SOME PROBLEMS OF DISCRETE FUNCTION THEORY

THESIS SUBMITTED BY K. K. VELUKUTTY
in Partial fulfilment of the requirements for the
DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF COCHIN
COCHIN - 682022
INDIA
1982

CERTIFICATE

Certified that the work reported in the present thesis is based on the bona fide work done by Mr.K.K. Velukutty, Teacher Fellow under Faculty Improvement Programme, under my guidance in the Department of Mathematics and Statistics, University of Cochin, and has not been included in any other thesis submitted previously for the award of any degree.

Cochin-682022, 15 February 1982.l

Wazir Masan Abdi, Supervising Teacher.

DECLARATION

Certified that the work presented in this thesis is based on the original work done by me under the guidance of Dr. Wazir Hasan Abdi in the Department of Mathematics and Statistics, Cochin University, and has not been included in any other thesis submitted previously for the award of any degree.
$\left.\begin{array}{l}\text { Cochin -682022, } \\ 15 \text { February 1982. }\end{array}\right\}$

1,fueluknty
K.K. Velukutty.

ACKNOWLEDGEMENIS

I am indebted to my supervisor, Professor Wazir Hasan Abdi, Head of the Department of Piathematics and Statistics, University of Cochin, for the unsparing help he has given me and for the many valuable discussions we have had.

I wish to thank the staff and students of the Department of Mathematics and Statistics, University of Cochin, for their help.

I extend my sincere and heart-felt thanks to Revered T.S. Avinasilingam, Founder-Director, Sri Rama Krishna Mission Vidyalaya, Coimbatore, Swamiji Somananda, the Correspondent of the Arts College and Dr.K.Kulandai Velu, the Principal of the Arts College, for providing me a 'Teacher Fellowship' under Faculty Improvement Programme. Without their fatherly and brotherly affection and encouragement, this work would not have been possible.

The help and cooperation from Mr.K.P. Sasidharan and Mr .S. Babu Sundar during the preparation of this thesis is greatly acknowledged.

Finally, I express my gratitude to my wife Renjini and son Kannan for their inspiration during the course of this work.
K.K. Velukutty.

CONTENTS
Page
ACEITOWLEDGENENTS i
CHAPTER I INTRODUCTION 1
l. Principle of Discretisation 1
2. Historical Survey 4
3. Background of q-Monodiffricity 7
4. Summary of Results Established 16
CHAPTER II BASIC PROPERTIES OF q-MONODIFFRIC FUNCTIONS 20

1. Bianalytic Functions 20
2. Construction of a Bianalytic Function 24
3. q-lionodiffric Functions 30
4. q-Monodiffric Constants 37
5. Product of q-Monodiffric Functions 40
6. Construction of q-Monodiffric Functions 42
CHAPIER III DISCRETE q-INTEGRATION AND CAUCHY'S PROBLER 51
7. Integral of the First Type 52
8. q-Monodiffricity of the S-Integral 61
9. Intepral of the Second Type 68
10. Relation between the Inteprals 73
11. Standard Integrals 75
CHAPTER IV BASIC PROPERTIES OF DISGRETE POSITIVE POWERS 77
12. Discrete Powers 78
13. Infinite Series 84
14. Discrete Polynomial Theory 90
15. Bipolynomials 98
16. qm-Polynomials 101
Page
CHAPTER V SPECIAL POLYNOMIALS 109
17. q-Type Classification of Discrete Polynomials 109
18. A Simple Sequence of Discrete Polynomials 114
19. Polynomials from Generating Functions 118
20. Conclusion 122
BIBIIOGRAPHY 124

CHAPTER I

INTRODUCTION

This thesis is a study of discrete analytic
functions defined on the lattice: $\left\{\left(q^{m_{0}}, q^{n} y_{0}\right) ; m, n \in Z\right.$, $0<q<1 ;\left(x_{0}, y_{0}\right)$ fixed in $\left.\varnothing\right\}$ in the complex plane. In discrete function theory, the differential operator of the classical complex analysis is replaced by a suitable difference operator. Here a new difference operator to explain analyticity in the above lattice is introduced and an attempt is made to establish a discrete analytic function theory namely q-monodiffricity of functions.

1. Principle of Discretisation

Discretisation of scientific models is initiated much earlier in applied mathematics than the study of discrete analyticity. Ruark [56] and Heisenberg [43,44] are pioneers of this principle. Scientists felt dissatisfied by the over-emphasis of the continuum structure imposed on scientific models. The important difference between the continuum and discrete structures is that infinitesimal is not considered in the latter. In discrete theory, the limit of a quotient of infinitesimals of the continuum structure is replaced by a quotient of finite quantities.

Let us quote Ruark [56], "The differential character of the principal equations of physics implies that physical systems are governed by laws which operate with a precision beyond the limits of verification by experiment. This appears undesirable from an axiomatic standpoint".

The important aspects are the fundamental equations must be capable of describing every feature of the experiment and must not introduce extraneous or undesirable features.

Discrete hodon and chronon are introduced in Physics in recent times. This shows an interest from the side of scientists towards discretisation. Still, there is a task before the scientist to overcome. The differential equations are to be recasted in the form of difference equations.

In Margenau's [52] words, "A word might be said about the reason why physicists are often rcluctant to accept discreteness. If it were to be established as the ultimate property of time and space, one or the other of two drastic changes in the theoretical description of nature would have to take place. One is the recasting of all equations of motion in the form of difference equations instead of differential equations, and this is most unpalatable because of the mathematical difficulties attending the solution of
difference equations. The other possible modification would involve the elimination of time and space coordinates from scientific description".

Heisenberg is a powerful advocate of this. To simplify the problem, finite geometries of Veblen and others can be utilised or a continuous space time of the Minkowski form in which the events from a discrete lattice may be recommended.

The most general form of a lattice is a sequence of complex numbers, preferrably a dense subset which is also countable. Accepting the postulate of rational description in Physics, the lattice of rational points in the complex plane: $\{(p, q) ; p, q \varepsilon Q$, the set of rational numbers $\}$ will be the best choice to build a discrete function theory.

In the earliest works of discrete function theory, the arithmetically spaced sequence, in particular the Gaussian integers was considered. Later in the beginning of this decade, a function theory was developed on the set of geometrically spaced sequence. No work is done so far in the general set.

Now discrete function theory has grown to an established branch of Mathematics. The important problem is as E.T. Bell puts, "A major task of Mathematics today
is to harmonise the continuous and the discrete to include them in one comprehensive Mathematics and to eliminate obscurity from both". Again a major task of discrete analysts is the unification of known theories.

2. Historical Survey

The theory of discrete functions had its start from R.P. Isaacs's distinguishing paper [45], 'A finite difference function theory' in 1941. He introduced two types of difference operators to describe analyticity in the arithmetically spaced lattice namely monodiffricity of first and second kinds $[45,46]$. He utilised basic triad and tetrad to define these operators. He studied integration, residues, discrete powers and polynomials. Two of the major difficulties in discrete function theory are (I) the usual product of two discrete analytic functions in a domain is not discrete analytic in that domain and (2) the usual powers of z are not discrete analytic in any domain in the discrete space. Isaacs himself realised these aspects and introduced the analogues.

Later in 1944, Ferrand [33] introduced a discrete function theory basing on another difference operator known as diagonal quotient to describe discrete analyticity called preholomorphicity. She made use of the basic square to define this discrete analyticity.

The development in discrete function theory, was slow for more than a decade from Ferrand's work, though Ficracini and Romanov contributed in this decade to discrete function theory. The awakening was made by R.J. Duffin [25] in 1956. He [25-31] modified Ferrand's theory and extended the results to the realm of Applied lathematics by discussing operational calculus and Hilbert transform. Pioneers of his school of discrete function theory are Duris [29,30], Rohrer [32], Peterson [31] and Kurowski [47-50]. Duffin [26] introduced rhombic lattice to develop potential theory. He also studied Yukawa potential theory in the discrete space of Gaussian integers [27]. Duffin and Duris [30] studied discrete product and discrete partial differential equations.

The Russian school of discrete function theory of which the leading names arc Abdullaev [4-7], Babadzanov [5-7], Chumakov [21], Silic [57] and Fuksman [34], has improved the theory by introducing different lattice, construction of a discrete analytic function and so on. In particular, Chumakov [21] developed semi--discrete function theory and Silic [57] investigated physical mocels in discrete function theory.

Hayabara [41,42], Deeter and Lord [23,54] developed operational calculus for discrete functions.

The school led by Deeter, whose distinguishing figures are Berzsenyi [12-14], Perry and Mastin [24] has studied discrete functions in Iscacs'sdirection. Perry studied generalised discrete functions.

Abdullaev, Babadzanov and Eayabare developed discrete theory of higher dimensions. Kurowski [47-50] introduced a function theory in the semi-discrete lattice. Transform techniques were analysed by many like Duffin [25,28] and Bednar [11]. Mastin [24], Ferrand [33] and Isaacs [45,46] constructed theories of conformal representation. Tu [60-62] discussed discrete derivative equations in three papers. The discrete theory was extended by Hundhausen to harmonic analysis. Deeter [22] and Berzsenyi [14] cave comprehensive bibliography of discrete function theory.

All the works so far explained are mainly in the set of Gaussian integers. Harman [38-40] developed a discrete function theory in the geometric lattice in 1972, by utilising the q-difference theory developed by Jackson, Hahn and Abdi. Differentiation, irtegration, convolution product, polynomial theory and conformal mappine were discussed in his thesis. He modified the continuation operators of Duffin, Kurowski and Abdullaev using q-difference theory and incorporated the convolution product with
it. As against the classical case, the fundamental theorem of algebra does not hold good in discrete function theory. Is iacs, Terracini and Harman investigated the roots of discrete polynomials.

Later Zeilberger [63-69] introduced a few results such as discrete powers and entire functions in the set of Gaussian integers. Recently Subhash Kak [59] extended Duffin's theory of Hilbert transform to the realm of electronics. Mugler [54] also studied exponential function.

3. Background of q-Monodiffricity

In classical analysis, analyticity of a function in a domain means its differentiability in that domain. In discrete function theory the same concept is taken over; but the continuous derivative is replaced by its counterpart, the discrete derivative. Usually the discrete analyticity is expressed in terms of a difference operator. A triad, a tetrad or a basic square of lattice points is considered to evolve such an operator. The important concepts of discrete analyticity are Monodiffricity of first and second kinds, Preholomorphicity, Rhombic analyticity, semi-discrete analyticity of first and second kinds, and q- and p-analyticities. The first two are defined in the arithmetic lattice: $\{(m h, n h) ; m, n \in Z, h \geqslant 0$ fixed $\}$ and the third in the lattice
of Gaussian integers. It is clear from the name that rhombic analyticity is defined in the rhombic lattice and semi-discrete analyticity in the semi-discrete lattice: $\{(x, y), x \varepsilon R, y=n h, n \varepsilon Z, h>0$ fixed $\}$. q - and $p-$ analyticities are defined in the geometric lattice: $H=\left\{\left(q^{m^{x}} x_{0}, q^{n} y_{0}\right) ; m, n \varepsilon z, 0<q<1\right.$ fixed $x_{0}>0, y_{0}>0$ fixed .

The corresponding difference operators are respectively,

$$
\begin{align*}
& M_{1} f(z) \equiv(l-i) f(z)+i f(z+h)-f(z+i h), \tag{1.2}\\
& M_{2} f(z) \equiv f(z+i h)-f(z-i h)-i[f(z+h)-f(z-h)], \tag{1.3}\\
& M_{3} f(z) \equiv f(z)+i f(z+1)+i^{2} f(z+l+i)+i^{3} f(z+i), \tag{1.4}
\end{align*}
$$

$N_{1} f(z) \equiv\left(z_{2}-z_{4}\right)\left[f\left(z_{3}\right)-f\left(z_{1}\right)\right]-\left(z_{3}-z_{1}\right)\left[f\left(z_{2}\right)-f\left(z_{4}\right)\right]$ where z_{1}, z_{2}, z_{3} and z_{4} are the vertices of a rhombus in the lattice,
$S_{1} f(z) \equiv f(z)-f(z+i h)+i n \frac{\hat{\partial}_{f}(z)}{\partial y}$ where $\frac{\partial_{f(z)}}{\partial^{y}}$ is the usual continuous partial derivative of $f(z)$ w.r.t. y,
$S_{2} f(z) \equiv f(z+i h)-f(z-i h)-2 i h \frac{\partial_{f}(z)}{\partial y}$,
$R_{q} f(z) \equiv \bar{z} f(z)-x f(x, q y)+i y f(q x, y)$
and
$R_{p} f(z) \equiv \bar{z} f(z)-x f(x, p y)+i y f(p x, y)$

Equality of any of the expressions to zero at some lattice point sives the concerned analyticity at that point.

Also these operators are derived by assuming the discrete analogue of Cauchy-Riemann relations and Cauchy's integral formula.

Curve and domain in the discrete sense are defined in terms of directly or diagonally adjacent points to suit the mode of discretisation. If $\left\{\left(x_{m}, y_{n}\right) ; m, n \varepsilon z\right\}$ is the lattice structure, any point in the set $\left\{\left(x_{s+1}, y_{t}\right)\right.$, $\left.\left(x_{s}, y_{t+1}\right),\left(x_{s-1}, y_{t}\right),\left(x_{s}, y_{t-1}\right)\right\}$ is a directly adjacent point of $\left(x_{s}, y_{t}\right)$ and any point in the set $\left\{\left(x_{s+1}, y_{t+1}\right),\left(x_{s-1}, y_{t+1}\right)\right.$ $\left.\left(x_{s-1}, y_{t-1}\right),\left(x_{s+1}, y_{t-1}\right)\right\}$ is a diagonally adjacent point of $\left(x_{s}, y_{t}\right)$. A sequence of points is a discrete curve if each set of consecutive points in the sequence are directly (diagonally) adjacent points. Accordingly the path of integration is defined.

There are two standard ways of defining discrete integration. If z_{j} and z_{j+1} are directly adjacent points,
monodiffric type:

and preholomorphic type:
$\int_{z_{j}}^{z_{j+1}} f(z) d z=\frac{f\left(z_{j}\right)+f\left(z_{j+1}\right)}{2}\left(z_{j+1}-z_{j}\right)$.

The first definition is used in semi-discrete theory and q-analytic theory and the second in rhombic analytic theory.

Using the definition of ciiscrete analyticity by the difference operator, a discrete analytic function in a certain domain can be continued discrete analytically to the entire discrete plane.

In preholomorphic theory, the continuation of such a function can be done from the coordinate axes and in monodiffric theory of first kind, the continuation is possible to the upper half plane from the x-axis. The same method is utilised in q-analytic theory also. But using the
q-difference theory, we get that a q-analytic function can be continued from any of the axes to the entire discrete geometric space. Similar continuation is seen in p-analytic theory.

To overcome the difficulty that the product of two discrete analytic functions in any domain is not discrete analytic in general, different discrete products are attempted. In monodiffric and preholomorphic theories the discrete product arises from double dot line integrals which read
$\int_{z}^{z+k} f(z): g(z) d z=\left\{\begin{array}{l}f(z+k)[g(z+h)-g(z)] \text { if } k=1 \text { or i } \\ -\int_{z+k}^{z} f(z): g(z) d z \text { if } k=-1 \text { or -i }\end{array}\right.$
in monodiffric theory specialising to the Gaussian integers due to Berzsenyi
and
$\int_{z}^{z+k} f(z): g(z) d z=[f(z+k)+f(z)][g(z+k)+g(z)] k$, where $k=1,-1$, i or $-i$ in preholomorphic theory due to Duffin.

If * is the discrete product,
$f * g(z)=\int_{C} f(z-\xi): g(\xi) d \xi$ where C is an admissible curve in the concerned domain in monodiffric theory and $f_{*} g(z)=\int_{0}^{z} f(z-\xi): g(\xi) d \xi$ in preholomorphic theory. (1.16) Kurowski defined discrete product in terms of the continuation operator:
$f_{*} g(z)=\sum_{k=0}^{\infty} i^{k}\left(\frac{y}{k}\right) \Delta_{1}^{k}[f(x, 0) g(x-1,0)]$

$$
\begin{align*}
& =\sum_{k=0}^{\infty} i^{k}\left(\frac{y}{y}\right) g(z-l+k-i k) \Delta{ }_{I}^{k} f(x, 0) \tag{1.17}\\
& \text { where } \Delta_{I} f(z)=f(z+l)-f(z) .
\end{align*}
$$

In the same way, discrete product in q-analytic theory is defined as
$f_{*} g(z)=\zeta_{y}[f(x, 0) g(x, 0)]$
$=\sum_{j=0}^{\infty} \frac{(I-q) j}{(I-q)_{j}}(i y)^{j} \partial_{x}^{j}[f(x, 0) g(x, 0)]$ where
$(1-q)_{j}=(1-q)\left(1-q^{2}\right) \ldots(1-q j)$ and $79 f(x, 0)=\frac{f(x, 0)-f\left(q x^{2}, 0\right)}{(1-q) x}$

Similar product ij defined in p-analytic theory.

The second task is eliminated by introducing discrete powers to replace the usual powers. The following are the discrete powers:
$z^{(n)}=\sum_{j=0}^{n}\binom{n}{j}(x)_{j} i^{n-j}(y)_{n-j}$ where $(x)_{j}=x(x-1) \ldots(x-j+1)$, in monodiffric theory due to Isaacs.
$z^{(n+1)}=(n+1) \int_{0}^{z}(n) d z ; z^{(0)}=1$ in preholomorphic theory due to Duffin.

Similar discrete powers as that of Duffin are
defined in monodiffric theory by Berzsenyi, rhombic analytic theory by Duffin and semi-discrete theory by Kurowski.
$z_{z}(n)=\sum_{j=0}^{n} \frac{(I-q)^{j}}{(I-q)_{j}}(i y)^{j} \mathcal{V}_{x}^{j} f(x, 0)$ in q-analytic theory
due to Harman.

Similar discrete powers are introduced in p-analytic theory. We note that Harman derived the discrete powers using the continuation operator.

We cannot avoid some mention of q-difference theory because a discrete function theory developed on the geometric lattice will be firmly dependent on the q-difference theory.

Fermat, Euler, Gauss, Laplace, Heine and Babbage were the early pioneers of q-difference theory.

In this century, an extensive study of q-difference theory was made by Jackson, Hahn [3i] and Abdi [1-3]. Al-Salam [8,9] and Andrews [10] improved the q-basic theory in recent times. Milne-Thomson's [53] 'Calculus of finite differences' is a prerequisite to study q-basic theory as well as discrete function theory.

Jackson introduced q-analogues of derivative and integration as

$$
\begin{align*}
& \theta_{f(x)}=\frac{f(x)-f(q x)}{(1-q) x},|q| \neq 1 \text { and } \tag{1.22}\\
& \theta^{-1} f(x)=\frac{1}{1-q} \zeta f(x) d(q, x) .
\end{align*}
$$

Accordingly,

$$
\begin{aligned}
& S_{0}^{x} f(x) d(q, x)=(1-q) x \sum_{j=0}^{\infty} q^{j} f\left(q^{j} x\right), \\
& S_{x}^{\infty} f(x) d(q, x)=(1-q) x \sum_{j=1}^{\infty} q^{-j} f\left(q^{-j} x\right),
\end{aligned}
$$

$$
\text { and } \int_{0}^{\infty} f(x) d(q, x)=(1-q) x \sum_{j=-\infty}^{\infty} q^{j} f\left(q^{j} x\right) \text { define integration }
$$

We also note the following notations in q-basic
theory.

$$
\begin{align*}
& (1+x)_{n}=(1+x)\left(1+q_{1} x\right) \ldots\left(1+q^{n-1} x\right) ;(1+x)_{0}=1 \\
& \left(\begin{array}{l}
n \\
r^{\prime} q
\end{array}=\frac{(1-q)_{n}}{(1-q)_{r}(1-q)_{n-r}}\right. \\
& {[n]!=\frac{1-q^{n}}{1-q} \cdot \frac{1-q}{1-q} \cdots \cdot \frac{1-q^{2}}{1-q} \cdot \frac{1-q}{1-q}=\frac{(1-q)_{n}}{(1-q)^{n}} .} \tag{1.25}
\end{align*}
$$

The solution of $f(x)=f(q x)$ is called q-periodic function. This function plays the role of a constant in the q-difference theory. Pincherle found a solution as

$$
\begin{equation*}
\phi(x)=x^{\alpha-\beta} \prod_{n=0}^{\infty} \frac{\left(1-q^{\alpha+n} x\right)\left(1-q^{1-\alpha-n_{x}-1}\right)}{\left(1-q^{\beta+n_{x}}\right)\left(1-q^{1-\beta-n_{x}-1}\right)} \tag{1.26}
\end{equation*}
$$

The following are also q-periodic functions.
$\operatorname{Sin} \frac{2 \pi \log x}{\log q}$ due to Harman and $\tan \left(\pi \log _{q} x\right)$.

The first has infinite number of zeroes and has no poles. But the second has infinite number of zeroes as well as poles as the Pincherle's function.

With such a basic foundation, a new version of
discrete function theory is envisaged in this thesis.

Finally, quoting from Berzsenyi [14] "At present research in the theory of analytici'ty in the discrete is steadily gaining recognition. In view of the fact that computational complexities can be overcome with the aid of computers, this area of Mathematics provides a workable model for the numerical analysis of analytic functions. In fact, one may prophesize the advent of the day when the direct application of discrete analyticity will replace the discretising of many of the continuous models in classiccl analysis'.

4. Summary of Results Established

This research starts from the investigation of functions which are both q- and p-analytic in certain domain in the discrete geometric space. The solution is named bianalytic function. The continuation of such a function from two adjacent rays is examined. Then the problem is generalised as investigation of functions having p - and q-residues equal. It is found that such functions satisfy the notion of monodiffricity of second kind in the geometric lattice. Such functions are now named q-monodiffric functions.

Monodiffricity of second kind was totally neqlected so far. Further, writers like Duffin [25] and Harman [38] mistook the idea that monodiffricity of second kind and
preholomorphicity are equivalent. This assertion is disproved along the pages of this thesis.

In the second chapter, q-monodiffric differentiation is discussed in detail, q-monodiffric constant which is the general solution of the derivate equation: first derivate is equated to zero, is studied.

In discrete function theory, the concent of construction of an entire discrete analytic function from its discrete analyticity in a known domain, using the difference operator defined to describe the discrete analyticity is important. We have explained the construction of bianalytic function and q-monodiffric function. Bifunctions and q-monodiffric constants are well studied. They stand to replace the concepts of functions and complex numbers respectively of the classical complex function theory. The condition that the usual product of two q-monodiffric functions in a given domain is also q-monodiffric function there is also analysed.

Among the three approaches to analytic function theory, the second is dealt in the third chapter whereas the third in the fourth chapter. Here two types of integrals are defined. Either of them will not stand as a counterpart to the classical integral. But both of them
taken together represent the theory of integration in q-monodiffric theory and plays the same role of classical integration. Fundamental concepts of integration like Cauchy's integral formula and theorem are developed in the q-monodiffric sense. Neromorphic function along with pole and polar residue is studied. The relation between these integrals is also obtained.

The second fundamental difficulty arose in the formulation of the discrete function theory is solved by introducing discrete powers in the q-monodiffric sense. Again this leads to the third approach of a discrete analytic function namely representation of it in the form of an infinite series in terms of discrete powers. Unlike the previous theories, results like $n^{\text {th }}$ discrete power of z has exactly n zeroes hold in this theary. Some estimates of discrete powers are evolved. Using these estimates convergence of infinite series is discussed. Also a comparison test to decide the convergence of infinite series is found.

The late sections of the rourth chapter deals with polynomials and zeroes of them. Ifainly three types of polynomials: polynomials defined over complex numbers, biconstonts and q-monodiffric constants are studied.

Quadratic polynomials of each type are exercised in detail with roots of unity in the q-monodiffric sense: in other words, the zeroes of the equation $z^{(n)}=1$ are obtained. Lastly, special polynomicls are discussed. A theory to classify the discrete polynomials is obtained and some special polynomials are classified in this line. Another way of describing a set of discrete polynomials is from the generating function. Such a study is also completed in the fifth chapter. Simple and complete sequence of such a type is described. Properties are also discussed.

BASIC PROPERTIES OF q-RONODIFFRIC FUNCIIONS

In this chapter, we study the properties of a
class of functions which are both o- and p-analytic called bianalytic functions. Continuation of such a function from two adjacent straight rays to entire H is given. This leads to the study of more general class of functions having the q- and p-residues equal namely q-monodiffric functions. The condition of q-monodiffricity of the usual product of two q-monodiffric functions in certain domains is found. The solution of the derivate equation: the first derivate of a q-monodiffric function in a domain equated to zero, called q-monodiffric constant is investigated.

1. Bianalytic Functions

A theory of discrete analytic functions was

developed by Harman on the geometric lattice
$H=\left\{\left(q^{m} x_{0}, q^{n} y_{0}\right) ; m, n \varepsilon Z, 0<q<1\right.$, fixed, $\left(x_{0}, y_{0}\right)$ fixed $\mathrm{x}_{\mathrm{o}}>0, \mathrm{y}_{\mathrm{o}}>0$. In what follows $\mathrm{z} \varepsilon \mathrm{H}, \mathrm{z}=(\mathrm{x}, \mathrm{y})=$ $\left(q^{m} x_{o}, q^{n} y_{0}\right), \bar{z}=(x,-y)$ and $p=q^{-1}$. Two operators R_{q} and R_{p} are defined with,
$R_{q} f(z)=\bar{z} f(x, y)-x f(x, q y)+i y f(q x, y)$
and
$R_{p} f(z)=\bar{z} f(x, y)-x f(x, p y)+i y f(p x, y)$
where $f: H \rightarrow \not \subset$.
$R_{q} f(z)$ and $R_{p} f(z)$ are respectively called the
 (p-residue) of f is zero at z, f is said to be q-analytic (p-analytic) at z.

In establishing his theory Harman used two discrete derivatives of f at z with respect to q as
$\theta_{x} f(z)=\frac{f(x, y)-f(q x, y)}{(1-q) x}$ and $y^{f(z)=} \frac{f(x, y)-f(x, q y)}{(1-q) i y}$.

