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PREPACE

The investigations presented in this thesis
have been carried ocut by the suthor, as a fall-time rese-
arch sgholar, during 1974-78 in the Physics Departaent of
Coehin University.

The present thesis deal with studies oa certain
aapnoic of pathologieal higher spin field theories, } 4
bringe to light some new abnormalities and new examples of
abnormal theories and also puts forward a novel approaeh
towards the construetion of trouble-free theories,

In Chapter I of this thesis, after a drief des-
eription of the different formulations of higher spin fields
an extensive survey is made of the variety of pathologies
afflicting such theories., The scops of some 0f the reme-
dies suggested in the recent literature is also discussed.
Chapter II eontaine a simple example of a pathologioal
theory involving veetor and scalar partioles. It 1 shomm
that while certaim coupling schemes lead to constraint
breakdown and noninvariance of the S-matrix, there ars other
poasible interactions which do not share these diffioulties.
In Chapter 11X, as a preliminary to an analysie of the ques~
tion of relativistic covariance of a pathological theories



at the classical level, the Dirac-Schwinger covariance
condition {s derived within a classical framework, The
grucial role of the energy continuity equation is pointed
out and the origin of higher order derivative terms ie
traged to the presence of higher derivatives of onnonical
coordinates and momenta in the energy density funetional,
Chapter IV contains a study of the prodblem of relativistie
covariance at the elassical level with regard to several
tnteractions of a epin 1 field. It is found that while
the aganszl interactions lead to noneevariance, there are
exanples where the field propagation is causal but the theory
is nevertheless nonoovariant, Chapter V presents a new
approach to higher spin field theory. It is sugzested
that the method of keeping the subdsidiary conditions sepe~
rate fron the equations of motion in a consistent way by
means of a Lagrange saltiplier may be a selution to the
various maladies of higher spin theories., The distingt-
ive features of this approach are illustrated with the
example of a spin 3/8 field, It is shown thntf‘:mry is
causal and free of imaginary values in the energy speotrum
when coupled to an extermal slectromagnetiec field, Quanti-
sation 1s carried out in an indefinite metrio space and for
minimal eoupling a unitary S-matrix is constructed by intro-
duoing a fioctitious particle and a new vertex. Chapter VI
extends the Lagrange multiplier formalism to the desoription

1§ §



of a spin 2 field. The massless limit of the corresponding

theory s also disoussed,

The original contridutions contained in this
thesis are the following!

1. Observation of the possidility of constraing
breakdown and noainvariance of the S-matrix for
several couplings of a vestor and scalar fields
and the demonstration of the adsence of such

pathologies for other oouplings,

i. A derivation of the Dirag-Sohwinger ocovariance
condition in elassiocal field theory.

3. Detection of relativistie noncovariance at the
of
olassioal level in the interactions a spin 1
field and the observation of this possidility

even in causal theories.

4. A new approsch to the formulation of patholegy-
free theories and its applioatioa to epin 3/8
and spin 3 fields,

A part of these investigations has deen pubdlished
in the form of the following paperst

1, "Patholgies in interacting massive vector and scalar
fields", Curr, Sei. 43, 544 (1976)

111



3. "Relativistio aonoovurianoo:;atoraetln; spian-1 flielad
theories® J. Phys, At Math, Gen., 9, 1951 (1976).

S. "The Dirao-Schwinger covariance eondition in clas-
sical field theory* Pramans 9, 103 (1977).

4. "Lagrange multiplier formalism for a spin 3/8 fiela"
J.Phys, At Math, Gen, 10, 1338 (1977),

The investigations inecorporated in this thesis
have bdeen conducted under the able and inspiring guidance
of Dr, K, Babu Joseph, Department of Physice, Cochin Univer-
sity. The anthor is grateful to him for persisteat inter-
est, profound ineight, and invaluable guidance.
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NOTATION AND CONVENTIONS

The metriec used is &,y , fourth compenent of a
vector bdeing assigned an imaginary value.

Greek indices denote 4-vectors and Latin indices
3-vectors, Summation over repeated indices will always be
implied, unless stated otherwise,

The Dirac v's ( ¥ o M= 1, « « « 4) are all her-
mitian with square equal to oae.

Complex conjugation and horlttfu conjugation are
both denoted By the same symbol (an asterisk, *) and it will
be clear from the context which of these is meant, Conju-
gation is carried ocut on all imaginary units including the
metrie 1, However,in dealing with complex 4-veators,

Ap = (R, 84) where X4X ", A, 44" 1t te conventent

to work with the conjugate veetor A = (A, 1 A) ) in

which the metrie is left unconjugated as distinct from A,’ »
- & »

(A 7y =14,)

Time derivatives will be frequently denoted dy
a dot L,0, A = AQ

Natural units © = ¢ = 1 are used throughout,
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CHAPTER 1

INTRODUCTION

After a brief survey of various forsu-
lations of higher spin wave equations,

an aceount is presented of the nature

and variety of pathologies afflioting
higher spin field theory when interactions
are introdnced, A discussion is aleo
given of the scope and extent of the pos~
sible remedies suggested in the recent
1iterature,



The interest in particles of higher spin
(spin s > 1) dates dack to the time pirael wrote nts
famous wave equation for the eleetron., Vhile in the
sarly days the study of higher spin particles was rather
an aeademic pursuit, the discovery of higher spin resomnant
etates in the fifties turned it inte an important area of
research, The ensufng aotivity has culminated in the
realisation that the prresent day field theory, unless
modified drastically, is incapable of giving a consistent
asgount of higher spin particles and their interactioms,
Betfore going into the details of the variousg maladies of
higher spin field theories a quick survey will be first
made of the various formulations of higher spin field

equations.

1.1 Relativistio wave equations for arditrary spin

It 1s well known that a particle of spin s may
be charagteriaed by a definite irreducible representatioen
of the three-dimensional rotation group which lng both
single ani double valued representations, The prineiple
of relativity, however, demands that physiocal laww de
oovariant under lLorents transformations, and hence in
setting up ecueal equations of motion it 1s the Lorents
group and its representatims, and not the rotation group,
that must be considered,



The homogeneous Liorents group is isomorphte
to the group SL(2,C), the group of unimodular trans-
tformations in a complex two dimensional spasce. The
finite dimensional representations of this group are non-
unitary, and the complex conjugate representations
(*dotted spinors®) are distinet fromthe "undotted spinor®
representations, A finite dfmensional frreduoidle
representation lﬁj' is charscterised by twe indepeadent
sets of integral or half-integral values and has the
dimensionality (23 + 1) (23* + 1). Elements of the
rorresponding representation space sre spinors of 23’
dotted and 23§ undotted indaices, Spinor ¢calculus deve-
l1oped 1n snalegy with the usual tensor caloulus allows

ome to find all possible equations invariant under SL(3,c)*

The simplest equatioan invariaat under §L(z.c)
ie

aat?q = im ?L (1.1)

Here G is a two-component spinor and O,. is the spimerial
derivative operator related to the four-derivative through
the relation

dai = G », (1.2)

where Tusai is the spin-tensor

Tpsab = (&F,iI) (1.3)



the g; deing the Psuli spin matrices. The relation between
a quantity and its complex conjugate being non-limear,
eq.(1,1) must be rejected on account of its non-lin:aruy

or more particularly, it can hold only for m = O in which
case one obtains the Weyl equation

aa.b ‘Pa = o (1.‘)

The nonlinearity problem for m ¥ O can be overcome in

a different way by having on the rhs of eq.(1.1) not the
complex eonjugate of ¢, mut of another spinor X, indepe-
ndeat of P, 1

Sai ?“ = imXp (1.8)

There will now have to be amother equation for X ;

a

a&ﬁxi = i ? (1.0)

Bquations (1.5) and (1.8) together constitute the spin-
orial form of the Dirac equation

(¥:2 + m)yw = o (1.7)
P,
P2

where Y = | i is a four oomponeat spimor trans-
X2

( f ) ¢
forming aceording to the representation .,D L - .Dm *).



Under spatial rotatioms alone this degenerates into
50 0" and ts & unique spin repressntation, invariant
under parity transformation,

After the success of the spim # wave equation
1t was Dirsc® himself who first swggested the way to
formulate a wave equation to deseride a particle of arbit-
rary spin s. Dirae, and Fiers and Panlté? 8 oxtended the
way of arriving at eqs, (1.8) and (1.8) to the general case

. _
of spinor Qz““‘" .‘_'_“sk transforming as O V') with' g, -

§ (1e1), J;_ = § Xk, This spinor does not gorrespond to
a unique epin since under the rotation sud-group.

A(J'HJ':') P eo‘d'lfd'o"') ® - - ® oOlJ"-‘i"'

-D(j“jl') ~
(1.9)

N

Introducing a second spinor 7(_:1":"‘% » 88 a natural

- by

generalisation of the spia § case,the wave eguation for
ardi trary spin may be written in the fom

d aa.-- ae = (v a,--- 4¢
QL ?b, I Y bk x L"‘ .. ‘k (1.")
b Q.-ra . ad,...4
aa xa » (- = twa » .' .c (1.»)
bb,..»h ¢b b'-.. bk



The spinors ¢ and A satisfy the Klein- Gordon equation,
Supplementary conditions needed to pick the highest spin
from (1.8) are provided by eqs. (1,9a, d). The spin of
the particle is given by

8 = $#(x+1+1) . {(1.10)

Fermions of spin s = k + } may bde descorided
by the Rarita~Schwinger® theery. Define

P ﬁ b
My oo = 0... j ‘_“""qk
‘ s Jt' ”J: aj ?b'... 'bk (1.1“)
x [EI b
bpy... = S P VL TE R (1.11d)
] "'K tes ”J: GJ x—’bjt‘.;l'bk
Then the tensor-spinor
]
q,"‘ " Hee
2
Yoooome = | Fheen,
Lip,. .oy
xi)‘c- .

is symmetriec in ,,...y4, and satisfies the equationa

(¥2 +w)¥u..n, =0 (1.12)
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Por any 4, and as a oonsequence of these equations there

also follows the further subsidiary conditions

¥ :'\y»..-.m.-.p,‘ = © (1.14)
for any 1.

Similarly bosons of spin s are desorided dy a
sysmetric tensor

Py,.. Pu;. (1.15)

*Hi--opg ERERY SRR 8

obeying the equations

[
(o]

(O=-w") Pupeenpynoep (1.16)

(1.17)

[
[+

Opi Prer - - pi- - - s

for any 4.,

1,2 Matrix algebraic esquations

A first-order wave equation

(B2 +w) Voo =0 (1.18)



sinilar in structure to the Dirac equation (1.7) but with
the matrices odeying the algebra

PrPuBs  + PaPubp = Pudy +BEp (1419)

desoribing particles of beth spin O and spin § was derived
by Duffin', Kemner® ana Petisn® in the late 1930's,
Phadhai®ril 1a¢er showed that a general first-arder systes
of relativistic wave equations can de set up which indudes
the Diraec and mtﬂ-—tﬁmubhum equations as special
cases. In Bhabha's theory it is assumed that all infor-
mation pertaining to a physical system is contatined in a

first-order equation

(1.20)

(1]
(0]

( Budp + %) Yo

where X is a mass term, and no further sudbsidiary condi-
tions, as for the Dirac-Fierz-Pauli equations, are required,
It 1s the algebra of the 3 -matrices that is the principal
objeot of study in this approach, Requiring invariance of
(1,20) under a Lorents transformtion /\ leads to

Vo= AY , ATBUA = Kupl (1.21)

Por an infinitesimal lLorents transformation Auy =



one obtains the invariance condiéion in the form

C T o Ba) = 8y Bu - SusBy (1.33)

These relations, however, do not determine the algedbra of
the 3 -matrices completely, and in Bhadha's theory it is
poestulated further that

I - -Lpu.B, ) (1.23)

It ean be shown that the self-adjeint operators I, =

—Ih‘. a, d, =1, 2, 3, 4, 8 with the eomponents

Iy.s = 'Isy. B . Is56 = o (1.24)

satisfy the commutation relations characterising the So(8)
group. Eaoh inequivalent irreducidle representatioan of
the Lie algedbra of S0(8) determines an inequivalent irre-
dueidble represeantation of the Sealgetwa., Essh irredu-
oidble representation is specified by two numders $ and
s both integers or half-integers € >89 2 0, Por
spin £ and spin 1 the algebre generated are the Diras and
DXP algebras respectively, But for & > 1 the algebra is
reducidle and contains representations of all lower spins.
Further for & > 1 the Bhabha fields 4o not satisfy the
single mass Klein-Gordon equation but actually satisfies
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a.pED-xJLD-%J--~ [El—(i.oz
La- =
i L1Y =o (1.28)
for integer £ and
[o-ecllo-3- - . [D-('s%n‘]
XLD*%—,-.J""' = O (1.26)

tor half-integer S, Thus, in gensral, the Bhabha theory

yields 2 multi-mass, multi~spin system, For a given spin

itself there may be dﬂrom*m states, This feature of
the Bhabha equations was part of the reason for their bing
neglected until in receat times the need te formmlate a

pathology-free theory stimulated a revival of interest in
thea123-18,

A modification of the Bhabha equations was sug-

1931

gested by Marish-Chandra where, instead of the S0(8)

algebra the (3,"5 ohey the condition

( [3,‘_)2 S+1 _ (ﬁﬂ)zs-l (1.27)

The resulting equations desoribe particles with unique
masses, but Harish-Chandra found that for higher spins
there are no finite algebras satisfying eq.(1.27). On this
account, Harish-Chandra concluded that there may not existd
fundamental partiecles of higher spin in nature.
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1.3 Algebraie inconsistencies and Laygrangian
formulation

The first inatance of an inconsisteney showing up
i an interacting higher spin theory was noted by Flers and
ranl1® not long aftier Dirac suggested equations of the form
(1.9) for descriding particles of arditrary spin., They
observed that for higher spins eq. (1.9) leads to algebrai-
cally ineonsistent results when the effeoct of an sisotre-
magnetio field is takem into account through the minimal
substitation O, - Wy =2,-tcAx o+ This comes about
because the 7. econsidered as operators no longer ecommute
with each other But satisfies

L TrP ] -ﬂ'v J = ('2 F/'“’

(1.28)
whers F,. 1is the electromagnetic field tensor. PFor inst-
ance, eqs. (1.12) and (1,18) for epin 3/2 with minimal ele-
otronagnetieo interection introduced read

Tapy = o (1.30)

and the subsidiary eondition f{s no longer consistent with
oq. (1.39), as a consequence of eq., (1.36). The same thing
can happen in integer spin flelds with spin s 2 1,



Fierz and Pauli suggested that the most expedient
way of resclving this aifficulty is te set up a Lagrangian
formalation vherein the equatioms of motion as well as subsi-
alary condition follow tro-[tho variation of the same Lagrangian,
IZ the interactions are them introduced via the Lagrangian the
resulting equations of motion and the sudsidiary oconditions
will retain their mutual compatability,

In general for higher spins the Lagrangian foyuwu-
lation requires the introduction of som suxiliary variadles
or fields, The Lagrangians for spinm 3/3 and epin 2 fields
given by Fiers and Pauli contain terms depending on such
enxiliary fields and the vanishing of these funotions as a
result of the variation f» ensured dy a proper choice of
certain nunerical coefficients, lagranzian formulations
along these lines were developed for higher spins by Fronldal“
and cmg“ for spins upto 4, and of late, these have been
extended to fields of arbitrary spin by Singh and Hagen?¢#35,
The Chang Lagrangian for a spin 3/2 field with an auwxiliapy

spinor & 1s given By

£ = "th("'a "'W‘)"Pp - ""“E‘a,ué- 36,.'*“

38 (Vd+amd
= (1.31)

This 1s equivalent to the Rarita-Sohwinger Lagrangiasn if
\"P — Pu + rpé and coinoides with the Lagrangiem
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with an arditrary parameter discovered by Moldauer and

26
Case™™ it <y, — P + ar»sb o Similarly tho Tiers-Pauld
Lagrangian for spin 3 field with an auxiliary soalar field
is equivalent to the Lagrangisa sdtained by Nath?', Bhadha
equations diseussed previocusly may also be troatod_ from a

Lagrangian point of view,

1.4 Free Field quentisation

Onee a Lagrangian formulation is in hand canonieal
quantization of the field ean de carried ocut, But for fields
of spin e 1 this procednre becowss highly cumbersom e
to the presence of subsidiary eonditions which make not all
components of the field canonically independent, Therefore,
before attempting auantigation, the sanonically independent

fields and momenta must be separated, Soludngor's”

astion
prinoiple appmeh'whoroin quantigation follows aimply by
identifying the generator corresponding o the doundary
variation with the infinitesinal generators of unitary trans-
formation 1is highly rewarding in this context and has been
applied by Moldauer and cuo“. chug”'”

Hngonu'“ to quantize higher spin fields.

and Singh and

An altern:tive, non-Lograngian, approasch was
pioneered by Umesawa and hnha-mao’a".
of the Ym-rolm”

A generaligation
me thod, this can be apnlied to the
quantisation of a field of arditrary spin if the field equa~

tions are of the tom



provided the differentiasl operator A satisfies ocertain
specified conditiens,

1.8 Patholegies in interacting higher apin theories

Fith the initial aifficoulties overeoms without
too much effort the field theory of higher spin particles
remnained a mere curiosity until experiments degan to revseal
the eoxistence of resonances of progressively higher spins,
Efforte to understand the dynamice of higher spin particles
within the framework of field theory led to the shoeking
realisation that the theory was full of contradiections,
0f these anomalies in higher spin field theory, the earliest
one 10 De noted was, what has gome to be known as the Johnson~-

Sudarshan  effeot.

