applied.

(c) If only one coefficient is involved, no scaling factor has to be applied.

Similarly, other data-DF T relations are derived and named them using the nomenclature

given below.

A - Above B - Below R - Right L - Lefi
V - Vertical H - Horizontal D - Diagonal C - Cross-diagonal

M - Matrix P - Positive N - Negative.
Using the above pictorial representation of 2x2 DFTs, the pictorial representation for

NxN—point DFT coefficient Ykm can be obtained in terms of Yfifkz .
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3.3 PICTORIAL REPRESENTATION

3.3.1 Direct Method

This method can be used to represent visually and compute the value of 2-D DFT of

all or a few selected indices when the order of the data matrix is an even number N. Let A =

[An] and Y =[Y,_,-], 0 S i,j S N-l be the NxN data and DFT matrices respectively related by

(3.1). The coefficient Ykm can be expressed in tenns of the real coefficients Yffllkz using

(3.2) where Yffifla is related to the data as in (3.3)

The real coefficientYf3_’k,, for any (kl, k2) and p = O,l,...M-l where M = N/2, is

represented pictorially, in terms of 2x2 point DFT coefficients, as explained below. The

pictorial representation of Yfflz will have MxM cells with either a primitive symbol or a

blank in each cell. Each cell represents a choice of mapping of 2x2 data into 2x2 DFT based

on the value of z in (3.3). Hence, for each time index (n1, n2), the value of z = ((nl. kl + n2.

k2))N is determined. If 2 = p, the data is to be added and if z = p + M, the data is to be

subtracted. Other conditions are to be neglected. The primitive symbol to be used in each

cell can be selected using the data-DFT relation, given in fig. 3.1, based on the number and

sign of data used from that cell. For eg: for any even value of N, if (kl, k2) = (0, 0) then

((nl. kl + n2. k2))N = 0 for all values of (n1, n2) in the MxM cells. Thus all the four data in

each cell will be involved with plus sign (equivalently one DF T coefficient at left & above

position with mnemonic ‘LA’) if p=O. Thus the pictorial representation for kl = k2 = 0 exists

only for p = 0. Similarly, for kl= O & k2 = M, z = O or M when n2 is even or odd

respectively. Thus in the columns of even n2, the data is to be added and for odd values of n2

the data is to be subtracted. Equivalently, all the cells will have the symbol corresponding to

the mnemonic ‘RA’ for p=O alone. Similarly we can construct the pictorial representation for

any (kl, k2) corresponding to any even value ofN. The fig. 3.2, 3.3, 3.4, 3.5 & 3.6 show the

pictorial representation for N = 4, 6, 8, 10 & 12 respectively. Similarly, the pictorial

representation for other values of N can be derived. The fig. 3.2, 3.3 & 3.4 gives the

complete set of coefficients for N = 4, 6 & 8 in which related coefficients are placed closer

for ease of comparison. In fig. 3.5 multicolor representations are used so that a number of

coefficients can be represented in one bin to enable easy analysis as well as to reduce the

space consumption. The color codes used are self-explanatory. All the coefficients in
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Fig. 3.1 Primitive Symbols and its Mnemonics
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Fig. 3.2 Pictorial Representation for N=4
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group 1 are represented in one bin. For group 2 coefficients, all the coefficients in one

column / row are represented in one bin for each p. For example,  for p = 0 & k = 1, 2, 3,

4, 6, 7, 8 & 9 are shown in one bin with one color for each k. The basic set of coefficients

from group 3 are also shown in fig. 3.5 with one coefficient for all values of p, differentiated

by color as indicated in the fig. 3.5, in one bin. Similarly other coefficients can also be

represented. A few coefficients corresponding to N=l2 are shown in fig. 3.6 for the first two

values of p for which the representations are different and not blank.

3.3.2 Analysis of the pictorial representation

3.3.2.1 N= 4

The matrix above shows the grouping of coefficients corresponding to 4x4-point DFT

and its pictorial representations are shown in fig. 3.2. The DFT coefficients are classified into

three groups depending on the way the primitive symbols are present in them. The circled

coefficients (ie; Y0,0, Y0}, Ym, Y2_2) represent group 1 and the coefficients Ym, Y0_,, Y”, Yo’,

Y,_,, Y2_,, Y,_2, Y2_, that are between two dotted lines represent group 2 and the remaining

coefficients form group 3. The group 1 coefficients depend on one DFT coefficient from

each 2x2 cell and it shows a positional relation with that of the index. Similarly, the group 2

coefficients also show a positional relation. That is, the coefficients (Ym, Yw) in the left

column marked as group 2 will depend on the two coefficients on the left of the cells (VLP,

VLN for even p & VLPA, VLPB for odd p ), the coefficients in the right column (YL2, Y”)

will depend on the two coefficients on the right of the cells (VRP, VRN for even p & VRPA

VRPB for odd p ), the coefficients in the top row (Ym, YOYB) will depend on the two

coefficients on the top position of the cells (HAP, HAN for even p & HAPL, HAPR for odd

p) and that in the lower row (Yu, Yu) will depend on the two coefficients on the lower

position of the cells (HBP, HBN for even p & HBPL, HBPR for odd p). The group 3
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coefficients also show a specific pattern depending on the position of the frequency index.

That is, the coefficients on the diagonal position (Y,_,, Y,_, ) depend on (CP, CN for even p &

DPA, DPB for odd p) and that on the cross-diagonal position (Y,_3, Y3’, ) depend on ( DP,

DN for even p & CPA, CPB for odd p). Thus, when N=4, the pictorial representation

corresponding to even p will use one set of primitive symbols and that for odd p will use

another set of primitive symbols in groups 2 & 3.

The fig. 3.2 shows that the pictorial representation of a number of coefficients can be

derived from that of one coefficient. The group 1 coefficients can be derived from one cell,

since all the cells are identical for one coefficient and the others in the group are related by

the operation of flipping with respect to an axis. That is, Y0_M can be obtained from Y0_,, by

flip horizontal operation, YM_0 by flipping vertically and YM_M by rotate right and flip

horizontal operations.

The group 2 coefficients are related as shown in the following and they can be derived

by simple manipulation of few coefficients.

(0) = (0) (I) = _ u) (0): (0)YL0 Y10 5 YL0 YCLD 9 YL1 YCLZ ’ u>=_ ll) 10): (0)Y,_, Y Y Y3.2 7 0.l 0.3 3 Ygll) = _ Yll)0.] 3
(0) = (orY“ Y1.1 7 Y1(.ll) = -  ‘

can be derived from Y5? by rotate right and flip horizontal operations. For

converting Y5? to  use flip vertical and for changing from to  use flip
horizontal operations. Thus we can derive the representation of group 2 coefficients from that

of single coefficient.

The group 3 coefficients are related as Y,‘_f' = Y,‘_‘;’ , Y,f§’= -Y,'.',’, Yfj’ =Y,‘_‘j’ Y,‘_‘,' = - Y,‘_',’ and they

can be derived by simple manipulation of few coefficients. The coefficients in this group can

be derived from one another by rotate right or rotate lefi operations.

3.3.2.2 N = 6

539:9‘ Y0-I Y0-2 Y9»?  Y9;

Y,_0% Y,', YL2 Y,_, Y,_,, Y,_,
Y = Y”; Y,_, Y2, Y,_, Y,_, Y,,

_.   Y_3_.__4 Y3_.s._
Y,_,§ Y,_, Y,_, Y,_,* Y4’, Y,_,Y  Y Y Y Y Y

us 0 u. L. La N u 5 u. Ln
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The matrix above shows the indices corresponding to 6x6 DFT. Fig. 3.3 shows the

pictorial representation for N = 6. The DFT coefficients are classified into three groups

depending on the way the primitive symbols are present in them. The circled coefficients

represent group 1, the coefficients between two dotted lines represent group 2 and the

remaining coefficients form group 3. Group 1 corresponds to the four real coefficients with

indices (0,0), (0,M), (M,0), (M,M), where M = N/2 = 3, having Yflfkz for p=O only. Group 2

with 4(N-2)=16 coefficients having the indices (k,0), (k, M), (0,k), (M,k) where k=1,2,..., N-1

and k¢M. Group 3 consists of the remaining N2-4(N-1) = 16 coefficients.

Fig. 3.3a shows the pictorial representation of group 1 coefficients in one bin. The

group 1 coefficients depend on one 2x2 DFT coefficient in each cell and they show a

positional relation with the frequency index. For example, Yoyo will depend on the 2x2 DFT

coefficient at the top left comers of each cell (with mnemonic LA) represented by ‘-I-‘

whereas Y0_, will depend on that at the top right position(RA), Y,_0 depends on 2x2 DFT

coefficients at the lefi and bottom position(LB) and Y3‘, depends on that at the right and

below (RB) in each cell. In this group, all the cells are identical for a coefficient and hence

only one cell will be sufficient to construct its visual representation. The group 1 coefficients

for any even value of N will have a similar representation with MxM identical cells as that of

N=6.

-I06-I-O-1° C94-)¢ -I00-I-O-I0 C-DCOC -I-O-I-O-I0

9C9C-DCO A O A 0
Fig. 3.3a Pictorial representation of group 1 coefficients for N=6
-1- — represents the 2x2 - point DFT coefficients for computing YOIO.

Similarly, 9 - Y,_0_ V - Y,,_,_ A - Y1,

Group 2 coefficients will have Yffifla for p = 0, 1, M—1. The Fig. 3.3b shows the

simplified form of the pictorial representation of all the coefficients in column zero, column

M, row zero and row M of group 2 coefficients. The numbers in the circles represent the

index k and unfilled circles represent positive sign for the 2x2 DFT coefficient at that position

where as filled circles represent that with a negative sign. The fig. 3.3b shows that for even p,

Yffg depends on VLP and VLPA (ie., the two 2x2 DFT coefficients at the left of the cells)
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Fig. 3.3b Pictorial representation of

group 2 coefficients for N=6
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Fig. 3.3b Pictorial representation of
group 2 coefficients for N=6 (cond)

and its sign reversed form for odd p (ie, VLN=-VLP and VLPB=-VLPA).  depends on

VRP and VRPA (the DFT coefficients at the right of the cells) for even p and its sign

reversed form for odd values of p. Similarly,  &  Will depend on HAP, HAPL and

HBP, HBPL respectively for even p and corresponding sign reversed form for odd p. For

group 2 coefficient, one column or row of cells will be sufficient to construct the complete

coefficient. Other columns or rows will be identical for a particular value of p and the

representation for different values of p can be derived by appropriate circular shifi. When

the index is changed by M = N/2 = 3, the 2x2 DFT coefficients to be considered will be from

the other side of the cell depending on the change. For eg. Y”, will depend on the

coefficients on the left side of the cells where as Y” depends on that from right side of the

cells. This movement of symbols can be represented by flip horizontal/vertical operations.

Also many coefficients in this group can be derived from permutation, over p, of

anotherY§fi?k2. Thus the representation as well as the computation can be simplified using

this property.

In group 3 also, the cells are related. The fig. 3.3 shows that in this group, for a

particular (kl, k2), the cells in a row are different, but different rows can be obtained from

one row by circularly shifiing it. For eg., in Y??? the cells CM = MP, C0,, = DPB and Cm =

MPD. The other rows are also with the same symbol but in a different order depending on

the index as in fig. 3.3. Similarly, the representation for other values of p are also shifted

versions of that of p=0. Also a number of coefficients in the group can be derived using
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permutations of Yffifkz, 0 S p SM-1. For example, Y5‘? =Y',(j”,Y,‘_‘5’ =—Y,‘_f’, Y5‘? =Y,(_',) The

number of coefficients that can be derived from the permutations of Y§3_’k2 will increase with

N. The indices for which the coefficients can be derived from the permutation of one another

are shown in Table B.1 of Appendix B. Also, there are other coefficients in which the basic

symbols are closely related to one another. For eg., in  the cells COD = MP, C0,, = DPA =

-DPB and C01 = MPC = -MPD as compared to YE‘? Thus there is a closely related

subgroup of coefficients with indices [(l,1), (5,5)],[(2,2),(4,4)], [(4,1), (2,5)], [(5,2), (l,4)]

and another with indices [(5,l), (1,5)],[(4,2),(2,4)], [(2,1), (4,5)], [(l,2), (5,4)], in which

indices in square brackets represents the coefficients related by permutation over p. Also, the

other rows for p=0 are the same as that of the first row but a circularly shified version

depending on the index. The representation for other values of p can be derived by

appropriate shifi in the rows.

The position of different symbols show a close relation with (kl, k2), p & N. The fig.

3.3c shows examples of the positional relation, present in group 3, in terms of the mnemonics

of the symbols when the index is changing by M.C9D C9D
1,|1 41,4 2,1 —1.—gR—> 2,4C(91) C60 \AeB

A<—>B Afi A93 L<—:-Rl i ‘4,4 5=44,1 5.1
Fig. 3.3c Positional relation in group 3

3.3.2.3 N=8

The fig. 3.4 shows the pictorial representation of the DFT coefficients for N=8. The

coefficients in one group are placed together while permutation related coefficients are placed

adjacent to each other. The figure shows that the pictorial representation of a number of

coefficients can be derived from that of one coefficient. The group 1 coefficients can be

derived from one cell, since all the cells are identical for one coefficient and the others in the

group are related by the operation of flipping with respect to an axis. That is, Yo_M can be

obtained from Y0_0 by flip horizontal operation, YW, by flipping vertically and YMM by rotate

right and flip horizontal operations. Thus, in this case also the group 1 coefficients (YOVO,

YM_0, Y0_M, YM_M) have the same property as that of N=4 & 6. Similar to that of N=4, the
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group 2 & 3 coefficients have different symbol combination for even p and odd p values.

The group 2 coefficients show a positional relation as that of N=4. That is, the

coefficients in column 0, other than that in group 1, will depend on the two coefficients on the

lefi of the cells (VLP, VLN for even p & VLPA, VLPB for odd p ), the coefficients in column

4 or Yk_4 will depend on the two coefficients on the right of the cells (VRP, VRN for even p &

VRPA, VRPB for odd p ), the coefficients in row 0 will depend on the two coefficients on the

top position of the cells (HAP, HAN for even p & HAPL, HAPR for odd p) and that in row 4

will depend on the two coefficients on the lower position of the cells (HBP, HBN for even p

& HBPL, HBPR for odd p). In this case

Y.‘.‘.’.’ = Y7‘.°J = Y3.’ = Y£.°J , Y.‘.i’ = -Y7‘? = -YJ1’ = Yli.’ ,Y.‘.L’ = -Yii.’ = Y3,’ = -Y£.'3 , Y.‘.i’ = -Y7'.'3 = Y5; = -Yfii’,

Y3,’ = Y.‘.°J .YJ.’o’ = -Yéi’ and Yili = Yii.’ = Y2; = Yéi’ = 0

Similar relations exist for Y,‘?,;,Y,§_';’,Y;,f’, due to the positional relation and can be derived from

one another using the flip operation as in the previous cases.

The group 3 coefficients also show a specific pattern depending on the position of the

frequency index. That is, the coefficients on the diagonal position (Y,_,, Y3‘, ,Y5_5, Y7_7)

depend on (MP, MN, MPD, MPC for even p & DPA, DPB for odd p), the coefficients (Y 5,,

Y7‘, ,Y,,5, Y3_7) depend on (MP, MN, MPD, MPC for even p & CPA, CPB for odd p), the

coefficients on the cross-diagonal position (Y7_,, Y5_3, Y”, YL7 ) depend on ( DP, DN for even

p & MPL, MPR, MPA, MPB for odd p), the coefficients (Y,_,, Y”, Y7_5, Y”) depend on

(CP, CN for even p & MPL, MPR, MPA, MPB for odd p), (Y2; & Y”) depend on (CP, CN

for p=0, DPA, DPB for p=2 & blank for odd p), (Y2_6, Y6_2) depend on (DP, DN for p=0,

CPA, CPB for p=2 & blank for odd p). Thus, when N=8, the pictorial representation

corresponding to even p will use one set of primitive symbols and that for odd p will use

another set of primitive symbols in groups 2 & 3. The coefficients with one set of primitive

symbols, fonn a permutation group as shown in the following examples.

Y.‘.‘.” = Y7‘? = Y§.'i’ = YE? aY.‘.?’ = -Y7‘? = -Y5? = Y}?! .Y.‘.'.’ = -Y7‘? = Y3’ = -Y£.'£ , Y1?’ = -Y7“? = Y5‘; = -Y,".‘ ,

Y§.°£ = Y£.°J » Yl’! = -Y.‘.? and YES’ = Y2’ = Y£.'£ = Yél’ = 0

Y:.°.’ = Y:.°: = Y:.°: = Y:.:" . Yrs = —Y::’ = —Y::' = Y:.:’ , Y3: = —Y;°: = Yr; = —Y:': , Y9: = —Y;'; = Y:'; = —Y::,

(01 _ 10) (2) _ <2) (I) _ (J) _ 1|) _ (3) _
Y2.a _ Yr-.2 =Yz.o _ ‘Yin and Y2.s ' Y2,s ' Ys,2 ‘ Yo.2 ‘ O
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The position of different symbols show a close relation with (kl, 1(2), p & N. The fig. 3.4a

shows examples of the positional relation in terms of the mnemonics of the symbols when the

index is changing by M.

Ce D C<_>D
1,1————>1,5 2,1'—<+”:> 2,5 3,1C——<fl3’\§;,—> 3 5CeD A<_)B Le];

.33 A93 A9” \K‘f Aea Kfiia6,5 7.55,1 5’5 6,1 7,1
Fig. 3.4a Positional relation in group 3

3.3.2.4 N=I0

The DFT coefficients are classified into three groups, as in previous cases, depending

on the way the primitive symbols are present in them. Group 1 corresponds to the four real

coefficients with indices (0,0), (0,M), (M,O), (M,M) having Y§,'}?k, for p=0 only, where M=5.