But when $?_{\mathrm{x}} \mathrm{f}(\mathrm{z})=7 \mathrm{y}(\mathrm{z})$, we write $2 \mathrm{f}(\mathrm{z})$ for both and it is easy to see that f becomes q-analytic at z. Similarly, with respect to p ,

$$
\begin{equation*}
y_{x} f(z)=\frac{f(x, y)-f(p x, y)}{(1-p) x} \text { and } \Theta_{y} f(z)=\frac{f(x, y)-f(x, p y)}{(1-p) i y} \tag{2.4}
\end{equation*}
$$

Accordingly, when $\bigcup_{x} f(z)=\bigcup_{y} f(z)$, we write $\bigcup_{f(z)}$ for both and then f is p-analytic at z.

Definitions. In order to develop the concept of bianalytic functions, we will need the following definitions.

The set of points $\lambda(z)=\left\{\left(q^{s} x, q^{s} y\right)\right.$, s $\left.\varepsilon z\right\}$ is
called the straight ray through z and the set $\lambda^{*}(z)=\left\{\left(q^{-s} x, q^{s} y\right)\right.$, s $\left.\varepsilon \quad z\right\}$ the distorted ray.

It turns out that $\hat{\lambda}$ is a set of collinear lattice points in the Euclidean sense and λ^{*} a set of lattice points lying on a branch of a rectangular hyperbola.

The basic set of $z \varepsilon H$ is defined as
$T(z)=\left\{(q x, y),(x, q y),\left(q^{-1} x, y\right),\left(x, q^{-1} y\right),(x, y)\right\} . A$ subset S of H is called a region if
$S=\int_{i=1}^{N} T\left(z_{i}\right), i=1,2, \ldots, N . \quad N$ can be also infinite. If $T(z) C S, z$ is an interior point of S. The set of interior points in S is denoted by D and is called a domain. Thus OD, the compliment of D in S becomes the boundary of D. Accordingly $S=D \| \partial_{D}$ and $D D_{D}=\varnothing$. Now if D is treated as a region, it has an interior D^{l} and $D-D^{l}=\partial D I$. Similarly for $n \varepsilon Z^{+}, D^{n}$ is defined as the interior of D^{n-1}. We get $\dot{\sigma} D^{n}=D^{n-1}-D^{n}$ and $D^{n}=S-\bigcup_{i=0}^{n} D^{i}$ where D^{0} means D 。

We will call a function $f: H \rightarrow \varnothing$ bianalytic in D if it is both q - and p-analytic there. In fact, it satisfies the equation $R_{q} f(z)=R_{p} f(z)=0$ everywhere in D.

It is seen that $f(z)=\alpha z+\beta ; \alpha, \beta \varepsilon \not \subset$ is a
trivial example of a bianalytic function in entire H. In the sequel, the set of bianalytic functions in D is denoted by $B(D)$.

Now let f be biaralytic at z, then by definition $20 \mathrm{x}(\mathrm{z})=29 \mathrm{y}(z)$.

So $29 f(z)=\frac{f(x, y)-f(q x, y)}{(1-q) x}$

$$
\begin{aligned}
& =\frac{f(q x, y)-f(x, y)}{\left(1-q^{-1}\right) q x} \\
& =\theta_{x} f(q x, y) \\
& =\theta_{f(q x, y)} .
\end{aligned}
$$

Similarly $\quad \vartheta_{y} f(z)=\theta_{f(x, q y)}$.
combining, $\Theta_{f}(x, q y)=\theta_{f}(q x, y)$.
Thus we have:
Lemma. Let $f \varepsilon B(D)$ and $(x, y) \varepsilon D$. Then, $\vartheta_{f(x, q y)}=\nu_{f(q x, y)}$ and $\theta_{f(x, q y)}=\theta_{f(q x, y)}$.

Further as a consequence of the lemma,
$\left.\nu_{f\left(q^{-1}\right.}, q y\right)=\nu_{f(x, y)}=\nu_{f\left(q x, q^{-1} y\right)}$.
By iteration, $\vartheta_{f}\left(q^{-r} x, q^{r} y\right)=\nu \rho_{f}(x, y)=V_{f}\left(q^{r} x, q^{-r} y\right)$
Similarly, $\Theta_{f}\left(q^{-r} x, q^{r} y\right)=\vartheta_{f}(x, y)=\Theta_{f}\left(q^{r} x, q^{-r} y\right)$.

Thus
if $f \varepsilon B(D)$, its derivatives along the distorted ray are invariant.

Conversely suppose f is q-analytic in D, and has q-derivative $k(z)$ everywhere on $\hat{\Lambda}^{*}(z) \prod D$. Then by a simple calculation, $\Theta_{f\left(q^{-(S+l)}\right.}^{\left.x, q^{S} y\right)}=k(z)$ everywhere on $\lambda^{*}\left(z^{\prime}\right) \Pi$ D where $z^{\prime}=\left(q^{-1} x, y\right)$.

Similarly, if the p-derivative of f is $k_{1}(z)$ invariant everywhere on $\lambda^{*}(z) \bigcap D$, then $2^{*}\left(q^{-(s-1)} x, q^{s} y\right)=k_{l}(z)$ for every lattice point on $\lambda^{*}\left(z^{\prime \prime}\right)$ D where $z^{\prime \prime}=(q x, y)$. In other words,

If f is q-analytic (p-analytic) in D and $\mathcal{V}_{f}\left(\Theta_{f}\right)$ is invariant on $\lambda^{*}(z) \cap D$ for $z \varepsilon D$, then f is bianalytic in the interior of D.

Summing up we have:
Theorem. A necessary and sufficient condition for f to be bianalytic in the interior of a domain D is invariance of its derivatives on each distorted ray.

2. Construction of a Bianalytic Function

Given a function defined on two adjacent straight rays $\left\{\left(q^{s} x_{1}, q^{s} y_{I}\right) ; s \varepsilon z\right\}$ and $\left\{\left(q^{s+1} x_{1}, q^{s} y_{I}\right) ; s \varepsilon z\right\}$. We want to construct f which is bianalytic on entire H. Suppose $f\left(q^{s} x_{I}, q^{s} y_{l}\right)=a_{S}, f\left(q^{s+1} X_{I}, q^{s} y_{l}\right)=b_{s}$. Then $k_{S}=\frac{a_{S}-b_{S}}{q^{S}(1-q) x_{I}}$ is the q-derivative of f at $\left(q^{s} x_{1}, q^{S} y_{1}\right)$.

Let r be a positive integer, we denote
$f\left(q^{s-r_{r_{1}}}, q^{s+r_{1}}\right), f\left(q^{s+r_{x_{1}}}, q^{s-r_{y_{1}}}\right), f\left(q^{\left.s-r+l_{x_{1}}, q_{1}^{s+r} y_{1}\right)}\right.$ and $f\left(q^{s+r_{r i}}, q^{s-r+1} y_{I}\right)$ by $\alpha_{r}, \alpha_{-r}, \beta_{r}$ and β_{-r} respectively.

Then due to invariance of the derivative on the distorted ray passing through ($\left.q^{s} x_{1}, q^{s} y_{1}\right)$,
$\frac{\alpha_{r-1}-\beta_{r}}{i(1-q) q^{s+r-1} y_{l}}=k_{s}=\frac{\alpha_{r}-\beta_{r}}{(1-q)_{q}^{s-r_{Y_{1}}}}$
i.e., $\alpha_{r}=\beta_{r}+k_{S}(l-q) q^{s-r} X_{I}$
and

$$
\alpha_{r-1}=\beta_{r}+k_{s}(l-q) q^{s+r-l_{i y_{1}}}
$$

Then $\alpha_{r}=\alpha_{r-1}+k_{s}(I-q)\left[q^{\left.s-r_{x_{1}}-i q^{s+r-1} y_{1}\right]}\right.$

$$
\begin{aligned}
= & a_{S}+k_{S}(1-q)\left[q^{s}\left(q^{-r}+q^{-(r-1)}+\ldots+q^{-1}\right) x_{1}\right. \\
& \left.-i q^{s}\left(q^{r-1}+q^{r-2}+\ldots+q^{1}+q^{0}\right) y_{1}\right] \\
= & a_{S}+k_{S}(l-q) q^{S}\left[q^{-1} \frac{l-q^{-r}}{1-q^{-1}} x_{l}-i \frac{1-q^{r}}{1-q} y_{l}\right]
\end{aligned}
$$

$$
\begin{equation*}
=a_{s}+k_{s}\left(l-q^{r}\right) q^{s}\left(q^{-r} x_{1}-i y_{l}\right) \tag{2.10}
\end{equation*}
$$

Now $\frac{\alpha_{-r^{-\beta}}}{i(1-q) q^{s-r} y_{1}}=k_{s}=\frac{\alpha-(r-1)^{-\beta} r}{(1-q) q^{s+r-1} x_{1}}$.

Using the same argument, we have

$$
\begin{align*}
& \alpha_{-r}=a_{S}+k_{S}\left(l-q^{r}\right) q^{s}\left(-x_{l}+i q^{-r_{y_{l}}}\right) \\
& f\left(q^{\left.s-r+I_{x_{l}}, q^{s+r_{y_{1}}}\right) \text { and } f\left(q_{1}^{s+r-1} x_{1}, q^{s-r_{y_{l}}}\right) \text { can be }}\right.
\end{align*}
$$

continued from ($q^{s-1} x_{1}, q^{s} y_{1}$) at which the values of the function and the q-derivative are found from the followiry.
$\frac{f\left(q^{s-1} x_{1}, q^{s-1} y_{1}\right)-f\left(q^{s-1} x_{1}, q^{s} y_{1}\right)}{\left(q^{s-1}-q^{s}\right) i y_{1}}=k_{S-1}$
and
$f\left(q^{s-1} x_{1}, q^{s} y_{1}\right)=\frac{f\left(q^{s-1} x_{1}, q^{s} y_{1}\right)-f\left(q^{s} x_{1}, q^{s} y_{1}\right)}{\left(q^{s-1}-q^{s}\right) x_{1}}$
as $f\left(q^{s-l} x_{1}, q^{s} y_{1}\right)=a_{s-1}-k_{s-1} q^{s-1}(1-q) i y_{1}$
and $\sum f\left(q^{s-1} x_{1}, q^{s} y_{1}\right)=\frac{a_{s-1}-k_{s-1}(1-q) i y_{1}-a_{s}}{q^{s-1}(1-q) x_{1}}$.

$$
\text { If } \left.f\left(q^{s-1} x_{1}, q^{s} y_{1}\right) \text { and }\right) \rho f\left(q^{s-1} x_{1}, q^{s} y_{1}\right) \text { are denoted }
$$

respectively by c_{s} and d_{s}, from (2.10) and (2.11) we have $f\left(q^{s-l-r_{x_{1}},} q^{s+r} y_{1}\right)=c_{s}+d_{s}\left(1-q^{r}\right) q^{s}\left(q_{1}^{-(r+1)} x_{1}-i y_{1}\right)$
and
$f\left(q^{s+r-1} x_{1}, q^{s-r} y_{1}\right)=c_{s}+d_{s}\left(l-q^{r}\right) q^{s-1}\left(-x_{1}+i q^{-r} y_{1}\right)$.

$$
(2.10),(2.11),(2.12) \text { and (2.13) together rive }
$$

the continuation of f to entire H.

From (2.10),
$f\left(q^{s-1}{x_{1}}, q^{s+l} y_{1}\right)=k_{s} q^{s}(1-q)\left(q^{-1}{x_{1}}-i y_{1}\right)+a_{s}$
and
$f\left(q^{s-2} x_{1}, q^{s} y_{1}\right)=k_{s-1} q^{s-1}(1-q)\left(q^{-1} x_{1}-i y_{1}\right)+a_{s-1}$.

If $f\left(q^{s-1} X_{1}, q^{s} y_{1}\right)$ is denoted by f, from difference
quotients,
$\frac{f-a_{S}}{\left(q^{S-1}-q^{S}\right) x_{I}}=\frac{f-a_{S}-k_{S} q^{S}(1-q)\left(q^{-1} x_{1}-i y_{1}\right)}{\left(q^{S}-q^{S+1}\right) i y_{1}}=k_{S}$
and
$\frac{f-a_{s-1}}{\left(q^{s}-q^{s-1}\right) i y_{1}}=\frac{f-a_{S-1}-k_{s-1} q^{s-1}(1-q)\left(q^{-1} x_{1}-i y_{1}\right)}{\left(q^{s-1}-q^{s-2}\right) x_{1}}=k_{s-1}$.

They reduce to two relations,

$$
f=a_{s-1}+k_{s-1}(q-1) q^{s-1}{ }_{j \cdot y_{1}}
$$

and

$$
f=a_{s}+k_{s} q^{s-l}(1-q) x_{1}
$$

We get $a_{s}+k_{s} q^{s-l}(l-q) x_{1}=a_{s-1}+k_{s-1} q^{s-l}(q-1) i y_{1}$.
Thus $x_{1}\left(a_{s}-b_{s}\right)+\left(a_{s-1}-b_{S-1}\right)$ iqy $_{1}+\left(a_{s}-b_{s-1}\right) q x_{1}=0$
is the concition of existence of the continuation to $\left(q^{s-l} x_{1}, q^{s} y_{1}\right)$ 。

The theorem of the above section guarantees
existence and uniqueness of continuation to all (x, y) εH. Thus we have:
Theorem. If $f\left(q^{S} x_{1}, q^{s} y_{1}\right)=a_{s}$ and $f\left(q^{S+l} X_{1}, q^{S} y_{1}\right)=b_{s}, s \in Z$ are piven subject to the condition
$x_{1}\left(a_{s}-b_{s}\right)+\left(a_{s-1}-b_{s-1}\right) i q y_{1}+\left(q_{s}-a_{s-1}\right) q x_{1}=0$, then f is determined uniquely and beloncs to $B(H)$.

Immediate consequences of the above theorem are Corollary I. If $f\left(q^{s} x_{1}, q^{s} y_{1}\right)=a_{S}$ and $\mathcal{V} f\left(q^{s} x_{1}, q^{s} y_{1}\right)=$ k_{S}, $\mathrm{s} \varepsilon \mathrm{Z}$ are given with the condition $a_{S}+x_{1} k_{S}(1-q) q^{s-1}=a_{S-1}+i y_{1} k_{S-1} q^{s-1}(1-q)$, then f is determined uniquely and belongs to $B(H)$.

Corollary 2. If $f\left(q^{s} x_{1}, q^{s} y_{1}\right)=a_{s}$ and $\mathcal{G}\left(q^{s} x_{1}, q^{s} y_{1}\right)=$ p_{s}, $s \varepsilon Z$ are given with the condition $a_{s}+p_{s} q^{s-l}(1-q) x_{1}=a_{s-1}+p_{s} q^{s-l}(q-1) i y_{1}$, then f is determined uniquely and belongs to $B(H)$.

Example l. A simple example of bianalytic function is obtained from the above corollary l, with
$a_{s}=q^{s} x_{1}+i q^{s} y_{1}, s \varepsilon \dot{u}$.
We get $\mathrm{k}_{\mathrm{S}}=1$, $s \varepsilon \mathrm{Z}$ 。

$$
\begin{aligned}
& \text { From (2.10), (2.11), (2.12) and (2.13), } \\
& f\left(q^{s-r_{1}}, q^{s+r_{1}}\right)=q^{s-r_{X_{1}}}+i q^{s+r_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& f\left(q^{s-l-r_{x_{1}}}, q^{s+r_{1}}\right)=q^{s-l-r_{1}}+i q^{s+r_{1}} \\
& f\left(q^{s+r-]_{X_{1}}}, q^{s+r_{1}}\right)=q^{s+r-l_{x_{1}}}+i q^{s-r_{y_{1}}}
\end{aligned}
$$

Thus $f\left(q^{m} x_{1}, q^{n} y_{1}\right)=q^{m} x_{1}+i q^{n} y_{1}$ is the continuation of the function to the entire H.

Example 2. Fixing $k_{s}=s, s \varepsilon Z$, we get a nontrivial example of bianalytic function.

$$
\begin{array}{r}
\text { If } s \varepsilon Z^{+}, a_{s}=a_{0}-x_{l}\left(\frac{1-q^{s}}{1-q}+s q^{s}\right)-i y_{1}\left(\frac{1-q^{s}}{1-q}+s q^{s}+s\right) \\
a_{-s}=a_{0}+x_{l}\left(\frac{l-q^{-(s-1}}{1-q}-q^{-s}(s-1)\right)+i y_{1}\left(\frac{l-q^{-(s-1}}{1-q}-q^{-s}(s-1)-s\right) .
\end{array}
$$

Thus substituting these values in (2.10), (2.11), (2.12) and (2.13), we get a bianalytic function in entire H . Example 3. Another example is obtained directly from the above theorem, with fixing

$$
\begin{aligned}
& a_{s}=b_{s}+1 \\
& a_{s}=a_{s-1}+\frac{q^{-1} x_{1}+i y_{1}}{x_{1}}
\end{aligned}
$$

If $s \varepsilon Z^{+}$,

$$
\begin{aligned}
& a_{s}=a_{0}+s \frac{q^{-1} x_{1}+i y_{1}}{x_{1}} \\
& a_{-s}=a_{0}-s \frac{q^{-1} x_{1}+i y_{1}}{x_{1}} \\
& b=a_{0}-1+s \frac{q^{-1} x_{1}+i y_{1}}{x_{1}} \\
& b_{-s}=a_{0}-1-s \frac{q^{-1} x_{1}+i y_{1}}{x_{1}}
\end{aligned}
$$

Thus substituting these values in (2.10), (2.11), (2.12) and (2.13), we £et a bianalytic function in entire H.
3. q-Monodiffric Functions

We introduced earlier a class of functions which are both q-and p-analytic. Here a more general class of functions is found by defining discrete analyticity in another way and introducing a new operator.

Definitions. The basic tetrad associated with z is defined as $\tau(z)=\left\{(q x, y),(x, q y),\left(q^{-1} x, y\right),\left(x, q^{-1} y\right)\right\}$. If $z \varepsilon H$, the points on the set $\left\{\left(q^{-1} x, q^{-1} y\right),\left(q^{-1} x, q y\right),(q x, q y)\right.$, ($q x, q^{-1} y$) \}are diagonally adjacent to z while elements of the set $\left\{(q x, y),\left(q^{-1} x, y\right),(x, q y),\left(x, q^{-1} y\right)\right\}$ are called directly adjacent points of z.

A sequence of lattice points in $H:\left\{z_{0}, z_{1}, \ldots\right.$, $\left.z_{r}, z_{r+1}, \ldots, z_{n}\right\}$ is a discrete curve C if z_{r} and z_{r+1} are diagonally adjacent for every $r=0,1, \ldots, n-1$. C is denoted by $\left.<z_{0}, z_{1}, \ldots, z_{r}, z_{r+1}, \ldots, z_{n}\right\rangle$. C is closed if $z_{o}=z_{n}$. C is simple if $z_{r} \neq z_{s}$ for $r \neq s$ and $r=0, l, \ldots, n-l$; $s=l, 2, \ldots, n$. C is simply closed curve if C is simple and closed.

The smallest simply closed curve around z is $<(q x, y),(x, q y),\left(q^{-1} x, y\right),\left(x, q^{-1} y\right),(q x, y)>$ called the basic quadrilateral associated with z.

$$
\begin{align*}
\text { If } c_{1} & =\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle \text { and } \\
c_{2} & =\left\langle z_{n}, z_{n+1}, \ldots, z_{m}\right\rangle \text { then } \\
c_{1}+c_{2} & \left.\equiv<z_{0}, z_{1}, \ldots, z_{n}, z_{n+1}, \ldots, z_{m}\right\rangle \text { and } \\
c_{1}^{-1} & =\left\langle z_{n}, z_{n-1}, \ldots, z_{1}, z_{0}\right\rangle . \tag{2.18}
\end{align*}
$$

The straisht ray, $\left\{\left(q^{s} x, q^{s} y\right), s \varepsilon z\right\}$ and the distorted ray, $\left\{\left(q^{-s} x, q^{s} y\right), s \varepsilon Z\right\}$ through z defined in (2.5) are discrete curves.

It may be noted that while a simply closed curve encloses certain lattice points which constitute a domain with the given curve as the boundary, the converse is not true. For example, $D=\{(x, y),(q x, y)\}$, which is the interior of $S=T(z) \bigcup T\left(z^{\prime}\right)$ where $z=(x, y)$ and $z^{\prime}=(q x, y)$ is not enclosed by a curve as the boundary.

Discrete monodiffricity can be defined by means of difference quotients as well as by the so called q-and p-residues.

Let $f: H \rightarrow \varnothing$ and $z \varepsilon D$. The difference operators δ_{x} and δ_{y} are defined as

$$
\delta_{x} f(x, y)=\frac{f\left(q^{-1} x, y\right)-f(q x, y)}{\left(q^{-1}-q\right) x}
$$

and

$$
\begin{equation*}
\delta_{y} f(x, y)=\frac{f\left(x, q^{-1} y\right)-f(x, q y)}{\left(q^{-1}-q\right) i y} \tag{2.19}
\end{equation*}
$$

If $\delta_{x} f(x, y)=\delta_{y} f(x, y)$, then f is q-monodiffric at z and $\delta_{x} f(z)=\delta_{y} f(z)$ is the q-monodiffric derivate of f at z and is denoted by $\delta f(z)$. The above equality reduces to
$x\left[f\left(x, q^{-1} y\right)-f(x, q y)\right]$-iy $\left[f\left(q^{-1} x, y\right)-f(q x, y)\right]=0$.
In other words, f is q-monodiffric at z if and only if $\operatorname{Mf}(z) \equiv x\left[f\left(x, q^{-1} y\right)-f(x, q y)\right]-i y\left[f\left(q^{-1} x, y\right)-f(q x, y)\right]=0$

$$
\begin{equation*}
\text { It is easy to verify that if } f \text { is } q \text {-monodiffric } \tag{2.20}
\end{equation*}
$$

at z, then

$$
\begin{equation*}
\operatorname{Mf}(z)=R_{p} f(z)-R_{q} f(z)=0 \tag{2.21}
\end{equation*}
$$

The set of q-monodiffric functions in D is denoted by $W_{(D)}(D(D)$ is the set of bianalytic function in $D . B(D)$ is a proper subset of $\mathscr{O}_{6}(\mathrm{D})$.

As M is a linear operator, it easily follows that Theorem 1. $\mathscr{H}(D)$ is a vector space over \varnothing.

$$
\text { Let } f(z)=u(x, y)+i v(x, y) \varepsilon \mathcal{M} O(D)
$$

So

$$
\delta_{x}[u(x, y)+i v(x, y)]=\delta_{y}[u(x, y)+i v(x, y)]
$$

i.e., $\delta_{x} u(x, y)=i \delta_{y} v(x, y)$
and $\delta_{\mathrm{x}} \mathrm{v}(\mathrm{x}, \mathrm{y})=-i \delta_{\mathrm{y}}^{\mathrm{u}}(\mathrm{x}, \mathrm{y})$ for every $\mathrm{z} \varepsilon \mathrm{D}$.
This is the q-monodiffric analogue of CauchyRiemann relations.

Conversely, if $\delta_{x} u(x, y)=i \delta_{y} v(x, y)$ and $\delta_{x} v(x, y)=-1 \delta_{y} u(x, y)$ for every $z \varepsilon D$, by addition, $M(u+i v)=0$ in D.
ie., f $\varepsilon \mathbb{M}(0(D)$.
Hence we have:
Theorem 2. The necessary and sufficient condition for $\mathrm{f}=\mathrm{u}+\mathrm{iv} \varepsilon \boldsymbol{M}(\mathrm{M})$ is $\delta_{\mathrm{x}} \mathrm{u}(\mathrm{x}, \mathrm{y})=i \delta_{\mathrm{y}} \mathrm{v}(\mathrm{x}, \mathrm{y})$ and $\delta_{x} v(x, y)=-i \delta_{y} u(x, y)$ for $\forall z \varepsilon D$.

Remark. It can be noted that in classical function theory, the Cauchy-Riemann relations are not sufficient for analyticity while the discrete analogue is also sufficient for q-monodiffricity.

If $f \varepsilon \sqrt{V}(D)$, then according to the definition of q-monodiffricity, D must be interior of some S. Thus δf exists in D, while it is q-monodiffric only in D^{l}, the interior of D.

In other words,

Let the sequence $\left\{f_{n}\right\}$ be such that $f_{n} \quad \varepsilon_{1} \mathbb{M}(D)$
and $\lim _{n \rightarrow \infty} f_{n}(z)=f(z), \forall z \varepsilon D$. Then $\operatorname{Mf}(z)=\lim _{n \rightarrow \infty} \operatorname{Mf}_{n}(z)$ and $\delta f(z)=\lim _{n} \xrightarrow{\infty} \delta f_{n}(z)$, for every $z \varepsilon D$.

Thus we have:
Theorem 4. Given the sequence $\left\{f_{n}\right\}, f_{n} \varepsilon \sqrt{V} 0$ (D), $\lim _{n \rightarrow \infty} f_{n}(z)=f(z)$ for $\forall z \varepsilon D$, then $f \varepsilon \mathcal{J} G(D)$ and $\delta f(z)=\lim _{n \rightarrow \infty} \delta f_{n}(z)$ for $\forall z \varepsilon D . \quad$ rain $\delta f(z) \varepsilon \sqrt{ }(0)\left(D^{1}\right)$. Now let $\sum_{j=1}^{\infty_{i}} g_{j}=f$ and $g_{j} \varepsilon \sqrt{M}(D)$. Then according to the above theorem, $f_{n}=\sum_{j=1}^{n} \mathfrak{ß}_{j}$ constitutes a sequence and P $\varepsilon \sqrt{(f(D)}(D)$ and $\lim _{n \rightarrow \infty}^{f}=f$.

This leads to the theorem:
Theorem 5. If $\varepsilon_{j} \varepsilon \mathbb{H} \not W_{(D)}$ and $\sum_{j=1}^{\infty} \varepsilon_{j}=f$ then $f \varepsilon \sqrt{M} O(D)$ and $\delta f(z)=\sum_{j=1}^{\infty} \delta g_{j}(z)$ for $\forall z \varepsilon D$.