a) The Johnsen-Sudarshan effect

"hile the gquantization of free field of higher
spin poses no prodblen, Johnson and Sudarshan in 1961 showed
that a oonsistent quantisation of an interactiang half-integer
opin field of apin s > § 1o imperiled by the presence of
constraint relatioms, They proved a general theorem which
asserts that for such fields the possibility of consistent
quantigation requires that the equal-time anti-¢ommutator
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must be functions of the other fields to whiech the field
in question is coupled. This result may be 1llustrated
with the example of the Rarita~Sohwinger field \YH in
interaction with an externmal electromagnetic field with the
Lagrangian density

&' = E ’qjﬂ (Tro‘xq- + M)"'h‘_ — \PF, (]TyX)a +1T)Jy)%

+ Vpldu( TeYe- w) §¥ ] (1.33)

where T, = Su~icAy .« The field egquation obtaimed
from eq. (1.33) 1o
( “f'xd- + W\)\P,u - (Trvx’a +T|',‘D‘,) ‘\Pu
+ KF ('"'eb'p "'.V“) Ky"lv = O (1.34)
Eq.(1.34) does not preseribe the second time-derivative of

all{tho field components and the fourth component of eq.
(1.34) ylelds the prll}y constraint

i
o

~Ty: + TG - mBy; (1.35)

Defining that part of Y, which transforms as a spin 3/2

object under spatial rotations dy

L3
= (Sp — L Y.5
lqlk ( ke = 3 % E) tP(. (1.36)

the constraint relation (1.35) oan be written as



(=33 ) St + Ty = o (1.37)

In Sohwinger's action prineiple approach the
equal-time commutation relations e¢f the theory are deter-
ained by

LA, G] = (Exew (1.38)

where the generator G is odtained fromthe time-~derivative
terms in L , and has the fyem

G = ¢ jd’x L2 C e - Va %0, ) S, +’/3n"3’,‘
* ECny) ] ~ (1.39)

The equal-time commutators of '\\0;3/’ following from
oqs. (1,39), (1,38) ana (1,37) are

$ ‘Vk%‘cao a“f’g’ﬁ“l) Jxsnast ®O (1.40)
*

$ '\Pk%u) ;\PZS cth Sapens = (Spwa - Va b’gxm) [ Swn

- 2/3 -

S wmie 203§ Ta J (Sne- 4 Pury ) So-T5

(1.41)

where H 1im the magnetioc field, The aonsistency of the
quantization depends on the positive-definiténess of the
expression on the rhs efs eq.(1.41) which, obviously, is

16

.
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determined by the strength of the magnetic field, It will
be positive enly if 3/3 (e | < =, If the quantisation

ie carrfied out in a chosen frame of reference the anti-
eommutator (1.41) holds with the strength of the magnetio
field H as measured in that freme, But for a nom~vanishing
external field a frame ean always be found where 3/3 ‘o a|>»-'
and ssoordingly the comautation relations would develop an

inconsistenocy,

Johnson and Sudarshan further demonstrated thnt
the Bhabha-ﬂnptas"s5 equation deseribing a particle with
two mass states and spin 3/2 an? spin } also suffers from
the type of incomsistency Adescribed above, Later work
brought to light further examplesof similar pathological
behaviour im higher spin theory. For a spin 2 fielad coupled
to an external electromagnetic field this was demonstrated
by Nath87. for a spin 3/3 field interacting with a scalar
f1eld by Hagen>%, ana for the interaction of a spin 3/2
partiocle with & pion and nucleon by Nath, Etemadi and K110137.

A question as to the genuiness of the adove type
of pathology and whether it is a consequence of an improper
oe thod of quantisation was raised first by Gupta cnd.aophosa.
They noted that the simplest cholos of canonical variables
corresponding to the commtation relatimse (1.41) failed
to satisty the Heisenberg equation of uotion ia the fully
quantized theory, To save the situation they iatroduced



a transformation in the onnonical variables and on the
assumption that this would result in a modification of the
Johnson-Sudarshan anticommutator, they conjectured that
the Johansoa-Sudarshan ineonsistency might de a spurious
one. But, later, Kimel and Nath”. using a generalized
Yang-Feldman approach demonstrated the neod for the cano-
nical variadble transforaation of Gupta and Repko but they
also showod that the Johnsun-Sudarshan antieoumutator 1is
favariant under this transformation, The equivalence of
the commmtation relations odteined from the action prin-
oiple approach was also established for the case of a spia
3/3 field interscting with a soalar and Diras ﬂold‘ﬂ'“.
These equivalencs proofs were based on perturdbative toch-
niques and in the works already referred to, the assertion
was proved only upto sesond order in the coupling oconstant,
300%? extended the Nath-Kimel mthod to fourth arder, and
proved tho equivalence of the commutator obtained from the
action prineinle aad Yang-Filaman approach to this orxder.
Following this Gluch, Gays and Kimel*3 demonstrased, with
the simple example of A spin O -~ spin § system manifesting
the pathologies of higher spin fields, the equivalence of
tm-rggma and action principle quantisation without
inavoking perturbation theory, They conjectured thag the
gane may be true of other nathological theories as well,
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The suspioion that the quantisation leading to
the commutation relation (1.41) my be noninvariant was
finally settled by Mainland and Sndanhun“ by airectly
verifying that the lleisenberg equation is satisfied, Taking
the explioit dependence of the external field on space and
tine coordinates they proved that the Helisenberg equation

is satisfied in the general form

O = dov =-i[vH] + 3 (1.43)

where 4, denctes the total time derivative and O, the
rartial derivative., Subsegueatly, by a clarification of
the msaning of Poinoaré invarience when extermal fields

are present and by an explicit esleulation of the comsutator
of the spin 3/3 field with the generators of translations
and homogeneous Lorents transformation, Mainland and Sudar-

shan showed that the fialds tramsform oovnriantly‘ . In

the oase of a spin 3/2 field interacting with a soalar field
a sivilar conclusion was reached by Hagen“. Thus 4t
becomes abundantly olear that the appearance of an indefini-
tenens in the anticommutator must be the result of a more
fundmmental flaw in the theory and not the result of non-

eovariant quantisation,

(») Acausal prepagation

A landmark inthe study of pathological higher

spin field theory 1is the work of Velo and z:«:::i;or“’“



wvho demonstrated th:t serious diffionlties are present in

the interaeting higher spin fields when considered a2t the
basie o-number level itself, Applying the ms thod of
oharaotoristten‘e as the basfic tool, they showed that inter-
acting higher spin field equations interpreted as classiocal
wove equations possess solutiams that either do not propagate

or propagate with a velooity exceeding that of 1ight,

To appreciste the niture of the difficulties
involved 1t may be profitable to start with a look at the
mathenatical description of wave propqgationfa. Non=
dispersive wave propagation fe associated with hyverbolio
systemspbf partial differential equatioms, For such equa~
tiona an initial value problem may be posed on a glass »f
surface) called "space-like” with respect to the equation,
and they possess solutions with wavefronis that travel
along rays at finite veloeities, The wave-fronts are,
essentially, the characteriztic surfaces af-the system of
squations, Characteristic surfaces are those spage-~like
surfaees for which the initial value problem has no unique
solution, Alternatively, they may be characterized as
surfaces across which diseontinuities ean occur in the
higheets order derivatives, These characteristic surfaces
Are determined by the coefficients of the highest order
derivatives nresent, The rays through any peint form a
ray-ocone whieh again is determined by the coefficieants of



as

the higher order derivatives., In a hyperbolic system if
ooupling is introduced through lower order derivative the
ray cons will remain unaffeoted, that is, the nature of the
wave propagation will bDe the same in the free and ian the
interacting case, This is what happens in the examples
of the Klein-Gordon and Dirac equations (both hyperbeliec
system) when they are ecoupled, as is usual, non-derivat-
ively or through lower derivatives, 1In either case the

ray-oone remains the light-cone.

On the other hand, in the descoription of higher
spin fields with redundant components the Euler-Lagrangian
equations will not form a hyperbolie system, Beocause of
constraint conditions they will only constitute a degen-
erate system, However, inphc free field case, they may
be shown to be equivalent to a hyperbolic system desori-
bing wave propagation together with a supplementary set of
cons traint equations which are preserved in time, But
there now arises the poseibility that if in higher spin
Lagrangians interactions are introduced through non-deri-
vative or lower order derivative terms the resulting Euler-
Lagrange equations might no longer de equivalent to a hyper-
bolio system with the light oone as the ray cone, Velo

r“"' found several instanves where the wave-

and Zwansige
front propagates across the light cone., Casusality vio-
Mtion, in this sense, was first demonstrated with the example

of a spin 3/2 particle in an external electromagnetic field



and was immediately extended to several interactions of
a spin 1 field,

The Velo-Zwanziger result may be fllustrated dy
the exaaple of a charged vecotor particle coupled to an
extornal symmetric tensor potential through the Lagrangian

* »
& = —é G,Ay G}lﬂ - W\‘ ?}4?}" - A ?: TFVQv (10‘8)

where Ciuy = &,9,-3,¢, « The Euler-Lagrange equation
that follows 1s

a» Cép@v‘- ap‘P’.) - W\"?,, - A Tv}.\ ?p =0 .1.“’

and its fourth component constitutes the primary constraint
L 2
VRg 31002, — M@y = AT @, =0 (1.48)

The secondary oconstraint is obtained dy taking the diver-
gence of ‘q.(’w“)

W\‘-a)ucPF + A aﬂT}‘V?v = o (1.4‘)

The true equation of motion that results whem eq.(1.48)
is substituted dack 1in eq.(1.44) 19

arb,‘?v - Aw‘-zava#('r”,\¢'\) - m"cpv

_A TFV?'M - o (1.‘7)



The eq.(1.47) prescribes the second time derivatives of all
the components and is not degenerate, Frou this it is
apparent that every solution of eq.(1.44) satisfies the
eonstraints (1.48) and (1.46) and the equation (1.47).
Conversely it may be verified that every solution of
0q.(1.47) satisfies eq.(1.44) and that 1f the constraints
are satisfied at a particular time they will be satisfied
always,

To analyyse the nature of field propagation,
Velo and Zwansiger made use of the fut“ that the velocity
of propagation is determined by the mormals to the e¢hara~
eteristie surfaces, These are found by replaocing
a’, - Ny in the highest order derivative terms and
evaluating the determinant D(n) of the resulting coeffi-
olent mtrix, In the present case

- a -2

The normals t0 the characteristic surfaces are determined

by equating this determinant to sero
D = (WYt AR ATM) =6 (1.49)

Assuming for simplieity that only the 'l'“ component of
Tuy is non-vanishing, one obtains



e = ' R (1.80)
V- /\V\:'.Tog

If Avi'Tes >1 ¢ B, bDecomss imeginary and the
system ceases to be hyperbolie., If o0 < AwiTes <1
the equations are hyperbolic, but the normals are time~
1ike and henoe the eharacteristic surfaces are space-like
and the propagation becomes acausal, One can further
show that the ascausal ray is mot eliminated by the const-

raints,

Following the surprising discovery of Velo and
Zwangiger, extensive investigations along these lines by
later worlmrs brought to light many more instances of
external couplings al;»:;ll interactions of spin 1“"“,
spin 3/2""’" and spin 3% theortes suffering from the
afflioction of ascausal propagation. Madore and uit”
developed an alternate méthod to determine the nature of
field propegation, This shook wave formalism, which is
equivalent to the méthod of characteristics, is bdased on
the faet that the characteristic surface is the surtface of
discontinmuity in the highest order derivatives of fielad

funotions,

Acausality of propagation manifests itself in the
quantised theory through the nonvanishing of the field com-



mutator for space-like separations, That this was indeed
the oase was direetly verified by ortaceu®® for a spin 3/3
partiole in an eleetromagnetic field in a 1 + 1 dimensional
model, Sehroer, Seiler and Svhu" had earlier noted,
following capri“. that the quantum problem in external
potential with the source linear in the field is reducidble

to a disoussion of the eorresponding classical prodlem,

The question whether the méthod of characteristies
is sufficient to detset the violation of causality was
raised by Mathews and Seetharaman®®, They observea that
while for a charged spin 1 particle with an anomalous moment
eoupling to an external eleotromagnetic fielad the propagation
is ceusal aoccording to the method of characteristics, it has
a tachyonie mode with the veloeity of light as the minimum
velooity. Hence they argued that the mthod of character-
istios gives only a necessary condition but not a suffi-
cient one for causal propagation, But l!agoa“ has pointed
out that the tachyonic mode in the spin 1 field occours only
in the case of an external elestromagnetio field and the
autually interacting theory of a spin 1 partiole with an
anomalous magnetic moment with an eleotromagnetic field ag

the quantised level is fully ocsusal,

e) Constraint breakdown

Velo and Zvunugor_"" in studying causality vio-

lation in higher spin field theories came across another,



and much worse form of pathology in the minimal elestro-
nagnetio coupling of a massive spin 3 field, They observed

that when the minimal substitution a,‘ — Ty = a,,- ie AF

is introduced inte the Lagrangian

» L
L = - S Yuv a)‘fpy + & 2 ‘PPV ap“")«v
* * *
~ OpPuy Y = OpY AVpa — ¥ Suy

— by = ¥ W)

f1.51)
where ‘\Pf‘“’ is a symetric tensor and = Yup o two of
the constraints deduced from the Euler-Lagrange squation
following from eq.(1.51) turn into equations of motion and
the field acquires 6 independent degrees of freodom instead
of the required 8. This is a strange phenomenon to which
attention had been drawa by Federbush®® a few years eariter.
Federbush made use of a first-order formalism using a 30~
component wave function ( a symmedric tensor Y and & third
rank temsor [, = I upa ) to exhidit the inconsistenoy,
and had also found that the introduction of an additional
tern (now called the "Federbush term") corresponding to a
direct interaotion with the slectromagnetic field is the

only way out of this inpasse. Iln;u”

s later showed that
the Federbush equations when formulated in a second order

form are identical to the Dirao-Fierz-Pauli equations for



spin 2 field. That the Chang theory fer a 30-gomponent
wave funotion with minimal coupling is also equivalent ¢o
the Federdush theory was demonstrated explicitly by Hagen,
The one parameter family of Lagrangians obtained dy uith"
ana 7a1t%7 as generalisations of the Direc~Flers-Paull
Lagrangian preserve the proper number of constraiats for
ninimal eleotromagnetio ooupling, The conflict detween
uinimality and the degrees of freedom has been traced to
the ambiguity of derivative ordering when second derive-

tives are pr.-clt‘s.

Apart from spin-3 theory other instances for the
ocourrence of the above discussed patholegy are provided
by certain simple forms of interaction between a spin 3/2

30,31'

partiocle and a mucleon and pion There are spin 1
69

theories also sharing this aifficulty .

The relevance of the phenomenon of constraint
breakdown in relation to the question of relativistic
invariance will be disocussed below,

(a) Noncovariance

While there was an initial doubt that the Lorents
eovariance of a theory might be endangered dy the oxrurrence
of the Johnson-Sudarshan lnoonuiutcnoysa. Mainland and Sudar-

44,48

shan 1ater explicitly demonstrated the proper covari-

anee of a spin 3/2 field with minimnl eleotromagne tic



ooupling. However, another kind of covariance prodblem
afflioting higher spin theories has dbeen highlighted dy
Jenkins '3,  This has to do with the covarianee pro-
perty of the S-matrix in the interaction picture as given

by

s =T exp(—5+:ﬂ1cx> dtt) |
- {1.53)

where H;c0 1s the interaction Hamiltonian in the inter-
action picture, Now, the time-ordered produd of two
operators may, ir general, contain nongovariant terms, In
theories where the Mathews rule'> holds the effect of such
nongcovariant terms gets cancelled with the effect of other
noncovarimmt terms preseat in the intersction Hamiltonian

ia every order of perturbation theory, ¥ith the exaaple

of an interaoting maseive veotor field Jenking proved that
the Mathews rule is vioclated and the S-matrix is nencovariaant
when the propagation of the field is acausal,

Another line of econneetion between the nature of
field propagation and the covariance property was also observed
by Jonkun“ who ocomsidered simpls theories of interacting
massive spin 1 and spin 3/3 fields, and estadblished that &if

there are acausal modes of propagation, it will de acoom-

panled by a breakdowa of Lorents covariance, This stems
from the ir-possibility of determining the independent field

componants in all frames simultaneously; oconstraints losses



ocour in a noncovariant fashien, That the same thing is true
of a spin 2 particle in a homogeneous magnetic field was later

noted by Mathews, Seetharaman and mnnhnn".

(e) Appearance of complex energy eigenvalues

Another manifestation of the pathology-riddea
nature of higher spin field theory was observed by Goldman,
Teai and Y114i5'*77 who first realized that the spectrwm
of energy eigenvalues of a spin 1 particle with an anomalous
moment eoupling 0 an externmal homogenecus magnetie field
may include complex values if the strength of the magnetio
field exceeds a specified value, Exploiting the conmeetion
betweer the preblem of a charged particle in a magnetic field
and the harmonic oscillator, Mathews'® developed a new method
of obtaining the energy eigenvalues in the presence of a nag~-
netiec field which has the distinot advantage that it could
easily be extended to spin 3/8 and spin 2 prodlems. Seetha~
raman, Pradbhakaran and uathou" studied the energy spectrum
of a spin 3/2 particle in a homogenecus magnetie field and
found that complex values appear when field strength exceeds
s oritical value H = 3wm'/2e which is also the
threshold for the onset of the Johnson-Sudarshan inecon-
sistenoy. They further demonstrated that the nomm of
the Rarita-Schwinger wave function becomms indefinite in sign
for magnetic field strengths deyond the oritical value,

Thms it becomes evident that the Johnson-Sudarshan effect
hag its roots in the troudles at the elassical level itself,



and that the emergence of couplex eigenvalues in the energy
spectram is a syuptem of these maladies, However, it
appeare that this type of difficulty is net directly related
to the nature of field prepagation and, u renarked in

Ses., 1,50 there are examples where the field propagation is
osusal, in the sense of Vele and Zwanmiger, dut energy eigen-
valiues turn complex, depending on the external field,
Oecurrense of ou-plix enorgy values in the ocase of a spin 3
partiele in a homogeneous magnetic field was demonstrated

by Pradbhakaran, Seetharaman and Mlthu-".