Group 2 is with 4(N-2) = 32 coefficients having the indices (k,0), (k, M), (0,k), (M,k) where

k=l,2,..., N-l and k¢M. Group 3 consists of the remaining N’-4(N-1) = 64 coefficients.

In Fig. 3.5, the first bin shows the pictorial representation of group 1 coefficients in

one figure. The group 1 coefficients depend on one 2x2 DFT coefficient in each cell and they

show a positional relation with the frequency index as in the previous cases. For example,

Y0_o will depend on the 2x2 DFT coefficient at the top left comers of each cell (with

mnemonic LA) represented by small rectangles with black color whereas Y0_5 will depend on

that at the top right position(RA), Y,_0 depends on 2x2 DFT coefficients at the left below

position(LB) and Y5_5 depends on that at the right below (RB) in each cell. In this group, all

the cells are identical for a coefficient and hence only one cell will be sufficient to construct

its visual representation as in other cases. The group 1 coefficients for any even N will have

similar representation with MxM identical cells as in the case of N = 4, 6 & 8.

The group 2 consists of the coefficients Yk_0, Yk,M, YM, YMJ, where k=1,2,3,4,6,7,8,9.

These coefficients will have Yfjfla for p = O,1,...M-1. The Fig. 3.5 shows the simplified form

of the pictorial representation of all the coefficients in column zero, column M, row zero and

row M of group 2 coefficients using different colors. The figure shows that for even p,

depends on VLP and VLPA (ie., the two 2x2 DFT coefficients at the left of the cells) and its
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sign reversed form for odd p (ie, VLN=-VLP and VLPB=-VLPA).  depends on VRP

and VRPA (the DFT coefficients at the right of the cells) for even p and its sign reversed

form for odd values of p. Similarly,  &  will depend on HAP, HAPL and HBP,

HBPL respectively for even p and corresponding sign reversed fonn for odd p. Hence, one

column or row of cells will be sufficient to construct the complete coefficient. Other columns

or rows will be identical for a particular value of p and the representation for different values

of p can be derived by appropriate circular shift. When the index is changed by M = N/2 = 5 ,

the 2x2 DFT coefficients to be considered will be from the other side of the cell depending on

the change. For eg. Yk_o will depend on the coefficients on the left side of the cells where as

Y” depends on that from right side of the cells. Thus the pattern of symbol organization for

N=10 is the same as that of N=6 except the change in its position which is closely related to

the value of N.

C9 D C<—>D C<—>D. Lek1,1——> 1,6 2,1 -1-re-R—> 2,5 3,1 T) 3 6| 3
C91) \A<—>B C60 \AeB C9D A83AeB \‘ A63 L<—>R A913 L R6,6 1 7‘ x6,1 7,5 8,67,1 8,1

C<—>D,LeR
4.1 ——> 4 6

C9D \A BA<~:-B L<—)R
‘9,5

9,1

Fig. 3.5a Positional relation in group 3

The pictorial representation of the group 3 coefficients for N = 10 show a similar

pattern as that of N = 6. The values of p in Y"” are p = 0, 1,2, ...M-1=4. These coefficients|il.kI

are represented, fig. 3.5, in one bin for all the values of p corresponding to each (kl, k2) so

that the comparison of the organization of symbols with variation in p and (k1, k2) is easy.

Since there are 64 coefficients in this group and each coefficient takes five different values of

p, the space required for the representation of the complete set will be high, but they are

closely related to a basic set, only the basic set are shown in the fig. 3.5. The fig. 3.5a shows

examples of the positional relation in terms of the mnemonics of the symbols when the index

changes by M.
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3.3.3 Results of the analysis

The above analysis shows that the pictorial representation of the coefficients has

useful patterns for deriving other computational schemes that are easy and efficient in

processing 2-D signals. It shows a regular structure as N changes when ((N)),, = 2 and a

slightly different regular structure for ((N)), = 0 due to the difference in number of

symmetries in the twiddle factors for the two cases. In both the cases the coefficients are

grouped into three based on the similarities in the symbols used and the operation over it. It

is found that group 1 consists of 4 real coefficients, group 2 has 4(N-2) coefficients and group

3 contains N2-4(N-1) coefficients. The group 1 have real coefficients with pictorial

representation only for p=O and have identical cells in both the cases. When ((N)), = O, the

pictorial representation corresponding to even p will use one set of primitive symbols and that

for odd p will use another set of primitive symbols in groups 2 & 3. Whereas, when ((N))., =

2, the pictorial representation corresponding different p values will be with the same set of

primitive symbols in groups 2 & 3.

The group 2 consists of the coefficients Ykvo, Yw, Y0_k, Y,“ where k=l, 2, 3, N-l

and k¢M. For group 2 coefficients when ((N))4 = 2, the symbols in one row/column of cells

is sufficient to represent the complete coefficient. For a 'p' the other rows/columns are

identical. The representation for different values of p can be derived by circularly shifting.

Also a number of coefficients in the group can be derived using permutations of Yfjfkz, 0 S p

SM-1. The number of coefficients that can be derived from the permutations of Yl<'i,)k2 will

increase with N. Fig. 3.7 can be employed for the representation of the coefficients in

different columns / rows.

In group 3 too, the cells are related. When ((N))4= 2 for a particular (kl, k2), the cells

in a row are different, but different rows can be obtained from one row by circularly shifting

it. The other rows also have the same symbols but in a different order depending on the

index. Similarly, the representation for other values of p are also shified versions of that of p

= 0. Also a number of coefficients in the group can be derived using permutations of Yfflu , 0

S p SM-1. The number of coefficients that can be derived from the permutations of Yfffln

will increase with N. The indices for which the coefficients can be derived from the

permutation of one another are shown in Table B.l, B.2, B.3 of Appendix B for N=6,l0,l4

respectively.
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In general, a graphical representation of the relationship between different coefficients

in one group can be expressed as shown below in fig. 3.7. This is applicable when N is an

even number.

GT0“? 1 Gmup 2 Group 3F-H R.L
Yo.0 “—> Y0_M R.R Yum C<9D' L %R W\F.H & F.V “ YumEV ‘ Ce D \A<>BY...) A98 L<—:-RYM,0 YMM W \

Yl:I:;“ Yilzimmvl

k=1,2,3, M-1
Fig. 3.7 Positional relation within a group

Thus, a semantic grammar can be derived to evolve a coefficient from another coefficient.

Comparing the representations for different values of N, their inter relationships can

easily be derived. Some of the properties are the following.

1. For any even N, the group 1 coefficients (with index (0,0), (0,M), (M,0), (M,M))will have

the representation for p=O only as given in theorem 2.

2. If ((N)), = 2, all the coefficients other than in group 1 will have the representation for all

the values ofp = 0,1, , M-1.

3. If ((N)),, = 0, then

a) The pictorial representation exists only for p = 0 and N/4, if kl & k2 are 0, M, N/4

or 3N/4, and not in group 1 [i.e.; (O,N/4), (N/4,0), (N/4,N/4), (N/4,M), (M, N/4),

(3N/4,0), (O,3N/4), (3N/4,M), (N/4,3N/4), (3N/4,N/4), (M, 3N/4), (3N/4,3N/4)].

b) The pictorial representation corresponding to even indexed (both kl & k2 are

even) coefficients does not have the representation for odd p.

c) If kl or k2 is odd and not in (1) and (3.a) mentioned above, the pictorial

representation for all p=O,1,. . ., M-l exist.

4. The pictorial representation of the complete set of coefficients of N = 4 are available in

that of N = 8. In general, the pictorial representations of the complete set of coefficients

of all even factors of N are present in that of N as given in lemma 3.

5. IfNl = k .N and kl'= k .k1, k2'= k .k2 and p‘ = k .p, then the pictorial representation of

Ylfnz. can be derived from that of Yflkz by repeating k times in rows and columns. For
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eg. Y‘2°§ of N=8 can be derived from Y}? of N = 4 by repeating it 2 times in rows and

columns.

By studying the properties of the pictorial representation, an indirect method for the

pictorial representation is derived in_ the following section. A few theorems are also presented

at the end of this chapter. Also this pictorial representation fonns the basis for the design of a

parallel distributed scheme of computation discussed in the next chapter.

3.3.4 Indirect method

In the direct method of pictorial representation, for each (kl, k2) pair and M values of

p, it is required to compute z = ((nl.k1+n2.k2))N for all values of (n1, n2) and check whether

it is p or p + M, then using the symbol table to select the appropriate symbols for each 2x2

cell. This can be simplified by utilizing the properties of the pictorial representation.

As explained earlier, it is found that the primitive symbols to be used are dependent

on the index value (kl, k2). Thus we can device an algorithm to construct the pictorial

representation without computing z for all (n1, n2) and searching the symbol table. The

primitive symbols can be directly selected based on the index or obtained using direct method

for a few cells and rearranging them to get the symbols for other cells.

3.3.4.1 Construction of the pictorial representation for ((N)), = 2

The indices (kl, k2) are grouped into 3 as in section 3.3.

As explained earlier, the group 1 coefficients will have identical cells for a (kl, k2)

and the symbol is closely related to the position of kl, k2. The group 2 coefficients have two

sets of symbols based on the position of the index. If the frequency index (kl, k2) is from a

column then the 2x2 DFT coefficients will also be from the column (represented

mnemonically by V (vertical)) and if (kl, k2) is from a row then the mnemonics will have H

(Horizontal) as in previous subsections. The symbols that are present in  will be

corresponding to the mnemonics VLP and VLPA if p is even and VLN =-VLP and VLPB= 

VLPA when p is odd. Also in this case one row of cells will have the same symbols. The row

number depends on the value of k and p. The row index 'n' of cells with VLPN LN can be

obtained from the relation ((2.n.k))M = p and the cells VLPA/VLPB will be shifted from that

of VLPN LN by (M-1)/2 row of cells. The symbols that are in Y§,'_’,Z will be HAP and HAPL
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for even p and HAN = -HAP & HAPR=-HAPL for odd p. The symbols for  are VRP &

VRPA for even p and VRN & VRPB for odd p. Similarly, the symbols for Yiiir are HBP &

HBPL or HBN & HBPR depending on p.

The group 3 coefficients will have different sets of symbols in one row/column. It is

found that the symbols in each row, for any value of p, are the repetition of symbols in the

first row of p=0 with a proper circular shifl. Thus, an algorithm can be derived for

constructing the representation using the direct method for the first row of cells for p=0.

Then applying proper circular shift depending on kl, k2 & p, the complete picture can be

derived. Using a similar approach as in group II, the order of circular shifi to be given can be

found out as given in the algorithm. The algorithm for construction of the pictorial

representation when ((N)),,= 2 is as given below. This method is more suitable if a few

selected DFT coefficients are to be represented pictorially.

3.3.4.2 The Algorithm
Choose values of N, (kl, k2) where ((N))4=2

Check whether (kl, k2) is in group G1, G2 or G3 and branch accordingly to derive the

mnemonics corresponding to the MxM cells. Draw the MxM grid and place the symbols

corresponding to the mnemonic ‘Mnem’ in each cell Cid-,. The remaining cells will be blank.

F_Qz£3_l

1)Ifk1=k2 =0, Mnem = LA

2) Ifk1=0 & k2 =M, Mnem = RA

3) Ifkl =M & k2 =0, Mnem = LB

4) Ifkl =M & k2 =M, Mnem = RB

For i= 0, M-1

For j = 0, M-1

C, _ J. = Mnem

£Q.r_G_Z

1) Ifk2 = 0, Mneml = VLP & Mnem2 = VLPA, k=kl

2) If k2 = M, Mneml = VRP & Mnem2 = VRPA, k=kl

3) If kl = 0, Mneml = HAP & Mnem2 = HAPL, k=k2

4)If k2 = M, Mneml = HBP & Mnem2 = HBPL, k=k2

For p= 0, M-1
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Find n such that ((2nk))M = p

i1= n, i2 = ((i1+(M-1)/2))M

For j= 0, M-1

If k1=0 or M

CM = (-1)? Mneml

Cu, j = (-1)? Mnem2

Else if k2=O or M

Cm = (-1)? Mneml

cm = (-1)? Mnem2

F_or_C13

1) Find the cells C0_ j for the first row of cells using the direct method.

2) For p= 0, M-1

Find In such that ((2n.k2))M =p

3) For i=O,M-1

For j= 0, M-1

i1= ((k2'i))M 9.i1=((n'k1'i))M

Cn.(u'+j1».. = C04

The algorithm is tested and the pictures are compared with that of direct method.

3.4 THEOREMS & DEFINITIONS

Definition

The 2-D DFT coefficient corresponding to any NxN data can be expressed in terms of

the real coefficient Yfilflz as

N/2-1

Ykl,k2= 2:.) Yl<ll?k2WlEl! 0 klakz N'1p=

Where Yl<pl).k2 = Z Anl,n2 " Z Anl.n2 9 Z = ((111 -k1 +112
v(n1.n2)\z=p v(n1,n2) z=p+N/2
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Thus 2-D DFT computation through this can be interpreted as follows. The 2-D data in the

spatial domain with index (n1, n2) is mapped to the fiequency domain with index (kl, k2) in

two steps. First the data is mapped on to each of the vectors formed from the twiddle factors

W)‘: with the mapping function as ((n1 .k1 + n2 .k2))N = p. Since WI?”/2 = —W§ , only N/2

vectors are considered and the remaining N/2 will be folded over with a sign reversal. The

algebraic sum of the data mapped over to a W13 will be the real value Y§'}_’k2. Then the

weighted sum of these vectors W13 and the corresponding Yflfkz gives the DFT coefficient

Yum

Theorem 1

Given a set of primitive symbols corresponding to 2x2 DFT, it is always possible to

construct the pictorial representation for any NxN DFT if N is an even number.

Proof

The method explained in the construction of pictorial representations in section 3.4.1.

Lemma 1

The total number of primitive symbols, corresponding to 2x2 DFT, used for

construction of pictorial representation is 37. These primitives can be defined based on the

position of the DFT coefficient in the 2x2 cell.

1. Number of primitives with one DF T coefficient = 4

2. Number of combinations of two DFT coefficients out of 4 = 4C2 = 6

Number of combinations of two DFT coefficients out of 4 with i sign = 4*6 =24.

3. Number of combinations with all 4 DF T coefficients = 4*2 = 8

4. Number of combinations with no DF T coefficient =1

Total number of primitive symbols = 4 + 28 + 8 +1= 37.

Lemma 2

The pictorial representation can also be derived in teims of primitive symbols

obtained -from 2x2 data in the same way as that of DFT. The number of primitive symbols

will be the same with the same set of positional definition as in the case of 2x2 DFT.
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Theorem 2

For any even N, the coefficients with index (0,0), (0,M), (M,O) & (M,M) will have the

pictorial representation for p=O only.

Proof

Let (n1, n2) and (kl, k2) be the time index and frequency index respectively and the order be

N. As shown in definition, Yfipflkz = Z Anm — Z A,,,_n2 , O S p S M-1, where z =
V(nl,n2)|z=p V(nl,n2)lz=p+N/2

((nl .kl + n2 .k2 ))N. When kl =k2 =0, for all values of (n1, n2) the value of z is zero and

hence p=O only. Similarly when k1=O or M and k2 = 0 or M, for all values of (n1, n2), 2 = 0

or M. But as per the definition, z = 0 & z= M correspond to p=O. Thus proved.

Theorem 3

The pictorial representation of the DFT coefficient corresponding to the index (k .kl,

k .k2) can be derived from that of (kl, k2) by perrnuting over p by ((k .p))M with a sign

reversal if ((k .p))N 2 M when k is an odd integer.

Proof

Let (n1, n2) and (kl, k2) be the time index and frequency index respectively and the order be

N. As shown in definition, Yffi’_k2 = Z A,,,_n2 — Z Anm, 0 S p S M-l, where z =
V(nl.n2),z=p V(nl,n2)lz=p+N/2

((nl .kl + n2 .k2  Let k1’= k .kl, k2‘ =k .k2 then ((nl .k1'+ n2 .k2'))N= ((k(nl .kl +n2

'k2)))N = ((1<((I11 -k1 +112 'k2))N))N =((k -p))N Or ((1<(p + N/2)))_~ But ((k (P + N/2)))N= ((k

.p))N + N/2 ,if k is odd. If ((k .p))N Z M this will introduce a minus sign. Thus the permutation

will be by ((k .p))M. Thus proving the theorem.

Theorem 4

The pictorial representation of Yflfkz for order N is contained in Yf('_‘fi’k_k2 of order N1

= k.N where k is a positive integer.

Proof

Let (n1, n2) and (kl, k2) be the time index and frequency index respectively when the

order is N and (n1', n2‘) and (k1,, k2') be the time index and frequency index respectively

when N'= k N. As shown in definition, Y}(",’_k2 = Z A,,,_,,z — Z A,,,_,,,, , O S p S
V(nl.n2) z=p V(nl,n2)\ z=p+N/2

M-1, where z = ((nl .kl + n2 .k2 ))N. Let ((nl .kl + n2 .k2))N= p and ((nl' .k1'+ n2’ .k2'))N.
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= p‘ where k1'= k .k1, k2'= k .k2 and p‘ = k .p. Then ((n1' .k .k1 + n2' .k .k2))k_N= ((k(n1' .k1

+ n2’ .k2)))k_N= k .p for n1’ = n1 and n2‘ = n2. Thus proved.

