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INTRODUCTION

In this thesis we investigate some problems
in set theoretical topology related to the concepts of
the group of homeomorphisms and order. Many problems

considered are directly or indirectly related to the
concept of the group of homeomorphisms of a topological
space onto itself. Order theoretic methods are used
extensively.

Chapter-l deals with the group of homeomorphisms.

This concept has been investigated by several authors for
many years from different angles. It was observed that non­
homeomorphic topological spaces can have isomorphic groups

of homeomorphisms. Many problems relating the topological
properties of a space and the algebraic properties of its
group of homeomorphisms were investigated. The group of

isomorphisms of several algebraic, geometric, order
theoretic and topological structures had also been investi­
gated. A related concept of the semigroup of continuous
functions of a topological space also received attention.

J. DEGROOT [14] proved that any group is isomorphic

to the group of homeomorphisms of a topological space.

l



A related, although possibly more difficult, problem is
to determine the subgroups of the group of permutations
of a fixed set X, which can be represented as the group
of homeomorphisms of a topological space (X,T) for some

topology T on X. This problem appears to have not been
investigated so far.

In Chapter-l we discuss some results along this
direction. These include the result that no nontrivial
proper normal subgroup of the group of permutations of a
fixed set X can be represented as the group of homeo­
morphisms of a topological space (X,T) for some topology T
on X.

Homogeneity and rigidity are two topological
properties closely related to the group of homeomorphisms.
In 1979 PAUL BANKSTON [4] defined an anti-property for any

topological property and discussed the anti-properties of
many topological properties like compactness, Lindelofness,
sequential compactness and others related to compactness.
Later I.L. REILLY and M.K. vamamamoosmsr [291 obtained the

anti-properties corresponding to several separation axioms
and compactness properties. D.B. GAULD, I.L. REILLY and

M.K. VAMANAMOORTHY [ll] proved that there is only one non­

trivial anti—normal space. Rigid spaces are investigated
by several authors like J. or eaoom [14], v. KANNAN and

M. RAJAGOPALAN ( [21], [22], [23] ). ­



In Chapter-2, we investigate anti-homogeneous
spaces and give several characterizations for them. In
particular we prove that a space is anti-homogeneous
if and only if it is hereditarily rigid. To prove these
results, we use the concept of a pre-order (a reflexive,
transitive relation) associated with a topology. This
association was studied earlier by A.K. STEINER £553,

FRANCOIS LORRAIN [27], and SUSAN J. ANDIMA and w.J.ras0n{1]

We discuss the concepts of homogeneity, anti-homogeneity

and rigidity for pre—ordered sets also. It is then proved
that a topological space is anti—homogeneous if and only
if the associated pre-ordered set is antishomogeneous.
The main order theoretic tool used is a structure theorem

for semi-well ordered sets (linearly ordered sets in which
every non-empty subset has either a first element or a
last element).

Chapter-3 deals with the Each closure spaces,
which is a generalization of the concept of topological
spaces. EDUARD §ECH, J. NOVAK, R. FRIC and many others

have earlier studied this concept and many topological
concepts were extended to the éech closure spaces. In
this chapter we try to extend some results discussed for
topological spaces in the earlier chapters to dech closure
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spaces. These include the characterization of completely
homogeneous spaces and many results related to the pre­
order associated with a topology.

It is well known that the set of all topologies
on a fixed set forms a complete lattice with_the natural
order of set inclusion (see L6] ) and that this lattice
is not distributive in general (see [38] ). In l966,
A.K. STEINER [33] showed that the lattice of topologies
on a set with more than two elements is not even modular.

The lattice of topologies is atomic. In l964, OTTO
FROLICH [9] determined the dual atoms of this lattice and

proved that it is also dually atomic.

In 1958, JURIS HARTMANIS [18] proved that the

lattice of topologies on a finite set is complemented and
raised the question about the complementation in the
lattice of topologies on an arbitrary set. H. GAIFMAN[l0]
proved that the lattice of topologies on a countable set
is complemented. Finally in 1966, A.K. STEINER [33] proved
that the lattice of topologies on an arbitrary set is
complemented. VAN ROOIJ [39] gave a simpler proof independ­
ently in 1968. HARTMANIS noted that even in the lattice of
topologies on a set with three elements, only the least and
the greatest element have unique complements. PAUL S.

SOHNARE [30] proved that every element in the lattice of



topologies on a.set X, except the least and the greatest
elements have at least n—l complements when X is finite

such that /X] = n2>2 and have infinitely many complements
when X is infinite.

In Chapter-4 we conduct an analogous investi­
gation of the lattice of closure operators on a fixed set
X with special attention to complementation. The atoms
and the dual atoms of the lattice are determined first.
The complementation problem is solved in the negative
using this. The lattice is dually atomic but not atomic
when X is infinite. It is then proved that no element
in it has more than one complement. Finally, some sub­
lattices of this lattice and the fixed points of the anto~
morphisms of this lattice are discussed.



CHAPTER-l

GROUP OF HOMEOMORPHISMS

In this chapter we discuss some problems related
to the group of homeomorphisms.

1.1 PRELIMINARY RESULTS

Topologies on an arbitrary set with the trivial
subgroup as the group of homeomorphisms have been constructed

by many authors (See [14], [22] ).

The group of homeomorphisms of a discrete or an
indiscrete topological space coincides with the group of
all permutations.

1.1.1 NOTATIONS

X denotes an arbitrary set
S(X) denotes the group of all permutations of X

we first consider the problem of representing some
nontrivial proper subgroups of S(X) as the groups of homeo­
morphisms of a topological space (X,T) for some topology
T on X.

l.l.2 THEOREM

'Let H be a subgroup of S(X) containing two elements
only. Then there exists a topology T on X such that the



group of homeomorphisms of (X,T) is H.

PROOF

Since H contains only two elements. One element
is the identity map on X and the other element is a per»
mutation p of X which is of order two in the group S(X).
Thus p is a product of disjoint transpositions. Then

there exists a Class {A1 : i e I}' of disjoint subsets
of X each containing precisely two elements such that

p permutes elements of Ai for every i e I and keeps all

other elements fixed. Let Y = X‘\ KVJI A1. Now welli e
order Y and take the topology on it containing precisely
Y and its open initial segments. Note that we assume
axiom of choice. Also well order I. On X*\Y take a
topology containing precisely X\\Y and sets of the form

Bj = L) Ai for some j e I. Now take the topological.< j _i
sum of Y and X‘\Y. This gives a topology T on X such
that the group of homeomorphisms of (X,T) is H.

1.1.3 NOTE

A topological space (X,T) is homogeneous if for

any x,y in X, there exists a homeomorphism h of (X,T}
onto itself such that h(x) = y.
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J. GINSBURG [12] proved that every finite
homogeneous space is a product of a discrete space and
an indiscrete space. From this we can easily deduce
the following results which will be used later.

(a) If the cardinality of X is prime, any homogeneous
topology on X is either discrete or indiscrete.

P3

T3

#3:
Ci‘
.1

(b) If (X,T) is a finite homogeneous space, . is
tion of X forms a base for the topology T.

(c) There exists a transposition of X which is a
homeomorphism of (X,T) onto itself whenever fX|I> 2.

1.1.4 .REMARK

Theorem 1.1.2 proves that every subgroup of S(X)
of order 2 can be represented as the group of homeomorphisms
of a topological space (X,T) for some topology T on X. But
this is not true for subgroups of S(X) of order 3 as shown

by the fOllOWing counter example. Let X =-{a,b,c} and
H = {I, (a,b,c), (a,c,b)} where I is the identity map on
X. Then there exists no topology T on X such that the
group of homeomorphisms of (X,T) is H. For, otherwise

(X is homogeneous and by Remark l.l.3(a),(X,T) is

Q

I-3£2

discrete or indiscrete in which case the group of homeo­
morphisms is S(X) and not H.
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Generalizing this observation we can also prove

1.1.5 THEOREM

Let X be a finite set {al,a2,...,an% ,:n2;3.
Let H be the group of permutations of X generated by the

cycle p = (a1,a2,...,an). Then H cannot be represented
as the group of homeomorphisms of (X,T) for any topology
T on X.

PROQF

Otherwise, let T be a homogeneous topology on X.

Then by Remark 1.1.3 (0) there exists a transposition of
X which is a homeomorphism of (X,T). But that is not an
element of H. ‘This contradiction proves the result.

The group H mentioned in Remark 1.1.4 is in fact
the alternating group of permutations of X. Generalizing
this we can prove

1.1.6 THEOREM

If X is a finite set such that \XI;>3, then there
exists no topology T on X such that the group of homeo­
morphisms of (X;T) is the alternating group of permutations
of X.
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PROOF

Otherwise, (X,T) is homogeneous since all
3-cycles are elements of the alternating group of X.
Then by Remark 1.1.3 (c), there exists a transposition
of X, which is an element of the group of homeomorphisms,

which is in fact the alternating group of X. This
contradiction proves the result.