(£) Instadility

The instability phenomenon as desorided by

8o is amther pitfall for higher aptﬂﬂnorln.

¥ightman
¥Wightman, in his endevour to understand whether the Johnson-
Sudarehan inconsis tency for a partiole of higher spin in an
external field is a general phenomenon or s eonsequence of
some special assuaptioms, found that not all representations
of SL(2, C) are equally suitadle for deseriding higher spin
fields. e demonstrated with examples that there are
‘unstable’ representations which cannot be embedded in a
physieally sensible theory where an external field is {nelu-
ded, For suwoh represeantations the ingoing and outgoing
fields do not satisfy the same set of commutation relations

and hence the physical interpretation of the theory fails,



a
In the examples ase far studied by i’fum“ it
has strangely been the oase that the stability ef the repre~
sentatien and the sausality ef propagatien ia the sense of
Vele and Twanziger are mutually exslusive attridutes, Thws
the Direc-riers-Pauli equations for a spin 3/2 particle is
etadble while the Marley oquum“'“ for arbitrary spin
whieh do not suffer from sommsality are unatable,

1.8 Vays to sveid pathelogies

¥hile, over the years, mnre and more maladioes
afflicoting higher spin theories have been discovered, and
exanples of these ailing theories have multiplied, there is,
as yet, mo definite understanding as te the failure of field
theory to give a consistent deseription of higher snin partie
élos and thely interacoticas, Fovever, in reconst tinves
atteapts of varied sorts have beon made to rid higher epin
theory of its atflictions and te oonstrmct pathology~free
toruulations, These range from minor wmodiffentions in the
interaction terms to alteraate formulations without eudei-
dnpy conditions amd the fncluaton of grevitation asd super-

syaszsetry,

in exmaple of the siaple-ainded approseh of
noditying the {nteranctien term in aa effort %o get over a
patholegy was Jdisomrzed in fec,1.5¢ where it was mentioned
that the fcelusion of a Fedorbush term relicoves the spin 3
theory of the daifficulty of constraint loss, The work eof



Shamaly and c:prl“ in regard to the causality of the
r.nmu.-nnor” spin 1 field coupled to an eleetromagnetic
field 1is another instanoce where this approach is ouccessful,
They showed that the assusal propagation of the minimally
ooupled Takabhashi«Palwer field may de remedied by the inolu-
sion of an anomalous moment coupling with a specified value
of the anomalous moment, But this "counter term® approach,
as Shamaly and camu observed, is of no eavail i3 curing the
acausal propagation of a spin 3/3 field in minimal intersotioen
with an external electromagnetio field,

One of the earlfest sugzestions regarding a patho-
logy~free formulation of higher spin theory was made by
ve10>® who by considering a multiplet of massive vector mesoms
in interaction established that the difficulties of constra~
int loss and acausal propagation may be avoided by choosing
a Lagrangian of the Yang-Mills type and imposing a set of
restrictions on the coupling counstraints. Though the valie
dity of Velo's conjecture remains yet to be investizated, it
has become clear during recent times that a hopeful way of
resolving the troubles may de through multi-mass, multi-

spin theories,

A perusal of the inconsistencies of various kinds
surveyed in sec, 1,85 reveals that theiy occcurrence lies
intinately tied with the existence of constraint relatioms,



A way out of the present confused situation may, hence,
naturally be sought in theories that 4o not demand subsi-
diary conditions, Bhabha equations desorided in see.i.8
belong te this eategory, and tnforost in Bhabha equations has
been revived in the hope of obtainiag a consistent theory

of interactions of higher spin partioles, The causality

of proprgation of higher spin Bhabha fields was studied dy

T 88489 12a vy Krajoik ana Nieto'® 1n the
course of their extensive investigations into the structure
of Bhabha fields, The theory is causal at the e~-number

Bainyas and Nagpal

level, and causality at the gq-number level can be assured
1f quantised with an indefinite metric., Apart from the
salti-nass, sulti-spin struoture of the frield, the 1ntl-i-
sotion of negative probadilities is the real price that has
to be paid to achieve consistency 1Q the presemge of inter-
aotions, and'lt appears that there is no way to eliminate

the negative-normed states from the thwory,

Another formulation of arbitrary spin theory that
does not call for subsidiery conditions is due to lell’pa !'.

This is based on' the representation
(o) @ Csrgy i 4)) @ CCosd @Cy,s-d]
of SL(2,C) where s is any non~negative tniog.r of half-

odd integer, Equations of this type were considered a long
time before O %2, and 1t was realised that they desoribe



parity doudblets of particles of mass m and spins, Of

the members of the doudlet one has all fits states of posi-
tive norm and the other of negative noram, Marley's m» thod
of elininating the states of negative norm has the advantage
that the introduction of minimal interaction with an external
slectromagnetio field does not destroy the c¢causality of pro-
pagation of the field. However, as was noted in Seo.1,.8f,
Hurely's equations are unstable, in the sense of Tightman,
and henge cannot be givea a reasenable particle interpret~
ation at the quantum level.

Another formulation of comnstraint-free equations
for arditrary spin fields which does not suffer from the
trouble of ascausality has deen recently suggested by Hay-
ward”. This theory, desoriding partiocles of unique mass
and spin, starts from a definite representation of the inhomo-
geneocus lLorents group and the wave function for spinm s has
8s ocomponents. The extraneous components get eliminated,
not by msansg of subsidiary conditions dut through the gauge
freedom that is available in the theory, The introduction
of an indefinite metrio is essential to0 this formalism,
Canonical quantigation does not work for spin s > 3/3
and the adbsence of the Johnson~Sudarshan inconsisteney and
other troudbles at the quantined level remain to de demon~
strated.



For a first-order system of the Gelfand-Yaglom
“. whieh include the Bhabhs equations and the Hurley
98,98 serivea
a sufficoient matrix oondition that these squations retain
causality under minimal eoupling. They found that the
origin of causality viclation may be traced to the constra~
ints inherent in the theory. Yhether the cau-q theories

thus identified oan be successfully quantised and whether

type
equations as special cases, Amar and Dossio

all other types of pathology are also absent in these
theories are questions that remain to be investigated,

Ano ther approach €0 a non~eonstraint theory for

higher spin fields, disocussed first by mnonk". was

98 to formulate a consie-

utilized by Fulmyana and Yamamoto
tent theory of interaoting spin 3/3 field. Redundant
eomponents are eliminated, here, by the device of making

the masees of thw eorresponding particles infinite. This
is an extension of the E -limiting procedure proposed by
Lee and rcu“. for interacting spin 1 particles and the
advantage offered by this formmlation is that it avoids doth
the Johnson-Sudarshan problem and scausal propagatien,
However, an unpalatable feature of this approach is, apart
from the infinite masses, that the causality of pmmuttu
dep nds oritically on the way the limit is takem. Aleo,

1t may be noted that the introduetion of a negative metric

is crueial to this mthod,



There are a couple of examples of theories which
have constraint conditions dut are free from asausality,
One of these 1s the Bhabha~Gupta equation34*3% gor o mixea
epin 3/3 = spin § field, Prabhakaran, Seetharasan and

2 found that while a proper choice of a parameter

Mathews,
in the Bhabha~Oupta Lagrangian ensures oausal field pro-
pagation for minimal ocoupling, the same choice renmiers the
total charge of the free theory indefinite., That the total
eharge is indefinite in the osusally propagating reduoibdle
theory proposed by Fisk and ““100 was also shown by these
aathors, They have further shown that the preservation of
causality inths Bhabha~Gupta field with minimal eoupling 1is
not a fortuitous result and that the propagation of this
field remains causal when coupled to scalar fields or when a
gravitational eoupling is oonsidered along with eleotro-

1""9'”0. It appears from .these examples

magnetio interaction
that only by starting with a reducible theory which will need
an indefinite metric quantisation, may causality of propagation
be preserved im the presence of interactions. This in tura
implies that 1€ one is to allow the idea of fundamental higher
opin fields, one will have to reconoile onself to an indefi-

nite netriec theory.

Recently, a olue as to the origin of higher spin
pathologies was reported by Cepri and smalym‘ who found
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that a free spin 3/2. field of the Dirso-Fiers-Pauli type

as well as a spin 1 field with an electric quadrupole
moment coupling to an extermal field exhidit a nonloeal
structure. This s in contrast to the ease of spim O, %
and 1 fields which do not have any mon-locality even in the
presence of minimal elestromagnetic coupling and 1t led them
to speculate that the troudble of acaunsal prepagation in spin
3/3 an@ spin 1 fields may be due to their additional stru-
102 while demonstrating the acausality

103 sor a spin 3/3 -

oture, However, Cox,
of the composite Harish~Chandra equation
spin £ field has expressed doubt as to the comolusion of
Capri and Shamaly, He points out that in the Harish-Chandra
equation acausality ocan de traced to the constraint structure
and not to the physiocal constituents of the composite fileld,
Non-l10c0ality of the sort noted by Capri and Shamaly is attri-
butable to the constraint relations themselves, Regarding
Aigher spin particles as composites will 4in no way help to
resolve the difficulties which plague the theories,

An entirely new possidility of arriving at a con-
sistent theory of higher spin fields has been sought by the
inclusion of gnv“atioaal fields along with other couplings,
Madore!®® has shown that for a spin 3/2 field interaeting
with an external el eotromagne tic field causal propagation is
possible 1f an additional eoupling with a gravitatimal field
is included, provided that only a "limear approximation® of



the gravitational field is considered, and also that the
eharge ¢ and mass B are yrelated by the eondition

e
R = ﬁ- . In view of these restriotions it fs doudt~

ful whether the above-amtioned result has any deep signi-

f1canoce,

However, the recent development of nporgnvlty‘“

theories has raised a fresh hope of ylielding a consistent,
causal spin 3/3 deseriptionl®%¢ 17T, 1he supers yametry
algebra introdwced by Akmlov amd Volkov'®® ama by ¥ess ana
mtaom'
shat aot in the space of helicity states of two massless
particles of adjacent spins s and ses-f. The (2, 3/3)
representation is fdentified with the supergravity mlti-

fs a graded Lie algebra which has representations

rlet, In the supergravity theory of Freedman and van

106 . nassless spin 2 and a massless spin 3/2

Niewenluizen
. 11614 are coupled in a locally supersymmetrie Lagrangian,
#he supersymmetric invariance of this theory is essentially
a fermionie gauge invariance of the Rarita~Schwinger fielad
noted dy Rarita and Schwinger themselves. It is hoped
that there exists a super-Higgs mechanism by whieh the

spin 3/3 particle acquires mass.

Because the higher spin fields involved im super~.
gravity theory are massless the acausality problem does not



arise in this theory'!®. That this theory is alse ghost-
free, at least in the true~apnroximation, has bees proved
by Das and mmw"“. These authors have emphasised that
some of these results are formal, in a sense, and it is not
elear because of the curved nature of the space-time involved
whetier the fully interacting theory would rematin csusal,
muz. recently, coupled the (2, 3/3) multiples with
the (1, %) wultiples, and it is said to de first cmmsal,
ghost-free theory of an electromagnetio-like interaction

of spin 3/32 field, However, a cosmological term ocours in
this which leads to some diffioculties, and no way is yet
known how to handle this term,

Even 1f supersymmetry theories manage to over-
eome the preseat obstasles, and the inclusion of gravity
beoones accepted as an essential ingredient in formunlating
higher spin theories one perplexing question, a guestion
also raised by Krajoik and Nieto'®, will remain to be ane-
wered,. What is wrong with conventional field theery and
why does the sinple Diras equation work?

This thesis has deen concerned with the pathologies
that affliet the conventional formulations of higher spin
fields. Some new abmomalities of a spin 1 field fater-
aoting with a soalar field or a Diras field are reported
here., The possibility of the breakdown of relativistio



invariance even in theories that are free of acausal pro-
pagation {s a significant reeult brought out by this study.
A new approash towards the construction of pathology-free
theory by mans of a consistent Lagrange multiplier saheme
is developed in this thesis and is applied to spim 3/3 ana
spin 3 problems,



CHAPTER 11

PATROLOGIES IN INTERACTING MASSIVE VECTOR AND

SCAIAR FIELDS

The interactien between a real (eomplex)
veetor field and a real (complex) soalar
field is studied with reference 3o the
questions of caunsality violation and loss
of constraints, For certain ocouplings,
at a partiocular value of the soalar field,
the seeondary oonstraint dreaks down in a
Lorents~¢ovariant fashion and the propa~
gation ocan either de causal or acausal

at this valune, The e¢orresponding quanti-
sed theories are, however, not Loreats-
covariant, Other couplings are coastru-
oted which are free of these pathologies,
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2.4 IntroMmotion

Pathologies adbound in higher spin field theories
and the inconsistencies of a mansive spin 1 field have dbeen
discussed by a mumber of authors starting from Vele an(
gwansiger®?r 8% T 4 Stndy ts here made of the matual
inteructions between a spin 1 field and & spin O fleld
under several coupling schemes with reference to the poe~
sidility of pathologies of variocus sorts making their
appearance. The méthod of characteristios is applied
to analyse the nature of the field propagatioa and the
possidility of constraint losses is studied. The lorents
covariance of these theories both at the olassieal and at
the fully quantised level is also exmmined., It is foumd
that for the mutual interaction detween a massive spin 1
field and a charged scalar field with the simplest form of
derivative coupling the secondary comstraint equation ie
lost at a particul-~r value of the scalar field., The field
propagation may or may not de causal at this distinguished
value, Such a situation may be referred to as one of
"uncertaina esusality®, Bat the loss of eonstraints ocesurs
fa a Leorenta-covariant nasner and hence dses not lead ¢o
any nenoovariance of the sort odserved by Juuu"‘ at the
olassical level, The quantised theory, on the other hand,
is showm to be not Lorents-covariant in that the S-matrix

in the 1numtlo+ioaun oontains surface-dependeat terms
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in violation of the Mathews rule. However, when the inter-
aotion Lagrangian is wodified by the addition of a suitadle
tern (whioh for the case of a complex scalar field, is also
necessary to ensure ourraent eonservation) the resulting
theory is found to de non-pathological and the oorresponding
quantised th.ory is seen to possess Lorente~gcovarianee,
Similar results are also established for tho interactions
between neutral spian 1 and noutral scalar fields, complex
spin 1 and nentral scalar fields and complex spia 1 and
gonplex scalar fields.

3.2 Interaction between neutral spin 1 and complex
scalar field

A meutral spin 1 field may be described by the
vesctor formalism with the Lagramgian

&V = ";'"_ (a,,AveavA,.)(a,AAv-avAﬂ)

. (2.1)
- Ap Ay

The Lugrengian for the charged scalar field is
.- u a Y
Ls = 2P 3P - pP P (2.2)
The simplest parity-invariant coupling of the

neutral vector field to a complex scalar field is of the
form



CﬁI = g L apcpfcp - CF*GPQJ A}; (2.9)

The equations of motion that follow from the Legrangian

L = Ly +L£s + £ (a:4)
are
) Ak - 2u3,A; = -ig (3,8 ¢ - F'ope)
= " 3,4 ___‘5( rcp.@—? )‘¢ (3.5‘)
(o- ) " 19(2%P AN +22)4)  (2.8)
* ¥#
(O-m) @ = -ig(22,% Ay + @ 2HA) (2.8¢)

Eq.(2.5a) 1e not a trme equation of motion since it does
not contain the second time derivative of A,. The fourth
oomponent of eq.(2.5a)

L4_ =2 va’4. - 34‘7'2 - MzA'q.
. ¥ * _
+ 9 (2,0 ¢~ %) =0 (2.8
eons titutes a primary comstraint, A secondary comstraint

relation 1s obtained by taking the divergemse of eq.(2.5a)
and making use of eqs.(2.5d) and (2.8¢).

» L
A, = 2942 (PP A, +2,0 @ Ay
+ ¢ 3,0 AL) (2.7)
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In prinoiple eqs. (2.6) and (2.7) should de solvadle for
Ags ©4A, 1n terms of A, and 3, A, in order that the
vector field should bhave three components required for a
spin 1 particle, Illowever, in the present c2se, whan the
soalar f1el4 assumes s value for whieh g*p = m/24® the
segondary constraint relation (2.7) breaks down, and the
veotor field acquires an additional degree 2f freedom,

vhen 29/iGP # 1, 0q.(2.7) may be substitted
in 0q.(2.858) to yield the constrainsfree equation

(E3-wD A, —2d/m* [ g% 2,0,A) + 3,4,0,(¢)

FaLARGRIT + i CoLp-@ -2 0,9)

]
o]

(2.8)

The new equation of motion (2.8) supplemented by the cone
straints (2.6) and (2,.7), assumgd valid only on an tnitial

space-like surfaces x, = ootnstant, is equivalent to the

°
original equation (2.,5a), it heing possidle to show that
the constraint relations are presorved im time (For preof

see Appendix 1I),.

