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During the past few decades, a wide spread

interest in the structural, optical, electrical and
other physical properties of the transition metal di­
chalcogenide layer compounds has evolved. The members

of this family of compounds can be regarded as strongly
bonded two dimensional chalcogen-metal~chalcogen layers

which are loosely coupled to one another by the weak ven

der Waal's forces. Because of this type of bonding, the
crystals are easily cleavable along the basal plane and
show highly anisotropic properties.

This thesis contains the growth and the study
of the physical properties of certain tin dichalcogenide

crystals (SnS2 and SnSe2). Tin disulphide and tin dis­
elenide crystallize in the hexagonal CdI2 type crystal
structure. This structure consists of layers of tin
atoms sandwiched between two layers of chalcogen atoms.

Agtin atom is surrounded by six chalcogen atoms octa­
hedrally. In the layers the atoms are held together by
covalent bonding and in between the layers there is
van der Waal's bonding.
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These crystals are normally grown by chemical

transport method with iodine as the transporting agent,
the growth time being about 8 to 2A hours. But crystals
grown using transporting agent are usually contaminated
by the transporting agent and this has a pronounced eff­
ect on the physical properties. Therefore physical vap­
our transport method was used for the growth of crystals
in the present investigations. Eventheugh a relatively
larger period of growth time is necessary for the phy­
sical vapour transport method (40-150 hrs), the crystals
obtained from this method have a much less impurity con­
contration than that obtained from chemical vapourtransport method. '

Since the growth temperatures of tin disulphide
and tin diselenide are comparatively high, fused quartz
tubes were used for the growth. Stoichiometric proport­
ion of the starting materials were filled in precleaned
quartz ampoules and evacuated to a pressure of 1O”5 Torr

and sealed. For the growth process a horizontal two
zone linear gradient furnace and temperature controllers

with accuracy better than i 1°C were used. A source tem­
perature of ?Od:C and a growth temperature of 655:0 was
used for the growth of tin disulphide crystals. After
a growth period of A0 - 150 hours, golden yellow plate­
let like crystals of approximately 1.5 cma in area and
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10 — 6OfLm thickness were obtained. For the growth

of tin diselenide crystals, a source temperature of
6hdaC'and a growth temperature of Q7506 was used.

Usually thin platelets of metallic coloured crystals
having a thickness of é=100;¢m 'were obtained.

Crystals with good plane surfaces were
selected for morphological studies. Beautiful circular
and hexagonal spirals were observed on the as grown
faces of tin disulphide and tin diselenide crystals.
These observations reveal that these crystals grow from
the vapour phase by the screw dislocation mechanism.

spirals with hollow core and change of curvature were
observed on tin disulphide crystals. The change of
curvature of the spiral step depends on the stress
field around the dislocation. Eccentric spirals 0rigi~
nating from single screw dislocation were also observed
The eccentricity of the spirals depends on the super­
saturation gradient of the growing crystal. Eccentric
spirals and spirals showing change of curvature were
observed on tin diselenide crystals also. One of the

most striking features observed on SnSe2 crystals was
the interlaced spirals. Interlaced spirals result from
the dependence of growth rates on crystallographic
direction.
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Optical studies provide a wealth of inform­
ation on the band structure of the semiconductor and

also about the impurity levels in the band gap. Opti­
cal properties of the crystals were studied by trans­
mission measurements. Refractive index of the crystals
was determined from the interference fringes obtained

in the transmission spectra of thin crystals. Absorpt­
ion coefficient was also calculated from the trarsnission
spectra of the crystals.

In tin disulphide crystals, it was found that
there is a shoulder in the absorption.just before the
onset of band to band transitions. This shoulder is
caused by transitions from valence band to donor levels
(due to doubly ionizable sulphur vacancy) situated
0.17 eV below the conduction band. From absorption edge
measurements it was also found that, in tin disulphide
the valence band is split into three due to spin-orbit
interaction and crystal field splitting.

The fundamental absorption data was analyzed

in terms of the theory of Bardeen et al /1/ and from
this analysis, an indirect forbidden band gap of
2.07 eV and a direct forbidden band gap of 2.qo eV
have been detected in tin disulphide crystals. In the
case of tin diselenide crystals, the indirect band gap
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obtained is 1.05 eV. From the functional dependence
of absorption coefficient on photon energy it was found
that the transition is forbidden.

Conductivity type of the crystals was deter­
mined by the hot probe method. All the tin disulphide
and tin diselenide crystals grown were n-type.

From the electrical measurements, activation
energy required for conduction, mobility, carrier con»
centration etc. were determined. Resistivity of tin
diselenide crystals was measured at different temperat­
ures and from the temperature dependence of resistivity,
activation energy for conduction parallel to c-axis was,
obtained (0.072 eV). Resistivity and Hall effect per­
pendicular to c-axis were measured by van der Pauw's

technique /2/. From these values, mobility and carrier
concentration of tin diselenide crystals were calculated
From the results it was found that crystals grown by
physical vapour transport (carrier concentration.n/1016)
are less contaminated than that grown from chemical
transport (carrier concentration.“/1018) method.

Electrical conduction mechanism in tin disul­

phide crystals was studied using Al-SnS2—Al (MIN) stru­
ctures. The current voltage characteristics obtained
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show four discrete regions. At low voltages, the
current is proportional to the voltage (ohmic law reg­
ion) followed by a square law region at high fields.
This region is the shallow trap square law region. The
square law region is followed by another region where
current increases sharply with voltage (I<=C Vn; n25)
and this is due to the filling up of the traps. This
region is followed by the trap free square law region.
These observations indicate a charge injection into the
semiconductor. The log I versus log d plot in the ‘
shallow trap square law region shows a d3 dependence
establishing that the conduction mechanism is space
charge limited. From the threshold voltage, where the
ohmic current cross over to space charge limited current
in the absence of traps, the density of thermally gener­
ated free carriers was determined (2.5 X 1011 cm_5).
Mobility of the charge carriers was calculated using the
equation for SCL conduction (6 cm2/ v. sec.)- From this
mobility, conductivity of the specimen was calculated
(2.2 X 10-7 I1_1 cm'1) and the calculated value agrees
very well with the experimental value obtained from the
ohmic law region. Due to the filling of the traps in
the semiconductor, current increases sharply after
the shallow trap square law region. The trap filled
limit voltage measures the fraction of the total con­
centration of traps that is empty in thermal equilibrium
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and from the trap filled limit voltage, the trap con­
centration was calculated (2.3 X 1015 cm'3). Trap
depth, Fermi level, effective density of states in the
conduction band etc. have also been determined from the

measurements. Dependence of the current on temperature
in the ohmic law region gave an activation energy of
0.40 eV.
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IN TBQDU ClIr@_Ht

Modern solid state electronics is based on

crystal growth revolution and the advancement of semi­

conductor research and technology depend largely on the
basic and applied studies on crystal growth of semi­
conductors and other electronic materials. Certain
members of the IV“VI compounds, especially the Pb salts,
have been grown and studied for many years, as they form
an interesting series of semiconductors having in most
cases the NaCl structure, and because they have provided
sensitive photoconductive detectors operating in the IR
region. The study of IV—VI semiconductors received fresh
impetus in the mid 1960's with the discovery at Lincoln
laboratories that PbTe and SnTe, and also PbSe and SnSe
form solid solutions in which the energy gas varies con­
tinuously through zero, so that it is possible, by select­
ing the appropriate composition, to get any required small
band gap. Sulphides and selenides of tin are much differ­
ent from the lead chalcogenides; they have large band
gaps (“I 2 eV) and low charge carrier mobility
( é-30 cma / Volt. sec.) and hence are not suitable as
infrared detectors. But they are interesting at present
from the point of view of basic research, as they have
a layered crystal structure which exhibits polytypism
like the well known SiC crystals.
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Tin disulphide and tin diselenide crystallize
in a lattice having the cadmium iodide structure. They

have the general form MX2 where M is an element of the
IVth group of the periodic table and X is a chalcegen.
The atomic arrangement of these crystals is shown in

figure 1. The cadmium iodide lattice has an almost
perfect hexagonal close packing of anions (chalcogen)
with the smaller cations (metal) nestled in octahedral
intersticies between alternate layers of the anions.
In this structure, only half of the octahedral inter­
sticies are filled. The resulting strongly covalently
bonded X-M-X sandwiches almost fully satisfy the primary

valencies of the constituent ions, and adjacent sand­

D”
O
I--‘
Q.’

wiches are together by weak van der Waal's forces.
Covalent bonding of the atoms in the layers and the
van der Waal's bonding in between the layers make the
atomic lattice highly anisotropic, with easy cleavage
and extended growth perpendicular to the c-axis. Since
the structure is formed of clese—packed hexagonal nets
of anions, the unit cell is referred to hexagonal axis.

Most of the layered compounds exhibit poly­

typism; they crystallize into more than one crystallo­
graphic modifications with the same chemical composition
but with different number and manner of stacking layers
in the unit cell. A polytypic substance usually

2
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crystallize into a basic structure which is referred
to as its most common polytype. Only occasionally it
crystallizes into other polytypes which have higher
periodicities than the common polytype. Tin dichalco­
genides usually crystallize in the basic 2H polytype.

One of the most striking features of crystals
with layered structures is the existence of screw dis­
locations with Burgers vector perpendicular to the plane
of the layers giving rise to growth spirals. The great­
est experimental support fer the dislocation theory of
polytypism has come from the observation of, and meas­

urements on, growth spirals on the crystal surfaces of
polytypic substances. Frank /1/ has interpreted the
various polytypes as originating by growth around screw
dislocations in certain basic structures. Franks theory
received direct experimental support from the observat­
ion of growth spirals on the (OOO1) face of SiC crystals
and the measurement of their step heights /2,}/.

While vapour growth methods were used at

different times for the preparation of many of the
simple inorganic compounds, it has been also possible
to grow most of them from the melt by the Bridgmann—

Stockbarger method and the liquid encapsulated

Czochralski pulling method. In the case of the solid
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solutions, however, melt growth methods inevitably
lead to problems with constitutional supercooling,
and if this is avoided, samples will still in general
have a composition gradient along their direction of
growth. Vapour growth methods thus become the only

practicable way of producing good homogeneous bulkcrystals. _
Chemical vapour transport method is usually

used for the growth of dichalcogenide crystals. In
this method, the material is transpqflndfrom one end of
the ampoule to the other end by means of some transport»
ing agent. Crystals obtained from this method are gen­
erally contaminated due to the incorporation of the
transporting agent. In physical vapour transport (PVT)
method no transporting agent is used. The technique is,
less susceptible to contamination and has thus been more
extensively developed for the growth of pure semiconduct­
ors. Because of this, PVT method has been used for the
growth of crystals in this work.

Semiconductor crystals can be characterised

optically, electrically and morphologically. Optical
characterisation of the crystals by spectrophotometric
method yields a wealth of information about the band
structure of the material. From the transmission data
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obtained, refractive index, absorption coefficient and
band gap of the material can be calculated.

Electrical characterisation can be done by
measuring the current against voltage. Using metal­
insulator-metal (MIM) structures, the conduction mech­
anism in the crystals can be found. From the current
voltage characteristics at different temperatures,
activation energy for conduction is obtained. Trap
depth, trap concentration, Fermi level etc. can be
calculated from these electrical studies.

Optical microscopy is another tool for the
study of the surface topographic features of the as
grown faces of crystals to assess the perfection and
growth mechanism of these crystals.

This thesis contains the growth of tin di—
sulphide and tin diselenide crystals by physical vapour
transport method and their optical, electrical and mor~
phological properties.

Part of the work reported in this thesis is
published in the form of the following papers:

1) "Temperature controller adaptor for a
microvoltmeter"

Int. J. Electronics 52 (1982) 299.
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2) "Absorption edge of tin disulphide single

crystals"
J» APPl- Phys» 5a (1983) 53h?.

3) "Growth and characterisation of tin disul­
phide crystals grown by physical vapour
transport method"
J. Crystal Growth 6} (1985) 253.

Q) "Electrical characterisation of tin di­
sulphide crystals"
Solid State Commun. #9 (198A) 103.

5) "Optical and electrical properties of

SnSe2 crystals grown by physical vapour
transport method"
Solid State Commun. (communicated).

2) "Absorption edGe of tin disulphide single 

crystc..ls" 

J. Appl. Phys. 54 (1983) 5347. 

3) "Growth and chnrCl.cterisaticm of tin disul-

phide cryst~ls grown by physical vapour 

trc.nsport method 11 

J. Crystal Growth 63 (1983) 233. 

4) "Electricnl char:::..cterisEltion of tin d:i.-

sulphide crystGls lI 

Solid St2te Commun. 49 (1984) 103. 

5) ilOptical rlnd electrical propertios of 

SUSe crystals grown by physic2l vapour 
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CHAPTER - I

B,ELl3l_LM:? T__:Sp1§I?~€I:_CQN___DlLQcTQ_R _TE__I1LY_S_I_Q§g

Consider an isolated atom, the building unit of
a solid. The atom is composed of a concentrated nucleus
with neutrons and protons; surrounded by an electron
cloud. According to Pauli's exclusion principle, every
electron must have a different set of quantum numbers,
since they are fermions, each energy level in the atom can
have a maximum of two electrons. when a large number of

these atoms are brought together to form a solid, the
overlap of wave-functions in the entire crystal causes all
of the atoms in the crystal to collectively obey the Pauli*s
exclusion principle. Thus the discrete levels of the separat~
ed atoms are changed into bands of levels in the solid.
Figure 1 shows the energy levels of the outer shells of the
single atom on the left side and the right side shows what
happens when N atoms are brought together to form a solid.
Each of the single atom levels splits up into a band which
contains energy levels for 2N electrons. Between the adjacent
bands, there is a region of unfilled energy levels called
forbidden energy levels. Solids are so designed that the
minimum amount of energy is used and at absolute zero all
energy levels below the highest filled level are filled, all
levels above that level are empty. That level is the Fermi
level and it occurs at the so called Fermi energy.
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Depending on the valence of the single atoms in
the solid, there are several possibilities for the result~
ing band structure. Figure 2 shows the band structure of
an insulator, metal and an intrinsic semiconductor.
Because each energy level in the single atom contain two
electrons, an insulator forms when the valence is an even
number, otherwise there is a possibility of overlap as in
the bottom levels of figure 1. In the second figure energy
is plotted increasing vertically and the zero level of energy
is at the top. The bands shown in the diagram are the bands
at the top most energy band structure for that element, lower
bands are so far down that it is impossible to excite their
electrons and therefore they are not used in electrical con­
duction. There is a large energy gap between the filled
valence band and the empty conduction band in the case of
an insulator. So an amount of energy equal to the energy
gap would have to be given to an electron to get excited
from the valence band to conduction band. Since this value

is very much larger than the thermal energy of electrons at
room temperature, this is an insulator (Figure 2a). Band
structure of a metal is shown in figure 2b. A metal commonly
results, when a solid is made up of atoms whose valence is
an odd number because this results in a partially filled
band at the top of the band structure. Because the band is
only partially filled, there are empty electron states just
above the Fermi level.
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Figure 2c shows the band structure of an intrinsic
semiconductor. Here the valence band is completely filled
and the conduction band is completely empty at absolute zero,
but the energy gap between these two bands is quite small,
Thus the distinction between insulators and intrinsic semi­
conductors is only a quantitative one. The main feature used
to distinguish semiconductors from metals and insulators was
their negative temperature coefficient of resistance (TCR).
The semiconducting properties are brought up by thermal ex­
citation, impurities, lattice defects or non-stoichiometry.
At room temperature the resistivity of a semiconductor lies
in the range of 1O—2 to 1O9.flcm intermediate between good
conductors (1O“6.flcm) and insulators~61Oq"to 1O22.£Lcm).