1.2 NORMAL SUBGROUPS OF S(X)

When ]XI<$2, the only sub-group of S(X) are the
trivial subgroup and itself. And both can be represented
as the group of homeomorphisms of a topological space
(X,T) for some topology T on X.

When lxi = 3, it can be verified that all sub—
groups of S(X) other than the alternating group can be
represented as the group of homeomorphisms of a
topological space (X,T) for some topology T on X. The
alternating group is the group H mentioned in Remark
1.1.4 and cannot be represented as the group of homeo­
morphisms of a topological space as explained there.

By theorem 1.1.6, the alternating group of
permutations of a set X with three or more elements
cannot be represented as the group of homeomorphisms
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of any topological space (X,T). Recall that the normal

subgroups of S(X) for a finite set X such that \X\ = 5
or IX‘? 5 are precisely the trivial subgroup, the alterna­
ting group and S(X) itself.

When X is the set {a,b,c,d} with four elements,
the normal subgroups of S(X) are precisely the trivial

Subgroup, {1,<a,b><<=,<1>, <a,<=><b,d>, <a,d><b.<=>}, mo

the alternating group and S(X) where I is the identity
map on X. But it can be verified using Note 1.1.3 that

F!

/"“\
U’

*0

O
\../'

‘u-“fr-~

neither _r(x) nor {1, (a,b)(c,d), (a,c)(b,d), (a,<'1)
can be represented as the group of homeomorphisms of any
topological space on X. Thus when X is any finite set,
no proper nontrivial normal subgroup of S(X) can be
represented as the group of homeomorphisms of any

topological space on X.

Our aim is to extend this result to the infinite
case.

1.2.1 NOTATIONS

Let p be a permutation of X. Then let

mp) = §X E X = p(X) ,4 X}
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A(X) denotes the group of all permutations
p of X such that M(p) is finite and p can be written
as a product of an even number of transpositions.

If a is any cardinal number let

Ha = -ip :3 S(X) : lM(pp)| < cm}

We use the following lemma proved by BAER [2}.

1.2.2 LEMMA

The normal subgroups of the group S(X) of
permutations of X are precisely the trivial subgroup,

A(X), S(X) and the subgroups of S(X) of the form Ha for
some infinite cardinal number a, a=g\X\.

l.2.3 LEMMA

Let X be any infinite set and T any topology
on X such that A(X) is a subgroup of the group of homeo~
morphisms of (X,T). Then

(a) (X,T) is homogeneous

(b) Supersets of nonempty open sets of {X,T)
are open

(c) If (X,T) is not indiscrete, every finite
subset is closed
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(d) If (X,T) is not Qiscrete, intersection of
nonempty open sets of (X,T) is nonempty.

(e) If (X,T) is not discrete, no nonempty finite
set is open.

PROOF

(a) Let a and b be two distinct points of (X,T).
Now choose two more distinct points c and d other than
a and b. Consider the permutation p = (a,b) (c,d).
It is a homeomorphism since it is an element of A(X),
ano it maps a to b. Hence (X,T) is homogeneous.

(b) Let A be a nonempty open set of (X,T) and ACIB.
If A = X or A = B, the result is evident. Otherwise
choose an element a of A and an element b of B\\A.
Also choose two distinct points c and d other than a
and b both from either A or B\\A. Now consider the

permutation p = (a,b) (c,a). Then p is a homeomorphism
of (X,T) since p is an element of A(X). Then
A\J{b} = A.L)p(A) is open. Thus B = \J (A\Jib}) and

b 2 B\A
hence is open. Hence the result.

(0) Since (X,T) is not indisorete, there exists a
proper nonempty open set A of (X,T). Let b be an element
of X\.A. Then X\.{o} is open by (b). Thus it} is closed.
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Then every Singleton subset of (X,T) is closed, since
(X,T) is homogeneous by (a). Hence every finite subset
being a finite union of singleton subsets is closed.

(d) Let A and B be two nonempty open subsets of
(X,T). To prove that A(\B # Q. Otherwise choose an
element a from A and an element b from B. Then a.¥ b.
Choose two distinct points c and d other than a and b
both from either A or B or X\\(AkJB) whichever is in­
finite. Now consider p = (a,b) (c,d). Then p is a
homeomorphism since p is an element of A(X). Thus p(A)

is open. Then {bk = p(A)f\B is open. Since (X,T) is
homogeneous, every singleton subset is open and hence
(X,T) is discrete, which is a contradiction to the
hypothesis. Hence the result.

(e) If (X,T) is inaiscrete, the result is obvious.
Otherwise every finite subset of (X,T) is closed by (c).
If a nonempty finite subset F is also open, then both F
and X*\F are open. This contradicts (d) which proves
the result.

1.2.4 REMARK

Lemma 1.2.3 shows that if A(X) is a subgroup of

the group of homeomorphisms of a topological Space (X,T)
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which is not discrete, then the nonempty open sets of
(X,T) form a filter.

1.2.5 LEMMA

Let (X,T) be an infinite topological space in
which nonempty open sets form a filter. Let A be a
proper closed subset of (X,T). Then every permutation
of X which moves only elements of A is a homeomorphism

of (X,T).

PROOF

Let p be a permutation of.X which moves only

the elements of A. If U is a nonempty open set

p(U)3 U (WAC

and'Uf\Ac is open and nonempty by hypothesis. Thus p
is an open map. Similarly we can prove that P is a
continuous map. Hence p is a homeomorphism.

1.2.6 LEMMA

Let (X,T) be an infinite topological space which
is neither discrete nor indiscrete such that the group
of homeomorphisms H of (X,T) is a normal subgroup of

S(X) containing A(X). If K is a proper closed subset
of (X,T), then [K\<lX\.
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PROOF

On the contrary let IX] = [X]. By lemma 1.2.5,
which can be applies in view of Remark 1.2.4, any per­
mutation of X which moves every element of K and keeps

every element of X\\K fixed is a homeomorphism of (X,T).

Here \M(p)\= 1K\ = lX|. Then by Lemma 1.2.2 every
permutation of X is a homeomorphism of (X,T) since H
is normal.

Without loss of generality we may assume that

0-’-'_'

p :4
_..-0

=\X\\K1 for otherwise take a suitable subset ans that
subset is also closed by Lemma l.2.5(b). Now consider
a permutation t of X which maps K onto X\.K and X\\K

onto K. Such permutation exists since \K\ = \X\\K1.
Now t is a homeomorphism of (X,T) onto itself by the last
paragraph. Hence t(K) = X\K is closed. Now K and X\I£
are open which contradicts Lemma l.2.3(d). Hence the
result.

1.2.7 LEMMA

Let (X,T) be an infinite topological space which
is neither discrete nor indiscrete such that the group H
of homeomorphisms of (X,T) is a normal subgroup of S(X)

containing A(X). Let K be a proper closea subset of (X,T).
Then every permutation p such that }M(p)pg\K\ is a homes»
morphism and every subset M of X such that\Mi$fKIis closed
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PROOF

Since K is a proper closed subset of (X,T),
by Lemma 1.2.5 which may be applied in view of Lemma

l.2.3 a permutation t of X which moves every element
of K and leaves every element of X‘\K fixed is a homeo­

morphism of (X,T) such that ]M(t)[ = ‘Kl. Then by
Lemma 1.2.2, every permutation p of X such that \M(p)L$
is a homeomorphism of (X,T) since H is normal in S(X).

Now to prove that every subset M of X such that

[M1gflK\ is closed. Without loss of generality, we may
assume that ix-1\ = \Kl 1'01: otherwise take a suitable
subset of K and subsets of K are also closed by Lemma

1.2.3. Since \K\ = iml and 1X\K\=\X\H.I as \K\-<}X\
by Lemma 1. 2.-6, there exists a permutation p of X which

maps K onto M, M onto K and keeps every other element
fixed. Then

\1"1(P)\é\K\ + \I~=1\

If K is finite, M is closed by Lemma l.2.3(c)
since \K\ = \M\. Therefore we may assume that K is
infinite. Then

\M(P)\ <= \K\ + \Ml = \K\

Thus p is a homeomorphism by first paragraph. Then
M = p(K) is closed. Hence the result.
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1.2.8 LEMMA

Let (X,T) be an infinite topological space, which
is neither discrete nor indiscrete such that the group H
of homeomorphisms of (X,T) is a nontrivial normal sub­

group of S(X). Then T = Ta for some infinite cardinal u
such that O£$\X\ when if Qqfluiicxtcarq (X\A) < ti“;

PROOF

Since H is a nontrivial normal subgroup S(X), it
contains A(X) by Lemma 1.2.2. Then by Lemma 1.2.3,

every finite subset of (X,T) is closed. Let a be the
smallest infinite cardinal number of a subset of (X,T)
which is not closed.

mow to prove that T = Ta. TC1Ta for otherwise

there exists U a T but U f Ta. i.e. Cara (X\<U); a.
Now let M be any subset of X such that \M1 = a, then M
is closed in (X,T) by Lemma 1.2.7, since X\\U is closed
in (X,T) and \M\s\x\Ul . This contradicts the definition

of a. Also TaC T. For otherwise if U e Ta, U # Q,
Card (X‘\U)<.a. Then X*<U is closed in (X,T) by the
definition of a. Thus U s T. Hence the result.

l 0 2 0 9
The group of homeomorphisms of a topological space

4

(X,T) where T is either discrete, indiscrete or of the form
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Ta == €q>‘§'U§ACX : Card (X\A)< ax} for some infinite
cardinal number a, a»g\X1 is S(X).