A Canchy prodblem oan now be set up for the system
comprising eqs.(2.8a), (2.5¢c) and (2,8) with the initial
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data specified on a space-like surface x, = constant and
satisfying the constraints (3.6) and (2.7). The chars~
oteristic determinant of this system is found dy replacing
al‘—’ N in the sesond order derivative termss and evalu-
ating the determinant of the coeffieients of A, ¢and ?‘ .
Choosing the speéial frame of reference in which %, = (o,
o, 0, in,) and evaluating the ¢ x 6 determinant and genera~
lising to an arbitrary frame, one obtains

2.6 2 ¥
Dww acn>f_|—%¢¢] (2.9)

Normals te the characteristic surface are determined by
setting D(n)s O, The field propagation is light-like and
hence causal unless the factor (1 ~ %a:cp"cp ) vanishes and it

has been assmmed in this derivation that this fs net the
case, 1f, however, this is permitted eq.(3,5) becomes a
degenerate system and at the value @’cp = %’; field pro-
pagation decomes unadefermined in the senme that normals ocan
be space-like, light-1like or time-like. It cannot be immed-
iately conoluded whether causality is violated or not at

this value of q"cp . This has happened becanse it is pre-
oisely at this value of the sealar field that the secondary

cons traint dreaks down,

Sinoe the procedure adopted in setting up the
Cauehy problem s not manifestly covariant, to check whether
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any Lorents noncovariance has orept in, the Cauchy problem
may be reformulated by specifying the initial data not on
a constaa t~time hyperplane, but on amn arditrary space-like

surface ¢ with normal n, . On such a surface the constra-
int relations (2.,6) and (2.7) become

Nu L/" = 0 (2010)

(1- 25°

ma=

»*
PP Nadx nehe

= FCmA A A 108D (2414)

Acy = Ap-manAy (3.12)

/The detailed form of the rhs of eq.(2.11) s
not important for the proseat discussion/, Eqs.(2.10)
and (2.,11) are solvable for w.A, and ny), n,A, 1in terms
of Aw,a,;Ah,, ¢ and @'  and their derivatives unless
the faoctor ( |- 237M¢*?) vanighes, Since this facotor

is irdependent of the normals, the constraint bdreaks down
when 4t ocecurs, is a frame~independent phenomenon and hence
the present theory does not exhidbit the type of Lorents

noncovariance at the classical level observed by Jcnkino“.
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Despite this fact it will now be shown that the corresponding
quantised theory is not Lorents-ocovariant,

To deal with the second guantized version the inter-
action Hamiltonian eorresponding te the Lagrangian (2.3)
is calculated first. In the hHeisenberg picture 4t has the
form
A = ~L1 -Flawt (3% - ¢4
- PR AL (2.13)

To develop a perturbation expansion for the S-matrix it

is advantageous to go from the Heisenberg picture over to
the interaction picture., THowever, the appearance of time-
derivatives of field operators in the intersction Hamilto-
nian renders the transformation non-trivial, Making use of

the general formula given, for example, by Ntohtjlu“a

wt b AL, 2
H = =& +4 g_(g_&:) (2.14)
the interaction Hamiltonian in the interaction picture is
found to de
X (¥, W » * z
NI = -4k -3/am*(e@—-P¢ +23?‘PA0)
' 2
+ PP A (3.18)

where all the opsrators are understood to be in the inter-
aetion pioture. The fanmiltonian contains normsal-dependent
terms and is not covariant, When the s-qatrix eloments
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are evaluated using the Dyson formula (1.53), Wiok decom-
position of the time-ordered products gives rise to additional
normal-~dependent terms arising from the contrastiams

N .
du@emd 3,00 = 03P Ap cxi-a)

+ 1‘6)‘48“ 5“21,-13_) (2.1‘)

Al\P (xy) Ay(127 = (g}av - W\-za"by)AF (A=)

+ l'.w'\'zé'pq,S“ 5“%:,-11) (3.17)

where A is the Fénn propagator of the scalar field,

In the examples where the Mathews mlon

holds,

the normal-dependent terms in the Hamiltonian get cancelled
with the normal-dependent terms from the contractions, and
the S-matrix will be free of normal-dependent terms., Direct
computation now shows that the preseant theory is an exception
to the generalised Mathew's rulej normal-dependent terms
drop off to second order in coupling constant bdut some such
teras survive cancellation in the fourth order (Details

are given in Appendix II),

A modification of the above disocussed theory with
the interaction Lagrangian (2.3) may now be envisaged with
the addition of a term depending on the square of the coup-
1ling econstant; thus



- ‘5(6,\@*@-?*6;&) Ap
%0 AL A

—3 ®eApip (2.18)
The resulting equations of motion are

. ¥ ¥
(D—MaJA};‘aPaAAA = 14 (é}‘?%{’—@a,u@

(a-p)e = 19 (22,94, + ©2,4,)
+ 4@ Ay Ax (3.199)
2 * ' * »*
3 *
+ a9 A)A; (20190)

The fourth component of eq.(2.19a) constitutes a primary
constraint, However, the secondary constraint obtained
in this case by taking the divergence of eq.(2.1%9a) and

making use of eqs.(2.19a) anda (2.19) is

OrAx = o (2.30)

whioh 1s the same as the usual constraint condition for
a free vector field, and this has come adbout because the

current to which the vector field is coupled is conserved.
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As a oonsequence, in the present ocase, thew arises no
question of loss of constraints at any value of the socalar

field.

The true equation of motion resulting when
03.(2.20) 1s substituted in eq, (2.19a) 1s

(O-wh) Au = ig ( 3,,.?’-? - q>"‘a,.¢3
+ 23’?*4’ Ap (3.21)
The charecteristic determinant of the system of egqs.(2.21)

(2.19b) ana (2.19c) is

- 2.6
Dwmw (4 w) (2.22)

which implies that the ray-oone coincides with the light-
cone and hence the propagation is ocausal,

The interaction Hamiltonian in the interaction
pioture for the coupling (2.18) is
. o B
Hr = —fp -Sam* (%0 -D) + s*e'e Al
(2.23)
Yhen the S—matrix elements are evaluated with the above
Aamiltonian using the formula (1.853), expliecit ealculation
vorifies that normal-dependent terms from the Hamiltonian
(2.22) anda from the contractions (3.16) anda (2.17) cancel
each other to fourth order in coupling constant (see Appendix II)



A combinatorial argugment can now be invoked to prove that
such cancellation will ococour in all higher orders, and hence
the theory is Lorents-covariant in the sense that S-matrix

does not eontain normal-dependent terms,

Studying in the fashion cutlined above a non-
derivative interaction detween veotor and scalar fields
bilinear in both fields given by the interagction Lagrangian

L1 = - g ¢'e A Ay (3.24)
it 1s found that the secondary oonstraint bdreaks down
only 1f ?’Q = -w/24" which 1is not possible because @¢
is a positive~definite quantity. The characteristic

deteruinant is givea by

D = 1+ agimiee) (2.28)

and sinoe the second factor cannot vanish, the nature of
field propagation is always determined and is evidently
oausal, The corresponding quantized theory, on exauination,

is found to de Lorents-covariant,

3.3 Coupled neutral vector and soalar fields

The simplest interaction between a neutral vector
field and a neutral scalar field is introduced dy means of
the Lagrangian



The above interaction is forbidden dy the requirement of
SU(8) invartance if both the scalar and veotor field belong
to an fsotriplet. However, taking this to de a model inter~
aoction, the causality and related problems of the interacting
fields are investigated. Analysing the field equations
implied by (2.28) 1t 1s seen that the secondary constraint is
lost when @“ = wY/g" emd

Dow = (RS- It oD (2.37)

Consequently, vhen the field assumes a value for which

‘P"= '"2/32' the oausality question cannot be setiled unambi-
guously, Though the less of constraints in the present
case ocours im a frame-independent manner, leaving intact
the relativistic covariance at the classical level it turns
out that for the second-quantised version of this theory

a Lorents-covariant S-matrix cannot be construocted,

When the interaction (2,36) is modified by the
adaition of & new term -g/2 @ AL A, the pathology ment~
ioned above dispppears and the quantised theory is covariant,

2.4 Complex veotor fields

Yhen a oomplex vector field s ecoupled to a neutral
soalar field or oomplex soalar field with the interaction
Lagrangian



£y = 92,9-@ (Au+ A:) (2.28)

or

£ = i9(2,8-@-2,0 60 CAL+AD
* It 4 gt (2.29)
procesding as in the examples in Seo. 3.3, results similar

to those found there, are obtained,

3.8 Conclusion

The adbove analysis of the interacting field equa~
tions for various couplings between spin 1 and sealar fields
brings out certain interesting results, It 1s found that
some couplings lead to eausal and troudble~free theories while
others yield theories that suffer from several pathologies
such as loss of constraints and noncovariance, In these
oases the secondary oonstraint of the vaotor field equation
is lost at a particular value of the scalar fleld. At this
value ths characteristic determinant gives no i{nformmtion
about the field propagation, The causality of field pre-
pagation is "undeteruined® in a senso, Though the corres-
ponding quantised theories do not possess covariant S-matrioces,
no moneovariance arises in the manner suggested by qukin-ao.
The loss of constraints appears as a covariant phenocmenon and
is present in all frames of reference, Nevertheless, if,

in olassical field theory, there is a dreakdown of constraints



and even if the causality nrodlem does not pozsess a uniyue
solution, Lorents noncovariance will always make its anpear-
ance in the quantised version, This may be taken as an
eladoration of the Jenkins conjecturs that a classical field
theory manifesting ceausality violation is not Lorentz-
ocovariant at the qusantised level, The subdbtle connection
between causality and Lorents-covariance will again be dis~
ocussed in Chapter 1V,



APPENDIX X

It will be shown that eq.(28) assumed valia
for all times, together with the constraint relations (2.6)
and (2.7) assumed valid at the imitial time, is equivalent
to the equation (2,5a), Taking the divergence of eq.(2.8)

one odbtaine
CT-wd [ x4y - 257w ( F2 24,

+ Ayhehe + A, ¢*3A¢)J = o

(1A.1)
1.0, the constraint (2.7) obeys the Kelin-Gordon equation
and 80 12 1t 1is satisfied at one instant, it will be satis-
fied at all future times., Making use of ¢q.(2.7) now
valid for all times, in eq. (2.8), eq. (2.5a) is recovered
and hence eq.(2.6) which is the fourth componeat of eq.(2.8)
is also valid for all times,



APPENDIX IX
Canocellation of normal-dependent terms

Non-govariané terms due to the normal-dependent:
terms in eq.(2,14) ocoour, to the lowest order, 1a g>,
Normal-dependent terms arising from contrnctions (2.16)
and (2.17) also appear in this order., Using the formula
(1.53), after the Wick decomposition is performed, the S-
natrix element to order gz is obtained as

s® . cgz/zm“S (e - pogw) dh

- (3"' _S . Q‘u) @ Aftn) v d%

+9/2! ([ L (‘af*?*‘” @) ¢l 2,00

- q”cz.) a,‘c?txo-a, ?*c:t,,) pexd) ) A,.tx.) Ay
+ C a}‘c?*czo @) — Feap b,“?‘h))( a,,q? ) @ )

»
- @ cap 3»¢“*> ) A,..(m) A\,(lz) J

(11.3)

where only those terms giving rise to noncovariance have
been included, Making use of equations (2.16) and (2.17)
it is easily seen that the normal-depenient terms arising

from the contractions in eq.(1A.2) get cancelled with the
first two terms of eq. (11.2).



To the fourth order in g the S-matrix element is

5P - Z‘B*/M“f D (w0 @ o A, ) dix

~ igYm H T L%~ @) @¥ 4,00

X (Bp @3- up) cxd Apa) 1 dix, dty, "

+ Yo [T [ Yps (@%- @8 (d% -8 e

rae A @@ dbon - Y, (3% - ¢FéYex)

(F@A Y0 ] db, dh,

=782 1 T 0 K ¢ 2" @ - F2u0) 1y (8,8 @

~ @ 0,0) ) (&% - FF) > Apcxp Ay = ( a,in

~ Feuedcw (3,8 e - #4841

X A Ay ag) J  d4x, db, diay

v+’ [[[[ T L C oug e~ Faned o (305~ FoD )

x B, F® —F22) x5 (2,42 - ¢¥28) cx) Apcxd Ay

x ApCx) Asixgy ] df d%, diy dixg (1A,3)



Further normal-dependent terms appear im eq.(1A,3)
when the time-ordered products are replaced by normal products
and eontragtions, It is found that of these non-oovariant
terms all except those arising from the first wo terms ren~
ders the matrix element normal-dependent and hence nonco-
variant, These non-covriant terms ocanm be traced to the
g® ana g4 dependent terms in the Mamiltontan (2.14). The
abeence of these terms in the modified Hamtltoniam (2.23)

ensures the covariance of the corresponding S-matrix,



CHAPPER IIX

THE DIRAC-SCAYINGER COVARIANCE CONDITION IN
CLASSICAL FIELD THEORY

As a preliminary to the study of the
relativistio oovariance of higher spin
theories 2t the olassiocal level, &
strajight-forward derivation of the Dirao~-
Schwinger condition is given within the
fremavork of classical field theory., The
orucial role of the energy continmuity equ-
ation 1s pointed out. The origin of
higher order derivatives of adslta functien
is trmgced to the preseunce of higher order
dexrivatives of canonieal coordinates and
momenta in the energy-density functiomal.



et

3.1 Introduotion

It is well known that the proper relativistie
covariance of a quantum field theory set up via an astion
prinoiple is not ensured by the formal invariance of the
Lagrangian, mr“:u 1185-119
that a suffieient condition for the relativistic ocovari-

and Schwinger have stated
ance of a quantun field theory is the energy-density com-

mutator condition
Vi L Toocd  Toactd] = = (Top <0 + Top 25) 2,8 -5
+ (brto + bktx’J)a,‘S (- + (Seu¢® + Skent?))

X O d,2 EA-T5 4+ ...
" (2.1)

where by = 3,8, and R -Prx = OwPue 20d the
energy-density is that obtained from a symmetrical energy-

120 presori-

nomentun tensor gounstructed by the Belinfante
ption, For a class of theorios that Schwinger calls
'local’ the Dirac-Schwinger (DS) econdition is satisfied
in the simplest form with b, = <, = =0 , Spin
» ( 8 < 1) theories belong to this class, For canonical
theories in which simple canonical commutation relations

121

hold Brown has given two new proofs of the DS condition,



In Chapters 1 and II of this thesis several
instances of higher spin theories have been noted where
relativistic covariance seems to be upset at the gquantised
or at the classical level, As a preliminary to a detailed
study of the ocovariance prodlem at the c-number level in
such cases, an investigation is carried out in the present
ochap ter of the significance of the DS gondition for a clas-
sical field theory im a general setting. Considering a
Poisson bracket (PB) realisation of the Poincaré group Lie
algedbra, a derivation of the D3 condition is preseanted
starting from the basic definition of PB of ¢two fumotions
of canonioal field coordinates and momenta, In the simple
oase where the energy-dencity ier a funotional of canoniocal
coordinates and mousuta and their first derivatives, only
the first derivative of the delta funotion appears on the
rhe of eq.(3.1), and the seneral form of this coefficient
can be ;ﬁontitt-d by appealing to the energy continuity
equation, The Poincaré group structure relations serve
only to determine the quantities b, in eq. (3.1),

The present study reveals that at the classiocal
level the ndsenoe of higher derivatives of delta fumotion
on the rhs of eq.{(3.1) 12 not in any way directly related
to the spin of the field and that such terms anpear inevitabdbly
when the snerzy density is a funectional of higher derivatives
of fields and momenta, A derivation of the DS condition



in the case of a generalized mechanics »ith higher derivatives

of eanonical coordinates and momenta is also given,

3.2 DS condition for simple systems

For a simple system descrided dy a set of N inde-
pendent dynamical variables Yy, T, (ot =1---N) 1t is assumed
that the energy density derived from A symmetric onorgy
momentun tensor is a functional of only Yy 0 Ty and their
first derivatives, The PD of the onergy deneities at two
distinct points at equal times is

) ! = d &2(") & Too ¢4
{ Toot0 1 Tooes S :LJ 5« S%d Show

- dTeow § Teoxh )
ST ¢y Sty

(3.3)
Under the above-stated assunuptions
Too = Teo L Va 1Ty O ¥, 13] o ona the functional

derivatives are

SToon = Ohet® S5ty — QT D §¢R-)
S"‘V.Ltﬁ) dY, o A-H ab,g&u) Dy = (3.3a)

{Ti""‘) = %“) 8(3‘?—3) - ?_T?!"o 2 §@-I) (3.3b)
STy (w) DTy w0 223w Mk



Making use of eq.(3.3) 1t follows that

f Tooo , Tooas3 = & [((dotn OTott
o R t® ¢ Y >

— OTeo aToo(z') + _8_7_300‘5 _aléozt)
a\Pdto abk'ff_l(,/) an¢(ﬂé aak\&ll)

OBecxs Olowy ) 3 .gc3-7h
O¥ucesh 23y

$(8Towy  SToorsy _ STord  2Too )
22 My D0 Py AN D2 Wyt

% 2,2,8 A-2)
(3.4)

where 2,/ denotes 53_’.. Invoking the “ochwinger idontityug
X

[ fengeh + fabgw J 2,8 ct-2)

= [ fFeo g + fahg o] 2,8 @25 (3.5)

and an eaglly verified analoguus identity iavolving the
second derivative of the delta function (See Appendix)

LFK(K) 5((1(') -— 3k(t> fe(lﬁj Bkae EC?-y/J
s - E Bk&(a).je (x‘;\ - 3‘(3,‘ o) - -F¢ ()

/
[ ]



the expression on the rhs of eq.(3.4) simplifies to

{.Téoc’t) ¢ Too <1/)} = (‘Fok(x) + Fek(’{))

(3.7)
X au 8(?—-’2/)
vhere
foe =S (2 M _ 2B O
« 2o 22V -4 TON-IN
+ 2Be 5, 2Be _ 2T p O
LAY ¢ 2 oYy 2Dy ‘aa¢%> (3.8)
.Integration of (3.7) over x' ylelds
{ Teo e ,P‘,S = Oxfor () (3.9)

where P", = Jdgx Toste> is the total energy.