A highly purified semiconductor exhibits intrinsic
conductivity. The temperature range at which intrinsic con­
ductivity is exhibited, the electrical properties of the cry­
stal are not modified by impurities. In semiconductors, as
the temperature is increased from absolute zero, electrons
are thermally excited from the valence band to the conduction
bandl In this excitation process the vacant sites left be-_
hind in the valence band are called 'holes'. Both electrons
in the conduction band and holes in the valence band contri­

bute to electrical conductivity. The conductivity1g— in the

presence of electrons and holes is given by <s~= (ne p-\e+pe yuh),
where n and Me are the carrier concentration and mobility
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of electrons respectively and p and [Uh are that of holes.
In an intrinsic semiconductor the number of electrons is

equal to the number of holes. The expression for the car­
rier concentration is given by

ni = NC exp (EF/RBT) (1.1)

and pi = NV exp I: -(EF+Eg)/kBTj

where NC and Nl are the density of states in the conduction

band and valence band respectively, E8 is the forbidden energy
gap, kB is the Boltzmann constant and T is the absolute tem­
perature. NC and NV are given by

1+ 2 3/ZNC = 2(2TT me RBYI‘/h ) (1,2)

NV = 2(2rr In; kBT/haf/2 (1.5)
I

where mg and mg are the effective mass of electrons and holes
respectively. Since ni = pi/2 - 5/4
ni .-.= pi = 2.(__2TFkBT/h2)5 (in; mi) QXP (‘E8/ZKBT)

= A exp (-E8/ZRBT) (1.1+)
where A is a constant. If we assume that the variation of
mobility of electrons and holes in an electric field with
temperature is small, then the conductivity 6‘, which is
proportional to the number of carriers has a variation of
the form

G‘ = C»-. exp (-Eg/2kB'I') (1.5)

of electrons respectively and p and ~~ ure that of holes. 
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where <ra is a constant. Such an exponential variation
of conductivity had long been known for semiconductors at
high temperatures.

At temperatures below the intrinsic range, the
electrical properties are controlled by the impurity and
this is the extrinsic case. Addition of impurities to a
semiconductor is called doping. Impurity atoms that can
give up an electron are called donors and atoms which can
accept electrons from the valence band, leaving mobile holes

in the band are acceptors. In a material if donor atoms
are dominant, the thermal ionization of donors will cause
electrons to be set free in the conduction band. In this
case, the conductivity of the specimen will be controlled
by electrons, and the material is said to be n-type. If
acceptors are dominant, holes will be set free in the val­
ence band and the conductivity will be controlled by posi­
tively charged holes. Such materials are p-type. The den­
sity of free electrons in the conduction band due to a donor

with activation energy Ed is given by
1/2 . 2 3/4

nc = (2nd) (2H'me kBT/h ) exp (—Ed/2kBT) (1.6)

where nd is the donor density. It is to be noted that nc
is proportional to the square root of donor concentration.
A.similar expression holds for the case of acceptors also.
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The most direct method for probing the band
structure of semiconductors is the optical absorption
studies. From the frequency dependence of the absor­
ption coefficient, we can determine the energy gap of
the material as well as whether the valence band and
conduction band extrema occur at the same or at differ­

ent points in the K-space.

The absorption and dispersion of a plane
electromagnetic wave is described by the complex refract­
ive index N = n+ik, where n is the real refractive index
and k the extinction coefficient. The plane wave can
be represented by

E = E0 exp [i (K.r —Lut£] (1.1.1)
H = Ho exp [1(x'.r -wtfl (1.1.2)

where K is the propogation wave vector, K = K1+iK2.
Equations (1.1.1) and (1.1.2) form a solution of
Maxwell's equations for the electromagnetic field in a
medium of magnetic permeability unity if

K.K '-ILUZE/C2 0.1.3)
The complex dielectric constant g,which includes the
effects of the conduction and displacement currents is
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defined as€:2+i€:€+'G_ ,1 2 1 l'j;EL (1.1.4)
The complex refractive index N is also defined by
E.= N2 giving

E.‘=1'12-K2

82:: 6*‘ rzank
cdgo

In the case of homogenous plane waves

_ E2! _ E2?K1 " C * K2 _ C
Substituting in equation (1.1.1) we obtain

Ex = EOX exp EiUJ(%§ - ti] exp Gddkx/c) (1.1.5)

This equation represents a wave with a velocity c/n which
is attenuated by exp (-wkx/c) travelling in x-direction.
The absorption coefficient d3, defined by the relative
decrease of the intensity per unit distance in the direct—
ion of propogation is

QC = -3%-E-U = 9'-;{i’i (1.1.6)
The reflection R is referred as the ratio of the time
averaged energy flow reflected from the surface to the
incident flow. For normal incidence, R is given by

a 2R = in‘lU~*k2 (1.117)(n+1)2 + k

defined as 

tl + i t2 = tl + i G""" 

UJ t.o 

The complex rofractive index N is also defined by 

e = N2 giving 
.2 

- K 
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= ~ c , 

Substi tuting in equation (1. 1 .1) we obtain 

~ = Eox exp [iU.I"(7 - tU exp (-wkx/c) 

(1.1.4) 

This equation represents a wave with a velocity cln which 

is attenuated by exp (-wkx/c) travelling in x-direction. 

'.Rhe absorption coefficient J:;, defined by the relative 

decrease .of the intensity per unit distance in the direct­

ion of propogation is 

2kw-- = c 

~e reflection R is referred as the ratio of the time 

averaged energy flow reflected from the surface to the 

incident flow. For normal incidence, R is given by 

R = 
(n_1)2- + k 2 

(n+l)2 + k 2 
(1.1.7) 

If) 
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when k = (3, i,e., in the transparent range_ 2 2R- (n-1) / (n+1)

ollirffeerletnttpicrzpasrtr qiebeerv 11,179.11 are Q:-aeea ­

Fundamental absorption, free carrier absorpt­
ion, exitonic absorption, impurity absorption etc. are
the mechanisms which are responsible for absorption of
electromagnetic radiation in semiconductors. In funda­
mental absorption, electrons can be excited from the
valence band to the conduction band with the absorption
of a photon of energy equal to the band gap of the mater­

5ial. The absorption coefficient in this case is =u 10 to
106 cm'1. One of the characteristic features of semicon­

ductor is that, on the low energy side of the absorption
band, the absorption coefficient drops rapidly and the
material becomes fairly transparent. This marked drop in
absorption is called the absorption edge.

Excitation of an electron from the valence band
to the conduction band leads to a free electron and hole

capable of moving independently under the influence of an
applied field. The system of electron and hole mutually
bound by their coulomb attraction is known as exciton.
The binding energy of exciton is small, about 0.01 eV
and hence the excitation level falls slightly below the

when k = 0, i.e., in the transparent range 

Different types of absorption processes. 

Fundmaental absorption, free carrier absorpt­

ion, exitonic absorption, impurity absorption etc. are 

the mechanisms which are responsible -for Rbsorption of 

electromagnetic radiation in semiconductors. In funda­

mental absorption, electrons can be excited from the 

valence band to the conduction band with the Qbsorption 
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of a photon of energy equal to the band gap of the mater­

ial. The absorption coefficient in this case is ~ 105 to 

106 cm-'. One of the characteristic features of semicon-

ductor is that, on the low energy side of the absorption 

band, the absorption coefficient drops rapidly and the 

material becomes fairly transparent. This marked drop in 

absorption is called the absorption edge. 

Excitation of an electron from the valence band 

to the conduction band leads to a free electron and hole 

capable of moving independently under the influence of an 

applied field. The system of electron and hole mutuallY 

bound by their coulomb attraction is known as exciton. 

The binding energy of exciton is small, about 0.01 eV 

and hence the excitation level falls slightly below the 



edge of the conduction band. The ground state (n=1)
excitonic level will be observed as absorption peak on
the long wavelength side of the direct absorption edge.
The exciton absorption is more pronounced in insulators
than in semiconductors and can lead to strong narrow
line absorption as in atomic spectra.

As the wavelength is increased beyond the

absorption edge, slowly the absorption coefficient also
increases. This rise in absorption is due to the elect­
ronic transitions within the conduction band or valence
band. This process is referred to as free carrier absor­
ption. The free carrier absorption takes place even when
the energy of the incident photon is less than the for­
bidden gap of the material and frequently this absorption
dominates the spectrum below the fundamental edge.

The transition between a neutral donor and

the conduction band or between the valence band and the
neutral acceptor can occur by the absorption of a low
energy photon. For this absorption process the energy
of the photon must be at least equal to the ionization
energy of the impurity. For donor levels lying deeper,
the impurity absorption will be well separated from the
fundamental absorption. For shallow impurities, the
absorption spectrum will take the form of a series of

edge of the conduction band. The ground stn.te (n=1) 

excitonic level will be observed as absorption peak on 

the long wavelength side of the direct absorption edge. 

The exciton ab30rption is more pronounced in insulators 

than in semiconductors and can lead to strong narrow 

line absorption as in atomic spectra. 

As the wavelength is increased beyond the 

absorption edge, slowly the absorption coeffici~nt also 

increases. This rise in absorption is due to the elect­

ronic transitions within the conduction band or valence 

band. This process is referred to as free carrier absor­

ption. The free carrier absorption takes place even when 

the energy of the incident photon is less than the for­

bidden gap of the material and frequently this absorption 

dominates the spectrum below the funde~ental edge. 

ThG transition between a neutral donor and 

the conduction band or between the valence band and the 

neutral acceptor can occur by the absorption of a low 

energy photon. For this absorption process the energy 

of the photon must be at least equal to the ionization 

energy of the impurity. For donor levels lying deeper, 

the impurity absorption will be well separated from the 

fundamental absorption. For shallow impurities, the 

absorption spectrum will take the form of a series of 
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lines in approximately the same position as would be
expected for the exciton spectrum.

The ._f*~:a§l smente_l_._a12S@.112i@i9 11 ­

when the energy of the incident photon exceeds

Eé, the band gap of the material, an electron can be
excited from the valence band into the conduction band.

There are two types of transitions; direct and indirect.
Transition involving photons is called direct transition
and the transition involving photons and phonons is called
indirect transition

tlliirse t ttranei ‘@1921 $­

In the case of direct transition, the valence
band maximum and the conduction band minimum appear at

the same point in the Brillouin zone at K = 0. Figure 5
shows a direct vertical optical transition near the funda­
mental absorption edge in a semiconductor.

The momentum of a photon h/A is very small

compared to the crystal momentum h/a, where )s is the
wavelength of light
of this, the photon
the momentum of the

¢{(hU) for a given

the probability Pif

and a is the lattice constant. Because
absorption process should conserve
electron. The absorption coefficient
photon energy hi? is proportional to
for the transition from the initial

lines in approximately the same position as would be 

expected for the exciton spectrum. 

The fundamental absorption. 

~men the energy of the incident photon exceeds 

Eg , the band gElP of the materi[;tl, an electron can be 

excited fro~ the valence band into the conduction b~d. 

There are two types of transitions; direct and indirect. 

Transition involving photons is called direct transition 

and the transition involving photons and phonons is called 

indirect transition. 

Direct transitions. 

In the case of direct trrulsition, the valence 

band maximum and the conduction band minimum appear at 

the same point in the Brillouin zone at K = O. Figure 3 

shows a direct vertical optical transition near the funda­

mental absorption edge in a semiconductor. 

1ft 

The momentum of a photon hi}\. is very small 

compared to the crystal momentum h/a, where A is the 

wavelength of light and a is the lattice constant. Because 

of thiS, the photon absorption process should conserve 

the momentum of the electron. The absorption coefficient 

cC (h 1)) for a given photon energy h 1) is proportionEd to 

the probability Pif for the transition from the initial 
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state to the final state and to the density of electrons

in the initial state ni and to the density of available_
final states nf. This process must be summed for all
possible transitions between states separated by an energy
difference equal to the photon energy ht).

hv Z - H . 10108<>C( 19) A2Pif nlnf ( )
In the case of absorption transitions between two direct
valleys where all the momentum—conserving transitions are

allowed, the transition probability Pif is independent of
photon energy. Every initial state at Ei is associated
with a final state at Ef such that

Ef.—= nu-[til (1.1.9>
But in the case of parabolic bands

E E-rE.1<.Ef ' g “ n *cme (1.1.10)
h2K2

and  2 2m*h

Therefore,
2

hv-Eg-=  (-J-+-1-r-) (1.1.11)~I- -3!­me mh
The density of states can be given by
1 ' an K2  (Zm >3/2 ‘/2

Mme) d(h|9) = -—--5 an -.= r (nu-Eg) d(hv)

state to the final state and to the density of olectrons 

in the ini ti.c~l state ni and tG the donsi ty of avo..ilnble 

final st&tos n f - This process must be summed for all 

possible transi tions between stcttos senaratod by an energy 

difference equal to the photGn anergy h V _ 

(1.1.8) 

In the case of absorption transitions between two dir3ct 

valleys where all the momentum-conserving transltions are 

allowed, the transition probability Pif is independent of 

photon energy_ Every initial state at E. is associated 
~ 

with a final state at Ef such that 

(1.1.9) 

But in the Case of parabolic bands 

E E 
_ h2~ 

f - -g 2m* 
e (1.1.10) 

and ~ = 

Therefore, 

hu - E = 112r (-1... + -L ) 
g m* m* e h 

(1.1.11) 

be given by The density of states can 
. 2 

N(h1J) d(htJ) = 87T K dK 
(21T )3 

3/2 1/2 
= (2mr ) (hl1-E) d(h'IJ) 

2 rr2 't13 g 
(1.1.12) 

2 -'! 

..... 1 



where mr is the reduced mass given by1 1' 1-U-11- Z III-air + nun—u—um* m*mr ‘e h
The absorption coefficient is given by

c£,(hU) = A(‘nv-Eg_)1/2 0.1.13)
where A is a constant.

In some materials, quantum selection ruies
forbid direct transitions at K = O, but allow them at
K #=O, the transition probability increases proportion­

ately to h19- E8. Since the density of states linked in
direct transitions is proportional to (ht9- Eg)1/2, the
absorption coefficient for the forbidden transition has
the spectral dependence

=C(hv) = B(hu- Eg)3/2 (1.1.m)
where B is a constant.