PROOF

It can be observed that the group of homeo­
morphisms of a discrete or indiscrete space coincides
with the group of permutations.

Now let p be a permutation of (X,Ta) for some
infinite cardinal number <1, on-.€~\X[ . Let U be a nonempty

open set in (X,Ta). Then Card (X\{U)<1a. Then Card
(X\\p(U))<ia since p is a permutation. Thus p is an
open map. Similarly we can prove that p is continuous.
Thus p is a homeomorphism. Hence the result.

1.2.10 THEOREM

Let X be an infinite set. Then no nontrivial
proper normal subgroup of S(X) can be represented as the
group of homeomorphisms of (X,T) for any topology T on X.

PROOF

Let T be a topology on X where the group of homeo­
morphisms of (X,T) is a nontrivial normal subgroup of S(X)

Then T is either discrete, indiscrete or of the form Ta
for some infinite cardinal number a éJX\, by Lemma 1.2.8.
Then the group of homeomorphisms of (X,T) is S(X) by
Lemma 1.2.9. Hence the result.
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1.2.11 DEFINITION

A topological space (X,T) is completely homo­
geneous if the group of homeomorphisms of (X,T) coincides
with the group of permutations of X.

1.2.12 REMARKS

It is not difficult to see that a finite completely
homogeneous space is either discrete or indiscrete. we may
use the method analogous to the proof of Lemma l.2.3(c).
R.E. LARSON [26] determined the completely homogeneous

spaces. His result given below easily follows from the
Lemmas 1.2.8, 1.2.9 and the above remark.

1.2.13 THEOREM

A topological SpaC8 (X,T) is completely homogeneous

if and only if the topology T is either discrete, indiscrete
or of the form

Ta = SLQUSLAQX = Card (X\A) < <1}

for some infinite cardinal number as$\X\.



CHAPTER 2

ANTI—HOMOGENEITY AND HEREDITARY RIGIDITY

In this chapter we study the anti-homogeneous
spaces in the sense of PAUL BANKSTON [4] and give several

characterizations. In particular we prove that anti~
homogeneity is equivalent to hereditary rigidity.

2.1 PRELININARIES

2.1.1 DEFINITION

A topological space (X,T) is rigid if the identi
map is the only homeomorphism of (X,T) onto itself.

2.1.2 NOTE

PAUL BANKSTON [4] defined a topological property

" anti-P" corresponding to any topological property P as
follows. If P is any topological property, the spectrum
of P, denoted by Spec (P), is the class of all cardinal
numbers a such that any topological space on a set of
cardinal number a has the property P. Now a topological
space (X,T) is said to have the property anti-P if a sub­
space of it has the property P only if the cardinality of
the subspace is an element of Spec (P).

21
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The spectrum of the topological property of

homogeneity is {0,l}-. Thus a topological space (X,T)
is anti~h0mogeneous if and only if no subspace of (X,T)
containing more than one point is homogeneous.

2.1.5 DEFINITIONS

A reflexive, transitive relation R on a set X
is called a pre—order on X. The ordered pair (X,R) is
called a pre—ordered set. If YCIX, then R(\(YxY) is e
pre—order on Y and is called the pre~order induced by R
on Y. Unless otherwise specified every subset of a pre~
ordered set is assumed to be pre-ordered by this pre-order.
If (X,R) and (Y,S) are pre-ordered sets, a one—one function
f from X onto Y is called an order isomorphism if f(a)Sf(b)
if and only if aRb. A pre-ordered set (X,R) is homogeneous
if for every a,b in X, there exists an order isomorphism
r of (X,R) onto itself such that f(a)=b. It is anti­
homogeneous if no subset containing more than one point is
homogeneous. It is rigid if the identity map is the only
order isomorphism of (X,R) onto itself.

2.1.4 NOTE

The following facts from [1] will be used later.
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Let T be a topology on a set X. Then we can
associate with it a pre order é=on X such that aséb if
and only if every open set of (X,T) containing b contains
a. This pre-order 4=associated with the topology T is
denoted by P(T).

Let (X,T) and (Y,S) be two topological spaces.
Then every homeomorphism from (X,T) onto (Y,S) is an

order isomorphism from (X, P(T)) onto (Y, P(S)).

2. l. 5 REMARKS

Using 2.1.4 we have

(a) Let (Z,:$ ) be the set of all integers with the
usual order. Then the pre-order é=is the pre-order P(T}
associated with the unique topology T on Z whose elements

are m,Z and the subsets of Z of the form {x e Z 2 xéém}
for some m in Z. Both the topological space (Z,T) and the
associated pre-ordered set (Z,€;) are homogeneous.

(b) A topological space (X,T) is rigid if (X5 P(T))
is rigid.

(0) If a topological space (X,T) is homogeneous, then
the associated pre-ordered set is also homogeneous.
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2.2 SEMI-WELL ORDERED SETS

2.2.1 DEFINITIONS

A linearly ordered set is well ordered if every
non empty subset has a first element. It is co-well
ordered if every nonempty subset has a last element. It
is semi—well ordered if every nonempty subset has either
a first or a last element.

2.2.2 NOTATION

Let A and B be two disjoint linearly ordered
sets with linear orders B and S respectively. Then by
A+B, we denote the set ALJB with the linear order

Rusu{(a,b) = as A, bee}

on it.

Now we Shall prove the following theorem on the
structure of semi-well ordered sets.

2.2.3 THEOREM

Every semi-well ordered set X can be written in
the form A+B where A is a well-ordered set and B is a
co-well ordered set.
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PROOF

Let

A = éix e X : x has no immediate predecessor
or x is the nth successor of an element
having no immediate predecessor for

some positive integer n}», and

B = X‘~A

To prove that for any element b of B, either b. ' . tnhas no immediate sucessor, or b is the n predecessor
of an element having no immediate sucessor for some
positive integer n.

On the contrary let there be an element xo in B
having an immediate successor and which is not the nth
predecessor of an element having no immediate successor

for any positive integer n. Then xo has nth sucessor
for every positive integer n for otherwise xo will be the
nth predecessor of an element having no immediate sucessor
ior some positive integer n. Denote the nth sucessor of

xo by xn for every positive integer n.

Also since xo is not an element of A, :0 has an
immediate predecessor (say x_l) and xo is not the nth
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sucessor of an element having no immediate predecessor.

Then xo has nth predecessor for every positive integer
n, for otherwise xo will be the nth sucessor of an ele~
ment having no immediate predecessor. Denote the nth

predecessor of xo by X_n for every positive integer n.

Now consider the set {xi : 1 £1 2} where z is
the set of all integers. It is a nonempty subset of X
having neither a first element nor a last element. This
contradicts the fact that X is semi—well ordered and
hence the assertion.

Now, to prove that for every X in A, y in B,
x<;y. Suppose not. Then there exists a in A and b in B
such that b<1a. Now since a is in A, either a has no
immediate predecessor, or a is the nth sucessor of an
element having no immediate predecessor for some positive

integer n. Without loss of generality we may assume that
a has no immediate predecessor, for otherwise, take in.
place of a the element p in A which has no immediate
predecessor and which is the nth predecessor of a for
some positive integer n and b<<p for otherwise b will be
the mth predecessor of p for some positive integer m and
then b is an element of A which contradicts the hypothesis.
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Similarly we can assume without loss of generality that
b has no immediate successor. Now take the set M of all
elements of X greater than b and less than a. It is a
nonempty subset of X having neither a first element nor
a last element, since b has no immediate sucessor and a
has no immediate predecessor. This contradicts the fact
that X is semi-well ordered and hence the assertion.

To prove that A is well ordered. Otherwise, it
has a nonempty subset M having no first element. But
then M has a last element (say, r), X being semi-well
ordered. Also note that M is infinite. Then either r
has no immediate predecessor or it is the nth sucessor
of an element q of A having no immediate predecessor.
without loss of generality we may assume that r has no
immediate predecessor for otherwise delete all elements
of M greater than q, and M is still nonempty for we are
only deleting a finite number of elements. Now M'=M\§r}
is a nonempty subset of X having neither a first element
nor a last element. This contradicts the fact that X
is semi—well ordered and hence the assertion.

Dually we can prove that B is co-well ordered.

Thus X = A+B, where A is well ordered and B is
co-well ordered.
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2.2.4 THEOREM

Every semi-well ordered set is hereditarily
rigid.