If now it is assumed that the system possesscs
spage~tine translational iavariance, P, being the generator
of time-translation, the equation (3,9) for Too<> can be

oast 1nto the fomm

Ao Teo 0O - 2k F,KOL) = 0 ( 3.10)

where d, represents the total time derivative, From (3.10)
and the energy eontinnity equation

(3.11)

!}
V]

do Teo ¢+ B, Toe®



it may be inferred that

‘Fok = — Tex + bk (3.13)

where b, is an arditrary funotion with S,b = O, Hemoe
the energy density FB may be writtea in the form

&Too(x)t-roo‘z’)_} = - (Tok cx) + Tox “‘5)

x OB cR-25 + (becn + bocab) 3, & .
(3.13/
Upto this point the concept of relativistic

covariance has not dbeen used in any manifest way. In order
that a fleld thea'y be relativistioally covariant the ten
generators P, , J,, oconstruoted in terms of the fundamental
fiela variadbles must obey the structure relations charact-
orising the geonetric nature of the “oincaré group. Sinoe
the prosent disocussion is wholly econfined to the classiocal
regime, 1t 1¢ the "5 realization of the Poincaré algebra
that is of interest

i
0

L Pr P} (3.14a)

(v o P} Spe P - Sye Pu (3.14D)
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{ J}Av ' Je.\.} = 81»\ J}Ae - SIM\ JVP

- éy( J,\A + 8}49 Jv)

(s.14¢)

0f these relations, only the following IB's
{.Jak , Po } a - Pk (3015‘)
L% + I} = = I (3.15b)

pertain to the Lorents covariance of the theory in itse
proper sensej the rest of the struoture relations (3.14)
follow from the three dimensional itnvariance and the veotor

property of the boost~generators J“.

The generetors in eq.(3.13) may be expressed in

terms of the energy-momentum tensor as followst

PK s J nk (&9) 437( (30‘“)

Tox = =z P - jxk Toocx> d3x (3.16D)

Jke = S("k Toe (1> = Xg Tox () d*
(3.160)

Relation (2.15a) s already allowed by the general form of



eq. (3.13) and in order that eq.(3.18b) be satisfied b,
must ohey the condition

]
(o

2y byt = xg by () d%
J( k Ye € Pk (3.17)

For this volume integral to vanish the integrand must be
of the form of a three-divergence 1.e.

€ v bg - Xg bg = amawu (3.1’)

where okl is an arbitrary function mntisymmetrio in the
fndices k and 1, From eq.(3.18), with the aid of the
fant that bk is divorg:rooloss. 1t s onsily deducidle
that bk iteelf must be divergence

where (3, = X, by ¢+ J.a,4¢ It algo follows that the
antisymmetriec part of sz is a divergenoe,

3,3 DS eondition for non-coaservative syestanme

In the case where the Lagrangian of a system has
an explieit srace-time devendence translational invariance
ean no longer be invoked and oq,(3.10) will be replaced in
this instanee dy

Ao Toe (x) = aKFoK(’O = Dploe® (3.20)



where a slight change of notation has been introduced in
that 3. now denotes explicit differentiation with respect
to time whereas 2, still retains the usual meaning. Energy
momentum conservation does not hold in this case and eq.
(3.11) 1s replaced by

doToo® + By Toxtd = 2ok (s.at)

From eqs, (3.30) and (3.21) it may readily be inferred
that t“ must be of the form

Lor - T, +b (3.22)

with O, b, = 8,(Teo-L) « Since b, 1is not aiver-
genceless eq. (3.18a) 1s not satisfied sutomatically.
Making use of eqs. (3.16a) and (3.18d) to evaluate the
l1hs of eq. (3.18a) 1t ts found that

{Joklpo} =-j(Tok(x)-bk£x)> d%

(3.23)

and henee in order that the structure relation be satis-~
fied b, must be restricted by requiring

{ byeo d = o (3.24)

This faplies b, = O (3, whers 3, 1s arbitrary. As

¢
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ia 800.3.2 the structure relation (3.18b) imposes om (3,
the restriction

B ke — B = OwmTwue (3.28)

It is worth noting that in contrast to the case of conser-
vative systems, the coefficient hk in the present case need
not be divergenceless but other conditions on 'k are the same

as before.
3.4 DS condition in higher derivative field theories

A Ramfiltonian formulation of a generalised mech-
anics with higher order derivatives of field variadles has
been considered by Coelho de¢ Sousa and nodrlgmo“‘. They

have shown that the PB of two functions A and B 1s to be

defined as
N SH
{aed = > 2 | (&8s 88
S ma SY™ 8wt
- A g8 y d%
EMet it T
(s.26)
N
where 'q&““) = %u'\h and  Totjpme is the momentum

(-3
conjugate to ™, s 1s the order of the highest derivative
involved. If F = j' F d% , by derinition
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Using the definition (3.36) to evaluate the PB | Tos , Too }

where T . is a functional of /™ e Moty me and their

derivatives upto order s ylields the general result

{ Toowo , Tooeah } = (a0 + G, 0bh) 3, 8-

A (Clant® + C o th) 3.8, 2 SA-25 + .
133 = Qv ) K*e “wmn (3.28)

The coeffiolents a , Oy ,.¢ + « « appearing in
0q.(3.28) may be evaluated directly in any particular case,
When the highest order derivative in ,oo is the second, it
is found

'
a = 22 [ (2T 2Te
k ol mzd af‘ s - (m)
lat} w41 O Yy
T OB, e 2
a“{"-lm) aaﬁ.qm, bbk"rol/mn aat"l’etm)

- BTee  p, OReo
23N 22 Not/ 4
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—( 3; 2Fe . 2Teo o o T
a&,..‘\ll_f'“) 28;8; Tat fwa 1 aa_,"k“"‘) aaibnﬁd/w +
§ o; O OTeo b (33 2, oTe
CER T N PN Sy 2O T juary 2R
4+ o, OTeo ! ) X OTeo e E“_" :)
STy Y Seam T U ST i wim )
2 v ﬂd/'“ﬂ 202l aal.wﬂ/w-ﬂ ab.lak.\,é
(3.29)
1
ik = =2 O Too D Ten
m=o0 of ab:ﬂf“‘) bbjbkfl\et/wﬂ
_ 2T oo )
22 [(PVY LN \lld("‘")
(3.30)

flere use has been made of the following fdentity (See

Appendix)

(£ic0 gjx) + Gip e frexh) Bigy 2, SR-3)

— /
= (Fie0 g + grob 9_'-,‘04/)) 5.'6J'bk£¢u—?)

= C3fieo &g + 8500 By Ju o

+ 5 fkew B 5D + Bj/-(.'(x') By Sik“/)
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Whea still higher derivatives are involwed a,, Cxlm?® * * °
will have additional contridutions from these higher deri-
vatives and they may de evaluated using identities similar
to (3.31) for terms with higher Aerivatives of delta function.

Integrating eq.{(3.26) ower x'

{_ Tee < )Po} = 31«“& + Ok O Suem + ¢
(3.33)

Agsuming space-time translational invariance this becomes

dpTeo ¢ = OyQy = 34248, Cypp— -+ =0 (3.33)

From this and the energy continuity equation(3.11) 1t may
be inferred that

Ok  +O2mCrom + - -+ =—To + By (3.34)
with BKBK- 0.

Hence the energy density PB assumes the form
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'f- Too"DITMQIJ} = - CTog <x) 4 Tok c:’))
% O, 8c-25 4 (betxs + bcxr) 2,8 cR-AY

+ Chem® + Spgmeth) 2.93,2,83-2) + -
(s.38)

where

*

Using the form of the energy density PB as given by eq.(3.38)
to evaluate the rhs of the struoture relation (3.18s)

ijog cPJ = -'fdsz [ Tkax) - bkcao

— DB C el — - - ]

= - f o L Tw- Buew ] (3.37)

Honce the struoture relation is satisfied only if

J dgx BKCO .= (o) (3.3’)

whioch means that Bk - aaqke where g is arditrary,
Bq. (3.368) implies that b, must itself be a divergence i.e.
= % Bxe



£

In order that the structure relation (3.15d) be odeyed the
ooeftiolients b. must de further restricted by

J d*z C x>y bet) — xp b&c;)> = 0
(3.40)
Substituting eq. (3.39) 1n .q;(S.GO) it follows
3
S“" ( Pue = Bex) = ©
(3.41)

or, the antisymnetric part of [3 xl is s divergence., Thus
the conditions thag h. has to satisfy are in the present

case the same as those for b, in eq. (3.1).

3.5 Conclusion

The DS gondition has beem derived within the
framework of classical field theory., The general form of
this condition is determined by the energy oontinuity
equation, For sinrle cases this takes on a form involving
only the firet derivative of the delta funoction while the
presence of higher derivatives of fields and ocanonioal
nomenta in the emergy density invites the apnearance of
higher derivatives of delta functions, Thie makes clear
the fact that for these higher order terms to appear it is
not necessary that a higher spin be associated with the field
system, On the other hand, the appearance of higher deri-
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vatives O0f delta function must dDe taken to mesan that the
snergy density functional i{n such theories containg higher

derivatives of canonical coordinates and momenta.

While 1t {s the tramslatimal invariance of the
theory that determines the general form of the DS coadition,
Lorents oMﬂanoo of the theory finds expression through
the restrictions inposed on the coefficients b.. A point
of difference between the classical NS condition and the
quantum version may be noted here, In the elassical case
for simple systems the coefficient b, is divergenceless whereas
there 1is no such restriction in the quantum ocase., However,
when the energy density has an explioit spase-time dependence
or when highor dortvatives are present bt obeys thw same
oondition as in the qnantum case. Despite these differen~
ces which may not be too significant the quantum-classical
analogzy would presumably allow an extension of the result
herein obtained regarding the correspondence between higher
order Lazrangians and higher order derivatives of delta fun-
ction te the guantum domain,



APPENDIX

The identities (3.8) and (3.31) are readily
verified by integrating either side over x or x', The
proof of eq.(3.6) is essentially hased on the identity

Freo OBy 3¢ = 30 B, 3 £,

= By [ Fred ae_g,_(z)

— g, D B, fp 0 ]

(3A.1)

In a sinilar way eq. (3.31) s established Dy noting that

Fie20 8idj0uqin® + 8idjdxfic - g,

2id; 3, L £/ e 3_“‘(1)]

- B € 2;fico 2y i + Sif

X 5k§(g<3) + 3_,‘ Fr e 3,(3.-_;00 ]

(34.3)



CEAPTER IV

RELATIVISTIC NONCOVARIANCE IN INTERACTING SPIN {1

PIELD THEORY

The covariance problem in certain patho-
logical theories at the olassical level
is studied within a Poincaré group frame-
work making use of the DS ocondition, It
is showm that while the asausal inter-
aotions of a spin 1 field lead t0 nongo-
variance there are examples where the
propagation is causal but the theory ie
nevertheless non-covariant.



4.1 Introdmetion

I has been mentioned inm Chapters I and II that
in higher spin theories osusality violation seems to de
agocompanied by a breakdown of Lorents covariance, Two
types of nonoovariance have been observed so far. Of these
the noncovariance at the guantised level pertains to de
noninvarianee of the S-matrix caleulated perturbdatively.

The other type of noncovariance, manifesting itself at the
classiocal level, arises out of the impossidility of deter-
mining all dependent components simmltaneously in all frames
of reference, These results 40 not estadlish Loreants
noneovariance in a rigorous manner because (a) the validity
of the perturbation expansion in acausal theories is some-
what dubious’?; (b) the attriduted noncovariance at the

olassiocal level is somewhat conjectural,

The present work is aimed towards an investi-
gation of the covariance question of interacting htgl;lr spin
systems within a Poincaré group framework at the basie o-
nanber level, The DS condition is the main tool of this
study., Several interactions of a spin 1 field are chosen
as examples, The acausal symmetrio tensor and quadrupole
oouplings of a charged vector field are shown not t0 possess
Lorents ocovariance, At the same time it is found that the
Pauli moment coupling of a spin 1 particle to an external
magnetic field whioh, though causal, has the difficulty of



. imaginary values ia the energy eigenvalune spectirum is alse
non-govariant., A similar analysis of mtually fnteracting
veotor fields and Diras fields under various coupling schemes
reveals that while the acausal intersotions are all non-
covariaant, there are two cases of derivative couplings which
are emusal dut not covariant, The implications of these

results are discussed in some detail,

4.2 Noneovariance

In the DS covariance condition which was esta-
blished in the context of e¢lassieal field theory in Che~
pter 111, it was found that while the general form of the PB
given by (3.1) arises solely frem the emergy eontinuity
equation, the covariance requirements are reflected through
the restrictions on the coefficieat d.. The primary oon-
ditiom on b 1is that it must be a threo-divergence., If in
a spesific instance this condition ie violated, the Poincare
group structare relations (3.18a) and (3.18b) will not be
satisfied, and the theory will fail to de Lorsnts-covariant,
In the exsmples oconsidered bdelew it is shown that the PB

§ Toocr)  Tooct) 3 contains in sddition $° [ Toxco + Tour )
% 2, 575 a term of the form — [ fopcad 4 for ¢ol> )

“ 3, 5-% where £, 1is not a three-divergence.
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4.3 Examples

a) Symmetric tensor coupling

Consider the interasction of a massive charged
vector field 3.« with an external symmetrio tensor field
Wupt> o The Lagrangion is taken to be

* -
L = -4 G € 3af-58") - L G (aue,- 2,00

+ 4 GaGpv —plale, - 2afw.,a,
(¢.1)

It has deen proved that the field propagation is
acausal for this interaction (see Chapter 1) and eonstraing
breakdown can ogcour in this theory in a frame-dependent
nannor”. To study the covariance of this theory by applying
the DS condition the energy and momentum densities of the

system are first computeds
*
Tee = Gl Goi + & (2 qf—a_; q’f)c & - 3;%:)

b 2
rpreie! + Awge el + P" —
- 00

" » *
x { BiGoi 80s) — A Wi C @ 8,Go + @ 8 Goj)

»* 4.3
+ AN Wi Wio @@ 3 (4.2)



Ton = G;BKQ; + G a&‘?f
| (4.3)
If, for simplieity, it is now assumed that only the Yoo
oonpoaent of the symmetric tensor field is non-vanishing
0q.(4.2) simplifies to

%%
Too = [_ Gio; Gty + -é C b.'Q_,‘*_anf) (b;QJ‘ 2,9;)

rprele + L aG’.,‘aG‘QJ

P A, (4.4)

It may easily be verified that the above asswaption does
not invalidate any of the contentions of the present wokk,
Making use of the basic PB relations

Lo, Mehy = & §X-30

(4.5&)
f@fw, T%H) = 85 8c2-30

(4.5b)
{ @O ;@) <x>} = iq;cz) ,Q_j*a)} =0

(¢.80)
Lw o b}y = { T, T cx)} a 0

(4.54)

which in the mreseat case becoae

#*
{ @ CxO Gso_)' } = - 8y &cx-A x5 (4.6a)



L Q?czo ) Gloj"‘).} = — 8y §cX-35
(4.60)

with all other PBs vanishing, the PB L Too 0 , Tos ¢t}

is evaluated:

3
{ Tooco |, Tonerh } = - L L 2P @ - Gop ®

»
b P2k@MGoe 0 ) = § ¢ ( @pCogtw + @D Gar o)}

* »
- AWoe  § @ 3 Gop 0 + Bk OGogtw }

}*1— AWso

* ¥*
+ £ aquzu') . Gipe ) + ék,Qz_c.o . G-‘,M(a') 3

* "
- { ow C ‘P:‘*S Goe cx) + @ Gree (1'))} - AWesah
= Ao scd)

*
x £ Quexd g1 6o () + R eab Oy Rugta) Y ]

-
X ak C?—’(l)

(4.7)

where > denotes differentiation with respect to x, .
The term within the first curly bracket on the rhs of eq.
(4.7) may easily be identified as the momentum density T ..
The second curly bracket contains a tera of the form of a

three divergence, Towever, the temm £, = A Weo

}AI— AW

x @y DqGog + @k 2¢G0¢) which appears in addition



to these, cannot be written as a three-divergence and, as

argued before, dreaks the covarianoce of the theory.
b) Quadrupole counling

The secoad exaaple is provided by the gquadrupole
moment coupling of the charged vector field to am external
eleotromagnetic field with an interaction Lagrangian

Lg = ~-e (Q"; Uiy 2pd,  + % Gl,\)mapcpf) (4.8)

where  Q,,, = 8,Fu and Fuy =(2uA,-3,4.) 18 the

field tensor of the electromagnetic field, If the only
non-vanishing components of the electromagnetic field
tensor are F“ - -18!, 20 that the field is a simple eleo-

ctrostatie field, the energy and momentum densrities are
Too = [ GelGet + L co:a@’- 252) (2:2;-220)
a * * . a2
PRI t Yt OiGal BGe;  + €/
» "
x § OxQex B (@ BE;) + 2 Gy 2 (@2 E) ]}

- 32‘/}42 8:(@;955;) ak(leREK) J

(¢4.9)
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Tow = ( Goi + €@ &E) 3@

»
+ (Goi + e 8 E) O
(4.10)

