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This thesis deals with some studies in mole-
cular mechanics using spsctroscopic data. It includes
an improvement in the paremeter technique for the evalu-
ation of exact force fields, the introduction of & new
and simple algebraic method for thes forcs field calcu-
lation and & study of asymmetric variation of bonding

forces along a bond,.

Chapter I is a general introduction in
which the various types of assumed molecular force
fields in use and different methods of calculation of

force constants are reviewed briefly.

Chapter Il deals with the problem of deter-
mination of force constants using isotopic frequencies.
Of the many attempts made, one of the latest and pro-

bably the most elegant one sesms to be the pasrameter
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method. In this attempt a graphical method, meking
use of isotopic frequencies, is followed. It has been
observed that many times it is not possible to have a
unique solution, especielly if the number of isotepic
species excesds two. In the first part of the chapter
criterie for the selection of correct sclution, out of
the many probable ones, are laid and applied to a few
molecules. In the second part of the chapter, within
the framework of parameter formalism, a new method and
the relevant theory for the determination of exact force
field from isotopic frequencies are put forward. The
merits of the new method and its superiority above the

other existing methods are discussed.

The remeining chepters, except ths last one,
deal with the study of the spatial distribution of
bonding forces between atoms in a molecule. Such a
study has not been made till now. To characterise the
non-aymmetric veriastion of binding forces at thes centre
of a bond (b), a bond asymmetry parameter M is defined
in terms of cartesian force constants. Theoretical
expressions for the asymmetry parameters are derivasd

with particular reference to ths bent XY planar XY3.

2'
pyramidal XY3 and tetrahesdral XY‘ type molecular models,

Results obtained in the case of typical molecules for

which established valence force fields exist indicatse
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that the asymmetry perameter is related to molscular
properties and the parameter has definite characteristics,
such as epproximate invariance in the case of XY, (Dah)
and XY4 (Td) molecu;es, for each moleculer modsl, On
the basis of the relationship betwsen the bond asymmetry
parameter and molecular properties, the force fields of a
number of molecules have been evaluested, thereby bringing
out the significante role this newly formulatsd para-

meter can play in the determination of force field.

The last chapter of the thesis deals with the
IR spectrum of Coumerin and en explanation for the dou~

blet nature of ths carbonyl bond is given.

The original contributions contained in the
thesis are the following: |

1. Additional criteris for the selection of
exact solution out of the many probable ones obtained
in the graphical method in parameter formslism ars put
forward. The validity of these criteria is tested.

2. A new algebraic msthod is formuleted to
employ isotopic fresquency data in the determinstion of
molecular force field. The advantages and superiority
of this method are brought out.

3. An asymmetry psremeter to characterizs

the non-symmetric variation of binding forces at ths



centre of a bond is defined.

4. Generel theoretical expression for the
bond asymmetry parameter is derived.

S. The theory thus developed is applied to
different molecular species and general conclusions
regarding its properties and the usefulness of asym-
metry parameter in molecular force field determination
are drawn,

6. IR spectrum of Coumarin is recorded and
an explanation for the doublet nature of the carbonyl

bond is given.

A part of the investigations carried out by
the author has been published in the following papers:

1, Infrared Spectrum of Coumexrin - Proceedings of
All India Symposia on Physics Education and Research-
1974, Cochin University. Part Il Research Section.
p.203=-211,

2. Asymmetries in Bonding Forces -« ibid p.213-222.
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CHAPTER I

INTRODUCTION

A concise review of the variocus types
of assumed molecular force fields in
use and different methods of calcu-
lation of force constants is made.



CHAPTER I

INTRODUCTION

1« Introduction

In the course of the last fifty yeers very
considerable progress has besn made in the investigation
and theoretical interpretation of molecular spectra, and
molecular spectroscopy has emerged as one of the most
important, if not the most important, tool for investi-
gating molecular structure, With the discovery of
Raman effect in 1928 and with the introduction of very
sophisticated ingtruments, significant amount of work
has been done in the application of infrared and Raman
spectra of molecglas for the elucidation of molecular
structure. Many approximation techniques that have
been developed made it possible to use the experimental
data for getting a clearer understanding of the nature

of the chemical bond,

A molecule may be regarded as a group of
atoms bound together by certein forces. These forces
scting between the atoms tend to keep the molecule in

equilibrium, Small oscillations of atoms about their



equilibrium positions in the molecule cause the appear-
ance of infrared and Raman spectra. The fundamental
vibrational frequencies are determined by the geomstry

of the molecule, atomic maesses and the restoring forces.
An analysis of the vibrational spectra of polyatomic
molecules provides much valuable information about the
electronic binding and the nature of the interatomic
forces. Considerable work has besn done in the deter-
mination of the molecular force field from the observed
vibrational frequencies, obtained from the infrared and
Raman spectra, However, toc the preeent, no attempt

has been reported in the literature, envisaging a study
of the spatial distribution of binding forces between atoms
in a molecule. Such &8n attempt is made and the results
obtained are reported in the present work. In the fol-
lowing pages & brief review of the theory of molecular
vibrations and different methods developed for the deter-

mination of molecular force fields is made,

2. Analxais of molecular vibrations

The mathematicel snalysis of molecular vibrea-
tions [1-3]) requires, as the first step, the formulation
of expressions for kinetic and potential energies of the
molecule in any convenient set of co-ordinates. In the

course of a vibration, the change on the equilibrium



configuration of a molecule may be represented by a set
of cartesian displacement co-ordinates a (i =1, 2,
e o« o op N) where n = 3N for an N-atomic molecule.
For small displacements, ths potential enexrgy V of
the molecule, which depends only on the internal con-
fiéuration, is a homogeneous quadratic function of the
displacements of the atoms about their equilibrium
positions, This constitutes the well known harmonic
approximation in the thsory of small vibrations. The

potential energy is accordingly written in the form

1
v -——'Zki' q;: q. eee (141)
2 J i )

kij are the force constants. The kinetic energy T
of the molecule may be written as a quadratic function

of the time derivatives of thess displacement co-ordinates.

9
T .""'Z'—Z Cij qi q.j ee e (102)

the coefficients Cij are constants related to atomic
masses. These two sets of coefficients kij and Cij
control the frequencies and modes of the normal vibra-
tions. The numericeal values depend on the choics of
co-ordinates. The cross terms in the kinetic and
potential energy expressions can be eliminated by a
linear transformation of the displacement co-ordinates
q to a set of normal co-ordinates {. The expressions

for V @and T then teke the form
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V = w—— Z hk ka eee (1.
2 k
1 . 2
T = S Z Qk e s e (10
2 k
Substitution of these expressions in the Lagrange
equations of motion results in the set of equations:
Qk = - 1k Qk se o (1.
It can hence be shown that the A 's are
given by the roots of ths datermin%&al equation
k” - cnl kyp = c127\ kyg = c,al ceees kg = C
ko = Cogt  kgp = €% kpz = Cpat eeeee kpp - C
- A - - -
kn1 cn1 Kn2 an7t Kna cnél « - ¢ kpp ¢

This secular equation is a polynomiel of degree

(i.eey 3N) in A

normal eo-ordinate

with n real roots, A Each

k.

Qk corresponds to an independent

3)

4)

5)

(1.6)

mode of vibration of the molecule and has &8 characteri-

stic parameter 7tk.

related to the vibretional frequency Q"

The frequency parameter 2’k is



2, k - 4 Fal Zka dee (107)

A normal co-ordinate Q) can represent a genuine
vibration of the molecule, only if its characteristic

frequency parameter A K > o .

On solving the secular equation, we get,
in general, 3N-6 non-zero real roots, (3N-5 for linear
moleculss), equal in number to the vibretional degrees
of freedom. The zero roots of the secular equation
represent the translational and rotetional modes of the

molecule.

The internal configuration of the atoms in
the molecule can be completely specified by 3N-6
(3N~5 for a linear molecule) internal displacement co=-
ordinates, which are changes in bond lengths, interbond
angles and other geometrical parameters from their
equilibrium values., Expressing thes potential and
kinetic energies of the molecule in terms of these
internal co-ordinates, we get a seculer equation of
degree 3N=-6 (3N-S5 for a linear molecule) which does not
possess any zero-root. The characteristic roots and
vectors of the secular determinant determine the funda-
mental vibrational frequencies and the forms of the

normal modes of vibration.



In practice, using experimentally observed
fundemental vibrational frequencies, the secular equation
is solved for the force constants and normal modes. As
the number of unknown force constants far excesds the
number of normal frequencies, & unique solution is not

possible using the vibrational frequsncies alons.

Usually the interpretation of the molecular
potential function is based on some simplified model,
employing an approximate force field so &s to reduce
the number of unknown force constants. The ideas

underlying some of these force fields axre given bslow.

3. Qgeroximate force fields

In the central force field (CFF) approxi-
metion, the forces in the molecule are acting along
the lines joining the atoms, irrespective of whether
they are connected by a valence bond or not [ 4, 5].
The number of force constants in this model is smaller
than that of the vibrational frequencies, and the evalu-
ation of force constants is made triviaslly easy. But
this assumption holds only if the atoms arxre held by
ionic interactions., Moreover the force field does not
account for the bending vibrations of a linear moleculs

and the out-of-plane vibrations of & planar one. Now=~



e-days the precticel spplication of this forcs field
is very little,

The valence force field (VFF) postulated
by Bjerrum [4] is superior to the central force field
and is chemically more meaningful, Accarding to this
model, the restoring forces oppose the changes in valence
co-ordinates, like bond lengths and interbond anglss.
Here also the number of force constants is les:s than
that of the vibrational frequencies. Howsver, inter-
actions between stretching and bending of different bonds
in the moleculs are not considered. The valuence force
essumption is of fundamental importance &nd is close to
the correct one, eventhough the correct reproduction of

vibrational frequencies is not always poasible.

To give mors sccurate vibrational frequencies,
several model force fielde have besn proposed and widely
used as modifications of VFF and CFF, the two major
earlier attempts. A combination of central and valencs
typ; force fields has been postulated by Mecke [ 6] for
XYZ molecules, Taking into account Pauling's ides
that the stability of & molecule is due to the overlap
of the orbitels of the bonded &atoms, Wilson and Howard
formulated & modified velence force field (MVFF) for

XY, typs molecules L7113,



Based on the idea of directed valencs, Linnet
and Heath introduced & new forcs field [ 8~10] called
the orbital valencs force field (OVFF). In this model,
the electron density in eech bond is represented by loca-
lized molecular orbitals. This assumption takes into
consideration the effect of change in hybridization during
a vibration and is asssumed to be due to the sngular defor-
mation of the maolecule. The bond stretching force constant
is taken as independent of the change in hybridization.
Hence in this theory no interactions between bond-
stretching end bond-~bending co-ordinates are included.

But the properties of bonds in a molecule are well related
to the inter-bond engles [ 11, 12 ]. The hybrid bond
force field (HBFF), @ modification of OVFF based on the
correlation of bond strength with bond angle, is success-

fully epplied to ammonis molecule [ 13 3].

Another widely used model is the Ursy~Bradley
force field (UBFF) [ 14 ] which takes into account the
valence forces between bonded atoms and alsc the central
forces between non-bonded atoms, This model satis-
factorily reproduces the vibretional frequencies. Forces
acting betwsen the non-baiid atoms are of the Vander
Waal's type and the vaelues calculated using the UBFF
agree well with the forces computed from the Lennard =~

Jones potential, Shimenouchi [15-16] hes demonstrated
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the general validity of the UBFF, The number of force
constants is not too many. The transferability of
Urey-Bradley force constants has been pointed out by
several workers. But the UBFF doss not account properly
for the interaction between different internal valence
co-~ordinates. In several cases, it is found that UBFF

fails toc reproduce some of the observed data.