PROOF

Let X be a semi-well ordered set. Then by
Theorem 2.2.3, it can be written in the form A+B where
A is well ordered and B is co-well ordered. Let f be
an order isomorphism of X onto itself.

T0 prove that f maps every element X of A
to X itself. Otherwise, let a be the first element of
A such that f(a) % a. But then every element x of A
smaller than a will be mapped to X itself, but a is
mapped to another element f(a)>>a. Then no element of
A can be mapped to a for f is an order isomorphism.
Clearly no element of B can be mapped to a. This is a
contradiction since f is onto. Hence f maps every
element x of A to x itself.

Dually we can prove that f maps every element
y of B to y itself. Thus f is the identity map. Since
every subset of a semi—well ordered set is semi—well

ordered, hereditary rigidity follows.
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2.3 ANTI—HOMOGENEOUS PRE—ORDERED SETS

In this section, we characterize the anti­
homogeneous pre-orders.

2.3.1 LEMMA

Every anti—homogeneous pre-ordered set is

linearly ordered.

PROOF

~ Let (X, 5,) be an anti-homogeneous pre-ordered
set. Let a,b be elements of X. If aéb and baa, then
§a,b} is homogeneous. Then a=b, since (X, §_) is anti­
homogeneous. Thus Q, is anti—symmetric.

Now, let a and b be elements of X, a f b. To
prove that either ash or bga. Otherwise §_a,b-} is
homogeneous, which contradicts the fact that (X,fé ) is
anti-homogeneous. Hence the result.

2.5.2 LEMMA

A nonempty linearly ordered set having neither
a first element nor a last element contains a subset order
isomorphic to the set Z of all integers with usual order.
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Let X be a nonempty linearly orderea set
containing neither a first element nor a last element.

Let xo be an element of X. Since xo is not the last
element, we can choose xl in X such that xo<;xl.
Similarly, we can choose xi, for each positive integer i
such that

xo < xl < x2 <_x5 <, ...

Similarly, since X has no first element, we

can choose xi, for each negative integer i such that

... (x_3 <X_2 <x_l (Io

Now A.= ixi : i e Z} where Z is the set of
all integers, is order isomorphic to the set Z of all
integers with the usual order. Hence the resulto

2.3.3 THEOREM

Let X be a pre—ordered set. Then the following
are equival ent

(a) X is anti—homogeneous

3



(b)

(c)

(<1)

( e)

PROOF

(a)

(b)

(0)

(<1)

(6)

==>

=#» (c)

=s» (d)

==s (e)

=» (a)
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X is a linearly ordered set containing no
subset isomorphic to the set of integers
with the usual order.

X is semi-well ordered.

X is of the form A+B, where A is well ordered
and B is co—well ordered.

X is hereditarily rigid.

(b) by Lemma 2.3.1 and Remark 2.1.5 (a)

by Lemma 2.3.2

by Theorem 2.2.3

by Theorem 2.2.4

by the fact that no set containing more
than one point can be both homogeneous
and rigid.

2.4 ANTI—HOMOGENEOUS TOPOLOGICAL SPACES

In this section we characterize the anti­
homogeneous topological spaces.

2.4.1 THEOREM

pre-order associated with T. Let Y be a subset of X with
Let (X,T) be a topological space. Let R be the
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the induced topology T‘. Then the pre—order R’ associated
with T‘ is the same as the pre-order S on Y induced by R.

PROOF

Let a and b be elements of Y such that aSb. Then

aRb since S is the pre-order induced by R. Thus every open
set in (X,T) containing b contains a. Let A be open in
(Y,T') and b an element of A. Then A = BINY for some B

open in (X,T). Also b is an element of B. Then a is an
element of B since aBb. Thus a is an element of A = BFXY.

Thus every open set in (Y,T') containing b contains a.
Thus aR'b.

Now let aR'b, for some a and b in Y. To prove
that aSb. On the contrary assume that aSb is false. Then
aRb is false. Then there exists an open set D in (X,T)
such that b is an element of D and a is not an element of
D. This leads to a contradiction since then aR'b, Df\Y
is open in (Y,T'), b e Df\Y and a ¢ DVXY. Hence the result

2.4.2 THEOREM

Let (X,T) be an anti-homogeneous space and é=be
the pre-order associated with T. Then the pre~ordered set
(X, é=) is anti-homogeneous.
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Let a and b be elements of X. If asgb and
bsga, then the topology on the subset {a,b} induced
by T is iq, {a,b}} and is homogeneous. Thererore
a=b, since (X,T) is anti-homogeneous. Thus é.is anti­
symmetric.

Also if a and b are elements of X, a 7! b,
either aréb or b sa.for otherwise the topology on the
subset {a,b} induced by T is {o, §a} , {b3 , ia,b}}
which is homogeneous which is a contradiction. Thus
(X,é}) is a linearly oraered set.

Furthermore, (X,€£) does not contain a sub»
set oraer isomorphic to the set of all integers with
usual order, for otherwise the subset will be a homo­
geneous subspace with more than one point of the anti­
homogeneous topological space (X,T) by Theorem 2.4.1.

and Remark 2.l.5(a). Thus (X,€é) is an anti-homogeneous
pre-oraered set by Theorem 2.3.3.

The following theorem gives several character­
izations of anti-homogeneous spaces.

53
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Let (X,T) be a topological space. Let é=be
the pre-order associated with the topology T on X. Then
the following are equivalent.

(a) (X,T)
(b)

(C)

(<1)

(Q)

(X,s)

(Le)
(X.é)

(X,T)

PROOF

(a) =-> (b)

(b) =1-> (C)

(c) ==>(d)

(d) ==: (e)

(e) ==a (a)

is anti-homogeneous

is anti-homogeneous
is semi—well ordered

is hereditarily rigid
is hereditarily rigid

by Theorem 2.4.2

by Theorem 2.3.5

by Theorem 2.2.4

by Remark 2.l.5(b)

since no topological space with more than
one point can be both homogeneous and
rigid.

2.5 HEREDITARILY HOMOGENEOUS SPACES

A related problem is to give a satisfactory
characterization of hereditarily homogeneous spaces. We
know the following facts.
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2.5.1 THEOREM

Every completely homogeneous space is

hereditarily homogeneous.

PROOF

Every completely homogeneous space is homogeneous

and every subspace of a completely homogeneous space is
completely homogeneous (see Theorem 1.2.13) anu hence the
result follows.

Also,

2.5.2 THEOREM

A finite topological space is hereditarily homo~
geneous if and only if it is either discrete or indiscrete.

PROOF

The sufficiency part follows from.Theorem 2.5.1.

How to prove that every finite hereditarily homo­
geneous space is either discrete or indiscrete. Otherwise,
let (X,T) be a finite hereditarily homogeneous space, which
is neither discrete nor indiscrete. Then by l.l.2(c) there
exists a partition of X which forms a base since (X,T) is

homogeneous. Choose -ia}' and ib,c} subsets of two distinct
elements of the partition where b ¢ c. That is possible
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since (X,T) is neither discrete nor indiscrete. Now the

topology induced by (X,T) on the subspace ~{a,b,c} is
i §_ -i 0} , {a,b,c}} and hence that subspace is

-s

m
v-r-’

v

not homogeneous, a contradiction. Hence the result.

2.5.5 THEOREM

If X is any infinite set, then there exists Q
hereditarily homogeneous topology on X which is not
completely homogeneous.

PROOF

Let X = AUB, where ems = q» and \A\ -.= \B\.
Now let

T = {UQX : \Uf\B\ <\X\7§

Then T can be verified to be a hereditarily homogeneous
topology which is not completely homogeneous by Theorem

1020150

2.5.4 THEOREM

A hereditarily homogeneous topology is either

indiscrete or Tl.
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PROOF

Let (X,T) be a hereditarily homogeneous space.
Then the pre—ordered set (X; P(T)) is also hereditarily
homogeneous by Remark 2.l.5(c) and Theorem 2.4.1. Let

P(T) = R. Then R is symmetric, for otherwise let (X,y)e R

but (y,x) ¢ R. Then the subset {x,y} of (X,R) is not
homogeneous} This is a contradiction. Thus R is an
equivalence relatione

To prove that either there is only one equival­
ence class or each equivalence class contains only one

element. Otherwise, let-fie} and {b,o} be subsets of
two distinct equivalence classes, where b ¢ c. Now the

subset -{a,b,c} of (X,R) is not homogeneous, a contradic­
tion.

If there is only one equivalence class, i.e.
xRy for every x,y in X, the topology T is indiscrete.
On the other hand if each equivalence class contain only

one element, the topology T is Tl for otherwise there
exists a,b in (X,T) such that every open set containing
b containsa.which implies aRb.

2. 5. 5 NOTE

A topological space is anti—rigid in the sense
of PAUL BANKSTON [4], if and only if no subspace containing
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more than one point is rigid since the spectrum of rigidity

is {o,l} (see l.l.2).