Indirect transitions.

When a transition requires a change in both
energy and momentum, a double transition process is
required because the photon cannot provide a change in
momentum. This situation can be overcome with the emiss­

ion or absorption of phonons. Momentum is conserved via

\J
-\­

where mr is the roduced mass given by 

= ...L 
m* h 

The absorption coefftci.en t is given by 

et (htJ ) 

where A is a constant. 

= A(hU-E )1/2 
g 

In some materials, quantum selection ru~es 

forbid direct transitions o.t K = 0, but allow them at 

K 4: 0, the transition probDbility increases proportion­

ately to h U - Ege Since the density of states linked in 

direct transitions is proportional to (hV - Eg)1/2, the 
-

absorption coefficient for the forbidden transition has 

the spectral dependence 

cC (h lJ ) = 

where B is a constant. 

Indirect transitions. 

B(hU - E )3/2 
g 

When a transition requires a change in both 

energy and momentum, a double transition process is 

required because the photon cannot provide a change in 

momentum. This situation can be overcome with the emiss-

ion or absorption of phonons. Momentum is conserved via 



a phonon interaction, and is illustrated in figure h.
Phonons, the quantum of lattice vibration has a charact­

eristic energy Ep. The minimum frequency for a phonon
assisted transition is given by

he =Ef—Ei+Ep (1.1.15)
for emission of a phonon, and

he :Ef-Ei-Ep (1.1.16)
for absorption of a phonon. In indirect transitions, all
the occupied states of the valence band are connected to
all the empty states of the conduction band. The density

of initial states at an energy Ei is

N(Ei) = -l-- <zm;>5/2 ]Eil ‘/2 (1.1.1?)2112 113

The density of states at Bf is

N(Ef) = g;$E@£3 <zm;>3/2 (sf _Eg)1/2

using equation (1.1.15)

. _ __._l____. ‘* 5/2 ' 1/2
N(Ef) _ N2 1&3 (sne) (hv - Eg 1 Ep + mi)

0.1.18)
The absorption coefficient is proportional to the
product of the densities of initial states and final
states integrated over all possible combinations of

pix‘,1

a phonon interaction, and is illustrated in figure 4. 

Phonons, the quo.ntutl of 12-tticG vibration h.:ls Cl chCl.ract-

eristic energy Ep. The minimum frequency for .~ phonon 

nssisted trnnoition is given by 

for omission of a phonon, 2nd 

- E 
P 

(1.1.15) 

(1.1.16) 

for absorption of a phonon. In indirect transi tl.'Jns, c:lll 

the occupied states of the valence band arc connected to 

all the e:t:'lpty st.:::ttes of the conduction bcmd. The density 

of initial states at an energy Ei is 

(1.1.17) 

The density ()f sLltcs at Ef is 

1 (dJ*)3/
2 (Ef -E )1/2 

21T 2 113 e g 

using equntion (1.1.15) 

N(E
f

) = 1 (2m*)3/2 (hlJ _ E E + E.) 1/2 
27T 2 t3 e g + p 1-

(1.1.18) 

The absorption coefficient is pr~portionnl to the 

product of th0 densities of ini ti,:1.l sto.tes o.nd final 

states integro.ted over 0.11 possible conbinations of 
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states separated by ho’; ED; 4} is also proportional
to the probability of interacting with phonons, which

-\

is a function f7(N“) of the number Np of phonon of energyI’

Ep. The number of phonons is given by the Bose-Einstein
statistics

€u\ Q . ,

(h ) = A;F(ND) I |Ei|1/2 (hv-Eg;Ep+Ei)1/2 @121‘ 0
(1.1.2O)

After simplification, absorption coefficient for a trans»
ition with phonon absorption is obtained as

_ A.(h19- E + E,)2ace. "    PM-1 for h‘U 7 E -E (1.1.21)
exp (Ep/KBT) -1 5 P

The probability of phonon emission is proportional to

NO + 1. The contribution cfié to the absorption coefficientJ.

is given by

£ __  E "'° Ee * sp_p§W p_Pm*~ is —' ~~  use for ht) > E +E (1.1.22)
1-exp (~Ep/kBT) 8" p

where A is a slowly varying function of L7. Since both
phonon absorption and phonon emission are possible when

hlj >Eg + Ep, the absorption coefficient J31 is given by

dgi Z dce +<ih

R3
QR

states sepcrnted by hu - E; oC is also proportional + p 
to the probability of interacting 1Nith phonons, which 

is [t function f (Np ) of the nunbor Np of phonon of energy 

Ep. Tho nur:lber of phonons is 6i ven by tho Boso-Einstein 

stntistics 

Np ::: 1/ [exp .~ Ep/kJ:} T) - D (1.1.19) 

Ch 

-(h11-.E +~) 

) = A f (N p ) J ~- - 'Eil 1 / 2 

o 

1/2 
(h~-E -E +E. ) dE. 

g+ P l' l 

(1.1.20) 

After sinplification, absorption coefficient for n trnns-

ition with phonon ebsorption is obtained as 

A (hl.9 - E + E )2 
f!. P for h" "/ E -E g p (1.1.21) 

The probnbility of phonen (mission is proportionnl to 

Np + 1. The contribution J:.e to the o.bsorption coefficient 

is given by 

tl:, ::: ACh" -
e 

l-exp 
for hU > E +E g p Cl.1 .22) 

where A is a slJwly varyinG function of V. Since both 

phonon nbsJrption o.nd phon'Jn Gf:lission Are possible when 

h1J >Eg + Ep ' the nbsorption coefficient cC i is ziven by 

d:... = l 
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A (h'l_7­
OC. =.-  ~s for E --E 41119 4-_ ES + Ep (1.1-.25)1 [exp (Ep/kB_T)-D *5 P

In the case of indirect forbidden transitions, an extra

factor (h19- E8 i Ep) is involved into the expression for
4% and cfih. Therefore for forbidden transition, absorpt­

ion coefficient<£,is given by
B (hv - E E )5

£ if =   -.<_---:gr_;--._=p_ __ (1 . 1 . 23+)
Exp (Ep/kB‘T) -3

The plot of (dlhI9)2 versus ht? for direct
allowed transition, (&§h17)2/5 for direct forbidden trans­
ition, (<0 hU )1/2 for indirect allowed and (QC hi) )1/5 for
indirect forbidden transition, should always be straight
lines. By extrapolating these lines to<£l= O, we can
obtain the band gap of the material.

It may be seen that a careful and systematic
use of optical data can yield a wealth of information
regarding the material under study. -This include the band
gap of the material and the relative position of conduction
band and valence band maxima in K—space. The functional

dependence of absorption coefficient on photon energy
near a transition can tell whether the transition is for­
bidden or allowed. The nature of transition can give in»
formation about the electronic states from which the

transition took place and this in turn can help to get a
picture of the band structure of the semiconductor.

£7
Ow

r£. = 
1 

A (hU - E +E )2 g- p for E -E cC h 1) ~ Eg + E 
IS P P 

( 1 • 1.23) 

In the c[~se of indirect forbiddcm transi ti-:)lls, an extra 

factor (h'" - ED' + E ) is inv'Jlved into tho 8xl1ression for 
L> - P 

d:e and c£a. Thur8f :)re for f0rbidd'3n tronsi ti::m, ,1.bsorpt-

ion cOGfficiont c£ is Given by 

~ 
if 

::: 

B (h1J - E + E )3 
g - j) ( 1 • 1 .24) 

The rl,;t of (<:£ h V ) 2 V8rsus h tJ f:~r direct 

9.11owed trrmsi tion, (cC hU )2/3 f,jr direct forbidden trw.s­

i tiun, (cC h 11 ) 1/2 for inc:.irec t tl.llowed ::md (GC h U ) 1/3 for 

indirect f8rbidden tr~nsition, should always be str~ight 

lines. By QxtrC!.polc..ting those linos to ~ = 0, we can 

obtain the bend CD.p 0f the D&teric.l. 

It co.y be seen th:),t a c.'7.reful and systerJcttic 

U..30 of opticc..l cl::tta cc:n yield et we:;,l th of inforr::'::-lti:Jn 

re[SD.rdine the nnteri<J.l under study. .rrhis includo the b.:1.nd 

eup of the m::-ctori[tl "',nd the relo.tive positi')n c:f conduction 

bnnd ,::,nd v[tlence bc..nd maxiLla in K-SP3C o. The functional 

dep0nd0nco of absorption coefficient on photon energy 

nenr Q. tr,'lnsi tLm crm tell whether the trnnsi tion is for-

bidden or allowed. The nnturo:-.f tr011sition ccm give in-

forl:wtion about the electronic st::'.tes from which the 

transition took pl::1.cO and this in turn can holp to got a 

pictur~ of the bond structure of tho sOLliconc1uctor. 
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The study of electronic trnnsport in semi“
conductors is becoming an increasingly important field.
Metal-semiconductor contacts ere very important in the
semiconductor device technology. The electrical proper­
ties of the semiconductor crystals are governed by the
combined effect of bulk and contacts. The current-volt­
age characteristic studios generally indicates the type
of contact encountered in the system. The electron
transport in e semiconductor will depend upon the nature

:5‘
O
|__.|

<13­

of the contact es given w.

(a) 911.. iei.¢.ee.ti:.i@FL

An ohmic contact is one which supplies o
reservoir of charge carriers to enter the materiel es
needed. The energy bend diagram for en ohmic contact
of n metal to an nmtype semiconductor is shown in

figure Sn. In this case the notnl work function <$%
must be smaller than the semiconductor work function

(PS. As the applied voltage is increased, electrons
are injected into the bulk of the semiconductor. The
carrier concentration near the contact is therefore
increased due to the flow of current and carrier in­
jection is said to take place. A consequence of the
phenomenon of carrier injection is the formation of

1.2. CUHR~NT .UJJECTION .lit SJ.l1IDS. 

The study DI electr~;llic tr':!.nspJrt in secli~ 

conductors is becuninc ~n incre~sincly i~port~nt field. 

r'1otC'.1-8GF~ic::;E:luct;')r contacts .::T-:; very Ln)·Jrtr.nt in the 

seriicmduct,l' device technology. The electric,,:,-l rr:por-

ties of the senicmc:uctor cryst.:tls c.rG C.·vorne,·l by the 

ace ch.').r.:~cteri8tic StUGt03 cener.::\lly indicC1t8s tlW type 

of contnct encountered ill tho systc r,. 'rh\..) eloctr'_lll 

trc.nsport in o. sO:.licc:nc~uc L)r will depend Ul)C;Il the nc:. tare 

of the cGnt&ct ~s iivcn below. 

An ohnic contnct is ~.me which supplies u 

needed. The enercy ~)ond di,~.e;r2J:1 f'Jr D-n ohnic con t:'1.C t 

fiGure 58.. In this c"'..se the not::-,l ynrk function <Pm 

r.mst be sD:lllor than the seDiconductor VIork function 

cP s· As the Cl~~)lied vol tnG0 is inc rec~sed, clee tr',)ns 

nre injected irito tho bulk of the se;]iconcuctor. The 

cnrrier concontratiGn nec.r the c~ntact is thcref~re 

increased dUG to the flow of current nnd co.rrier in-

jocti.')n is s:lic1 to take ::;lace. A cunsequenco 'jf the 

phenc";en')l1 of c::"rrier injection is the for;l<}.ti:)n of 
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e space charge cloud of charge carriers in the vicinity
of the contacts. Mutual repulsion between the individual

in the senicon=

Ho
m

cerriers limits the total injected ch: “
ductor and the resulting current is said to the space
charge limited (SCL).

(b) Qgpckingmgontect

A blocking contact (Schottky barrier) occurs

when <pm;>4§ and in this case electrons flow from the
semiconductor into the metal to establish thermal equili—
brium conditions. The energy bend diagram for e blocking
contact to an netype semiconductor is shown in figure 5b.
In this case the current is determined by the rate at
which the contact can supply carriers. On the application
of the field, e depletion region is created in the seni­
conductor end on equal negative charge resides on the metal
electrode. Due to the electrostatic interaction between
the oppositely charged regions, e local field exists within
the surface of the semiconductor. This causes the bending
of the bottom of the conduction band.

When contact is made to e p~type semiconductor

the very opposite effects to those described above take

place. That is, an ohmic contact is produced when q)ms
is positive and e blocking contact, when q>mS is negative.

U3
23

Cl. SPClC8 ch:_"r~e cloud of ch,J.ri~e c:::rriers in the vicinity 

Cl f the con t:Jc ts. Mu tuc:;,l repulsion ~j8tVJGen the inii vic1J),,:tl 

c~rricrs limits the t(;t.:'~l injected ch~,rce in the S0i:1iccm-

ductor nnd the rCGultinc current i8 snid ta the space 

charGe liQited (SeL). 

Cb) Bl_o,fkin£... contc~ct 

A bLlckinc c-:Jn tac t (Schot tky b2rrior) oc<.:urs 

when ro >th [',nd in this co..so el(;ctrms flr:w fr:1'1 the I'm Is 

se!:1.iconduc tDr in t) the ,':lOt::-l' to est J.blish thET~,!-':".l equili-

~riu~ conditions. The energy b~nd diacrno f'Jr 2 blockin~ 

contcct to ~n n-type GeDic~nduct~r is shawl in ficure 5h. 

In this c~se the current is d8tur~inGd by the reltc nt 

which the conto..ct can sUfply cnrriers. On the npplicction 

of the field, a depletion reeien is crc~tGd in the so~i-

e10ctroJe. Due to the eloctrostatic interaction between 

the Cipposi tely ch:"'.rc;oC!. rOGions, c. locC'-l field exists wi thin 

the; surfcce of the ser;'licJnJuc tor. This cc,uses tho bendinc 

~d the bottom of the conduction br.nd. 

When c::m t=,-c t is D~de to t" p·-tYPe seniconduc tor 

the very oPl'csite eff8cts to those described abcvo take 

pl:1.ce. Thc-t is, tUl ohnic c::mt,:~ct is pr'Jd.uced when Cl' 
I r.J.S 

is positive and Et blockinG con~c:.ct, wh..::n <p~ is nogative. 
1;1S 
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S ace char?e limited conduction._ll_iiL_“““_l__ii-_in__“iii.

When an ohmic contact is applied to s semicon­
ductor or insulator, electrons will flow from the metal
into the conduction band of the semiconductor and form e

space charge. There is e close analogy between the equat­
ions governing space charge conduction in solids and those
describing SCLC in a thermionic diode. The fundamental
difference between the two cases lies in the fact that,
in e vacuum, the electrons night be treated as obeying
the laws of simple particle dynamics, whereas in e solid
the mobile charge carriers ore continually interacting
with the crystal lettice.