Examples:

(1) Basic q-monodiffric functions. $x+i y,(x+i q y)\left(x+i q^{-1} y\right)$ and $\left(x+i q^{2} y\right)(x+i y)\left(x+i q^{-2} y\right)$ are q-monodiffric functions in H. Also their reciprocals: $(x+i y)^{-1},(x+i q y)^{-1}\left(x+i q^{-1} y\right)^{-1}$ and $\left(x+i q^{2} y\right)^{-1}(x+i y)^{-1}\left(x+i q^{-2} y\right)^{-1}$ belong to $/ 6(H)$.

In general, if n is a positive integer,
$\prod_{j}^{n-1}\left(x+i q^{n-2 j-1} y\right)$ and $\prod_{j}^{n-1}\left(x+i q^{n--2 j-1} y\right)^{-1}$
$j=0$

$$
\begin{equation*}
j=0 \tag{2.23}
\end{equation*}
$$

are q-monodiffric in H.

We also note that the discrete powers in q-monodiffric theory are evolved from this set of functions. (2) Bifunctions. Let $f, g \varepsilon \mathcal{M}(\mathrm{D})$, then $f(g$ is defined as $(f \oplus g)(z)=f(z)+(-1)^{m+n} g(z)$ for $z=\left(q^{m} x_{0}, q^{n} y_{o}\right) \varepsilon D$

$$
\begin{equation*}
f 母 g \text { behaves as } f+g \text { on } H_{2} \text { and as } f-g \text { on } H_{1} \text {. } \tag{2.25}
\end{equation*}
$$

The set of bifunctions in D is denoted by $\beta(D)$.

Re can easily see that

$$
\begin{equation*}
\operatorname{Mi}(f \oplus g)(z)=\operatorname{Mf}(z)+(-1)^{m+n-1} \operatorname{Mg}(z) . \tag{2.26}
\end{equation*}
$$

Due to the q-monodiffricity of f and g in $D, f \oplus g$ is q-monodiffxic in D and also
$\delta(f \oplus g)(z)=\delta f(z)+(-1)^{\mathrm{m}+\mathrm{n}-1} \delta g(z)$.

Thus we have:

$\delta(f \oplus g)=\delta f \oplus \delta(-g) . A l s o \delta(f \oplus g) \varepsilon \beta(D)$.
Let $f, g \varepsilon \beta(D)$ such that $f=f_{1} \oplus f_{2}$ and $g=g_{1} \oplus g_{2}$. Then $(f \oplus g)(z)=f(z)+(-1)^{m+n} g(z)$

$$
\begin{align*}
& =f_{1}(z)+(-1)^{m+n_{f}}(z)+(-1)^{m+n}\left[g_{1}(z)+(-1)^{m+n} g_{2}(z)\right] \\
& =f_{1}(z)+g_{2}(z)+(-1)^{m+n}\left(f_{2}(z)+g_{1}(z)\right) . \tag{2.29}
\end{align*}
$$

Hence $\beta(D)$ is closed under \oplus.

Then let us solve fo" From $f \Theta F=g$ where f and g are bifunctions.

We cet $f(z)+(-1)^{m+n} F(z)=g(z)$.

$$
\begin{equation*}
F(z)=g_{2}(z)-f_{2}(z)+(-1)^{m+n}\left(g_{1}(z)-f_{1}(z)\right) \text { is a } \tag{2.30}
\end{equation*}
$$

bifunction and is unique.
Similarly $F \mathbb{f} f=g$ has also a unique solution in $\beta(D)$ 。

Thus we have:

$$
\begin{equation*}
(\beta(D), \#) \text { is a quasi group } \tag{2.32}
\end{equation*}
$$

4. q-Monodiffric Constants

Consider a simple equation of the first order
$\delta f(z)=C$.
i.e., $\frac{f\left(q^{-1} x, y\right)-f(q x, y)}{\left(q^{-1}-q\right) x}=\frac{f\left(x, q^{-1} y\right)-f(x, q y)}{\left(q^{-1}-q\right) i y}=0$
or $f\left(q^{-1} x, y\right)=f(q x, y)$ and $f\left(x, q^{-1} y\right)=f(x, q y)$, which also leads to $f(x, y)=f\left(q^{2} x, y\right)=f\left(x, q^{2} y\right)$.

Similarly by iteration,

$$
\begin{equation*}
f(x, y)=f\left(q^{2 r} x, q^{2 s} y\right) ; r, s \varepsilon Z . \tag{2.33}
\end{equation*}
$$

Thus we observe that a q-monodiffric constant,
which is the solution of the equation $\delta f(z)=0$ in H, is fully
determined by fixing its value on any rectangle $\left\{\left(x_{0}, y_{0}\right)\right.$, $\left.\left(q x_{0}, y_{0}\right),\left(x_{0}, q y_{0}\right),\left(q x_{0}, q y_{0}\right)\right\}$ by $f\left(x_{0}, y_{0}\right)=\alpha_{1}, f\left(q x_{0}, y_{0}\right)=\alpha_{2}$, $f\left(x_{0}, q y_{0}\right)=\alpha_{3}$ and $f\left(q x_{0}, q y_{0}\right)=\alpha_{4}$.

Then the solution of the equation $\delta f(z)=0$ for entire H can be given as
$f\left(q^{m} x_{0}, q^{n} y_{0}\right)= \begin{cases}\alpha_{1} & \text { if } m \text { is even, } n \text { is even } \\ \alpha_{2} & \text { if } m \text { is odd, } n \text { is even } \\ \alpha_{3} & \text { if } m \text { is even, } n \text { is odd } \\ \alpha_{4} & \text { if } m \text { is odd, } n \text { is odd. }\end{cases}$

In other words, the q-monodiffric constant α can be represented as a 4 -tuple $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$. Thus if α and β are two q-monodiffric constants their addition and multiplication is defined componentwise in the usual way. Then it is easy to see

Theorem 1.
a) The set of q-monodiffric constants, $\{\alpha, \alpha \in \not \subset 4 \bigcap \cap O(H)\}$ form an abelian group with respect to addition.
b) It is a vector space of dimension four over the complex field.
c) It is a commutative algebra over \varnothing with divisors of zero.

We say that $(x, y)=\left(q^{m} x_{0}, q^{n} y_{0}\right) \varepsilon H$ is an odd or even point according as $m+n$ is odd or even. If the set of odd points is denoted by H_{l} and the set of even points by H_{2}, then $\mathrm{H}=\mathrm{H}_{1} \quad \int \mathrm{H}_{2}$ and $\mathrm{H}_{1} \backslash \mathrm{H}_{2}=\varnothing$. Hence we get a partition of H.

A special case of q-monodiffric constant namely biconstant can be given as ($\alpha_{1}, \alpha_{2}, \alpha_{2}, \alpha_{1}$). A biconstant takes one value on H_{1} and another on H_{2} 。

Biconstants form a vector space, of dimension two over $\not \subset$. A uniconstant $\alpha=\left(\alpha_{1}, \alpha_{1}, \alpha_{1}, \alpha_{1}\right)$ is a trivial example of a q-monodiffric constant which amounts to $\alpha \varepsilon \not \subset, \alpha=\alpha_{I}$.

Let f ع ${ }^{\prime} \mathscr{O}_{(D)}$ and α be a q-monodiffric constant. Then af $\varepsilon \sqrt{6}(\mathrm{D})$ implies $\delta_{x}[\alpha f](x, y)=\delta_{y}[\alpha f](x, y),(x, y) \varepsilon D$ which gives the solution $\alpha_{1}=\alpha_{4}$ and $\alpha_{2}=\alpha_{3}$. This implies,

Theorem 2. If f is q-monodiffric function in D and α, a q-monodiffric constant then αf is q-monodiffric in D if and only if α is a biconstant.

The bifunction of two constant functions is a biconstant, but that of two biconstants is again a biconstant. In general, the bifunction of two q-monodiffric constants is a q-monodiffric constant.
i.e., $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \oplus\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)=$

$$
\left(\alpha_{1}+\beta_{1}, \alpha_{2}-\beta_{2}, \alpha_{3}-\beta_{3}, \alpha_{4}+\beta_{4}\right)
$$

5. Product of q-ronodiffric Functions

In all the earlier discrete function theories, the usual product of two discrete analytic functions in a domain, in general, does not turn out to be discrete analytic. For example, z is discrete analytic according to all the theories, but $z^{2}=z \cdot z$ is not. Here we show that under certain very general conditions, the ordinary product of two q-monodiffric functions in D is also q-monodiffric in the given domain.

Let $f, g, f \cdot g \varepsilon \sqrt{V}(0)(D)$. Consider the basic tetrad to $z \varepsilon D$. We denote $f(q x, y), f(x, q y), f\left(q^{-1} x, y\right)$ and $f\left(x, q^{-l} y\right)$ by f_{1}, f_{2}, f_{3} and f_{4} respectively and $\delta f(x, y)$ is denoted by f'.

So $\mathbb{M}[f g](z)=x\left[f_{4} g_{4}-f_{2} g_{2}\right]-i y\left[f_{3} g_{3}-f_{1} g_{1}\right]$ which after some calculation is equal to $\frac{\operatorname{ixy}}{2}\left(q^{-1}-q\right)\left[g^{\prime}\left(f_{4}+f_{2}-f_{3}-f_{1}\right)+f^{\prime}\left(g_{4}+g_{2}-g_{3}-g_{1}\right)\right]$.

Hence for $\operatorname{Mfg}(z)=0$, the following cases arise:
Case I: $f^{\prime}=g^{\prime}=0 \Rightarrow f$ and g are q-monodiffric constants.
Case 2: $f^{\prime}=0, f^{\prime} \neq 0 \Rightarrow f_{4}+f_{2}=f_{1}+f_{3}$ and

$$
f_{4}=f_{2} ; f_{1}=f_{3}
$$

$\Rightarrow f$ is a biconstant.
Case 3: $f_{4}+f_{2}-f_{3}-f_{1}=0$ and $g_{4}+g_{2}-g_{3}-g_{1}=0$

$$
\begin{aligned}
\Rightarrow \frac{f^{\prime}}{g^{\prime}} & =\frac{f_{1}-f_{3}}{g_{1}-g_{3}}=\frac{f_{4}-f_{2}}{g_{4}-g_{2}}=\frac{f_{1}-f_{3}+f_{4}-f_{2}}{g_{1}-g_{3}+g_{4}-g_{2}} \\
& =\frac{f_{1}-f_{2}}{g_{1}-g_{2}}=\frac{f_{4}-f_{3}}{g_{4}-g_{3}}=\frac{0}{0} . \\
& \Rightarrow f \text { and } g \text { are biconstants. }
\end{aligned}
$$

Case 4: $f^{\prime}=0, g^{\prime}=0, f_{4}+f_{2}-f_{1}-f_{3} \neq 0$ and

$$
\begin{aligned}
g_{4}+ & g_{2}-g_{1}-g_{3} \neq 0 . \\
& \Rightarrow \frac{f^{\prime}}{g^{\prime}}=\frac{f_{2}+f_{4}-f_{1}-f_{3}}{g_{2}+g_{4}-g_{1}-g_{3}} \\
& \Rightarrow \frac{f_{4}-f_{3}}{g_{4}-g_{3}}=\frac{f_{4}-f_{2}}{g_{4}-g_{2}}=\frac{f_{2}+f_{4}-f_{1}-f_{3}}{g_{2}+g_{4}-g_{1}-\frac{f_{1}-f_{3}}{g_{3}}=\frac{f_{4}-f_{2}}{g_{1}-g_{3}+g_{4}-g_{2}}} \\
& =\frac{f_{4}-f_{3}}{g_{4}-g_{3}}=\frac{f_{1}-f_{2}}{g_{4}-g_{2}}=\frac{f_{4}-f_{3}}{g_{1}-g_{2}}=\frac{f_{1}-f_{4}}{g_{1}-g_{4}}=\frac{f_{1}-f_{2}}{g_{1}-g_{2}}
\end{aligned}
$$

$\Rightarrow g_{1}-g_{2}=g_{4}-g_{3}$ and $f_{1}-f_{2}=f_{3}-f_{4}$
$\Rightarrow f_{1}=f_{3}, f_{2}=f_{4}$ and $g_{1}=g_{3}, g_{2}=g_{4}$
$\Rightarrow f$ and g are q-monodiffric constants.

This is a contradiction. Case 4 does not exist. Thus we have:
Theorem. If f, g $\varepsilon \sqrt{\sqrt{l}(O(D)}$ and also $f g \varepsilon, /(0(D)$ then either both f and g are q-monodiffric constants or one of them is a biconstant.
6. Construction of q-Monodiffric Functions

In monodiffric and q-analytic theories, the continuation of a discrete function from the boundary of a finite domain to the interior of it has been dealt. A similar result is evolved in q-monodiffric theory. For this we need two more definitions.

If D is a finite domain in $H, \partial_{D} \cup D^{l}$ is known as the annular boundary of D^{7}.

Now if $D=\{(x, y)\}$, the annular boundary of $D^{\text {I }}$ is $\left\{(x, y),(q x, y),(x, q y),\left(q^{-1} x, y\right),\left(x, q^{-1} y\right)\right\}$; but $D^{\beth}=\varnothing$. Thus we get the null set has an annular boundary. Again if $D^{I}=\{(x, y)\}$, the annular boundary of \mathcal{I}^{l} is $\left\{\left(q^{m} x, q^{n} y\right) ;|m|+|n|=1\right.$ or 2$\}$.

I domain $D \in H$ is a packed domain if boundary of D is a simply closed curve C setisfying Int $C=D$ (2.39)

Our claim is that if a q-monodiffric function $f \varepsilon \sqrt{V}(D)$ is defined on the annuler boundary of D^{2} of s packed domain D, then there exists a function g ε ($/$ ($)$ such that $f=g$ on the annular boundary of D^{l}.

We can easily verify that the result is true if $D^{\mathbf{l}}$ contains atmost one point. Now let us assume that the result is true in the case of D^{l} having ($n-1$) points.

Consider a packed domain D for which D^{l} has n points. Let $C=\left\langle z_{1}, z_{2}, \ldots, z_{r-1}, z_{r}, z_{r+1}, \ldots z_{1}\right\rangle$ be the boundary of D. Without loss of generality we assume that there exists z_{r-1}, z_{r}, z_{r+1} in C such that $\left\langle z_{r-1}, z_{r}\right\rangle$ is along a straight ray and $\left\langle z_{r}, z_{r+1}>\right.$ is along a distorted ray and an z^{\prime} in D^{1} satisfying $z_{r-1}, z_{r}, z_{r+1}, z^{\prime}$ is the basic quadrilateral of a point $z^{*} \varepsilon \mathcal{D}^{1}$.

Then consider the domain $D_{1}=D-\left\{z^{*}\right\}$. Due to the q-monodiffric condition at z^{*}, f is known at z^{\prime}. Hence f is defined on the annular boundary of D_{1}. filso D_{1} conteins only (n-l) points. Thus the claim is true in the case of D_{1} due to the assumption. Since $D=\left\{z^{*}\right\} \bigcup D_{1}$, we get that f is defined in D.

Hence by induction we have:
Theorem I. If a q-monodiffric function f ع $ل /(D)$ is defined on the annular boundary of D^{l} of a packed domain I, then there exists a $g \varepsilon \sqrt{ }(\mathbb{O}(D)$ such that $f=g$ on the annular boundery of $D^{\mathfrak{d}}$ 。

Duffin, Kurowski, Berzsenyi and Harman introcaced discrete continuation of a function in the concerned theories. Now we introduce the continuation of a q-monodiffric function from the ζ-belt or from the pair of so-called straight or distorted belts. We take $n \in Z^{+}, 0 \leq r \leq n$.

Definitions. $\left\{\left(q^{m} x_{0}, q^{n} y_{0}\right) ; m \varepsilon Z, n=0, I\right\}$ is known as the ζ_{0}-belt.

$$
\begin{equation*}
\left(q^{m+n-2 r} x_{0}, y_{\delta}\right),\left(q^{m+n-(2 r+1)} x_{0}, q y_{0}\right),\left(q^{m+n-2 r_{0}} x_{0}, q y_{0}\right) \tag{2.40}
\end{equation*}
$$

and $\left(q^{m+n-(2 r+1)} x_{0}, y_{0}\right)$, belonging to the $C_{-b e l t, ~ a r e ~}^{\text {a }}$ respectively denoted by $\lambda_{m, n, 2 r} \lambda_{m, n, 2 r+1}, \mu_{m, n, 2 r}$ and $\mu_{m, n, 2 r+I^{\circ}}$

The discrete curves $C_{m,-n}$ and $C_{m, n}$ are defined as follows:
${ }^{C_{m,-n}} \equiv\left\langle\lambda_{m, n, 0}, \quad \lambda_{m, n, 1}, \cdots, \lambda_{m, n, 2 r}, \lambda_{m, n, 2 r+1}, \cdots, \lambda_{m, n, 2 \bar{n}}\right.$
$C_{m, n} \equiv<\mu_{m, n, 0}, \mu_{m, n, 1}, \ldots, \mu_{m, n, 2 r}, \mu_{m, n, 2 r+1}, \ldots, \mu_{m, n, 2 n}$
(2.43)

$$
\left\{\left(q^{m} x_{0}, q^{n} y_{0}\right) ; m \varepsilon z, n=m, m+1\right\} \text { is called the }
$$

straight belt and $\left\{\left(q^{m_{0}}, q^{n} y_{0}\right) ; m \varepsilon z, n=-m,-(m+l)\right\}$ is called the distorted belt.

The following relations on λ 's and μ 's can easily be seen
a) $\lambda_{m, n, 2 r+1}=\mu_{m-1, n, 2 r}=\mu_{r n, n-1,2 r}$
b) $\mu_{m, n, 2 r+1}=\lambda_{m-1, n, 2 r}=\lambda_{m, n-1,2 r}$
c) $\lambda_{m, n, r}=\lambda_{m-s, n+s, r}=\lambda_{m+s, n-s, r}$
d) $\mu_{\mathrm{m}, \mathrm{n}, \mathrm{r}}=\mu_{\mathrm{m}-\mathrm{s}, \mathrm{n}+\mathrm{s}, \mathrm{r}}=\mu_{\mathrm{r}+\mathrm{s}, \mathrm{n}-\mathrm{s}, \mathrm{r}}$
e) $\lambda_{m, n, r}=\lambda_{m-2 s, n, r-2 \bar{s}} \lambda_{m, n-2 s, r-2 s}$
f) $\mu_{m, n, r}=\mu_{m-2 s, n, r-2 \overline{\bar{s}}} \mu_{m, n-2 s, r-2 s}$,

$$
\begin{equation*}
\text { for } s \varepsilon z^{+}, r \geq s \geq 0 \tag{2.45}
\end{equation*}
$$

Construction from 6 -belt. Let f ed ${ }^{6}(H)$ and f known on the $C_{\text {-belt. Now }} f$ being q-monodiffric at ($q^{m_{x_{0}}}, y_{o}$), $f\left(q^{m} x_{0}, q^{-l} y_{0}\right)$ is determined uniquely. Then using the belt $\left\{\left(q^{m_{x_{0}}}, q^{n^{\prime}} y_{0}\right) ; m \varepsilon Z, n=0,-1\right\}, f\left(q^{m_{x_{0}}}, q^{-2} y_{0}\right)$ is obtained uniquely, similarly and so on. Thus $f\left(q^{m_{x_{0}}}, q^{-n_{y}}\right)$ is
uniquely determined for any finite n. In the same way $f\left(q^{m} x_{o}, q^{n} y_{o}\right)$ is determined uniquely.

Thus we have:
f $\varepsilon \mathbb{U}^{/ / 10}(H)$ is uniquely continued from the $\%$-belt to the entire H. (2.46)

Let $f \varepsilon v_{M(H)}$ and f be known on the 6 -belt. We assert that $f\left(q^{m} x_{0}, q^{-n} y_{0}\right)$ can be expressed as a sum in terms of $f\left(\lambda_{m, n, r}\right)$. Similarly $f\left(q^{m_{0}}, q^{n} y_{o}\right)$ is considered. This result is verified when $n=1,2$. Let us assume the result is true for the first ($n-1$) positive integers for n. Then f being q-monodiffric at $\left(q^{m} x_{0}, q^{-(n-1)} y_{0}\right)$, we get: $f\left(q^{n x_{0}}, q^{-n} y_{0}\right)=f\left(q^{m} x_{o}, q^{-(n-2)} y_{o}\right)$

$$
\begin{align*}
& +\frac{i q^{m+n-1} y_{0}}{x_{0}} f\left(q^{m-1} x_{o}, q^{-(n-1)} y_{o}\right) \\
& -\frac{i q^{-(m+n-1)} y_{0}}{x_{0}} f\left(q^{m+1} x_{o}, q^{-(n-2)} y_{o}\right) \tag{2.47}
\end{align*}
$$

Now we can note that $f\left(q^{m_{x_{0}}, q^{-(n-2)}} y_{0}\right)$, $f\left(q^{m-1} x_{0}, q^{-(n-l)} y_{0}\right)$ and $f\left(q^{m+l} x_{0}, q^{-(n-l)} y_{0}\right)$ are expressible as a sum in terms of $f\left(\lambda_{m, n, r}\right)$ due to the assumption and (2.45) .

Totally what we have proved is the assertion in the case of n.

Hence by induction we have:
 sum in terms of $f\left(\lambda_{m, n, r}\right)$ and $f\left(q^{m_{0}}, q^{n} y_{0}\right)$ in terms of $f\left(\mu_{m, n, r}\right)$.

In the light of the above theorem, we write $f\left(q^{m} x_{o}, q^{-n_{y_{o}}}\right)=\sum_{r=0}^{2 n} \alpha_{m, n, r} f\left(\lambda_{m, n, r}\right)$ $f\left(q^{m} x_{0}, q^{n} y_{0}\right)=\sum_{r=0}^{2 n} \beta_{m, n, r} f(\mu m, n, r)$

We can also note that $\alpha_{m, n, r}$ and $\beta_{m, n, r}$ are independent of f. They will be functions of m, n and r only.

Using the q-monodiffric conditions at
$\left(q^{m} x_{0}, q^{-(n-l)} y_{0}\right)$ and $\left(q^{m} x_{0}, q^{n-l} y_{0}\right)$ we get
$\sum_{r=0}^{2 n} \alpha_{m, n, r} f\left(\lambda_{m, n, r}\right)=\sum_{r=0}^{2(n-2)} \alpha_{m, n-2, r} f\left(\lambda_{m, n-2, r}\right)$
$+\frac{i q^{-(m+n-1)} y_{0}}{x_{0}} \sum_{r=0}^{2(n-1)} \alpha_{m-1, n-1, r} f\left(\lambda_{m-1, n-1, r}\right)$
$-\frac{i q^{-(m+n-1)} y_{0}}{x_{0}} \sum_{r=0}^{2(n-1)} \alpha_{m+1, n-1, r} f\left(\lambda_{m+1, n-1, r}\right)$
and
$\sum_{r=0}^{2 n} \beta_{m, n, r} f\left(\mu_{m, n, r}\right)=\sum_{r=0}^{2(n-2)} \beta_{m, n-2, r} f\left(\mu_{m, n-2, r}\right)$
$-\frac{i q^{n-m-1} y_{0}}{x_{0}} \sum_{r=0}^{2(n-1)} \beta_{m-1, n-1, r} f\left(\mu_{m-1, n-1, r}\right)$
$+\frac{i q^{n-m-1} y_{0}}{x_{0}} \sum_{r=0}^{2(n-1)} \beta_{m+1, n-1, r} f\left(\mu_{m+1, n-1, r}\right)$.

Thus using (2.5) and comparing the coefficients, we have the following theorem

Theorem 3 .
$\alpha_{m, n, r}=\alpha_{m, n-2, r-2}+\frac{i q^{-(m+n-1)} y_{0}}{x_{0}} \alpha_{m-1, n-1, r-2}$

$$
-\frac{i q^{-(m+n-1)} y_{0}}{x_{0}} \alpha_{m+1, n-1, r}
$$

and

$$
\begin{aligned}
\beta_{m, n, r}=\beta_{m, n-2, r-2} & -\frac{i q^{n-m-1} y_{0}}{x_{0}} \quad \beta_{m-1, n-1, r-2} \\
& +\frac{i q^{-n-m-1} y_{0}}{x_{0}} \quad \beta_{m+1, n-1, r}
\end{aligned}
$$

Examples. Now we will see the construction of a few simple q-monodiffric entire functions.

$$
\begin{align*}
& \varepsilon_{j}^{I} ; j \varepsilon Z, r=0, I \text { are defined as follows: } \\
& \varepsilon_{j}^{r}\left(q^{m} x_{o}, q^{n} y_{o}\right)=\left\{\begin{array}{l}
1 \text { if } m=j \text { and } n=r \\
0 \text { otherwise on } \varphi_{0} \text {-belt. }
\end{array}\right. \tag{2.52}
\end{align*}
$$

Continuation of ε_{j}^{r} to entire H can be given as
$\varepsilon_{j}^{0}\left(q^{m} x_{o}, q^{-n} y_{o}\right)= \begin{cases}\alpha_{m, n, m+n-j} & \text { if } m+n-j \text { is even and } \\ 0 \leq m+n-j \leq 2 n \\ 0 \text { otherwise. }\end{cases}$
$\varepsilon_{j}^{o}\left(q^{m} x_{o}, q^{n} y_{o}\right)= \begin{cases}\beta_{m, n, m+n-j} & \text { if } m+n-j \text { is odd and } \\ 0 \leq m+n-j \leq 2 n . \\ 0 \text { otherwise. }\end{cases}$
$\varepsilon_{j}^{\mathbf{l}}\left(q^{m} x_{o}, q^{-n_{y}}\right)= \begin{cases}\alpha_{m, n, m+n-j} & \text { if } m+n-j \text { is odd and } \\ 0 \leq m+n-j \leq 2 n . \\ 0 \text { otherwise. }\end{cases}$
$\varepsilon_{j}^{\prime}\left(q m_{x_{0}, q} n_{y_{0}}\right)= \begin{cases}\beta_{m, n, m+n-j} & \text { if } m+n-j \text { is even and } \\ 0 \leq m+n-j \leq 2 n . \\ 0 \text { otherwise. }\end{cases}$
Straight and distorted belts. In a similar way, f $\varepsilon \mathcal{M}_{\boldsymbol{H}}(\mathrm{H})$ can be continued uniquely to entire H from the straight and
distorted belts. If f is known on the points $\left\{\left(q^{m} x_{0}, q^{n} y_{o}\right)\right.$; $m \varepsilon Z, n=m, m+1\} \bigcup\left\{\left(q^{m} x_{0}, q^{n} y_{0}\right) ; m \varepsilon Z, n=-m,-(m+I)\right\}$, by a similar procedure as (2.54), the continuation to any point is possible. Likewise the uniqueness also is guaranteed.