Severel modifications have been suggested for
the UBFF introducing different concepts like bond flexi-
bility, trans interaction and trens and gauche inter-
ection [17, 18, 19 ] . One such modification, accounting
for the presencs of lone pair electrons in the molecule

haes been shown to yield a useful force field model [20] .

A more completes picture of the intremolecular
force field is presented by the general velence force
field (GVFF), whieh inecludes, in addition to the valence
force conctants, all possible interactions betwesn stret-
ching and streteching, bending and bending and stretching
and bending. The GVFF furnishes the most general and
physically meaningful model and many & normal co-ordinate
analysis has been carried out using this picture. In
the present investigation the general valence force field
is employed. The force constents are evaluated using

Wilson's FG matrix method [ 21, 22 ]. The principal
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merit of this method is that by sxploiting moleculer
symmetry, the vibretional seculer equation can be

factored into lower orders.

4, The FG matrix msthod

- D G G WP GRS e D Ee G GD G TS G OF G W = G

In terms of the internal valence co-ordinates

[23] the potentiel energy of a molecule is written as

2V = > fij x Ty ese (1.8)

where the summation extends over all the internal co-

ordinates. In matrix form the above equation becomes

2V = ; f r cs e (109)

where ¢ is the force constent matrix, and r represents

the set of internal co-ordinates.

Applying group theoretical methods, the number
of genuine normel vibrations belonging to each symmetry
species is found. The internal co-ordinates r are
transformed into an orthonormel set of symmetry coe
ordinates, which are linear combinations of the internal
co-ordinates and are constructed in such a way that they
transform according to the characters of the vibration
type of the point group to which they belong. The

symmetry co-ordinates asre defined by the transformation

S - Ur e e e (1010)
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where U 1is an orthogonal matrix. In symmetry co-

ordinates the expression for the potential energy is

2V = S F S eee (1.11)

where F 1is the matrix of symmetry force constants.

F is releted to f by the equation

~

F = U f U eee (142)

The corresponding expression for the kinetic energy of

the molecule is

2T = % ¢7':
= g 5‘1 é LX) (1013)
where G = U g U ese (1.14)

-1

The kinetic energy matrix C is determined by the

geometry of the molecule. The method for the formulation
of the inverse kinetic energy metrix G is reported in
literature [ 23 - 27]. The Gij elements for a none

degenerate species ere of thes form

t t
G b S LN 28 4 L J
and for a degenerate species
1 % t
Gij = -—--d Z/up 9, (s, Sja
P
+s8 st . .) eee (1.16)
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where p rsfers to & set of equivalent atoms, t a
typical atom, ,% the reciprocal mass of the atom,

gp the number of equivalent atome in the pth set. and
d is the de?ree of degeneracy. The S vectors in the

above expressions are given by

t

Si = Zk Uik 'kt oee ‘1017)
Here 1 —represents the ith symmstry co-ordinate and
Uik the coefficient of the kth internal co-ordinate
in it. Expressions for the LI vectors are given by

Wilson, Decius and Gross [L3] and by Meister and

Cleveland C24] .

In terms of the symmetry force constant metrix
F and inverse kinetic energy matrix &, <the secular

equation may be written as

lF - G-1l‘ = 0 »o‘oo ‘1.18)

or

‘GF - EX' = 0 e e (1019)

whers E 1is a unit matrix. A 4is related to the

observed vibrational frequency W

A = 4 KZ cz ® es e (’OZD)

©® is in cm~' and ¢ the velocity of light,
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For an F matrix of order n the difficulty
ies that there are n(n +1)/2 force constants, wheress
there are only n values of A . Hence a unique
calculation of F matrix using only the &G matrix and

a set of observed A values is not possible.

The normal co-ordinate trsnsformation matrix
L plays a significant role, in the analysis of the
molecular force field. The normal co-ordinates ( are
related to the symmetry coeordinates S through the

transformation matrix L
S = LQ oo (‘.21)

In normal co-ordinates, the potential end kinetic energies

are expressed as

2V = Q A Q ees (1.22)

2T = Q & ees (1.23)
Introducing the matrix L, it can be shown that [31]

t F L = A o e (102‘)

~

LL = G oo s (1025)
The resulting cherecteristic equation is of the form
G F L = L A e e (1.26)

The roots Ay of the equation represent the normal

frequencies and the eigenvectors Li’ the normal modes
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of vibration, The force constant matrix F dis given
by
~
-1 -1
F = L AN L eee (1.27)

5. Parameter representation

Taylor [ 28] has shown that the eigenvector

matrix L can be written in parametric form as

L = L. X oo e (1028)

where Ly is an spproximate normal co-ordinate trans-
formation matrix and X ang arbitrary orthogonal metrix
containing -%— n (n-1) free parameters. The matrix

Ly is selected so as to satisfy the condition

L. T:. = Go see (1029)

The L, matrix may be identified, for example, with
a triasngular matrix T, in the model based on the

shear method L[ 297 . If the frequencies are ordered in
the sequence A, > A, > ..... An»s the lower triangular
matrix corresponds to the mode of vibration of highest
frequency being uncoupled, while the upper triangular

matrix represents the uncoupling of the symmetry mode of

lowest frequency [ 30 7.

The orthogonel matrix X in terms of -%— n{n-1)
fres parameters can be formulated in different ways.
The nature and charecteristice of the matrix X does not

impose &ny restriction upon the force constant matrix F
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L28, 31, 321. A widely used representation of X {s

in terms of angle paremeters o ij'

n-1 n
fa1  jmiet

Aij are elementary rotationel matrices in the

ijeplane, The iith' and jjth elements are cos e(ij
and the ijth element i8 -gin °<ij and jith element
is sin < _ ., All other diagonal elements are unity and

iJ
off-diagonal elements zero.

With the parametric form of L watrix, ths

gorresponding parametrized F matrix can be writtesn as

=1 v -
F - LO X A X LO eee (1.31)

—%— n (n+1) elements of this symmetric matrix F of order

n are controlled by the n eigenvalues A; and the

-%-n (n=1) free parameters of the orthogonal matrix K.

All possible solutions of the force constant matrix F

which reproduce the frequencies lie on a -%— n (n-1)
dimentsional hyper surface defined by the systematic
varistion of —%-n (n=1) paremeters. With the help of

some additional date or employing some constraint, the point
in the parameter spaces corresponding to the proper force

field can be fixed. With the given parameters, numerical
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computation of the force constant matrix is mades, In
recent years the pareameter technique has become very

popular in the study of molecular force fields.

6. Use of additioggl data

Additional experimental data such as isotopic
frequencies, Coriolis coupling constants, mean ampli-
tudes of vibration, and centrifugal distortion constants
are often made use of, in addition to vibrational fre-

quencies, to fix the exact force field,

Under the Born-Uppenheimer aspproximation, the
molecular force field is unaltered by isotopic substi=-
tution, as the force field is & function of the electronic
structure of the molecules, But, due to the change
in atowmic masses, the inverse kinetic energy matrix G
and hence the seculer equation are asltered. An extra
set of equations connecting the same force constants

to the observed isotopic frequenciss is obtained.

The Coriolis coupling coefficients § ’
represent the mutual interaction of pairs of normal
vibratione due to Coriolis forces which arise when a
system of particles &are both vibreting and rotating
simultaneocusly. Two vibretional states can couple
through Coriolis interaction only if the product of the

corresponding species contains & rotational species [ 33].,



Because of the Corioclis interection, the bend positions
are shifted or the degeneracies ars removed. According
to the theory outlined by Meal and Polo [34] , the

o .
Coriolis constants § are given by the relation

T* = °' = ! eee (1.32)

The elements of the matrix C% can be calculated from
the geometry of the molecule and atomic masses [ 35-37J]

using the relstion
cij = Z. /4 (Si. x Sja) L eee(1.33)

Mean amplitudes of vibration, obtained from
electron diffraction data, are also of help in deter-
mining the force constants. The atoms constituting the
molecule are vibrating at all temperatures and each

interatomic distance for bonded or nonbonded atom

18

pairs is associeted with a mean square amplitude quantily

{(R = Re )?}Nhero R, represents the equilibrium
interatomic distance and (R - Re) the instantaneous
deviation from the equilibrium value. Cyvin et. al.
[35, 36] have mede & detailed theoretical analysis and
the mean square amplitudes are evaluated in terms of the
mean square emplitude matrix ¥ . 2. is related to the

vibrational frequencies through the equsation

i
Z = L a t eee (1034)
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where A is a disgonal matrix with elements

h he &
<¢ = coth
8x“C Mi k T

A i ees (1.35)

Here h is Planck's constant, T the absolute temper=

ature and k Boltzmann's constant.

Using the bond polarizability theory [38, 39]
which relates the overall molecular properties such as
polarizability, dipole moment etc. to bond properties,

a physically meaningful set of force constants can be
evaluated, The method is known &s the relative Raman

intensities approach [ 40, 41].

Centrifugel distortion constants obtained from
microwave spectra of molecules are yet another additional
input that is utilised. Kivelson and wilson [42, 43],
and later, Cyvin et.gl. [44, 45] have formulated thsore-
tical expressions for these constants s functions of
forcs constants. Attempts have been made in the case

of XY, type molecules to obtain a set of force constants

2
simultaneously making use of the vibrstiocnal frequencies

and centrifugel distortion constants [46, 47] .

Te Approximation methods

- s db G 4B G0 Sn G G o 4 4D G 4 b a0 db Oh G e A

Many attempts have been made, in recent years,

to develop & method, based on some mathematicel constraint,
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to determine an approximate force field from the vibrationsl
frequencies alone. An excellent survey of approximation
methods for the calculation of force constants is made

by Alix _B_t_. E_!._o E48] .

Iterative methods. A number of such methods are
iterative. In this approech one starts with en epproxi-
mate inverse kinetic energy matrix G, and force constent
matrix Fq. The trensformation from F, to the true

F matrix which reproduces the experimentel frequencies,
is achieved by an iterstive procedure, In the method
proposed by Fadini and Sawadny [ 49-51] the choice of ths

initiel set of forcs constants corresponds to & complets

neglect of the kinematic coupling of the vibrational
modes. The true G matrix without the off-diagonal

elements is teken as the initial G, matrix and the

corresponding F_ matrix is given by

L}
Fy, = A exp 6,1 oo (1.36)

The final tgue force constaﬁt matrix F 1is determined

by @ stepwise introduction of thes off-diagonal elements
of the G matrix. At each step & correction A F to

the force constant matrix is calculated by solving a
system of equations based on the Cayley - Hamiltcn
theorem. According to this theorem, which states that

a square matrix satisfies its own charescteristic equation,
the secular equation for the n x n matrix [ G FJ is

written as
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n i
Z ci [GFJ = 0 o s e (1.37)

i=1q

The experimental vibrationel frequencies determine the
coefficients Cye For the kth step of iteretion
the equation is of the form

ég A . 0
o G { LI Fk)} -

[ ) (1038)

1

Neglecting the higher powers of the correction term
A Fk s @ linear equation is obtained for the solution

of AFko

Starting with the seme initial set of matrices,
Becher and Mattes [52] also suggested & stepwise coupling
method, in which the final F matrix is calculated by
simple matrix multiplication., The iteration is made
possible by the successive application of the relation

(1.27).
~/
Fo= mtoA Lt
The approximate F metrix at each step is used to
formulate the eigenvector matrix L of the next step.
For the kth step Lk is calculeted from the secular

equation

k-1 bk k k oo (1.39)
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The same eigenvector method has been formuleted inde-

pendently by Johansen [53] .