Consider n perfect trap free insulntor with no
intrinsic carriers, of thickness d carrying a current J.
Let the field at a distance X from the surface be E(x)
and n(x) be the number of free electrons per unit volume.
At equilibrium, the current is given by the difference
between the drift current and the diffusion current.

J = no!-4 E — De (dn/dx) (1.2.1)

where Llis the mobility and D is the diffusion coefficient
By using the Poisson's equation dE/dx = ne/& in equation
(1.2.1) we set

J =€H1~: (dE/dx) - so (d2E/dxa) 0.2.2)
where ‘E, is the dielectric constant.

I r~
:3 U

ductor or insulator, Glectr~ns will flo~ froD the setal 

in to the c:mduc tL:m band of the sO;.1iconciuctor and forr.J. a 

spaco chargG. There is 3. close anc',lo5Y botweG!1 the equat­

ions governing spnce charcc conduction in solids ~nd these 

d88Cril)ini::~ SCLC in a tliermicmic di()dc. 'fh8 fllnc1ar.J.en tnl 

difference between the tvJ() cG'..ses liee in the f[tc t thC'-t, 

in 8. Vi::',cuum, tho olectrons r::ight be tro(""ted t1.S- obeyine 

the laws of simJle particle dyn~1ics, whereC8 in n solid 

the 30bilo charge cRrriors ore continunlly interactinG 

with the cryst21 lpttice. 

Consider Cl. perfec t tr.'1p free insul_~tor r/i th no 

intrinsic cr',rricrs, of thickness cl c"~rryinc D. current J. 

Lot the field ~t 3 rtistance x fraD the surface be E(x) 

c..nd n( x) b0 the nur.11.Jer 0 f freo eloe trons per unit voluDe. 

At equilibriun, the current is given by the difference 

between the drift current Rnd the diffusion current. 

J = ne ~ E - De (dn/dx) (1.2.1) 

where fl is the r.1Obiii ty [lnel D is the diffusion coefficient. 

By usinc the PoiS8on's equQtion dE/dx = ne/E in equntion 

( 1 .2. 1) we e;et 

J =€J..tE (dE/dx) - £ D (d2E/dx2 ) (1.2.2) 

where £ is tho dieloctric constc:mt. 



Integrating this equntion using Einstein's relation

Ft/D : e/kBT, taking dE/dx‘¥ E/d and neglecting the lest
term, which is nertnissible if la T44 eEd we can obtainJ. B S ;

E -1  EZJ/8!") (x+x<, U (1.23)
Since the diffusion tern has already been >neglected and
if the space charge effect on the field near.the injectin
cathode is also neglected, X0 can be calculated Fran the
boundary condition that at X : O, n = N5

‘an mg RBT 5/3
No '-= 2 ~e~s—};~2—~~~e eX'p -(W - X)/KBT (1.2.1+)

where No is the electron density at the metel~insulator

interface, mg is the electron effective mass, W is the
metal work function end.Xlis the electron affinity of the
insulator. From equations (1,2.1) and (1.2.3)

X0 = eJ/(Hm? O2) (1.2.5)
d

Using the relation V = jg dx, the potential across the
0

insulator is given by

V  i(xi+xo )] dx
= 2/5j(-$15) {ha + X°)3/2 -X§/23 0.2.6)

when x°<<d

__ 9 i _'\_g_2_ (1.232)
J - .8. en d3

Integrc.tine tills equ,'..,tion usinc Einstein t s relrttion 

~/D :::: e/kBT, tr'.kine dE/dx ~ E/d and noclcctinc~ the lc..st 

E :::: ,J U 2J / ~ ~) ( x + xo D (1. 2.3 ) 

Since the diffusion t~rD has already becn ~oSloct8d and 

if the spt:ce ch.:tree effect on the; fiold ne2r. t!lO injectinG 

cnthodc is also neelected, Xo cnn bo cnlcul~ted fr)~ the 

boundo,ry condition th,':!t at x :::: 0, n :::: No 

1\To ~ 2 (~lT m
h

·, 2~ kB~)3/2 
l' exp -(W - )C.)/kBrr 

where No is the electron density ~t the metal-insulator 

interface, m* is the electron effective wass, W is the e 

metal work function and X is the electron affinity of the 

in.sulntor. Fr:::)ii~ equnti'=ms (1,2.1) and (1.2.3) 

, 2 2 
xo = E. ,J / ( f--l No 0 ) ( 1 • 2 • 5 ) 

d 
Using the rele.tion V:::: fE dx, the potential across the 

o 
insuL'.tor is 

V 

eiven by 

= fJCf{;- ex + xo ~ dx 
o 

:::: 2/3J(~Jfv-) (Cd + xc)3/2 
- x?/23 (1.2.6) 

v/hen x <..t. d 
Cl 

J :::: 
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This is the standard Mott end Gurney equdtion /1/ for
one carrier injection.

If thermally generated free carriers with
density no are present, then at low voltages where the
injected carrier density is less than no , Ohms law will
be obeyed.

J = enofi-E ’1.2.8)
The transition from Qhms low to the Mott and Gurney law

takes place at the transition voltage Vtr which is given by

- l‘<n-<+
"5

Q € Vii“enbp = 8 H -3?
8 en: d2Vtr Z

The theory of spoce charge limited currents in the case
of insulators or semiconductors with traps was due to
Rose /2/. If the semiconductor contains traps, a large
fraction of the injected space charge will condense therein,
which will make the free carrier density much lower than
thet in e perfect one. Since the empty traps will remove
most of the injected carriers, the presence of traps will
reduce the space charge limited current. In thermal equili~
brium the free electron density no is given by

no = NC exp |:(1:F - EC)/kBTJ (1.2.1e)
where NC is the effective density of states in the
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This is the stc.nc1ard Mott Ctnd Gurney equ~tion /1/ for 

cno carrier injection. 

If thermally gcneI'[\tecl frQ8 c2rriers with 

density no ere pres8nt, then at low voltagc3 whore the 

in,jcc tod c'lrr.i-.:::r dousi ty is loss th.:: .... n no , Ohcs lnw will 

be oboyed. 

J = en IJ Y.. 
o r~ d (1.2 .. 8) 

The trcmsi tion from ohns lClw tu tho Hot t 2nd Gurney 120.1,': 

tnkes plac0 at the trnnsition voltage Vtr which is given by 

Vtr 
2 

en fJ = 2.EtJ Vtr 
0 

cl 8 r13 .... 

8 eno d2 

Vtr = 9E 
(1.2.9) 

The theory of sp:-'.ce charGe limi t(;d curron ts in the Cf'-SO 

of insulators or semiconductors with tr~ps was duo to 

Rose /2/. If the semicoIL1.uctor conto..ins tr[',ps, Co lClrge 

fraction of thG injected sp~ca chcrgc will condense therein, 

which will m"ke the froe cnrrior density much low(;r th<'..n 

that in a perfect one. Since the o~pty traps will romove 

mcst of tho injected cClrricrs, the presence of traps will 

rcduc e the Sl)C1.ce chnrce limi tad current. In therE1Cll equili-

brium the free eloctron density no is eiven by 

(1.2.10) 

where N is the effective density of states in the c 



conduction band, E? is the Fermi level and EC is the
bottom of the conduction band. The occupancy of a trap

level at Bk in thermal equilibrium is given by
N

_  ,_i_t_.. _l_.__._r._i., ___’§;__- __-__
nt,o ‘ ‘1+-1/E exp [TEE - EfX@§§j (1.2.11)

where Nt is the 1* density and g is the

6+
5

‘Tl:

Q.»
O

U31

neracy

factor. With no applied field, the equilibrium trap
occupancy results from the balance of electron caeture
and thermal re~emission from the traps. When a field is
applied, this balance is altered due to the change in
free electron density accompanying the change in injection
level. Therefore in the insulator, the balance between
trapped and free carriers is reached as if the insulator
were in thermal equilibrium with no applied field, only
with a free carrier density n(X) and the corresponding
Fermi level known as the Electron steady state Fermi level
(ESSFL).

-.
n(x) = NC exp [kEFn(X) - EC)/kBrJ (1.2.12)

The trap occupancy
Nt

nt(X) = "1 ==t*== .c***" c****="sr**="re-" (1.2.15)
1 + 1/5 eXpl:(Et “ EFn(X))/kB%]

From the above equations

nt(X) = Nt /(1 +

where N = NC exp I:(Et — EC)/KBFJ (1.2.15)

C3 I-—-*

C3

5,\_/

(1.2.14>

{$8

conduction band, El<' is the Fermi level and E is the 
• c 

bottom of the' conduction band. The occupancy of a tro.p 

level o.t Et in thor1'1c:.l equilibriu:il is E;i VGn by 

Ht 
nt,O = 1 + 17g exp -'((Et '- EF)7k~ C1.2.11) 

factor. With no nppliod fiold, the oquilitriuG trap 

occupancy reGults fro]';l tte 1);::li:::nc8 of eloctron capture 

and thermal re··-or:J.ission frori! the tr.-::'..ps. l{:lhcn a field is 

applied, this ba.L:nco iG 0.1 t8r0d due to th8 Cht.nG8 in 

free olve tron clensi ty :1CCoytipa.nying till} ch,"..neo in inj cc tiol} 

lovel. Thor0fore in the in3ul.~tor, the br:Ll.i,nce ootvJOon 

trCLpr'Grl and frlO8 c ...... rricrs is roc,ch0d ,":,-S if the insuL..l.tor 

were in ther~al equilibriu~ with no ~ppliod field, only 

wi th et froe c·':'.rrier densi ty n(x) [',nd tilG corresponding 

F<;:;..~t1i level known ilS the Eloc tron stoo.dy st"tc Fermi level 

(ESSFL) • 

n(x) = 

The tro.p occupc:.ncy 

_______ }_~t~__ ._. __ 

1 + l/g exp [CEt - EFn(x)/kB~ 
From the c:.bove oquations 

whore N = N exp c 

= Nt /(1 + k n~x)) 
[ (Et - E c ) /kf) T J 

(1.2.12) 

(1.2.13) 

(1.2.14) 

(1.2.15) 



Shallow traps are at least RBT above the ESSFL
and can be effective in capturing injected electrons.
The ratio between the free to trapped carriers is given
by

N N“ G’ “ —E k T
TM Z M I ?__C_.,..::\ .__(-Z /___B_iJ._ : 9 ( 1 . 2 . 1 6)

where 9 is a constant. If 8 is small, the traps are
more effective in immobilizing the injected carriers.
Thus a higher injection level (applied field) will be
required to produce an injected electron density greater
than the thermal carrier density no. New the Mott and
Gurney equation becomes

2

J 1 ZQEP-Z3 (1.2.1?)
8 ea,d2and V : (1.2.18)tr 9 955

In the presence of deep traps, nt(X)t: Ht, the traps are
full and have little influence en the free carrier density.
When & field is applied to the semiconductor, the ESSFL
moves up the energy gap towards the conduction band. When

it moves through a trap level, the shallow traps become
deep. When the applied field is so large that the ESSFL
lies above the trap levels, all the traps are full and
all the injected charge appears in the conduction band
and the current increases rapidly back to the trap free

Shollow tr~ps ore ~t lc~st kBT above the ESSFL 

and C 0.11 b c; c ffee ti ve in e'lpturinc; inj QC tec~ elee trons. 

The r .. ::ttio betvwen the froe to tr!?lJt;od c(,~rriGrs is e;iven 

by 

N 
= e (1.2.16) 

where e is Cl. consto.nt. If e is small, the trcps are 

more effectivo in immobilizing the injected ccrr1ers. 

Thus ,') higher injection level (oPlllied fi<.:ld) will bo 

required to produce an injectud electron density cre~ter 

than the thermal corrier density n. Now tho Matt 2nd o 

Gurney eqw:',tion bccones 

J = (1.2.17) 

(1.2.18) 

In the prGsence ef cleeI' tr£~ps, nt(x) ~ l~t, the traps {ero 

full and ht'.ve little- influence ::m the fr(:;o eo.rrior density. 

\,Vhen a field is applied. to the se;i1iconduct~r, the ESSFL 

r.l0ves up the enercy sap towo.rds the conc1uctLm bnnd. When 

it moves throuch c.. trc..p levul, the sh::1.llow traps 'Jecome 

deep. vVhem tho ~jJplied field is sc> l~.rc£ th~:t the ESSFL 

lios [tbc:ve the tr~p levels, nIl the trC1.~)s ".re full .':'-nd 

0.11 the injected chargo 2ppears in the conduction band 

an cl the curre11 t incrcases rapidly bo.ck to the trap freo 
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curve. The voltage at which this occur is called the
trap filled limit voltage.

VTFL Z 9 Ht dz/G. (1¢2¢18)
Lampert /§/ has calculated the complete current-voltage
curve for a single set of shallow traps and is shown in
figure 6. At low voltages, the injected carrier density
is less than the free carrier density and Ohm's law, is
obeyed. This is the region 1. When the injected carrier
density is greater than the free carrier density, the
current becomes space charge limited and is modified

0

by the traps in the semiconductor. This is the square
law region (region 2). At the trap filled limit voltage
all the traps are full and the current rises sharply in
region 5 until it reaches the trap free square law reg­
ion shown in region 4.

L'1_f5lJ_Lc

Conductivity measurements are net sufficient
for the determination of the number of charge carriers and
their mobility, as the product of the tee appears in the
expression for conductivity. Moreover these measurements
do not give any information about the sign of the prominent
charge carrier. Hall effect may be used to separate out
mobility and carrier concentration, as it directly gives
the number of charge carriers. As a byproduct we get the
sign of the prominent charge carrier also.
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curve. The voltage at which this occur is called the 
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When a magnetic field is applied at rightangles
to a conductor carrying electric current, an e.m.f. is
developed across the conductor in a direction perpendi—
cular to both the magnetic field and to the current. This
is known as the Hall effect, and the developed voltage,
Hall voltage.

Consider an n-tyne semiconductor having an

electric current density JX in the X-direction and a mag~
netic field in the z-direction as shown in figure 7a. If
we consider the effect of the magnetic field on the drift
velocity of the electrons in an electric field in the
Xy-plane, there must be a component of the field at right—
angles to the current flow to balance the transverse force
due to the magnetic field.

1

The drift velocity VX is given by

VX I - JX/1’lG

where n is the electron concentration and e is

ronic charge. The average transverse force on

in the y-direction is equal to eBvX where B is

induction. The balancing field Ey is given by

e Ey : evXB

(15.1)

the elect­
an electron

the magnetic

Ey 3 VXB

3'7

When a magnetic field is applied at rightangles 

to a conductor carrying electric current, an e.m.f. is 

developed across the conductor in a direction perpendi-

cular to both the magnetic field and to the current. This 
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~ngles to the current flow to balance the transverse force 

due to the TI12gnetic field. 