2.5.6 THEOREM

A hereditarily homogeneous space is anti-rigid.

PROOF

no topological space containing more than one
point can be both homogeneous~and rigid. Hence the result.

2.5.7 REMARK

The converse of the Theorem 2.5.6 is false since

*6

/--kfi
Q7

\...-1~.)

the set X = €a,b,c} with the topology T = i , %h,o} ,
§a,b,c}§ is not hereditarily homogeneous even though it is

2.5.8 REMAR£.

The problem of determining the hereditarily
homogeneous spaces remains yet to be solved.



CHAPTER-3

Eros CLOSURE SPACES

In this chapter we discuss some problems
related to Eech closure spaces. we determine the
completely homogeneous éech closure spaces. We

investigate the reflexive relation associated with
a closure operator in detail.

3.1 PRELIMENARIES

5.1.1 NOTATION

P(X) denotes the power set of a set X.

3.1.2 DEFINITION

A éech closure operator V on e set X is a
function V from P(X) into P(X) such that

(1) v(¢) = @
(2) Ac:v(A) for every A in P(X)
(3) V(AkJB)=V(A)LJV(B) for every A,B in P(X)

For brevity we call;rta.closure operator on X
Also (X,V) is called a closure space.

39
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3.1.5 DEFINITIONS

In a closure space (X,V), a subset A of X is
said to be closed if V(A)=A. A subset A of X is open if
X\\A is closed in (X,V). The set of all open sets of
(X,V) forms a topology on X called the topology associa~
ted with the closure operator V.

Let T be a topology on a set X. Then a function
V from P(X) into P(X) defined by V(A)=K for every A in
P(X), where K is the closure of A in (X,T), is a closure
operator on X called the closure operator associated with
the topology T.

A closure operator V on a set X is called
topological if V(V(A))=V(A) for every A in P(X).

3.1.4 REMARKS

Note that a closure operator on a set X is topolo­
gical if and only if it is the closure operator associated
with a topology on X.

Also note that different closure operators can have
the same associated topology.

5.1.5 DEFINITIONS

Let (X,V) and (Y,V') be closure spaces. A one~one
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function f from X onto Y is called a closure isomorphism
if

f(V(A)) = V'(f(A)) for every A in P(X)

The closure isomorphisms of a closure space (X,V)
onto itself form a group under the operation of composi~
tion of functions which is called the group of closure
isomorphisms of the closure space.

5.l¢ 6 DEFINITION

Let V1 and V2 be closure operators on a set X.
Then let

vlssvz if and only if V2(A)ClV1(A) for every A

in P(X).

This relation is a partial order in the set of
all closure operators on X.

3.1.7 DEFINITION

A subset A of a closure space (X,V) is dense if

3.1.8 DEFINITION

A closure operator Vion X is Tl if V( ix} ) = {X}
for every x in X.
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5e2 COMPLETELY HOMOGENEOUS CLOSURE SPACES

5.2.1 DEFINITION

A closure space (X,V) is called completely
homogeneous if the group of closure isomorphisms of

(X;V) coincides with the group of permutations of X.

3.2.2 LEMMA.

Let (X,V) be a completely homogeneous closure

space. Then every subset of X is either closed or
dense in (x,v).

PROOF

Suppose not. Then there exists a proper non­
empty subset A of X such that A is neither closed nor
dense. Then A ¢ V(A) ¢ X.

Let X s V(A)\~A and y s x\<v(A§.

The permutation p = (x,y) is a closure isomorphism
Then p(V(A)) = V(A). Therefore since X is an element of
V(A), y is an element of V(A). This is a contradiction
since y is an element of X*\V(A), and hence the result.

3.2-3 THEOREM

A closure space (X,V) is completely homogeneous
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if and only if V is the closure operator associated with
a completely homogeneous topology on X.

PROOF

Let (X,V) be completely homogeneous. From

lemma 3.2.2 we see that V(A)=A.0r V(A)=X for every subset

A of X. Then V(V(A)) = V(A) for every A in P(X). Thus V
is a topological closure operator. But it can be seen
that every closure isomorphism of (X,V) onto itself, where
V is a topological closure operator associated with a
topology T, is a homeomorphism of (X,T) onto itself. Thus
(X,T) is completely homogeneous.

Now let (X;V) be a closure operator associated
with a completely homogeneous topology T on X. Then every

homeomorphism of (X,T) is a closure isomorphism of (X,V).

Hence (X,V) is completely homogeneous.

5.3 REFLEXIVE RELATIONS ASSOCIATED WITH CLOSURE OPERATORS

3.5.1 NOTE

The following theory was developed by SUSAN J.

m\mImA and W.J. TI-IRON in [1] for topological spaces and

pre—orders.

As mentioned in 2.1.4, we can associate with each
topology T on X, a pre-order R: P(T) on X such that aRb



44

if and only if every open set in (X,T) containing b
contains a.

Now, let R be a pre-order on a set X. Then let

=-iy 8 X 3
and  =§y e X : yfix}

We define p(R) to be the smallest topology on X

in which ig} is closed for every x in X. Also we define
QKRJ to be the smallest topology on X in which igx is

open for every X in X. Then P(T)=R for some topology
1* on X if and only if p(R)C‘I‘ c\D(R).

It can also be proved that R1CZR2 if and only if
Q(R2)CI‘Q(R1) for any two pre-orders R1 and R2.

But for any two pre—orders R1 and R2 such that

RqCLR2, p(Rl) and p(R2) are not comparable in general.

A property P of a topological space is a topolo­
gical property if it is preserved by homeomorphisms. A
property K of a pre-ordered set is an order property if
it is preserved by order isomorphisms.
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A topological property P is called an order
induced topological proprty if there is an order property
K such that a topological space (X,T) has the property P
if and only if the pre-ordered set (X, P(T)) has the order
property K.

If P is a topological property then a topology T
on a set X is called maximal (minimal) P if no topology
finer (coarser) than T has the property P.

If K is an order property a pre—order R on a set
X is called maximal (minimal) K if no pre-order on X larger
(smaller) than R has the property K.

If P is a topological property induced by an order
property K, then a topology T on X is maximal P if and only
if T ='Q(R) and R a pre—order on X, which is minimal K.

Also if R is a pre-order on X which is maximal K
and if T = p(R), then T is minimal P. Moreover, if T is
minimal P, R = P(T), then T = p(R). But we cannot say in
general that a topology T is minimal P only if T = p(R)
and R is maximal K.

Now we extend the theory to the case of closure
SPa.C8 S.
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3-§-2 DEFINITION

Let V be a closure operator on a set X. Define
a relation R on X such that aBb if and only if b e V({a})
This relation is reflexive and called the reflexive
relation associated with the closure operator V and is
denoted by PV.

5.3.3 DEFINITIONS

Let R be a reflexive relation on a set X. We can
define the closure operators pR and \OR on X as follows:

{y : xRy for some X in A} if A is finite
uR(A) -= X otherwise
‘OR(A) = apy : xRy for some x in Ae} for every A in P(X)

305-4 THEOREM

If R is a reflexive relation on a set X, then
R; PV for some closure operator V on X if and only if
p.RéVé\)R. In particular Pp.R = P\)R=-R.

PROOF

Let pRé~V£~\7R. To prove that PV-.=R.

(my) 8 r°V<===>yeV(’1X})



y eV({X})==>ye uR( {X})--=-—> (my

=~>ye\>R({XE>=>yev(iX}>

Thus (LY) a PV<===$(x,y) s R
Hence PV -.= R

)aR

Now let PV = R. To prove that nRé~.V$\3R
SiIlC8  = R
yev({x})<-:e(x,y)@R<\=>>yepR( X)

<;> y e \7R( -£13’ )

When A is a finite subset of X,

y 6 V(A)<--==> y 1-; U*v( ial)
as-:A

'<‘===-fiy a V( {a}) for some a

<;_-_>y a nR( Ea} )for some a

ey 2 R( {a} )for some a

<.—_=>Y 8 l1R(A)

<=-—> Y EVRU.)

Thus when A is finite

WA) = !1R(A) = VR(A)

Since pR(B) = X when B is infinite

pRéV

El

El

8

A

A

A



When B is an infinite subset of X

y e \7R(B)=*,>y e\7R( {b} ) for some b e B

==‘2yeV( ab} ) for someba B

if? a V(B)

Thus \)R(B) Q V(B) and hence v eve. Hence the result.

5. 5. 5 THEOREM

Let R1 and R2 be reflexive relations on a set X.
Then the following are equivalent

(a) RlC R2
(b) \>R2s\> R1

(<1) uR2é PR1

Also R1 = R2 if and only if pR1 = pR2 if and only
if \)Rl= QR2.

PROOF

(a) =>(b)

Rl(A) = §y : xfily for some x s A}

Q iy : xR2y for some x a A}

-.= \7R2(A) for every A in p(X)



Thus \).R2é\)Rl

(b) ==:> (<1) Z

When A is a finite subset of X, pRl(A)= S>Rl(A)

and pR2(A) = Y>B2(A). When A is infinite pRl(A)=pR2(A)=X

Hence (o) follows from (b).