Though the canoniocal momenta contain additional terms ari-
sing from the derivasive coupling in eq.(4.8), because of

the specific features of the electrostatic field the dasio
PBs are found to be same as those given dy eq.(4.6). Making
use of these relations to evaluate the energy density PB

it is sean that on the rhs there is an additional term given
by

For = 232/ [ 1 86, Goi 8 (@) 3F)
" »
+ OBk - G &5 (R BN § — Via § BiGa
x (32, B;) O(RudpuE) + O:Goi (879 E))

x Do ComOmE) § ] (4.11)

Sinoce this term cannot be written as a three-divergence it
follows that the theory whioh is known to be acma!' is
alsopon-govariant,

a) Anomalous moment ooupling

The coupling of a spin 1 particle to an external
eleotromagnetic field via the anomalous magnetio moment with

the interagtion Lagrangian



¥
cfr = ~tek @u Fuy@,
(4.13)

has a speecial interest in that while the propagation of the
f1e1a 1s causal at the olassical level’? 1t is known that the
energy eigenvalue epesctrum ocan develop imaginary values
depending on the field strength (See chapter I), In the
particular case where the external field is a homogenecus
magnetic field the energy and momeatum densities oorres-
ponding to eq. (4.12) is

* " *
Too = [ Goi Gl + L (2:85~2;% ) (3@ — 20
* * -
+ ple; @ + No BiGo; 35 Gy + cex Fjiai g 49)
" »
Tox = Gl @, + Gy =N

(4.1¢)

Evaluating the energy density PB with the help of the dbasie
PB's (4.6) an additional term

‘Fa& = iek//_.‘- L NPT F}k Q_j + & 6\0{ ) E‘k CB] (4.13)

is emcountered on the rhs which is not in the form of  a
divergence and this again proves thatithe theory s not
covariant at the classioal level,



(d) Coupling with the Dirse field

In the case of mutual intersetion between a
massive neutral vector field and Nires field, Shamaly and
cnpﬂ“ have shown that direet eocuplings of the sealar,
veotor, pseudovestor and tensor type all lead to causal
‘theories, On the other hand, for derivative couplings,
only the veotor and tensoy couplings with the interaetion
Lagrang isas

Loy = Fhy) 3 @ t4.16)

£DT =9 % { ('fjo‘pv\y) a/‘Qy
(4,17)

are causal, while the secalap, puudbunlu snd phsudovector
ocouplings exhibit aocausal behaviour, Analyzing the Lorents
covariance of thexo derivatively coupled theories at the
elassical level exaetly as in the preceding examples, the
surprising result emerges that the theories that follow from
the Lagrangian (4,16 and (4.17) wherein no pathologies were
previocusly reported 4o not possess Lorents covariance, The
energy density PB for these couplings eontain the extra
torme

ok = I/ (PRY) 5(265) @ ( 18)



'F:J = Br/m ( VOV - Gox + VOt - @) A
(4.19)
whioh are not three dimensional divergences. That the acausal
theories are also nonocovariant is proved exactly in the same
fashion,

4.4 Conolusion

The present work sheds new light on some aspects
ol pathological behaviour in higher spin theories, It has
been shown that Loreants covariance at the classical level
does not exist ia theories where aceausality is present, DBut
the most important fact emerging from the present study is
that the onset of Lorents noncovariance when interactions
are introduced is a more general sort of phenomenon than
acausal field propagation, Examples have been provided of
theories where the csusality of propagation is impecoabdle

but are, novertheless, non-covariant,

Observation of a new kind of anomaly in inter-
aoting spin-1 field theories by Adnsaar and KSiv 2> which
appoars to be in definite correlation with noncovariance
but not in ftmmediate relation with acausality lends further
corroboration to some of the results of the present work,
These authors note that for a eoupling bilinear in the vector
field the interaction Hamiltonian }& in the interaction



picture is in general an infinite series in the fields to
which the veotor field is coupled, The vertex ecorres~
ponding to such an interagtion will inoclude an {nfinite numder
of lines of other fields in addition to one passing vector
boson 1line. For the interactions considered in the present
work they conclude that

(1) for the symmetrie tensor and quadrupole
oouplings both of which are acausal and non-govarient the
exnression for ¥r is an infinite seriesj

(11) every derivative-type coupling to a Dirac
field, bilinear in the vector field, leads to an infinite
series for Hr . All of these are nos-covariant but only
the derivative vector type is causaljg

(118) the derivative tonsor coupling to the Dirao
field whieh s nausal but non~covariant contains a self-

interaoction of the Dirac fiela,

The only apparent disagreement botween the results
of the present work and the conclusioms of Ainsaar and Koiv
concerns the anomalous moment ooupling which is causal mt
non-govariant, It rurns out that this interaction has a
finite expression for ¥r. This may be attriduted to the
faot that the eleotromagnetic field in the present work has
been treated as external while Ainsaar and Kiiv consider



mutal interactions, This becomes understandadle when
one recalls HAagen's conclusion, mentioned 1ia Chapter I,
that the fully quantized theory of anomalous moment m:ftng
of a spin-1 field to an electromagnetic field is troudle-

f!‘..“ .

As a final remark it is noted that the inference
regarding the non-govariance of theories in Sec.4,3 may hold
in the quantised version as well i{f PB rela tions are replaced
by camutation(anti-commutation) relations. Thus non-covari-
ance may be present at the quantised l;vol in the Heisenberg
pioture itself,



CHAPTER V

LAGRANGE MULTIPLIER FORMALISM FOR A
SPIN 8/3 FIELD

As a possidble solution to the various
pathologies haunting higher spin field
theories a new method is suggested
where the subsidiary econditions are
kept separate from the equations of
motion in a consistent way dy means of
a Lagrange multiplier. The distinet
features of this appreach are illus-
trated with reference to a massive
spin 3/32 field. It is shown that in
this formulation the field propagation
is causal when coupled to an external
field and that the energy spectrum ia
& magnetiec field is real. Quantimation
is carried out in an indefinite metrie
space. For minimal coupling & unitary
S-matrix is construocted dy introducing
a fiotitious particle and an additional
vertex.



8.1 Introduction

The prodlem of formulating a comnsistent field
theory of highor epin particle interaotions is as yet an
unsolved one, The variety of maladies afflioting higher
spin theory ranging from sscsusal propagation and inconsis-
tenoy in quantisation to break-down of Lorents covariance
and appearance of imaginary energy eigenvalues were sur-
veyed in Chapter I. Some of the suggested remedies were
also desoribed there, This Chapter explores a new possi-
bility of conmstruoting a patholegy~free higher spin theory
by introduneing a Lagrange multiplier formalim,

In the conventional formalation, as originally
laid by Fiers and Pmus.‘ the subsidary conditions required
for elimination of redundant comnonents are derived along
with equations of motion by the variation of the Lagrangian,
These constraint relations, as a rule, get modified when
interaction terms are introduced into the Lagrangian, It
is proposed that the alternative of keeping the subsidiary
conditions separate from the equations of motion in a com~
sistent way by means of a Lagrange multiplier may de a
solution to the above mentioned pathologies of higher spin
f1e14 theories. Nakanishi'?®, meu ana cudarehan!38-137
have made use of a Lagrange multiplier formalisa to construct
manifestly renormalisadble theories of massive vector fields



and massive and massless Yang-Mills fields, But the moti-
vation of the present work has a different origin, It
tries to take into acoocunt the existence of constraint rela-
tions fromjthe very outset, and these conmstraint relations
are kept away from the influence of interactions which
otherwise lead to troubles of various sorts,

In this chapter the method outlined above 1i»s
applied to a spin 3/2 field., A Lagrange multiplier forme~
1ism is set up for a massive spin 3/2 field and the field
is quantised in an indefinite metric space. It is demon~
strated that the present theory is free of the usual patho-
logies when interaction with an electromagnetic field is
introdnced. However, it happens that the S-matrix is nog
sutomatically unitary in the present approach and a procedure
is outlined for the restoration of the unitarity of the
socattering amplitunde.

A discussion of a spin & field in the Lagrange
multinlier formalism is presented im Appendix I,

8.8 Frormulation
A spin 3/2 field may be described by means of
a 16-gomponent vector-spimor A (spinor index suppressed).

The most general Lagrangian leading to an equation of motion
that has at most first derivatives in it has the form

K = ":F,,. £ 9) /\,‘WLB) Yy (» (s.1)



with

+de/;)—BXF b'~b b',,—Cmb’lyb’v
(5.3)

where A, B, C are three parameters, If these parameters
are restiricted by the conditions

A 4 <% (8.%)
B =« 3/3A% 40} (5.30)
C = «(3 A 1) (8.%¢)

the Lagrangian (5.1) ytelds the Rarita~Sehwinger theery
for the irredueible spin 3/3 field whieh is kmown $0 de
afZlicted dy troudles of different soris when minimal
electromagnetic coupling is introduced.

In the present formmlation (5.1) 1s taken ag
the lagrangian to start with, It is now assumed that
there 1s a constraint relation detween the 16 components
of the field of the form

¥ '\Y ) = o
o (s.4)

Unlike in the usual treatment, the Lagrangfian (5.1) e
varied under the assumption that the constraint relatioa
existe independeatly, and it is incorporated iato the Lag-

rangian by means of a Lagrange mltiplier., The Lagrange



multiplier thus introduced must be a funotion of space~
time amd hence may be treated as an additional field vari-
able. The variation of the multiplier field in the Lag-
rangian yields the constraint relation a popferiori. The
effeotive Lagrangian with the constraint incorporated is

£ = T +NE0p +1V7,8 (5.5)

where t is the multiplier field introduced and " s a
real number, It is evident that if the Lagrangian (5.8)
is to be Lorents-invariant the multiplier field must have
the transformation property of a four-spinor.

The equation of motion obdtained by varying «’y; is

L(U'a + W\) 8/.\,\ + A(b’,ua,\ + b’,\blu) + B K/A X2 K‘\

+ Cwm Buta Ja = s (s.8)

and the equation resulting from the variation of © {s
the constraint condition in eq.(5.4). Because of eq.(5.9)
eq.(5.8) reduces to

(xd +wm) + A d.2 = u €
Y rCa¥a N Iu (8.1)

Multiplying eq.(8.7) successively with y, and . and making
use of eq.(5.4), the following relations result:

e + A) 24 =13 (8.8)



w2 ¥y + ClrA) Ko = Y ¥:2%

(3.9)
Bq.(5,8) expresses the multiplier field in terms of
and may be utilized to eliminate ¥ from eq.(5.T). If the
arbitrary parameter A 1s assigned a value -} then t = 0.
from ¢q.(5.8), and hence the multiplier field will disappear
altogether from the formalisa, But it will be seen delow
that to achieve consistent quantisation a different choioce
of A will have to be made, "hen A ¢ =} eq. (8.8) may
be substituted into eq.(3.9) to dertve

(Y2 t2m) 5 = (82 +2m)dy, =0 (8.10)
When A = =}, though £ = 0, from eq.(5.9) 1t 1is s¢ill
possible to derive the relation

(x:2 +2md)ay, =0 (5.11)

It appears, therefore, that the present theory ocontains in
addition to the spin 3/2 particle of mass m, a spin }
particle of mass 2m, This Decomes further evident from
an inspection of the esguations of motion in the rest frame

as is done bdelow,

From eqe. (5.7), (5.8) ana (8.9) 1t follows

(¥:5 + W\)'\‘-’F = 12-_6’,‘2,\*{/,\ = '/(H'ZA) {7 (s.13)



where the last equality holds 1f A ¢ -}, The components
of ., do not satisfy the Klein-Gordon equation, but eqs.
(3.10) and (5.13) together yield

(D_“.m") (8-8+M)‘Pp =0 (5.13)

(3 - 4m*) (O ~-wm) Y =0
(5.14)

From oq.(5.13) and its conjugate, with the aid of

eq.(5.9) one can derive the conserved current

‘j}‘ (€] = ¢ —SOX)_‘ \Py(x) (8.18)
The total charge is given by
Q= j dd (WP, + ¥+ VY - B) (5.16)

In the presemt the total charge is not positive - definite,
This faoot may De demonstrated by examining eq.(5.18) in the
rest frame, Let
(R.Z-Eb
Yaen = Wy (EE) e (B.17)
be a plane-wave solution of eq.(5.132) with positive energy.

In the rest frame with K = 0, oq. (5.12) becomes, when
¢q.(5.17) 1s substituted,



(—- 54,E + VV\) W,u = Q«Q-KFEMM, (B".B)
For u= 4 this becomes
(=3 BEem)w, = O (s.19)

ItE=my w will vanieh identically as is the case in
Rarita-Sehwinger theory, fowever the presemt formulation
also admits the value E = 2m #0 that L has non-vanishing
components corresponding to this. These non~-vanishing terms
ocontridute negative terms in Vtho expression (5,18) and the
total charge decomes tn‘dounuo.

The aifferent spin components of the field ocorres-
ponding to the two possible Bass states m and 2m may be
fdentified by taking a oloser look at equation (3.18)., With
pe 1, 3, S and E = u 0q.(5.18) becomes

(‘- 84. + I)W{

]
- 0

(5.20)

This iuplies that ouly the upper components of vy survive,
and these constitute six nonvanishing components, That w,
vanishes in this case has been noted before., The eonstraint
relation (5.9) becomes in this instance

“A'H = o (5031)

where v, is the two-component spinor forming the non-vani.-

shing part of w, and the o; are Pauli matricea. The repre-



sentation of Dirac matrices given b

@, 0
Because of eq.(B5.21) the six components are reduced to

¥ = (" “""") has been used in obtaining eq.(5.31).

fouy independent components which constitute the spin
3/2 part of the field,

When E « 2m, ¢q. (5.18) decomes, for uw= 1, 2, 3

(-2Y% +1)w = —Tw (8.22)

It is evident from eq.(5.19) that in this case only the
upper component ., of w, can be non~vanishing. Then 1t
follows from sq.(3.32) that the upper components of w,
vanish, and the lower ocomponents are related to a, by the
relation

-0y u, = 3 (5.23)

Thus the six components of vy are all expressible in terus
of Uy and there remains only two independent components
for the field., “ince the subsidiary condition (5.4) now

becomes

oy vy s 4. (5.2¢)

whioh is compatible with eq.(5.23), it does not bring in
any further redunotion in the number of comnonents, The two
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independent solutions corresponding to the value E = 2m
constitute the spin } part of the field,

Before turning to the prodblem of gquantisation a
few remarks may de in order concerning the choice of the
constraint oondition (8.4). In the irreducidle desori-
ption of a spin 3/3 partiole the vedtor-spinor satisfies,
in addition to eq.(B8.4), another comstraint relation

ap'\.‘!,‘cx) = O (5.28)

If the Lagrange multiplier formalism developed above it fs
attemnpted to take into aceocunt both sets of constraing
conditions by introduecing one more multiplier fielad by means
of the Lagrangian

& = \.‘F,«/\pv\{’v t *leb',u‘f'p+‘F,‘b’,,'§)->~(7?3?;h.”)
+ %) )
the equation of motion becomes

(K‘a + m)"l",u. = ﬂ)',.lg + Aé,ﬂ( (502')

By operating with Y, and J, on eq.(5.27) successively, the
following relations are obtained.

40 + A ¥2xXA =10 (5.28)
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Eqe(5.28) may de used for oitutnattng t¢ in favour of the
field variadle « , But X will survive in the equatioms
and will constitute a spin § field., This comes about
because of the presence of derivatives in the constraint
(5.28). Since the introduction of two multiplier fields
offers no definite advantage, the rest of the work follows
the Lagrange multiplier formalism with a single multiplier
tield,

5.3 Quantisation

since in the Lagrangian (5.8) alljthe componments
are varied independently the canoniocal quantisation procedure
may be employed to odtain the commutation relations of the
field components, Canonically conjugate momenta Ip of Y,

Tp = VP (L) (5.30)

where
(L'li-)v,.; = T4 5”;-* + A( Ly Sve + Wwbua)

+ B 3\,3’4’,‘

Standard canonical anticommutation relations are given dy

$ Yucn | Ty ed gz‘-x., = U 8/“8(;’—?’) (8.31a)

L w bl L = § T R P (8,31pd)



102
from which it follows that

3 Yueo 1Py 3 rownt (L4_)_Il“ §¢X~2H (5.32)

In the Rarita-Schwinger theory with the restrictions (5.3a),
b, ¢) L, 1s singular and its inverse does not exist. ihen

)-1

the conditions (5,3) are not satisfied (y‘ is given bdy

—

\
CLY po = L Cre2a +32%28) ¥, 5,,

~ (A= A-2B)C 56, + %, 8u¢) = 2 (24
+ A42B) ¥, 8u46,, *+ (A-B) %.7,7,]
x /1 r2a +3a%28)

(3.33)

Since the parameters A and B are arbitrary, they may de
chosen in such A way that the commutation relation (5,32)
is counsistent with the subsidiary oondition (3.4). It 1s
easily verified that consistenocy is achieved by the choice
Amwiand Bu 3/4. VWith A and B so determined the commu-
tation relations may de written as

i ’\h‘tz) ! i;"“"}ze = %/ = r‘ 8/‘"’ 54- + '12".'. 8/“ J4ZV

- <8H4 Zv + 8\’4.3}4) + 2 74_ &H48v4 j 8(7—_1?5

(5.34)
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The requirements of relativistie ocovariance, local commu-
tativity and the equations (8.4), (3.13) and (5.14) deter-
mine the genardl form of the commutator for arditrary

separations to be

) \PPC“)I\?V"")& = —ia ($5.3-w)[ v — & Bl
¥4 (0o, = Tudu) - Fawt 2u2,) A -2’y wd
+b (2 + Lw8B) (¥:2-2m) (D, +1my,)

x A¢ x—::'; 4wml)
(5.88)

where ok
A mdymty = ~ifapt | Ak elk) EGtmty €7
(s.96)

In order that the ahove expression de consistent with the
equal time commutation relations given by eq.(5.34) the
constants & and b mmst be chosen as a = 1 and b = 2/32°,
Eqs. (5.34) ana (5.8) with A « -1 may be employed in doriving
the further commutation relations

$ B P} = —3«'/,7 (¥.2-3am) (2, + .lz.w«)s'v)

x A i-n'; awD (5.37)
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{ oo, EMI)} = 27im? ¢ 1.d —2m) ACx-o";4m> (8.38)
2.1|I-
The last of the commmtation relations shows that the spin }
field has a negative metric in Hilbert space.