Taking into asccount the different symmetry
representations and ths possible interdependence of
force constants Chacon and Matzke [54] formulated s .
modified approach for the transformation to the final

set,

In these stepwiss coupling methods, the fineal
result depends on the choice of the initisl set of
Fe and G, matrices and on the method of introducing
the off-diagonal elements of G [ 55-581, These methods
impose no restrictions or conditions on the choice of
the co-ordinate system. As such one can use a co-ordi-
nate system in which the complete & matrix is disgonal.,
In this case the stepwiss transition from G, to G
is of little meening [591]. It is also pointed ocut
qgainst the Becher and Mattes method that the Gk and
Fk matrices at each step, aufomatically reproduce the
vibrational frequencies. Fedini's method yields reas-
onable diagonal force constants, but it shows @ tendency

to minimize the values of the off-diagonel elements [ 60] .

Based on the same principle of stepwise coupling
and transferability of the eigenvectors from an approximatse

solution to the exact solution of the secular esquation,
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Alix et.al. presented the matrix polynomial expansion
method [ 56-58] . In this approech a commutation relation

of the form

[6 Feq *+ G aF J=0 ee. (1.40)

th th

exigts between the soclutions of the k and k-1
steps. With the use of the Cayley ~ Hamilton theorenm,
this commutation relation yields a unique solution of ths
correction terms A Fk’ The formulation of the eigen-
vector matrix L at each step, in accordance with the
agssignment of frequencies,is not necessery [61] . From
the practical point of view the method is identical to
the Logarithmic steps Method [ 62] . In problems of
large kinematic coupling, application of this polynomial

method fails [ 63] .

Non-iterative methods. In some of the important non-
iterative methods, constreints sre imposed on the values
of the slements of the force constant matrix F, In the
F-trace approach [64-66] the eigenvector matrix L is

considered in the parametric form
L = vr /2y cee (1.41)

where T denotes the matrix of eigenvalass of G. The
approximation is based on the assumption thet the same
orthogonal matrix diagonalises the matrices F and G.

The proper orthogonel matrix corresponds to the extremal
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values of the sum of the diagonal force constants. Using
the Lagrangian multipliers, the stationary value of tr F

is reduced to the form

= P - ¥ not A cee (1.42)
The value of tr F is a minimum on choosing the eigen-
values in the increasing sequence and T; in the decreasing
sequence., For the reverse ordering tr F is found to

be a maximume.

By a graphical method Strey [ 67] has investi-
gated the extremal properties of force constants in
n = 2 cases, varying the angle parameter ¢ systemati-
cally over the range 0 < < 27K, According to
Strey, the constraint that the force constant fr is a
maximum with respect to the parameter, gives good forcse
fields for hydrides. For many other types of molecules
the condition f, minimum represents a satisfactory

force field,

External values of off-diagonal force constants
have also been exploited for approximating the molecular
force field [68-727. The necessary condition assumed
is thet the Jacobian J, whose elements are given by Jij
- L?i s i8 singular, Successful formulation of a com-
plete set of F matrix elements is obtained only for the

second and third order cases., However, the method does
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not always yield a physically meaningful set of force

constants.

In another approach [ 73-77 ] based on the extre-
mal values of tr L, the constraint employed ims that the
mixing of different symmetry co-ordinates in any normel
co-ordinate is smell, According to this approximation,
the proper L matrix is the one with maximum trace and
smaller off-diagonal elements, The corresponding ortho-
gonal matrix X - is shown to- be V. For problems of
small maess-coupling the method is found to be successful,
According to Pulay and Torok [ 74-75], the characteristic
matrix L must be such that ths sum of the distences
between the co-~ordinates (i &and Si 4is minimum. On
imposing this condition,

n
bt {Qi - Si.lmin = n + tr G- 2 [Ctr L max.]
i=1

oo (1.43).

the proper L matrix is then shown to be Gyz. The

result in n = 2 cases is equivalent to the assumption

that L12 = L21’

The F.trasce eand L-trasce spproaches do not possess the

but this is not true in &ll cases [7813.

property of invariance under scaling [66, 74, 79, 803.

Miller et.sl. [ 81-85] developed the 'L matrix

approximstion method', imposing the condition Lij = 0i< j.
The method is equivalent to Torkington's [ 86, 87 ]
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approximeation

If the vibrations are characteristic, the approach yields
ressonable force constants [81-85]. The method has been
successfully applied to n = 3 cases [B85] and widely
investigated in second order problems [ 80-85, 88-91].
This approximetion is found to be physically reascnable
for molecules exhibiting small mass coupling, where &

high stretching end & low bending vibration occur in the
same species. For strongly coupled vibrations several

empirical improvements have been reported [92, 931].

In the extended L matrix approximation method
(for n = 2 cases) Miller et.al. [94] assumed the general
mixing of the two normsel modes. From an empiricel study
of the L matrix elements, determined from the exact force
field data, the ratio L12 / L21 is found to have &
special dependence on the kinematic coupling, bearing
a constant value for the molecules of a particular point
groupe. Empirical velues have been reported for the typss

C ( XYZ) D (XY;) and T, (XY ). In the para-

2v 3h
metric form of L Metrix, the approximate mass dependence

of the orthogonel matrix X 4is reported [95] .

According to the approximation method formue

lated by Reddington and Aljibury [96] , the constraints
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are made directly on the restoring forces acting on a
molecule in any displaced pcsition, and noct on the force
constant matrix. The basic assumptions of this method
rest on consgiderations of minimum potential energy.

The psrametrized restoring force Hk is assumed to be
parallel to the corresponding internal co-ordinte, It is
also assumed that the restozxing force exerted by the
moleculs for each internal co-ordinate is as large as
possible. The condition to maximise the restoring forces
for all displacements simultaneously is achieved through
the virial theorem. The balancing condition for minimum

potential energy is expressed as a relation.

n
- _9E - ¢ _2F oM = 0 ... (1.45)
2% 1 oM aéij
i, J = 1., .. .0n i<}
connecting the molecular energy E to -%—-n {n=1t)
arbitrary parameters é@f’ 9 E is calculeted through

ank
the viriesl theorem using the geometricel paremeters of
the molecule. The method is found to be suitable for
obtaining relieble sets of force constants for speciss

with no redundent symmetry co-ordinats,

Wilson has shown that a highesr order secular
equation cean be approximately reduced to one of lower
order L3] . The truncated lower order secular equation

is solved with the help of additional data such as



28

Corioclis constants or isoctopic frequency shifts. Using

the formelism of the ‘'separation of high and low frequen-
cies', the characteristic high or low group frequency is

separated, reducing the order of the equation by one.

The method is particularly useful in n = 3 ceses and hes

been successfully applied to different types of molecule

[97, 98] .
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CHAPTER II

DETERMINATION OF FORCE FIELD
FROM ISOTOPIC FREQUENCIES

The graphical method of perametric
approach for the determination of
exact force field is applied to some
XY4 type molecules and ions. In those
cases whers a unique force field can-
not be determined, methods for arriving
at an acceptable force field are ocut-
lined. Also a limit of uncertainty in
the values of force constants obtained
using graphicel method is defined. In
the latter part of this chapter a stri-
kingly simple but accurete algebraic
method is put forward, The theory
developed is applied to several mole-
cules and the results obtained are come
pared with the best known values of
force constants so es to bring out

the superiority of this slgebreic
method.

35
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CHAPTER I1

DETERMINATION OF FORCE FIELD FROM

ISOTOPIC FREQUENCIES

1« Introduction

From the preceding chapter it is clear that,
in normal co-ordinate analysis, a unique solution of
force constants is not possible, since the number of
unknown force constants far exceeds that of vibrational
frequencies. Under the Born-Oppenheimer approximetion,
the molecular force field is unaltered by isotopic sub-
stitution, but because of changes in atomic masses, the
vibrational frequencies ere different. Also the inverse
kinetic energy matrix 'G is altered. This yields addit-
ionel equations for the force constants in terms of the
observed isotopic vibrational frequencies. With the
help of these equations the forcs constants can be eva-
lueted, Several authors have investigeted the problem
of using isotopic frequencies as additional date in

evaluating force constants [1-67] .

26 Graghical method

Recently the problem of determination of force



constants using isotopic frequencies in the parameter
formalism has been attempted by Aneanthakrishnen et.al.
[Ls1]. They have formuleted & grephical method for
evaluating the force constents in n = 2 cases. Meking
use of the genersl expression for the parametrized F
matrix (1.31), these asuthors have expressed each force

congtant F, as a function of a parameter ¢

ij
- —t 2
Fij' 7 +c2 {.kij c + lij c + mij } eee (2.1)

where kij' lij and mg5 ere functions of atomic
massea and molecular parameters. For different iso-
topic species, distinct solutions of the parameter are
obtained. for different values of the psrameter ¢

of a given isotopic species the Fij (i, §j =1, 2)
equations are solved for the parameter c¢* of another
isotopic species. The parameter (c - c*) curves for
each pair of isotopic species &re plotted and inter-
sections sought, If isotopic invariance is to hold,
there should exist & unique point of intersection of all
the three parameter curves corresponding to the three
Fij elements and the force constants corresponding to
this point must be the same for all the isotopic substi-
tuents, Because of the quadratic nature of these equations

there exists two intersections of which one is found to be

in the neighbourhocod of the origin (c,) and the other



far away from it (cv). The force constants correspon-
ding to the remote intersection cy yield &an inverse aessign-
ment of frequencies and hence may be called virtual force
constants while the set obtained from the intersection nearx
the origin corresponds to the actuel force field. However,
in many cases unique intersections of parameter curves do
not exist because of the inaccuracies in experimental data,
When the curves intersect forming small islands, the force
constants have besn evaluated as the mean of the values

corresponding to the extreme points of the island.,

By considering three isoctopic spscies rather
than two, an improvement is made over the original approach
and is applied to some pyramidel XY3 typs molecules [61.
Parameter curves are plotted in sepsrate two dimensional
spaces, taking a pair at a time. With the increase in ths
number of the isotopic species, a large number of inter-
sections have been obteined, To select the corrsct
point from the multiplicity of intersections near ths origin,
@ principle called the methad of equal co-ordinates has
been applied. This principle may be steted es followss
1f A, B, c, ere isotopic species of the same
molecule, the intersections of parameter curves for
the pairs A-B eand B - C should be such that
B isg represented by equal co-ordinates in the peara-

meter spaces €, - Cp and €g = S, The acceptable



intersections are those for which the common isoctope is
represented by equal co-ordinates in the two paramseter

spaces.