(C) =;"> (a) I 146" @1113 Q H31

T hen (x,y) e Rl:=§y a pRl( ix} )

1--=>y@ @1112 ( ixl)

-:—':> (Kay) 5R2

Thus Bl C_ R2

The last assertion follows easily from the equi­
valence of (a), (b) and (0).

5-3.6 DEFINITIONS

Let R be a reflexive relation on a set X. Then
(X,R) is defined as a pseudo ordered set.

Let (X,R) and (Y,S) be pseudo ordered sets. Let
f be a one—one function from X onto Y. It is called an

isomorphism if for a,b in X, aRb if and only if

41>
\O
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f(a)§5 f(b). If there is an isomorphism from a pseudo
ordered set (X,R) onto a pseudo ordered set (Y,S) they
are isomorphic.

A property K of a pseudo ordered set is called
a pseudo order property if it is preserved by isomorphisms.

5.5.7 REMARK

A pseudo ordered set can be interpreted as a
digraph. Interpret the points of X as vertices and there
is an edge from a vertex a into a different vertex b if
and only if a is related to b. We are allowing neither
loops nor multiple edges (See [17]).

5.5.8 DEFINITIONS

A property P of a closure space is called e closure
property if it is preserved by closure isomorphisms.

A closure property P is called a pseudo order
induced closure property if there exists a pseudo order
property K such that a closure space (X,V) has the property
P if and only if the pseudo ordered set (X,!”V) has the
property K.



5.3.9 DEFINITIONS

Let P be a closure property. A closure operator
V on a set X is called minimal (respectively maximal) P
if for no closure operator V’ on X such that V'¢LV
(respectively V <_V'), (X,V') has the property P.

Let K be a pseudo order property. A reflexive
relation R on a set X is called minimal (respectively
maximal) K if for no reflexive relation R‘ on X such
that R'CLR (respectively BC1R') and R‘ f R, (X,R') has
the property K.

5.3.10 THEOREM

Let P be a closure property induced by a pseudo
order property K. Then a closure operator V on a set X
is maximal P if and only if V = \?R.f0r som reflexive
relation R on X which is minimal K. Also V is minimal P

if and only if V = pR for some reflexive relation R on X
which is maximal K.

PROOF

Let Y be a.closure operator on X which is maximal
P. Let PV=R. Here (X,B) has the order property K.



we have v -= OR, for otherwise (X,\>R) will also have
the property P and V-<\7R by Theorem 3.5.4. Also B is

maximal K. for otherwise let R‘ be a reflexive relation
on X such that (X,R') has the property K and R'C;R,
R ¢ R. Then on 4012' by theorem 3.5.5. Clearly
(X, §7B') has the property P and V = \JR.<§QR'. This
contradicts the fact that V is maximal P. Hence the
result.

Now let R be minimal K and V == QR. Let V < "-3"

for some closure operator V’ on X. Then V‘ will not
have the property P. For, otherwise (X, §?B4) will
also have the property P where R’ = F3V'. But then

\7RéV4V'g\)R'

Then by Theorem 5.5.5, R'C.R, R‘ f R. Also (X,R') has
the property K. This contradicts the fact that R is
minimal K. Thus V is maximal P.

The second assertion can be proved dually in
view of Theorem 3.5.5.

5.3.11 THEOREM

when X is a finite set, then P iszaone-one map
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,9’

from the set of all closure operators on X onto the

set of all reflexive relations on X such that'VlégV2
if and only if /9V2 C PVl for every Vl,V2 closure
operators on X.

PROOF

Let R be a reflexive relation on X. Then for
the closure operator ‘OR, F“JR=R. Thus P is onto.

Also

via v2<=>v2(A) c: Vl(A) for every A in P(X)
\

<;s>v2( ix} )<Z Vl( §x} ) for every X in X
(since X is finite)

‘a PV2 C. .PVl

The fact that P is one-one also follows from this.



CHAPTER-4

LATTICE OF CLOSURE OPERATORS

We denote the set of all closure operators on
a fixed set X by L(X). It is a complete lattice with
the partial order é=defined on it as in 3.1.6. In this
chapter we study some properties of this lattice.

4.1 INFRA AED ULTRA CLOSURE OPERATORS

4.1.1 DEFINITIONS

The closure operator D on X defined as D(A)=A

for every A in P(X) is called the discrete closure
operator.

The closure operator I on X defined by

I(A) = <7.» ifA=q>
= X otherwise

is called the indiscrete closure operator.

4.1.2 REMARKS

Note that D and I are the closure operators
associated with the discrete and the indiscrete topologies
on X respectively.

54
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Moreover D is the unique closure operator
whose associated topology is discrete.

Also I and D are the smallest and the largest
elements of L(X) respectively.

4.1.3 DEFINITIONS

A closure operator on X,other than I, is called
an infra closure operator if the only closure operator
on X,strictly smaller than it,is I.

A closure operator on X, other than D, is called
an ultra closure operator if the only closure operator on
X, strictly larger than it, is D.

4. 1. 4 REMARK

Note that the infra closure operators and the
ultra closure operators are precisely the atoms and the
dual atoms respectively of the lattice L(X).

4.1.5 NOTATION

For a,b in X, a # b, let

= X\{b} if A = fa}
.Va,b(

= X otherwise
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Va b can be verifies to be a closure operator on X.9

Now we can characterize the infra closure

operators.

4.1.6 THEOREM

A closure operator on X is an infra closure

operator if and only if it is of the form Va b for9

some a,b in X, a # b.

PROOF

If V is a closure operator on X strictly smaller

than va,b, then v( -fa} ) will be strictly larger than
l‘\§b} and hence equal to X. Also V(A) = X for every A

in P(X) other than Q and {a} O Hence V = I. Thus all

closure operators of the form Va,b are infra closure
operators.

Now let V be any closure operator on X other than
I. Then there exists a non-empty subset A of X such that
V(A) ¥ I(A) = X. Now choose an element a of A and an

element b of X\\V(A). Then b is not an element of V( §a} )

since b is not an element of V(A). Also Va’b(M) = X for
every nonempty subset M of X other than ia} . Then

ré V} Thus all infra closure operators are of theVa, b
form V for some a,b in X, a # b.a,b



4.1.7 NOTE

A topology T on X which is not discrete, is
called an ultra topology if the discrete topology is
the only topology strictly larger than T. In L9]
O. FR6LICH proved that the ultra topologies on X are

precisely the topologies of the form P(X‘\ia})LJqJ_
where a e X andCLkis an ultra filter on X which does

not contain ia} .

The closure operator V associated with an

ultratopology P(X*\{a})\JCkLis given by

V(A) = AifA=<p,a&:A0rX\Ae61J\

= A k){a} otherwise

4.1.8 THEOREM

A closure operator on X is an ultra closure
operator if and only if it is the closure operator
associated with some ultra topology on X.

PROOF

Let P(X*\{al )kf\L be an ultra topology on X
and V the associated closure operator. Let V‘ be a
closure operator on X strictly larger than V. Then
there exists a subset A of X such that V'(A)ClV(A),
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but V'(A) ¢ V(A). Then V(A) = A uiat and "v'(.-'»..) = A,
which means that X\\A is open in (X,V') and not open
in (X,V). Also every open set in (X,V) is open in
(X,V'). Thus the associated topology of V’ is strictly
larger than the ultra topology and hence is discrete.
Then V’ = D by Remark 4.1.2. Hence the closure operator
associated with an ultra topology is an ultra closure
operator.

To prove that every ultra closure operator is
the closure operator associated with an ultra topology.
Let V be a closure operator on X other than D. It
suffices to prove that there exists a closure operator
associated with an ultratopology larger than V. Since
V ¢ D, there exists an element a of X such that -is} is
not open in (X,V). Now, consider

fig’-= XAQX : a e A and a ¢ V(X\A)?I

§3can be verified to be a filter on A. Here

ia} is not an element offii, for a a V(X‘\§a§ ) by the
choice of a. Then (\3‘UiX\§a75} is a family with finite
intersection property. For, otherwise there will be an

t'\4
£‘1ne:Tsuch that F(\(X‘\§a} ) = Q. Then F<:§a§ ¢ when

§:a§ er?£for F ecét, a contradiction. By Zorn‘s lemma,
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we have an ultra:filter<1)\ on X containing (\3*U§{\§_a'}§» .

ClearljoLLdoes not contain {at . Now consider the
ultratopology P(X‘\{a} )\JcLL. Let V' be the closure
operator associated with it. Then v Q v'. For, other-­
wise there exists a nonempty subset M of X such that

v*(1+-1) C11 V(M). But then there exists an element a of X

such that a s V'(M) but a i V(M). Since a ¢ V(M),
X\\M a(?§(Iqi. Then V'(M) = M, a contradiction. Hence
the result.