The orift velocity Vx is given by 

.J Ine x 

where n is the electron concentration and c is the elect-

ronic charge. The nverage transverse force on an electron 

in tho y-direction is equal to eBvx where B is the magnetic 

induc tion. The bulencing fiold Ey is given by 

ev B x 
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where Ey is the Hall field. By substituting the value
of vx from equation (1.3.1)

Ey = — JXB/ne (1.§.5)
The Hall field is proportional to the current density
and magnetic induction. The proportionality constant

is known as the Hall constant RH.

RH = - 1/ne \1.5.n)
Hall constant is inversly proportional to the electron
concentration. The sign of the equation depends on the
sign of the charge carriers.

If the crystals are irregularly shaped, van der
Pauw technique /q/ is the best method for the resistivity
and Hall effect measurement. In this method four small

Ohmic contacts are made to the periphery of the specimen
having uniform thickness. Let us consider a sample of a
conducting material of arbitrary shape with successive
contacts A, B, C and D fixed on arbitrary places along
the circumference (figure 7b).

The resistance RAB’CD is defined as the potential
difference VD — V0 between the contacts D and C per unit
current through the contacts A and B. The current enters
the sample through the contact A and leaves it through

where E is the Hall field. By substituting the value y 

of v f~om equ2tion (1.3.1) x 

= 

The Hall fi81d is proportional to the current density 

and magnetic induction. The proportionality constant 

is known as the Hall constant RH' 

= - 1/ne \ 1.3.4) 

Hall constant is inv8rsly proportional to the electron 

concentration. The sign of the equation d8ponds on the 

sign of the chargo carri(~rs. 

If the crystals are irregularly shaped, van der 

Pauw techniquo /4/ is the bost method for the resistivity 

and H2l1 effect measurement. In this method four small 

ohmic contoctL. :;lrc made to the periph8ry of the specimen 

having uniform thickness. Let us consider a se..mple of G'.. 

conducting muteriul of arbitr2ry shape with successive 

contQcts A, B, C and D fixed on arbitr~ry places along 

the circumfer8Hc e (figure 7b). 

The resistclDcO RAB CD is dofined ~s the poten tio.l , 
difference VD - Vc between the contC'..cts D 2nd C Der unit 

current through the contacts A ~ld B. The current enters 

th8 sDlllple through th8 contact A and lec,vas it through 



the contact B. Similarly we can define the resistance

REC DA. In these cases the following relation holds.5 -TYR <11 -e R <1 = 1exp ( AB’CD /f ) + exp ( Tl BQDA /P)
(1.36)

From this expression, the resistivity_F is obtained as

ln 2 2 R ~1Td (R + R ,) R
5-= 2 ._..... M,l@i¢_nl_.lc,§9lnl.@l ,f ( _iE».._<.;_12 J (,_ 5 _ 6)BC , DA

where d is the specimen thickness and iris a function of
the ti R R .1 d t” f'e th 1 t‘ra 10 AB,CD/ BC’DA or y an sa is 1 s e re a ion

R - R
.1?2ABiCDl‘_B_(-L. DA = f arc cosh iexp § ln 2/ii} ( 1 .5.'7)AB,CD + RBC’DA 2
The Hall mobility can be determined by measuring the

change of the resistance RED AC when a magnetic field is5

aPP1led perpendicular to the sample. Hall mobility is
then given by

L)RHr I-' £1H B _P
where B is the magnetic induction and L)RBD AC the change9

of the resistance RED AC due to the magnetic field.1

the contact B. Similarly we can define the resistance 

RBC,DA. In these cases the following relation holds. 

exp (-TI RAB,CD d/! ) + exp (- 11 RBC,DA d/f ) = 

From this eXI.lression, the resisti vi ty f is obtained as 

1T d (RAB CD + RBC DA) 
-... ,.--- ""=-

In 2 2 
f (RAB,CD ) 

RBC,DA 

(1.3.6) 

whore d is the spocinen thickness and f is a function of 

the ratio RAB,Cn/RBC,DA only and satisfies the relation 

~AB,CD - RBC,DA 
R = f arc cosh (§xp (~n 2lil3 

AB,CD + RBC DA ~ , 

The Hall mobility can be determined by measuring the 

changG of the resistance RBD AC when a magnetic field is , 
applied porpenQicular to the sample. Hall mobility is 

then given by 

tJ. H == 
d 
13 (1.3.8) 

vThere B is the magnetic induction CJld IJ RBD AC the change , 
of the resistance RBD,AC due to the magnetic field. 
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CHAPTER — II
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The theory of crystal growth can be divided into
two sections; the theory of the growth of an ideally
perfect crystal and the theory of the growth of an imper~
fect crystal. Based on thermodynamical grounds, Gibbs /1/
gave the first crystal growth theory. Gibbs formulated
the minimum free energy criterion and showed that the
condition for the stability of an isolated drop of a fluid
is that its surface free energy and hence its area be mini­
mum. Thus for a crystal in equilibrium with its surround­
ings at constant temperature and pressure, the Gibbs free
energy will be a minimum for a given volume. If the volume
free energy per unit volume is taken as a constant through—

out the crystal, then %£@—i Pi = minimum, where ¢'i is
the surface free energy1per unit area of the-ith face of

area Fi on a crystal bounded by n faces. Thus those faces
will develop which lead to a minimum total surface free
energy for a given volume.

The theory was further developed by Curie /2/ and
Wulff /3/- Wulff deduced that on a crystal, the velo­
cities of growth of different faces in the directions of
their normals are proportional to the appropriate
specific surface free energies.
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Bravais /h/ first advanced the theory of
reticular density. According to this, the velocity of
growth in a direction normal to a face would be the
slowest for the planes of maximum density. The faster
moving planes would grow out leaving only the slow
moving planes of maximum reticular densities. The

simple Bravais law, that the most densely packed planes
will occur as crystal faces, was extended by Donn and
Harker /5/ to take into account the effect of symmetry
operations on the basis of Miller indices. Soehncke
/6/ introduced the idea of surface energies by postul­
ating that the faces which possess the greatest reticular
densities are those with. minimum surface energies and
hence have minimum velocities of growth.

ATQElQiTHEQBY_QEil5E§RQW§fi,OFiAlEBBE§QT.QEX§l§L

For the growth of an ideally perfect crystal,
Kossel /7/, Stranski /8/ and Volmer /9/ have developed
an atomic theory. To illustrate the KSV theory, consider
a simple cubic structure, in which each cube represents
one molecule and also one unit cell. Each molecule is
attracted equally by all its six neighbours and only
the nearest neighbours attract one another. At absolute
zero, at which there are no thermal vibrations, the
flat crystal surface is partially covered by another
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layer. The difference in level is the intermolecular
spacing and is known as the "step". The reentrant
corner where the step shifts through one lattice spac­
ing, is the "kink". These kinks act as exchange sites
where the molecules reach and leave the body of the

crystal at finite temperatures, '

When the temperature is raised from absolute
zero, the component molecules will start vibrating
relative to one another. Soon some molecules will have

enough energy to overcome the energy that binds them
to the crystal. They will then break away from the
body of the crystal and fly about in the space surround­
ing it. These free molecules constitute the vapour.
The molecules which are at the kink positions are more
likely to leave the crystal and vapourize, though this
will happen for some molecule at other positions. The
energy required for a molecule to leave the kink posit­
ion is the evaporation energy W. While some molecules
are getting vapourized, other molecules from the vapour
phase reach the crystal surface and are adsorbed there.
An equilibrium will be reached when these two process
become equal, the step has acquired a number of kinks.

Based on thermodynamical considerations,

Frenkel /1O/ has calculated the concentration of kinks
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in a monomolecular step at a finite temperature.
Burton, Cabrera end Frank /11/ showed that the con­
centration of kinks is larger than that given by
Frenkel. According to them, in terms of the inter­
atomic distance- a, the mean distance X0 between the
kinks is given by

x°~» 1/2 a exp (w/kBT) (2.1.1)
where w is the energy necessary to form a kink, T is

the absolute temperature and kB i8 thé BO1tZmflnn COn~
stant. They found that for close packed crystals with
homopolar binding w will be of the order of W/12, where
W is the evaporation energy. In terms of the nearest

neighbour interaction Q), which is related to the
evaporation energy by the equation

(P = 1/6 w

X0 ~ 1/2 a1 exp (<P/2 kBT) (22.1.2)

Migration of adsorbed molecules-A-1 .___ 7_ If If V-.sV _’ _ _— i7*..——-3 is.‘ o

When the crystal is in equilibrium with its
vapour, molecules join and leave the crystal at the
same rate. The rate of leaving of the molecules from
the crystal depends on the temperature and the rate of
reaching of molecules on the surface is proportional
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to the vapour concentration. when the vapour pressure
in contact with the crystal is increased above the
equilibrium value, more molecules join the crystal
than leave it, and the crystal begins to grow.

Experiments indicated that in growth from
vapour, the rate of direct arrival of molecules on
the crystal surface is generally small compared to the
rate of arrival by surface migration. Between the
time a molecule hits the surface of a crystal and the
time it evaporates again into the vapour, the adsorbed
molecule diffuses a considerable distance.

According to BCF theory /11/ the mean displace—

ment xv of adsorbed molecules on the crystal surface
is given by

xs : a exp [kwg - Us)/2 kBf] (2.1.3)

where Us is the activation energy for the surface diff­
usion. Wg is the evaporation energy from the surface
to the vapour and is given by wg = 3 <I>. Therefore,

xsrv a exp (5<P/2 KBT) (2.1.q)
Bate .OiI._ad_va1_1_<;te_- :o_f-_er..-.s_t.I:r»1_is_1i*~=__§i22­

The growth of a perfect crystal whose surface
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has steps will be the result of (1) transport of
molecules from the vapour phase to the surface to form
the adsorbed layer (2) the diffusion of the adsorbed
molecules on the crystal surface (5) the diffusion of
such adsorbed molecules along the edge of the steps
until they reach a kink.

The step at a particular temperature will go
on receiving more molecules at its kinks than it loses
from the kinks as long as the pressure of the vapour
in contact with the crystal surface is above the equi­

librium vapour pressure. The saturation ratio<£‘and
the supersaturation e; are defined asp P-PC Ar0&1‘: ~—-- (1.: --:'.'-'--'~:-""-~po eul sq Q; 1 pa pa (2.1.5)
where p is the actual pressure and pa is the equili­
brium vapour pressure. The straight step will continue
to advance as long as Lip is positive. For a straight
step, the rate of advance E0 is proportional to the
supersaturation and is given by /1O/

Q0 == £2(d;— 1) xs\F<mq>(-W/RBT) (2.1.6)

where\f is the frequency factor.

Thus if a crystal face is covered partly by a
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layer, this layer will grow with a speed proportional
to the supersaturation. As long as the pressure of
the vapour is kept above the equilibrium value, it
will continue to grow until it covers the whole surface.
All steps initially present on the crystal will move,
during the process of growth.towards the edge of the 5
crystal and disappear, forming a completed layer. This
completed surface will now contain a few adsorbed mole—

cules and some vacancies. Thus all the stepped surfaces
will be eliminated during the growth process and low
index surfaces will be left. Further growth will be
possible only after the formation of new steps.

514r;fa¢:e  ll¢_l_‘§:§§P§-lQP.-_-_

' On perfect crystal faces steps could be
created by thermodynamic fluctuations in the same way
as kinks are formed in a step. Calculation of BCF /11/
has shown that steps will not be created by thermodynamic
fluctuations on a low index face unless the temperature
of the crystal is raised almost to its melting point,
when the surface rapidly becomes rough. Therefore
for the growth to continue, steps must be formed gradu­
ally, if at all, at ordinary temperatures.
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Gibbs /1/ showed that in the case of a perfect
crystal surface, the rate of growth is limited by the
production of new layers, which is a nucleation process.

Hence before the formation offnew layer, a two dimens­
ional nucleus has to be formed, on the edges of which
growth can proceed. For a given degree of supersat­
uration, there is a critical radius of the nucleus and
a nucleus of radius greater than this will grow and if
less, it will evaporate.

BCF /11/ showed that the shape of the nucleus
depends on the crystallographic symmetry. The rate of
formation of nucleus is given by

2 (s/ac) exp <-qfl/kgwg 1n~g> (2.1.?>
I

where Z is the rate of arrival of fresh molecules at
single surface sites, S is the area of the crystal face
under consideration and a, is the area per molecule in
the layer. Below a critical supersaturation value of
25-50%, the formation of the nucleus is negligible.
Above this critical supersaturation the growth process
is not limited by nucleation, and a perfect crystal will
therefore be able to grow layer by layer.

.2 e-1=eowT1_~1_gor: Bel;/ll CRY" ALS.
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1% or lower. Frank /12/ proposed the mechanism for

the growth of such imperfect crystals. In this case
growth of the crystal takes place in the presence of
a step provided by a screw dislocation. This step
will have a large number of kinks. When the atoms

are adsorbed on the crystal surface, they diffuse to
the step and kinks, and the step advances. The step
provided by the emergence of a screw dislocation,
terminates at the dislocation point, where it remains
fixed. Due to this, when growth takes place, the step
can advance only by rotating round the dislocation
point, After one revolution, a complete layer of mole­
cules will have been added and the crystal thickened by
one molecular layer, the step having been left in the
initial angular position.

I
0

At a particular supersaturation each point
of the straight step will advance with the same speed.
Angular velocity of the step near the dislocation is
very much greater than the parts farther out for the
same linear velocity. During growth the step will
wind itself into a spiral pattern around the dislocat~
ion point. The shape of the spiral depends on the rate
of advance of a growth front in different crystallo—
graphic directions.
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When the rate of growth is independent of
crystallographic direction, spirals with circular symm­
etry will result. Such conditions are likely to occur
in growth from vapour, so that the rate of advance of
a straight step does not vary with orientation in the

crystal face. When the distance between the kinks is _
small and the mean displacement of the adsorbed mole—

cule is large, the molecules will have a high prc ,bil­

ity of adhering to the step if adsorbed near it, irres­
pective of the orientation of the step. Therefore, the
rate of advance of the ledge will be independent of the
crystallographic orientation and a rounded spiral will
result. The shape of the spiral can be calculated using
the BCF theory /11/.

A ledge which forms a portion of the spiral

and has a radius of curvature_E, will advance with a
velocity Uh given by

vi = vac (1 - (2.2.1)

(+0\
,‘-u

where Va, is the rate of advance of a straight step

and fa is the critical radius of curvature. If the
supersaturation is not too high, _fC is given by

Fe = a qr (2 1<B:r lnog) (2.2.2)
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Let 9(r) represent the rotating spiral in polar co­
ordinates (r,9), The radius of curvature at a point
r will be

f:=(1+ r2 er2)5/2 / (2 e- + r2 e~5 + r e")
(2.2.5)

where 9' and 9" are the derivatives of 9(r). If the
angular velocity of the whole spiral iscnr, the normal
velocity at the point r is

vm = Jr <1 + 1? era)“/2 (2.2.1+)

A good approximation is obtained by taking an Archimedean

spiral

r = 2 F; e‘7 0 (2.2.5)
which has the proper central curvature. oftis then
given by

U5 = voo / 2 PC (2.2.6)
The spacing between the successive arms of the spiral
will be constant and will be given by

dr = z+nQfc (2.2.?)
Polygonal spirals will arise from the depend­

ence of the rate of advance of a growth front on its

orientation, which will happen when Kg given by

ZR
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equation (2.1.6) Varies with the orientation on the
crystal face. when the step is parallel to a close­
packed direction, the step will have relatively few
kinks, and the kink energy being high. Therefore, the
kinks are few and far between and the distance moved

by the adsorbed molecule is small, polygonal spirals
will result.