The Feynmam propagator of the field, defined as
the vacuum expectation value of the time-ardered product
of field opsrators is easily evaluated in the usual manner,
Decomposing the field operators into positive and negative
frequency parts and making use of the general commutation

relations (5,38) 1t is found that
SFNUh-xz) = <olTw/,.u,> T\’ch)1o>
’ + . 5y ]
+ duy ) A -2 4w)
- B (t-t) L duy €2) ¢ A a, =%, 3 mD

+ Al (¢ Ka-n s 4wd>] (5.39)

where
I = —(¥v2-wm) L 5, -4 %5,

F 5 0%, - Hou) ~Y3,20.0,] (5.40)
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! 'Y -
Bo® = Yot CoprRIX2-2m (204 8] (g o)

and A"w are the positive and negative frequency parts of

Ay ¢« In the present formulation the noraal-dependent
terms that arise when € ~funotions are commuted past the
derivatives eancel each other and the propagator is rig-
orously givea by

SFP’(ﬂl—d;) e —(¥d-wm) E 8}‘“; - -13- KP K,
+ :!’- CXF év + xvalu) - 2/.39\\a a)*av J AF<”|-X;;N1)

- Yt (D) + 2 N) (X2~ 2m) (3, f—,“éfy)

x Apca-2, 4 m) (5.43)
where
. e_\'k.x
A = =iy 3 W\l) = —k/(zﬁ)th d*“ - (5.‘3)
k*+mi-te

5.4 Interactions and pathologies

To disecuss the question of pathologies in the
presence of interaction the coupling of the adove descri-
bed mixed spin 3/32 -~ spin § field t0 an electromagnetic
field may de considered. To begin with, it is assumed
that the electromagnetic field is an external one,
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a) Causality of propagation

Introducing minimal coupling into the Lagrangian
(5.8) with the subsidiary condition kept unchanged the

gauge-invariant field equation in the presence of an external

oleotromagnetic field is obtained as

(¥-D +m)Yu + A HuDypy = T (5.44)

where D, = a,*- (e Ap o Taking into aceocunt the sudbsi-
diary condition (5.4) 1t is easily verified that t satis-
fies the equation

(¥ D +m)E = 4ie/cu2m Py Gy, (5.48)

where FN is the eleotromagnetie field tensor Fua
= BuhAy -3 Apu « Expressing ¢ in terms of Dy, ’
the equation (5.,44) may be rewritten in the form

(x’ D + M)'\P’, - -li X}‘ D)‘\{l’\ = 0 (5.‘6)

It is evident from this equation that the proﬁation charagter

is unaffeoted by the coupling and that the charaoteristic
determinant D(n), where n denotes a unit normal to the
wave=-front, has the same value as in the free field case

and is given by

Dew = 4 oS’ (5.47)
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80 that the propagation is light-1like and hence oausal,

(b) Energy eigenvalues im a homogeneous magnetic field

7

The method developed by Mathews'® s applied to

determine the energy eigenvalue spectrum in the presence

of a homogeneous magnetic field,

Define

D:\: = Dy 2Dy
Vi = Y, 1Y,
Y& - icxn‘-t"za-)

£qe (8.46) with u= 1, 2 can De manipulated to give two
equations that involve +, and V. only decoupled from each

othey
| E ¥e¥4Wy + 2 (¥4Dy +7-D-) ¥- ¥y

= (¥3Ds=-m)Y =0
(¥3Ds—-m) ¥4Vs (5.48)
E¥%¥-¥Y-. + 2 (¥pDyp +V-D-) ¥yp¥-
- (¥sDa—m) F-W— = o (5.49)
for stationary state solutions with a time-dependence ‘-ll'.'t.

@+

With y, partioned in the form -, = (% ) and Y_ in the form

' v- = (§)
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eq.(5.48)becomes & pair of coupled equations

(E+mdopan, + (zeH)y"( 230, 0. t+ 330304)@+

= o (5.50)

(E - wm) o= %~ +(2€H)P3(280'+q~_ + 8,0304) A4

(5.51)
= o

where

/Y

a = (2ehd"Dy at =(zeH)"/‘D_

The fact that & and a' satisfy an algebra equivalent to
that of a raqmonic ogscillator may now de exploited to reduce
eqs.(3.30) and (5.51) into an ordinary matrix eigenvalue
equation, Since a, commutes with all ot her operators it
may be replaced by its eigenvalues in eqs.(5.50) anmd (5.51),
Defining the states In,a) ,In,B> Dby

Ninad> = nina)d |, N In B - nin B>

NI S R L A N L B T LY S ey

where N = a* a, 1t 1s secn that the solutions of eq.(5.50)

are of the general fomm

@+ = cln, B>

(5.53)
A+ =~ ca lva,B)
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Substituting in eq,(5,50) and equating the eceffioients of
In/a> on both sides a set of relations comnecting o, and
o, are obtained wiioch can be written completely as

Tio = Ee (5.5‘)

- )

and
wm "'(2C H)ad‘,
K = Y
"(2¢H)a. -

The eigenvalues of 1 are easily found to be given by
E* = w14 a5 2ehjw] (5.58)

and hence are all real, The same procedure can be applied
to eq.(5.81), The components of <, and Y, on the ether
hand can be expressed in terms of Y, ,V. and their
spage~-derivatives,

5.8 Sesmatrix and unitarity

Consider the interaotioqpf the veotor-spinor
field with a gquantised electromagnetic field having the
Lagrangian
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£ = '\-l‘;'l A'uv{hp)*» + ¥ VW + ‘V’J,,.E

+ V4 Fuy Fy
(s.80)

where A, (D) denotes the expresston (5.3) with Ou—sDp o
and the oonjugation is now taken to be that in an indefi-
nite metric space, Physical states in the theory must not
contai n the negative-metric carrying spin 3 particle and
the physical states are defined dy the condition

% [physy a8 , ERo physy =o (5.57)
Then the interaction is switched on the spin } particle
does not remain free but gets oocupled to the elestramagnetio
field, as is shown by ea.(5.48), Beoauese of the interaction
of the negative metric particle the S-aatrix defined in the phy-
sical subszpace of the indefinite metric space will not be
antomatically unitary,. However, by adopting the method
followed by ﬁsu"”. 43‘ to deal with a sinilar contingenecy
in a different context, the unitarity of the S-matrix may
be restored by introdueing a fictitious particle and a new
vertex, That thie is possible may de demonsirated by
exmmining the soattering amplitude for the self-energy
process of the spin 3/2 - spin § particle Y (pd — VY (p-k) ¥(k)
— Y(p which is obtained, in the second order, to be
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@) 2 — ol :
ST = €N Jak ToepY, [ d, k) =i
S [ 2 (24 (Pl A md

Fia Lk kg B o
- (p-k)—2im

« LUCp-k)y # W3] Yo W 8 E

(5.58)

where . (d= 1, 3y +s o 8) are the wave functions the expli-

cit forms 0f which are not needed for the present diseussion,

This contains an extra amplitude coming from

SN dtk 240 TR0 L iCp-kdu + L m

- . o
* l -k + Lm?7, X U
Y. (p-k)-Zim 2 UCp-k)y # Lm% )% u cp

x Exe ‘—,i—,_ (5.59)

This extra contribution may be removed dy introducing a
fictitious spin } particle F intothe theory. Let the
corresponding Dirac field be { . If this interaction of

the F particle is chosen to have the form 1y, X, (2, +m %)% A
it is straightforward to verify that the extra amplitude

to the self-energy is cancelled (in the second order) by

the contridution from the process ‘(p—> Fcp-k) ¥ (k) = V(p.
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It is oconjectured that the cancellation is valid in all
orders of perturbdation theory.

8.6 Coneclusion .

The Lagrange multiplier formalisam, though
suecessful in eliminating some of the pathologies sueh as
causality vioclation and existence of inaginary energy eigen-
values in a homogeneous magnetic field and difficulties of
quantisation, leads t0 a multi-mass, milti-spin theory with
indefinite metric, This result seems to be in acoord with
oenjeoture of Prabhakaran, Seetharaman and uathcwuog that
for half-integer spins greater than #{ omusality ia the
presence of an electromagnetio interaction may be retained
only 1if one starts with a free theory whioh is redueible
and wherein the total oharge is indefinite. The notable
faot is that the requirement that the subsidiary oconditions
remain separate from the equations motion leads naturally
to such a formalism, Unlike in the Ririte-Schwinger case,
the Feynman propagator turns out to be covariant in the
present theory of spin 3/2 field., The results of this
study lend ample sup ort to the curreatly popular view
that {f there exist fundamental higher spin fields, they
must have a multi-nass, multi-spin structure, Though an
indefinite metric is inevitable in the present approach
the unitarity problem may de handled dy the introduotion of
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further ghost fields, The somewhat ad hoe nature of this
procedure may not be a serious drawback when viewed in the
ocontext of the totally unsatisfaotory state of the present
day higher spin field theory.
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APPENDIX I

Lagrange multiplier formalism for a spin 1 field

The Lagrange multiplier formalism may easily
be adapted for the description of a spin 1 field, In this
ocase the present formalism becomes almost indistinguishable
from Nakanishi's wethoa'l?$
massive veotor field with the introduction of a scalar
ghost tielad.

of constructing a renormalisadle

The starting Lagrangian in the present treatment

is the same as in conventional formulation

L = -V (Puo,- 0021 (2p@,-2,0,)
- '/). W‘l@};QF (5A01)

The constraint restricting the field components is

opep = e (8A.2)

Introduceing a scalar multiplier rield to incorporate
the constraint (5A.2) in (8A.1), the Lagrangian may be

reforsulated as
£ = Vs couq- 2y@u) L 2u@, — 2,@u) — L M'Puay
~N X a8y (5A.3)

with the resulting equation of motion

- VV\&) Q}a. = 1 3,.7(- (&o‘)
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From (51.4) and (85A.2) 1t 1s seen that A satisfies the

equation

Dx - (4]
(3&05)

and hence ocorresponds to a massless scalar field. From
(8A.8) and (5A.4) 1t follows that the ococmponents of
satisfy the multi-Klein-Gordon equation

aca-wHeu = o (BA.6)
Canonical quantigation of the field is easily carried out
by defining the conjugate momenta

L™ = éu + 2. @

(5A.7a)
Wo = NX
(BA.TD)
and the equal-time commutation relations are
c- Q}‘(l) / Q‘,t!’) ]X.-&’ = 0 (5Ao°&)
L @uen @b Jun? = ¢ 8g S-75 (sA.80)
C é"(‘) ’ é“i) Jxo"bl = 0o (5‘080)
0, Keh Jysuny? = ifn Suo & F-)

L ?r 4 x EN l/r) po 4 (5A.8d)

L e , X Jgan' = Vfn 2,8R-)
(5A.80)
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) / X(J)J o= / = o
L Rex Tomx (5A.8¢2)

The general comautation relation that satisfies the requ-
irements of relativistic invariance, locality, eq.(BA.6)
and that peproduces (5A.8) at equal time is

C Puex :‘Pv"‘".] = 5/Av - Vw* 3ud,) A -3’y mb

+ /wm? 3,. 2, A tx=2";0) (8A.9)

The Feynman propagator for the field 1is

AF}“V‘x) = cg v—!’w‘al.av) AF(ﬂ',Mz)

+ Vm? 3p3d, Ap (1)) (5A.10)

To demonstrate the absenocs of acausal propagation
in the present formalism when interactions are introduced

consider the equation

(O-w) @u =N OpX +ju =2 (8A.11)
whioch results when the vector field is coupled to a ocurrent
Jpe+ Sinoce the comstraint relation would remain unmodified
it follows from(5A.11) that

ax = '/4 Ouju (5A.13)

and by combining (8A,11) and (3A.13) one obtains
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E(D—MZ)Q,. + DJ:“' —arau_ju a 0
(8A.13)

It 1s evident from (5A,13) that if §, Goes not involwve
derivatives higher than the first of Qu ¢ the propagation
will remain light-1like and hence causal, Thus the sym-
metrio tensor coupling and the self-interaction of the
neutral veotor field whioh are acausal in the conventiomal

formulation are causal in the proaong theory.

The rest of the development of the theory nay
be ocarried out along the lines followed for the spin 3/3

onse,



CHAPTER VI

A SPIN 3 PIELD IN LAGRANGE MULTIPLIER FORMALISM

The Lagrange multiplfer method is ext-
ended to the deseription of a epin-3
field, The method bypasses the prodles
of oconstraint bdreah-down in the presence
of interaotions and the theory is showmm
to remain cansal when eoupled minimally
to an electremagnetic field., Canenioal
quantisation of the field is carried
out and a covariant propagator obtained,
The massless linit of the theory is also
discussed.
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6.1 Iatroduotion

In the preceding ohapter a Lagrenge mmltiplier
formalisn was developed and applied to a spin 3/3 field,
Although the resulting theory was one of multi-mass, multi-
spin type with an indefinite netrie, 1t was found to possess
‘doﬂnuo adym tages over gonventional formulations especi-
ally in elirinating pathologies that usually arise in pre-
senue of interaetions, In thie ohapter a Lagrange multi-
plier formalism is set up for a epin 2 field deserided dy
a8 symsetric tensor, COuantisation of the field is ecarried
out and the absance of acausal propegation is demsonstrated,
A dlscuesion is almo given of the physically interesting
case of the massless 1fait of the theory,

6.2 PFormulation

An irreduoible spin-2 field of mass m {s des~
cribed dy the set of equations

(0 - VW") '\'/,,w « 0 (6.1)
ap\ Yf‘“‘ s 0 (00')
Vg -0 (6.3)

where V., is sysmetric tensor of rank 3, A genersal Lag-
rangian density L, given by
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L G- #*
fg = - a} vMV a,\ \P"‘v - ‘V\Az\‘}:uy \VFV + aA ‘*’Fy ap\"Av
" * ¥
+ PuVpv 2aWaw + ACOuYuy ¥ + 3,4 u¥w)
+ B oo v + weyvy

(6.4)

where V= V.. and A, By, C are arbitrary parameters, will
yield the equations (6.1) - (6,3) when 4, B, C are restri-
eted by the conditions

A4 =} (6.3a)

B = 3/2A244 41} (6.50)

C = SAQOAO‘ (6.8¢)
37

This is the formulation as given by Nath® and under the
stipulated conditions the Lagrangien (6.4) 1is eguivalent
to the Plers-Paul1® Lagrangtan for the spin 2 field. In
presence of minimal electromagnetioc coupling these forsu-
lations suffer from acausality of propagation and imoconsie~

tency of quaatisation,

In the Logrange wultiplier mthed £, 1s the
Lagrangian to start with, and the constraint relation (6,3)
is assumed to exist independently and is incorperated into
the Lagrangian by means of a sultiplier field X, which for
the sake of relativistie invariance must be a veotor,
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L)
£ = Ko 4K Y FARY W) (e.8)

fiere 1t may Do noted that only one 0f the set of constraiag
relations (6,2) and (6.3) is taken into aceount} a disoussion
of the formulation with both sets of econstraints Linocorporated

is given i3 Appendix I,

Variation of ‘F:' in ¢q.(6.6) gives the equation

(O -w) Y =C22u Y, + 222, V) - A2 ¥
- Suv [ A beb)\\(’ex + 08 D""’J + g,tww‘zc"l"

L CouXk, +2,%u)

(6.7)

and the variation of x. reproduces the constrains (8,3),
Making use of eq.(6,2) tn eq,(6.7) it follows

(O-wm Y — A 2,3,y -8, B OV

+ 5Iuv IMlC .‘y = ..'2.. Caﬂxv"' zvx") (6.8)

Putting ..v and summing over ;. 1n eq.(6.8) oue obtains

Cr=A-48) OV + (4¢-D w = %, (6.9)

Taking the divergence of €q.(6.8) there results, hem acoount

is taken of the subsidiary condition (6.3)



~(AD O,y + Cuwd ¢y = o ( 0O A, +3ua;-7(/a) (e.10)
Equations (6.9) and (6.10) together yield the relation

CI%, = (28-A=1) O3 p - Q-Dwm 3,y  (6.41)

In contrast to the situaiion of the spin 3/3
field with the oenstraint (5.4) 1t appears that ia the
present case, becanse of the derivative nature of the con~
straing, the multiplier field 7, cammet de expressed loocally
in terws of the components of -, ,. Fewever, the multiplier
field ean be eliminated from oq.(6.8) by operating with 3 on
either side of the equation and making wse of egq, (6,11)¢

O(O-w) Y, + C1-28) O 28,9 - &, B(Oy
 Epy Cwt Oy +Q@CG-DWEAY 2 0 (4 199

If it s now assumed that B o C 4 1/3 1t 1is immediately
soen from eq. (6.13) that

Oao-why = » (6.13)
and a8 & o0nIPNRG e
(EHIO-w) Yuu = o (6.16¢)