4.1.9 REMARKS

.In the course of the proof of Theorems 4.1.6
and 4.1.8, we also proved that every element of L(X)
other than I is larger than or equal to an atom and
every element of L(X) other than D is smaller than or
equal to a aual atom.

4.1.10 DEFINITIONS

Let x be an element of X. Then the set

C1l(x)== i AClX : x e A3‘ is an ultrafilter on X. Such
ultrafilters are called prinCipal ultrafilters. An
ultratopology P(X\{e} )LJ‘h is called a principal
ultratopology or a nonprincipal ultratopology according
asoL\ is principal or not. The closure operator associated
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with an ultratopology is called principal ultra closure
operator or nonprincipal ultra closure operator accord­
ing as the ultratopology is principal or not.

4.1.11 _'I‘HEOREM

Infra closure operators are less than or equal
to any nonprincipal ultra closure operator.

PROOF

Let Vz y be an infra closure operator and V a9

non principal ultra closure operator. Since V? y(A)mX-9

for all A in P(X) other than Q and {rt , we need show
only that

v( {X} ) <: v ( 311% ) == X\iy}I X,Y

But since all nonprincipal ultratopologies are Tl
0%

(see [55]), v( ifl) = {X} for all X in X. Hence the
result.

4.1.12 NOTATION

We denote the principal ultra closure operator
associated with the principal ultra topology _

P(X\ie} > o°U<b) by Tw­
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4.1.15 THEOREM

An infra closure operator VX y is less than or9

equal to a principal ultra closure operator Ta b if and7

only if x 94 b or y 94 a. Also Va’b and Tb,a are in­
comparable.

PROOF

At first we prove that Vaqb and Tb,a are in­
comparable. We have Va b( <{a§ ) = X\§b§ and!

Tb’a( {a} ) == {a,b]§ . Then

Tb,a( lag ). ¢ Va,b( Skal )

Thus Va’b$ Tb’a. Also Va’b§{>- Tb,a for Va’b is an atom
and T is a dual atom of the lattice L(X). Hence Vb,a a,h
and Tb are incomparable.,a

Now when A is a non empty subset of X, other

than {X} ,

C =vTa’b(A) X x’y(A)

Also when X ¢ b,

Ta’b( {X1 ) = SLz7§ C.X\€Ly§ = VX’y( ill )

\
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and when y ¢ a

Ta’; {xi >¢ %»=.a§¢X\%y2 = vm< M >

Thus $ 0Vx,y Taqb :|.fx;ébory;£a

4.2 COMFLEHBNTATION IN THE LATTICE L(X)

In this section we study the complementation in
the lattice L(X).

4'5.
Q

l'\).
|""

THEOREM

The lattice L(X) is complemented when X is finite.

PROOF

To every closure operator we can associate a
reflexive relation }>V as explained in 3.3.2. Then F is
a one-one map from L(X) onto the lattice of reflexive
relations with the partial order of set inclusion such

that vl s V2 if and only if /°v2 <1 Pvl for vl and V2
in L(X) by Theorem 3.3.11. Thus /3is a dual isomorphism
and also the lattice of reflexive relations with the
partial order of set inclusion is complemented. Hence
L(X) is complemented.
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But we have

4.2.2 THEOREM

No nonprincipal ultra closure operator has a
complement.

PROOF

On the contrary let V be a nonprincipal ultra
closure operator with a complement V’ in the lattice
L(X). Since V‘ is not indiscrete, there exists an

\

infra closure operator Vx ye; V‘ by 4.1.9. But VZ yé=V9 I
by Theorem 4.1.11. This contradicts the fact that V and
V‘ are complements in the lattice L(X) and hence the
result.

4.2.3 REMARK.

When X is infinite we can prove that there exists
a non principal ultra closure operator on X since then,
assuming axiom of choice, we can prove that there exists
a non principal ultrafilter. Thus by the previous theorem
L(X) is not complemented when X is infinite.

But some elements of L(X) do have complements as

proved below in
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4.2.4 THEOREM

The infra closure operators VX Y and the9

principal ultra closure operators Ty X are lattice7

complements of each other in L(X) for any x,y in X,
x % y.

PROOF

Here V is an atom and T is a dual atomXiy y-ix
of the lattice L(X) and they are incomparable by

O

Theorem 4.1.13. Hence the result follows.

4.2.5 THEOREM

Let V and V’ be closure operators on X which

are not discrete such that an ultra closure operator
is greater than.or equal to V if and only if it is
greater than or equal to V‘. Then V = V‘.

PROOF

Suppose V # V‘. Then without loss of generality
we assume that there exists a nonempty subset A of X

such that'V(A)Ct'V'(A). Thus there exists a e V(A) such
that a ¢ V'(A). Now let

1

(\3'==§_FCX:aeFanda¢ V(X\F)3'
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and

A3‘-= {FCX : a 2 F and ail V'(X\F)§

We can easily verify that “:4? and ‘*5.’ are filters
on X such that A aq§} and A ¢ ?},

Now consider-@>= (%U§A'§ . It is a family with
finite intersection property for otherwise there exists
F 8 '3 such that FHA = qv and then X\A E‘? as F CX\A

I

which is a contradiction since a if X\A as A e (Bi .
Then (B is contained in some ultra filterm on X vflcichv 0
does not contain §a§ for a ¢ A.and A e\J\.

Let S be the ultra closure operator on X associated
with the ultra topology P(X\{a°: ) Uh . But s(1~1)c:1=1Uio.}
for every M in P(X) and whenever a 1 V(M), X*\M sr§‘C-OKK

and hence S(M) = M. Thus S(M)C:'V(M) for every M in P(X).
That isV'$S.

But W4; s for S(A) = Ania} as A 7! <p, a E} A and
X\A em and a pf V'(A). This contradicts the hypothesis
and hence the result.

4.2.6 REMARKS

Let V be any closure operator on X which is not
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discrete. Then V is the greatest lower bound of the
set of all ultra closure operators greater than or
equal to V, by the previous theorem. Thus L(X) is
dually atomic. Eventhough L(X) is atomic when X is
finite, it is not atomic when X is infinite, for then
there will be many nonprinoipal ultra closure operators,
all of them greater than every infra closure operator.

402.7 THEOREM

If V‘ is the complement of V in the lattice
L(X), then every ultra closure operator is greater than
or equal to one of V and V‘.

PROOF

On the contrary assume that there exists an
ultra closure operator U associated with the ultra
topology P(X‘\{a} )kjqi_such that U }:V and U 2 V‘. Since
U$V, U(A) Ct V(A) for some nonempty subset A of X. But

U(A)Cl A\J{a} . Therefore a ¢'V(A). Also A eclk for
otherwise X\.A,ecL\and hence U(A) = A<lV(A), a contra­

diction. Similarly there exists a nonempty subset B of
X such that a ¢ V'(B) and B EM. Let b E A('\B .4 (p
since A ectk, B ec\k. Then a ¢ V(A(\B) and a i V'(A(\B).
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Thus v Q v and v Q v'. This contradicts the factb,a b,a
that V‘ is the lattice complement of V in L(X) and hence
the result.

4.2.8 THEOREM

In the lattice L(X) of closure operators on X,
no element has more than one complement.

PROOF

Clearly I and D have unique complements in L(X§.

Let a closure operator V on X other than I and D have

lattice complements V1 and V2 in L(X). Then both the
set of ultra closure operators greater than or equal to

V1 and the set of ultra closure operators greater than
or equal to V2 are the same as the set of all ultra
closure operators which are not greater than or equal
to V by Theorem 4.2.7. But then V = V by Theorem 4.2.5.' l 2
Hence the result.

4.2.9 REMARK

The lattice of topologies on a set X is not even
modular when \X\?>3. Also it is not self dual when \X\>'3
(See [35]).
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But the lattice of closure operators on a
finite set X is dually isomorphic to the lattice of
reflexive relations on X as shown in 4.2.1. The
latter lattice is isomorphic with the lattice of all
subsets of the set {(x,y) : X e X, y s X, X 94 yg
and hence distributive and self dual. Thus the lattice
of closure operators on a finite set X is also distri­
butive and self dual. But when X is infinite, the

lattice of closure operators is not se1f\%Fal. Since
then the number of dual atoms will be 22 - , as in the
case of the lattice of topologies, but the number of
atoms is equal to {X1 .

An important problem is to determine whether
the lattice of closure operators on an infinite set is
distributive or even modular or not. We could not yet
solve it.

4.3 SOME SUB—LATTICES OF L(X)

In this section we discuss some sublattices of
L(X).

4. 5.1 NOTE

The lattice of topologies has two important sub­
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lattices, namely, the lattice of principal topologies

and the lattice of Tl topologies generated by the set
of all principal ultratopologies and the set of all
non-principal ultratopologies respectively. A topology
T on X is principal if and only if T is the intersection
of all principal ultratopologies finer than T if and only
if arbitrary intersection of open sets of (X,T) is open

**——-­

in it if and only if kg) AU for every collect—

n

QC.