Lemma 3

The pictorial representation of the DFT coefficients for an order N will contain the

representation for all N1 such that N1 is an even factor of N.

68- ((N))4=0

N=8 —> N1 = 4

N=12 —>N1 = 4,6

N=16 —>N1 = 4,8

N=2O —>N1 = 4,10

N=24 —>N1 = 4,6,8,12

N=28 —>N1 = 4,14

N=32 —>N1 = 4,8,16

N=36 —>N1 = 4,6,12,18

N=40 ——>N1 = 4,8,10,20

N=44 —)Nl = 4,22

N=48 —)N1 = 4,6,8,12,16,24

N=52 —)N1 = 4,26

N=56 —)N1 =4,8,14,28

N=60 —)N1 =4,6,10,12,20,30

N=64 —>N1 =4,8,16,32

N=68 ——>N1 =4,34

N=72——)N1 =4,6,8,12,l8,36

N=76—>N1 =4,38

N=80—)N1 =4,8,10,l6,20,40

N=84—>N1 =4,6,12,14,28,42

N=88—>N1 =4,8,22,44

N=92—>N1 =4,46

N=96—>N1 =4,6,8,l2,16,24,48

N=10O —)N1 =4,lO,20,50

((N))4=2

N=6

N=10

N=14

N=18—>N1 = 6

N=22

N=26

N=30—)N1 = 6,10

N=34

N=38

=42—>N1 = 6,14

N=46

N=50—)N1 = 10

N=54—>N1 = 6,18

N=58

N=62

N=66—>N1 = 6,22

N=70—)N1 = 10,14

N=74

N=78

N=82

N=86

N=90—)N1 = 6,10

N=94

N=98——)N1 = 14

7?



3.5 CONCLUSION

A new definition is suggested for the 2-D DFT relation and using this a pictorial

representation of the DFT coefficients are formulated in this chapter. The representations are

analyzed and the pictorial representations are simplified using the properties. The DFT

computation and analysis of 2-D signals can be simplified using these pictorial

representations. Also, this representation is the basis for the neural network model derived in

chapter 4.
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Chapter

NEURAL NETWORK MODEL FOR 2-D DFT COMPUTATION 4

Studies of the brain show that a hierarchy of cells with increasing complex response

characteristics exists in the visual cortex and other parts of the brain. It is not difficult to

extrapolate this idea of hierarchy into one where fimher data abstraction takes place at

successively higher levels. The neocognitron design adopts this hierarchical structure in a

layered architecture. It is an example of how neurobiological results can be used to develop a

new network architecture [12].

Speed of computation, important in real-time applications, can be improved by

reducing the number of multiplications and/or by parallel processing. The DFT is a useful

analytical tool in stationary signals and some quasi-stationary signals. There are a number of

techniques used for reduction of computation. FFT is the most popular algorithm to

implement DFT and is highly efficient in the case of 1-D signals. The N-point sequence

requires N2 complex multiplications and N (N-l) complex additions in the case of direct DFT,

whereas it needs only N log2N complex operations in the case of FFT when N is a power of 2

[5]. The reduction in computation is more predominant when N is large.
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For 2-D signals, the FFT method is highly time consuming since it requires a large

number of complex multiplications [1] and literature shows that it is not in much use in 2-D

signal processing applications [l29]. Parallel computation increases speed and may render

real time applications possible.

The evaluation of DFT coefficients by employing pictorial representation described in

chapter 3 shows the presence of specific patterns that can easily be exploited in implementing

a parallel distributed scheme. From the analysis of the pictorial representation for the 2-D

DFT computation and comparing it with the processing in neocognitron model, it is found

that a hierarchical model can be developed. Consequently the speed of computation improves

drastically. This approach will be extremely useful in the analysis and processing of 2-D

signals that exhibit repetition in blocks. In this thesis, a parallel distributed model to

implement NxN - point DFT for ((N)),, = 2 is proposed. This model can be extended to any

order N.

4.1 REASONS FOR CHOOSING THE PRESENT ARCHITECTURE

Neural Network architectures such as backpropagation network have general

applicability. We can use a single network type in many different applications by changing

the network’s size, parameters, and training sets [12]. But this model takes a long time for

learning, and it should releam if more examples are added to the training set and its

convergence to global minima is difficult in many cases. These are serious drawbacks of the

model [17]. Adaptive Resonance Theory (ART) model, also a general model, solves the

drawbacks of backpropagation network. This model has real time learning capability with the

number of different classes that can be learned limited only by the number of neurons

provided in the network [130]. In contrast to this, there are special purpose neural network

architectures such as the neocognitron model used for recognition of handwritten characters

[12]. The neocognitron model uses a hierarchical structure in which there are a number of

layers operating in a hierarchy and in each layer there are a number of planes operating in

parallel. Each plane has a group of cells, the basic element in the structure, operating in

parallel. But these models are popular for classification problems.

The advantage of a hierarchical neural network structure is that the processing

elements of each layer have to concern themselves only with the processing of a limited
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amount of information. The total global situation is then pieced together as one ascends from

one hierarchical layer to the next. This approach has two major benefits.

1) The processing elements at each layer need only concern themselves with the relatively

simple situation described by their input signals which make up only a tiny fraction of the

total input coming to the layer from the previous layer.

2) Hierarchical networks can typically function with a spectacularly smaller number of

processing elements than would be required by a network that would deal with the entire

input as a single unit.

By processing input information one step at a time, hierarchical networks can provide

capabilities that would be otherwise impossible. Naturally, hierarchical networks are

appropriate in those situations where the inputs to the network have low level, intermediate

level and high level structures that can be consistently related to one another as in images of

hand written characters etc. Random data, for example, does not have such a structure.

The neocognitron model and its modifications are the only well studied neural

network in this category. The pictorial representation of the DFT computation described in

chapter 3 shows a good structure for the design of a hierarchical architecture for the

computational application. Thus in this chapter, a hierarchical architecture for the

computation of the 2-D DFT is proposed adopting concepts from the neocognitron model,

ART model and the basics of parallel distributed processing as given in [17].

Also in all these models the learning is through modification of connection weights

and the output of each neuron will be obtained through multiplication with weights. But a

network can also learn through addition or deletion of connections [17] and is used in the

proposed model. Since the main aim of this computational model is to increase the speed of

computation, it uses one step learning to reduce the learning time.

4.2 BASICS

4.2.1 The derivation of the structure

The regular pattern present in the pictorial representation of the DFT coefficients can

be used to derive a hierarchical computation scheme. Also, this shows a lot of repetitions in

the computations that can be avoided by splitting into simple steps. Thus splitting the

computation into different steps can fonn a hierarchy. The primitive symbols are computed
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first. In the second step, different combinations of the primitive symbols are formed to

represent one row/column and their circularly shified versions. The third step is to combine

the various row/column of symbols so that a set of the coefficients Y}E'l°_)k2 can be obtained for

a selected set of (kl, k2). The last step is to combine YlEf_’k2 in proper order, scaled by the

twiddle factors, to obtain the complete set of Yma. Similar operations are grouped together

to enable parallel distributed computation, as in the neocognitron model [23-29], so that the

speed of computation can be improved considerably. Also, a maximum order for the input &

output can be fixed using the principles of the ART model. Any order upto the set maximum

can be implemented by choosing appropriate connections to make the network learn. This

brings the requirement of learning by addition or deletion of connections which is equivalent

to having the connection weight 0 or 1. Since speed of computation is more important in

computational applications, care is taken to reduce the learning time as well as the processing

time. The structure is derived in such a way that it should be possible to arrive at a

compromise between the speed and complexity/cost by choosing sequential/parallel operation

at different steps.

4.2.2 Modifying patterns of connectivity as a function of experience

Changing the processing or knowledge structure in a parallel distributed processing

model involves modifying the patterns of interconnectivity. In principle this can involve

three kinds of modifications [17]:

1. The development of new connections.

2. The loss of existing connections.

3. The modification of the strengths of connections that already exist.

D. E Rumelhart, G. E. Hinton and J. L. McClelland [17] say that very little work has

been done on ( 1) & (2) above. However, (1) & (2) can be considered as a special case of (3).

Whenever we change the strength of connection away from zero to some positive or negative

value, it has the same effect as growing a new connection. Whenever we change the strength

of a connection to zero, it has the same effect as losing an existing connection. Thus in most

of the neural network models learning rules are based on modifying strengths of connections.
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But, the model developed in this work being a computational model, learning is through

addition or deletion of connections and the connection weights will be +1, -1 or 0. Also it is

proposed to use single step learning so that the learning time will not be a problem.

4.2.3 Structure of the network

L0 L1 L2 L3 L4
e~———> > > "*>

Fig. 4.1 Hierarchical structure of the model

The network model is designed using a hierarchical structure in a layered architecture

as in fig. 4.1. It consists of a cascade connection of a number of modular structures preceded

by an input layer L0. L0 is a 2-D array of input data, x (i, j) 0 S i, j S N-l. It is divided into

2x2 matrices and the operations are in terms of these matrices.

The processing elements or cells of the network model are organized into modules

called layers. There are four layers L1 to L4 other than the input layer. The cells in a layer

are sorted into subgroups according to the features of their receptive fields and the operation

over it. Each of these subgroups is set into a 2-D array called a ‘cell-plane’ The cells in a

single cell-plane have input connections of the same spatial distribution and only the

positions of the input cells are shifted from cell to cell. Hence, all the cells in a single cell

plane have receptive fields of the same function, but at different positions. Similar planes are

categorized into one group and there are 3 groups of similar planes in each layer. Different

groups in a layer may or may not have the same number of cell planes. The size of all the

cell-planes in a group is the same.

4.3 DESIGN OF PARALLEL DISTRIBUTED ARCHITECTURE FOR

6x6-POINT DFT

The analysis of the pictorial representation, in chapter 3, shows that a hierarchy can be

formed from the symbol organization. The DFT coefficients can be grouped into three

classes, each having a common property. Each of these classes will depend on a particular

organization of the primitive symbols. For example, Yoyo will depend on the DFT

coefficients at the top lefi comer of each 2x2 matrix, or equivalently, the sum of all the four
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data elements in each 2x2 matrix of data, for p = 0 only. Yo_, is obtained from the sum of the

DFT coefficients at the right and above position (RA) in each 2x2 matrix, where RA = sum

of data in the first column - sum of data in the second column of a 2x2 matrix. Similarly, the

coefficients Y3_0 & Y1, depend on LB & RB respectively or the corresponding data relation as

given in chapter 3. Thus, all the DFT coefficients in group I depend on one DFT coefficient

from each 2x2 matrix.

The coefficients Yko, Yk,3_ Y0_k & Y,_k, 1 S k S N-l and k at M where N=6 and M =

N/2, fonn another group with common properties. The remaining coefficients are grouped

into a third group. In all the three groups of coefficients, a hierarchy of computation can be

derived using the structure available in the pictorial representation. As explained earlier, the

pictorial representation is obtained in terms of a selected set of primitive symbols in a

row/column and the different rows/columns are mere repetitions with a circular shifi. Also,

many coefficients will have the same combination of primitive symbols with different

circular shift depending on the frequency index. Thus the DFT coefficients can be obtained

in a hierarchy of four levels. In the first level the primitive symbols corresponding to all the

2x2 matrices are calculated. A few primitive symbols are chosen to form a combination

representing a row / column of symbols corresponding to a selected set of Y3)“ for p = 0

and all such combinations are computed in the second level. In the third level, proper

combination of rows / columns of primitive symbols are chosen to obtain the selected set of

Ylgffkz, 0 S p S M-1. The output of the fourth level will be the complete set of DFT

coefficients, derived from the weighted sum of few Y}Ef)k2 and a set of pre-computed twiddle

factor values.

4.3.] Outline of the model

The outline of the model is given in this section. The hierarchical structure of the

network is illustrated in fig. 4.2. The names given in different rectangles represent the names

of the cell-planes. In layer L1, all the cell-planes are of dimension MxM with M = N/2. In

L2, the group L2Gl consists of 4 cell planes of dimension Mxl, L2G2 with 6 planes of

dimension 1xM and L2G3 has 2(N-2) planes of size MXM respectively. L3Gl consists of 6

cell planes of single cells, L3G2 and L3G3 are with 8 & 2(N-2) cell planes of dimension

lxM. The outputs of layer L4 are the DF T coefficients that are grouped into 3. The output of
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group L4G1 are the 4 real coefficients, L4G2 and L4G3 give 4(N-2) and N2- 4 (N-l) complex

coefficients respectively. The group 2 has 8 cell-planes with M-1 cells representing related

coefficients and goup 3 has 2(N-2) cell planes, with M-1 cells each, representing the related

coefficients. L4G1 has simple cells as in other layers whereas L4G2 & L4G3 have complex

cells involving scalar multiplications of complex numbers.

L1 L2 L3 L4
G1(6x3x3)) G1(4x3x1) G1(6x1x1) G1(4x1x1)VLP RVLP SRVLP Y((),())

L 0 VLPA RVLPA SRVLPA Y(3,0)
I-1:/ftp}; RVRP SCHAP Y(0,3)1 RVRPA SCHAPL Y 33* DP :1 *1 SCDP W93) ( )

G2(6x1x3)
Y(k.0)

6 6 G2(6x3x3) Cl-IAP G2(8x3xl Wk 3)X )
VRP C%HfPPL RVLPP/lVI Y(0.k)VRPA V /M Y(3,k)CHBPL R RP?HBP CHAPP/MHBPL CD1’
CP CDPA CHBPP/M G3( 1 6x1x 1)CPA Y(1,1)

Y(2.2)
G3(3"3"3) G3(8x3x1) Y(5,1)G3(4x3x3) A A1B ,MP B1 Y(1,2)fig: Y(((N-kl,N-k2MPD H H1

Fig. 4.2 Block Schematic ofthe Parallel Distributed model to implement 6x6 - point DFT

In this parallel distributed architecture, the primitive symbols chosen are VLP, VLPA,

HAP, HAPL, DP & DPA forming L1G1, the second group (L1G2) with VRP, VRPA, HBP,

HBPL, CP & CPA and the third group (LIG3) with MP, MPL, MPA & MPD.

Corresponding to each primitive symbol, a plane is formed with the name of the plane

indicating the primitive symbol. Each plane in layer 1 is a square array of MxM cells. The

cells in each plane get the input data from the corresponding 2x2 input data matrix of the

input layer. Also, the planes are grouped together based on the type of operation. In the first

group of planes, the cell values are obtained as the sum of two data in a particular position in

each 2x2 matrix. In G2, the cell values are obtained from the same set of data as that used in

G1 but the operation will be subtraction. Similarly, the cell values of the planes in G3 are
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obtained by copying the input from the 2x2 matrices at a particular position. Once the

computation of the first layer is over, the input layer is no more required.

The second layer also consists of three groups. The planes in L2G1 are vectors of

dimension M with the names indicating the input plane and the operation to be carried out.

The planes are RVLP, RVLPA, RVRP & RVRPA in which, ‘R’ indicates that the cell values

in that plane are obtained from the row sum. Hence, RVLP indicates that each cell value in

this plane is obtained from the sum of the cell values of each row of the plane VLP. The

planes in the second group (L2G2) are CHAP, CHBP, CHAPL, CHBPL, CDP, CDPA where

‘C’ represents column sum as in group 1. The planes in group 2 are also vectors of dimension

M. There are 8 planes in L2G3, named as A, B, C, ..., H, with dimension MxM. The cells in

each plane of L2G3 depend on the cell values from a particular set of cell planes in L1 in a

given order. For example, the (0,0)"‘ cell of the plane A is obtained from the sum of DP0_0 ,

MPLo_, & MPA02. The cell value for (0,1)"‘ cell is obtained by increasing the column number

by 1 in that of (0,0)"‘ cell, i.e, the sum of DP0_,, MPLo_2 & MPAQ0. Similar combinations from

various cell planes of layer 1 give cell values in the other planes in this group.

The layer 3 also has 3 groups. The first group, L3Gl, with cell planes having single

cell in each plane are SRVLP, SRVLPA, SCHAP, SCDP, SCDPA where the ‘S’ indicates

that the sum of the cell values in the respective cell planes from layer 2 are used to obtain the

cell value in this group. For example, SRVLP indicates that the sum of cell values of RVLP

gives the cell value in this plane.

The group 2 of layer 3 (L3G2) consists of 8 cell planes with M cells each. The cell

planes are RVLPP, RVRPP, CHAPP, CHBPP, RVLPM, RVRPM, CHAPM, CHBPM where

the cell values in RVLPP are obtained by selective addition of two cells from the plane RVLP

and RVLPA in layer2 where as RVLPM uses subtraction of the same cell values. Thus ‘P’

indicates plus and ‘M’ indicates minus in naming these planes in this group.

The group L3G3 consists of 8 cell planes, M cells each, named as A1, B1, C1, H1

indicating that the inputs are from A, B, C,  H respectively of the layer 2. The cell values in

these planes are obtained by adding values of selected cells fi'om the respective cell planes in

L3G2.

The layer 4 output will be the N2 DFT coefficients. The planes in layer 4 are also

grouped into 3. The group 1 will have 4 planes, single cell in each, giving the real

coefficients Y0_0, Yo_3_ Y“, and Y3_,.
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The group 2 consists of 8 cell planes with M-1 cells in each plane. The output from

this group corresponds to the coefficients from row 0, row M, column 0 and column M

excluding the coefficients of group 1 with odd indexed coefficients and even indexed

coefficients from a row / column grouped in separate planes.

The group 3 consists of 2(N-2) cell planes with M-l cells each. The output from this

group will be the DFT coefficients other than that in group 1 & 2. The cells in L4G2 and

L4G3 involve scalar multiplication of complex numbers where as the cells in all others need

only real addition/subtraction.