™he esymmetrie tensor in the present theory possesses eix
independent components, In additien a veetor field fe
present, the divergence of whieh s related t» V' through
0q.(6.9). fenee 1% may be expected that the present
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formulation would contain hesides the spin 2 partiocle, a
partiocle of spin 41 and another of spin O, This infereonoe
is further bdorne out dy a study of the quantised version of
the above formalism,

6.3 JGuantisation

2inoe in the Lagrangiam (6.8) the varfiations of
the field somponents are all taken to be independent of one
another, the canonieal quantisation procedure may be adopted
for deriving the field commutation relations. The oanonical

nomenta conjugate to v, and \y,’f,, are defined by
.l..‘_' - . # ¢ ¥ o
RV A g™ /2 Ca,x‘(’.w + 2,V 40
- ) X Sve B0V
/2 (3pa 2pVYoy T+ Svy 20V pn )
. » * -
= (A2 CSpy 2¥ + Bug 2p¥) — B A" Su
. e .
-t/2 ( 5,_.47(:‘ + 8wy An ) - AS,, 3?‘4’*94-

(6.18a)

v \i',uv =% (2, Yoo + S0y,

~Y% (Sps dove, + Suq 2e¥en)
~A2 CSpadpy + Sup2uy) ~ By Suv

—Vz CSH4 Kv + 8’“47(}‘) -I.A s/.av ae%iooin)
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The Hamiltonian density of the field s eanily evaluated
with the ald of egs. (‘o"). ‘Qo‘) and eqs, (‘o') and (6.')0

L, ¥ . . *
H o = [my o+ Oivgy) C My +¢8" Yy )
+B/( 3B) P*n\‘ y (Tl"*a'*.-i-ﬁ‘ a:
I- 38 §_ Tk i, +2 ki 95 Vo Kk J\P.b-)§
+ v, ( 2 w"’- o *o 20 My
)ty kVee + ¢ V’M ¢ (4)
. * ¥
4+ -3V C Wy + Wy — U rq)
~ {95V § Tag + B aciozp Mik 3
* -~
~i vy LM% + 8203y T 3
* ¥ 2
- &Yy Y + Wy iV, + WYy Yy
- BZ;\V*a,' \P# —w=C "4’*"4‘ ]
(e.18)
As uight have been expected the Hamiltonian density fs
not positive-definite due to the presence of additional
sphn eounstituents, and hence quantisation will have ¢e be
earried out in an indefinite metric space, Taking the

symnetry of the field ocomponents 1nto account camonioal
commtation relations may be written in the fors



L Yuyeno Terct Jwoen! = /2 C Ene vp + 8,0 By )

x § -F
(6.17a)
L \'Y*C’O r* )) ¢ y
My ] le'\Cx J”..n‘ = L/; <SH?£\’A +£/“k8"f) (..t")
x 8§ A-5)
. (e.17e)
LYuvew o+ Yepadi Junw = C‘\P»vm ) Yea ) a 6
L “,u%’l Tl—ex“') Jxo NP S f. lTM, ) ) n:\(’,)_]”.,.l = 6 (‘o"‘)

These commutation relations are not amtonatically consisteant
with the eonstraint relation (8.3)., By requiring that
0q.(6.17) de compatidle with the constreint relations the
above coummtation relations can de recxmpressed ia terms of
Vw1 Yuv 08 £, (Appesdix II),

The consisteney of the quantisation procedure
ean bo demonstrated by showing that the Helsendberg eque~
tiong

"Ymu) = Y C '\ymct) v H] (6.180)

Ty <0 =y LM  #]

(6.180)
vhere § = ja& H sma # 10 as given by oq. (6.16), re-
produces equations (6.8) and (6.3) when the eanoniocal commm-
tatore (6.17) are smployed in eoq. (8.18), To ses this eon~
sider firet the equatioms for v, asd v, whieh by eq. (6.17)
are
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Vo, =¥ L k) = -idjwy (6.19a)

Vs

y. -y,
Ve Loy i) = =iy, (6.19b)

These two equations together are identiosl with the const-
raint condition (6.2)., Consider now the equatioms for

¥
the oomponcats -, and Ty

: STy _#
Vo = riLwg k) = Ty ri Corvg + Gva
* (6020)
+B/Ci-38 &y Wiy

a* ¥* .
Ty = W LTFU,ﬂJ = - (9.'TI'_“: 'I-BJ‘TI'::_) -{-b:aj\y""

£y - miyy - B 8y 3y +wicSyy  (8e31)
Bq.(6.20) 1s an identity corresponding to one of the rela~
tions in the definitions of the canonical momenta (6.185a),
Taking the time-derivative of eq.(6.320) and substituting
from eq.(6.21) and waking use of the already derived
equations (6.19) and the defining relation (6,18a), the
following second order equation emerges

(O-wyy -~ By By —A Bed; ¥

(6.22)
+Oy WY =Yy (2% +54) = ©
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This equation 1is identical with the 1ij components of
0q.(6.8) The rest of the equations of motion are reco-
vered in a simfilar fashion by considering the Tisisenderg
equations for TI'.-’: and IT:.; .

The general form of the commutator ([ V., <2 ,%";d).]
for arbitrary separations can be inferred by invoking
the princirles of relativistic ocovariance and local com-
mutativity and the eqe., (6.14) and (6.3).

C Wy €0 /\P::\cx’)J = a L% (Eup Svy + 8ur8y0)
= Spw Sea + W 8uy 38y + 8p,2,2,)
—Y2 w2 (8ue 82y +6uy 8,0, + Syp 2,2,
¥y 25800 Acx-tiwdy + b[ wi5,, a0
+ 59,(3# 8,) —h W 8,2,2 +38,, 2,8,
+8vp2u2, + Sva2u8,) 1 Aca-x';0)

(6.23)

Apart from the constants a and b the coefficients of
the various terms in eq.(6.23) have been so ehosen that
the oconstraint relation (6,2) te consistent with the general

commutator, If the coefficients a and b are assigned
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the values a =1, b = =1 the equal-time commutation
relations (Appendix II) can be recovered from eq.(6.24)
for the ohoice of the parameter B = i, 1In a similar
manner the following general commutation relations involving

X are written downs
[ 0 s Ages] = =i (Bue &, + Gue 24
~ Sude) Au-wo)  (g,24)

‘ [
[_ XP ) X‘,lﬂl) ,] = -t ( SIAV - 2}4 3\,) A‘J"’/)
(6.23)

These commutation relations will be consistent with the
equal-tine commuiators given in Appendix II provided the

arbitrary paramcter A 1is set equal to sero,

The Ffeynman propagator of the field is evalu-
ated in the ocustomary way, In this case the normal-depend-
ent terms drop off and the propagator is rigorously given by

AF)‘W,CA‘""",) = Lol T’\'J)‘vu) 1":;\“” 'a)
*EuvBen 4 W (S22 + 602,

— VoW (Spe2vdy + 8up 2y + 8,343
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+ Sy 2u0x) ) Ap cx-a'ywdh

—L VV-\-ZC Spv aeaA + geA Bpav) - J’; sz C &Iue 6,, 8)‘
* SunBude + v Oudp t Syedu2,) ]

X AF c:—x/,' o)

(6.26)

This may be written in the form

D g pvjen €% =25
Aa;:,uu,e,\“—"l)

~ 2/ C Spv ~ W Opd,) (Bop - wW'dpsy)

x Acx—a'ywd = [ w28, D) + 8, 2,8,)

~ Vo Wit Sup 2,55 + Sup 8,80 + 8,08,8,

4 8\),\ 3}_. 39 ) J AF (8—’!’; o)

(6.27

_ 3
where A(‘:g 15 the usual spin 2 propazator""'»
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AC;)W' e cx—xh
= [ B¢ 8ueéyy + & Sve) ~¥3 buy ear.
+ A ( 8y Bpdx + Sppdu8,) -bow?
x (Spe dvda + Sup 3,2 + &0 8,8

FEuadadp) + ¥ W Eu0,8,8; I Apca-viuds

(6.28)
The other propagators are given dy
¥,
<D' T‘yfw ¢2) xec’) |°> = - (8}49 B\, + 5"6 8/..
- d)Ag a2, 0)
<el T Xr ) 7(:(/) lb) = "(8).;\; -'a;.sav) AF €4)=7,)
. @)

- 8;;4 8\’4 8 €A, =) (6.30)

Since %) represents a negative-metric-carrying ghost
particle which will not be present in phvsical atates the
above propagators will nut be of further use, and the non-

covariant form of {6,7)) 18 of no cousequence,
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6,4 Electromagnetio interaction

The interaction of the above desaoribed symmetriec
tensor field ¢to an external electromagnetie field will now
be oonsidered, The questions of comstraint loss and the
Johnson-Sudarshan type of inconsistency on quantization
do not at all arise in the preseat framework., It will
now be shown that the present fermulation is free of aocsu-
sality of propagation also,

Introducing minimal couplingz imto the Lagrangian
(6.8) by the replaceueat o, — Dy = 2u- (¢ Ax  the equa~
tions of motion recultiag fromthe variations of «y:,, ,,g:

beoome
(D= w*) Yuw ~(DaDutp, +DaDy¥s,) - A Dudy
~ 6y L De Dy Ve, #D°%] + S Cw'y

=‘ D 7(’
4 (3.91)

Du Y v - e
(6,33)

In contrast to the situation of the snin 3/2 theory deve-
1oped in the previous chapter where the comstraint ooniition
was free of derivatives, the renquirement of gauge invarf-

ance, in the present case, lends to a minimal modification



of the constraint condition (6.2). Subdstituting eq.(6.38)
in eq. (6.31), with the atd of the relation

E D,Al DvJ = te F'ug (‘.38)

where [\, » (2.A,-2,A.) one odtains,

(D*-w*) Yuu = ADuD,¥ - S B D
+ S 'Y —ie (Fo ¥y + Foy ¥uu)

.Dﬂ Xy

(e.34)

Contracting the indices p and » 1m eq, (6.34) and takxing
the divergence of oq., (6.34) and combining the two rela-
tions 1t 1s found that the equation obeyed dy %, 1s

b*x, = —ADDY —BD,DY + CuwtD,y

- (e CFux Papy = Fay Du¥ap)
(e.38)
This equation may he used for elimimating %, from eq. (6.31)
and resulting equation is obtatned as
D*CD- wh Y + B Du D, D = Sy B (PO
+ lower derivative terws = 0 (6.38)
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The lower derivative terms have not been shown explicitly
because these are not important in determining the nature
of propagation which depemis solely on the highest order
derivatives. The characteristic determinant of the system

of equations (6.36) 1is evaluated withthe result
3 I
Den) a (1-8B) (V\")o (6.37)

Since B # 1 in the present theory (the choce B = % having
been made for consistent ﬁquégizatiodof free field) the
characteristic determinant #will not vanish identically, and
setting D(n) = 0 it 1s evident that the propagation of the

interacting field is light-~like and hence causal,

6.5 Massless limit

Another merit of the present formulation is that
the 1limit m > O can be taken smoothly without encount-
ering any difficulty. The equation of motion in this case
is

OYuw - BOY - Aarav‘r

= % (2uRy ¥ 2%K0) (6.38)

but the constraint equation remains the same as eq.(6.2).

The formalism can be developed in a way exactly analogous
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to the massive ense, It suffices to note here that in
the massless case @q.(6.39) 1¢ invariant under the gauge

transformation

Ywe) —> Vo +h [2.8,0 +2,5,0]  (6.39)

7(,.(:0 —> Kutm
(6.40)

provided the gauge functions g,‘." obey the conditions

(6.41)
D S)‘ £)) = (=]

By 5,00 - s (6.42)

This gouge-freodom will reduce the nusber of independent

components in the massless case,

The Feynaan propagator of the massless field
is obtained by letting m — O {in eq, (6,28)

D (x-xy = [ 4 C8pe Sup + 8ux Svep)

F pvieA
= Sy fep J Apca-rio v [ Sur2e0, 4 8er20,

- 72 CSpp y2) + Spp2,% + SVP du 2

(6.43)
+ gy’\ 3). 39)_] E (ﬂ—’ll)
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where E(x~-x') « lim 3 A

ca=a'y wh
Wm0 Owd

F

The expansion
AF Ca=a'; wmd) 2 AF cx-x’;o)

3 a ( - '- o o
tow 2 Bpaadind e

was used in deriving (6.43), Ia the exmresstion (6,48)
the tere [ Vo (Sue Sva + Spn Sve) —Suv 2ea J Apta-sio)
eorrespends to the actual propagator of a massless
spin=2 field while the other tera represente the ghme
particle. One notewdrthy feature of the present approach
is that the true massless spin 2 propagator is odbtatned
sinply by taking the limit m— 0 n eq, (6,27) whereas
this does not happen in the oonveational formulations even
12 it 1s assumed that the derivative terms can be left out,

6,6 Conoclusion

The Lagrange multiplier formalism for the spin 2
field has the attractive feature that pathologies like cons-
traint loss, {noonsistency im quantisation and acausal prope-
gation in presence of interaction do not appear here. 'iow-
ever, this is achieved at the cont of introdueing an indefi-
nite setrie theory and the preblems of non-anitarity of
soat tering amplitude encountered in the snin 3/8 case is bound
to arise in this context as well, Though, on nocount of the
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difficulty of isolating the negative-metrie components, the
procedure followed in the spinm 3/3 case for resteping
unitarity ie not easy to carry out, it {s hoped that the pro-
cedure of introducing additional vertices and fictitious
particles will resolve the difficulty ia the spin 2 osse

also,

The possidility of discussing the massless ocase
in a natural way i{s another advantage of the present approach,
and this may be used as a epring-droad for the formmlation
of a new gravitational theory iavolving tensor and adaitional
ghost partioles,
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APPENDIX X

LAGRANGE MULTIPLIDR PORMALISM SITH THO RETS OF
MULTIPLIER FPIELDS

A Lagrange multiplier formaliss can be deve-
1oped By fneorporating both sete of constraints (6.3) and
(6.3), The Lasrangian in this cane may be taken as

& = £° + n(xra};\v‘wy + wi*pv)

+ 2 (e +59D
{6a.1)

where 5 is o sealar multiplier field., The equation of
motion 19
(D"’ ‘) WFV = "]/z (3"\7(\,1'3,,7(,.) -)\ SPVE
(81.2)
Taking into acoount the constraints (6.3) and (6.3) it
tollows from eg,(6A.3) that

/(O A, + 8, 2u% = Ao %
/1( v vom F) v (OA.-C)

Eq.(64,3) expresses the scalar multiplier field ¢ ia terms
of 5.%, « By combining eqs.(64.3) ana (62.4) the equation
obeyed dy A, can be derived.
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(@] )27(\, = (o)
(6A.8)
From eqe.(6A.8) and (6A.2) 1t follows further that
(O Ca-wiy., = o (61.6)

which is the same as eq,(6.14) .

The quantisation procedure can be develeped
along the lines in se0.6.,3, However, a difffeulty that
apvears in this case is that the eieenderg squations re-
produce the field equatioa (6A,2) only 1if OuX, = O4
Aunother odatacle is that a general scmmutatoy satisfying
the constraints (6.3) and (6.3) and other requirements,
while reproduoing the equal-time commtation relatione,
cannot be written dovmn, It is on aceount of these coe~
Plexities that a singls multiplier forsaliss has been
adopted in the text,
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APPENDIX XX

The equal-time omtatton relations lnwlving
the components of ‘ﬂ,\) ”\va :"Vho ’ "ﬂ,\a [} 70&* and ”h are
as followst

(v, 0] = ald (Sindie* Sindi)

s T - 38 6¢J Kf] C;('z-z D (“.')
® ¥ . R ,:
["\’ijw:%n N E"h‘j""’ ¥, x>] =0 (6a.8)
v I . % ’
[¥ieaosnfy 0] = [ W, 0] =0 (6.9)
» P ’
[ Y00, by o] o [ W, W GO ]-0 (6r.10)
' r N (. r>]
[y » Vo] = 0 (r.11)

1 L - . . v £ B _¢.
E'\P‘"(l) ’ "\\’u Cz’)] = D‘z (545542 + 040 g.pk) + 738 SQJ Orcs

X 9;8 (-7 (6A.13)
. ¥
[ ‘Vo, (x) , \bgj 9 ] = 0 (6A.13)
. o % . . R

[‘\I-: 4 s Vg x'y] = ["{*“ ) Y, u'o] =0 (61.14)
[ RATEE N “¥44 (")] =0 (64.15)
Vo, 0, % G 5y &2’
(W05 % = — 6gjo (X-x (64.16)
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x /
["ﬂ'j (0, 20, (O] =0 (6a,17)
* [A
¥, @, % =] =0 (61.13)
* ?
[y 005 %y 5] = — f:f S 8 (2= (6A.19)
* /
L'\Pa.4(‘l)) 969 (z)] = 0 (61020)
* /
{'\‘24(3&) > 764611.') ] = _SC:—;’) (6“.31)
4 »*
Ef\hj (x) %KJ = —a [&,jk ajé(‘;’—;?’) + J_)'k 818(:-;".’)
P8 £ N S (-2 .
: *
[y o0, % 0] =0 (6:r.23)
N * v . o5 34
[Yog @ 5 %6 )] = 43500 (64.24)
[Ny, 2 ] 0
. 4 —
B ’ (61.28)
. ® ., ,
[%4“)’ X, anJ = 4 ?f:a §2-2) (6A.26)
. ¥
(W, 0, %4 0] =0 (6a.27)

(6A.28)

]
O

AL x:cu’)_]
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»
[ 764_ (%) » %4_ C"/)],

0
]

t6r.29)

C‘l+;n—89 o4 8 (XD (64,30)
-3B

[xi0o s X4 0d]
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