DISCRETE q-INTEGRATION AND CAUCHY'S PROBLEM

In this chapter discrete integration is developed. Integrals of the first and second types i.e, the line integral and the inverse of q-monodiffric derivate respectively are defined. The integral of the first type is expressed as a finite sum of the function values at certain points which form a curve in H while the integral of the second type is the solution of a pair of partial q-difference equations which again is expressed as a sum of function values at certain points in the given domain. In the second case, if the integral is known on the annular boundary of a domain, the function is determined for the entire domain. Considering H as a domain, it is true that if the integral of the second type is known on the annular boundary of it namely the lattice points on the azes, it is fully determined in H .

For convenience, the integrals of first and second types are called S - and -integrals and thus symbolically $g=\delta^{-1}$.

The 5 -integral possesses many important results analogous to classical integral connected to singularity, pole and contour, but it lacks that the integral of a
q-monodiffric function in a domain is q-monodiffric there whereas the second holds this though it is handicapped by many properties of contour integration. Thus both the integrals taken together represent the theory of integration in q-monodiffric study of functions and plays the same role of classical integration.

Both of these analogues of integration reduce to the Riemannian integration in the limit case as $q \rightarrow$.

1. Integral of the First Type

The following definitions are essential for the development of the theory of the integral of the first type. Singularity of a function. Λ function $f: H \longrightarrow \not \subset$ satisfying

$$
\left\{\begin{aligned}
\operatorname{Mif}\left(z_{r}\right)= & a_{r} ; a_{r} \neq 0, a_{r} \varepsilon \not \subset \text { and finite } \\
& r=1,2, \ldots, n \text { and } z_{r} \varepsilon D \\
\operatorname{Mf}(z)= & 0 ; z \varepsilon D, z \neq z_{r}, r=1,2, \ldots, n
\end{aligned}\right.
$$

is called a q-monodiffric function in D with singularities at $z_{1}, z_{2}, \ldots, z_{n}$ 。
q-Meromorphic function. Let $g \varepsilon \sqrt{ } /\left(9(D), z_{1}, z_{2}, \ldots, z_{n}\right.$ εD and $f: H \rightarrow \notin$ satisfying
$f(z)=\left\{\begin{array}{l}g(z) ; z \varepsilon D, z \neq z_{1}, z_{2}, \ldots, z_{n} \\ \infty \text { if } z=z_{1}, z_{2}, \ldots, z_{n} .\end{array}\right.$

Then $f(z)$ is said to be q-meromorphic in D with z_{1}, z_{2}, \ldots and z_{n} as poles.

We note $f(z)$ is q-monodiffric at z_{1}, z_{2}, \ldots and z_{n}, but not at points on the basic quadrilaterals of z_{1}, z_{2}, \ldots and z_{n}. Thus if $f(z)$ is q-meromorphic in D with the poles at z_{1}, z_{2}, \ldots and z_{n}, then $f(z) \varepsilon \mathcal{J} l(D)$ where

$$
\begin{equation*}
D=D-\left\{\tau\left(z_{i}\right) ; i=1,2, \ldots, n\right\} \tag{3.3}
\end{equation*}
$$

We note that $\frac{l}{Z-Z_{0}}, z_{o} \varepsilon H$, is not q-monodiffric anywhere in H. Hence $\frac{1}{z-z_{0}}$ is not a meromorphic function.

If f is a q-meromorphic function in D having every $z \varepsilon \square$ as a pole, then $f \varepsilon \mathcal{U} \mathcal{G}(D-\phi)$ where A is the region for which D is the interior.

If f is a q-meromorphic function having every point of a straight ray (distorted ray) a pole, then f $\varepsilon \sqrt{M}(H-\phi)$ where $\$$ is the region consisting of the straight ray (distorted ray) together with its adjacent rays.

The result is true if we consider rays like $\left\{\left(q^{m} x_{1}, q^{n} y_{1}\right) ; m \varepsilon Z, n\right.$ fixed $\}$.

Let us consider q-monodiffric constants:
$\left\{\alpha:\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)\right\}$. If α_{1} or α_{4} is infinite we get $\alpha \varepsilon \mathbb{M}\left(\mathrm{H}_{2}\right)$. If α_{2} or α_{3} is infinite we get α \& $\mathbb{M}\left(\mathrm{H}_{1}\right)$.

Apain if α_{1} and α_{2} (or α_{3} and α_{4}) are infinite, α is q-monodiffric nowhere in H and hence it is not q-meromorphic.

S_integral. The integral of the first type is defined along diagonal-wise path.

If z_{j} and z_{j+1} are two diagoneliy adjacent points in H, then the line integral from z_{j} to z_{j+1} is

$$
\int_{z_{j}}^{z_{j+1}} f(z) d(z: q)=\frac{f\left(z_{j+1}\right)+f\left(z_{j}\right)}{2}\left(z_{j+1}-z_{j}\right) \cdot
$$

$$
\text { If } C \equiv\left\langle z_{o}, z_{I}, \ldots, z_{r}, z_{r+1}, \ldots, z_{n}\right\rangle \text { is a discrete }
$$

curve in H ,

$$
\begin{equation*}
\widehat{C}_{C} f(z) d(z: q)=\sum_{j=1}^{n} \frac{f\left(z_{j}\right)+f\left(z_{j-1}\right)}{2}\left(z_{j}-z_{j-1}\right) \tag{3.5}
\end{equation*}
$$

Iinearity. Let $f, g: H \rightarrow \notin, C_{1} \equiv\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle$ and $C_{2} \equiv\left\langle z_{n}, z_{n+1}, \ldots, z_{m}\right\rangle$

Then for $C=C_{1}$ or C_{2},
a) $S_{C} f_{-1} f(z) d(z: q)=-\int_{C} f(z) d(z: q)$
b) $\int_{C}(f+g)(z) d(z ; q)=\int_{C} f(z) d(z: q)+\int_{C} g(z) d(z: q)$
c) $\int_{C}(\alpha f)(z) d(z: q)=\alpha \int_{C} f(z) d(z: q), \alpha \varepsilon \not \subset$

We can see by direct calculation that

$$
\begin{align*}
& \text { if } C \equiv<(q x, y),(x, q y),\left(q^{-1} x, y\right),\left(x, q^{-1} y\right),(q x, y)> \\
& \int_{C} f(z) d(z: q)= \\
& =\frac{q^{-1}-q}{2} \operatorname{Mf}(x, y) \tag{3.7}\\
& \quad=0 \text { if } f \text { is } q \text {-monodiffric at }(x, y) .
\end{align*}
$$

Now if C is a simply closed curve in H_{l} which encloses only two points, then these points will be in H_{2}. Then if C_{1} and C_{2} are the basic quadrilaterals of these points by simplification we get

$$
\begin{equation*}
\mathrm{S}_{\mathrm{C}_{1}} f(z) d(z: q)+\mathrm{S}_{\mathrm{C}_{2}} f(z) d(z: q)=\mathrm{S}_{\mathrm{C}} f(z) d(z: q) \tag{3.8}
\end{equation*}
$$

Then by actual integration we get that if $\mathrm{C} \varepsilon \mathrm{Hi}_{I}$ is a simply closed curve and C encloses z_{1}, z_{2}, \ldots and z_{n} belonging to H_{2} as interior points, then
$\sum_{j=1}^{n} \int_{C_{j}} f(z) d(z: q)=\int_{C} f(z) d(z: q)$ where C_{j} is the basic
quadrilateral of z_{j}.

Thus if C is a simply closed curve belonging to H_{1}, than C can be replaced by basic quadrilaterals $\mathrm{C}_{\mathrm{j}}^{\prime}$ s of every interior point z_{j} of C belonging to H_{2}.

Hence if f is q-monodiffric at every z_{j}, we get $\int_{C} f(z) d(z: q)=0$.

Similarly simply closed curves belonging to H_{2} is considered. Thus using the properties of a packed domain we have:

Theorem 1. If D is a packed domain, $\dot{f}: H \rightarrow \varnothing$ has no singularity in $H_{i} \cap D$ and $C \varepsilon H_{j}$, $i \neq j$, then $S_{C} f(z) d(z: q)=0$.

Let two curves $C_{1} \equiv\left\langle z_{1}, z_{2}, \ldots, z_{n-1}, z_{n}\right\rangle$ and
$C_{2} \equiv\left\langle z_{i}, z_{2}^{\prime}, \ldots, z_{n-1}^{\prime}, z_{n}\right\rangle$ belonging to H_{j} lie wholly in a packed domain D. Also let $C_{1} \cap C_{2}=\left\{z_{1}, z_{n}\right\}$. Then $C_{1}+C_{2}^{-1}$
is a simply closed curve in D belonging to H_{j}. Let us assume f has no sinflilarity in $H_{i} \| D$, $i \neq j$. Then by the above theorem,
$f \varepsilon M_{(D)} \Rightarrow S_{\mathrm{C}_{1}+\mathrm{C}_{2}^{-1}} f(z) \mathrm{d}(z: q)=0$

$$
\Rightarrow S_{C_{1}} f(z) d(z: q)=S_{C_{2}} f(z) d(z: q) .
$$

Thus we have:
Theorem 2. If D is a packed domain and $f: H \rightarrow \varnothing$ has no singularity in $H_{i} \cap D$ and z_{I} and $z_{n} \varepsilon H_{j} \cap D$ where i and j are different, then
z_{n}
S $f(z) d(z: q)$ is path independent.
z_{1}

Let us assume $f: H \rightarrow \not \subset$ satisfies that
$\int_{C} f(z) d(z: q)=0$ for every closed curve C in S of a packed domain D. This result is true in the cases of every basic quadrilateral in S. Hence $\int_{C} f(z) d(z ; q)=0$ where C is the basic quadrilateral of $(x, y) \varepsilon D$, implies $\operatorname{Mf}(x, y)=0$. Thus we have:

$$
\text { If the } S \text {-integral of } f: H \Rightarrow \neq \varnothing \text { along every }
$$

simply closed curve in S of a packed domain D is zero, then $x_{\varepsilon} \sqrt{ } \operatorname{lo}_{(D)}$.

Let $(x, y) \varepsilon D$ be a singularity of $f: H \rightarrow \not \subset$ in the packed domain $D . C_{1}$ is the basic quadrilateral of (x, y). Then ${\underset{C}{l}}^{S_{l}} f(z) d(z: q)=\frac{q^{-1}-q}{2} \operatorname{Nf}(x, y)$ by (3.7).

Let $(x, y) \varepsilon H_{i}$ and $C \in H_{j}$, $i \neq j$ be a simply closed curve in S. If $(x, y) \varepsilon$ Int C, is the only sinoularity of f in Int C, we see $\int_{C} f(z) d(z: q)=\frac{q^{-1}-q}{2} \operatorname{Mf}(x, y)$ due to the replacement of C into basic quadrilaterals as we saw in (3.7) and (3.9), but if $(x, y) \varepsilon H_{i}$ and $C \varepsilon H_{i}$, we get $\mathrm{S}_{\mathrm{C}} f(z) d(z: q)=0$.

Thus we have:
If (x, y) is the singularity of f in a packed domain D and C is a simply closed curve in S such that $(x, y) \varepsilon$ Int C, then
$S_{C} f(z) d(z: q)=\left\{\begin{array}{l}\frac{q^{-1}-q}{2} M f(x, y) \text { if }(x, y) \varepsilon H_{i} \text { and } C \varepsilon H_{j} i \neq j 。 \\ 0 \text { if }(x, y) \varepsilon H_{i} \text { and } C \varepsilon H_{i} .\end{array}\right.$
Using the above result, theorem 1 of this section and the principle of replacement of a curve by basic quadrilaterals, we arrive at the result:

Theorem 3. Suppose z_{11}, z_{12}, \ldots and $z_{1 m} \varepsilon H_{1}$ and z_{21}, z_{22}, \ldots and $z_{2 n} \quad \varepsilon H_{2}$ are the singularitiss of f in a packed domain D
belonsing to the interior of a simply closed curve C in S then,
$\underset{C}{S_{f}} f(z) d(z: q)= \begin{cases}\frac{q-q}{2} & \sum_{j=1} \operatorname{Hf}\left(z_{l_{j}}\right) \text { if } C \varepsilon H_{2} \\ \frac{q^{-1}-q}{2} & \left.\sum_{j=1}^{n} \operatorname{Hif}_{2 j}\right) \text { if } C \varepsilon H_{I} .\end{cases}$
Let f be a meromorphic function in a packed domain D with $z_{I}=\left(x_{1}, y_{I}\right)$ as the only pole in D. Suppose C is a simply closed curve in D having $z_{j} \varepsilon$ Int C.

C can be replaced by basic quadrilaterals. As we saw earlier, S-integral of f over C is the sum of S-integral of f over these basic quadrilaterals.

If $z_{\mathcal{I}} \varepsilon H_{i}$ and $C \in H_{j}$, $i \neq j$, the basic quadrilaterals of the directly adjacent points of z_{1} are not included in the replacement. Hence due to the q-monodiffricity of f at the other points, we get
$\int_{C} f(z) d(z: q)=0$ if $z_{1} \varepsilon H_{i}$ and $C \varepsilon H_{j}, i \neq j$.
On the other hand, if $z_{I} \varepsilon H_{j}$ and $C \in H_{i}$, we see that the basic quadrilateral of z_{1} is not and the basic quadrilaterals of the adjacent points of z_{l} are included in the replacement of C as the basic quadrilaterals belong to H_{j} if $C \varepsilon H_{i}$, $i \neq j$ 。

Due to the q-monodiffricity of f a.t the points other than the points directly adjacent to z_{1}, we get $\int_{C} f(z) d(z: q)$ depends on the residues of the points directly adjacent to z_{1}. It is also easy to see that $\int_{C} f(z) d(z: q)$ is the sum of residues at $\left(q x_{1}, y_{1}\right),\left(q^{-1} x_{1}, y_{1}\right),\left(x_{1}, q y_{1}\right)$ and $\left(x_{1}, q^{-1} y_{1}\right)$, the directly adjacent points of z_{1}.
Hence $\int_{C} f(z) d(z: q)$

$$
\begin{aligned}
= & \frac{q^{-1}-q}{2}\left[\operatorname{Mf}\left(q x_{1}, y_{1}\right)+\operatorname{Mf}\left(x_{1}, q y_{1}\right)+\operatorname{Mf}\left(q^{-1} x_{1}, y_{1}\right)+\operatorname{Mf}\left(x_{1}, q^{-1} y_{1}\right)\right] \\
= & q^{-1} \bar{z}_{1} f\left(q^{-1} x_{1}, q^{-1} y_{1}\right)+q \bar{z}_{1} f\left(q x_{1}, q y_{1}\right) \\
& +\left(q^{-1} x_{1}-i q y_{1}\right) f\left(q^{-1} x_{1}, q y_{1}\right)+\left(-q x_{1}+i q^{-1} y_{1}\right) f\left(q x_{1}, q^{-1} y_{1}\right) \\
& +j y_{1}\left[f\left(q^{-2} x_{1}, y_{1}\right)-f\left(q^{2} x_{1}, y_{1}\right)\right]+x_{1}\left[f\left(x_{1}, q^{-2} y_{1}\right)-f\left(x_{1}, q^{2} y_{1}\right)\right] \\
= & P f\left(z_{1}\right)(\text { say }) .
\end{aligned}
$$

We name $P\left(z_{1}\right)$ as the polar residue of f at z_{1}.

Thus we have:

Theorem 4. D is a packed domain and C is a simply closed curve in $D . z_{11}, z_{12}, \ldots$ and $z_{1 m} \varepsilon H_{1} \cap D$ and z_{21}, z_{22}, \ldots
and $z_{2 n} \varepsilon \mathrm{H}_{2} \bigcap D$ are the only poles of a q-meromorphic function in D such that $z_{l j}$ does not belone to the set of adjacent points of $z_{2 k}$.

Then $\operatorname{S}_{C} f(z) d(z: q)=\left\{\begin{array}{l}n \\ \sum_{j=1}^{n} f\left(z_{l j}\right) \text { if } C \varepsilon H_{2} \\ m \\ \sum_{j=1} f\left(z_{2 j}\right) \text { if } C \varepsilon H_{l} .\end{array}\right.$
2. q-Monodiffricity of the S-Integral

If z_{1} and $z \in S \prod_{H_{i}}$ where S is the refion of
a packed domain D and $f \varepsilon_{\sqrt{ }} \sqrt{G}(D)$, then
$\int_{z_{1}}^{z_{n}} f(z) d(z: q)=\int_{C} f(z) d(z: q)$ where $C \equiv\left\langle z_{z_{1}}, z_{2}, \ldots, z_{n}\right\rangle$
is a curve in S .
Uniqueness of $\int_{z_{l}}^{z_{n}} f(z) d(z ; q)$ is guaranteed by the path independence of the line integral in S.

Let α and $z=(x, y) \varepsilon D$ such that $\alpha \varepsilon H_{i}$ and $z \varepsilon H_{j}$, $i \neq j$ and $f \varepsilon \mathscr{M}_{(D)}$ where D is a domain in H packed by the curve C.

Then
$\sqrt[N]{Z} f(z) d(z: q)]$
$=x\left[\int_{\alpha}^{z_{0,-1}} f(z) a(z: q)-\int_{\alpha}^{z_{0,1}} f(z) a(z: q)\right]$
$-i y\left[\int_{\alpha}^{z-1,0} f(z) d(z ; q)-\int_{\alpha}^{z_{1}, 0} f(z) d(z ; q)\right]$, where
$z_{j, j}=\left(q^{i x}, q^{j} y\right)$
$=x \int_{z_{0,1}}^{z_{0,-1}} f(z) d(z: q)-i y \int_{z_{1,0}}^{z_{-1}, 0} f(z) d(z: q)$
$=x\left[\frac{f(x, q y)+f\left(q^{-1} x, y\right)}{2}\left(\left(q^{-1}-1\right) x+(q-1) i y\right)\right)$

$$
\begin{aligned}
& \left.+\frac{f\left(q^{-1} x, y\right)+f\left(x, q^{-1} y\right)}{2}\left(\left(1-q^{-1}\right) x+\left(q^{-1}-1\right) i y\right)\right] \\
& -i y\left[\frac{f(q x, y)+f(x, q y)}{2}((1-q) x+(q-1) i y)\right. \\
& \left.+\frac{f(x, q y)+f\left(q^{-1} x, y\right)}{2}\left(\left(q^{-1}-1\right) x+(1-q) i y\right)\right]
\end{aligned}
$$

$=\frac{l-q^{-1}}{2}(x-i y)\left\{x\left[f\left(x, q^{-1} y\right)-f(x, q y)\right]-i q y\left[f\left(q^{-1} x, y\right)-f(q x, y)\right]\right\}$
$=0$ if and only if $f(z)$ is a q-morodiffric constant as
$\operatorname{Mf}(z)=0$ and
$x\left[f\left(x, q^{-1} y\right)-f(x, q y)\right]-i q y\left[f\left(q^{-1} x, y\right)-f(q x, y]=0\right.$ are simultaneously possible if anc only if $f(x, y)=f\left(q^{2 r} x, y\right)=f\left(x, q^{2 s} y\right) ; r, s \varepsilon Z$.

Thus we have:
Theorem 1. f $\varepsilon \sqrt{ } \mathscr{F}(D)$ and $S^{z} f(z) d(z ; q)$ is q-monodiffric in D where D is a packed domain in $H \Leftrightarrow f$ is a q-monodiffric constant in U.

S-integral of a q-monodiffric constant
Let $w=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ be a q-monodiffric constant
and $z=\left(q^{m} x_{0}, q^{n} y_{0}\right) ; m$ is odd and n is even.

$$
\begin{align*}
& =-\sum_{r=0}^{N-1} \frac{\alpha_{2}+\alpha_{3}}{2}\left(q^{r+1}-q^{r}\right)_{z} \\
& =(q-1) \frac{\alpha_{2}+\alpha_{3}}{2} z\left(\sum_{r=0}^{N-1} q^{r}\right) \\
& =\left(1-q^{N}\right) \frac{\alpha_{2}+\alpha_{3}}{2} z \tag{3.16}
\end{align*}
$$

Similarly other possible cases of n and n are discussed. Thus we have
$z_{\mathrm{z}_{\mathrm{N}, N}}^{\mathrm{S}_{\mathrm{N}}} \mathrm{wd}\left(\mathrm{z:q)}= \begin{cases}\left(1-q^{N}\right) \frac{\alpha_{2}+\alpha_{3}}{2} z & \text { if } m+n \text { is ode } \\ \left(1-q^{N^{\top}}\right) \frac{\alpha_{1}+\alpha_{4}}{2} z & \text { if } m+n \text { is even. }\end{cases}\right.$

Expressing the line integral of a a-monodiffric constant as a bifunction we have:

$$
\begin{equation*}
S^{z} w d(z: q)=\left[\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{1}}{4} 4_{z \oplus} \frac{\alpha_{1}+\alpha_{4}-\alpha_{2}-\alpha_{3}}{4} z\right]\left(1-q^{N}\right) \tag{3.18}
\end{equation*}
$$

${ }^{2}{ }_{\mathrm{N}, \mathrm{N}} \mathrm{N}$
Similarly
$z_{Z_{-N, N}}^{S w d(z: q)=} \begin{aligned} & \frac{\alpha_{2}+\alpha_{3}}{2}\left[\left(q^{-N}-1\right) x+i\left(q^{N}-1\right) y\right] \text { if } m+n \text { is odd } \\ & \frac{\alpha_{1}+\alpha_{4}}{2}\left[\left(q^{-N}-1\right) x+i\left(q^{N}-1\right) y\right] \text { if } m+n \text { is even }\end{aligned}$

$$
=\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha}{4}\left[\left(q^{-N}-1\right) x+i\left(q^{N}-1\right) y\right]
$$

$$
\begin{equation*}
\oplus \frac{\alpha_{1}+\alpha_{4}-\alpha_{2}-\alpha_{3}}{4}\left[\left(q^{-N}-1\right) x+i\left(q^{1 N}-1\right) y\right] \tag{3.1.9}
\end{equation*}
$$

and

$$
\begin{aligned}
& \begin{array}{l}
z \\
S_{N,-N} \\
z_{N,}
\end{array}=\left\{\begin{array}{l}
\frac{\alpha_{2}+\alpha_{3}}{2}\left[\left(1-q^{-N}\right) x+i\left(1-q^{N}\right) y\right] \text { if } m+n \text { is od.d. } \\
\frac{\alpha_{1}+\alpha_{4}}{2}\left[\left(1-q^{-N}\right) x+i\left(1-q^{N}\right) y\right] \text { if } m+n \text { is even }
\end{array}\right. \\
& =\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}}{4}\left[\left(1-q^{-1}\right) x+i\left(1-q^{N}\right) y\right] \\
& \oplus \frac{\alpha_{1}+\alpha_{4} 4^{-\alpha} 2^{-\alpha} 3}{4}\left[\left(1-q_{i}^{-N}\right) x+i\left(1-q^{N}\right) y\right] . \quad \text { (3.20) }
\end{aligned}
$$

Thus concluding from the above two results we fet the S-integral of a q-monodiffric constant along the curves: straight ray and distorted ray are bifunctions.

Thus making use of the above two S-integrals along the curves: strairht ray and distorted ray, ${\underset{Z}{z}}_{z}^{z} w(z: q)$ where $z, z_{I} \varepsilon H_{i}$ is found as follows:

The straight ray through z_{1} and the distorted ray through z join at z_{2}. Similarly the other pair join at z_{2}. Then

$$
\begin{align*}
& z_{2}=\left(q^{\frac{m+n}{2}} x_{1}, q^{\frac{m+n}{2}} y_{1}\right) \\
& z_{2}^{\prime}=\left(q^{\frac{m-n}{2}} x_{1}, q^{\frac{n-m}{2}} y_{1}\right) . \tag{3.22}
\end{align*}
$$

From the above figure,

$$
\begin{aligned}
\int_{z_{1}}^{z} w d(z: q) & =\int_{z_{1}}^{z_{2}} w d(z: q)+{\underset{z}{z}}_{z}^{S_{2}} w d(z: q) \\
& =\int_{z_{1}}^{z_{2}^{\prime}} w d(z: q)+\int_{z_{2}^{\prime}}^{z} w d(z: q) \cdot
\end{aligned}
$$

Also $\int_{z_{l}}^{z} d(z: q)$ is a bifunction.
Thus combining the earlier results we have:
Theorem 2. If $w=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ is a q-monodiffric constant and $z, z_{1} \varepsilon H_{i}$ such that $z_{1}=\left(x_{1}, y_{1}\right)$ and $z=\left(q^{m} x_{1}, q^{n} y_{1}\right)$ then $\stackrel{z}{S} w d(z: q)=\frac{\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha}{2}\left[\pm\left(1-q^{N}\right) z \pm\left(\left(q^{-N}-1\right) x+i\left(q^{N}-1\right) y\right)\right]$ z_{1}

$$
\oplus \frac{\alpha_{1}+\alpha_{4}^{-\alpha} 2^{-\alpha} 3}{4}\left[\pm\left(1-q^{N}\right) \pm\left(\left(q^{-N^{N}}-1\right) x+i\left(q^{N}-1\right) y\right)\right]
$$

where $N=\frac{m+n}{2}$.