Fig. 4.3 shows the detailed schematic diagram of parallel distributed computation of

6x6 - point DFT. In the fig. 4.3, the dots in each rectangle represent the cells and the order of

each plane, represented by rectangles with continuous line, can easily be identified. The

inputs to L2G2, L2G3, L3Gl, L3G2 and L3G3 are dependent on the respective planes in the

previous layer and the computations are the same as that of other planes in the group, hence

all the connections are not shown in fig. 4.3. Similarly, in L4G2 & L4G3 the computations of

the planes are similar to the one shown.

4.3.2 The Algorithm

The output of each cell in L1G1 is the sum of two inputs from L0. Similarly, the

output of each cell in LlG2 is the difference between the output of two cells in L0. Output of

cells in LIG3 is obtained from one cell in L0 at a specific position.

For0 1,1‘ <M=N/2=3.

VLP(i,j) = x(2i, 21') + x(2i, 2j +1) VLPA(i,j) = x(2i + 1, 2j) + x(21+1, 2]‘ +1 )

HAP(i,j) = x(2i, 2j)+ x(2i +1, 2j) HAPL(i,j) = x(2i, 2j+1) + x(2i+l, 2j+1)

DP(i,j) = x(2i, 21') + x(2i+l, 2j+1) DPA(i,j) = x(2i +1, 2,") + x(2i, 2j +1)

The output of cells in L1G2 is obtained by replacing the plus sign in the equations of

L1G1 with minus to obtain the corresponding cell value of each plane in the order given in

the figure.

VRP(i,j) = x(2i, 2j) - x(2i, 2j +1) VRPA(i,j) = x(2i + 1, 2j) - x(2i +1, 2j +1)

HBP(i,j) = x(2i, 2j)- x(2i +1,2j) HBPL(i,j) = x(2i, 2j+1) - x(2i+1, 2j+1)

CP(i,j) = x(2i, 2j) - x(2i+1, 2j+1) CPA(i,j) = x(2i +1, 2j) - x(2i, 2j +1)

However, the cell values of the planes of LlG3 are:
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Fig.4.} Schematic diagram for parallel disuibutcd computation of 6x6 point DPT



For 0 i, j <M

MP(i,j) = x(2i, 2j) MPL(i, j) = x(2i, 2j +1)

MPA(i,j) = x(2i +1, 2j) MPD(i,j) = x(2i +1, 2j +1)

The algorithm to find the output of cells in L2 is

i) For L2G1,

RVLP(i) = M):—\1rLP(i, j) ,0 i < M _(1)
j = 0

Similarly, the values of the arrays RVLPA, RVRP, RVRPA could be arrived at by replacing

VLP with VLPA,VRP,VRPA respectively in equation (1).

ii) For L2G2,

CHAP(i) = 1HAP(j,i) , 0 i< M (2)J:

Similarly, the values of the arrays CHBP, CHAPL, CHBPL, CDP, CDPA are obtained by

replacing HAP with HBP, HAPL, HBPL, DP, DPA respectively in equation (2).

iii) For L2G3,

For 0 i, j < M

A(iJ)=DP(iJ) + MPL(i9((.i+1))M)+MPA(i9((.l+2))M)

B(iJ) =DP(iJ) MPL(i,((J'+1))M)-MPA(i,((j+2))M)

C(iJ) = CP(iJ) - MP1-'(ia((.i+1))M) + MPA(i.((j+2))M)

D(i.j) = CP(iJ) + MPL(i!((j+1))M) - MPA(i.((j+2))M)

E(iJ) = MP(i,j) + DPA(is((.i+l))M) + MPD(i:((.l+2))M)

F(iJ) = MP(i,j) - DPA(i.((i+1))M) + MPD(is((l+2))M)

G(iJ) =MP(iJ) + CPA(i!((.l+1))M)'MPD(i9((.i+2))M)

H(i.j) =MP(i.j) - CPA(is((.j+1))M) 'MPD(i:(0+2))M)

In L3 the first group L3Gl consists of six planes, each with single cell only whereas

both L3G2 and L3G3 consists of 8 planes having 3 cells in each. The output of the cells in

L3 can be found out as follows:

ii) For L3Gl ,
M—1

SRVLP = _Z0RVLP(i) (3)1:

Similarly, the values of the cells SRVLPA, SCHAP, SCHAPL, SCDP, SCDPA are derived

by replacing RVLP with RVLPA, CHAP, CHAPL, CDP, CDPA respectively in equation (3).

84



iii) For L3G2,
For 0 i < M

RVLPP(i) = RVLP(i) + RVLPA(((i+1))M)

RVLPM(i) = RVLP(i) — RVLPA(((i+1))M)

RVRPP(i) = RVRP(i) + RVRPA(((i+l))M)

RVRPM(i) = RVRP(i) - RVRPA(((i+l))M)

CHAPP(i) = CHAP(i) + CHAPL(((i+1))M)

CHAPM(i) = CHAP(i) - CHAPL(((i+l))M)

CHBPP(i) = CHBP(i) + CHBPL(((i+1))M)

CHBPM(i) = CHBP(i) - CHBPL(((i+1))M)

iv) For L3G3,
M—1 _

A1(i) = _ZOA(j,i + j) 0 1< MJ:

Similarly, the arrays B1, C1, D1 are obtained by replacing A in the above equation with B, C,

D respectively.

M—1 _
E1(i) = _Z0E(_j,i— j) , O l< MJ:

Similarly, the arrays Fl, G1,H1 are obtained by replacing E in the above equation with F, G,

H respectively.

The DFT coefficients Ykm will be obtained from the layer L4. The group L4G1 gives the

real coefficients Y0_o, Y0_,, Y,_,,, Y,_, for which no multiplications are required and the input is

Mi 1Y‘P’ W(p)
from L3G1. The complex coefficients Ykm can be expressed as Ykli k2 = pzo khkz.

M—1

a“dY(<(N—kI» ((N—k2)) ) =Yii)k2 ‘ ZYfi3‘?2’””“’ W(p) Where Yiiiz °°”°5P°"d5 t0 theN’ N ' ' '
p=l

output of the p"‘ cell in a cell-plane of L3G2 or L3G3 and W(p) =exp((-j2 /N)p).

The algorithm for L4 is

i) For L4G1
Yo_0 = SRVLP + SRVLPA

Y,_0 = SRVLP - SRVLPA

Y0_3 = SCHAP - SCHAPL

Y,_, = SCDP - SCDPA
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ii) For L4G2
Y,_0 = RVLPM(0) -RVLPM(1).Wl+RVLPM(2). W2

Y2_0 = RVLPP(0)-RVLPP(1) . W1 + RVLPP(2) . W2

YL3 = RVRPM(0)-RVRPM(1).Wl+RVRPM(2). W2

Y2’, = RVRPP(0)-RVRPP(1). W1 + RVRPP(2) W2

Yo_, = CHAPM(0)-CHAPM(1).W1+CHAPM(2). W2

Y0_2 = CHAPP(O)-CHAPP(1).W1+ CHAPP(2) W2

Y,_, = CHBPM(0)-CHBPM(l).W1+CHBPM(2). W2

Y3’; = CHBPP(O)-CHBPP(l). W1 + CHBPP(2) W2

iii) For L4G3

Y,_, = F1(0) - F1(1). W1 + F1(2) . W2

Y2‘: = El(0) - E1(1) . W1 + E1(2) . W2

Y5_, = B1(0) - B1(1) . W1 + B1(2) . W2

Y,,_,,_ = A1(O) - A1(1) . W1 + A1(2) . W2

Y,_, = C1(0) - C1(1).W1+ C1(2) . W2

YL2 = D1(0) - Dl(1) W1+ D1(2) W2

Where W1 =exp(-j2 /N) and W2 =exp(-j4 /N)

4.3.3 Example
An exa.rnple for computation of 6x6 point DFT is shown below. The data matrix

chosen is 1 2 2 3 1 3
3 4 4 1 2 4
1 1 0 1 1 2

[A1= 1 1 2 3 3 4
1 3 1 2 2 3
2 4 3 4 4 1

mm

VLP VLPA HAP HAPL DP DPA
3724 7'56 1463*‘ 15-47 1335 375213 257 224 246 235 235
435 1675 3476* 764; 553 557
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RVLPP

26
24
30

VRP VRPA HBP HBPL CP CPA
-111 -2 [137 -2-2-1 -’ 2*-T -3“1-3 17 1-1}0-1-1 0-1-1 0-2-2 0-2-2 0-3-3 011
-2-1-1 1-2-1_-3, 1__2-2 -1-2 2 L3-3_1 -11 1

LIQ3MP MPL MPA MPD
1'21” p3‘3* 742 414*101 112 123 1134
112 323 {2_3_4 M41

LLQL
RVLP RVLPA RVRP RVRPA

12 Wsj ‘.23 "‘6"16 14 -2 -2
12 ‘ 18‘ 1 _4 0

LZQZCHBP CHAPL CBPL CDP CDPA
-3 -6 135' F514 17”" I3 -2 -1”‘ E11 13 12 15 17

1.203B C D E F G H
0-3T ‘’-41-1 -21-5 12117" -2113 -2 IT -4 -1-1
-202 2-4-2 -2-2-4 3 66 2-4 -2 0-2 -4-2-2
-10.3 -1-41 -521‘ 71211 -3.21 1-2-3 -1-4-1

13.01
SRVLPA SCI-[AP SCHAPL SCDP SCDPA
50 #35 21:6! 36" 44

1.2.02
RVRPP CI-[APP CHBPP RVLPM RVRPM CHAPM CHBPM-5‘ 23’ -5 -2 j -5” -1-2 291 -7 -12 -2 -5 -5-4 28 V-8 % 46 I -4 -2 -2
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A1 B1 C1 D1 E1 F1 G1 H1
23“ "53 -7 -3 30 -2 -5" -1023 -2 -2 -8 30 -10 -3 -627 -3 -3 -9 20 4 2 _4

L4gi]Yo,o Yo.a Y3.o Y3.380" -12 -20 -8L4Q2 ma
YL0! YS,D Y2.0v Y4.0 Yl,la Y5.S Y2.Z! Y4.4

'7+j5.2,’7‘-js.2* .’1.f5T2,-1+j5,2 H3-j12.12,1-j12.12 B2LjE;.66,5-js.66

Y... Y._3. Y... Y... Y... _g_.. Y.
-3+j1f7"3,’f3Tj1.73 1-j1.73, 1+jiT: -3’-j3.66”, -3+j8.66 r5-J1-73, -5+j1-73

Yoga Y... W Yam Y... Y... Y...
:5.5+jO.866, -313’-j‘0i.8‘6’€‘L 1.5+j2;6, -1.5-j2.6 -2.5+j0.866. -2.5-J0-866

Y3}! YEA Ylls YLS Y5,1: Yil.5 W
2.57j0.366, 2.5-35836“ 2.5+j2.6, 2.5-j2.6 -0-5-1'0-866,-0.5+j0-866

Emil Y... Y... Y1,2a Y5...
1-41/5—j0-866, -4.5+j0.866 5.5+jO.866, 5.5-j0.866

4.4 PARALLEL DISTRIBUTED MODEL FOR N XN-POINT DFT,((N))4=2

The fig. 4.4 shows the block diagram of the hierarchical network model to implement

NXN-point DFT when ((N)),, = 2. The structure of the model used, for N=6, in the previous

section is slightly modified to reduce the complexity by eliminating a few planes as explained

below. It consists of a cascade of four layers with 3 groups of cell planes each. The layer one

consists of 4 planes, each of size MxM, in all the groups. The planes in LlG1 are named

VLP, VLPA, HAP & HAPL, in LIG2 are VRP, VRPA, HBP, HBPL and that in LIG3 are

MP, MPL, MPA & MPD. The planes in L2Gl are RVLP, RVLPA, RVRP, RVRPA with M

cells each. The second group in L2 has the planes CHAP, CHBP, CHAPL, CHBPL, each

with M cells. The third group consists of 2(N-2) cell planes, each of dimension MxM, with

the names indicating the index of basic coefficients such as A(l,1), A(2,1)... A(N-1,2), i.e;

indices of columns one and two with the row index k1¢M. The planes in L3Gl are SRVLP,
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SRVLPA, SRVRP, SRVRPA with single cell. L3G2 consists of 8 cell planes, M cells in

each, with name B(k,0), B(k, M), B(0,k) & B(M,k) where k = 1, 2 and L3G3 consists of 2(N

2) cell planes, with M cells each, having the name B(kl, k2) where k2 = 1, 2 and kl = 1, 2,

N-1 & kl at M.

L1 L2 L3 L4G1 G1 G1 G1
4(MxM) 4(M><1) 4(1x1) 4(1x1)
VLP RVLP SRVLP Y(o'o)
VLPA RVLPA SRVLPA Y(M'o)HAP RVRP SRVRP Y(o_M)
HAp|_ RVRPA SRVRPA Y(M'M)

G2 4(i3x2M) 8(1Gx2M) 8(1x?l\2/1-1))
4(MxM)L0 VRP CHAP Bow) Y(k,0)

‘:1 VRPA :1 Cc:'fi‘3'°F," :1 B(1<,M) W(F’) :('3'“,:')
+ HBP ‘F CHBPL _’ B(0’k) : Y(M'k)0 HBPL 0 0 B(M,k) ( ')

a~N—N~ G3 G3 G3x _ 2(N-2) 2(N-2)
4(§3M, $3, <1xM> <1x<M-1»

A(1,1) 30,1)MP A(2,1) B(2,1) Y(k1.k2)MPL WlthMFA k1&k2MPD **
A(N_1,2) B(N-1,2) 0,M

Fig. 4.4 Block diagram of the network architecture for ((N))4 =2

The algorithm for the layer one is similar to that for N=6, only the size of the group

varies. The cell planes DP, DPA, CP, CPA are eliminated since they can easily be avoided

by modifying the algorithm so that the complexity reduces. The output of each cell in L1G1

is the sum of two inputs from L0. Similarly, the output of each cell in LlG2 is the difference

between the output of two cells in L0. The output of cells in L1G3 is obtained from one cell

in L0 at a specific position.

The input-output relation for each cell in L1 is as follows.
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ForO i,j <M=N/2
For L1G1

VLP(i,j) = x(2i, 2j) + x(2i, 2j +1) VLPA(i,j) = x(2i + 1,2j) + x(2i +1,2j +1)

HAP(i,j) = x(2i, 2j)+ x(2i +1,2j) HAPL(i,j) = x(2i, 2j+1) + x(2i+1, 2j+1)

For L1G2

VRP(i,j) = x(2i, 2j) - x(2i, 2j +1) VRPA(i,j) = x(2i + 1,2j) - x(2i +1,2j +1)

HBP(i,j) = x(2i, 2j) - x(2i +1,2j) HBPL(i,j) = x(2i, 2j+1) - x(2i+1, 2j+1)

For L1G3

MP(i,j) = x(2i, 2j) MPL(i,j) = x(2i, 2j +1)
MPA(i,j) = x(2i +1,2j) MPD(i,j) = x(2i +1,2j +1)

The layer L2 also consists of three groups of cell planes. The group L2G1 consists of

4 cell- planes of dimension Mxl. The algorithm to find the output of cells in L2 is:

i) For L2G1

For 0 i < MM_I -  n 
RVLP(i) = ZVLP(i, j) RVRP(1) = Z VRP(1, J)i=0 j=oM—l M—l

RVLPA(i) = Z VLPA(i, j) RVRPA(i) = Z VRPA(i, j)j=0 j=0
In this the cell values of RVLP represents sum of data on each row with even index and

RVRP represents that on rows of odd index. Similarly, the cell values of RVLPA represents

sum of data on each row with even index where the data on odd column position are sign

reversed and RVRPA represents that on rows of odd index.

ii) For L2G2

For 0 i < M

_ M—l _ . M—l
CHAP(1) = Z HAP(J, 1) CHBP(i) = Z HBP(j,i)j=0 j=0M—1 M—l

CHAPL(i) = Z HAPL(j, i) CHBPL(i) = Z HBPL( j, i)j=0 j=0
Derivation of algorithm for LZG3

The primitive symbol combination at the first row of cells in Y|f?,)k2 for N=6 are as

follows:
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LE9

k_1.Q

1) MPOYO +DPB0_] + MPDM 1,1
2) CPo_o +MPRo,, + MPAOJ 2,1
3) MP0,‘, +CPA0‘, + MPC” 4,1
4) DPo_0 +MPR°', + MPBQ2 5,1
5) CPQ0 +MPL0_, + l\/£PBo,2 1,2
6) MPQO +DPA0,, + MPD,, 2,2
7) DPOD +MPLo‘1 + MPAQ2 4,2
8) MPQO +CPB0_l + MPC0_2 5,2

Similarly, the primitive symbol combination at the first row of cells in Y,f‘f_>k, for N = 10, 14

and 18 (of LZG3) are given in Appendix B. Since DP = MP + MPD, CP = MP + MPC, DPA

= MPL + MPA, CPA = MPA + MPR, DPB = - DPA, MPR = - MPL, MPC = - MPD, MPB

= - MPA, MN= - MP, CPB = -CPA, we can express the symbol combinations in terms of the

four symbols MP, MPL, MPA, MPD and derive an expression for finding the cell values of

the cell planes in L2G3. Thus the symbol in (0, O)"‘ cell of the pictorial representation, for

any (kl, k2) of group 3 with p = 0, will be MP and that of (0, M2)"‘ cell, M2= (M-1)/2, will

be MPL if k2 is even and MPR when k2 is odd. Thus (0, M2)"‘ cell has MPL with positive

sign if k2 is even and negative if k2 is odd. Similarly, MPA will be positive if kl is even and

negative if kl is odd. Also MPD is positive if both kl & k2 are odd or even otherwise

negative. The position of the symbol MPA moves in steps of ((k1 .M2))M as kl increases till

kl = M and then reversing the sign. Similarly, the position of MPD is changing with increase

in kl in a similar fashion in steps of (((k1+1)M2))M. Thus the expression for finding the cell

values of L2G3 are derived.