Q?’

[IQ

ion. {Au} of subsets of K where A denotes the closure
AKIX, in (X,T). Also Y) is a dual isomorphism from the
lattice of pre—orders on X onto the lattice of principal
topologies on X (See [1], [271).

In the case of L(X), we have

4.5.2 THEOREM

The set of all Tl closure operators on X form a
sublattice of L(X) generated by the set of all non—
principal ultra closure operators.

PROOF

Nonprincipal ultra closure operators are Tl
since nonprincipal ultratopologies are Tl (see L33] ).



Let V be any Tl closure operator. It is the infimum
of all ultra closure operators greater than or equal

to it.. Also since V is Tl, no principal ultra closure
operator can be greater than or equal to V. Hence V
is the infimum of all non principal ultra closure
operator greater than or equal to it. Then the result

follows by noting that the Tl closure operators on X
form a subinterval of L(X) containing all closure
operators greater than or equal to the closure operator

Co associated with the cofinite topology on X.

4-5-3 NOTE

The natural generalization of the concept of a
principal topology is that of a quasi-discrete closure
operator in the sense of [8]. A closure operator V on

X is called quasi-discrete if V( kg) Au) = E5 'V(Aa)

for every collection {Ag} of subsets of X. Also it
is proved in [8l, that §) is a dual isomorphism from
the lattice of reflexive relations onto the lattice of

_quasi-discrete closure operators. when X is finite,
every closure operator on X is quasi-discrete. But
when X is infinite, the quasi-discrete closure operators
on X do not form a sublattice of L(X) as shown below.



71

Let X = AKJB, where A and B are disjoint
subsets of X having the same cardinality. Define

Vl:P(X)~¢>P(X) such that

Vi(M) = Q if M = Q
=.~ MUA ifMnA-=q> a,I1dI*'IQB94q>

= MLJB if M(\A¥q>and M<\B=q>

.-.=- x ifMY\A94<pa.ndI-I(\B;£e

Then V1 can be verified to be quasi—discrete closure
operator on X. Also define V2 : P(X)-—§P(X) such that

V2(M) = Q) ifM.-=.-q;

= MUA i:fMF\A#<pand I~'I(\B=q>

= HUB if M<\A=<pa.nd 1~mB¢<;.»

.. X if I-':r\A;é q> and 1~mB,£q>

Then V2 can be verified to be quasi-discrete closure
operator on X.

The lattice join Vlv V2 of V1 and V2 is the closure
operator CO on X defined by

Co(A) = A if A is finite
= X otherwise
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But Co is not quasi-discrete. Hence the quasi-discrete
closure operators on X do not form a sublattice of L(X).

4° 3.4 THEOREM

The function p is a dual isomorphism from the
lattice of reflexive relations on X onto the sublattice
of L(X) containing all closure operators on X less than

or equal to the closure operator O0 associated with the
cofinite closure operator.

PROOF

If R is any reflexive relation, uR is a closure

operator on X less than or equal to CO. Also, it can
easily be seen that every closure operator on X less thar

or equal to G0 is of the form pR for some reflexive
relation R on X. By Theorem 5.3.5, P is one-one and Rlfilfi?
if and only if pR2:é uR1. Hence the result.

4° 5. 5 NOTE

In view of the fact that the largest element of
L(X) and the dual atoms of it are topological, we would
like to ask the following question. What are the topologies
on X such that all closure operators on X greater than the
closure operator associated with it are topological?
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A more general problem is to determine the intervals in
the lattice L(X) containing only topological closure
operators. Some partial solutions to the firs; problem
are given below.

4°5.6 THEOREM

Let A be a proper nonempty subset of X and

T = '€I*1'?CX: either X\AClM or I~'1CX\A?§

Then every closure operator greater than the closure
operator associated with the topology T are topological.

PROOF

Let V be the closure operator on X associated with
T. Then

V(B) = Bif BCA or ACB

= Bkin otherwise

Let V‘ be any closure operator such that V<1V'. Let N be
a nonempty proper subset of X such that

N f V'(N)
Since N ;é v'(N)c.v(A), V(N) = NUA

Then V'(N) = N\JA' for some A'C1A



Thus

Thus V‘
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v'(v'(1\:)) = V'(NUA') =V'(N)UV'(A’)

= V'(N)UA' (Since A'cv'(A‘)c V(.Zi.')=-A‘)

= V'(N)

is topological. Hence the result.

4.3.6 DEFINITION (See [I] )

A topological space (X,T) is called a TF space
if given a finite subset F of X and x in X\\F, either
there exists an open set containing x which is disjoint
with F or there exists an open set containing F which
does not contain X.

4.3.7 REMARK

In [1], it is proved that a topological space

(X,T) is TF if and only if f9(T) is a partial order of
length atmost l. It can be seen that a partially ordered
set (X,1$ ) is of length atmost l if and only if it does
not contain three distinct elements x,y and z such that
X<y<z

4.3.8 THEOREM

If every closure operator on X greater than the



75

closure operator associated with a topology T on X, is

topological, then (X,T) is TF.

PROOF

Suppose not. Let R = />(':). Then (X,Rj is a
partially ordered set containing three distinct elements
X,y and Z such that my and yRz. Let 12' = R\{(X,z)} .
Now V Q QR since R == /°(T) is the same as /°V' associated
with the closure operator V associated with T. Also

QR 1% \7R' by Theorem 3.3.5. Thus V é\7R‘. Also QR‘
is not topological since

\7R'( ill) = lmyl and
\7R'(§I.y}) = QR‘ ( ‘L1? ) U\)R'( iv? )

= {X:YE\JiYvZ§

= %_x,y,z)};§ \)R'(§x1)

Hence the result.

4.3.9 REMARK

The original problem mentioned in 4.3.5 remains
to be solved.

4.4 GROUP OF AUTOMORPHISMS OF L(X)

In this last section we would like to discuss a
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problem related to the group of automorphisms of the
lattice L(X). This is to determine the points of L(X)
which are left fixed by every automorphism of the
lattice L(X).

4.4.1 NOTE

Let CO be a function from P(X) into P(X) defined
by

cow.) = A if A is finite
= X otherwise

Then 00 is a closure operator on X. It is actually the
closure operator associated with the cofinite topology
and is called the cofinite closure operator. All infra

closure operators are smaller than Co since CO(§X}§ =ix%
for every x in X. Also if V is a closure operator larger
than every infra closure operator, V(Six§ ) =i;}for every
X in X. Then V(F) = F for every finite subset F of X.

Thus Coé=V. Hence CO is the least upper bound of all
infra closure operators.

4.2.2 THEOREM

The elements I,D and Co are left fixed by every
automorphism of L(X).
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PROOF.

The fact that I and D are left fixed by every
automorphism of L(X) follows since they are respectively
the smallest and the largest elements.

CO is left fixed by every automorphism since it
is the least upper bound of all infra closure operators
on X, infra closure operators are mapped into infra
closure operators by any automorphism of L(X) being atoms
and automorphisms preserve least upper bound of arbitrary
subsets.

The following theorem gives a sufficiency condition.

4.4.5 THEOREM

If a closure operator V on X is left fixed by every
automorphism of L(X), then (X,V) is completely homogeneous.

PROOF

Let f be any permutation of X. If V is an element

of L(X), consider the function TfV from P(X) into P(X)
defined by

Tfv(A> = r'l(v (f(A)))



Tfv can be verified to be a closure operator on X.
also the function Tf from L(X) into L(X) defined by
Tf(V) = T£V can be verified to an automorphism of
L(X).

If V is a closure operator on X, left fixed
by every automorphism of L(X), then clearly TFV s V

min

for every permutation f of X.

Then V(A) = f_l(V(f(A))) for every A subset of X

Then f(V(A))= V(f(A))

Then f is a closure isomorphism of (3,?) for every

lg
-TD

permutation f of X. Thus (X,V) is completely homogereoug,

4-. 4. 4 REMARK

According to Theorem 3.2.5 the completely homo­

geneous closure operators are precisely the closure

'\.

(.3
-"1

!_._i

O

\_/Qoperators associated with completely homogeneous t

Also, by Theorem 1.2.13, a topology is completely homo~

geneous if and only if it is either discrete, indiscret
or of the form

(~14 -J
C-1 ..L
\_.-1‘

Q?

.'.': C‘( . .__ 0



O
E
Q-I

L (X\A)< Q}TN =  Us ACX

Ifor some infinite cardinal number a§;\X\ . Then in
view of Theorem 4.4.5, every closure operator left
fixed by every automorphism of L(X} are closure
ogerators sssocisted with topologies among these.
Also by Theorem 4.4.2, three of these ere shown to
be left fixed by every automorphism of
-+- '=.~.
L‘ .--A

completely homogeneous closure operators are left fixed

}-(J
F}?

L

(_..

'7
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iem reduces to -_

{'1
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