For an unequivocal verification of the growth
of crystals by the screw dislocation mechanism (1) the
surfaces of the crystals should be minutely examined
for microscopic growth features and their shapes should
be shown to be in agreement with theory; (2) the mole—
cular step heights of these spiral pyramids should be
measured; and finally (5) unit cell parameters should
be determined by X-ray diffraction methods, and it should
be shown that the spiral step heights are equal to or
are simply related to the appropriate lattice parameter.

The techniques that have been utilized for the
observation of these growth spirals are (1) off—focus,
bright-field microscopy with narrow pencil illumination
(2) electron microscopic technique and (5) phase-contrast
microscopy in reflection.
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Soon after Frank /12/ put forward the spiral
growth theory, Griffin /15/ presented the first direct
observation of a growth spiral on the prism face of a
natural beryl crystal. Dawson and Vand /1q/ observed
growth spirals on the basal planes of paraffin crystals.
Simultaneously Verma /15/, Amelinckx /16/ and Bhide /1?/
observed hollow cores at the centres of growth spirals
having big step heights on SiC crystals. Forty /\8/
studied the spiral growth and step heights of a large

number of CdI2 crystals. The smallest step height so
far reported is 2.5 Af, which was observed and measured
by Sunagawa /19/ on the (OOO1) face of natural hematite
crystals. Sunagawa and Bennema /2O/ studied also the
influence of stress fields around screw dislocations
and the consequent change of shape of the spirals.
They observed that depending on the stress field, the
spiral step shows a change of curvature as it escapes
from the centre of the spiral.
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CHAPTER - III

QRO WIFHT QR _R=Y;§-To-AliS=  y1iP_QU B

Crystallization from vapour is the method
of choice for the preparation of many technologically
important materials. Open tube vapour phase epitaxial
processes are in wide spread use for the growth of thin
films of Si and GaAs. Closed tube (ampoule) vapour growth
is often used for the preparation of bulk samples, such
as CdS. Crystal growth from vapour has certain advant­
ages because it usually occurs at temperatures lower
than those of other growth techniques, that might be
used for the same material. For instance, materials
that decompose before melting, have adverse melt/con­

tainer reactions, or have a high temperature solid/solid
phase transition, can often be grown at low temperatures.
Also, the low atomic roughness of the vapour-solid inter­
face implies strong morphological stability in the pre­
sence of heat and mass transfer non-uniformities. The

main disadvantages of vapour growth are parasitic nucleat­
ion and low growth rates.

Vapour growth may be divided into four

categories. Physical vapour transport (PVT) or subli­
mation-condensation, is a closed tube technique that
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may be used to grow crystals if the material vapour
pressure exceeds 10-2 Torr at some feasible temperat­
ure. If the vapour pressure is too low at convenient
temperatures to allow effective transport by PVT, then
growth by chemical vapour transport (CVT) may be possi­

ble. In this closed tube technique, a reversible chemi»
cal reaction, which yields only gaseous products, is
used to volatilize the starting material.

Occasionally physical vapour deposition (PUD),
i.e., open tube sublimation~condensati0n has been used
to grow bulk crystals /1/. The most commonly used
vapour growth technique however, is chemical vapour

deposition (CVD). Here a chemical reaction is com­
bined with open flow to effect transport. The reaction
may either be reversible or irreversible at the deposi»
tion temperature.

The usefulness of these vapour grown materials
often depends critically on their compositional uniform­
ity. Local variations in dopant level or material stoi­
chiometry can strongly influence the performance of an
electronic or optical device.
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The transport of chemical species in vapour
phase growth occurs from the hotter source by different
mechanisms such as diffusion, Stefan's flow, viscous
flow, thermal convection etc. along the temperature
gradient towards the colder condensation zone.

5-1 DIEEUSIOQ

The general phenomena of diffusion, observed

net only in gases and liquids but in all forms of matter,
is a manifestation of the universal tendency of entropy
towards a maximum. A system in which the components are

initially segregated increases its entropy by mixing of
the components. Diffusion is the motion of each com—

ponent of a system from regions where the concentration
is high to where it is lower, the motion involving in~
dividual atoms or molecules. Diffusion obeys a law named
as Fick's law and it states that the flux of each com­

ponent is proportional to the concentration gradient
of that ceponent. Ji: "'
The constant Di is called the diffusion coefficient
and it may be shown that it equals (X E/2) where 7i
is the mean free path and E the mean velocity of the
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molecules and it depends on pressure and temperature
as

T3/2

Experimentally it may be shown that

P
D: D0 fia­
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where n varies from 1.5 to 2.0 and D, is the measured value

of D at a standard temperature To and pressure R,

The process of diffusion is statistical in
nature. If there are more molecules of species A to
the right of some imaginary reference surface thar1to
the left, then because of the constant, random motion
of the molecules, more A molecules cross the reference
surface from right to left than in the reverse direction,
resulting in a net current of species A. This is an
irreversible process, because spontaneous separation
of the different species to any appreciable degree is a
very improbable event. The process of mixing is spont­
aneous as it increases entropy (second law of thermo­

dynamics) while the reverse process may be carried out

only by creating more entropy in the surroundings, for
example, by imposing a thermal gradient and producing
a certain amount of unmixing by thermal diffusion.
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We will now consider diffusion in systems

where a macroscopic motion is imposed. The velocities
gas will cover

c~i_
H-I
P-4
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of molecules of each species of .
the Maxwell—Boltzmann distribution. If the gas were
stionary and uniform in composition, the average velo­

city ui will be Zero. If the gas were of a single

I‘ u
‘kn

C1­

component and moving some macroscopic velocity v,

then ui = V. In a non-uniform gas each species will
be having a different average velocity ui and under
these conditions, we can ascribe a macroscopic drift velo­
city to the gas as a whole in various ways.

In many chemical problems, the molar average

velocity given by U = igyi ui is the most useful, where
Y1 is the molar density. Whereas in hydrodynamical
problems, the mass average velocity u = £1 ci ui,
where ci is the mass fraction, is chosen.

We may generalize the mean velocity V in terms

of a general property B of the gas as V": 51 Bi ui/ii Bi
and may define the diffusion flux by::   ""
If we take the summation of equation <5.1.q), over all
the species in the gas, we obtain
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ii Ji = iiui ei- V2iBisa o 0.1.5)
It follows that the sum of the diffusive fluxes over

all species is zero. In consequence, it is not possible
for diffusion to produce a net transport of propertyfi,

when diffusion fluxes are defined in terms of the E!
average velocity V.

filfifiéfilfiiiégfl

Experiments of Stefan /2/ on the evaporation
of liquids from pipes led him to conclude that the
vapour is not transported away from the surface by di­
ffusion alone. Stefan showed that the volume of gas
passing through a unit cross-section of pipe in unit
time is given by

_._Q_ in

where P is the total pressure, p is the partial press­
ure of the vapour, and D its diffusion coefficient in
the surrounding atmosphere.

The existence of flow velocity is necessary
for transport, because diffusion alone will not give
a net flux of molecules. The origin of flow velocity
in the vapour of an evaporating substance lies in'the

GE
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expansion on evaporation. A flow velocity will exist

in the vapour from which a crystal is growing whenever
the mechanism by which the vapour turns into a crystal
involves a change in the number of vapour phase mole­

a change in volume or pressure. Thus forcules, i.e.,
the simplest case.

solid —+Vapour-vsolid

from the source materialvelocity awaythere is a flow
towards the growing crystal.

The direction of transport in a temperature
gradient is determined, as in all vapour transport
systems, by the sign of the enthalpy change for the
transport reaction. An endothermic reaction results in
transport from hot to cold and an exothermic reaction,
in the other direction. Evaporation and sublimation
(with and without dissociation) may be considered
endothermic reactions and it is obvious that the trans­
port there is from hot to cold.­

The stefan flow velocity, where it exists, has
been in the direction hot -acold, irrespective of the
direction of material transport. This is because the

on taking place at the hot end of the system hasreacti
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been accompanied by an increase in the number of

vapour phase molecules.

D;;§§s>c¢.iat' e_ an li;1eiien­iv b
As an illustration of the process taking

place in a crystal growth ampoule, we discuss the case
of dissociative sublimation of a binary compound AB
which dissociates according to the reaction

AB (solid) —~> A (gas) + é Em (gas) (5.2.2)

Our system consists of a source material AB at a point
x = l and our growing crystal at X : O. We assume that
the differencein temperatures 1§T = T (1) - T (O) is
small compared with T (1) and T (O).

The flux of each component will be the sum

of a flow velocity U which acts on the gas as a whole,

and a diffusion term proportional to the concentration
gradient of the particular component.

U D dpAJA 2 W  "' ET '-a’)?

P3!‘
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U D dPA J A = lIT PA - RT dx 

U D dP:sm 
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Addition of equations (5.2.5) and (3.2.e) causes the
diffusion terms to disappear, leaving

JA + JBm : UP / RT (§.2.5)

Since we are growing a solid AB, we require the net

flux of the component A and Em to be in such a ratio

as to give equal fluxes of atoms A and B, that is:

JA = m JBm = J" 6.2.6)
where J is the growth rate of AB, and all flUXes are in
molar units. Substituting, equation (3,2.€) becomes

.3

£1-‘T = J <1 + Q1-> = Js 0.2.?)
where s is a number. We may now rewrite the flow
equations (3.2.3) and (3.2.q) as

Q-1
(0

P:-1|U

Tr
C‘-£1-- _.. _ ..._J.4..J ~ P PA dx 6.2.8)

mJs mD dpBmJ = Te‘ PBm"1'e -as" <3-2-9)

Integration of these equations neglecting the variat­
ion of P with X gives

pA(X) - -E = E>A(l) -  exp (J§§T(x-1)) (i5.2.'1O)

pBm(X) - -5% = EpBm(l) -  exp<J§§T (X-1)) (3.2.11)

G5
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mJs roD dPBm J ::: TT PBm - RT dX 

Integration of these equations neglecting the variat­

ion of P with x gives 

PA(X) - ~ = ~A(l) - tJ exp (J~~T (X-I») (3.2.10) 

() ..1:. [ (1) ~l exp( JSDpR:r' (X-I») PBm x - ms = PBm - m~ (3.2.11) 
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There is a simple exponential variation in the quanti­

ties (pp — P/s) and (pB - P/ms), the strength of thel“ m

Q4
O

exponential pending on the growth rate J. If the
vapour were stoichiometric over the solid AB, the ratio

(jg: pA / pgfliwould be m. Hence these quantities which
occur in equation (3.2.1O) and (3.2.11) are the depart­
ures of stoichiometry in the vapour. They vary expon­
entially with x and always increase in magnitude as
the distance from source material increases.

To see how this comes about, let us consider

a capsule at a uniform temperature T(l), containing
source material at one end. The vapour in the capsule
comes to equilibrium with the solid at a composition
that depends on the composition of the solid and the
ratio of the capsule volume to solid volume. In general
the vapour will not be stoichiometric, the ratio

<5’: pA / pB“‘, will not have the value m. Now ima­
gine a seed crystal introduced at the far end of the
capsule from the source, and the temperature of that
end lowered to T(O). Now the seed grows by removing
A atoms and Bw,molecules from the vapour in the ratio

1:1/m. A flow of vapour is caused, by the reduction
in molar volume on condensation at seed and by the
increase in molar volume on sublimation at the source.

G
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This flow brings up vapour to the seed in the ratio
cf. If cfis different from m, the vapour next to the
seed becomes depleted in one component, while an excess

of the other component accumulates, The change in
vapour composition developing at the seed end of the
capsule produces diffusion currents which carry the
excess component away, and bring up more of the minority
component. In the steady state, the flow of vapour and
the diffusion currents of the component species combine
to give not fluxes of A and Bm in the ratio m, in spite
of the nonestoichiometry of the vapour.
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The rate J may be expressed in terms
of the vapour compositions over the source material
and crystal by

DP ipA(l) - P/S}J I ln i) .

5U
P-3
CD

I--'

DP p (1) — P/ms g.-:. (P2130?-. tpt/as (5.c..12)A
The growth rate may be calculated if values for pA(l)

U3
*9
U)
I-'

and pA(Q) are known.

For a given ratio <§(1) of the components
in the vapour at the source end of the capsule, the
growth rate J varies very rapidly with temperature
difference LST between the source and the crystal

This flow brings up vapour to the seed in the ratio 

o. If cl is different from m, the vapour next to the 

['eed becomes depleted in one component, while (tn excess 

of the other cOhlponent accumulates. The change in 

vapour composition developing at the seed end of the 

capsule: produces diffusion c:.lrrents vrhich carry the 

excess component away, and hring up more of the minority 

component. In the steady st~te, the flow of va-pour Gl.-"ld 

the diffusion currents of the C;)mpO~lent spocies combine 

to gi1.TO net fluxes of A and Bm in the ratio rn, in spite 

of the non-stoichiometry of the vapour. 

'rhe growth rate J mayoe expressed in terms 

of the vapour compositions over the source material 

and crystal by 

J = 

= 
DP 
RTsI (

Prn,l) - plms 1 
In PB (0) • P/msJ rn 

The growth rate may be calculated if values for PA(l) 

and PA(O) are Imown. 

For a given ratio d (1) of the components 

in the vapour at the source end of the capsule, the 

growth rate J varies very rapidly vrith temperature 

difference lJ. T between the source and the crystal 
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while A ‘P is fairly small. As AT becomes larger,
the growth rate approaches a maximum value. The rapid
rise in growth rate as LsT increases from zero is
brought about by a rapid fall in the partial pressure
of the minority component over the crystal, and a
corresponding rapid rise in the partial pressure of
the majority component.

5l:FlJQl?sL Q_T_.o:3_£t§.

Viscosity is an important phenomenon in

crystal growth from the vapour phase because in most
crystal growth systems, there is some movement of the
gas as a whole, and this movement of the gas as a whol
will be subject to viscous forces. According to the
laws of viscosity, the volume flow of gas in a tube
is given by

V°¢§'Li(P—P) (331)1 1 2 00
where P1 and P2 are the pressures at the inlet and
outlet ends of the tube, a its radius and 1 its length
The constant of proportionality is characteristic of
the particular gas, and turns out to be a function of
temperature bu‘ independent of pressure except at very
low and very high pressures.