The algorithm for L2G3 is:

Fork2= 1,2

Forj =O,1

Fori =1,M-1

kl = ((k2 i+j M))N , M2 = (M-1)/2

For 0 1, m < M



A(k1,k2)(l,m) = MP]_m + (—1)"1MPAl_ml + (—,1)"2MPL,_m2 + (—1)"‘*“2 MPDl‘m3,Where

m1 = ((111 + ((i- M2))M ))M ,m2 = ((m + M2))M ,m3 = ((111 +(((i+1)M2))M))M

In the above equation A(kl, k2) represents the address of a cell plane and (1, m) represents the

index of the cell in that plane. There will be 2(N-2) cell planes of size MXM in L2G3.

The output of the cells in L3 can be found out as follows:

i) For L3G] M—1 M—1
SRVLP = Z RVLP(i) SRVRP = 2 RVRP(i)i=0 i=0M—1 M—1

SRVLPA = Z RVLPA(i) SRVRPA = Z RVRPA(i)i=0 i=0
The value of SRVLP represents the sum of data of all rows with even index and SRVLPA

represents that of odd index. Similarly, SRVRP represents the sum of data of all rows with

even index where the data with odd column index is sign reversed and SRVRPA represents

the sum of data of all odd indexed rows where the data with odd column index is sign

reversed.

Derivation of algorithm for L3G2

The pictorial representation shows that the group 2 coefficients will have the identical

rows/columns depending on the position of the frequency index. Only two symbols will be

used in the column/row. Thus in this group, the cell values of each plane are formed by

combining the row/column sum of two categories of cell planes. Different cell values are

obtained by circularly changing the index value. In this group each plane represents the value

of Yfi’_)k2 for different values of p. The following relations can be derived by analyzing the

pictorial representation for the basic set of coefficients, for p=O, corresponding to group 2.

Y‘°> — M—1VLP M_lVLPA Y<°> — NHVRP NHVRPA1,0 ‘ Z 0,m _ Z M2.m 1,M ‘ Z O,m ' Z M2,mm=O m=O m=O m=O
(0) M—1 M—1 (0) M—1 M—1

Y2,o = Z VLP0,m + Z VLPAM2,m Y2,M = Z VRP0,m "' Z VRPAM2,mm=O m=O m=O m=O
(0) M—1 M—l (0) M—l M—1

Yo,1 = ZHAPm,0 ‘ ZHAPLm,M2 YM,l = ZHBPm,O ‘ ZHBPLm,M2m=O m=O m=O m=O
M—1 M—1 0 M—1 M—1

= Z HAPm,0 + Z0HAPLm,M2 Yli/t,)2 = Z01-IBPm,O + Z0HBPLm,M2m=O m: m: m:
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The relation for other values of p can also be derived by changing the row index and column

index in a circular fashion as seen in the pictorial representation. Other (kl, k2) pairs in this

group are also related to these symbols in a similar way. Hence, to derive different Ykm of

L4G2, all combinations in the current group of planes will be computed. From the relations

given above and the pictorial representation we can observe that the first row/column will be

with VLP/V RP or HAP/I-IBP and the M2"‘ row/column will be with VLPA/ VRPA or

HAPL/HBPL depending on the position of index (kl, k2). The position of the rows/columns

of symbols will be circularly shified as shown in the pictorial representation but with the

spacing between the two rows/columns of different symbols equal to M2. Thus we can find

the index of row/column in which VLPN RP or HAP/HBP is present from the value of n such

that ((2.n.k))M = p for different values of p where k = kl or k2 that is not zero or M.

ii) For L3G2

Fork= 1,2

ForO p < M

Find 11 such that ((2.n.k))M = p , O n M-l

B(k, 0)(p) = RVLP(n) + (-1)" RVLPA(((n + M2))M) ,M2=(M-1)/2

B(k, M)(p) = RVRP(n) +(-1)“ RVRPA(((n + M2))M)

B(0, k)(p) = CHAP(n) + (—1)“ CHAPL(((n + M2))M)

B(M, k)(p) = CHBP(n) +(-1)" CHBPL(((n + M2))M)

Derivation of algorithm for L3G3

The algorithm for the group L3G3 is derived by analyzing the pictorial

representation, described in chapter 3, of group 3 coefficients for different values of N. First

we can find the position of the symbol MP for p=0 which depends on k2. As the row number

increases the symbol MP will be shifiing to the left by kl times the row number in a circular

fashion and k2 times the row number down the rows in a circular fashion. Using this

principle we can derive the algorithm for this group as given below.

iii) For L3G3

For k2 = 1, 2

For j = 0, 1

Fori = 1, M-1

kl = ((k2 . i +j. M))N , M2 = (M-1)/2
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For 0 p < M

Find n such that ((2.k2.n))M = p, O n M-1

B<k1.1<2)<p) = T;'0'A<k1.k2>(<<k2.1))M ,<(n - k1'l))M)

Derivation of algorithm for the layer L4

The DFT coefficients Ykm will be obtained from the layer L4. The connection

weights from L3 to L4 will be the twiddle factors. The group L4Gl gives the real

coefficients Y0_o , YOM, YM0, YM_M for which the connection weights will be ¢1

where Y0,o = SRVLP + SRVLPA YM_o = SRVLP — SRVLPA

YOM = SRVRP + SRVRPA YMM = SRVRP - SRVRPA

The complex coefficients Ykm can be expressed as
M—l

Ykl,k2 = ZYlE]l3,)k2 'w(p)
p=0

where Y”) corresponds to the output of the p"‘ cell in a cell-plane of L3G2 or L3G3 andkl,k2

W(p) =exp(-j2 .p / N). But the analysis of the pictorial representation shows that a number

of DFT coefficients can be derived fi'om the pennutations of Y,:'l°_)k2, O S p 5 M-1

corresponding to a given (kl, k2). The table B.1, B.2, B.3 show the set of indices of the

coefficients that are related by the permutation of Ylgfiz, over p, for N = 6, l0, 14

respectively. In these tables the indices with ‘*’ are the conjugate of the corresponding index

given in the bracket, ie. (kl, k2)’ is the complex conjugate of the coefficient with index (kl,

k2). By analyzing these tables, it is seen that the values of Y'E‘]’_)k2 for all p need be computed

for 2N+8 different set of (k1, k2) only as given table B.4. Also a set of relations are derived

in terms of Yé‘1’_)k2 as permutation over p for different values of (kl, k2) as given in Appendix

B. From the equations for N = 6, 10, 14 we can see that in general the conjugates are related

by the relation Y((}:]l)_k2). = Y|E?’)k2 & Y((l:‘1)'k2)_ = _Y84k-2P) , 1 S p S M_1 where (kl, k2)‘ = (((N_

k1))Ns((N'k2))N)'

The DFT coefficients of the group L4G2 are obtained by using the following

algorithm:

94



Forkl = 1, 2

Fork2 = 0, M

Fork =1, 3, 5,  M-2

Y _ MZ':‘(_1)pB<(<k.p))M) w( )
(((k.kl))N,k2) - p_o k1,k2 ' p

M—l
_ _ 1» (((k.p))

Y(k2.((k.kl))N) ‘ F§)( 1) Bk2,kl M'W(p)

All the symbols in the pictorial representation of Y8‘: for odd values of p are the sign

reversed form of that of the even p. But that change is not considered in the previous layers

and hence (-1)" is used in the expressions for the final DFT relations of L4G2 & L4G3.

The DFT coefficients of L4G3 are obtained using the algorithm given below:

Fork2=l,2

Forj=0,1
Fori =l,M-1

k1=((k2.i+j.M))N
M—1_ _ P ((k-P))M = _

Y(((k.kl))N,((k.k2))N) ‘ pZ=%)( 1) Bkl,k2 -W(P). k 1, 3,  M 2

The remaining DFT coefficients in L4G2 & L4G3 can be found out by using the relation
M—l

Y(.,_..,. = ;) (—1)'’.B§.‘§_“.f;“’’“’.W(p)‘U

4.5 SIMULATION RESULTS

The model developed in this chapter is basically using a parallel distributed approach for

the computational application. So the simulation of the model requires a number of processes

to be running simultaneously. Also it is aiming at implementing with very simple units

(adders) to perform the complex task of computing the 2-D DFT for va.riable size of the data

matrix. Thus the simulation of the model on a sequential machine with single processor will

not give a proper evaluation of the model. Since the algorithm is for parallel and distributed

operation, it is difficult to implement on a sequential machine that uses a sequential

programming. But the JAVA programming language can simulate parallel processing

functions due to the multithread design feature available. For each process to be executed
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sequentially, individual threads were created. Hence, the model is simulated using the JAVA

language.

The parallel distributed model developed in the previous section is simulated on a

Pentium DX machine, 120 MHz clock, 16MB RAM, using JAVA programming language

under the windows 95 environment.

The model is simulated and the results of computation are compared with that of the

direct DFT. It is found that the results of computation are one and the same. The model can

be implemented in four different ways depending on the requirement of speed and

complexity.

1. Fully parallel implementation in which each cell will be operating in parallel so that the

time taken for the computation in one layer is same as the time required for the

computation in one cell. The realization will have the maximum speed but the

complexity will also be high.

2. Plane sequential implementation where the planes are operating in parallel and within a

plane the operations are sequential. Since all the cells in a plane are identical and doing

the same operation on different data that are circularly shifted in position, the

implementation of this will be very easy.

3. Group sequential implementation in which the groups are operating in parallel and within

a group the operations are sequential. This can reduce the complexity, but this is not a

good choice due to the difference in complexity of various groups.

4. Fully sequential implementation in which the complete operations within a layer are

perfonned sequentially.

The table 4.1 shows the computation time in the four different schemes mentioned

above for different order of the data matrix for a typical example. The table also shows the

time taken for computing the DFT using row column method for the same data. Even though

the values obtained are not the absolute values, a comparison can be made from the results

available. The following inferences can be drawn from the table 4.1.

By comparing the timings for the fully sequential implementation of the PDP method

with direct DFT, shows the reduction in computation time due to the new definition of the

DFT relation alone. The complexity for the implementation of this scheme will be the

minimum. Still there is a good reduction in computation time. The reduction in computation

time is more predominant as the order increases.
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Table 4.1: The computation time of PDP model for different degrees of parallelism and that of the Direct DFT

DFT PDP PDP PDP PDP
N (msec) Fully Group Plane Fully

sequential sequential sequential parallel
(msec) _(msec) (msec) (msec)6 82 14 10.21 1.358 0.3558

10 648 62 30.93 3.357 0.4654
14 2310 173 131.04 3.827 0.53415
18 6100 378 302.59 9.9365 0.70515
22 14440 674 577.8 15.3137 0.86525
26 27960 1154 956.71 21.027 0.977
30 48830 1761 1529.63 28.833 1.195
34 80850 2627 2224.5 36.5859 1.3187
38 125070 3542 3184.02 46.448 1.4984
42 187660 4797 4272.61 56.2125 1.6356
46 278360 6489 5958.86 70.926 1.8343
50 369160 8177 7254.33 79.3825 1.9278

The group sequential method is not showing much improvement in computation time

compared to the fully sequential method. This is due to the uneven grouping of coefficients.

That is the first group has the four simplest coefficients, second group has 4(N-2) coefficients

and the third group has the remaining coefficients which increases as N increases. But this

can be solved by splitting the third group into more groups, depending on the order N, so that

all the groups will require approximately equal computation time. Then the group sequential

method will be advantageous in reducing the complexity of the system with improvement in

speed. Presently, group sequential approach is not an advantageous method compared to

other schemes.

The plane sequential method shows a good reduction in computation time compared

to the group sequential and fully sequential methods. There will be a considerable saving in

implementing the system also. The increase in order will have a greater effect on the number

of cells in one plane compared to the number planes in a layer. Thus the complexity will not
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increase much as the order is increased. As seen in table 4.1, the increase in computation time

compared to direct DFT, fiilly sequential PDP or group sequential PDP methods is less.

The fully parallel method shows the maximmn speed of computation compared to

other schemes. But the arithmetic units to be used will be the maximum and increases in

terms of M2. But the hierarchical architecture permits many simplifications in the

implementation.

The table 4.2 shows a comparison of the time taken by various groups in

implementing the model in the group sequential method for different order of the data matrix.

The table shows that the group 3 in L2 and L4 are taking the maximum time compared to

other groups. In L2 to L4, the timing is uneven due to the uneven grouping of coefficients.

Thus for the present grouping of coefficients, the group sequential method is not as good as

others. But splitting the group 3 coefficients into more groups, depending on N, can solve

this.

Table 4.2 (Group Sequential): The table shows the time taken for computation of each group for different order

of the matrix. The time is in milliseconds

N 6 10 14 18 22 26 30 34 38 42 46 50
Time Time Time Time Time Time Time Time Time Time Time Time

Group (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec):

LlG1 0.66 1.26 1.76 2.52 3.52 4.78 5.99 7.36 9.72 11.81 13.4 15.93
L1G2 0.5 0.82 1.43 2.2 3.95 4.29 6.54 7.8 9.5 11.37 13.46 15.76
LIG3 0.33 0.66 0.99 1.54 2.09 2.91 3.95 5.54 6.59 7.96 8.46 10.76
L2G1 0.39 0.6 0.99 1.42 2.04 2.74 3.8 4.45 5.44 6.6 7.96 9.11
L2G2 0.55 0.71 1.05 1.65 2.25 3.07 4.33 4.99 6.2 7.97 9.77 11.3
L2G3 4.56 21.71 58.2 129.7 243.8 418 636 932 1326 1781.3 2582 3036.3
L3G1 0.285 0.286 0.291 0.313 0.335 0.357 0.379 0.401 0.428 0.45 0.467 0.5

L3G2 0.94 0.99 1.37 2.14 2.28 2.41 2.74 3.35 3.95 4.23 4.72 5.7
L3G3 1.81 7.09 18.07 39.05 72.94 112 187.3 277.9 393.9 524.5 688.2 884.9

L4G1 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22
L4G2 2.69 7.63 16.92 28.61 44.14 62.95 85.9 111.1 142.64 172.3 205.29240.52

L4G3 3.18 19.83 53.01 131.2 257.1 414 699.8 1007 145.44 1955 2675 3317.2
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The table 4.3 shows the time taken for computation of cell values in one plane of each

group when implemented in plane sequential method for different order of the matrix. The

first row represents the order N and first column represents the group from which the plane is

considered. The time is in milliseconds. The different planes in a group will take the same

amount of time as all the planes in the group are doing the same operation on a similar set of

data and each plane in a group are of the same dimension.

Table 4.3 (Plane Sequential); The time taken for computation of cell values in one plane of each group for

different order of the matrix.

N 6 10 14 18 22 26 30 34 38 42 46 50
Time Time Time Time Time Time Time Time Time Time Time Time

Group (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec)

3.35

3.365

2.115

1.99

2.442

29.342

0.1167

0.57

7.82

0.055

25.66

30.4

3.982

3.94

2.69

2.277

2.825

31.63

0.125

0.712

9.218

0.055

30.06

34.55

2.43

2.375

1.6475

1.36

1.55

18.347

0.107

0.494

5.47

0.055

17.825

20.2

2.952

2.8425

1.99

1.65

1.992

22.266

0.1125

0.529

6.556

0.055

21.54

24.43

0.88

0.9875

0.522

0.51

0.5625

6.095

0.084

0.285

1.803

0.055

5.267

6.428

1.195

1.072

0.727

0.685

0.767

8.708

0.089

0.301

2.499

0.055

7.868

8.624

1.497

1.635

0.9875

0.95

1.0825

11.36

0.095

0.342

3.344

0.055

10.737

12.5

1.84

1.95

1.385

1.1125

1.247

14.562

0.1

0.419

4.342

0.055

13.88

15.73

0.315

0.205

0.165

0.15

0.177

1.359

0.0715

0.1237

0.443

0.055

0.954

1.239

0.44

0.357

0.247

0.275

0.2625

2.425

0.072

0.171

0.753

0.055

2.1 15

2.209

0.562

0.55

0.385

0.355

0.4125

4.053

0.0782

0.267

1.22

0.055

3.576

4.1

L1G1

Ll G2

L1 G3

L2G1

L2G2

L2G3

L3G1

L3G2

L3 G3

L4G1

L4G2

L4G3

0.165

0.125

0.082

0.097

0.1375

0.57

0.0712

0.1175

0.2263

0.055

0.336

0.397

The table 4.4 shows the time taken for computation of one cell in each group when

implemented in fully parallel method for different order of the matrix. The first row

represents the order N and first column represents the group from which the cell is
considered. The time is in microseconds. But this will not be the actual time. Since the

computation time for one cell value is very small, the influence of the other tasks that are

performed by the windows on the measured time will be more. Thus if this model is

implemented in hardware, the speed of computation can be improved well.
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Table 4.4 (Fully Parallel): The time taken for computation of one cell in each group for different order of the

matrix.