Extenced integral of the first type. In general we study functions defined in H as $f: H \rightarrow \varnothing$. The nature of such functions in certain cases is important in the limit points namely the lattice points on the axes. Accordingly we define $\bar{H}=H \bigcup{ }_{H} \int_{H_{y}}$ where $H_{X}=\left\{\left(q^{m} x_{0}, 0\right) ; m \varepsilon Z\right\}$ and $H_{y}=\left\{\left(0, q^{n} y_{0}\right) ; n \varepsilon Z\right\}$. Some functions like q-monodiffric constants and bifunctions do not exist in the limit points. On the contrary, quite a lot of functions belonging to $\mathcal{M}(\mathrm{H})$ are well defined in the limit sets: H_{x} and H_{y} also. Thus it is essential to have a study of such functions in $\overline{\mathrm{H}}$ and in particular the line integral of such functions in the limiting case also deserves some notice.

Let $f \in \mathcal{M O}_{(D)}$ and $C \equiv$
$<\left(q^{n} x, y\right),\left(q^{n-\frac{1}{x}}, q y\right), \ldots,\left(q^{n-1} x, q^{2 k-1} y\right),\left(q^{n} x, q^{2 k} y\right)>_{\varepsilon} p$.
Then from $\int^{\left(q^{n} x, q^{2 k}\right)} f(z) d(z: q)$, using

$$
\left(q^{n} x, y\right)
$$

we get,

$$
\begin{align*}
\left(0, q^{2 k} y\right) & f(z) d(z: q)= \\
(0, y) & (q-1) i y f(0, y)+\left(q^{2 k}-q^{2 k-1}\right) i y f\left(0, q^{2 k} y\right) \\
& +\sum_{r=1}^{\infty}\left(q^{r+1}-q^{r-1}\right) i y f\left(0, q^{r} y\right) \tag{3.24}
\end{align*}
$$

Also,

with the assumption $f(0,0)$ is finite.

As in the above example, we get,
$\left(q_{(x, 0)}^{2 k_{x, 0}} f_{(z) d(z: q)}=(q-1) x\left[f(x, 0)+q^{2 k-1} f\left(q^{2 k} x, 0\right)\right.\right.$

$$
\begin{equation*}
\left.+(q+1) \sum_{r=1}^{\infty} q^{r-1} f\left(q^{r} x, 0\right)\right] \tag{3.26}
\end{equation*}
$$

and
$(0,0)$
$\int_{(x, 0)}^{S} f(z) d(z ; q)=(q-1) x\left[f(x, 0)+(q+1) \sum_{r=1}^{\infty} f\left(q^{r} x, 0\right)\right]$
with the assumption $f(0,0)$ is finite.
3. Integral of the Second Type

As in the classical theory of both continuous and discrete functions, integration is also viewed as the inverse of derivation.
Definition. Let $f \varepsilon \mathscr{O}(D)$ and $z \varepsilon S$. Any solution of the pair of q-difference equations
$F\left(a^{-1} x, y\right)-F(q x, y)=\left(q^{-1}-q\right) x f(x, y)$
and
$F\left(x, q^{-1} y\right)-F(x, q y)=\left(q^{-1}-q\right) i y f(x, y)$
is denoted as $F(x, y)=\oint_{f}(z)$ and it is called an
Y -integral of $f(z)$ 。
It is easy to note that $f_{f}(z)$ is defined in a set D^{-1} whose interior is S. Accordingly D^{-n} is defined as the set whose interior is $D^{-(n-1)}$.

Also in the limiting case, the annular boundary of H reduces to the points on the axes.

In earlier theories, integration is treated uniquely to represent the 'inverse of differentiation' and 'summation', but in this theory two different concepts are developed. Then the relation between them is evolved in \bar{H}.
q-Ficnodiffricity of \mathcal{y}-integral
From the definition of $f(z)$, we get
$\frac{F\left(q^{-1} x, y\right)-F(q x, y)}{\left(q^{-1}-q\right) x}=\frac{F\left(x, q^{-1} y\right)-F(x, y)}{\left(q^{-1}-q\right) i y}=f(x, y)$
for $(x, y) \varepsilon S$.
Thus we get:

$$
\begin{align*}
& \text { If } f \varepsilon \mathcal{U}^{\prime} \mathscr{M}_{(D)} \text { and } \mathcal{G}_{\mathrm{f}(\mathrm{z})} \text { exists, then } \\
& g_{\mathrm{f}(\mathrm{z})} \mathbb{M O}_{(\mathrm{s})} \text {. } \tag{3.29}
\end{align*}
$$

Linearity of S-integral. From the definition of $F(x, y)$ it follows that
if $f, g \varepsilon \mathbb{G} \not \mathscr{M}_{(D),}(f+\xi)(z)=g_{f(z)} g_{g(z)}$ and $g(\alpha f)(z)=\alpha g_{f}(z)$ in $S, \alpha \varepsilon \varnothing$.

The value of $f_{f}(z)$ at $\left(x_{1}, y_{1}\right) \varepsilon H$ is denoted by $F\left(x_{1}, y_{1}\right)$.

Let D be a packed domain such that if $\varepsilon \mathbb{M}(D)$. Also we know $F(x, y)$ for (x, y) belonging to the annular boundary of D namely $\partial_{D} \bigcup \partial_{S}$. Then if $F(x, y)$ exists in D, using (3.28)(1),
$F(x, y)=F\left(q^{2 n+2} x, y\right)+\sum_{j=0}^{n} q^{2 j+1} f\left(q^{2 j+1} x, y\right) x\left(q^{-1}-q\right)$
where $\left(q^{2 n+2} x, y\right)$ belongs to the annular boundary of $D \cdot(3 \cdot 31)$ Then

$$
\begin{aligned}
& F\left(x, q^{-1} y\right)-F(x, q y) \\
&= F\left(q^{2 n+2} x, q^{-1} y\right)+\sum_{j=0}^{n} q^{2 j+1} f\left(q^{2 j+1} x, q^{-1} y\right) x\left(q^{-1}-q\right) \\
&-\left[F\left(q^{2 n+2} x, q y\right)+\sum_{j=0}^{n} q^{2 j+1} f\left(q^{2 j+1} x, q y\right) x\left(q^{-1}-q\right)\right] \\
&= F\left(q^{2 n+2} x, q^{-1} y\right)-F\left(q^{2 n+2} x, q y\right)+\sum_{j=0}^{n} q^{2 j+1}\left[f\left(q^{2 j+1} x, q^{-1} y\right)\right. \\
&\left.-f\left(q^{2 j+1} x, q y\right)\right] x\left(q^{-1}-q\right)
\end{aligned}
$$

$$
\begin{aligned}
&= F\left(q^{2 n+2} x, q^{-1} y\right)-F\left(q^{2 n+2} x, q y\right)+ \\
& \sum_{j=0}^{n}\left[f\left(q^{2 j} x, y\right)\right. \\
&\left.-f\left(q^{2 j+2} x, y\right)\right] i y\left(q^{-1}-q\right) \\
&= i y\left(q^{-1}-q\right) f\left(q^{2 n+2} x, y\right)+\left[f(x, y)-f\left(q^{2 n+2} x, y\right)\right] i y\left(q^{-1}-q\right) \\
&= i y\left(q^{-1}-q\right) f(x, y) .
\end{aligned}
$$

Thus we see that 3.31 satisfies (2) in 3.28 also.
Also
$F(x, y)=F\left(x, q^{2 m+2} y\right)+\sum_{j=0}^{m} q^{2 j+I_{f}\left(x, q^{2 j+1} y\right) i y\left(q^{-1}-q\right)}$
where $\left(x, q^{2 m+2} y\right)$ belongs to the annular boundary of D.

Similarly 3.32 also satisfies both (1) and (2)
in 3.28. Thus 3.31 and 3.32 are solutions of 3.28 .
If $f \varepsilon \mathbb{M}(D)$ and $F(x, y)$ exists in D, then
$F(x, y)=g_{f(z)}$ can be continued uniquely to D from the annular boundary of D.

The above result can be extended to the case $D=H$. In this case, the annular boundary reduces to the lattice points on the axes.

Thus

$$
\text { If } f \varepsilon \mathcal{M}_{(H)} \text { and } F(x, y) \text { exists in } H \text { and } F(x, y)
$$

is known on the axes, then we can continue $F(x, y)$ to entire H from the axes.

Thus
$F(x, y)=\left(q^{-l}-q\right) x \sum_{j=0}^{\alpha} q^{2 j+l} f\left(q^{2 j+l} x, y\right)+F(0, y)$,
$F(x, y)=\left(q^{-1}-q\right) i y \sum_{j=0}^{\infty} q^{2 j+1} f\left(x, q^{2 j+1} y\right)+F(x, 0)$,
$F(x, y)=\left(q^{-l}-q\right) x \sum_{j=0}^{\infty} q^{-(2 j+l)} f\left(q^{-(2 j+l)} x, y\right)+F\left(x_{y}, y\right)$
and
$F(x, y)=\left(q^{-1}-q\right)$ iy $\sum_{j=0}^{\infty} q^{-(2 j+1)} f\left(x, q^{-(2 j+1)} y\right)+F(x, \infty)$
give $F(x, y)$ determined in H if $F(O, y)=\varnothing_{1}(y)$
$F(x, 0)=\psi_{1}(x), F(\infty, y)=\varnothing_{2}(y)$ or $F\left(x,(x)=\mathcal{H}_{2}(x)\right.$ is known.
If $f\left(q^{2 j} x, y\right)$ and $f\left(x, q^{2 j} y\right)$ are of order $O\left(q^{-j}\right)$, first two series are convergent in H. Third and fourth serii are convergent depending on $f\left(q^{-(2 j+l)} x, y\right)$ and $f\left(x, q^{-(2 j+1)} y\right)$ are of order $O\left(q^{3 j}\right)$ 。
Uniqueness of $G_{\text {-integral. }}$ It is a trivial example that if $F(z)$ is an G-integral of $f(z), F(z)+w$ where w is a q-monodiffric constant, is also an -integral of $f(z)$, in certain domain.

Conversely, if $F_{1}(z)$ and $F_{2}(z)$ are g-interrals of $f(z) \varepsilon \mathcal{M}\left(0(D)\right.$, let $F_{2}(z)=F_{1}(z)+\xi(z)$.

Then from the governing q-difference equations (3.28), we get
$g\left(q^{-1} x, y\right)=g(q x, y)$ and $g\left(x, q^{-1} y\right)=g(x, q y)$, for every $(x, y) \in S$.

Thus we have:
$F_{1}(z)$ and $F_{2}(z)$ are -integrals of $f(x, y) \varepsilon \sqrt{M}(D)$
$\Leftrightarrow F_{2}(z)=F_{1}(z)+w$ in S where w is a q-monodiffric constant.
4. Relation between the Integrals

The integral of the first type of $f \varepsilon \sqrt{ } / 6(D)$
where D is a packed domain is expressible in terms of integral of the second type of f. Fror this purpose we define two curves $C^{h}(x, y)$ and $C^{\mathrm{V}}(x, y)$. Let D contain them. $C^{h}(x, y)$

$$
\begin{equation*}
\equiv<(x, y),(q x, q y),\left(q^{2} x, y\right), \ldots,\left(q^{2 n_{x}}, y\right),\left(q^{2 n+l_{x}}, q y\right), \ldots> \tag{3.37}
\end{equation*}
$$

and

$$
\begin{align*}
& C^{V}(x, y) \\
& \quad \equiv<(x, y),(q x, q y),\left(x, q^{2} y\right), \ldots,\left(x, q^{2 n} y\right),\left(q x, q^{2 n+1} y\right), \ldots> \tag{3.38}
\end{align*}
$$

Then

$$
\begin{aligned}
& S_{C^{h}(x, y)} f(z) d(z a)=\sum_{j=0}^{\infty} f\left(q^{2 j} x, y\right)+\frac{f\left(q^{2 j+1} x, q y\right)}{2}\left[\left(q^{2 j+1}-q^{2 i}\right) x\right. \\
& \quad+(q-1) i y] \\
& +\sum_{j=0}^{i \infty} \frac{f\left(q^{2 j+1} x, q y\right)+f\left(q^{2 j+2} x, y\right)}{2}\left[\left(q^{2 j+2} \cdots q^{2 j+1}\right) x+(q-1) i y\right] \\
& =\frac{1}{2} f(x, y)[(q-1) x+(q-1) i y] \\
& \quad+\frac{1}{2} \sum_{j=0}^{\infty} f\left(q^{2 j+2} x, y\right)\left(q^{2 j+3}-q^{2 j+1}\right) x \\
& \quad+\frac{1}{2} \sum_{j=0}^{\infty} f\left(q^{2 j+1} x, q y\right)\left(q^{2 j+2}-q^{2 j}\right) x \\
& =\frac{1}{2} f(x, y)(q-1) z+\frac{1}{2} \sum_{j=0}^{\infty} f\left(q^{2 j+2} x, y\right)\left(q^{-1}-q\right) q^{2 j+2} x
\end{aligned}
$$

Thus we have:

$$
\begin{align*}
& \int_{C^{h}(x, y)}^{S} f(z) d(z: q)+F(0, y)+F(0, q y) \\
& =\frac{1}{2}(q-I) z f(x, y)+\frac{1}{2} F(q x, y)+\frac{1}{2} F(x, q y) . \tag{3.39}
\end{align*}
$$

By similar calculations we get that

$$
\begin{align*}
& \quad S_{C^{v}(x, y)} f(z) d(z: q)+F(x, 0)+F(q x, 0) \\
& =\frac{1}{2}(q-1) z f(x, y)+\frac{1}{2} F(q x, y)+\frac{1}{2} F(x, q y) . \tag{3.40}
\end{align*}
$$

5. Standard Integrals

A few standard integrals are worked out in this section.
Example 1. If c is a complex constant, then f

$$
\begin{aligned}
& =\left(q^{-1}-\underline{q}\right) x \sum_{j=0}^{\infty} q^{2 j+1} c+F(0, y) \\
& =\left(q^{-1}-q\right) i y \sum_{j=0}^{\infty} q^{2 j+1} c+F(x, 0) .
\end{aligned}
$$

Thus $f_{c}=c x+F(0, y)=c i y+F(x, 0)$.
Hence $f_{c}=c z+w$ where w is a q-monodiffric constant.

Example 2. Let $u(z)=\left(\alpha_{1}, \alpha_{2}, \alpha_{2}, \alpha_{1}\right)$ be a biconstant. We can also represent as $u(x, y)=\frac{1+(-1)^{m+n}}{2} \alpha_{1}+\frac{1-(-1)^{m+n}}{2} \alpha_{2}$.

Then proceeding as in the above example,
$f_{u}(z)=\left\{\begin{array}{lllll}\alpha_{2} z & \text { if } & z & \varepsilon & H_{2} \\ \alpha_{1} & z & \text { if } & z & \varepsilon\end{array} H_{1}\right.$.
Thus we get the solution as
$\mathscr{f}\left(\alpha_{1}, \alpha_{2}, \alpha_{2}, \alpha_{1}\right)=\left[{\frac{1+(-1)^{m+n}}{2}}^{m} \alpha_{2}+\frac{1-(-1)^{m+n}}{2} \alpha_{1}\right] z+w$ where w is a q-monodiffric constant.
Incidentally we found that the \mathcal{H}-integral of a biconstant is a bifunction:
$\mathscr{f}\left(\alpha_{1}, \alpha_{2}, \alpha_{2}, \alpha_{1}\right)=\left(\alpha_{2}+\alpha_{1}\right) z \oplus\left(\alpha_{2}-\alpha_{1}\right) z+w$.

Example 3. Let w be a q-monodiffric constant namely $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$. calculating $y_{\text {w }}$
$G_{w}=\left\{\begin{array}{l}\alpha_{2} x+\alpha_{3} \text { iv if } m \text { is even, } n \text { is even } \\ \alpha_{4} x+\alpha_{1} i y \text { if } m \text { is even, } n \text { is odd } \\ \alpha_{1} x+\alpha_{4} i y \text { if } m \text { is odd, } n \text { is even } \\ \alpha_{3} x+\alpha_{2} i y \text { if } m \text { is odd, } n \text { is odd. }\end{array}\right.$
We can also note that the above solution is the solution of the equation $\delta^{2} f(z)=0$.

Example 4. Let $5, \rho \in \sqrt{\operatorname{Co}}(\mathrm{D})$.
Then $(f \oplus g)(z)=f(z)+(-1)^{m+n_{g}}(z) \varepsilon \sqrt{ } /(O(D)$.
Calculating $G_{\text {-integral }}$
 q-monodiffric constant.

BASIC PROPERTIES OF DISCRETE POSITIVE POWERS

Discrete powers are introduced in discrete function theory to replace the usual powers of the classical analysis. z^{n} is not analytic in any discrete theory whereas $z^{(n)}$ is defined to suit discrete analyticity in every such theory. In this chapter the q-monodiffric analogue of z^{n} is introduced and properties are discussed. $z^{(n)}$ is q-monodiffric in H.

Infinite series of discrete powers whose coefficients are from complex numbers is discussed. Criterion for convergence of such series and a comparison test comparing the discre series with a known classical counterpart are found. This provides a sufficient condition for an infinite discrete series to represent a q-monodiffric function.

Polynomial theories of discrete powers defined over complex numbers, biconstants and q-monodiffric constants are studied. They are called respectively discrete polynomials, bipolynomials and qm-polynomials. An attempt is made to investigate zeroes of these polynomials. Quadratic polynomials are studies in detail.

1. Discrete Powers

Isaacs, Duffin and Harmen defined ciscrete
powers. Here a more general class of discrete powers is found by defining in another way thus removino some difficulties occurring in the earlier literature of discrete powers and polynomial theory.

$$
q \text {--binomial coefficients } C_{n, j} \text { are defined as }
$$

$C_{n, j}=\prod_{r=0}^{j-1} \frac{q^{-(n-r)}-q^{n-r}}{q^{-1}-q} n, j \quad \varepsilon Z^{+}, j \quad n$
and
$C_{n, 0}=1$
$(j)_{q}!=\prod_{r=0}^{j-1} \frac{q^{-(r+1)}-q^{r+1}}{q^{-1}-q}$ for $\varepsilon \varepsilon Z^{+}$
and
$(0)_{q}!=1$ is called the qm-factorial.
q-monodiffric discrete powers for any nonnesative integral index is defined as

$$
\begin{align*}
z^{(n)}= & \prod_{j=0}^{n-1}\left(x+i q^{-(n-1)+2 j} y\right)=\prod_{j=0}^{n-1}\left(q^{\left.-(n-1)+2 j_{x+i y}\right)}\right. \\
& \text { for } z \varepsilon H, n \varepsilon Z^{+} \text {and } Z^{(0)}=1 . \tag{4.3}
\end{align*}
$$

We write equivalently
$z^{(n)}=[x+i y]_{n},[x+i y]_{0}=1$. phis notation is analogous to the q-basic $(x+i y)_{n}$.

A discrete product for such powers is introduced as
$z^{(n)_{*}} z^{(n)}=[x+i y]_{m}^{*}[x+i y]_{n}=[x+i y]_{m+n}=z^{(m+n)}$.

In another way writing,
$z^{(m+n)}=[x+i y]_{n+n}$

$$
=\prod_{j=0}^{m+n-l}\left(x+i q^{\left.-(m+n-l)+2 j_{y}\right)}\right.
$$

$$
=\prod_{j=0}^{m-l}\left(x+i q^{-(m+n-l)+2 j} y\right) \prod_{j=m}^{m+n-1}\left(x+i q^{-(m+n-1)+2 j} y\right)
$$

$$
=\left[x+i q^{-n} y\right]_{m}\left[x+i q^{m} y\right]_{n}
$$

Also
$z^{(m+n)}=\left[x+i q^{-m} y\right]_{n}\left[x+i q^{n} y\right]_{m}$.

Thus we have:
Theorem 1. $z^{(m)_{* z}}{ }^{(n)}=\left(x+i q^{-n} y\right)^{(m)}\left(x+j q^{m}\right)^{(n)}$

$$
=\left(x+i q^{-m} y\right)^{(n)}\left(x+i q^{n} y\right)^{(m)}
$$

Now we solve the simplest of polynomial equations namely $z^{(n)}=0$. The proof directly follows from $z^{(n)}=[x+i y]_{n}$ as both the real and imaginary parts of each $j^{\text {th }}$ factor $\left(x+i q^{-(n-1)+2 j}\right)$ vanish.

Theorem 2. The polynomial equation $z^{\left(n_{1}\right)}=0$ has n and only n zeroes which are at origin.

It is easy to note that $M z{ }^{(n)}=0$ for every $z \varepsilon H$
and $\delta_{x^{2}}{ }^{(n)}=\delta_{y^{2}} z^{(n)}=(n) q^{(n-1)}$
where $(n)_{q}=\frac{q^{-n}-q^{n}}{q^{-1}-q}$ for $n \varepsilon z^{+}$.

Thus we have:
Theorem 3. $z^{(n)} \varepsilon V^{V}(G)$ and $\delta z^{(n)}=(n)_{q} z^{(n-1)}$ for $n \varepsilon Z^{+}$ and $\delta z^{(0)}=0$.

The following simple results are immediate.
a) $\lim _{q \rightarrow 1} z^{(n)}=z^{n} ; \lim _{q \rightarrow 1} \delta z^{(n)}=n z^{n-1}$
b) $\lim _{z \rightarrow 0} z^{(n)}=0, n>0 ;\left(\lambda_{z}\right)^{(n)}=\lambda^{n_{z}(n)}$ for $\lambda_{\varepsilon} \not \subset$.

The discrete power of z to the index n can also be expressed as a sum of $(n+1)$ terms. For this purpose we need the following result.

A homoseneous tipression of the form
$\sum_{j=0}^{n} \alpha_{j} x^{n-j}(i y)^{j}, \alpha_{o}=I$ and $\alpha_{j} \varepsilon R$ is q-monodiffric in H
if and only if $\alpha_{j}=C_{n, j}$.
As the product $\prod_{j=0}^{n-1}\left(x+i q^{-(n-1)+2 j} y\right)$ is homogeneous
in x and y and coefficient of x^{n} is l , using the above result we have
Theorem 4. $z^{(n)}=\prod_{j=0}^{n-1}\left(x+i q^{-(n-l)+2 j} y\right)=\sum_{j=0}^{n} c_{n, j} x^{n-j}(i y)^{j}$ for $n \varepsilon Z^{+}$.

$$
\text { Let us investigate a few estimates of } z^{(n)}
$$

1) $z^{(2 k)}=\prod_{j=0}^{2 k-1}\left(x+i_{q}-2 k+2 j+1 y\right)$
k-1
$=\prod\left(x+i q^{2 k-2 j-1} y\right)\left(x+i q^{-2 k+2 j+1} y\right)$. $\mathrm{j}=0$

Thus

$$
\begin{aligned}
= & \prod_{j=0}^{k-1} q^{-2 k+2 j+1}\left(x+i q^{2 k-2 j-1} y\right)\left(q^{2 k-2 j-1} x+i y\right) \\
= & \prod_{j=0}^{k-1} q^{2 k-2 j-1}\left(x+i q^{-2 k+2 j+1} y\right)\left(q^{-2 k+2 j+1} x+i y\right) .
\end{aligned}
$$

$z^{(2 k)}$

$$
\begin{array}{r}
\text { Using }\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right| \text { and simplifying we get } \\
q^{k^{2}}\left|z^{2 k}\right| \leq\left|z^{(2 k)}\right| \leq q^{-k^{2}}\left|z^{2 k}\right| \tag{4.9}
\end{array}
$$

Similarly
$q^{k(k+l)}\left|z^{2 k+1}\right| \leq z^{(2 k+l)}\left|\leq q^{-k(k+l)}\right| z^{2 k+l} \mid$.

Combining we have

$$
q^{\left[\frac{n}{2}\right]\left[\frac{n+1}{2}\right]} \quad|z|^{n} \leq\left|z^{(n)}\right| \leq q^{-\left[\frac{n}{2}\right]\left[\frac{n+1}{2}\right]}|z|^{n}
$$

where [s] means the integral part of s.
2) From $z^{(n)}=\prod_{j=0}^{n-1}\left(x+i q^{-(n-l)+2 j} j_{y}\right.$, by combining the
factors $\left(x+i q^{-(n-1)+2 j} y\right)$ and $\left(x+i q^{n-1-2 j} y\right)$ and simplifying we get $\left|z^{(n)}\right| \geq|z|^{n}$.

Likewise $\left|z^{(n)}\right|=\left|(x+i q y)^{(n-1)}\right|\left|x+i q^{-(n-1)} y\right|$
i.e., $\mid z\left(n y\left|\geq|x+i q y|^{n-1}\right| x+i q^{-(n-1)} y \mid\right.$
and $\left|z^{(n)}\right| \geq\left|x+i q^{n-1} y\right|\left|x+i q^{-1} y\right|^{n-1}$.

The following result is an inequality between
$z^{(n)}$ and $z^{(n+1)}$.

$$
\begin{aligned}
& \left|\frac{\mid z(n+l)}{z(n)}\right|=\left|\begin{array}{l}
\prod_{z}^{n}\left(x+i q^{\left.-n+2 j_{z}\right)}\right. \\
\frac{j=0}{n-1} \ldots \ldots \\
\prod_{j=0}\left(x+i q^{\left.-(n-1)+2 j_{y}\right)} \mid\right.
\end{array}\right| \\
& =\sqrt{\left|x+i q^{n} y\right|\left|x+i q^{n} y\right|\left|x+i q^{(n-2)} y\right|\left|x+i q^{n-2} y\right|\left|x+i q^{n-4} y\right| \ldots\left|x+i q^{n n} y\right|} . \\
& \left|x+i q^{n-1} y\right|\left|x+i q^{n-3} y\right| \ldots\left|x+i q^{-n+1} y\right| \\
& \text { Using the fact that } \frac{\sqrt{\left|x+i q^{n} y\right|\left|x+i q^{n-2} y\right|}}{\left|x+i q^{n-1} y\right|}>1
\end{aligned}
$$

and so on we get
$\left|\frac{z^{(n+1)}}{z^{(n)}}\right| \geq \sqrt{\left|x+i q^{n} y\right|\left|x+i q^{-n} y\right|}$.
Similarly $\left|\frac{z^{(n+l)}}{z^{(n)}}\right| \leq \frac{\left.\right|_{x+i q^{n} y}| | x+i q^{-n} y \mid}{\left|\left|x+i q^{n-1} y\right|\right| x+i q^{-(n-1)} y \mid}$.