Computational procedure. In the present investigation,

the above technique has been applied to the following

molecules and iones X, 0,, C F4y Sc H,, 5¢ F,,

B F4

vibrational frequencies are taken from references [3, 7-127.

and N H,%,  all of which have Ty symmetry. The

The symmetry co-ordinates and G matrix elements used in
these calculations are the same as those reported by
Cyvin [12] . The symmetry co-ordinates of the T, mole-

cular model are listed ss follows:

Sta (fz) = —%— (oary -ar, *+ ar3 - ar,)

5,0 (f5) -%—: (A°€24 - A« ,3)

S.p (f5) -—%—( axr, *Aar, = AT; = ArT,)
s2b (fz) --J—'Z- r (A, - Ay ,)

S, (f5) ---%--(--A.:r1 * ar, *+ ATy - Ax,)
Spe (120 =g ® (asy, - axyy)

oo (2.2)

where A r and Ao« are internal co-orainates which are

changes in bond lengths and bond angles. (see Fig.2.1)



rig.2.1. Tetrahedral XY, model: Molecular geomeiry
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The G matrix elements and the symmetric force constants

F, corresponding to the fz species vibrations are:s

4
811 =3 AN
8
642 =3 %
G 2 (=2 o+ om) (2.3)
22 3 x Y e b o L]
Fi1 = = T
- - - t
Fyo v (f fle )
F22 = fQ - f*K 3'00 (2.4)
Only one parameter space is considered for
Xe O0,, CF, and B F4- . With three isotopic species

three separate two dimensional parameter spaces are
scanned for 6Si Hq and 5i F‘. In the case of smmoni-
um ion, as the number of isotopic species concidered is
four, the parameter curves have been plotted in six
separats two dimensional spaces. For all isotopic
pairs a wide range in parameter space ( -10% c < 10)
has been scanned for intersections of parameter curves,
The value of the parameter ¢ is systematically varied,
from =10 to -1 &at steps of 0.5, from -1 to +1 &t

steps of 0.01 and from +1 to +10 at steps of 0.5,
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Figures 2.1 to 2.27 show the parameter curves obteined
for these molecules and ions and their isotopic substi-
tuents. These graphe are drawn in such & manner that for
@ pair of isotopic species A &and B, the paremeter ¢
for A is plotted along the x-axis and that for B along
the y-axis, Co-ordinates corresponding to the inter-
sections of ¢ - c*®* curves ere sought. The region neer
the origin has been plotted separately using & magnified
scale to enable clear and exact identification of the
intersections., Some of these graphs are shown slong
with the main graphs. The details regarding the inter-
sections of the parameter curves sre presented in tables
241 to 2.4. For each intersection, the parameter values
are given and the corresponding intersecting curves ars

identified.

When the number of isotopic species exceeds two
there is a multiplicity of intersections. But in a
given parameter space, these intersections lie in & small
region, As the parameter for the true force field
should lie inside this range, the size of this range
mey be taken as &8 measurs of the uncertainty in fixing
the true co-ordinate. With the help of more than two
parameter spaces, the extent of uncertainty can be reduced.
The minimum value of the uncertainty obtained from an

analysis of the graphs curresponds to the smallest rangs
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common to all the parameter spaces. This is slso in
agreement with the method of equal co-ordinates. The
mean of the values for the extreme points of the common
range along with the extent of the uncertainties is taken
as the true parameter. All points of intersection,
whether unique or not, ocutside the corresponding common
range are taken &s spurious ones and ars automatically

eliminated.

Acceptable parameter values for the various
molecular species, selected according to the methods
explained above, together with the force constants are
entered in Table 2.5. The two sets of force constants
corresponding to the two solutions are capable of repro-
ducing the vibretional frequencies of the corresponding
igotopic species, but only that set obtained from the
intersection neer the origin has any physiceal signifi-
cance. With the predominance of bending mode the second
set turns out to be unphysical, The final get of actual
force constants is entered in Table 2.6, and compared

with values taken from literature.

3. ﬁ&gebraic Eethod.

Eventhough the grephicel method, discussed
ebove, yields good results, thes approach is not easy in

the sense that it involves too much numerical computation.
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Moreover the accuracy of the final selected velue of the
parameter ¢ varies with the scale used for the graph.

As the curves are of irregular shape, the parameter space
is to be scanned in regular small steps of the parameter
values., A simple algebraic method is suggested below to
employ isotopic frequency datea in the determination of the

molecular force field,

For a vibrational species of the nth order,

N = n (n<1) /2 parameters Cys Cpr o o « o c deter-

mine the force field. Let <, . . . . denote K iso-
topic species of & molecule (K =2 = N). In wWilson's

F G matrix formalism, there is the trace relation

tr G“F(c,:e,....,r.:°<

R AT vee(2.5)

where 6™ is the inverse kinetic energy matrix,

F c:i o o o o c: ) the F matrix parameterised in terms

o< <

of the N parameters c1 » o e e o cN and

oC

2
A = 4 K c? (w:-c) for the isotopic species labelled

oK Let us introduce the differences

AG<P - < - gP ces (2.6)
and
A /\:(P - /\? - A"_g e s (207)

Consequently, from the K equations (2.5), the following

set of difference equations is obtained,
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tr AP F(ceT, ... ef) = T AATP L. (2.8)
These constitute a gsufficient set of simultaneous equa-

tiong for the determination of the paremeters c;i o« o .c;E

In the case n = 2, the force constants are
expressed in terme of a parameter c, defined in the range

-1 =c <1, as follows:

Factorizing Wilson's G matrix into a tri-

angular matrix T &and its transpose, G = T T

The normal co-ordinate traensformation matrix L is
given by L = T A where A is &an orthogonal matrix,

Teking A in the form

cos © sin ©

-sin 9 cos 9 000(209)

a parameter c¢ = tan @ is introduced in the L matrix.

From (1.31) F = ia!

A 2
F - (/\2 ) E12 1 ) ¢
1 2
611 Il (1 + ¢%)
26,, ( M= Nz)e
+*
6,, 16 72 (1 +c?)
11
2
. /\1 161 + 512 /\2
2
611 16l ( 1 +¢°)

L 4 (2010)
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2 | &
F12 =
(1 +¢2) 16!
o e 0 (2.11)
G“ ( Ay e ’\2)
FZZ = 2 — s e (2012)
1IGI (1 + c“)

In the second order cese with two isotopic species the

trace relation expressed by (2.8) is of the form

A G F

11 11 F + AG F

+ 2 AG 12 22 Fa2

12

= A/\1 +* A Az LX) (2013)

When the number of isotopic spescies considered exceeds
two, the deta corresponding to all the species can be

incorporated in the same difference equation. with K
isotopic species (<yBpyee « « o K) the equation is

of the form

K
k
ok <k <
o[asyy Fyp v 2465 Fyeagy, Fzz]

kep

K
=p

Because of the quadratic nature of the expression on the
left side of (2.13) or (2.14), there exist two solutions

for the parameter c. The solution nearer to zero is



the acceptasble one, since the other sclution, which
often lies outside the natural range of definition of
c, invariebly leads to unphysical force constants and

an inverse assignment.

The slgebresic method is applied to sll the
molecules, studied above graphically. In Table 2.7
the solutions obteined by computation are compared
with those obtained by the graphical method. It may
be noted that there is excellent agreement between the
two sets of values, Using the algebreic approach the
force constants of some typicasl molecules (belonging to

the XY XY, and XY, types) are slsoc evaluated. The

2’
results are gshown in Table 2.8. Previous results are

given in the lest column for comparison.,

The results obtained in this investigation
show that thes new algebraic method can be used gsuccess~

fully for the determination of exact force field using

47

isotopic frequenciss as additional data. The simplicity

of the method coupled with the accuracy of the result
obteined is its remarkable feature and in that respect
it is superior to all similer methods proposed earlier

in the literature.



FIG. 2.2 to 2.27. € -~ c* parameter
curves for different isotopic pairs.

In all these figures for an (A - B) pair,
parameter ¢ for the isotopic species

A is plotted along the x-axis and that
for B along the y-axis,

o S curve from F11

v —— v curve, from F12

curve from Fzz
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TABLE 2.6
FORCE CONSTANTS OF SOME XY, TYPE MOLECULES AND IONS
Force constants in mdyn / A

Molecule

or ion Rresent Result Previous Result
F.. 6.4559 6.489 6.22 2 o.25

CF, 11
F,p =0.8208 -0.827 [3}0.84 (8]
Fop 1.0115 1.010 1.01
Fyy 6.3701 ¥ 0.0453 6.480

Xe 0, Fy, 0.2379 I 0.0516  0.110 [10]
F,, 0.3722 Y o.0065 0.359
Fyq 6.3388 6.36 6.201

si F, Fyp =0.2593 -0.269 [9}0.194 03l
Fo, 0.4396 0.439 0.445
Fyq 3.0305 3.032

Si H, Fyp =0.0163 -0.025 [8]
Fo, 0.2401 0.240
Fyq 47915 3.88 5.094

*

B Fy Fyp -0.9933 2 0.0050 -0.53 [14}0.8712 [15]
F,, 0.6454 0.72 0.699
F,4 6.0224

N H, Fyp #0.0667
F 0.5599

22
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CHAPTER I1II

BOND ASYMMETRY PARAMETER « THEORY AND
APPLICATION TO BENT XY2 TYPE MOLECULES

A bond asymmetry paremeter M is
defined in an attempt to study the
spatial distribution of bonding
forces about & chemicel bond, This
quantity is expressible in terms of
the symmetry forcs constants. The
theory developed is applied to bent
sz moleculsr model. Numerical
results are obtained in a8 number of
cases. Bond angle versus YN and M
versus percentage p-charecter curves
are smooth. The force fisldsof some
molecules are evaluated on the basis
of the qb value, determined from the
U -bond angle graph end are found
to be in good agreement with calcu-
lations previously reported in the

literature,
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CHAPTER 111

BOND ASYMMETRY PARAMETER - THEQRY
AND APPLICATION 7O BENT XY, TYPE MOLECULES

1. IQSreductigg

Normal co-ordinate analysis provides a conve-
nient method for the calculation of strengths of chemical
bonds. Such analyses do not, however, reveal any kind
of ssymmetry that might be present in the constitution of
bends. Quantum mechanical studies of the elsctronic
structurs of molecules [1,2] indicate that the chemical
bond is not, after all, e homogensous geometrical sntity,
but is to be interpreted from & probaebility stand point
that favours & heterogenecus composition. Typical among
the factors affecting the bond homogeneity are electro-
negativity, X bonding and hybridization. Because of the
enormous complexity of eb initie calculations using
molecular orbitals, the information currently available
regarding the force fields of even simple molecules is
incomplets and consequently, asymmetries in bond strength
in a plane at right angles to a bond are not obtained
by this approach. However, e study of the dirsctional
asymmetry in bond strength is feasible within the frame-

work of cartesian force constants. Introducing an asymmetry
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parameter, & study of the spatial distribution of bonding
forces between atoms in a molecule has bsen attempted.

In the present chapter as well as in the succesding ones
the theory of the ssymmetry paramster is applied toc sev-

eral simple molecular models.

2. Thoorx_gz.ggxunct:l_g.ra-.t.r

In Wilson's FG matrix formalism, ths general
expression for the vibrational potential esnergy of a
molecule, in symmetry co-ordinates S, is of the form
2V = SFS (1.11).  The symmetry co-ordinates S can be
transformed into & set of cartesian displacement co-ordi-
nates X referred to the atom-fixed co-ordinate system
which is oriented parallel to the principal axes thrﬁﬁh

the relation

S = Bx ¢ o @ (3.‘)

where 3 is ths transformation matrix which depends on
the geametry of the molecule and is constructed in terms
of Wilson's s vectors [ 3]. The B matrix elsments
are ths componsnts of the 8 vectors. Using the transe
formation relation (3.1), the potential energy of the
molecule is written in terms of the certesian displace-

ment co-ordinates as

2v =« X ¢ X e e e (3.2)
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Here ¢ given by
¢ - ‘é FB ¢« o 0(3.3)

defines a symmetrfc force tsnsoxr of IN x IN cartssian
force constants in the case of an N-atomic molecule.
From the matrix representation of ths force tensor & ,
blocks associated with sach of the atoms, and blocks
connecting one atom with another can bs extracted sspa-
ratsly. The blaock correspending to lny.ate- X and
the block connecting an atom X with ancther stom Y

3

have ths following structure.