N 6 10 14 18 22 26 30 34 38 42 46 50
Time Time Time Time Time Time Time Time Time Time Time Time

Group usec usec usec usec usec usec usec p.sec usec usec usec usec
L1G1 18.33 12.6 8.98 6.944 7.27 7.07 6.655 6.367 6.73 6.695 6.33 6.304
L1G2 13.89 8.2 7.29 6.79 8.16 6.35 7.266 6.74 6.58 6.445 6.361 6.304
L1G3 9.166 6.6 5.05 4.321 4.31 4.3 4.39 4.79 4.563 4.512 3.998 4.304
L2G1 32.5 30 39.29 39.44 46.36 52.69 63.3 65.44 71.58 78.57 86.52 91.1

L2G2 45.83 35.5 32.14 45.83 51.13 59.04 72.1 73.38 81.58 94.88 106.2 113

L2G3 63.33 54.37 49.49 50.04 50.37 51.5 50.47 50.39 50.82 50.49 55.467 50.6

L3G1 71.25 71.5 72.75 78.25 83.75 89.25 94.75100.25 107 112.5 116.7 125

L3G2 39.167 24.75 24.46 29.7 25.9 23.17 22.8 24.63 25.99 25.18 24.78 28.5

L3G3 75.42 88.62 107.56 135.6 163.9 192.24222.96 255.4 287.94 312.2 340 368.7

L4G1 550 550 550 550 550 550 550 550 550 550 550 550
L4G2 168.1 238.4 352.5 447 526.7 655.7 767 867.6 990.3 lO76.91166.4 1252.7

L4G3 198.7 309.8 368.12 512.6 642.8 718.7 892.6 983.21l22.2l221.91381.8l439.7

4.6 COMPLEXITY OF THE MODEL

4.6.1 Computational complexity

The total number of computations involved in the computation of NXN point DFT

coefficients is given below

a) Total number of real additions

The number of additions in each group in tenns of 2 input real additions is as follows.

LlG1 - 4M2 L2G1 - 4M(M-1) L3G1 - 4(M-1) L4G1 - 4

L1G2 - 4M2 L2G2 - 4M(M-1) L3G2 - 8M L4G2 - 8M2 - 16M+8

L1G3 - No L2G3 - 12M2(M-1) L3G3 - 4(M’-2M2 +M) L4G3 - 4(M3-3M2+3M+2)

Thus the total number of real additions = 2.SN’- 2N2 + 2N - 4.
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b) Total number of real multiplications

The multiplication operation is required only in L4G2 and L4G3. The outputs of L3 are

real and the output of L4 is the sum of the scalar multiples of the twiddle factors.

The total number of real multiplications = (N-2)(N2-4)

Since the computations will be carried out in parallel and distributed manner the speed

of computation will be very high.

4.6.2 Hardware complexity
The table 4.5 shows a comparison of the arithmetic units required in each layer and

each group for implementing the model to compute a NxN point DFT in any one of the four

realizations. The first three layers involves only real addition and the fourth layer involves

multiplication of complex numbers, pre-computed values of the twiddle factors, with real

numbers. It shows that the number of adders required in the first layer increases as the square

of M = N/2 to realize the model in fully parallel implementation. But, since these are with

identical units and considering the improvement in speed, the implementation will not be a

severe problem.

Table 4.5: The number of arithmetic processors required in different realizations.

Group Component Fully parallelPlane sequential Group sequential Fully sequential

LlG1 2 input adders 4M2 4 1 Only one adder
LlG2 2 input adders 4M2 4 1 for each layer
LlG3 adders Nil Nil Nil
L2G1 M input adders 4M 4 1
L2G2 M input adders 4M 4 1
L2G3 4 input adders 4M2(M-1) 4(M-l) l
L3G1 M input adders 4 4 1
L3G2 2 input adders 8M 8 1
L3G3 M input adders 4M(M-1) 4(M-l) 1
L4Gl 2 input adders 4 4 1
L4G2 M input adders l6(M-l) 8 1

Multipliers l6(M-l) 8 1
L4G3 4 input adders 8(M-1)2 4(M-l) 1

Multipliers 8(M-l)2 4(M-l) 1
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4.6.3 Memory Requirement

Table 4.6: The Maximum memory requirement

Layer Memory
L0 4M2
L1 12M’
L2 4M(M2-M+2)

L3 4(M2-M+1)
L4 4(2M2-1)

The table 4.6 shows the maximum storage requirement in each layer of the model.

Different layers, due to the hierarchical structure of the model, can use the same memory.

The table shows that the storage requirement is maximum in layer 2. Hence the total memory

required will be same as that of Layer 2. Theoretically speaking, the fully parallel

implementation of the model does not require any memory area and the fiilly sequential

implementation will require the maximum memory. But due to the hierarchical structure of

the model, the memory requirement is not a problem.

4.7 CONCLUSION

In this chapter an investigation on the development of a neural network model is

carried out. Presently a parallel distributed model to compute NxN point DFT, ((N))4=2, is

completed. It is found that the speed of computation can be improved well. Also there is a

scope for having a choice between speed and complexity that can be permitted for a particular

application. Being a hierarchical model, it permits simplification in realization.
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Chapter

DISCUSSIONS AND CONCLUSIONS 5

A new definition of 2-D DFT relation is presented (in chapter 3). This new approach

enables DFT computation organized in stages involving only real addition except at the final

stage of computation. The number of stages is always fixed at 4. Two different strategies are

proposed.

1) A visual representation of 2-D DF T coefficients ( described in chapter 3)

2) A neural network approach (explained in chapter 4).

5.1 VISUAL REPRESENTATION OF 2-D DFT

The visual representation scheme, introduced in chapter 3, can be used to compute,

analyze and manipulate 2-D signals such as images in the frequency domain in terms of

symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This

approach can help analyze signals in the frequency domain even without computing the DFT

coefficients.

The various aspects brought forth in the thesis on visual representation are given in the

succeeding paragraphs.
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5.1.1 Computation/representation

The visual manipulation approach described in chapter 3 is a novel approach. It is

mainly intended for signal analysis in the frequency domain in terms of the time domain data.

This analysis is shown to be possible through the development of a pictorial representation

that relates the DFT coefficients and the data. Since the pictorial representation is data

independent and is fixed for a particular order N and index (kl, k2), it can also be used as a

look up table to evaluate the coefficients for any index.

5.1.2 Ease of generation

The pictorial representation of many coefficients can be derived from that of a few

coefficients by simple manipulations such as circular shifi, flipping horizontally / vertically,

rotate right / left operations. Also the representation of lower orders are contained in that of

higher orders. Hence, the lower order representations can be easily derived from higher

orders or vice versa. By using various properties inherent in these representations, their

generation can be made simple. Similarly, by developing a semantic grammar, the generation

of the pictorial representation can made easy and user fiiendly.

5.1.3 Simplicity for users

The visual representation of any information has more advantages in understanding

compared to other methods of representation. Sofiware can be developed in which the user

can point to the desired frequency index and obtain the visual output. The users can also

compute the corresponding value of the DFT coefficient. They can also display the related

coefficients and corresponding relations so that the signal analysis will be easy. The same

representation can be used for the analysis of other data sets/images. This facility will be

extremely useful in image data compression, scene analysis and block coding.

5.1.4 Properties exhibited by the representation

A number of interesting and useful properties exist in the pictorial representation of

the DFT coefficients. If the representation is available for a particular frequency index, it is

possible to obtain the representation of other coefficients in the same group by operations like
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flipping, rotation, permutation over p, negation etc. These properties are very useful in

simplifying the representations as well as reducing the memory requirements.

5.1.5 Memory requirement

Similar to any visual representation scheme, this approach is also memory consuming.

If the data is of dimension NxN the DFT will also be of dimension NxN. Therefore, N2 DFT

coefficients are to be represented pictorially and, in general, each coefficient has M

components. Thus there are approximately M.N2 pictures that are to be coded for the purpose

of storage. Therefore the memory requirement is too high.

However, the complete set of coefficients need not be stored as explained in the

following. Many coefficients are repetitions by virtue of permutation over the index p. Some

coefficients are related by a specific pattern to a basic coefficient and hence can be easily

derived and need not be stored. Also for a(k1, k2) the representation for different values of p

can be derived by proper circular shifi on that of p=O. In addition, for p=0 and a given index

(kl, k2), different row/column of symbols are either identical to one cell or one row/column

of cells are circularly rotated version of a row/column of cells. Thus depending on the speed

or memory constraint, the storage mechanism can be modified. Also, the representations of

lower orders are contained in higher order coefficients. Thus the representations for lower

order coefficients can be derived from that of higher orders and vice versa which enables

reduction in memory requirement.

5.1.6 Computational complexity

The pictorial representation is order dependent and is not data dependent. Thus, once the

pictorial representation for a particular order is developed and stored it need not be developed

again for another data. Hence this will be advantageous for block processing of signals with

fixed size blocks. Once the pictorial representation is developed and stored, a coefficient can

be evaluated by adding the relevant data using the representation in the form of a look up

table. Thus the computation of the DFT coefficients using this method can be simplified. The

DFT coefficients will be computed in terms of real additions rather than complex operations

as used in conventional methods. The complex operations that are involved in this approach

are only scaling of the twiddle factors. Once the properties of the DF T coefficients in terms of

Y0!)kl.k1 are studied, the frequency domain analysis of 2-D signals can be carried out without
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doing even single complex operation. Thus the computational complexity will be very less in

this approach.

5.1.7 Learning

This approach is amenable to supervised learning for the computation of DFT coefficients

of any index and of any order limited only by implementation. The visual representation can

be used to train a general purpose neural network so that the frequency domain processing of

2-D signals can be made intelligent. Since the pictorial representation for a given order is

fixed and it is with a regular pattern for different orders, dependant on the order, is an

advantage in deriving the learning algorithm.

5.1.8 Real-time processing

The real time processing of 2-D signals in the frequency domain can be made

possible by training a neural network to compute the DFT coefficients based on the visual

manipulation approach.

5.2 NEURAL NETWORK MODEL

In chapter 4, a hierarchical neural network model is developed to implement 2-D

DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N

such that ((N)), = 2. The theoretical studies based on the analysis of the pictorial

representation in chapter 3 and the analysis of different neural network models such as

Neocognitron and ART models, the following can be carried out to make this model useful in

implementing 2-D DFT of any order. Using a similar approach as developed in chapter 4, a

model to implementation 2-D DFT can be derived for ((N)),, = 0. A generalized model can be

derived from these two models to implement the 2-D DFT for any even N. This ca.n be easily

extended to odd values of N by padding with zeroes, as in the FFT implementations. Thus

the model can be developed into one that can implement the 2-D DFT for any order N upto a

set maximum limited by the hardware constraints. The learning algorithm should be

modified in such a way that it can implement the 2-D DFT computation of a given data

matrix of any order upto the maximum value possible in the model.

The following are some of the features of the new approach described in chapter 4.
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5.2.1 Speed / complexity trade off

As explained in chapter 4, the network model can be configured in four different ways

depending on the importance of speed or complexity consideration of the application.

1. Fully parallel implementation in which each cell will be operating in parallel so that the

time taken for the computation in one layer is same as the time required for the

computation in one cell. This realization will have the maximum speed but the

complexity will also be high as shown in table 4.5.

2. Plane sequential implementation where the planes are operating in parallel and within a

plane the operations are sequential. Since all the cells in a plane are identical and doing

the same operation on different data that are circularly shified in position, the

implementation of this will be very easy. This scheme of realization will be less costly

compared to fi.1lly parallel implementation. Also the complexity will not be increasing as

in the parallel implementation when N is increased. But the speed of processing will also

be less compared to the parallel implementation.

3. Group sequential implementation in which the groups are operating in parallel and within

a group the operations are sequential. This can reduce the complexity, but this is not a

good choice due to the difference in complexity of various groups.

4. Fully sequential implementation in which the complete operations within a layer are

performed sequentially. This realization will use minimum arithmetic processors as

shown in table 4.5. But the speed of processing will also be minimum compared to the

other schemes explained above.

Hence, the implementation scheme can be chosen based on the speed and cost requirements.

The speed and cost are inversely related. Thus there is flexibility in the implementation of

the system.

5.2.2 Computational merits

The model developed in chapter 4 is using a parallel distributed scheme of

computation in which the processing is in terms of real additions. Hence the speed of

computation will be very high. In this model there are 4 layers of computational units, but

the first 3 layers are using only real additions for the computation of DFT. The last layer

alone involves complex operation, that is also scalar multiplication of pre—computed twiddle

factor values. Thus in this scheme of DFT computation the complex operations are converted
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into real additions and they are computed in a parallel and distributed manner. Also, this

scheme of computation exploits the reduction of redundancies present in the computation of

different coefficients. This makes the computation faster compared to other schemes of

computation.

Even though the model developed in chapter 4 is capable of implementing 2-D DFT

of NxN data for ((N))4 = 2 only, the studies show that it can be easily extended to any value

of N. Also, currently the model is capable of computing the 2-D DFT of a particular order

only, but studies are made to train the network to implement any order upto a set maximum.

Presently FFT is the most commonly used tool for the DFT computation, and it requires that

N should be a power of 2. This is solved in this approach.

5.2.3 Learning

The network model is designed in such a way that the learning time can be

minimized using one step learning. The network model can be built for a maximum order

determined by the hardware constraints. The network has to find the order N of the data

matrix and based on the value of N the network connections are to be reconfigured. The

learning is through addition or deletion of connections rather than changing the connection

weights. Now, the learning algorithm is not developed but the theoretical studies are carried

out for the derivation of the algorithm.

5.2.4 Hardware implementation

The reported method shows a potential in implementing the 2-D DFT in hardware.

The basic computational blocks available in the modular form can be repeated at different

levels of hierarchy. This leads us to explore the possibility of implementing the DFT

computation as a VLSI / ASIC.

5.2.4.1 VLSI implementation aspects

Fig. 4.3 shows the detailed schematic diagram of parallel distributed computation of

6x6 - point DFT shown in fig. 4.2. This model can be implemented in four different ways

considering the speed/complexity requirement - 1) Fully parallel — all the cells in a layer are

operating in parallel, 2) Plane sequential where the operations in a plane are sequential and

the planes are operated in parallel, 3) Group sequential - one cell will be doing the operations
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in a group, 4) Fully sequential where one cell does the operations of a layer. The simulations

of the algorithm and the theoretical analysis of complexity show that the plane sequential

method is a better solution. The connections to one cell in a plane are shown since the others

are repetitions of the one shown with a proper shift to the input as given in the algorithm.

The cell, in all the planes except that in L4G2 & L4G3, is a simple adder with a selected set

of inputs from a particular position in the input plane. All the cells in a plane have the same

number of inputs with a regular change in position as in the algorithm. The cell in L4G2 &

L4G3 are as shown in fig. 5.1. In the figure, the register Y"” is the output from the layer L3kl.k1

and the Twiddle Factor Register (TF R) is with the twiddle factors, both the registers are of

dimension M= N/2. PCS (permutation control signal) and FOS (flush out signal) are used to

control the data flow. The PCS can be incorporated by using queue registers or LIFO/FIFO

organization for the register.

YET}.

P=(M-l) 0Input Output—. accum . Bufferulator

4
Fos

W (P)
N

TFR

Fig. 5.1 Structure of a cell in L4G2 & L4G3

5.2.4.2 Suggestions to hardware implementation of the Neural Network
Model
Since the network model has a hierarchical structure, the computation at one layer will

be starting only after finishing that at the previous layer. Thus only one layer will be under

use at one time. Hence, only one layer need be implemented if all the layers have the same

architecture. In the model shown in Fig. 4.4, there are four layers that are doing the

computations. The first three layers are doing only real additions. The last layer L4 alone

needs complex operations. The Fig. 5.2 shows the block diagram that can be used for the

hardware implementation of the network model for 2-D DFT computation. Fig. 5.3 shows the

structure of a neuron model (cell) where the connection weights will be :1 / 0 for the first 3

layers and W: / 0 in the last layer. The neuron model can operate on complex values similar
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to real values since the multiplications are in the form of scaling. Thus the model will be

simple and also the complexity will be less. But the complex operations can be completely

eliminated once the properties of the DFT coefficients in terms of Yfiflz are explored and

hence the model can be made simple.

Adders
&I/P multipliers __—> corresponding O/P

z—w—> Latch >~ to.one layer > Latch >
with a max.

“Ti/I *—* set order N /\

Switching> circuit
that will <
select the

connections

w=«_~1/0/W;

Fig. 5.3 Structure of a cell
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5.3 SOME PRACTICAL APPLICATIONS OF THE PRESENT WORK

DFT being a general purpose tool, numerous applications of the present work can be

suggested. The frequency domain processing of 2-D signals are limited due to the

computational complexity. Some of the problems in image processing that can use DFT are

mentioned in chapter 1. Since convolution is an important operation in many signal

processing applications and is computationally intensive, the DFT is used. Thus if the IDFT

can also be computed using this approach, this method can become a powerful tool in many

2-D applications where convolution is used. In problems like image recognition, scene

analysis etc., the processing is done on blocks of data, with block size in powers of 2. In

many applications this block size has serious drawbacks and can be solved by using this

method of computation.

5.4 SCOPE OF FURTHER WORK IN THE FIELD

The studies on 2-D DFT reported in this thesis, opened two different approaches for

the computation as well as signal analysis for 2-D signal processing applications. A number

of problems are remaining to be solved in both the approaches.

The following are some of the problems in connection with visual manipulation

approach.

1. The visual manipulation approach can be simplified for any order by studying various

properties of the representation.

2. A semantic language can be developed to represent the DFT coefficients using the

visual representation.

3. Study the properties of signals in the frequency domain in terms of new definition of

2-D DFT (i.e; in terms of Y,f}"_’,‘,) so that the complex operations can be eliminated for

signal analysis in the frequency domain. Then the frequency domain processing of

signals can be carried out in tenns of real additions alone. This will simplify the

implementation of the hierarchical neural network model also.