G

v/hile A 'f is fairly small. A3 .6. T becomes larger, 

the growth rate approaches a DaXlmu~ value. The rapid 

rise in growth rate as f::J. T increases from zero is 

brought about by a rapid fall in the partial pressure 

of the 'TIincrity component over the crystal, and a 

corresranding rapid rise in the partial pressure of 

the majority component. 

3.3 VISCOUS FLOVl ~OF GAS 

Viscosity is an important phenomenon in 

crystal growth from the vapour phase because in most 

crystal growth systems, there is some movement of the 

gas as a whole, and this movement of the gas as a whole 

will be subject· to viscous forces. According to the 

laws of viscosity, the volume flow of gas in a tube 

is given by 

where Pl and P2 are the pressures at the inlet and 

outlet ends of the tube, a its radius and I its length. 

The constant of proportionality is characteristic of 

the particular gas, and turns out to be a function of 

temperature bu' independent of pressure except at very 

low and very high pressures. 
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In a crystal growth system, diffusion is
taking place at the same time as flow of the gas as a
whole. This diffusion is the result of concentration
gradients brought about by a change in equilibrium con­
centrations between two parts of the system at different
temperatures. Let us consider the behaviour of a gas
mixture flowing over a solid surface such as the walls
of the apparatus or a substrate on which some wmterial
is to be deposited. Each component of the gas stream

is travelling at a mean molecular velocity ui specific
to that component. When molecules of component i strike
the apparatus walls, they are scattered randomly, and
hence loss any net velocity. The number of molecules
i leaving the wall is equal to the number arriving at
the wall, and in consequence proportional to the mole

/I

density ni. The diffusion flux at the wall causes a net
momentum flow, unless the different components have the

same molecular weight, since equal numbers of molecules
leave the wall with a positive component parallel to it
as with a negative component. This diffusion flux is the
only flux at the wall, that the mole average velocity
U is zero at the wall.

When a gas flows down a tube, work is done on

the gas by the external pressure, and this work is partly
dissipated by viscous drag at the walls of the tube and

G

In a crystal growth system, diffusion is 

tal~ing place at the same time as flo'N of the gas as a 

wllOle. This diffusion is the result of concentration 

gr8.dients brought about by c. change in equilibrium con-

centrations between two parts of the system at different 

temperatures. Let us consider the behaviour of a gas 

mixture flowing over a solid surface such as the walls 

of the apparatus or Cl. substrate on "\fhich some material 

is to be deposited. Each component of the gas stream 

is travelling at a mean molecular velocity u. specific 
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to that component. When mclecules of component i strike 

the apparatus walls, they are scattered ra.'1domly, and 

hence los~ any net velocity. The number of molecules 

i leaving the wall is equal to the number arriving at 

the wall, and in consequence proportional to the mole 

The diffusion flux at the wall causes a net 

momentum flow, unless the different components have the 

same molecular weight, since equal numbers of moleculos 

leave the wall with a positive component parallel to it 

as \:vi th a negative component. This diffusion flux is the 

only flux at the wall, that the mole average velocity 

U is zero at the wall. 

Wnen a gas flows down a tube, work is done on 

the gas by the external pressure, and this work is partly 

dissipated by viscous drag at the wB.lls of the tube a.1J.d 



is partly taken up as increased kinetic energy of the
gas stream. The volume flow is given by

, 17 3% (P1 ' P2)_ ~V = st*=5i,,11"**** (30.2)
For the radial variation of the velocity

2
V=V°(1--£2‘)a

where V5 is the velocity at the centre of the tube.
This shows that the velocity profile across the tube
is parabolic, being zero at the wall.

Q9 Nl11lCT_l_@r_1i

Convection is the motion of macroscopic

regions or parts of a fluid, and is to be contrasted
with diffusional motion, in which individual atoms or
molecules are concerned.

Consider a sealed ampoule system in a vertical
furnace. Heat is applied to the vapour in the ampoule
by electrical heating elements and heat is lost from
the furnace down the middle towards the cold ends.

Let there be a small lateral temperature gradient in
the furnace, as well as primary vertical gradient which
is imposed to provide the driving force for growing
the crystal. This lateral gradient can of course, be
reduced by the use of heat reflectors. If conditions

is partly taken up as incre~sed kinetic energy of the 

ga.s stream. Th·J volume flow is given by 

v = 

For the radial vc>,riation of the velocl ty 

v = r2 
vo (1 - -.z ) 

a 

where ~ is the velocity at the centre of the tube. 

This shows that the velocity profile across the tube 

is parabolic, being zero at the wall. 

3.4 CONVECTION 

Convection is the motion of macroscopic 

regions or parts of a fluid, and is to be contrasted 

with diffusional motion, in which individual atoms or 

molecules are concerned. 

Consider a sealed ampoule system in a vertical 

furnac e. HCDt is c_pplied to the vapour in the ampoule 

by electrical heating elements and heat is lost from 

the furnace dC\~n the middle towards the cold ends. 

Let there be a small lateral tenperature gradient in 

the furnace, as well as primary vertical gradient which 

is imposed to provide the driving force for growing 

the crystal. This lateral gradient can of course, be 

reduced by the use of heat reflector-se If conditions 
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are so arranged that convection sets in, the lateral
temperature gradient may determine the flow pattern,
with the slightly hotter gas near the perimeter rising,
and the.cooler gas in the middle of the ampoule falling.
The convective velocities will be determined by a balance
of the work done by buoyancy forces and work done against
viscous forces.

In horizontal furnaces, there is usually no
driving force for convection except for the small tem­
perature gradient across the furnace tube. This arises
because heat is fed in from the perimeter and lost down
the middle to the ends.

The effect of convection on transport in a
sealed, vertical ampoule or similar system depends on
the relative magnitude of the convective velocity and
the Stefan velocity. The Stefan velocity is proportional
to the transport rate, and for a given temperature
difference L1T we can make the rate large (by reducing
the amount of inert gas or stoichiometric excess) or
small (by the reverse processes). If the Stefan velocity
is very large compared with the convective velocity, the
effect of convection on the velocity distribution and
on the variation of composition in the vapour can be
ignored. If the transport is very slow, the convect­
ion effects will dominate.

are so arranged that convection sets in, the lateral 

temperature gradient may ieterdine the flow pattern, 

with the slightly hotter gas near the periilleter rising, 

and the cooler gas in the middle of the ampoule falling. 
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The effect of convection on transport in a 
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the relative magnitude of the convective velocity and 

the Stefan veloCity. The Stefan velocity is proportional 
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the amount of inert gas or stoichiometric excess) or 

small (by the reverse processes). If the Stefan velocity 
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on the variation of composition in the vapour can be 

ignored. If the transport is very slow, the convect-

ion effects will dominate. 
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Physical vapour transport (PVT) method of

growth is applicable to materials which have appreci­
able vapour pressure at the concerned growth temperature.
In this method, the compound to be grown is vapourized
from a polycrystalline or elemental source which is
kept at a high temperature. The vapours are transported
down a temperature or pressure gradient and deposited at
the comparatively cold growth end of the ampoule or on
the substrate or the seed crystal. Single crystals
obtained from the physical vapour transport have much
purity than that grown using transporting agent. Obvious
examples of vapour transport method for the preparation
of thin films are the vacuum evaporation and sputtering
techniques.

By PVT method single crystals can be grown

directly from solid to vapour and back again to solid,
The growth is performed in vacuum. The temperatures of
the growth zone and the source zone should be controlled
accurately to minimise surface irregularities of the
growing crystal. To obtain large and good quality cry­
stals, a linear temperature gradient should be ensured
along the length of the ampoule. In most cases horizontal
two zone furnaces are used. Temperatures of each zones
are controlled separately using programmable temperature
controllers.

3.5 GROVJTH BY PHYSICAL VAPou~_frRANSPORT (PVT) 

Physical vapour transport (PVT) mathod of 

growth is applicable to materials which have apprcci-

able vapour pressure at the concerned growth temperature. 

In this method, the cor:pound to be brown is vapollrized 

fro!'::l a polycrystalline or elemental source which is 

kept at a r.igh temperature. The vapours are transported 

do~n a tem~crature or ~ressure gradient and deposited at 

the cornp.s.ratively cold growth end of the ampoule or on 

the sub3trato or the seed crystal. Single crystals 

obtained from the physical v~pour transport have much 

purity than that grown using transporting agent. Obvious 

examples of vapour transport method for the I)reparation 

of thin films are the vacuum evaporation and sputtering 

techniques. 

By PVT method single crystals can be grown 

directly from solid to vapour and bach: again to solid. 

'rhe growth is performed in vacuum. The temperatures ef 

the growth zone and the source zone should be controlled 

accurately to minimise surface irregularities of the 

growing crystal. To obt~in large and geod quality cry-

stals, a linear temperature gradient should be ensured 

along the length of the ampoule. In most cases horizontal 

two zone furnaces are used. Temperatures of each zones 

are controlled separately using programDnble teDPGr~ture 

controllers. 
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Travelling containers or heaters have also
been used satisfactorily for the growth of bulk crystals
by PVT method. This is the Piper and Polich /5/ method.
In this method, the charge is placed in one end of a
silica tube and slowly pulled through a horizontal fur»
nace whose temperature profile has a single peak. The
ampoule can either be sealed off prior to growth or, can
have a loose fitting plug in the end or a small orifice
in the side. In order to prevent ingress of any un­
desirable impurities, the outside of the open capsules
must be purged with an inert gas. Once transport takes
place the capsule generally seals itself off. This can
be prevented by having the orifice hotter than the charge
and therefore remaining open throughout the run. The
orifice can then either act as a sink for volatile mater­
ial that comes off or it can act as a source of excess of

one of the constituents. 'This can help to grow the cry­
stal under known partial pressures /h,5/. If there is
not a significant over pressure of one of the constituents,
the capsule should be back-filled with an inert gas to
introduce a diffusion limiting step in the reaction to
prevent too rapid growth.

According to Nitsche et al /6/ the following
rules must be obeyed for the .successful growth of
crystals by vapour transport techniques.

~ravelling containers or heaters have also 
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rules must be obeyed for the ,successful growth of 

crystals by vapour transport techniques. 
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2.

5.

M.

5.

The rate of transport must not exceed the rate of
growth of the seeds.

The crystallization chamber should be large in order
to prevent inter growth between adjacent seeds.

The temperature distribution in the crystallization
chamber should be as uniform as possible to avoid
partial re—evaporation of already grown crystals.

Well developed crystals form more easily in large
diameter tubes, where transporter convection deter­
mines the rate of transport.

The temperature difference between the reaction and

growth chambers can be made smaller when wider tubes

are used, since the gas flowvis here the rate deter­
mining parameter.

KI

I
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1. The rc::.te Of transport must not exceed the rate of 

growth of the seeds. 

2. The crysto.lli zation chamber sJ.lculd bo large in order 

to prevent inter growth between adjacent seeds. 

3. The temperature distribution in the crystalli z,ation 

char;1ber sllould be as uniform as possible to avoid 

partial re-evaporation of already grown crystals. 

4. Well developed crystals form more easily in large 

diameter tubes, where transporter convection deter­

mines the rate of transport. 

5. The temperature difference between the reaction and 

growth chambers can be made smaller when wider tubes 

are used, since the gas flow: is here the rate deter­

mining parameter. 
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For the growth of crystals by vapour trans­
port method, a horizontal linear gradient two zone
furnace was used. The furnace core consisted of a
ceramic tube of about 50 cm length and h cm inner
diameter. Two specially made 15 cm long ceramic tubes
with reguarly spaced inner grooves for the heater wind­
ing, which will go over the furnace tube, was used as
the heater. This allowed the adjustment of the relat­
ive positions of the zones, so that a linear temperature
gradient could be maintained between the high temperat­
ure and -low temperature zones. Kanthal A1 wire of 22 SWG
was used for the heater windings. The length of the
kanthal heating element was so chosen that 250 V AC
could be applied to the coils without the coils getting
damaged. The furnace tube and the independent heater
assemblies were insulated using a 3 cm thick asbestos
rope winding. The whole assembly was covered using a
MS outer jacket. This protected the asbestos rope wind­
ings and also acted as a heat reflector. When approxi­
mately 4 amps of current was flowing through the heaters»
a maximum temperature of 1006>C was achieved.

Kl
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CHAPTER - IV 

EXPERINENTAL TECH~IQUES 

4.1 FABRICATION OF THE FURNACB 

For the growth of crystals by vapour trans-

port method, a horizontal linear gradient two zone 

furnace was used. The furnace core consiGted of a 

ceramic tube of about 50 cm length and 4 cm inner 

diameter. T\l1O specially made 15 cm long ceramic tubes 

with reguarly spaced inner grooves for the heater wind­

ing, which will go over the furnace tube, vIas used as 

the heater. This allowed the adjustment of the relat-

ive positions of the zones, so that a linear temperature 

gradient could be maintained between the high temperat­

ure and .low temperature zones. Kanthal A1 vrire of 22 SWG 

was used for the heater windings. The length of the 

kanthal heating element was so chosen that 230 V AC 

could be applied to the coils without the coils getting 

damaged. The furnace tube and the independent heater 

assemblies were inSUlated using a 3 cm thick asbestos 

rope winding. The whole assombly was covered using a 

MS outer jacket. This protected the asbestos rope wind­

ings and also acted as a heat reflector. Vfnen approxi­

mately 4 amps of current v/as flo\.lfing through the heatersr. 

a maximum temperature of 100~ C was achieved. 
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To control the temperature of each zones of

the furnace with i f)C accuracy, proportional temperat­
ure controllers were used. The details of the temperat—
ure controller fabricated for this purpose are given
below.

The proportional temperature control1er'was
constructed by combining an integrated circuit (IC)
differential amplifier with a triangular wave generator,
and a microvoltmeter. The circuit diagram of the temper­
ature controller is shown in figure 1. A chromel—alumel
thermocouple which gives QOBJV/OC is used as the sensor.

The thermocouple voltage VTC is mixed with a standard

DC voltage USP, whose magnitude is equal to the output
of the thermocouple at the required temperature. The
resultant error signal is amplified by the microvoltmeter.
The recorder/meter output of the microvoltmeter is usually
floating and hence a differential amplifier with a high

input impedance is used for further amplifying the signal
as shown in the figure. The amplification of the differ—
ential amplifier is given by

(R1 + RF)
VE == (R3/R1) (fig-;-13;; V2 - (RF/R1) V1 (L+.2.1)

where VE is the output voltage of the differential ampli­
fier, V2 is the input voltage at the non-inverting

4.2 TEMPERA?URE C~ONTROLLER 

To control the temperature of each zones of 

the furnace with ::: t C .:l.ccuracy, proportional temperat­

ure controllers were used. The details of the temporat-

ure co~trollGr fabricated for this purpose arc given 

below. 

The proporLional temperature controller was 

constructed by combining an integrated (;ircuit (rC) 

differential amplifier \lath a tl~iangular weve g8nerator, 

and a microvoltmeter. The circQit diagram of the temper-

ature controller is sho~TI in figure 1. A chromel-alumel 

thermoc ouple which gives 40 fJ V /0 C is used as the sensor. 