‘P:z cl’:;a z>'<y'

& - & P d%y eee(3.4)
$).. ¢ ..
O AR 4

& - 50 o $, - eer (3.5)
EOONE S

The labelling is such that ¢:z is the % component eof
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the force tensor associated with atoem X. ‘' and "

co-ordinate systems are associated with stoms X and Y.

These cartesian force constents are thus linear
combinations of the gensralised valencs force constants
and they repressnt the spatial distribution of bonding
forces around atoms in a moleculs, For a given atom,
the gpherically symmetric potential environment is indi-

cated by ¢ for an ssymmetrical envi-

2z * Pxx = <I:'yy'
ronment, the components may not be of equal magnitude and
the differences may be taksn as & messure of the deviation

from sphericsal symmetry.

The ¢ matrix can be transformed tewsorially
with a rotation matrix R 4into a form referred to s bond
based set of axes with the Z exis slong the bond. R 4s
constructed in block form by giving a common rat‘tian to
all atom-fixed axes so as to orisnt them parallel to the
bond-based set of axes under consideration., The force
tensor in a system with the z axis along the bond XY is

given by
F = ROR eee (3.6)

J is called ths bond forece tensor. Thus for esch bond

X
thers is an J matrix such thet 3;2 is the tsnsor componsnt

X

along the bond at X atom and JYY

X
and 33; axe the cor-

£
responding perpendicular components. Ths component alorg

the bond is, naturally, the largest one.



In the theory of nuclear quadrupole resonance
[4-6], an electric field gradient q ie assumed to be
existing at a nucleus, due to the ssymmetrical distri-
bution of electrons., Referred to an arbitrery set of

axes, the components of q can be arreanged in tensor

forms
qx'x' qxlyO q‘oxo
qylxl qyly' qy'z'
Qpry Qzrye Qpe g

eee (3.7)

Here Qo represents the fisld gradient along the x'

2
axis given by Qiyr = = 3 Y; s V being the electric
- <

potential. Transforming to the principal system of
axegs, the three principal components, which ars ordered
as q, > qyy = q,, &rs cbtained. From these compo-
nents an asymmetry parameter 1 is defined for the field

gradient st the nucleus:

rl - qxx - qu se e (3.8)

qZZ

such that o :’:"l = 1.

By a similar approach, an asymmetry para-
meter is introduced for the distribution of bonding

forces within a molecules, The cartesian'forcn const-
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ants ;“P (< ,p = x, y, z), being the second deri-

vatives of the vibrational potential enexrgy V, can be taken
to be the components of a tensor similar to gq.

Therefore, & bond asymmetry parameter 'h is defined

to characterise the non-symmetric spatial distribution

of bonding forces around the centre of a2 bond b

between two atoms X and Y est
f X Y1 _ o4 x Y
‘;{}xx * }"‘“} 2 { Fyy ¥ }n}
4 X Y
z { L+ %)
X Y , b4 Yy
{3’"" * 3""} - { 33'7 + 3”

(fe %)

From the definition it is clear that limits of

=
I

0

.Cs.q)

'Ib = -1 ﬁ?bi1o

3. égglication toc Bent XY txgo Moleculgz

- a G eR G D ST Ce G SR GP s e e . - 2-- - an e an o> oy an =

Bent symmetric XYZ type molecules belong
to the point group sz. The molecular gecmetry and the
principal system of axes are shown in Fig. 3.1. The
y-axis is teken to be normel to the molecular plans and

z direction is along the C2 axis, The three possible
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fundamental modes of vibrations are classified as
231 + b1. The corresponding symmetry co-ordinates [ 7]

ares

e, speciess

1
5’ -L—(Ar1#At2)
52 = I A
b1 species:
1
S .—-—-(-Ar *Ar) DY (3-10)

where A r, and o r, refer to changes in X -Y, and
x-YZ bond lengths and A< to change in the interbond
angle YXY. The symmetry F matrix elements in terms

of valence force constants are written as
a, speciesgt

F tfr#fr

i1 b J
F‘|2 =J2 frac
Faa = T=

b, speciess

F =f < f ees(3.11)



Here is stretching force constant and

b o

bending constant. frt and

action force constants.

frac are the

1 For each symmetry co-ordinstes,

85

T the

inter-

the compo-

nents of the s vectors, which constitute the B matrix

are given below:

S
.
Atom x y z
1 _ 8ine« a - cop <
Ja JB
2 sine«c o . -tose
J2 Ja
3 1] 0 J2 cosx




8é

Atom X z
1 ~CBS8e< Sin e
2 COSs oc sinec
3 0 -2 sinec
Atom X z
1 sinec COosS e
J2 J2
2 sinec _ Cesec
J2 J2
3 -J2 sinfc 0

eee(3.12)

The elements of the inverse kinetic emergy matrix

G are
Gyg =
82 =
62 =

2& cos

2
ac+/|§,

-JZ&sin € oc

. 2
4& sin o + Z/AY
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e
Gaa - 2& .1“ ’Q*/uy sece (3013)

uh.ro& and /t;, are the reciprocal masses of atoms X and

Y respectively.

The force tesnsor & referred to the principal
system of axes is obtained from the F and B matrices.
Components of & belonging to the bleck coxresponding to

atom 1 are of the forms

1 2 2
G = _(Fyy + Fzq) sin “< v F,, cos S

2

+* J2 F12 sine< cosec .

2

zac +* F22 sin T

1 1
b, = T (Fyq * F33) cos

-J2 F12 sine< cosec

1
cbxz - {..Z.(f”-r Fiz) - FZZ} sinc cosc
+—1— F cos 2
J2 12
.qg - 0
Yy
1
3, = o
.qﬂ
yz - 0 L R R J (3.14)

All the force tensor components for atom 2 are identically

squal to the gorrelponding componsnts for atom 1 except:

cbz which is the negative of @;z. This is in accord-

xZ
ance with expectation, since identical cartesian forcs

components indicate the same typs of potential environment
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for symmetrically equivalent atoms in the molecule.

For atom 3 only two components are diffesrsnt

from zerc. They ares

$2_ = 2sin k. Fy,
3 2 2
4>zz = 2cos’<. F,, +4 Fyp 8inec
"2 JZ F12 .in 2°<o oe e (3015)

The trasnsformation of & to a co-ordinate system
with the z-axis along the bond connecting atoms {1 and 3 is
accomplished by an anticlockwise rotation through (2% « <)

about the y-axis. For an atom, if the ¢ components are

axranged in the form

ézz q>z x Qz y
¢ . éx z é-" o éxy
é:/z. ¢¥x c?yy

the relsvant block of the rotation matrix R is

cos (2K « <) 8in (2R =) o
egin (2X « o) o8 (274 «oc) 0
g 1} 1 eee (3.16)

The resultant force tensor F referred to the bond - based

set of axes is given by (3.6). The components of # along
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the three mutually perpendicular directions sasre

3, =&, coslec +  JU sinoc d. . 8in 2
y =y,

2 e
Jux =G, 8inxc *+ P cOB . -, sin 2 oc

LI R 4 (3.’7)

The force tensor componsnts for astoms 1 end 3

are given by ths relations

1
e = 2 (Fy, = Fiq) sin®c coslc ¢+ 4 Faop aint

- ‘Jz ‘tnaﬂ » COB8 X o F120

3, = 2 F,, coatec &2 Fyy sin®c 4 ain? 2. F,,

- 472 F12 sinoc cocaoc .
eee (3.18)
L. o= Fy
33, = 0
3, = L(F * Fy3) er (3.19)

The bond asymmetry parameter n, is expressed as
{ 3 1
{dar £ -{3, + %]

{=# + 3%}

T =
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substituting the relations (3.18) and 3.19)

2 2
« €08 +2F22

N, .{4 (Fyq * Fyy) sin

(4 cin‘oc + 1) - 8J2 F12 oinaoc coaacV

{ F11 (4 cosﬁx + 1) F33 (4 .in‘«: + 1)

¢ 8 sinc coslx (sinec. F22 - F12 J2 canoc)}

LA N ] (3020)

Results and discussion

- D - G T PP R A W T G WD YR W W

The thesory developed above is applied to a
numbezr of XYZ molecules for which sstablished valence
force fields exist [8-18] ., The data used in the investi-
gation are given in Table 3.1. The bond asymmetry parameter
and cartesian force constants refezrsd to atom-fixed axis
are listed in Table 3.2. The cartesian force constants
havs been found to be in agreement with the King -

Zelano square sum rule [ 19 ],

2 No 2
Z M. = — Z M Vo V eee (3.21)
< (z = <) &
th

whers Qé denotes the i frequency; M the reciprocal

mass of atom aj tnf the Laplacian for atom a; N, the
Avogadro number and V ths potentisl enexgy of the

molscule.
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The magnitude ofvh’is within the preposed limits
(o, 1) and is found to be decreasing with increass of
bond angle (Fig.3.2), which is a clear indication of the
effect of hybridization on the distribution of bonding
forces. To investigate this dependence further, Qb is
plotted against percentage p-charecter (Fig.3.3). The

latter quantity is given by the formula [ 1]

% p character = -100 oo (3.22)

cos 2 =1

whers 2« is the bond angle. Thevk versus percentage
p-character curve is a smooth ones. It registers first

en increase 1n1h}and then & gredual flattsning with inczre-
sse of percantags p-character. Increase Of'h with p-chares-
ctexr is suggestive of the fact that with the greater

mixing of p orbitals in the molecular orbitels, the

bonding strength increzses in the rsgion awey from the

bond axis,

Though the U 2« curve must in principle inter-
sect the axis at 180° corresponding to cylindrical symmetry
about thes hond nxis," the actual intersection point could
not be precisely determined owing to pasucity of dates

relating to largs bond angls values.

The smooth graphicel relations, bond apgle versus
Qb and percentags p-character vernusrh » suggest 76 may be

yet snother charagcteristic parameter for molecules. With
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a view to ascertaining this, force fields of seversl
molecules are evaluated using A values estimated from
the qb -~ 20K graph, The calculation makes use of the
parametric representation of force constants (2.10 to

2.12) which yields the following expression for 75 s

Pc + Qe + R .
b = ees (3.23)
° prel Q'c « P!
where
G 2 2 ) 2
P - 2 1_iléj|_+2k sin “ocle (sin 2 <)
A
- + F33
11
4k (/\2 - /\’) gin < gin 2
Q -
J 814
G
R = 2N _..1.l_¢2kzsin2oc¢(sin2oc)2
2
1G1
Al.:
- + F33
11
2
G Ao
Pr = A 4k® cosl + 12 ¢ -
44 |G| G"

(4 cos‘ac + 1) + F (dsin4ac¢1)

33



8 cos e k(i AN, - A,)

Q' - -
N
26, (A= Ay
2
Gy 1817
2
G Ay
R' = /\2 4k? cos’< « 12 .
Gyq Gl S11
(4 cosc + 1) = Fig (4 sinfc + 1),
) ZE” sinoc ) 512 cosoc
- - 72 72
16! JG’1 1G]

with thevh value obtained from the graph,
(3,23) can be solved for the parameter c, from which
the force constants are calculated. The results are
entered in Table 3.3, and compared with values
reported earlier, Reasonable agreement between the
two sets of values indicates that U is another mole-
culer parameter that can be used with adventage in

molecular force field problems.
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CHAPTER 1V