4. Train a neural network to use the visual representation in the form of a look up table

to analyze 2-D signals in the fiequency domain.
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DFT being a general purpose tool, it can be applied to any 2-D signal processing

application. This approach will be highly useful in image processing applications.

This approach can be extended to multidimensional DFT also.

This approach can be modified to implement inverse DFT also.

This approach can be extended to other transforms also.

Also, in connection with neural network model developed in chapter 4, some of the

problems are listed below.

1.

2.

3.

7.

Modify the neural network model to implement the 2-D DFT of 2-D data of any size.

Derive a generalized algorithm for the network model in (1) above.

Try to use a hybrid network that uses analog signals for computational purposes and

digital signals for control purposes.

Hardware implementation, in ASIC, of the neural network model is an important

problem since this model is using very simple operations in a highly parallel and

distributed manner.

This neural network model can be modified to implement multidimensional DF T.

This neural network model can be modified to implement many image processing

applications such as image segmentation, image compression, motion analysis, image

processing using fractals etc.

Extend the model to implement inverse DFT.

Thus the work reported here is shown to have sufficient potential to track a large set of

problems in 2-D signal processing.

112



APPENDIX A

A relation for NxN DFT (Y) can be derived in terms of 2x2 DFTs (X) of the

partitioned data matrix. The relation between the matrices X & Y for N=6, referred in section

3.1, is given below.

I. 1) Y0_o = X°_o + X01 + X o_4+ X10 + X23 + X14 + X“, + X” + X,,_4

2) Y0_, = Xo_, + X05 + X 05+ X“ + X23 + X25 + X4’, + X43 + X45

3) Y,_0 = X”, + X,_2 + X 1'4+ X10 + X33 + X“ + X10 + X53 + X5_4

4) Y1, = X,_, + XL, + X ,,5+ X3_, + X3_3 + X15 + X5_, + X53 + X55

11- 1) Y1.o = O-5*[[(xo,o + X02 + Xo,4 + x|_o + XL2 + X1,-1 + X3,o + x3,2 + x3,4) ' (X10 + x2,2+X2.4)

+Wel[(xo,o + X02 + Xo.4) ' (X1,o+ x1,2 + x1.4 + X4,o + x4,2 + X-1,4 + xs,o + X52 + Xs.4)] + Ws2[(x2_o

+ X2,2 + X24 + X3,o+ X12 + X3,4+ x5,o + X52 + X5,4) ' (x4,o+ X42 + X4,4

2) Y2,o= 0-5 *[[(Xo,o+ Xo.2 + X0,-4+ x1,o + X12 + XL4 + x2.o + X22 + X14) ' (X3_o+ X12 + x3,4)] +

w61[(Xs,o + Xs,2 + X14) ' (x2,o + X22 + X2,-4 + x3,o+ X3,2+ x3,4 + X4.0+ X42 + x4,4  + Ws2[(Xo,o

+ X02 + x0,4 + X4,0+ X42 + X4,4 + X5,0 + x5,2 + X5,4) - (xl,0+ X12 + x],4):”
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3) Y4.o= 0-5 *[[(Xo,o+ X02 + Xo,4+ X1,o+ XL: + XL4 + X2.o + X2; + Xu) - (X;,o+ X12 + X340] +

Wo‘[(X1,o+ XL: + XL4) - (Xo,o + X02 + Xo_4 + X4,o+ X42 + 39.4 + Xs,o + X53 + X5,-z)] + Wall (X2,o

+ X2,2 + x2,4 + Xs,o+ x3,2 + X14 +X4,o+ X4,2 + X4,4 ) ' (Xs,o + X52 + Xs,4)]

4) YL4, = 0.5 *[[(X,,_,, + X02 + X04 + XL4, + XL2 + X,_4 + XL4, + X22 + XL4) - (X20 + X22 + X24)

+W4'[(X4,, + X42 + X44) - (X24, + X22 + X2_4 + XL4, + X22 + X24 + X24, + X22 + X24)] + W42

[(XL4,+ XL2 + XL4+ X4_4,+ X42 + X44 + XL4, + X52 + XL4) -(X,,_4,+ X02 + X4,_4 )]].

Similarly the coefficients Y4,_,4, YL, , Y2’, ,where k=1,2,4,5 , ca.n be expressed from the above

expressions YL4, by using XL,, XL,-,,, X,4L,. respectively instead of XL, From these equations,

Y,L,,2 can be expressed as Yuma = §Y,S,F_L)2.w§ where WN =e'”"’N , M = N/2 In the

following expressions Y,f{’_’,,2 are expressed as Y,4L,2(p).

1) Y,_,(0) = 0.25 * [(X0,o + X4,_, + XLO + X,_,) + (X24 + X25 + X34 + X35) + (X42 + X4_,+ X53 +

X52) + (X04 + XL5 + X4_o + X5_, + X22 + X353) - (XL4 + X05 + X45, + X54, + X2’, '5' X3_2)] + 0.5 *

[(X1,3 + X1: "' Xs,s ) ' ( xo,2 + X2,o+ X4_4)]

Y,_,(1) = 0.5 * [(X0_o 4' X24 + X43 ) - ( XL, + X15 + X5'3)] + 0.25 *  + XL2 + X4_5 + X54 +

X2, + X24) — ((X,,_4 + X45 + XL4 + XL5) + (X22 + X25 + X22 + X55) + (X44, + X4',+ X55, + X5.,) +

(X,,_2 + XL, + X44 + X5_5 + X2,0+ X5_,))]

YL,(2) = 0.5 * [(X,_5 + X35, + X5_, ) - ( X04 + X4,o+ X2_2)] + 0.25 * [(X0_O + XL, + X4_2 + X54 +

X2_4 + X24) +(X4,_2+ X04 + XL2 + X,_,) + (X25, + X2_, + X55, + X,,) + (X44 + X4,5+ X54 + X24) 

(X05, + XL4, + X4_5 + X52 + X25 + X2_4))]

2) Y2_2(0) = 0.25 * [(x4,,, + X0‘, + XL4, + XL,) + (X24 + X2_5 + X54 + X55) + (X42 + X45+ X55 +

X22) + (X4,_4 + XL4 + X44, + X24, + X22 + X22) — (x,_4 + x4,_5 + x4_, + x54, + x2, + x,,2)] + 0.5 * [

(XL, + XL, + X55 ) + ( X4,_2+ X2_,,+ X4'4)]

Y2_2(1) = 0.5 * [(X,_5 + X55 + XL, ) - ( X4,,4+ X4_4,+ X2_2)] + 0.25 * [-[(X4,‘,, + XL, + X42 +

XL, + X24 + XL5) +(X4,_2+ X05, + XL2 + X,_,) + (X24, + X2_, + XL4, + X,_,) + (X44 + X4_5+ X52 +

X5_5)] + (X,,_, + XL4, + X44 + X52 + X25 + X,_4))]

Y2'2(2) = 0.5 * [(X,,,, + X24 + X42 ) - ( XL, + X25 + X55)] + 0.25 * [—(X,_, + XL2 + X45 +

X5,4+ X2’, + X2_4,) + (X44 + X4,_5 + XL4 + XLS) + (X22 + X24 + X32 + X24) + (X44 + X4,,+ X50 +

x5_,) + (X52 + XL, + X44 + X55 + x2_,,+ xL,)]
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3) Y4,4(0) =Y2,2(0), Y4_4(1) = - Y2,2(2)> Y4,4(2) = - Y2,2(1)

4) Ys,5(O) =Y.,1(0). Y5.5(1) = - Y.,1(2). Y5,5(2) = - Y.,.(1)

5) Y5'5(o) = 0,25 * [(X0_0 + X05, + X00 + X“) + (X25 + X55 + X55 + X55) + (X45 + X55+ X55

+ X55) + (X05 + X“ + X55 + X5_0+ X55 + X55) - (X05 + X55 + X50 + X55, + X55+ X55)] + 0.5 *

[(X0_5 + X55 + X55 ) — ( X55 + X5,0+ X5_4)]

Y0_,(1) = 0.5 * [(X,‘0 + X55 + X55 ) - ( X05 + X05+ X25)] + 0.25 * [-((X05 + X02 + X05 +

X55 + X25 + X50) + (X05 + X05 + X00 + X,5) + (X25 + X25 + X55 + X55) + (X50 + X45+ X5_0 +

X55) )+ (X05 + X,5 + X55 + X55 + X2_0+ X0_,)]

Y0,(2) = 0.5 * [(X05 + X25 + X5, ) - ( X,5+ X55+ X5_0)] + 0.25 * [-[(X00 + X,_, + X55 +

X55 + X2_4+ X35) +(X05+ X05 + X55 + X”) + (X250 + X“ + X50 + X351) + (X45 + X5’5+ X55 +

X55)] + (X05, + X,_0 + X55 + X55 + X25 + X5_5))]

6) Y5_2(O) = 0.25 * [(X0_0 + X05, + X,_0 + X,_,) + (X25 + X25 + X55 + X55) + (X55 + X05+ X55

+ X55) + (X05 + X55 + X“ + X5_0+ X55 + X55) - (X05 + X55 + X50 + X55, + X25 + X55)] + 0.5 *

[( X,5 + X5_0+ X55) - (X05 + X25 + X55 )]

Y55(1) = 0.5 * [(X05 + X25 + X5, ) - ( X55 + X55 + X5_0)] + 0.25 * [(X00 + X,_, + X55 + X55

+ X55 + X55) - [(X05+ X05 + X55 + X55) + (X55 + X25 + X50 + X55) + (X45 + X4_5+ X55 + X55)]

+ (X05 + X55 + X55 + X5_2+ X55 + X5_5))]

Y55(2) = 0.5 * [(X,50 + X55 + X55 ) - ( X05 + X45 + X,5)] + 0.25 * [(X05 + X02 + X45 + X5_5+

X“ + X50) + (X04 + X05 + X55 + X15) + (X25 + X55 + X55 + X55) + (X50 + X5',+ X50 + X55)

(X05 + X,5 + X05 + X55 + X,_0+ X5_,)]

7) Y5_,(0) = 0.5 * [X00 +X,_,+ X25 + X55 + X45 + X55] + 0.25 * [ (X05 + X05 + X15 + X,5 +

X5_5+ X55 + X5'0+ X55 + X55 + X55 + X55 + X555) - (X05 + X5_2+ X05 + X05 + X55+ X55 + X5_0+

X55 + X00 + X50 + X55 + X,,5)]

Y55(1) = 0.25 * [ (X00 + X,_0+ X05+ X05 + X25 + X55 + X254 + X05 + X05 + X55 + X50 +

X45) — (X05 + X,_, + X,5 + X,5+ X25 + X55 + X5_5+ X55 + X05 + X55 + X50 + X5_,)] — 0.5 * [X05

+X,5+ X20 + X55 + X45+ X55]

Y5_,(2) = 0.5 * [ X05 +X,5+ X25 + X55 + X050+ X55] + 0.25 * [ (X0_5 + X,_5 + X,_0 + X,_, +

X25 + X55, + X5_2+ X55 + X55 + X55 + X55 + X555) - (X05 + X,5+ X00 + X05, + X250+ X50 + X25 +

X55 + X55 + X55 + X55 + X45)]
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_ X + X +8) Yum) = 05 :1: [xovo +X”+ X22 + X” + X“ + X55] + 0.25 =1: [ (X03 + X13 + 1,4 1.5

X +X +X +X +X41+X51+X52+X53)+(Xo2+X12+Xo4 + X0.5+x2.4+X3-4+X2v°2,5 3,5 3.0 3,1 . . - v ' ‘ ‘
+ X11 + X4,o + XS_O + X42 + X4.3)]

Y (1): 025 *  +X15+X1o + X11+ X21+X31+ X3,2+X3.3 + X4,3 +Xs.3 + X5.4+4,2 ' » v - ' ' ’
X55) _ (XOA + xL4+ Xolo .1. XM + X10 + xm + X” + X23 + X“ + X51 + X42 + X43-.)] - 0.5 * [

X03 +X,_3+ X14 + X35 + X4,o+ X5,1]

Y (2) ‘ 0 5 * [X +X15+ X20 + X31 + X4 2+ X5 3] + 0-25 * [(Xo_o + X1.o+ X0.2+ X0.3+ X2-2+4,2 ‘ ' 0-4 - - ' ‘ '
X +X +X ‘PX +Xs4 +X4o+X41) ‘ (X01 + X11+ X12 + X13+X2.3+X3.3 + X3.4+X3,53.2 2.4 2,5 4,4 . - 1 v ' ' '
+ X” 4' X55 + X50 + X5,1)]

X +9) Y2,l(0) = 05 :1: [ X0,‘ +xl_o+ X23 + X3’: + X45 + X53] + 0.25 =1: [ (XOI4 + Xo_5+ X03 + 1.3

X +X +X +X21+X41+X51+X42+X43)'(Xo2+X12+X14+ X1.s+X2.4+X3.4+X3v°+2,5 3,5 2.0 . ~ v - ‘ ' ' ’
X3_, + X,,_o + X5,o + X52 + X5,3)]

Y (1) *- 0 25 * [ (X00 + X1o+ X12+ X13+ X22+ X32 + X3.4+ X15 + X4.4 + x5.4 + X5-0 +2.1 ' - - v ’ ‘ '
X5 1) '  + X1,1+ X02 + Xo,3 + X2,3 + X3,3 + X2,-1+ X2,5 + X45 + X55 + X4,o + X4_1)] ' O-5 * [XL4

+x0,5+ X” + X“, + X4_,+ X52]

Y (2) = 0 5 * [ X03 +X12+ X25 + X34 + X41+ X50] + 0-25 * [ + X1.5+ x0,0 + XOJ +2.1 ' - » ~ ~ ' '
X2.1+ X11 + X2.2+ X2.3 + X4,3 + X53 + X4.4 + X45) ' (Xo.4 + X1,4+ X1,o + X1.1+ X2.o+ X10 + x3.2+

X3_3 4' X41 4' X53 + X5,4 + X5,5)]

10) Y (0) = O 5 * [Xo1+X1o+ X23 + X32 + X45 + X54] + 0-25 * [' (Xo,4 + Xo.5+ Xo.3 + X1.3+1.2 - . 1 » - ' '
X2,s + X15 + X2,o+ X2,1 + X4,1 + X51 + X42 + X4,3) + (X02 + X1,2 + X1,4 + XL5 + X14 + X14 + X10

+ X3‘, + X41; 4‘ X5_o + Xs,2 + X5,3)]

Y21(1) = 0-25 * [' (X00 + X1o+ X12+ X1,3+ X2,2+ X32 + X3.4+ X3.5 + X4.4 + X14 + X5-0 +' - .5 *X51) + (X01 + X._. + X02 + X0’, + x2_3 + x1, + X“ + X25 + X” + X53 + X41) + x1,.)] 0

[X1_4 +Xo_5+ X21 + X3.o + X4,3+ X5.2]

Y (2) = 0 5 * [ X03 +X12+ X25 + X34 + X41+ X50] + 0-25 * [' (Xo.5 + X1.5+ Xo.o + X0.l +2.1 - 1 - v v - '
X2.1+ X11 + X22 + X23 + X4.3 + X5,3 + X-1,4 + X4,5) + (Xo.4 + X1,4 + X1,o + X1.1+ X2.0+ X10 + X32

+ X33 + X42 + X52 + X5.4 + x5.5)]
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11) Y (0) ‘O 5 * [X +X1o+ X23 + X32+ X45 + X5-11+ 0-25 * [' (Xo,4+ X0.5+ X03 + X1-3+5,4 _ ' 0-1 - 1 ’ ' '
X +X +X +X +X41+X51+X42 +X43)+(Xo2+X12+X14 + X1,5+Xz.4+X3.4+x3-02,5 3.5 2,0 2,1 , . v - ' ' '
4' X3.‘ + X49 + X5,o + X52 + X5,3)]

Y5.4(1) = 0.25 * [' (Xo_o + X1,o+ X1,2+ X1.3 + X22 + X3,2 + X3,4 + X35 + X4,4 + X54 + Xs.o +

x + X - 0.5 *X5.1) +  + X1,1 + X02 + X0’, + X2‘; + X13 + X“ + X“ + X45 + X5,s + 4,0 4.1)]

[X1,4 +Xo,5+ X21 + X3.o + X4,3+ X52] _ X + +Ys,4(2) = ()5 =1: [ X03 +xl_2+ X25 + X314 + X4,,+ X59] + 0.25 =1: [ (X05 + X1.5 + o,o Xo.1

X + X + X + X + X43 + X53 + X44 + X45) + (X04 + X14+ X10 + X1.I + X2.0+ X31’ + X332.1 3.1 2,2 2,3 , , - - - ' ‘
+ X13 + X41 + X5'2 + x5,4 + x5,5)]

12) Y (0) = 0 5 * [ X01 +X1o+ X23 + X32 + X45 + X54] + 0-25 * [ (Xo,4 + X0,S+ X03 + x1«3+4,5 ' - - - ' ' '
X +X +X +X21+X41+X51+X42+X43)'(Xo2+X12+X14+ X1.s+X2,4+X3.4+X3.o+2,5 3.5 2.0 . - — - ' ' ‘ '
X” 4' X4_o 4‘ Xs_o + X52 + X5,3)]

Y (1) = 0 25 * [ (X00 + X1o+ X12+ X13+ X22+ X32 + X34+ X35 + x4.4 + x5»4 + X5v° +5'4 . _ , , . v ' ’
Xi‘) _  .1. X” .1. X02 + Xo_3+ X” + X” + X14-1' X25 + X45 + X55 + X40 + X4,1)] ' 0.5 * [x1,4