Thus we have:

$$
\begin{equation*}
\left.\left|x+i q^{n} y\right|\left|x+i q^{-n} y\right|\left|z{ }^{(n)}\right| \leq z_{z}^{(n+1)}\left|\leq \frac{\left|x+i q^{n} y\right|\left|x+i q^{-n} y\right|}{\sqrt{\left|x+i q^{n-1} y\right| \mid x+i q^{-(n-1)} y} \mid}\right| z(n) \right\rvert\, \tag{4.17}
\end{equation*}
$$

Also writing in another way
$\left|z^{(n)}\right| \leq \frac{|z(n+1)|}{\sqrt{\left|x+i q^{n} y\right|\left|x+i q^{-n} y\right|} \leq \sqrt{\left|x+i q^{n} y\right|\left|x+i q^{-n} y\right|}\left|z^{(n)}\right| . ~}$
2. Infinite Series

Using the definition of $z^{(r)}$, we study q-monodiffric functions of the type $\sum_{r=0}^{\infty} a_{r^{2}}{ }^{(r)}$ where $a_{r} \varepsilon \ell$ in a certain domain. Thus we get the study of c_{1}-monodiffric functions in terms of Weiestrassian apnroach of an analytic function.

$$
\begin{equation*}
\text { Let us consider } \sum_{r=0}^{\infty} a_{r^{2}}{ }^{(r)} \text { which we write as } \tag{4.19}
\end{equation*}
$$

$\sum_{r=0}^{\infty} b_{r} u_{r}$ where $u_{r}=q^{\frac{r^{2}}{4}} z(r)$ and $b_{r}=a_{r} q^{\frac{-r^{2}}{4}}$.

Then

$$
\begin{equation*}
\frac{u_{r+1}}{u_{r-1}}=\frac{u_{r+1}}{u_{r}} \cdot \frac{u_{r}}{u_{r-1}}=q^{r}\left(x+i q^{r} y\right)\left(x+i q^{-r} y\right) \tag{4.20}
\end{equation*}
$$

$$
\text { Also } \begin{align*}
\lim _{r \rightarrow \infty}\left|\frac{u_{r+1}}{u_{r}}\right|= & \lim _{r \rightarrow \infty} \frac{q^{\frac{(r+1}{4}}}{\frac{r^{2}}{4}}\left|\frac{z(r+1)}{q^{(r)}}\right| \\
\leq & \left.\lim _{r \rightarrow \infty} \frac{2 r+1}{4} \sqrt{x} \right\rvert\, \frac{x+i q^{-r} y \mid}{\left|x+i q^{-(r-1)} y\right|} \\
& \text { using an estimate of } \frac{z^{(r+1)}}{z^{(r)}} \\
= & \lim _{r \rightarrow \infty} \frac{\frac{2 r+1}{4}-r+\frac{(r-1)}{2} \sqrt{x y}}{} \\
& \text { i.e., } \lim _{r \rightarrow \infty}\left|\frac{u_{r+1}}{u_{r}}\right| \leq q^{-\frac{1}{2}} \sqrt{x y} \tag{4.21}
\end{align*}
$$

Also,
$\left|\left|\frac{u_{r}+1}{u_{r}}\right|-\left|\frac{u_{r}}{u_{r-1}}\right|\right|=\left|q^{\frac{2 r+1}{4}}\right| \frac{z^{(r+1)}}{z^{(r)}}\left|-q^{\frac{2 r-1}{4}}\right| \frac{z^{(r)}}{z^{(r-1)}}| |$
$=\left|q \frac{2 r+1}{4} \quad\right| \frac{z^{(r+1)}}{z} \frac{(r-1)}{}| | \frac{z^{(r-1)}}{z^{(r)}}\left|-q^{\frac{2 r-1}{4}}\right| \frac{z^{(r)}}{z(r-1)}| | \frac{z^{(r)}}{z}(r+1)| |$
$=q^{r}\left|x+i q^{r} y\right|\left|x+i q^{-r} y\right|\left|q^{\frac{2 r+1}{4}}\right| \frac{z^{(r-1)}}{z^{(r)}}\left|-q^{\frac{2 r-1}{4}}\right| \frac{z^{(r)}}{z^{(r+1)}}| |$.

But $\left|\frac{z^{(r)}}{z^{(r+1)}}\right| \leq \frac{1}{\left|x+i q^{n} y\right|} \leq \frac{1}{x}$
Thus $\lim _{r \rightarrow \infty}| | \frac{u_{r+1}}{u_{r}}|-| \frac{u_{r}}{u_{r-1}} \|=0$.

Combining the above two results, we get
$\lim _{r \rightarrow \infty}\left|\frac{u_{r+1}}{u_{r}}\right|=\lim _{r \rightarrow \infty}\left|\frac{u_{r}}{u_{r-1}}\right|$.
Then substituting (4.23) in (4.20), we get
$\lim _{r \rightarrow \infty}\left|\frac{u_{r+1}}{u_{r}}\right|=\sqrt{x y}$.

Now to test the convergence of
$\sum_{r=0}^{\infty} a_{r} z^{(r)}=\sum_{r=0}^{\infty} b_{r} u_{r}$,
$\lim _{r \rightarrow \infty}\left|\frac{b_{r+1} u_{r+1}}{b_{r} u_{r}}\right|=\lim _{r \rightarrow \infty}\left|\frac{b_{r+1}}{b_{r}}\right| \sqrt{x y}$.

Hence expressing $b_{r}^{\prime} s$ in terms of $a_{r}^{\prime} s$, we get:
$\sum_{r=0}^{\infty} a_{r} z^{(r)}$ is absolutely convergent in $D \subset H$ if
$\lim _{r \rightarrow \infty}\left|\frac{a_{r+1}}{a_{r}}\right| q^{-\frac{2 r+1}{4}} \sqrt{x y} \leq 1$
for $(x, y) \varepsilon D$.

Thus

$$
\begin{align*}
& \sum_{r=0}^{\infty} a_{r} z^{(r)} \int^{0} O_{(D)} \text { if } \lim _{r \rightarrow \infty}\left|\frac{a_{r+1}}{a_{r}}\right| q^{-\frac{2 r+1}{4}} \sqrt{x y} \leq 1 \\
& \text { for }(x, y) \varepsilon D . \tag{4.26}
\end{align*}
$$

Using the estimate $\left|z^{(n)}\right| \leq q^{-\left[\frac{n}{2}\right]\left[\frac{n+1}{2}\right]}\left|z^{n}\right|$,
root test also gives a similar result namely
if $\lim _{r \rightarrow \infty}\left|a_{r}\right| \frac{l}{r} q^{-\left(\frac{r+1}{4}\right)}|z| \leq 1$ for every $z \varepsilon D$ then
$\sum_{r=0}^{\infty} a_{r} z^{(r)} \sqrt{\mathscr{O}(D) .}$

In fact, due to she fact that an estimate of $z^{(n)}$ is used in the latter, the domain of convergence from the ratio test is more accurate and larper compared to that from the root test.

$$
\sum_{r=0}^{\infty} \frac{z^{(r)}}{(r)!} \text { and } \sum_{r=0}^{\infty} q^{r^{2}}(r) \text { are discrete entire }
$$

in the sense that they are q-monodiffric in H , while $\sum_{r=0}^{\infty} q^{\left.\frac{r(r+1}{4}\right)}{ }_{z}(r)$ is q-monodiffric in a domain in H bounded by the limit points and a distorted ray which is given by the relation $q^{m+n+1} x_{0} y_{0}<l$ where $(x, y)=\left(q^{m} x_{0}, q^{n} y_{0}\right) .(4.28)$

$$
\text { If we take } x_{0}=y_{0}=1, \sum_{r=0}^{\infty} q \frac{r(r+1)}{4}(r) \text { is }
$$

q-monodiffric at (x, y) if $m+n+\frac{1}{2}>0$. Thus we get the domain of convergence of $\left.\sum_{r=0}^{\infty} q \frac{r(r+1}{4}\right)_{z}(r)$ is bounded by the limit points and the distorted ray through $\left(x_{0} ; y_{0}\right)=(I, I)$.

$$
\text { Also, } \sum_{r=0}^{\infty} q^{-\left(\frac{r+1}{2}\right)} \frac{z(r)}{(r)_{q}!} \text { and } \sum_{r=0}^{\infty} \frac{z(r)}{\sqrt{(r)_{q}!}}
$$

are q-monodiffric in certain domains bounded by limit points and distorted rays.

Due to the condition on domain of convergence of $\sum_{r=0}^{\infty} a_{r} r^{z}(r)_{n a m e l y} \lim _{r \rightarrow \infty}\left|\frac{a_{r+1}}{a_{r}}\right| q^{\frac{-2 r+1}{4}} \sqrt{x y}<1$, we get any such domain of convergence is bounded by limit points and a
distorted ray. Thus the circle of convergence in the classical analysis is replaced by a distorted ray of convergence in a -monodiffric theory.

Comparison test. Now we introduce a test to fix the domain of q-monodiffricity of an infinite series in discrete powers.

The domain in the complex plane satisfying $|x+i y| \leq$ a is denoted by D_{a} while the domain in H satisfying $\sqrt{x y} \leq$ a by D_{a}.

$$
\begin{equation*}
\text { Let } \sum_{r=0}^{\infty} a_{r} z^{r} \text { is absolutely convergent in } \square_{a} \text {. } \tag{4.32}
\end{equation*}
$$

Then $\lim _{r \rightarrow \infty}\left|\frac{a_{r+1}}{a_{r}}\right| \cdot a<1$.

$$
\text { Considering } \sum_{r=0}^{\infty} a_{r} q^{\frac{r^{2}}{4}} z^{(r)} \text {, we set }
$$

$\lim _{r \rightarrow \infty}\left|\frac{a_{r+1}}{a_{r}}\right| \frac{q \frac{(r+1)^{2}}{4}}{q \frac{r^{2}}{4}}\left|\frac{z(r+1)}{z^{(r)}}\right|=\lim _{r \rightarrow \infty}\left|\frac{a_{r+1}}{a_{r}}\right| \sqrt{x y}$

$$
\leq \quad \lim _{r \rightarrow \infty}\left|\frac{a_{r}+1}{a_{r}}\right| a<1
$$

Hence we get that $\sum_{r=0}^{\infty} a_{r} z^{r}$ is analytic in
$D \Rightarrow \sum_{a=0}^{\infty} a_{r} q^{\frac{r^{2}}{4}} z^{(r)} \operatorname{M}\left(D_{a}\right)$.
$\sum_{r=0}^{\infty} a_{r} z^{(r)} \varepsilon_{i} M\left(D_{a}\right) \Rightarrow \sum_{r=0}^{\infty} a_{r} q^{-r^{2}} z^{r}$
is analytic in D_{a}.
Thus combining both the results we have:
Theorem. $\sum_{r=0}^{\infty} a_{r} z^{(r)} \varepsilon \sqrt{0}\left(D_{a}\right) \ll \sum_{r=0}^{\infty} z_{r} q^{-\frac{r^{2}}{4}} z^{r}$
is analytic in \square_{a}.
To illustrate, $\sum_{r=0}^{\infty} z^{r}$ is analytic in D_{1} and $\sum_{r=0}^{\infty} q^{\frac{r^{2}}{4}}(r) \varepsilon \sqrt{ } \log _{z}\left(D_{1}\right)$. We get the distorted ray of convergence of $\sum_{r=0}^{\infty} q^{4}{ }_{z}(r)$ is given by the relation $m+n=1$ if $x_{0}=y_{0}=1$.

We can also note that D_{a} represents a circle with radius a in the complex plane while D_{a} renresents a set of lattice points in H enclosed by $x=0, y=0$ and the hyperbola $x y=a^{2}$ in the first quadrant of the complex plane. Also, D_{a} is a finite domain whereas D_{a} is infinite for all finite a. If a is infinite, \square_{a} enlarges to $\not \subset$ and D_{a} to H.
3. Discrete Polynomial Treory

A discrete polynomial is defined as
$p(z)=\sum_{j=0}^{n} a_{j} z^{(j)}, a_{j} \varepsilon \notin, a_{n} \neq 0 \cdot a_{j}^{\prime} s$ are called the
coefficients of the polynomial.

A discrete polynomial is q-monodiffric in H.

+ and * are defined in the set of polynomials as

Degree of the polynomial $\sum_{j=0}^{n} a_{j} z^{(j)}, a_{n} \neq 0$ is n. Decree of $p(z)$ is denoted by $\alpha(p(z))$.
$\left\{\sum_{j=0}^{n} a_{j} z^{(j)}, a_{j} \varepsilon \not \subset, a_{n} \neq 0, n \varepsilon z^{0+}\right\}$ is denoted by $\mathscr{C}^{*}[z]$
where as the integral domain of polynomials:
$\left\{\sum_{j=0}^{n} a_{j} z^{j}, a_{j} \varepsilon \not \subset, a_{n} \neq 0, n \varepsilon z^{0+}\right\}$ by $\not \subset[z]$.
$\not \varnothing^{*}[z]$ is a vector space over $\not \subset$ for which the nonnegative discrete powers $\left\{z^{(n)}\right\}$ form a basis. $\left(\phi^{*}[z],+, *\right)$ is an integral domain. Also $\mathscr{C}^{*}[z]$ is an algebra. We can imbed this interral domain in a field called the rational field of discrete functions.

Due to the isomorphism of $\phi^{*}[z]$ and $\not \subset[z]$, we get the following results.
a) Let $p_{1}, p_{2} \varepsilon \not \mathscr{C}^{*}[z]$ and $p_{2} \neq 0$. Then there exist unique polynomials p_{3} and $p_{4} \varepsilon \mathscr{C}^{*}[z]$ where $d\left(p_{4}\right)<d\left(p_{2}\right)$ or $p_{4} \equiv 0$ such that $p_{1}(z) \equiv p_{3}(z) * p_{2}(z)+p_{4}(z)$.
b) $\emptyset^{*}[z]$ is an Euclidean ring
c) $\ell^{*}[z]$ is a unique factorization domain
d) $\sum_{j=0}^{n} a_{j} z^{(j)} \varepsilon \not \varnothing^{*}[z]$ can be uniqueIy expressed as

$$
\left(z-\alpha_{1}\right) *\left(z-\alpha_{2}\right) * \ldots\left(z-\alpha_{n}\right) \text { where } \alpha_{j} \varepsilon \not \subset \text { satisfying }
$$

$$
\begin{equation*}
\sum_{j=0}^{n} a_{j} z^{j}=\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z-\alpha_{n}\right) \tag{4.4I}
\end{equation*}
$$

Zeroes of the polynomial. z_{1} is a zero of the polynomial $p(z)=\sum_{j=0}^{n} a_{j} z^{(j)}$ if $p\left(z_{I}\right)=0$

Consider $\sum_{j=0}^{n} \mathbf{a}_{j} z^{(j)}, a_{n} \neq 0$ which we can express as
$\sum_{j=0}^{n} a_{j} z^{(j)}=\emptyset_{1}(x, y)+i \phi_{2}(x, y) ;\left(x_{1}, y_{1}\right)$ is a zero of
$\sum_{j=0}^{n} a_{j z}(j)$ means $\phi_{1}\left(x_{I}, y_{1}\right)=0$ and $\emptyset_{2}\left(x_{1}, y_{I}\right)=0$.

Trivially both the equations are of degree n in x and y. The solution of x in terms of y from one equation is substituted in the other and solving we get that there exist at most n^{2} zeroes for the given $n^{\text {th }}$ decree polynomial n
$\sum a_{j} z^{(j)}, a_{n} \neq 0$, if $\varnothing_{1}\left(x_{1}, y_{1}\right)$ and $\mathscr{L}_{2}\left(x_{1}, y_{1}\right)$ are prime to $j=0$
each other.

Now we prove $\varnothing_{1}(x, y)$ and $\emptyset_{2}(x, y)$ are prime to each other. If not, without loss of generality, let $y=a x+b$ be a common factor of them. Then $y=a x+b$ is a factor of $\sum_{j=0}^{n} a_{j} z^{(j)}, a_{n} \neq 0$ also.

$$
\text { Then replacing } y \text { by } a x+b \text { in }
$$

 of degree n, whose coefficient must vanish identically. Considering coefficient of x^{n}, we get $\sum_{j=0}^{n} C_{n, j}(i a)^{j}=0$.

If a $\neq 0$, we replace a by α / β and thus
$(\alpha+i \beta)^{(n)}=0$ which implies $\alpha=0, \beta=0$ due to the fact $z^{(n)}=0 \Rightarrow z=0$. If $a=0$, from the above relation $I=0$. Thus both the cases reduce to contradiction.

Thus we have;
Theorem. A discrete polynomial of degree n cannot have more than n^{2} zeroes.

Due to the fact that $z^{(n)}=z^{n}$ inf anc only if z is a purely real or imaginary point, we get the following result.
of $\sum_{j=0}^{n} a_{j} z^{(j)}$ if and only if α (or i α) is a zero of α is a real number is a zero $\sum_{j=0}^{n} j^{z^{j}}$.

Then using the above result and the classical result that $\sum_{r=0}^{n} a_{r} z^{r}, a_{r} \varepsilon R, a_{n} \neq 0$ and n odd has atleast one real zero, we have:

$$
\begin{equation*}
\sum_{r=0}^{n} a_{r} z^{(r)}, a_{r} \varepsilon R, a_{n} \neq 0 \text {, } n \text { oda, has atleast one } \tag{4.45}
\end{equation*}
$$

real zero.
Consider the quadratic polynomial $z^{(2)}+b z+c$. Without loss of generality we take b , c to be real. To investigate zeroes,

$$
\begin{aligned}
& \left\{\begin{array}{l}
(x+i q y)\left(x+i q^{-1} y\right)+b(x+i y)+c=0 \\
x^{2}-y^{2}+b x+c=0 \\
\left(q+q^{-1}\right) x y+b y=0
\end{array}\right.
\end{aligned}
$$

Zeroes of $z^{(2)}+b z+c$ is the set:
$\left\{\left(\frac{-b \pm \sqrt{b^{2}-4 c}}{2}, 0\right), \quad \frac{-b}{c^{-1}+q}, \frac{ \pm \sqrt{c\left(c^{-1}+q\right)^{2}-b^{2}\left(q^{-1}+q-1\right)}}{q^{-1}+q}\right\} .(4.46)$
Thus we have the following conclusions.
a) If $b^{2}-4 c>0$ and $c\left(q^{-1}+q\right)^{2}-b^{2}\left(q^{-1}+q-1\right)>0$.

$$
\begin{aligned}
& z^{(2)}+b z+c \text { has four zeroes namely } \\
& \left\{\left(\frac{-b \pm \sqrt{b^{2}-4 c}}{2}, 0\right) ; \quad \frac{\left(\frac{-b}{-1},\right.}{q^{-1}+q} \frac{\left. \pm \sqrt{c\left(a^{-1}+q\right)^{2}-b^{2}\left(q^{-1}+q-1\right)}\right)}{q^{-1}+q}\right\}
\end{aligned}
$$

b) If $b^{2}=4 c$ and $c\left(q^{-1}+q\right)^{2}-b^{2}\left(q^{-1}+q-1\right)>0, z^{(2)}+b z+c$ has three zeroes namely $\left\{\left(\frac{-b}{2}, 0\right) ;\left(\frac{-b}{q^{-1}+q}, \frac{ \pm c\left(q^{-1}+q-2\right)}{q^{-1}+q}\right)\right\}$.
c) If $b^{2}-4 c>0$ and $c\left(q^{-1}+q\right)^{2}=b^{2}\left(q^{-1}+q-1\right)$ then the zeroes are $\left\{\left(\frac{-b \pm \sqrt{b^{2}-4 c}}{2}, 0\right) ; \quad\left(\frac{-b}{q^{-1}+q}, 0\right)\right]$.
d) If $b^{2}-4 c>0$ and $c\left(q^{-1}+q\right)^{2}-b^{2}\left(a^{-1}+q-1\right)<0$, $z^{(2)}+b z+c$ has two zercesnamely $\left\{\left(\frac{-b \pm \sqrt{b^{2}-4 c}}{2}, 0\right)\right\}$.
e) If $b^{2}-4 c<0$ and $c\left(q^{-1}+c_{i}\right)^{2}-b^{2}\left(q^{-1}+q-1\right)>0$,
$z^{(2)}+b z+c$ has two zeroes namely
$\left\{\left(\frac{-b}{q^{-1}+q}, \frac{\left. \pm \sqrt{r\left(q^{-1}+q\right)^{2}-b^{2}\left(q^{-1}+q-1\right)}\right)}{q^{-1}+q}\right]\right.$.
f) Then the four cases:
(1) $b^{2}-4 c<0 ; c\left(a^{-1}+q\right)^{2}-b^{2}\left(a^{-1}+q-1\right)<0$,
(2) $b^{2}-4 c=0 ; c\left(q^{-1}+q\right)^{2}-b^{2}\left(q^{-1}+q-1\right)=0$,
(3) $b^{2}-4 c=0 ; c\left(q^{-1}+q\right)^{2}-b^{2}\left(q^{-1}+q-1\right)<c$
and
(4) $b^{2}-4 c<0 ; c\left(q^{-1}+q\right)^{2}-b^{2}\left(q^{-1}+q-1\right)=0$.
do not exist.

Hence
The number of zeroes of the q-monodiffric polynomial $z^{(2)}+b z+c ; b, c \varepsilon R$ ranges from two to four.
(4.46)

It is interesting to note that the zeroes of the polynomial $(z+1) *(z+1)=z^{(2)}+2 z+1$ are three in number:

So we give a note to the result (4.44). α is a purely real or imaginary zero of the polynomial
$\sum_{j=0}^{n} a_{j} z^{(j)}, a_{j} \varepsilon \not \subset$ repeated r times does not imply that α is a zero of $\sum_{j=0}^{n} a_{j} z^{j}$ repeated r times, but strictly implies that α is a zero of $\sum_{j=0}^{n} a_{j} z^{j}$.

Also the zeroes of $z^{(2)}+\alpha+i \beta ; \alpha, \beta \varepsilon \mathrm{R}$ are

$$
\left\{\left(\frac{ \pm \sqrt{-\alpha \pm \sqrt{\alpha^{2}+\frac{4 \beta^{2}}{\left(q^{-1}+q\right)^{2}}}}}{2}, \frac{-\sqrt{2 \beta}}{\left. \pm\left(q^{-1}+q\right) \sqrt{-\alpha \pm \sqrt{\alpha^{2}+\frac{4 \beta^{2}}{\left(q^{-1}+q\right)^{2}}}}\right)}\right\}\right.
$$

$q-n^{\text {th }}$ roots of unity. Now we solve the polynomial equation $z^{(n)}=1$. The zeroes are called the $q-n^{\text {th }}$ roots of unity. They are denoted by $l^{(l / n)}$.
$z^{(n)}=1 \Rightarrow x^{n}-C_{n, 2^{x}} x^{n-2} y^{2}+C_{n, 4^{x^{n-4}} y^{4}-\ldots=1}$
and $C_{n, 1} x^{n-1} y-C_{n, 3} x^{n-3} y^{3}+C_{n, 5} x^{n-5} y^{5} \ldots \ldots=0$.

Let $y=m x$ where m is real be a solution of the above homogeneous equation.

Then (4.51) has atmost n solutions with $m=m_{i}$.
Then, for the possible values of m,

$$
\begin{aligned}
& \text { n-1 } \quad 1 / n \\
& \prod\left(x_{i+i q}^{\left.-(n-1)+2 j_{y}\right)}=1 \Rightarrow x=\left[\frac{1}{n-1}\right]\right. \\
& j=0 \\
& \prod\left(1+i q^{\left.-(n-1)+2 j_{m_{i}}\right)}\right. \\
& j=0 \\
& \text { But }\left[\frac{1}{\prod_{j=0}^{n-1}\left(1+i q^{\left.-(n-1)+2 j_{m_{i}}\right)}\right.}\right]^{l / n} \text { gives } \\
& \text { atmost two real values if } \mathrm{n} \text { is even } \\
& \text { one real value if } n \text { is odd. }
\end{aligned}
$$

Thus we have:

$$
\begin{equation*}
z^{(n)}-1 \text { has atmost } 2 n \text { zeroes if } n \text { is even and } \tag{4.52}
\end{equation*}
$$

n zeroes if n is odd.
Examples.

1. There are only two q-square roots of unity: $\{(\pm 1,0)\}$.
2. There are three q-cube roots of unity:

$$
\begin{equation*}
\left\{(1,0),\left(\frac{1}{3 \sqrt{\left(2+q^{-2}+q^{2}\right)\left(q^{-2}+q^{2}\right)}}, \frac{ \pm \sqrt{1+q^{-2}+q^{2}}}{\sqrt[3]{\left(2+q^{-2}+q^{2}\right)\left(q^{-2}+q^{2}\right)}}\right)\right\} \tag{4.54}
\end{equation*}
$$

3. ihere are eight q-fourth roots of unity.

$$
\begin{equation*}
\left\{(\pm 1,0),(0 \pm 1),\left(\frac{ \pm 1}{\sqrt[4]{2-C_{4}, 2}}, \frac{ \pm 1}{\sqrt[4]{2-C_{4,2}}}\right)\right\} \tag{4.55}
\end{equation*}
$$

4. There are five fifth roots of unity:

immediate. The same theorem holds in these cases also.
$z^{(n)}-\alpha$ where α is real or purely imaginary has atmost $2 n$ zeroes if n is even and n zeroes if n is odd.
5. Bipolynomials

Duffin introduced bipolynomials in his basic paper. In Duffin's theory if $g(z)$ and $h(z)$ are polynomials in m and n where $(m, n)=z$ is in Gaussian lattice,
$f(z)= \begin{cases}g(z) & \text { if } m+n \text { is even } \\ h(z) & \text { if } m+n \text { is odd }\end{cases}$
is a bipolynomial. In qeneral Duffin's bipolynomial is not discrete analytic. If $\mathrm{f}(z)=h(z)$, the bipolynomial reduces to a nolynomial which is not necessarily discrete analytic. Using this definition and preholomorphic integration, the preholomorphic discrete powers which are discrete entire are defined. Zeilberger used bipolynomials to study some problems in entire functions.