BOND ASYMMETRY PARAMETER - APPLICATION

TG PLANAR XY3 TYPE MOLECULES

The theoéy of bond asymmetry parameter
introduced in Chapter III to cheracterise
inhomogeneities associated with chemical
bonds, is applied to planar XY3 type mole-
cules., Numerical calculations show that
this moleculer type has a constant value
(0.48) for the bond esymmetry plraneterv%.
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CHAPTER IV

BOND ASYMMETRY PARAMETER - APPLICATION

TO PLANAR XY3 TYPE MOLECULES

Planar symmetrical XY3 type molecules belong
to the point group Dj. The molecular geometry and the
principal system of axes are shown in Fig. 4.1. The
y-axig is taken to be normal to the moleculer plene and
the 2-axis lies along the bond connecting atoms 4 and 1.
with three species of normal vibrations, the fundamental
modes are classified as 1a' <+ 18" + 2e’. The symmetry

co-0ordinates used ares

a, species:

1
S = = (AT, + AT *« AT,)
1 J3 1 2 3

a, speciest

S2 - avy, t Ay, * Ayy = 3 a Vg

e' species:

1

S .——(ZAI -A: -AI)
3a /6 1 2 3
1
Sta " J—s 1:(2A<=<:23--Aoc13 - D ,,)
1
S
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FIG. 4.1. Planar XYy molecular models Internal
6o~ordinates and system of axes
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1
S r ( Ao
4b J2 13

- A"(12) 000(401)

where a Iyr & T, end a Ty refer to changes in bond
lengths and A5 < 12° A < 43 and A =< 53 to changes in
bond angles., Being a kind of out of plans bending, the
symmetry co-ordinates 5, (a"z) is expressed in terms of

cartesian displacements,

The symmetry F matrix elements are given by the

following expressions:

a' species:

F11 e« fr + 2 frrx

a" species:

22 = 13

e' speciest

F33 = f: = frr
= - ?
F34 Tt f I
F44 - f& - focx e s (4.2)

Here fq is the out-of plane bending force constant and
fr is the stretching force constant, f,. the bending

force constant and the rest are interaction constants.
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The interaction constant frx involves an engle &nd a
bond which does not form one side of the angle &and f"l_‘c
involves an angle and & side which forms one side of the

angle.
B matrix

The s vectors, connecting ths cartesian dis-
placement co~ordinates &and the symmetry co-ordinstes,

which constitute the B matrix are given below:

s
ks
Atom x y z
1
1 ) 0 —_—
J3
1 -
2 2 0 ¥ E)
A 1
3 2 0 - 303
4 0 0 0




2
Atom x y z
1 o 1 o
2 4] 1 0
3 0 1 o
4 o -3 (8]
S53a
Atom x y e
J2
1 0 0 —
/3
1 1
P —_— 0 —
2J/2 2J6
1 1
3 0
2J/2 2J6
J3
4 0 o -—

106
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Atom x y z
1 0 1] o
v3 3
2 0
2J2 272
J3 3
3 - S—— U
2J2 2J2
<
4 1] 0 -/2
Atom x y z
1 ¢ 0 0
2 J3 1
—— 0 -~
2J/2 2/2
v3 1
3 — 0 —
2J/2 2J2
J3
4 - 0 1]
J2




o
¥ 3
e

Atom x y z
1 Je 0 0
1 /3
2 —_ g —_—
2/ 2 2/2
1 V3
3 — 0 - —
2J/2 2/2
3
4 - — 4] 0
J2

o8 e (4.3)

The G matrix elements are

a,' species:

1

.5 species:

G, = 3 (3 MM )
e' speciest

3
633 = 2 & * A

3/3
Gyy = 3 M
2

Gy, = -2—/; Y ceeld.a)
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whers M

and u are the reciprocal masses of ths central
x Y

atom X and the end atom Y respectively.

The force tensor & referred to the principal
system of axes is derived from ths F and B matrices.
Here 88 the principel 2z-direction is tsken along one of

the bonds, XY, (Fig. 4.1), the bond force tensor ¥F is the

1
same as cartesian force tensor .

The cartesian force tensor components for the

atoms 4 and 1 are given by the relations:

L 2

®,, 3~ Fyq * 73 Fa3

4 < 2
b= 5 Fyy t5F, o+ 3/3 Fy,
4
cp” = 9 Fy

2
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All the other components of ¢ are zero. Using these

relations the bond asymmetry parameterx qb is expressed as

'Ih’ = 3 {13 F4‘+ 3 Faq ¢ 6/3 F34-20 FZ_?}

The expression for the bond asymmetry parameterx
derived above is utilised to calculate this quantity for
some molecules for which established valence force fields
exist, The data used in the investigation are given in
Table 4.1. The calculated values of the cartesian force
constants and the asymmetry parameter are tabulated in
Table 4.2. It can be seen from the table that the T
value remains constant for all the molecules belonging to the
plenar XY3 model. The average of the last column is
0.48 and it can be taken as the charascteristic value of
qb for molecules of XY3 type belonging to D3h point
group. Such & constant value of s is in accordance
with expectation since &ll planar XY3 molecules have the

same bond angle.
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Making use of the characteristic constant value
0.48 for 75 » the force constants of somes planar XY3
molecules have been evaluated. wWith the aid of the parame;ic
representation of force constants (2.10 to 2.12) and
inserting the constant velue into the expression for

Qb a quadratic equation is obtained:

kcz '0'10 * m = 0 oo‘(407)
where
2.76 Ay

k =———— & Az (m < 0,480 )

Ga3

60 A, 0.96 A

652 Gyq
5.52 Gy, 9.36 /3

SR R U Iy A

2.76 A,
33
804, ) 0.96 A,
G622 G4
9 6.,° - 1873 G 6., + 39 G..°
o 34 34 533 33

G633 16



2
6 13 53‘ - 18/3 6

- —

34 @ + 27 &G

33 33

G 161

33

O0f the two values of ¢, the one which is within the
acceptable range (-1, 1), is used to calculate the force

constants, The results are tabulated in Table 4.3,
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TABLE 4.3

SYMMETRY FORCE CONSTANTS {mdyn./A ).

Symmetry force constants
Molecule
Faa Fia Fas
10
BF, 6.6499 - 0.3622 0.5106
Wael, 3.4844 - 0.2590 0.2514
10 :
BBr, 2.9059 - 0.2280 0.1880
10
B 1, 2.3220 - 0.1993 g.1278
Ga Cl3 2.6165 - 0.1899 0.0867
C S, 2.8915 0.2732 0.3918
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CHAPTER V

BOND ASYMMETRY PARAMETER -« APPLICATION

TO PYRAMIDAL XY3 TYPE MOLECULES

The theory of bond asymmetry parameter
developed in Chapter III is applied to
pyramidel XY, type molscules. Numerical
results are obtained in a number of casges
for which established valence force fields
exist. There is smcoth relationship bet-
ween Ty and hybridisation as brought out
by the graph betwesen qb and percentage p-

character,
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CHAPTER V

BOND ASYMMETRY PARAMETER -
APPLICATION YO PYRAMIDAL XY, IYPE MOLECULES

Pyramidal XY3 type molecules belong to the
point group C3V' There are two speciss of normal
vibrations which are classified into 2.1 + 2e. The
geometry of this model snd the principal system of
axes are shown in Fig. 5.1e end Fig. S.1b. The fel-

lowing symmetry co-ordinates are used in the asnalysis

of the vibrations:
., species:

(ar, + Arz * Ara)

(o oC *+ AoC » AcC

12 23

&'ﬂ t‘d

13!
s species:?
1 (
S = =—— (2 AT, « ATon = ATa)
r
Sea = JE (28X - A, 3 - 00C,,)

1

J2

s 2 = ASra)
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whers r represents the equilibrium distance X - Y.
Ary, AT, and Arx, are changes in bond lengths and
AcCygr AcCyqg and Aoc13 changes in bond angles.
The symmetry F elements corresponding to thess

symmetry co-ordinates sre given by

a, species: -
FH - ft * Zfrr

F12 - Zfrac * f'roc

F22 - f. *2f

r rr
Faa = e~ Tz
Faa = Te =T, veo(5.2)

Here fr is the stretching force constant, f. the
bending constant and all thes rest are interaction

constants.

B matrix

The following components of s vectors consti-

tuts the B matrix:



Lo

b

Atom x y .
! = Fotnp  « I3 sinp - 71 cosp
2 4 sinp - —4— sim - == cosp
3 0 - sinp - 1~ casp
4 0 0 13 cosp
Atom x y i
! -5 -3 4 = n
2 4 - 4 il
3 . 4 4 &
4 0 0 -2/3H
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Atom x y z
1 | =73 sinp - T/J‘--inp - 7’% cosp
2 | - -2-}7 sinp 5-}? sing 7%— cosp
3 0 -J—oinp -J-%— cosp
4 —-2-—-1np -2{%-2- sinp 0

Atom x y z
o B o Atz i
2 | -J T 6 M
3| -v3K -+ 4 -4 W
4 3J J3 J 0
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Atom x y z
1 0 0 0
J3 1 .

2 272 Sinp ~gygeing -3
R N

3 0 72 12

/3 3

4 “272 ° 242 o
Atom x y z
1 K -~ J3K 0

3 K T % 12

4 -J3J 3J 0
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where g ie the acuts angle that the bond makes with

o
the z-axis end it is given by sin g = 7%— sin -3

and

4 -

sin g (1 + 2 coscc )

2 sin<
cosp (1 - cose )

sino
sing (1 - cosox)
Jd = '
2J2 sinx
J3 sin
K = f
2J2 sine
sinp (5 ¢ cos< )
T -
2V 6 sin
J3 einp (1 +« cosx )
] -
2V 2 sinoc
The & matrix elements ars of the following
form:

a‘ speciss:

G" -/;*/;(14-2::0.&)

(1 + 2 cosec ) (1 - cosxx )

G2 = =24
sin oc

G, = 2 (1 -cosx ) (2 cosec + 1) sin <,

x [2 (1< cosec ) 1t -r/u;,]
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¢ spscies:

G33 -/-##,‘;l‘(i-coaac)
M0 - cosac)z

G -
34 sinoc
(2 ¢ coscc ) /“;? (1 = cosx )2/4;&
S = —
(1 + cosec )

see (5.4)
h

whero/; and /.; denote the reciprocal masses of ths atom

X and Y respsctively.

Ths forece tensor & given by o = B F B is
constructed from the F and B matrices and its elsments

are of the form:
3 2
¢, = 4K Fy,

2
2
& - L (Fyy v 2Fy,) sinZp e R g (2 F,, ¢ F )

+ 3§ (F, - Fy,) sing

G = = Ry + 2Fyy) cosdp + £l (27, + F,,)

2Z 3
PR S (F,, - F,.,) cos
3 34 12 P
ees(5.5)
4 k] 2 2
4>xx = 5~ Fyysin “p e JOF,,

4
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$* <8 F  cosp + 12K F,, - 12HF, cosp

000(506)

To get an idea of thes directional asymmetry
of bonding forces, ths forcs tensor ¢ referred to
principal exes is transformed into a bond-based co-
ordinate system. In the present investigation, ths
Y-axis is oriented along the bond connecting atoms
3 end 4. ¢ 4is treansformed into the new co-ordinate
system by giving an anticlockwise rotetion about the
x axis, through an angls B The resulting bond force
tensor J cen be expressed in block form for sach atom.