+Xo_5+ XL; + X3,o + X4,3+ X5,2]

115.4(2) = 0.5 * 1 X05 +x._2+ X25 + X“ + x4_.+ X55] + 0.25 * 1 (X05 + X1.5+ X05 + Xm +

X2,1+ X3,1 + X2,2 + X23 + X-1.3 + X53 + X4_4 + X-1,5) ' (Xo,4 + X1,4+ X1,o + X1.1+ X2,o+ X3.o + X12 +

X13 + X43 + X51 + X5,4 + X5,5)]

13) Y (0) = 0 25 * [(Xoo + X01 + X10 + X11)+(X24 + X25 + X3.4 + X15) + (X472 + X4-3+ X532.5 - . « - 1 ’ ‘
+ X52) +  + X1,4 + X4,1 + X5,o+ X2,3 + X12) ' (Xo,4 + X1.5 + X4.0 + xii + X23 + X3-3)] + 0'5 *

[' ( X1,2+ X3,o+ X54) + (X03 + x2.1 + X4-5

Y (1) = O 5 * [‘(Xo5 + X23 + X41 )+ ( X14+ X32+ X5o)] + O-25 * [(Xo,o + X1,1+ X4,2 +2,5 ' . - - ' ' '
X53 + X“ + X35) _ [(X0'2+ X0‘: .1. XL2 + X”) + (X10 + X2.‘ + X10 + X11) + (XM + X4'5+ X5,4 ‘I

Xs.5)] + (X11. + X1.o + X45 + X55 + X25 + Xa.«>>1

Y (2) = 0 5 * [- (X1o+ X54 +Xs2 ) + ( Xo1+ X43+ X25)] + 0-25 * [(Xo,3 + X12 + X45 +2,5 ' . - - ' ' '
X5,4+ X21 + X3,o) + (Xo_4 + X05 + X1.4 + X15) + (X22 + X2,3 + X12 + X33) + (X4,o + X4,1+ Xs.o +

X2.) - (X05 + X” + X45 + X» + X2.o+ X101

14) Y (O) = 0 25 * “X00 + X01 + X10 + X11)+(X24 + X25 + X3.4 + X15) + (X43 + X4-3+1.4 ' - - v ' ' '
X53 + X51) .1.  + X” + X“ + X5_O+ X2‘, + X31) - (XOA + X1,s + X4,o + X5.1 + X22 + X3,3)] +

0.5 * [ -  + Xz,1 + X4_5 ) + ( X1,2+ X3.0+ X5.4)]
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Y,.,,(1) = 0.5 * [ - (Xm + X“ + X52 ) + ( X0_, + X4I,+ X2_5)] + 0.25 * [-((X0‘, + X” + X45

+ X“ + X2‘, + X10) + (XM + X05 + X” + X15) + (X21 + X13 + X12 + X13) + (X49 + X4_,+ X5_o

+ X“) )+  + XL3 + X“ + X55 + X2_o+ X3,1)]

Y,_,,(2) = 0.5 * [ - (X05 + X2’, + X49, )+ ( X“ + X,'2+ X5'o)] + 0.25 * [-[(Xo‘o + XL, + X41

+ xi, + xM+ X15) +(x0_2+ X03 + X13 + X”) + (X10 + X” + x,_0 + X“) + (XM + x4_5+ X14 +

X5_5)] + (X0_, + X”, + X45 + X53 + X25 + X3_,,))]

15) Y.,s(0) = Ys,1(0)» Y1.5(1) = -Ys_1(2). Y1,s(2) = 'Y5,1(1)

16) Y2,4(O) = Y4,2(O): Y2,4(l) = 'Y4,2(2)s Y2,4(2) = 'Y4,2(1)a

These equations were the basis for the new definition of the DFT relation and the pictorial

representation.
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APPENDIX B

The primitive symbol combination at the first row of cells in the pictorial

representation of Y3}, in group 3 for N=10, 14 & 18 are given below (for L2G3) as referred

in section 4.4. The frequency index (kl, k2) of the basic coefficient is also given.

N119

1) DPQO +MPL0_2 + MPAQ3 (8,2)

2) DPOVO +MPR0_2 + MPB0_, (9,1)

3) CPQ0 +MPR0_2 + MPAQ3 (4,1)

4) CPQ0 +MPL0_, + MPB0_, (3,2)

5) MP0_0 +DPA0_2 + MPD0_4 (2,2)

6) MP0_0 +DPB0‘2 + MPD0_,, (l,l)

7) MP0_0 +CPA(,,, + MPC0_4 (6,1)

8) MPo_0 +CPBo'2 + MPCo_4 (7,2)
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10)

11)

12)

13)

14)

15)

16)

pa \f

\D 00 \l O\ U! -I>- L») I\)

\/\/\/\z\./\./\/\/

MP,,_o +MPCo_, + MPR0_, + MPAQ4

MPQO +MPDo‘, + MPRM + MPBOA

MP0,, +MPD0', + MPLQ2 + MPA0_,,

MP0,, +MPC,,,, + MPLM + MPBQ4

MP0_0 +MPA,,,, + MPR0_, + MPC,,_,

MP0_0 +MPB0', + MPL0_, + MPCo_,

MP0,, +MPB0', + MPR0_, + MPDQ,

MP0,, +MPA,,', + M1>L,_, + MPD,,_,

N=14

DPo_0 +M1>L,_, + MPA,,_,,

DP,,_0 +MPR0_, + MPB,,_,,

CPO‘, +MPR,,,, + MPA,,_,

CP,,_,, +MPL,,,, + MPB,,,,,

MP0_0 +DPA0_, + MPD,,_,

MP0,, +DPB,,_, + MPDO,

MP0,, +CPA,,', + MPCo_,,

MP0_o +cPB,_, + MPCo_,

MP0,, +MPC0_, + MPR0_, + MPA0_6

MP,,_0 +MPD0_, + MPROY, + MPB0_,,

MP0_0 +MPD,,_, + MPL0_, + MPAQ6

MP0,, +MPc,,_, + MPL,,_, + MPB,,_,

MP0,, +MPA0_, + MPRQ, + MPC,,,.,

mo‘, +MPB,,_, + MPLQ, + M1>c,,,

(2,1)

(7,1)

(4,2)

(9,2)

(3,1)

(1,2)

(3,1)

(6,2)

12,2

13,1

6,1

5,2

2,2

8,1

9,2

2,1

4,2

11,2

12,1

3,2
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15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

v—A

%

'-" \O 00 \l O\ U‘: A DJ [9 O \/ xx ya ya 94 \./ \./\/

ya

p_n p—n \§

)— l\-3
\./

1)/113,‘, +MPB0_, + MPR0_, + MP0,’,

MP0,, +MPA0_, + MPLQ, + MPDOA

MP0,, +MPA,,_, + MPRQ, + MPCo_,

MP0,, +MPBo,, + MPRQ, + MPDo_,

MP0,, +MPA,,,, + MPL,_, + MPD0_,

MP0_o +MPB0_, + M1>L,_, + MPC,,_,

MP0,, +MPD°_, + MPRQ, + MPB,,_,

MP0,, +MPC,,_, + MPR0_, + MPAQ,

1v£P,_, +M1>c,,_, + MPL0__, + MPB,,_,

N19,’, +MPDo,, + MPL,,_, + MPAO,

N=3

DPOIO +MPLo,, + MPAQS

DPQO +MPRo',, + MPBo’,

CP,,_, +M1>R,,_, + MPAO,

CPO‘, +MPLo_4 + MPBM

MP0, +DPA,,_4 + MPD,,_,

MP0,, +DPBo_, + MPDQ,

MPM, +CPA0', + MPCQ,

MP0,, +CPB0,4 + MPC0,

MP0,, +MPC,,_, + MPR,,_, + MPAQ8

MP0_o +MPD0‘3 + MPRQ4 + MPBo_,,

MP0,, +MPD,,_, + MPLOA + MPAQ,

MP0,, +M1>c,,, + MPLOV, + MP3,,

5,1

10,2

10,1

3,1

6,2

13,2

11,1

4,1

1,2

8,2

16,2

17,1

8,1

7,2

2,2

1,1

10,1

11,2

2,1

11,1

4,2

13,2
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13) MP0_o +MPAo_3 + MPRQ4 + MPC0_7 12,1

14) MPQ0 +MPB0,, + MPLM + MPCM 15,2

15) MPo_0 +MPB0,, + MPRM + MPD0_7 3,1

16) MP0_o +MPA0', + MPLo_4 + MPDQ7 6,2

17) MPM, +MPAO_2 + MPRM + MPCOV6 14,1

18) MPo_0 +MPB0‘2 + MPRQ4 + MPDQ6 5,1

19) MP0_0 +MPA,,,, + MPLOA + MPDQ6 10,2

20) MP“, +MPB0,2 + MPLOA + MPCQ6 1,2

21) MPQ0 +MPDo_2 + MPRQ4 + MPB0, 13,1

22) MP0_0 +MPC0'2 + MPRQ4 + MPA0_7 4,1

23) MP0_0 +MPC0,2 + MPLQ4 + MPBo_7 17,2

24) MP0_0 +MPD0'2 + MPLOA + MPAO, 3,2

25) Mp“, +MPAo_, + MPR0_4 + M1>c,_, 16,1

26) 1v11>,_, +MPB0_, + MPL0_4 + MPC0_5 5,2

27) MP0, +MPA°_, + MPLo_4 + MPDo_, 14,2

23) MP0_0 +MPB0_l + MPRQ4 + MPDQ5 7,1

29) MP0_0 +MPD0_, + MPRQ4 + MP3,’, 15,1

30) MP0,, +MPC0', + MPRQ4 + MPAQ6 6,1

31) MPQ0 +MPCO_, + MPL0_,, + M13130‘, 3,2

32) MP“, +MPDo,, + MPL0_4 + M1>A,,_, 12,2

The tables B.1, B.2 & B.3 show the indices of the DFT coefficients that can be

derived from one another for N = 6, 10, 14 respectively and table B.4 shows the number

coefficients for which the complete set of Y$’)k2 need be computed for different N. These

tables are used section 4.4 for the derivation of the algorithm for layer 4.
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N:

N=l0k132 (kLk2Y

0,1 0,5
1,1 5,5
2,1 4,5
3,1 3,5
4,1 2,5
5,1 1,5
0,2 0,4
1,2 5,4
2,2 4,4
3,2 3,4
43 24
5,2 1,4
1,0 5,0
2,0 4,0
1,3 5,3
2,3 4,3
0,0

3,0

0,3

3,3

Table B.1

k1,k2 (k1,k2)' k1;k2' (k1;k2)'
Q1 Q9 Q3 Q7
13 93 33 73
21 33 63 43
33 73 93 L7
43 63 23 33
31 53 53 53
61 43 33 23
11 33 13 93
31 29 33 37
11 13 73 33
03 03 03 03
13 93 33 14
23 33 63 43
32 L3 96 L4
42 63 26 34
32 13 16 34
63 43 33 23
73 33 13 93
33 23 43 63
93 13 73 33
Lo 90 30 no
20 30 60 mo
1,5 9,5 3,5 7,5
2,5 8,5 6,5 4,5
0,0

5,0

0,5

5,5

Table B.2
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N=14

k1,k2 (k1,k2)' k1',k2' (k1',k2')' k1",k2' (k1",k2')'

0,1 0,13 0,11 0,3 0,5 0,9
1,1 13,13 11,11 3,3 5,5 9,9
2,1 12,13 8,11 6,3 10,5 4,9
3,1 11,13 5,11 9,3 15,5 13,9
4,1 10,13 2,11 12,3 6,5 8,9
5,1 9,13 13,11 1,3 11,5 3,9
6,1 8,13 10,11 4,3 2,5 12,9
7,1 7,13 7,11 7,3 7,5 7,9
8,1 6,13 4,11 10,3 12,5 2,9
9,1 5,13 1,11 13,3 3,5 11,9
10,1 4,13 12,11 2,3 8,5 6,9
11,1 3,13 9,11 5,3 13,5 1,9
12,1 2,13 6,11 8,3 4,5 10,9
13,1 1,13 3,11 11,3 9,5 5,9
0,2 0,12 0,8 0,6 0,10 0,4
1,2 13,12 11,8 3,6 5,10 9,4
2,2 12,12 8,8 6,6 10,10 4,4
3,2 11,12 5,8 9,6 15,10 13,4
4,2 10,12 2,8 12,6 6,10 8,4
5,2 9,12 13,8 1,6 11,10 3,4
6,2 8,12 10,8 4,6 2,10 12,4
7,2 7,12 7,8 7,6 7,10 7,4
8,2 6,12 4,8 10,6 12,10 2,4
9,2 5,12 1,8 13,6 3,10 11,4
10,2 4,12 12,8 2,6 8,10 6,4
11,2 3,12 9,8 5,6 13,10 1,4
12,2 2,12 6,8 8,6 4,10 10,4
13,2 1,12 3,8 11,6 9,10 5,4
1,0 13,0 11,0 3,0 5,0 9,0
2,0 12,0 8,0 6,0 10,0 4,0
1,7 13,7 11,7 3,7 5,7 9,7
2,7 12,7 8,7 6,7 10,7 4,7
0,0
7,0
0,7
7,7

Table B.3

N Total No of coefficients to be

N2 computed (2N+8)6 36 20
10 100 28
14 196 36
18 324 44

Table B.4
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A set of relations are derived, for the coefficients with index given in tables B.1, B.2,

B.3, in terms of YlE'1’_)k2 as permutation over p for different values of (k1, k2). The

permutation relations for N = 6, 10 & 14 are given below. These relations are used in section

4.4 for the derivation of algorithm for the layer 4.

:26

(0) _ (0) (1) _ _ (2) (2) _ _ (1)
Y(kl,k2)' -Ykl.k2’ Y(k1,k2)' ‘ Ykl.k2’ Y(kl,k2)' ‘ Ykl.k2

(0) _ (0) (1) _ _ (4) (2) _ _ (3)
1) Y(kl,k2)° _Ykl.k2’ Y(kl,k2)' — Yk1.k2 ’ Y(k1,k2)' ' Ykl.k2 ’

(3) _ _ (2) (4) _ _ (1)
Y(kl,k2)' — Ykl.k2 ’ Y(kl,k2)' _ Yk1.k2

(0) = (0) (1) = _ (2) (2) _ (4) (3) _ (1)
2) Yk1',k2' Yk1.k2 ’ Yk1',k2' YkI.k2 ’ Yk1',k2' _ Ykl.k2 ’ Yk1',k2' ' Ykl.k2 ’

(4) _ _ (3)
Yk1',k2' ' Ykl.k2

(0) = (0) (1) =_ (4) (2) __ (3)
3) Y(k1',k2‘)' Yk1‘,k2' ’ Y(k1',k2')' Yk1',k2' ’ Y(k1',k2‘)' ' Yk1',k2' ’

(3) =_ (2) (4) =_ (1)
Y(k1',k2')' Yk1',k2' ’ Y(k1',k2‘)' Yk1',k2'

= 4

(0) = (0) (1) = _ (6) (2) _ _ (5) (3) _ _ (4)
1) Y(kl,k2)' Yk1.k2’ Y(k1,k2)' Yk1.k2’ Y(kl,k2)' _ Yk1.k2’ Y(kl,k2)' _ Yk1.k2’

(4) = _ (3) (5) _ _ (2) (6) _ _ (1)
Y(kl.k2)' Yk1,k2’ Y(k1.k2)' _ Ykl.k2’ Y(kl,k2)' _ Ykl.k2

(0) _ (0) (1) __ (2) (2) _ (4)
2) Yk1',k2' _Yk1.k2 ’ Yk1',k2' ' Yk1.k2’ Yk1',k2' _ Yk1.k2’

(3) __ (6) (4) __ (1) (5) _ (3) (6) __ (5)
Ykl',k2' “ YkI.k2’Yk1'.k2' _ YkI.k2’ Yk1'.k2‘ 'Yk1.k2’ Yk1'.k2' _ Ykl.k2
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(0) _ (0) (1) __ (6) (2) = _ (5) (3). _ =_Y(4l) _Y(k1‘,k2‘)' _ Yk1',k2" Ym'.k2')' " YuI'.k2' ’ Y(k1',k2')' Yk1'.k2' ’ Y(kI.k2>' u.I<2 ’

(4) _ _ (3) (5) _ _ (2) (5) = _ (1)
Y(k1',k2‘)' _' Yk1'_k2' ’ Y(k1'.k2')' _ Yk1',k2' ’Y(k1',k2')' kl'.k2'

_ (1) _ (3) _ (3) _ _ (2)
Y|:?').k2' — Y3-)"2 ’ Yk1'_k2' _ Yk1,k2 ’ Y|:12').k2' " Y|E|6.)|<2 ’ Yk1',k2" _ Ykl,k2 ’

(4) _ _ <5) (5) _ (1) <6) _ _ (4)
Yk:'.k2' ' Y“-K2 ’ Yk1",k2' _ Ykl.k2 ’ Y|u',k2' _ YUJK1

(0) _ (0) (I) __ (6) (2) =_ (5)
Y(k1“,k2")' ' Yk1'.k2' ’ Yuu'.k2')' _ Yu'.k2' ’ Y(k1'.k2')’ Yk1'.k2"

(3) __ (4) (4) _ _ (3) (5) __ (2)
Y(u'.k2')' ' Yk1',u2' ’ Y(k1'_k2')‘ _ Yk1',k2' ’ Y(n',k2')‘ ' Yk1',k2' ’

(6) _ _ (1)
Y(k1',k2')' ' Yk1”,k2"
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