The bipolynomial in this theory is defined as
$\sum_{j=0}^{n} u_{j} z^{(j)}$ where u_{j}^{\prime} sare biconstants and $u_{n} \neq 0$ and multi$j=0$
plication is pointwise. We note that bipolynomials are bifunctions. Again the derivative of a bipolynomial is bipolynomial. A simple example of a bipolynomial is a biconstant.

$$
\sum_{j=0}^{n} u_{j} z^{(j)} \text { can be cipressed as } \sum_{j=0}^{n} a_{j} z^{(j)} \text { in } H_{l}
$$

and $\sum_{j=0}^{n} b_{j} z^{(j)}$ in H_{2}. Any solution (zero at the concerned lattice point) of any of these two q-monodiffric polynomials is a solution of the bipolynomial.

As in the case of discrete polynomial here also, we get an upper bound for the zeroes of a bipolynomial. Using the definition of zero of a bipolynomial, we have the result as

A bipolynomial $\sum_{j=0}^{n} u_{j} z^{(j)}, u_{n} \neq 0$ has atmost $4 n$ zeroes.
Example I. $\quad \sum_{j=0}^{4} u_{j} z^{(j)} ; u_{4}=(1,0,0,1), u_{3}=(0,0,0,0)$
$u_{2}=(0,1,1,0), u_{1}=(0, b, b, 0), u_{0}=(1, c, c, 1)$
where $b, c \varepsilon R$ has eight zeroes:

$$
\left\{(\pm 1,0),(0, \pm 1),\left(\frac{-b \pm \sqrt{b^{2}-4 c}}{2}, 0\right),\left(\frac{-b}{q^{-1}+q}, \frac{ \pm \sqrt{c\left(q^{-1}+q\right)^{2}-b^{2}\left(q^{-1}+q-1\right)}}{q^{-1}+q}\right)\right\}
$$

but some of them may not exist depending on b and c.
In particular if $b=0, c=1$, the zeroes of the bipolynomial are reduced to four:
$\{(\pm 1,0),(0, \pm 1)\} ;$ but $(+1,0)$ and $(-1,0)$ are repeated twice.

Example 2. $\quad \sum_{j=0}^{2} u_{j} z^{(j)}, u_{2}=(1,1,1,1), u_{1}=\left(b_{1}, b_{2}, b_{2}, b_{1}\right)$ and. $u_{0}=\left(c_{1}, c_{2}, c_{2}, c_{1}\right)$ has eight zeroes.
$\left\{\left(\frac{-b_{1} \pm \sqrt{b_{1}^{2}-4 c_{1}}}{2}, 0\right),\left(\frac{-b_{2} \pm \sqrt{b_{2}^{2}-4 c_{2}}}{2}, 0\right)\right.$
$\left(\frac{-b_{1}}{q^{-1}+q} \pm \sqrt{c_{1}\left(q^{-1}+q\right)^{2}-b_{1}^{2}\left(q^{-1}+q-1\right)}\right)$,

$$
\left(\frac{-b_{2}}{q^{-1}+q}, \frac{\left. \pm \sqrt{c_{2}\left(q^{-1}+q\right)^{2}-b_{2}^{2}\left(q^{-1}+q-1\right)}\right)}{q^{-1}-q}\right\}
$$

But if $b_{1}=b_{2}=0$ and $c_{1}=1, c_{2}=-1$, the zeroes of the bipolynomial are only four $\{(\pm 1,0),(0, \pm 1)\}$.

Likewise the general quadratic bipolynomial
$\sum_{j=0}^{2} u_{j} z^{(j)} ; u_{2}=(1,1,1,1), u_{l}=\left(b_{1}, b_{2}, b_{2}, b_{1}\right)$ and $u_{0}=\left(c_{1}, c_{2}, c_{2}, c_{1}\right)$ where $b_{1}, b_{2}, c_{1}, c_{2} \varepsilon R$ has the solution set:
$\left\{\left(\frac{-b_{1} \pm \sqrt{b_{1}^{2}-4 c_{1}}}{2}, 0\right),\left(\frac{-b_{1}}{q^{-1}+q}, \frac{\sqrt{c_{1}\left(q^{-1}+q\right)^{2}-b_{1}^{2}\left(q^{-1}+q-1\right)}}{q^{-1}+q}\right)\right.$,
$\left.\left(\frac{-b_{2} \pm \sqrt{b_{2}^{2}-4 c_{2}}}{2}, 0\right),\left(\frac{-b_{2}}{q^{-1}+q}, \pm \frac{\sqrt{c_{2}\left(q^{-1}+q_{1}\right)^{2}-b_{2}^{2}\left(q^{-1}+q-1\right)}}{q^{-1}+q}\right)\right\}$
Some of these zeroes may not exist depending on the coefficients b_{1}, b_{2}, c_{1} and c_{2}.

5. qm-Polynomials

A generalisation of discrete nolynomials is discussed in this section. The coefficients of the polynomial are taken from the not-associative aigebra of q-monodiffric constants.

$$
\text { Let } \alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \text { be a q-monodiffric constart }
$$

and $f(z)=u(x+i y)+i v(x, y): H \longrightarrow \not \subset$. Then the discrete product of α and $f(z)$ is defined as
$\alpha_{*} f(z)=\left(\alpha_{3}, \alpha_{4}, \alpha_{1}, \alpha_{2}\right) u(x, y)+i\left(\alpha_{2}, \alpha_{1}, \alpha_{4}, \alpha_{3}\right) v(x, y)$
where the product on the right hand side is the point wise multiplication.

If α, β are q-monodiffric constants and $\mathrm{f}, \mathrm{g}: \mathrm{H} \longrightarrow \varnothing$, then

$$
(\alpha+\beta) * f=\alpha * f+\beta * f
$$

and

$$
\begin{equation*}
\alpha *(f+g)=\alpha * f+\alpha * g . \tag{4.63}
\end{equation*}
$$

Let $f \varepsilon \sqrt{ } \operatorname{lo}(\mathrm{~d})$.
Then
and
$\delta_{y}\left(\alpha_{*} f(z)\right)=\left\{\begin{array}{r}\alpha_{1} u_{y}(x, y)+i \alpha_{4} v_{y}(x, y) \text { if } m \text { is even, } \\ n \text { is even } \\ \alpha_{2} u_{y}(x, y)+i \mu_{3} v_{y}(x, y) \text { if } m \text { is odd, } \\ \alpha_{3} u_{y}(x, y)+i \alpha_{2} v_{y}(x, y) \text { if } m \text { is even, } \\ \alpha_{4} u_{y}(x, y)+i \alpha_{I} v_{y}(x, y) \text { if } m \text { is odd odd } \\ n \text { is odd. }\end{array}\right.$

Using the Cauchy-Riemann relations:
$u_{x}=i v_{y}$ and $u_{y}=i v_{x}$, we get
$\delta_{x}(\alpha * f(z))=\delta_{y}\left(\alpha_{*} f(z)\right)$ for $z \varepsilon D$.

Thus we have:
Theortm 1. $\quad f(z) \varepsilon \sqrt{V(i)} \Rightarrow \alpha * f(z) \varepsilon \sqrt{(i)}(D)$ and $\delta\left(\alpha_{*} f(z)\right)=\left(\alpha_{2}, \alpha_{1}, \alpha_{4}, \alpha_{3}\right) * \delta_{x} f(z)=\left(\alpha_{3}, \alpha_{4}, \alpha_{1}, \alpha_{2}\right) * \delta_{y} f(z)$ where $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ is a q-monodiffric constant.

Since a q-monodiffric constant is q-monodiffric in H, we can define the discrete procuct * of two q-monodiffric constants.

$$
\text { Let } \alpha \equiv\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\left(a_{1}+i b_{1}, a_{2}+i b_{2}, a_{3}+i b_{3},\right.
$$

$$
\left.a_{4}+i b_{4}\right) \text { and } \beta \equiv\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)=\left(c_{1}+i d_{1}, c_{2}+i d_{2}, c_{3}+i d_{3}, c_{4}+i d_{4}\right)
$$

Then

$$
\begin{align*}
\alpha * \beta= & \left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) *\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right) \\
= & \left(a_{3}+i b_{3}, a_{4}+i b_{4}, a_{1}+i b_{1}, a_{2}+i b_{2}\right)\left(c_{1}, c_{2}, c_{3}, c_{4}\right) \\
& +i\left(a_{2}+i b_{2}, a_{1}+i b_{1}, a_{4}+i b_{4}, a_{3}+i b_{3}\right)\left(d_{1}, d_{2}, a_{3}, d_{4}\right) \\
= & \left(c_{1}\left(a_{3}+i b_{3}\right)+i d_{1}\left(a_{2}+i b_{2}\right), c_{2}\left(a_{4}+i b_{4}\right)+i d_{2}\left(a_{1}+i b_{1}\right),\right. \\
& \left.c_{3}\left(a_{1}+i b_{1}\right)+i d_{3}\left(a_{4}+i b_{4}\right), c_{4}\left(a_{2}+i b_{2}\right)+i d_{4}\left(a_{3}+i b_{3}\right)\right) . \tag{4.64}
\end{align*}
$$

Hence we get the set of q-monodiffric constants is closed under *. Also * is not commutative, but distributive over + and afain we cet by direct simplification, that * is not associative in the case of q-monodiffric constants. Further there does not exist a q-monodiffric constant e such that $\alpha * e=e * \alpha=\alpha$ for every α 。

$$
\text { To find divisors of zero, let } \alpha * \beta=0 \text {. }
$$

We get

$$
\begin{aligned}
& c_{1} a_{3}-d_{1} b_{2}=0 ; c_{1} b_{3}+d_{1} a_{2}=0 ; \\
& c_{2} d_{4}-d_{2} b_{1}=0 ; c_{2} b_{4}+d_{2} a_{1}=0 ; \\
& c_{3} a_{1}-d_{3} b_{4}=0 ; c_{3} b_{1}+d_{3} a_{4}=0 ; \\
& c_{4} a_{2}-d_{4} b_{3}=0 ; c_{4} b_{2}+d_{4} a_{3}=0,
\end{aligned}
$$

i.e., $\frac{c_{1}}{d_{1}}=\frac{b_{2}}{a_{3}}=-\frac{a_{2}}{b_{3}}, \frac{c_{2}}{a_{2}}=\frac{b_{3}}{a_{4}}=-\frac{a_{1}}{b_{4}}$;

$$
\frac{c_{3}}{d_{3}}=\frac{b_{4}}{a_{1}}=-\frac{a_{4}}{b_{1}} ; \frac{c_{4}}{d_{4}}=\frac{b_{3}}{a_{2}}=-\frac{a_{3}}{b_{2}}
$$

i.e., $\frac{c_{2}}{d_{2}}=-\frac{d_{3}}{c_{3}}=\frac{b_{1}}{a_{4}}=-\frac{a_{1}}{b_{4}} ; \frac{c_{1}}{d_{1}}=-\frac{d_{4}}{c_{4}}=\frac{b_{2}}{a_{3}}=-\frac{a_{2}}{b_{3}}$.

Hence we have:

Theorem 2. The set of q-monodiffric constants is a notassociative ring without identity under + and *. $\alpha=\left(a_{1}+i b_{1}, a_{2}+i b_{2}, a_{3}+i b_{3}, a_{4}+i b_{4}\right)$ is a divisor of zero if and only if $a_{1} a_{4}+b_{1} b_{4}=0=a_{2} a_{3}+b_{2} b_{3}$.

An expression of the form $\sum_{r=0}^{n} a_{r}^{*} z^{(r)}$ where a_{r}
are q-monodiffric constants is called a qm-polynomial. a_{r}^{\prime} s are called the coefficients of the polynomial. n is the degree of the polynomial if $a_{n} \neq(0,0,0,0)$.

A lattice point $\left(q^{m} x_{0}, q^{n} y_{0}\right) \varepsilon H$ is a zero of the polynomial $\sum_{r=0}^{n} a_{r}^{*} z^{(r)}$ if it vanishes at $\left(q^{m} x_{0}, q^{n} y_{0}\right)$.

Example l. Now we investigate zeroes of $\alpha * z$. For this, with usual notations,

$$
\begin{aligned}
\alpha * z= & \left(a_{3}+i b_{3}, a_{4}+i b_{4}, a_{1}+i b_{1}, a_{2}+i b_{2}\right) x \\
& +i\left(a_{2}+i b_{2}, a_{1}+i b_{1}, a_{4}+i b_{4}, a_{3}+i b_{3}\right) y \\
= & \left(w_{1}, w_{2}, w_{3}, w_{4}\right) \text { where atleast one of } w_{i}^{\prime} \text { s is zero. }
\end{aligned}
$$

We get that the zero will satisfy atleast one pair of the following equations.
(I) $\mathrm{a}_{3} \mathrm{x}-\mathrm{b}_{2} \mathrm{y}=0 ; \mathrm{b}_{3} \mathrm{x}+\mathrm{a}_{2} \mathrm{y}=0$,
(2) $a_{4} x-b_{1} y=0 ; b_{4} x+a_{1} y=0$,
(3) $a_{1} x-b_{4} y=0 ; b_{1} x+a_{4} y=0$,
(4) $a_{2} x-b_{3} y=0 ; b_{2} x+a_{3} y=0$.
(0,0) is a trivial solution. If there exists any other zero, atleast one of the following is true.

$$
\begin{aligned}
& \frac{x}{y}=\frac{a_{3}}{b_{2}}=-\frac{b_{3}}{a_{2}} ; \frac{x}{y}=-\frac{a_{4}}{b_{1}}=\frac{b_{4}}{a_{1}} ; \\
& \frac{x}{y}=\frac{a_{1}}{b_{4}}=\frac{b_{1}}{a_{4}} ; \frac{x}{y}=\frac{a_{2}}{b_{3}}=-\frac{b_{2}}{a_{3}}
\end{aligned}
$$

Hence we get that $\alpha * z$ has a zero which is non-zero if and only if $a_{2} a_{3}+b_{2} b_{3}=0$ or $a_{1} a_{4}+b_{1} b_{4}=0$.

Thus, if α is a divisor of zero, $\alpha * z$ has infinite number of zeroes.

The converse is not true. For example,
$\alpha * 2$ where $\alpha=(1+i, 3-i ; 2+6 i, 2+i)$ which is not a divisor of zero has infinite number of zeroes.

Example 2. Consider $\alpha * z+\beta$ where
$a=\left(a_{1}+i b_{1}, a_{2}+i b_{2}, a_{3}+i b_{3}, a_{4}+i b_{4}\right)$ and
$\beta=\left(c_{1}+i d_{1}, c_{2}+i d_{2}, c_{3}+i d_{3}, c_{4}+i d_{4}\right)$.

As in the previous example, we get four pairs of linear equations but non-homogeneous as
(1) $\mathrm{a}_{3} \mathrm{x}-\mathrm{b}_{2} \mathrm{y}=\mathrm{c}_{1} ; \mathrm{b}_{3} \mathrm{x}+\mathrm{a}_{2} \mathrm{y}=\mathrm{d}_{1}$,
(2) $a_{4} x-b_{1} y=c_{2} ; b_{4} x+a_{1} y=d_{2}$,
(3) $\mathrm{a}_{1} \mathrm{x}-\mathrm{b}_{4} \mathrm{y}=\mathrm{c}_{3} ; \quad \mathrm{b}_{1} \mathrm{x}+\mathrm{a}_{4} \mathrm{y}=\mathrm{a}_{3}$,
(4) $\mathrm{a}_{2} \mathrm{x}-\mathrm{b}_{3} \mathrm{y}=\mathrm{c}_{4} ; \quad \mathrm{b}_{2} \mathrm{x}+\mathrm{a}_{3} \mathrm{y}=\mathrm{d}_{4}$.

We get three possibilities as

1. If α is not a divisor of zero and $a_{1} a_{4}+b_{1} b_{4} \neq 0$ and $a_{2} a_{3}+b_{2} b_{3} \neq 0$, there are four zeroes for the polynomial.
2. If α is not a divisor of zero and one of $a_{1} a_{4}+b_{1} b_{4}=0$ and $a_{2} a_{3}+b_{2} b_{3}=0$ is satisfied, there are two or infinite number of zeroes for the polynomial depending on the other coefficients.
3. If α is a divisor of zero, there is no zero or there are an infinite number of zeroes for the polynomial.

Example 3. Let us solve $\alpha * z^{(2)}+\beta * z+\gamma$ for zeroes. We restrict the parameters of the q-monodiffric constants to be real.

Let $\alpha=\left(a_{1}, a_{2}, a_{3}, a_{4}\right), \beta=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$
and $\gamma=\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$.

Then

$$
\begin{aligned}
& \alpha * z^{(2)}+\beta * z+\gamma \equiv\left(a_{3}, a_{4}, a_{1}, a_{2}\right)\left(x^{2}-y^{2}\right) \\
& \quad+i\left(a_{2}, a_{1}, a_{4}, a_{3}\right)\left(q^{-1}+q\right) x y+\left(b_{3}, b_{4}, b_{1}, b_{2}\right) x \\
& \quad+i\left(b_{2}, b_{1}, b_{4}, b_{3}\right) y+\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)
\end{aligned}
$$

where atleast one of w 's is zero.

Thus we have four pairs of equations. A solution of any such pair is a zero of the polynomial.
(1) $a_{3}\left(x^{2}-y^{2}\right)+b_{3} x+c_{1}=0: a_{2}\left(q^{-1}+q\right) x y+b_{2} y=0$,
(2) $a_{4}\left(x^{2}-y^{2}\right)+b_{4} x+c_{2}=0 ; \quad a_{1}\left(q^{-1}+q\right) x y+b_{1} y=0$,
(3) $a_{1}\left(x^{2}-y^{2}\right)+b_{1} x+c_{3}=0 ; a_{4}\left(q^{-1}+q\right) x y+b_{4} y=0$,
(4) $a_{2}\left(x^{2}-y^{2}\right)+b_{2} x+c_{4}=0 ; a_{3}\left(q^{-1}+q\right) x y+b_{3} y=0$.

Solving the first pair we get,
$\left(\frac{-b_{3} \pm \sqrt{b_{3}^{2}-4 a_{3} c_{1}}}{2 a_{3}}, 0\right)$ and
$\left(\frac{-b_{2}}{a_{2}\left(q^{-1}+q\right)}, \pm \sqrt{\frac{b_{2} b_{3}}{a_{2}\left(a^{-1}+q\right)}-c_{1}-\frac{a_{3}^{b_{2}^{2}}}{a_{2}^{2}\left(q^{-1}+q\right)^{2}}}\right)$
are the zeroes of the polynomial.
Similarly twelve zeroes are found from the other three pairs. Hence there are sixteen zeroes for the polynomial $\alpha * z^{(2)}+\beta * z+\gamma$.

Likewise we can find the zeroes of any polynomial. Still, all the zeroes found, may not be lattice points.

In earlier chapters we made an attempt to establish a theory of discrete functions. We now introduce a few special polynomials and their classifications to illustrate the theory of q-monodiffric functions. Further, references to mention are Boas and Buck [16] and Rainville [55].

1. q-Type Classification for Discrete Polynomials

Since the set of discrete polynomials form a unique factorisation domain in + and ${ }^{*}$, we have:

$$
\text { Let }\left\{\phi_{n}(z)\right\} \text { be a simple sequence of polynomials }
$$

such that $\phi_{n}(z)=\sum_{i=0} a_{n, i} z^{(i)}$ where $a_{n, n} \neq 0$. Consider $T_{0}(z) *\left[\delta \varnothing_{1}(z)\right]=\emptyset_{0}(z)$. Thus $T_{0}(z)$ will be a constant namely $\frac{a_{0,0}}{a_{1,1}}$. Then we take $\sum_{k=0}^{l} T_{k}(z) *\left[\delta^{k+1} \phi_{2}(z)\right]=\phi_{1}(z)$. That is, $T_{0}(z) * \delta \phi_{2}(z)+T_{1}(z) * \delta^{2} \phi_{2}(z)=\phi_{1}(z)$. Thus $T_{1}(z)$ is a unique polynomial

$$
\frac{a_{1,1}^{2}-a_{0,0} a_{2,2}}{2 a_{1,1} a_{2,2}}+\frac{a_{1,0} a_{1,1}-a_{0,0^{a}}, 1}{(2)_{q} a_{1,1} a_{2,2}}
$$

of degree atmost 1.

Similarly $\sum_{k=0}^{2} T_{k}(z) *\left[\delta^{k+1} \phi_{3}(z)\right]=\phi_{2}(z)$ also gives a unique $T_{2}(z)$ of degree atmost two and so on. For any finite n, $\sum_{k=0}^{n} T_{k}(z) *\left[\delta^{k+\not \emptyset_{n+1}}(z)\right]=\emptyset_{n}(z)$ determines $T_{n}(z)$ uniquely of descee atmost n as $T_{k}(z)$ for $k<n$ is already fixed uniquely by the same method.

Thus we have:
If $\left\{\varnothing_{n}(z)\right\}$ is a simple sequence of polynomials
$T_{o}(z) *\left[\delta \phi_{1}(z)\right]=\emptyset_{o}(z)$ and $\sum_{k=0}^{n} T_{k}(z) *\left[\delta^{k+1} \phi_{n+1}(z)\right]=$
$\psi_{n}(z), n \geq$ Idefines $T_{n}(z)$ uniquely of degree $\leq n$.
In other words, using the fact that $\delta^{r} \emptyset_{n}(z)=0$ for any $r>n$.

For a simple sequence of polynomials $\left\{\emptyset_{n}(z)\right\}$
there exists a unique derivate operator of the form
$J(z, \delta)=\sum_{k=0}^{\infty} T_{k}(z) * \delta^{k+1}$ in which $T_{k}(z)$ is a discrete polynomial of degree $\leq k$ for which $J(z, \delta) \emptyset_{n}(z)=$ $\phi_{n-1}(z), n \geq 1$.

The polynomial sequence $\left\{\phi_{n}(z)\right\}$ is associated with the operator $J(z, \delta) . J(z, \delta)$ is unique for any given simple
sequence $\left\{\emptyset_{n}(z)\right\}$. It is yossible to classify the simple q-monodiffric polynomials sequences accorcinely.

The simple sequence $\left\{\phi_{n}(z)\right\}$ is $q \cdots j$ type, if the degree of $T_{k}(z)$ will not exceed j for any k and q-infinite type if there does not exist any such j.

$$
\begin{equation*}
\text { Now we take } T_{k}(z)=\sum_{r=0}^{k} c_{k, x^{z}} z^{(r)} \text {. So if } c_{k, r}=0 \tag{5.3}
\end{equation*}
$$

for all $r \geq 1$, then $\left\{\emptyset_{n}(z)\right\}$ is of q-zero type; if $c_{k, r}=0$ for all $r \geq j+l$, then $\left\{\phi_{n}(z)\right\}$ is $\cap f$ q-j type. If there does not exist some j satisfyine, $c_{k, r}=0$ for all $r \geq j+1,\left\{\phi_{n}(z)\right\}$ is of q-infinite type. In particular, if $\left\{\emptyset_{n}(z)\right\}$ is of q-zero type, then $J(z, \delta)=\sum_{k=0}^{\infty} \alpha_{k} \delta^{k+1}$ where α_{k} are constants.

The simple sequence of polynomials
$\left\{1, \prod_{r=0}^{n-1} \frac{1}{(n-r)_{q}\left[1+(n-r-1)_{q}\right]} z^{(n)}, n=1,2, \ldots\right\}$ is
of q-one type classification having the operator
$J(z, \delta)=\delta+z * \delta^{2}$.

A q-two type simple sequence of polynomials is
given by
$\left\{1, z^{(1)}, \prod_{r=0}^{n-2} \frac{1}{(n-r)_{q}\left[1+(n-r-1)_{q}-(n-r-1)_{q}(n-r-2)_{q}\right]} z^{(n)}, n \geq 2\right\}$
whose operator is $\delta+z * \delta^{2}+z_{*}^{(2)} \delta^{3}$.

$$
\text { If }\left\{\phi_{n}(z)\right\} \text { is a simple set of q-zero type }
$$

polynomials and $\sum_{k=0}^{\infty} \alpha_{k} \delta^{k+1}\left[\phi_{n+1}(z)\right]=\phi_{n}(z)$ for: $n \geq 1$,
then taking derivate on both sides successively r times, we get
$\sum_{k=0}^{\infty} \alpha_{k} \delta^{k+1}\left[\delta^{r} \phi_{n}(z)\right]=\delta^{r} \phi_{n-1}(z)$ for $n \geq 1$.
Thus we have:

$$
\begin{align*}
& \text { If }\left\{\phi_{n}(z)\right\} \text { is a simple sequence of } q \text {-zero discrete } \tag{5,7}\\
& \text { ls and } r \text { is a positive integer, then }\left\{\hat{0}^{r} \phi_{n}(z)\right\} \text { also }
\end{align*}
$$

is a simple sequence of q-zero type polynomials.
Let $\left\{\phi_{n}(z)\right\}$ and $\left\{\psi_{n}(z)\right\}$ be two simple sequences of discrete polynomials and $\left\{b_{k}\right\}$ a sequence of complex numbers satisfying

$$
H_{n}^{\prime}(z)=\sum_{k=0}^{n} b_{k} \varnothing_{n-k}(z) \text { where } b_{k} \text { is independent of } n \text {. }
$$

Let $J(z, \delta)$ be the operator to which $\varnothing_{n}(z)$ belongs.
Then $J(z, \delta) \psi_{n}(z)=\sum_{k=0}^{n} b_{k} J(z, \delta) \phi_{n-k}(z)$

$$
\begin{aligned}
& =\sum_{k=0}^{n-1} b_{k} \phi_{n-k-1}(z) \\
& =1 f_{n-1}(z) .
\end{aligned}
$$

Thus $\left\{\mathcal{f}_{n}(z)\right\}$ and $\left\{\emptyset_{n}(z)\right\}$ belong to the same operator $J(z, \delta)$. Conversely, suppose that $\left\{\phi_{n}(z)\right\}$ and $\left\{\psi_{n}(z)\right\}$ belong to the same operator $J(z, \delta)$. Since $\left\{\phi_{n}(z)\right\}$ and $\left\{\psi_{n}(z)\right\}$ are simple sets of polynomials, we get
$\mu_{n}(z)=\sum_{k=0}^{n} \alpha_{1, n} \varnothing_{n \ldots k}(z)$ where $\alpha_{k, n}$ are constants. Applying the operator $J(z, \delta)$ on both sides
$H_{n-1}(z)=\sum_{k=0}^{n-1} \alpha_{k, n} \emptyset_{n-k-1}(z)$.
Replacing n by $n+1, \psi_{n}(z)=\sum_{k=0}^{n} \alpha_{k, n+1} \emptyset_{n-k}(z)$.
From the two equivalent expressions of $\psi_{n}(z)$ we get
$\alpha_{k, n}=\alpha_{k, n+1}$ which is possible only if $\alpha_{k, n}$ is independent of n for any k. Thus we see that

$$
Y_{n}(z)=\sum_{k=0}^{n} b_{k} \emptyset_{n-k}(z)
$$

Concluding,

$$
\left\{\varnothing_{n}(z)\right\} \text { and }\left\{\mu_{n}(z)\right\} \text { are two simple sets of discrete }
$$

polynomials belonging to the same operator $d(z, \delta)$ if and only if there exists a relation of the form
$f_{n}(z)=\sum_{k=0}^{n} b_{k} \phi_{n-k}(z)$
where the sequence $\left\{b_{k}\right\}$ is ind ependent of n.