Components of F along and perpendicular te ths bond for

a given atom arxe

3, = ‘i’zz eoszp - 4’2)' sin 2p « 45),7 oinzp

&l
¥
8

y cbzz oinzp + ‘sz sin 2p + 4’77 coazp
Fox * Pxx cee(8.T)

The bond asymmetry parameter ", is defined by

{.31:‘ + ?1.-;} - {3; + ?f,}
T = { o+ o] - (58)

With the help of (5.6) and (5.7) this can be expressed
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3 3
qb - {-;—-i Fag ¢ I RF * —;— (L e N)F,

—1— -
+ { 3 * 3 V) F1‘ 12 P F'z « 12 4 722}

00.‘5.9)

where

A = sin’p eo.zp

B - -tnzp co:zp tan 4§;
2 _=<
r

‘D - ainzp co:zp tan

4 oc
R = gin B tan -3-
4 2 o<
L = gin B tan ~35
-inzp cotzp
M - > _
sin"oc
ain‘p
N - —.——-—2-—
sin®e<c
v = co.‘p



g - cns‘p tanz J?—

Results and discussion

e mn em g o e Al et eme e at

Using the generesl velence force constants
reported esrlier, the theory developed sbove has bsen
applied to several molecules belonging to the pyramidal
XY, model, The data taken from the literature axe
given in Tebles S.1s and 5.1b. The force constant data
given in Table 5.1a are based on additional experimental
information while the values listed in Table S5.1b havs
only the vibrational frequencies as their calculational

basis. Ths cartesian force components. of the molscules

128

arse calculated and tabulsted in Table 5.2. The’h,v-lues

have been esvaluated and are reported in Table 5.3. It
is noted that the '), valus varies with ths bond angls.

A graphical study aof the variastion of Ty with bond angle
¢ is presented in Figs. 5.2 and 5.3. The points are
easily fitted intoc two distinct streight lines. This
seems t0 suggest a grouping of pyramidal XY3 molscules
inte hydrides and non-hydrides. The linear relation-

ships botwoenjb and << may be expressed as

T = ®meg+l cee(5.10)

where m and 1 ere constents, charscteristic ef the

straight line, with ")b in erbitrery units and ocg in
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radisn measure, for hydrides,

m = 20192
and

l - —3.663 000‘5011)
For non-hydrides thes constants are

m - 10179
and

1 = -2.053 0..(5.‘2,

qb value of any pyramidal XY type molecule can be
calculated from the smpirical relation (5.10). As Ty
varies with bond angle, its dependence on the percentags

p-character is studied and shown in Figs. 5.4 and 5.8.

Unlike XY, systems, a direct evaluation of the

2
forcs constants of a pyramidal XY3 type molecule &s not
possible from the qbvaluc alone. Since there ars fwo
second order vibretional species, two indspsndent para-
meters c, and c, are to be used in the parameter
representation for the evaluation of the force constants.
However, if, in additionx to the m’valuc. one more datum

other than the experimental frequencies is made use of,

the force field can be fixed completsly.

In the pressnt investigation an attempt has

bsen made tc evaluate the force fields of NF3 and A.FS,
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using the sxperimsntally observed coriolis coupling
constant 333[6.7:]. In this approasch the symmet:ry
force constants of the e species are determined first,
These vslues ars then used in conjunction with the 1),
valus in (5.9) to evaluate the force constants of the

a, species, The results of this calculation are given

1
in Teble 5.4 and Teble 5.5 together with the previously
reported values, Using the present results mean ampli-
tudes of vibration for bonded distances ars also cbtained.
For NF3 the calculatsd value of the mean amplitude is
0.04798 A® and this is in good agreement with the
reported valus 0.049 A* [ 8. In the case af Asf, too,
the calculated value 00,0423 A' is very close to ths

observed valus 0.0433 A*{ 9 7.,
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TABLE 5.3

BOND ASYMMETRY PARAMETER 7 .

Molscule YN
N H3 0.41339
P H, -0.08581
As Ha -0,18340
Sb H3 -0.16208
N Cl, 0.15915
P Cl3 0.01547
P F, -0.05159
As Cl, -0.04825
As Br, 0.00432

As I, 0.02283
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CHAPTER Vi

BOND ASYMMETRY PARAMETER - APPLICATION
TO TETRAHEDRAL XY4 TYPE MOLECULES

Theoretical expression for the bond
asymmetry parameter Y is derived with
perticuler reference to the tetrahedral
XY4 types molecular model, The calcu-
lation of 1, values of a number of
molecules shows an approximate invari-
ance of this quantity for this molecu-
lar model. There is a very small dif=-
ference in % values between hydrides
and non-hydrides. The force fields of
a number of molecules are evalusated
making use of the characteristic

value (-0.24) for non-hydrides.
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CHAPTER VI

BOND ASYMMETRY PARAMETER - APPLICATION TO

TETRAHEDRAL XY, TYPE MOLECULES

Tetrahedral XY, type molecules belong to ths
point g;oyp IF’ The internal co-ordinates and the
orienta;ion of the axes are shown in Fig. 6.1. Acco-
rdiqg to the irreducible representations of the point
group Ty, the normel vibrations ere classified as a,, ¢
and.fz. Of these fz alone .is of second order, while
a, end e are of first order. Let r be the equili-
brium X-Y distance and <42 the anql.¥between ths
bondg Ty and Foe The symmetry co-ordinates employed

in this investigation are listed as follows:

a, speciess

51-—%—(A:1+A;-2+Ar3+z>r4)

e species:

S2a " T2/3 (2 Ayt 285 Ax - Ay
- A< g m A

Sgp T T (83 - A<, 4 A< o ax)
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FIG,6.1. Tetrahedral XY4 molecular model: Internal

co~o0rdinates and system of axes
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fz species

-
S1q 2 (Ar1-Ar2 ¢Ar3-Ar4)

San =77 (8% g4 - 25!

Sab -Jz—(Ar1 *+ Aar, - Ary = AT,)

Sp =7z (8% - 8%y,

Sac a—Jz-(Arz * &ry - Az, - A1,

Sge =T (B, - 8%,3) cer (641)
where A r and a«< are the changes in bond lengths and
bond angles. The symmetry F elements are given by

e, speciest

Fyi

fr + 3 frr

e speciess

Fa2

f. - 2f

fz speciess

eee (642)
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where ff is the stretching force constant and f__ the
bending and the remeining constants are interaction force
constants. The primed quantities represent the inter-
action between opposite co~ordinates and ths unprimed
ones, the interaction between adjecent co-ordinates.
Thus, for instance, f'rx rspresents the interaction
between r, and < 59 and f:x stends for the Ty -°<12

interaction.

R matrix

The B matrix elements for sach symmetry co-

ordinate are displayed in the following forms

S
i
Atom x y z
1 1 1 -1
2 -1 1 1
- #
3 1 1 1 x 573
4 -1 -1 -1
5 0 0 0
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-2

-1

-2

-1

Atom

o b
o~

J3

-J3

J3

3

-J3

-V3

-J3

J3

Atom




3

Atom x y z
1 1 1 -1
2 1 -1 -1
3 1 -1 1 273
4 1 1 1
5 -4 0 0
Atom x y z
1 2 -1 1
2 2 1 1
3 2 1 -1 3/3
4 2 -1 -1
5 -8 0 0

148
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Atom x y z
1 1 1 -1
2 -1 1 1
-
3 -1 1 -1 2«3
4 1 1 1
5 1] -4 0
Atom x y z
1 -1 2 1
2 1 2 -1
3 1 2 1 !
243
4 -1 2 -1
5 1] -8 0
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Atom x y z
1 -1 -1 1
2 -1 1 1

-

3 1 -1 1 X 373
4 1 1 1
5 #] 4] -4
Atom x Yy z
1 1 1 2
2 1 -1 2

- —l

3 1 1 2 X <373

4 -1 -1 2
5 0 o -8

00-(603)
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The G matrix elements ares

a, species

G - M

11

e s3peciest

6o = 3 A

fz speciess

4

33
8
63 = 5/
644 = P —g— /Lxl + MY} 003(60‘)

where M and /%, are the reciprocal maesses of the X

and Y atoms respectively.

The components of the force tensor ¢ belonging
to the blocks corresponding to atoms 1 to 4 are equal
in megnitude, indicating an identical potential environ-
ment for symmetricelly equivalent atoms. The force

components for atom {1 are:

1 - = . - "
P 12 Fqq * 2= (Fo * =3~ Fa3
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4’:::3( = =17 Fir = (Faz = Faz * Faa)
F, =77t o Fag % fa)

&, - T iy e (Fyy e S Fay ¢+ Fay )
4;':/2. "'%3‘11 *+‘F22'F33*F“.)

S0 =T Py *TE o tr Fart Fau)

eee (6.5)

For the central atom numbered &8s 5 only three components
are different from zero and all the three are identically

equel. They are
éxx. = éyy = <l>zz

16
3 33 * 3 (F34 - F44) eee(6e6)

The equality of the three components of & indicates the
existence of & spherically symmetric potential environment
for atom 5 and this is consistent with the fect that in
tetrahedral symmetry, etom 5 is at the geometrical

centre of the molecule.
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The trensformation of ¢ to a co-ordinate
system with the z axis elong the bond connecting atoms
1 and 5 is asccomplished by means of two rotations. The
first one is an anticlockwise rotation through 45* about
the z-axis and the second is through an angle f in clock-

angle between the bond and the =z direction,

For an atom the component along the bond to
which it is attached, of the bond force tensor F (formu-

lated in block form) is given by

3k2 = ?% ( ‘hxa; + 431 + ¢Hz )

- %—- ( Py + P, - ‘Pyz> eee(6.7)

The corresponding perpendicular components ars

of the form

+ £ (4,,- d>,z) eo(6.8)

The bond force tensor components for atoms {1 and 5 are

then given by
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! R 1 g -
E 18 T11 * 12 f2* 6 Faz * 93 Fae
3,y 6 Fig * 4 Fp * 5 Fy3 v~ Fau

. - 4 —.
3, TR Ery, e 1T Fa3 * 5 Fay eee(6.9)
For the central atom 5,  only the three components
I o 3,, and 3J,, are different from zerc and are

identically equal.

5 4 16
N i e (Fagq * Fuq)
5 5
- 3, = 3%, ee.(6.10)

Accordingly, the asymmetry parameter 7b for the

bond is written as

b - {‘2 (Fag = Fa3 + Fpp) - 8 F11}/

{F” + 24 F22 + 51 F33 + 192 F34 + 216 F“}

cee (6.11)

Results and discusgion

e Emn e em e ew e e ey an we W

The theory developed in the previcus section is
applied to a number of molecules, for which force constant

values are available in the literature. The data employed
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are given in Table 6.1. The calculated values of the
cartesian force constants and the bond asymmetry parameter
.qL are tabulsted in Table 6.2. It may be noted from the
table thet for non-hydrides U value is spproximately
-~ 0,24 while for hydrides it is sround - 0.20. Thus
hydrides and non-hydrides, it seems, form two separatse

ctlaesses with different characteristic YN values.

Using the % value, thes force constants of
several XY4 type molecules are evaluated. For non-
-hydride molecules of tetrahedral symmetry, tasking the
specific value - 0.24 for 7, , the expression (6.11)

is rewritten as

46.08 F34 + 63.84 F + 0.24 F - 3.76 F

44 33 11

+* 17076 FZZ = g

ees (6.12)
F11 and F22' can be evaluated directly from the
corresponding vibrationel frequencies and the one dimen-
sional G matrices. The remaining three force constants
are evaluated in terms of e paremeter ¢, using the
relations (2.10 ) through (2.12). The perameter c¢ is

obtained as a solution of (6.12) which is now of the form
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{A:s/“ e 5 . .&a_’r_}c?,g
16l

, D.247 _ _Me M 46,08 (N3 - Ae) e

Gqy 161 16] /2
As - Aay
s D048 6,3, (73 ” ). c - 0 eer (6.13)
_ 2
Gy Il
where
d = -
Go2 Gy 4
and
0.24 xsg‘1
A e o - 46.08 G, + 63.84 G,

The results are reported in Table 6.3, along with other
published values for comparison. The agreement between
the two sets of values points to the fact that the value
of M, = ~0.24 is characteristic of XYé tetrahedral non-
hydride molecules and this value of 7, can be used as an
additional datum for the evaluation of force fields in

these molecules,
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TABLE 6.2

CARTESIAN FORCE CONSTANTS AND BOND

ASYMMETRY PARAMETER qb.

139

Cartesian force constants (md/A)

Molecule :p'. :4; i 4" R ?b
X Yy ZZ XX Yy ZzZZ

CF, 3.3380 9.3853 -0.2442
Si F, 2.5311 9.4133 -0.2524
cc1, 1.4128 3.7826 -0.2404
C Br, 1.0826 3.0053 -0,2432
C I, 0.7808 2.1013 -0.2341
Ru O, 2.5922 11.4067 -0,2371
De O, 3.1520 13,1653 -0.2330
Ge F, 2.1686 9.1333 -0.2359
v cl, 0.9622 3.9467 -0,2443
C H, 2.3044 8.5213 -0.2180
Si H, 1.2447 5.2343 -0.2242
Ge H, 1.1313 4,4093 ~-0.2060
NHT 2.6530 10.6603 -0.1965
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CHAPTER VII
BOND ASYMMETRY PARAMETER =

GENERAL DISCUSSION

The results obtained from the appli-
cetion of the theory of bond asymmetry
paramster to several XYn typs molecular
models are reviewed and discussed.
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CHAPTER 129

BOND ASYMMETRY PARAMETER - GENERAL DISCUSSION

In Chapter IIl a bond asymmetry parameter N
has been defined in an attempt toc study the variation of
bonding forces about & chemical bond, Strictly speaking,
qb refers to the centre of a8 bond b between two atoms

X and Y and is defined by
X
Y X Y
{‘Jm,_-r zxx} -{ ¥, + 3,,}

bW = {}x -

L

where ths }'ii a:g the cartesian force constants with

the z axis orienicd'in the direction XY . This parameter
qb is expressible in terms of the symmetry force constants.
The theory developed has been applied to bent XYZ' planar
and pyramidal XY3 and tetrahedrel XY4 systems. The

following conclusions are errived at from such a studye

1. The bond asymmetry parameter 7, is intimately

connected with molecular structurse. There exists & smooth

releationship between the asymmetry parameter UN end the

hybridization of atomic orbitals involved in bond formation.

In planar XY3 and tetrahedral XY4 type molecules, the central

atom uses spz and spa hybridised orbitals respectively.

As a result in these molecules the bond angles have the
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fixed values of 120° in XY3 and 109°28"' in XY4 type
molecules. The caléulation of qb values of a number of
molecules having these structures shows that each of
these molecular types hss & constant value for the bond
asymmetry parameter. The fact that in tetrehedral
molecules there is & very small difference in T values
between hydrides and non-hydrides suggests that this
parameter depends also to & small extent on the overlap
of atomic orbitals. In bent XYZ and pyramidal XY3
molecules alsc there is @ smooth relationship betwagn
T, ®nd hybridisation, as brought ocut by the graph
between 7 and percentege p - character (Fig. 3.3,

Fig. 5.4 and Fig. 5.5.)

2. It has been noted in the case of pyramidal
XY3 type molecules, that all the hydrides fall on a
straight line and the non-hydrides on another straight
line. (Figs. 5.2, page 131 and 5.3, page 132 ). These
straight lines are asnalytically represented by the

equation
qb = m x<xg ¢+ 1

where «g is in radians and m and 1 are constents
having distinct values for the hydride and non-hydride
groups of molecules belonging to the pyramidal XY3

model. This implies the fact that in hydrides



hybridization is more than that indicated by the bond
angle [ G.R. Bird end C.H. Townes. Phy. Rev. 34,
1203 (1954) ] .

For non-hydride molecules m = 1,179, 1 =

-2.083. If Qb is calculated using thess values for
g = 2 % /3 radien (o< = 120*), the value 0.416 is
obteined. In Chapter IV it hacpbeen noted that for
planar XY3 type non-hydrides, N has the characteristic
value of 0,48, Since b depends on the bond angle, it
is interesting to compare these values for the two XY3
configurations, This esteblishes a correspondence
between the pyramidal and planar configurations of the
XY3 type. The small difference in the two veluss,
namely 0.064 (13% of the 7, value for the planar model),
may be explained on the basis that in the pyramidal con-
figuration there is & lone pair orbital while there is
none in the planar configuration. Further, it may be
observed that for 502 with a bond angle of 119* 19' and

having unpaired electrons, T has been found to be squal

to 0.421 (Teble 3.2, page 97 ).

Another observation from Table 5.3 is that in
the case of some pyramidal XY3 type molecules T is
positive while in others, it is negative. It can alse

be noted that qb ig positive for molecules in which the

166
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bond angle is less than 100°. If purs p orbitals are
used in bond formation the gond angle would be 90°¢. For
ideal sp3 hybridisation thes bond angle is 109¢ 28'. It
is interesting to note that at about the middle of this

rangs the bond asymmetry parameter T is nearly zero.

3. In all the XY4 type molecules studied the bond

angles are tetrahedrel and hences T must have the sams
value, Eventhough there is only a small difference in

the Mo values for hydrides end non-hydrides, it calls for
an explanation. The spatial disposition of bonds around
the central atom is determined by the hybridizetion of the
atomic orbitals of the central atom. This being the same,
the angies are tetrahedral in all the molecules. The
strength of chemical bonds depends on the overlap of the
bonding orbitals. In hydrides these are the hybridised
orbitals of the centrel atom and the epherically symmetrical
48 orbitals of the hydrogen atoms. On the other hand in
non-hydrides, in place of the spherically symmetrical s
obbitels, there exists a. p orbital of the halogen or
oxygen atom., This difference in the nature of the bonding
orbitels may be the reason for the very smell difference

in ;s values between hydrides end non-hydrides in tetra-

hedrsl XY4 molecules.



168

4, The asymmetry paramester is proposed to be oa

an additional detum to be used along with vibrational
frequencies for the determination of force constants.

The extent of usefulness of this parameter has beeninvesti-
gated by calculating the force constants of molecules
belenging to different symmetry types. In all the cases

studied the results are found to be satisfactory.

The bond asymmetry parameter T characterises
the potential environment about the centre of a bond.
Since the potential is generated by the electreon distri-
bution, YN turns out to be a useful index of the symmetry
of this distribution. qb is mass independent and is
found to depend only on the bond angle in the XYn typs
of molecules investigeted in this thesis. Besides being
an index characteristic of the moleculsr structure, the
bond asymmetry parsmeter provides an additional input

useful in normal co-ordinate analysis.
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CHAPTER VIII

INFRARED SPECTRUM OF COUMARIN

Infrered spectrae of coumarin in the
solid state and in polar and non-
polar solvents are recorded. An
attempt to explain the observead
splitting of the C = O frequency
is made. 0f the two strong compo-
nents of the C = 0 band, ones is
assigned ms & combination and the

other es € = 0 frequency.
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CHAPTER VIII

INFRARED SPECTRUM OF COUMARIN

1. Introduciion

Raman spectrum of coumarin in the solid state
was studied by Venkateswaran [1] &and Girijesvellabhen and

Venkateswarlu [ 27, Murti and Seshadri [3] investigated

the Raman spectrum of this substance in the solid state
as well as in various solvents. They observed that

C = C bond frequencies of the benzene and pyron rings are
fairly constant. On the other hand the C = 0 frequency
was considerably lower in solids as compared to its value
in polar solvents. All the previous workers observed a
splitting of the C = 0 frequency in solid. Since the
splitting was absent in the spectra of solutions, Murti
and Seshadri explained this splitting as due to inter-
molecular effects rather than resonance. With a view

to finding out the exact reason for the splitting of the
C = 0 frequency, a study of the infrared spectrum of the
substance was undertasken and the results obtained ars

presented here,

2e Results and Discusszon

All the spectra were recorded on Beckman IR 20

infrared spsctrophotometer. The infrered spectrum compared
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well with Raman spectrum and in Teble 8.1 the frequencies
of prominent lines are given. It may be noted that a few

additional lines are observed in the infrared spectrum,

In Teble 8.2 the C = (0 frequencies in the
solid and soclution states are given along with the values
cbtained by other workers, From this Table 28 well as
from Fig. 8.1a through 8,1e, it may be seen that the
C = 0 frequency splits in solid as well as in solutions.
In 2ll cases as many as four components can be identified.

Of these, two components seem to be more intense. In non-

polar solvents the lines at 1758 cﬁ1 and 1740 cm'1 are

1 1

very strong while the lines at 1708 cm  and 1728 cm™

are very weak., In polar solvents the intense line is at

1728 cm-1. Other components at 1708 cm-1. 1740 t::m'1

1 are weak. In the so0lid state the maximum

intense line is at 1708 em~', and the line at 1758 cm~',

and 1758 cm~
even though weak, resoclves out. The component at 1740 cn"

is sbsent,

From these observations, the following conclusions
may be drawn. In non-polar solvents one can expect the
C = 0 bond to be almost free from external influences
that try to wesken the bond, Hence it is reasonable to
agssume that the frequency in non-poler solvents corresponds

to the free chemical bond. If we agsume that the line a2t
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1

1758 cm” ' is a combination (of the lines at 930 cm™! and

830 cm™1) line, then the C = 0 frequency may be taken

as 1740 cm~'.  There is good reason to believe that the

line at 1758 cm™! is either an overtone or a combination
since it is present at the same position in sll the spectra,
unaffected by the nature of the solvent. ‘ In polar solvents
the C = O bond is weakened through co-ordination and ths

C = O frequency moves tao 1728 cm~!. In the solid state
the lettice field effect further weakens this bond and the
frequency shifts to 1708 cm~'e  The line at 1758 em™~ ! has
maximum intensity in non-polar solvents in which the C = 0

1 1

frequency is at 1740 cm” ' and is very close to 1758 em™ ',

In the case of solid the C = 0 frequency is at 1708 cm™ !
and it is well separated from 1758 cm~!  which now hes only
e minimum intensity. Therefore the variation in the
intensity of the 1758 em~! line is in accord with the

assumption that it is an overtone or a combinatione

Infrared spectrum of coumarin was recorded in ths

gaseous phase by Hartwell [ 4 ] and he reports 1776 cm~1

ag the frequency of the C = O bond. Eventhough this

value seems to be a bit high, the result is in agreement
with the conclusions of this investigation. Finally
the presence of multiple components may be &8 result of

resonance that exists in the molecule as was shown by
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Govinda Rao [5 ]. Splitting of fundamental frequencies

resulting from resonance has been reported earlier [6-8] .
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TABLE 8.2,

SOLVENT EFFECT ON THE CARBONYL STRETCHING
FREQUENCY OF COUMARIN

Bolvent Present study (Ref. 3) (Ref, 4) (Ref.1) (Ref., 2)

1708 wvw
C Cl 1742 s 1742 1738
1758 s

1710 w
1741 s 1736
1758 s

1705 w

1730 s 1721
CH., OH 1742 w

1760 vw

1700 w
1728 s 1720

CH Cl3 1740 w 1738
1758 w

1708 s 1708 1709 1706
(Solid 1728 w 1731 1729 1726

state)
1758 w

(Vapour) 1776
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