For example, take $\left\{D_{n}(z, 0)\right\}=\left\{\frac{z^{(n)}}{(n)_{q}}!\right\}$
and $\left\{D_{n}(z, 1)\right\}=\left\{\sum_{r=0}^{n} \frac{z^{(r)}}{(r)} q^{!}\right\}$are of q-zero type.
2. A Simple Sequence of Discrete Polynomials

We define a simple sequence of discrete
polynomials: $\mathbb{N}_{0}(z)=1$ and
$N_{n}(z)=\frac{z *(z-1) *(z-2) * \cdots *(z-n+1)}{(n)_{q}!}$ for $n \geq 1$.
By direct calculation we get that
$N_{0}(z)=I$
$N_{1}(z)=z^{(J)}$
$N_{2}(z)=\frac{z^{(2)} z_{z}^{(1)}}{(2) q_{q}!}$
and
$N_{3}(z)=\frac{z^{(3)}-3 z^{(2)}+2 z^{(1)}}{(3)_{q}!}$.
Also $T_{0}(z)=I_{,} \quad T_{1}(z)=\frac{1}{(2)_{q}!}, T_{2}(z)=\left(-\frac{3}{(3)_{q}!}-\frac{2}{(2)_{q}!} z^{(1)}+\right.$

Thus
$c_{0,0}=1 ; \quad c_{1,1}=0, \quad c_{1, C}=\frac{1}{(2)} ;$
$c_{2,2}=0 ; \quad c_{2,1}=\frac{3}{(3)_{q}!}-\frac{2}{(2)_{q}!}, \quad c_{2,0}=\frac{1}{(3)_{q}!}$.
Proceeding recursively, the relation
$\sum_{k=0}^{\infty} T_{k}(z) * \delta^{k+1}\left[N_{n}(z)\right]=N_{n-I}(z)$ yields the result that the coefficient of $z^{(n)}$ in $T_{n}(z)$ namely $c_{n, n}=0$. However the coefficient of $z^{(n)}$ in $T_{n+1}(z)$ is uniquely determined. It satisfies the recurrence relation
$\frac{1}{(n+1)_{q}!}+\frac{c_{1,0}}{(n)_{q}!}+\frac{c_{2,1}}{(n-1)_{q}!}+\frac{c_{3,1}}{(n-2)_{q}!} \cdots$

$$
\begin{equation*}
+c_{n, n-1}+c_{n+1, n}=\frac{1}{(n+1)_{q}!} \tag{5.11}
\end{equation*}
$$

Suppose, $T_{r}(z)$ is of degree atmost (r-2) for all
$r>n$, a fixed integer. Then we get
$c_{r+1, r+1}=0, c_{r+1, r}=0$ for any $r>n$.
Hence
and in general

$$
\begin{array}{r}
\frac{c_{1,0}}{(n+s)_{q}!}+\frac{c_{2,1}}{(n+s-1)_{q}!}+\frac{c_{3,2}}{(n+s-2)_{q}!}+\cdots+\frac{c_{n, n-1}}{(s+1)_{q}!}=0 \\
\text { for any } s \geq 0 . \tag{5.12}
\end{array}
$$

We write the above set of homogeneous linear equations in the form $\sum_{j=1}^{n} a_{i j} x_{j}=0$
where
$x_{j}=c_{j, j-1}, i=1,2, \ldots, n$ and $a_{i j}=\frac{1}{(n+i-j+1)_{q}!}$.
The matrix ($a_{i j}$) where $i, j=1,2, \ldots, n$ is of rank n as the rows of it are linearly independent.

To prove this, consider the following rows:
$R_{1}=\left(\frac{1}{(s+1)_{q}!}, \frac{1}{(s+2)_{q}!}, \cdots, \frac{1}{(s+n)_{q}!}\right.$,
$R_{2}=\left(\frac{1}{(s+2)_{q}!}, \frac{1}{(s+3)_{q}!}, \cdots, \frac{1}{(s+n+1)_{q}}\right\}$,
$R_{n}=\left(\frac{1}{(s+n)_{q}!}, \frac{1}{(s+n+1)_{q}!}, \cdots,-\frac{1}{(s+2 n-1)_{q}!}\right)$.

If $\alpha_{1} R_{1}+\alpha_{2} R_{2}+\alpha_{3} R_{3}+\ldots+\alpha_{n} R_{n}=0$,
we get
$\frac{\alpha_{1}}{(s+1)_{q}!}+\frac{\alpha_{2}}{(s+2)_{q}!}+\cdots+\frac{\alpha_{n}}{(s+n)_{q}!}=0$,
$\frac{\alpha_{1}}{(s+2)_{q}!}+\frac{\alpha_{2}}{(s+3)_{q}!}+\cdots+\frac{\alpha_{n}}{(s+n+1)_{q}!}=0$,
$\frac{\alpha_{1}}{(s+n)_{q}!}+\frac{\alpha_{2}}{(s+n+1)_{q}!}+\cdots+\frac{\alpha_{n}}{(s+2 n-1)_{q}!}=0$.

Adding all the equations and arranging the terms,
$\frac{\alpha_{1}}{(s+1)_{q}!}+\frac{\alpha_{1}+\alpha_{2}}{(s+2)_{q}!}+\cdots+\frac{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}}{(s+n)_{q}!}$

$$
+\frac{\alpha_{2}+\alpha_{3}+\ldots \alpha_{n}}{(s+n+1)_{q}!}+\ldots+\frac{\alpha_{n}}{(s+2 n-1)_{q}!}=0 .
$$

$$
\text { As this result is true for any inteser } s \geq 0 \text {, }
$$ the coefficient of each term in the above identity is zero. Thus

$\alpha_{1}=\alpha_{2}=\ldots=\alpha_{n}=0$.

Thus the system of equations has only the trivial solution $c_{j, j-1}=0$ for all $j=1,2, \ldots, n$. This is contradictory to the fact. Hence we get that $c_{n+s, n+s-1} \neq 0$ for some $s>0$. Then considering the same aspect taking
$n+s$ in the place of n, we continue to set another $c_{j, i-1} \neq 0$ where $j>n+s$ anc so on. Thus we get $c_{j, j-1}$ cennot be zero for every $j>n$, a fixed integer. Thus we conclude:

$$
\begin{equation*}
\left\{N_{n}(z)\right\} \text { is a simple sequence of discrete poly- } \tag{5.13}
\end{equation*}
$$ nomials having q-infinite type classification.

3. Polynomials from Generating Functions

Discrete polynomials can be studied through the generating functions also. To illustrate this aspect we introduce a new sequence of discrete polynomials.

Let t be the continuous complex variable and $z \varepsilon H$. Then the discrete polynomial $P_{n}(z, \lambda)$ of $n^{\text {th }}$ degree is defined from the relation
$(1-t)^{\lambda}\left(\sum_{n=0}^{\infty} \frac{t^{n} z^{n}(n)}{(n)_{q}!}\right)=\sum_{n=0}^{\infty} P_{n}(z, \lambda) t^{n}, \quad \lambda$ is not a positive integer.

Since $\sum_{n=0}^{\infty} \frac{t^{n} z^{(n)}}{(n)_{q}!}$ is entire in z and t and due to the validity of series expansion of (I-t) λ in powers of t, the above relation is valid for $|t|<l$ and any $z \varepsilon H$.

Comparing the coefficients, we get
$\eta_{n}(z, \lambda)=\sum_{r=0}^{n-1} \lambda \frac{(\lambda-1) \ldots(\lambda+r+1-n)_{z}(x)}{(n-r)!(x)_{q}!}+\frac{z_{z}(n)}{(n)_{q}!}$.

The coefficient of $z^{(n)}$ being $\frac{1}{(n)_{q}!}, P_{n}(2, \lambda)$ is strictly of desree n. Also any discrete nolynomial. of decree n over ϕ is representable as a linear sum of $\left\{P_{n}(z, \lambda)\right\}$. Thus $\left\{P_{n}(z, \lambda)\right\}$ where $n \varepsilon z^{\mathrm{C}^{+}}$is a simple and complete set of discrete polynomials. This sequence of polynomials serves the purpose of basis for the vector sprce of discrete polynomials over $\not \subset$.

Another simple set of polynomials is defined as
$D_{0}(z)=I$,
$D_{n}\left(q^{-1} z\right)=D_{n}(q z)+\left(q^{-1} \cdot q\right) z * D_{n-1}(z), \quad n \geq 1$.
From the above relation we get that
$D_{1}(z)=z^{(I)}+\alpha$ where $\alpha \varepsilon \not \subset$. Two simple forms of $D_{n}(z)$ are obtained by fixing $\alpha=1$ or 0 .

Thus
$D_{n}(z, I)=\sum_{r=0}^{n} \frac{z^{(r)}}{(r)_{q}!}$ and $D_{n}(z, 0)=\frac{z^{(n)}}{(n)_{q}!}$.
Taking the derivate of $P_{n}(z, \lambda), \delta P_{n}(z, \lambda)=$ $P_{n-1}(z, \lambda)$. Also $P_{n}(z,-1)=\sum_{r=0}^{n} \frac{z(r)}{(r)_{q}!}$. Thus $\lim _{n \rightarrow \infty} P_{n}(z,-1)=\sum_{r=0}^{\infty} \frac{z^{(r)}}{(r)_{q}!}$ satisfies the derivate equation
$\delta f(z)=f(z)$. Further this function is discrete entire. Also we make note that $P(z, \lambda)$ is q-zero type.

$$
\begin{gathered}
P_{n}(z,-I)=D_{n}(z, I) \text { as well as } \\
P_{n}(z,-I)=\sum_{r=0} D_{r}(z, 0) . \quad D_{n}(z) \text { satisfies the derivate }
\end{gathered}
$$ equation $\delta D_{n}(z)=D_{n-1}(z) \cdot D_{n}(z)$ is characterised by $\sum_{r=0}^{n} \alpha_{n-r} \frac{z^{(r)}}{(r)_{q}!}$ where $\alpha_{o}=I$ and $\alpha_{j} \varepsilon \not \subset$ for $j \geq I$. The special cases $\left[D_{n}(z, I)\right\}$ and $\left\{D_{n}(z, 0)\right\}$ are obtained by fixing $\alpha_{j}=I$ for all j in the case of former and $\alpha_{j}=0$ for all $j \geq 1$ in the other.

$$
\begin{align*}
P_{n}(z,-2) & =\sum_{r=0}^{n-1} \frac{2 \cdot 3 \cdot 4 \cdot \cdots \cdot(n+1-r)}{(n-r)!} \frac{z^{(r)}}{(r)_{q}!}+\frac{z^{(n)}}{(n){ }_{q}!} \tag{5.20}\\
& =\sum_{r=0}^{n-1} \frac{(n+1-r)_{z}^{(r)}}{(r)_{q}!}+\frac{z^{(n)}}{(n)_{q}!} \cdot
\end{align*}
$$

Thus we have.

$$
\begin{aligned}
P_{n}(z,-2) & =\sum_{r=0}^{n} D_{r}(z, l) \\
P_{n}(z,-2) & =\sum_{r=0}^{n}(n+l-r) D_{r}(z, 0)
\end{aligned}
$$

and

Further extending the result, if ' λ is a posjitive intoger, $P_{n}(z,-\lambda)=\sum_{r=0}^{n-1} \frac{(n+1-r)(n+2-r) \cdots(n+\lambda-1-r)}{(r-1)!} \frac{z^{(r)}}{(r)_{q}!}+\frac{z^{(n)}(n)_{q}!}{(n)}$
and
$P_{n}(z,-\lambda)-P_{n-1}(z,-\lambda)=P_{n}(z,-(\dot{\lambda}-1))$.
Thus if λ is a positive integer,
$P_{n}(z,-\lambda)=\sum_{r=2}^{\lambda} P_{n-1}(z,-r)+P_{n}(z,--1)$.
Using the result, $P_{n}(z,-2)=\sum_{r=0}^{n} D_{r}(z, 1)$ we
introduce a matrix form to the system of above equations as $P_{i}(z,-2)=\sum_{j=0}^{n} a_{i j} D_{j}(z, 1)$ where $a_{i j}=\left\{\begin{array}{l}1 \text { if } i \geq j \\ 0 \text { if } i<j .\end{array}\right.$

The matrix $\left(\mathrm{a}_{\mathrm{ij}}\right)$ is triangular and invertible whose inverse is given by $\left(b_{i j}\right)$
where $b_{i j}= \begin{cases}l & \text { if } i=j \\ -l & \text { if } i=j+l \\ 0 & \text { otherwise . }\end{cases}$
$\left(b_{i j}\right)$ is also a triangular matrix.
n
$\operatorname{Ther}^{\mathrm{L}_{i}}(z, l)=\sum_{j=0} b_{i j} P_{j}(z,-2)$.

Thus there exists unique linear expressions over the real numbers for $D_{r}(z, 1)$ in terms of $P_{j}(z,-2), j=0,1,2$, and vice versa.
n

$$
\begin{align*}
& \text { Also } P_{i}(z,-2)=\sum_{j=0} c_{i j} D_{j}(z, 0) \text { where } \tag{5.27}\\
& c_{i j}=\left\{\begin{array}{l}
j+l \text { if } i \geq j \\
0 \text { if } j>i_{0}
\end{array}\right. \tag{5.28}
\end{align*}
$$

($c_{i j}$) is trianpular and invertible。
Thus $D_{i}(z, 0)=\sum_{j=0}^{n} d_{i j} P_{j}(z,-2)$ where $\left(d_{i j}\right)=\left(c_{i j}\right)^{-1} .(5.29)$

4. Conclusion

An attempt is made to establish a theory of discrete functions in the complex plane. Classical analysis q-basic theory, monodiffric theory, preholomorphic theory and q-analytic theory have been utilised to develop concents like differentiation, integration and special functions.

To mention a few of further extensions of the theory we introduce:

Duffin, Zeilberger and Musjer had attempted to study entire functions. An attempt is made here to study meromorphic functions also. Integral transform theory are operational calculus in the q-monociffric sense are essen... tial parts of a function theory. Zozs [15] and Buschman [17-20] are some guidelines in this dicection.
q-monodiffric constants wlay the role of scalexs in q-monodiffric theory. The classical complex number is replaced by a more general concept of number in this theory, The q-monodiffric constants form e not associative rine. Hilbert space structure for the q-monodiffric functions over the q-monodiffric constants will make the theory interesting. Fesults introduced in Gilbert and Hille [35,36] and Souchek and Yip Li [58] are important and extension of the theory in the q-monodiffric sense is possible.

It is hoped that the q-monodiffric theory is more suitable than any other concents in evolving the basis of discrete function theory in the complex plane.

1. W.H. Abdi, On G-Iaplace transforms, Proc. Nat. Acad. Sci. India. 29, A(1960), 3E9-408.
2. W.H. Abdi, Application of q-Iarlace transform to the solution of certain a-interral equations, IRend. Circ. Nat. Palerno. ll(1962), J-13.
3. W.H. Abdi, On certain q-difference equations and q-Laplace transform, Hoc. Nat. Inst. Sci. India, 28, $\mathrm{A}(1962), 1-1.5$
4. H.A. Abdullaev, Action over analytic functions of an integial argument (Fussian), Trudy Samarkand. Cos. Univ. 181 (1970), 1-4.
5. H.A. Abdullaev and S.B. Babadzanov, Analytic functions of several integral compler variables (Russian), Trudy Samarkand. Gos. Univ. 107 (1960/61), 31-38.
6. H.A. Abdullaev and S.B. Babadzanov, Analytic continuation of preanalytic functions (Pussian), frudy Samarkand. Gos. Univ. 144 (1964), 107-112.
7. H.A. Abdullaev and S.B. Babadzanov, Analytic continuation of a class of preanalytic functions (Russian), Trudy Samarkand. Gos. Uiniv. 144 (1964), 113-117.
8. W.A. Al-Salam, Some fractional q-integrals and q-derivatives, Froceedines of the Edinburgh Mathematical Society, J5(1.966), 15 (1966), 135-140.
9. W.A. Al-Salam, q-Analosues of cauchy's formulas, Proceedings of the American Pathematical Society, 17 (1966), 616--621。
10. G.E. Andrews, Theory of partition, Encyclopedia of Niathematics and its applications II, (1976), Addision-Wesley Publishing Company.
11. J.B. Bednar and C.S. Duris, A discrete fourier analysis associated with discrete function theory, J. iath. Anal. Appl. 33 (1971), 52-65.
12. G. Berzsenyi, Line integrals for monodiffric functions, J. Wath. Anal. Appl. 30 (1970), 99-1.12.
13. G. Berzsenyi, Convolution products of monodiffric functions, J. Math. Anal. Appl. 37 (1972), 271-287.
14. G. Berzsenyi, Analyticity in the discrete, (1977) (memeographic notes), Texas Christian University.
15. R.P. Boas, Entire functions, Acacemic Press (1964).
16. R.P. Boas and R.C. Buck, Polynomial expansions of analytic functions, Springer-Verlag (1964).
17. R.G. Buschman, A note on a convolution, American Mathematical Monthly, 67 (1960), 364-365.
18. R.G. Buschman, Quasi-inverses of sequences, American Mathematical Nonthly, 73 (1966), 134-135.
19. R.G. Buschman, The convoluticn rinf of sequences, American Mathematical Monthly, 74 (1967), 284-286.
20. R.G. Buschman, The algebraic derivative of Mikusinsin, American Mathematical Monthly, 74 (1967).
21. S.A. Chumakov, On the theory of functions of complex semi discrete arpument (Russian), Naucn. Konf. Asperant. Taskent, Gos. Univ. (1966), 52-54.
22. C.R. Deeter (Editor), Problems in discrete function theory and related topics, Symposium in discrete function theory, Texas Christian University, (1969).
23. C.D. Deeter and Fi.E. Lord, Frurther the ory of operational calculus on discrete analytic functions, J. Nath. Anal. Appl. 26 (1969), 92-113.
24. C.R. Deeter and C.W. Mastin, A discrete analog of a minimum problem in conformal mapping, Indiana University lath. J. 20 (1970), 355-367.
25. R.J. Duffin, Basic properties of discrete analytic functions, Duke Nath. J. 23 (1956), 335-364.
26. R.J. Duffin, Potential theory on a rhombic lattice, J. Comb. Theory 5 (1968), 258-272.
27. R.J. Duffin, Yukawa Potential Theory, Journal of Mathematical Analysis and Applicetions, 35 (1971), 105-130.
28. R.J. Duffin, Hilbert transforms in Yukawa Potentjal theory, Froc. Nat. Acad. Sci. U.s.A. 69 (1972), 3677-3679.
29. R.J. Duffin and S.C. Duris, f convolution prociuct for discrete function theory, Duke Vath. J. 31 (1964), 199-220.
30. R.J. Duffin and S.C. Duris, Discrete analytic conti.. nuation of solution of difference equations, J Math. Anal. Appl. 9 (1964), 252-267.
31. R.J. Duffin and E.L. Peterson, The discrete analopue of a class of entire functions, J. Math. Anal. Appl. 21 (1968), 619-642.
32. R.J. Duffin and J.H. Rohrer, i. convolution product for the solution of partial diffexence equations, Duke Math. J. 35 (1968), 683-698.
33. J. Ferrand, Preharmonic and preholomorphic functions (French), Bull. Sci. Math. 68 (1964), 152-180.
34. N.A. Fuksman, Some questions in the theory of analytic functions of discrete argument (Russian), Diss. Kand. Fiz. Niat. N. Sredneaz. Univ. Taskent (1957).
35. R.P. Gilbert and G.N. Hille, Hilbert function modules with reproducing kernels, Nonlincer Analysis Theory methods and Applicetions l (1979), 135--150.
36. R.P. Gilbert and G.N. Hille, Generolised hyper compex function theory, Transactions of the Lmerican Mathematical Monthly, 195 (1974), l-29.
37. W. Hahn, Uber die hoheran Hainescher Reihen und eine einheitbiche Theorie der sogenannten speziellen Funktionen, Math. Nacher. 3 (1950), 257-294.
38. C.J. Harman, A discrete analytic theory for geometric difference functions, Ph.D. Thesis in Hathematics, University of Adelaide (I972).
39. C.J. Harman, A note on a discrete analytic function, BuJl. Austral. Math. Boc. 10 (1974), 123-134.
40. C.J. Harman, A new definition of discrete analytic functions, Bull. Austral. Math. Soc. 10 (1974), 281-291.
41. S. Hayabara, Operators of discrete analytic functions, Proc. Japan ked. 42 (1966), 596-600.
42. S. Hayabare, Operetors of discrete analytic functions and their apnlications, Proc. Japan Acad. 42 (1966), 601-604.
43. W. Heisenberg, Die "Deobachtbaren Grossen" in der theorie der Elementarteitchen, Zeits.f. Physik, 120 (1943), 513-538.
44. W. Heisenberg, Die Deobacht baren grossen in der Theorie der Elementarteitchen II, Zeits. f. Fhysik, 120 (1943), 673-702.
45. R.P. Isaacs, f finite differonce function theory, Univ. Nac. Tucumen Rev. 2 (1941.), 177-201.
46. R.P. Iseacs, lonodiffric functions, lat. Bur. Standards Appl. Math. Sicr. 18 (1952), 257-266.
47. G.J. Kurowski, Semi-discrete analytic functions, Trans. Amer. Math. Soc. 106 (1963), l-l8.
48. G.J. Kurowski, On the convergence of the semi-discrete analytic functions, Pac. J. Math. 14 (1964), 199-207.
49. G.J. Kurowski, Further results in the theory of monodiffric functions, Pac. J. Math. 18 (1966), 139-147.
50. G.J. Kurowski, A convolution product for semidiscrete analytic functions, J. Math. Anal. ^ppl. 20 (1967), 421-441。
51. M.E. Lord, A discrete Algebraic Derivative, J. Math. Anal. Appl. 25 (1957), 701-709.
52. H. Margenau, The nature of physical reality, McGraw Hill Book Company (1950).
53. L.M. Milne-Thomson, The calculus of finite differ ences, Macmillan (1965).
54. J. H . Musler, The discrete Paley-Viener Theorem, J. Fath. Anal. Appl. 75 (1980), 172-179.
55. D.I. Rainville, Special functions, Chalsea Publishing Company,(1960).
56. A. Ruark, The roles of discrete and continuous Theories in Physics, Fhysical Reviews 37 (1931), 315-326.
57. Z.O. Silic, Analytic functions of a discrete argument Which admit physical model (Ukranian), Nank. SC orienik, Mek-Mat. Fak. Kiivs'k. Univ. (1956) 527-528.
58. J. Souchek and L.H. Yip Li, Structure of rings of functions with Riemann-Stieltjes Convolution Products, Journal of mathematical analysis and applications, 41 (1973), 468-477.
59. K. Subbash, The discrete finite Hilbert transforn, Indian J. Fure inpl. Maths. 18 (1977), 1385-1390.
60. S.T. Tu, Discrete analytic dcrivative equations of the first order, liath. J. Okayamo University, 14 (1970), 103-109。
61. S.T. Tu, Discrete analytic dorivative equations of the second order, Math. J. Okeyamo Univ. 14 (1970), 111-118。
62. S.T. Tu, Further results on the discrete analytic derivative equations under the prime convolution product, Math. J. Okayano Univ. 15 (1971-72), 173-185.
63. D. Zeilberger, is new approach to the theory of discrete analytic functions, J. Math. inal. Appl. 57 (1977) , 350-367.
64. D. Zeilberger and H. Dym, Fusther pronerties of discrete analytic functjons, J. Riath. inal. Lppl. 58 (1977), 405-418.
65. D. Zeilberger, A new basis for discrete analytic polynomials, J. fustral. Miath. Soc, 23 (1977), 95-104.
66. D. Zeilberger, Discrete analytic functions of exponential growth, Trans. Amex. Math. Soc. 226 (1977), 181-189.
67. D. Zeilberger, A discrete analogue of the PaleyWeiner theorem for bounded analytic functions in a half plan, J. Austral. Math. Soc. 23(1) (1977), 376-378.
68. D. Zeilberger, Binary operations in the set of solutions of a partial difference equations, Proc. Amer. Fath. Soc. 62 (1977) 242-244.
69. D. Zeilberger, Pompeu's problem on discrete space, Proc. Nat. Acad. Sci. USA, 75 (1978), 3555-3556.