The thermocouple voltage VTC is mixed with a standard 

DC voltage Vsp ' whose magnitude is equal to the output 

of the thermocouple at the required temperature. The 

resultant error signal is amplified by the microvoltmeter. 

The recorder/meter output of the microvolt~eter is usually 

floating and hence a differential amplifier 'Nith a high 

input impedence is used for further amplifYiD.~ th~ .signal 

as shown i~ the figure. The amplification of the differ-

ential amplifier is given by 

VE (R3/R1 ) 
(R, + RF) 

V2 - (R~Rl) V, (4.2.1) = (R
2 

R
3

) + 

where VE is the output voltage of the differential ampli-

fier, V2 is the input voltage at the non-inverting 
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input and V1 is the input voltage at the inverting
terminal. When R1 = R2, R3 = RF, then the amplifier
output VE is given by

VE = (RF/R,) (V2 - V1) = (RF/R1) VR (n.2.2)

where V2 - V1 = VR is the meter output.

The amplified output is passed through a
voltage follower for isolating the amplifier from the
next stage, which is a comparator. The output of the
voltage follower together with a triangular wave of
frequency 0.1 Hz, 1.2 V peak to peak is fed to the
negative input of the comparator. The heater is ON
when the resultant of the input to the comparator is
positive and OFF when the resultant is negative.

The set point voltage VSP is generated using
a highly stable voltage given by 7805 IC. This voltage
is divided by a chain of resistors and a 10 turn helical
potentiometer. By this means, it is possible to obtain
any voltage between O and 50 mV with an accuracy of SIJV

A standard circuit is used for generating the triangular
wave. The period of the wave in seconds is given by

T = no R10 R9/R11 (4.2.5)

input and V, is the input voltage at the inverting 

terminal. Wh~n R1 = R2 , R3 ': RF, then the amplifier 

output VE is eiven by 

(4.2.2) 

where V2 - V, = VR is the meter output. 

The amplified output is passed through a 

voltage follower for isolating the Mflplifier from the 

next stage, which is a comparator. The outnut of the 

voltage follower together with a triangular wave of 

frequency 0.1 Hz, '.2 V peru~ to peak is fed to the 

negati ve input of the comparator. The hea.tor is ON 

when the resultant of the input to the comp8.rator is 

positi Ve and O}'F when the resultant is negative. 

The set point voltage Vsp is generated using 

a highly stable voltage given by 7805 IC. This voltage 

is divided by a chain of resistors and a 10 tur~ helical 

potentiorneter. BY this means, it is possible to obtain 

any voltage between 0 and 50 mV with an accuracy of 5 flV. 

A standard circuit is used for generating the triangular 

wave. The period of the wave in seconds is given by 
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VTR is the triangular wave generated. When

the set point voltage VSP is turned up, VE goes positive,
so VE2>VTR and the power to the heater is completely

ON. As VTC rises, VE decreases and when VE is slightly

less than the positive peak of VTR, the average power
to the load is tON/T, where tON is the ON time of the
heater and Tiis the period of the triangular wave.

The temperature stabilizes for a value of VE within the
proportional band

VTTR max 4 VE 4 VTR min (L*'2"*)

D1, D2, R5 and R8 form a limiting circuit to keep VOUT
in the range permissible for switching the transistors.

The value of R5 may be varied to control the width of
the proportional band. When R5T> Rh, the proportional
band is increased and when R5<< R“, the proportional
band is decreased,

The temperature can be set by setting the

standard voltage vsp equal to the output of the thermo­
couple at the desired temperature and this can be read
on the appropriate range of the microvoltmeter. As the
temperature of the furnace is increased, the sensitivity
of the microvoltmeter is increased in steps and when the
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The temperature stabilizes for a value of VE within the 

proportional band 

D" D2• % and R8 form a limiting circuit to keep VOUT 
in the range permissible for svd tehing the transistors. 

The value of R5 may be varied to control the width of 

the proportional band. When R5"> R4 , the proportional 

band is increased and when R5 ~ R4, the proportional 

band is decreased. 

The temperature can be set by setting the 

standard voltage VSP equal to the output of the thermo­

couple at the desired temperature and this can be read 

on the appropriate range of the microvoltmeter. As the 

temperature of the furnace is increased, the sensitivity 

of the microvoltmeter is increased in steps and when the 
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temperature of the furnace is close enough to the set
point, the microvoltmeter is put into its most sensi­
tive range. An Anadigi precision microvoltmeter model

AD ?O2O is used. This meter has 100lJV as full scale in
its most sensitive range and a floating recorder output
of 100 mV. The accuracy of the temperature controller

is better than 3 1°C’in the 1ood’c range of temperature.

AMP@ULE5iAHDiREE#TRE£$HEN?.L

For the sample preparation, evacuated closed
ampoules of fused quartz of 18 mm inner diameter and

about 17 cm length were used. One end of the ampoule
was closed and the other end was uniformly constricted
to allow for sample introduction and easy sealing. In
order to reduce the large number of nucleation sites in
the ampoule, the quartz tubes were cleaned thoroughly by
washing first with detergent soap solution, then kept
in aquaregia for two to three hours, and then washed and
cleaned ultrasonically several times with doubly distilled
water and acetone.

Psalms OI §@P°El?$»

In physical and chemical transport methods of
crystal growth, the transporting of the reactants from
the hot zone to the cold zone is done at a low pressure

temperature of the furnace is close enough to the set 

point, the microvoltmeter is put into its most sensi­

tive range. An Anadigi precision microvoltmeter modol 

AD 7020 is used. This met~r has 100 fJ V 8.S !ull scale in 

its most sensitive range and D. floating recorder output 

of 100 mV. The accuracy of the te~perature controller 

is better than :: ,0 G in the 1000° C ra-11ge of temperature. 

4.3 AHPOULES MiD PRE-TREATHENT 

For the sample preparation, evacuated closed 

ampoules of fused quartz of 18 mm inner diameter and 

about 17 cm length were used. One end of the ampoule 

was closed and the other end was uniformly constricted 

to allow for sample introduction and easy sealing. In 

order to reduce the large number of nucleation sites in 

the ampoule, the quartz tubes were cleaned thoroughly by 

washing first with detergent soap solution, then kept 
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in aquaregia for two to three hours, and then washed and 

cleaned ultrasonically several times with doubly distilled 

water and acetone. 

Fusing of ampoules. 

In physical and chemical transport methods of 

crystal growth, the transporting of the reactants from 

the hot zone to the cold zone is done at a low pressure 



-5ofvv 10 Torr in a closed ampoule. Prior to the
sealing of the ampoule containing the reactants, the
ampoule must be evacuated to this low pressure and also
the low pressure should be maintained at the time of
sealing the ampoule. For this an adaptor with provision
for connecting the neoprene tube to the ampoule and a
penning gauge head for pressure measurement was fabri­
cated and was fixed to the base plate of a vacu & coating
unit. This assembly is shown in figure 2.

The initially cleaned quartz tube was connected
to the vacuum system and evacuated tokv 10-5 Torr. The
ampoule was then flame heated from outside to red hot for
30 minutes. This was to remove surface impurities from
the growth end of the ampoule and to reduce surface
irregularities of the quartz wall. After cooling, the
ampoule was disconnected from the vacuum system and the

ampoule was filled with the stoichiometric amount of
the reactant materials. The ampoule with the elements
was reevacuated to a pressure of 1O“5 Torr. The lower
end of the ampoule was kept in a freezing mixture to avoid
the sublimation of materials during fusing. After attain­
ing the final pressure, the ampoule was sealed at the
constriction.

The sealed ampoule was then placed in the two

zone linear gradient horizontal furnace. Prior to

of r-.J 10-5 Torr in a closed ampoule. Prior to the 

sealing of the ampoule containing the reactants, the 

ampoule mUEt be evacuated to this 10\'1 pressure and e,lso 
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sealing the ar.<poule. For this a.n ad£:.ptor ':d th provision 

for connecting the neoprene tube to the ampoule and a 

penning gauge head for press'U.re measurement was fabri-
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ampoule was filled with the stoichiometric alTIount of 

the react~~t materials. The ampoule with the elements 

was reevacuated to a pressure of 10-5 Torr. The lower 
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the sublimation of materials during fusing. After attain­

ing the final pressure, the alllpoule was sealed at the 

constriction. 

The sealed ampoule was then placed in the two 

zone linear gradlent horizontal furnace. Prior to 
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the actual growth, a reverse temperature gradient was
applied such that the source region was at a temperature
lower than the condensation zone. After two to six
hours of this reverse transport, the traces of start­
ing material at the growth zone would be removed. The

system used for the crystal growth is shown in figure 3.
For the growth process, the charge and was at the higher
temperature side and the growth end at the lowev temper­
ature side. The temperatures of each zones were control»

led with an accuracy of f 1°C using independent temperature
controllers. After a growth time of 50 - ZOO hours,
platelet like crystals were obtained.

QRTICAL_MlQBQ§QQRX.

The elementary molecular growth features are

the ideally simple features which are easily interpreted
by theory and reveals considerable information about
the mechanism of crystal growth. Optical microscopy is

one of the best suited method for observing crystal sur­
faces. From the growth patterns observed, the dislocat—
ion mechanism involved in crystal growth can be obtained.

For the observation of the as grown surfaces
of the crystal under reflection, a Carl4Zeiss epityp II
metallurgical microscope was used. Crystals with good
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For the observation of the as grown surfacos 
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plane surfaces were used for the morphological studies.
Thin and very small specimens were mounted on microsc~

opic slides by small dots of adhesive. The disadvantage
of this method is that only one side of the specimen can
be observed. For observing both surfaces of the crystal,
a plate was made with a circular hole and the crystal was
placed above this hole. By using this technique, both
sides of the crystal could be observed. For ob .rving
faint features on the crystal surface, the surface was
given a reflecting coating of aluminium by vacuum
evaporation.

PET ERMINAII ON! ,0 Fl QB <3 Ala LZQN §T_APLT5

The determination of refractive index and

absorption coefficient as a function of wavelength can
give considerable information about the band structure
of a solid. The usual methods used to measure the

optical constants as a function of wavelength are
transmission measurements, normal incidence reflectance
accompanied by the use of dispersion relations and spect­
roscopic ellipsometry. Since ellipsometric measurements
are applicable only in the regions of wavelength where

polarisers and analysers are available, reflection and
transmission measurement is the best practical method
to obtain refractive index and absorption coefficient.

plane surfaces were used for the morphological studies. 

Thin and very small specimens were mounted on microsc­

opic slides by small dots of adhesive. The disadva~tage 

of this method is that only one side of the specimen can 

be observed. For observing both surfaces of the crystal, 

a plate was made with a circular hole and the crystal v!as 

placed above this hole. By using this technique, both 

sides of the crystal could be observed.. For ob . rving 

faint features on the crystal surface, the surface was 

given a reflecting coating of aluminium by vacuum 

evaporation. 

4.5 DETERMINATION OF OPTICAL CONSTill~TS 

The determination of refractive index ru1d 

absorption coefficient as a function of wavelength can 

give considerable information about the band structure 

of a solid. The usual methods used to measure the 

optical constants as a function of wavelength are 

tra~smission measurements, normal incidence reflectance 

accompanied by the use of dispersion relations and spect­

roscopic ellipsometry. Since ellipsometric measurements 

are applicable only in the regions of wavelength where 

polarisers and analysers are available, reflection and 

transmission measurement is the best practical method 

to obtain refractive index and absorption coefficient. 
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If the specimens under study are in platelets or in
thin film form, it is possible to determine the spectral
dependence of refractive index in the region of trans­
parency by observing interference fringes by transmission
or'reflection.

At normal incidence, the fraction T of the
incident light intensity of wavelength.X, transnfltted
through a plane parallel crystal of thickness d and
refractive index n is given by /1/

T 3 L1:l3lii(_T
exp (<=Cd) - R2 exp (-<=C,d) - 2R cos 2(KP+‘6‘)

(#.5.1)

where the absorption coefficientcfi is related to the
absorption index k by

2of; = M-A 3 R =

Y = ;_.TLn§. = -1A 8 W tan n2+k2_-1
On the long wavelength side of the absorption edge,
where¢£ is small, the spectral variation of T (equation
h-5.1) shows successive maxima and minima due to inter­
ference. The condition for a transmission maximum is

2nd = p)\, where p is the fringe order. If the fringe_
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If the specimens under study are in platelets or in 

thin film fOrlY;, it is possible to determine the spectral 

dcpend~nce of refractive index in the region of trans-

parency by observing interference fringes by transmission 

or reflection. 

At norr;w.l incidence, the fraction T of the 

incident light intensity of vJavelength).., transmitted 

through a plane parallel crystD.l of thickness d and 

refractive index n is given by /1/ 
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On the long wavelength side of the ~bsorption edge, 

where c:l:. is small, the spec tral variation of T (equation 

4.5.1) shows successive maxima and minima due to :inter-

ference. The ccndition for a transmission maximum is 

2nd = P''>'', where p is the fringe order. If the fringe 
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number can be unambiguously determined by detecting the

first fringe, the refractive index of the crystal for
different wavelengths can be calculated using the equat~
ion n : p)\/2d. Thickness of the crystal may be accurately
measured using a micrometer. On the other hand if refract­
ive index is known, thickness can be determined from the

interference spectra using the relation d = (zxm.A,,A2) ;,. . , an?» 1-4'2)
where.nm is the number of fringes in between two maxima

(minima).A1 and.A2.

In the absorption edge region where n3_§> kg,

1 + kg/n2 can be approximated to unity. If no inter­
ference fringes are present, equation (4.5.1> reduces to

2T =  i5 R1    (u,5,g)exp (QC d) - R exp (-<:C d)

and from this expression, absorption coefficient can be
calculated.

For the measurements in the UV — Vis. region,

a Hitachi ZOO - 20 UV - Vis. spectrophotometer was used.
Thig instrument can cover the wavelength range from 900 nm

to ZOO nm with a light source change at 370 nm. Fbr the
measurements in the NIB region, a Cary 17D double beam

spectrophotometer which could cover the range from
200 - 5500 nm was used. For the IR measurements a

R8 
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first fringe, the refractive index of the crystal for 
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and from this expression, absorption coefficient can be 

calculated. 

For the measurements in the UV - Vis. region, 

a Hitachi ZOO - ZO UV - Vis. spectrophotometer was used. 

This instrwnent can cover the v/avelength range from 900 nrn 

to 200 nm with a light source chcillge at 370 nrn. For the 

measurements in the NIR region, 2. Cary 17D double beam 

spoctrophotometer which could cover the range from 

200 - 3500 nm 'Was used. For the IR measurements a 
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Beckmann IR — 20 spectrophotometer was used. Measure~
ments were made in the transmission mode. After switch~

ing on the spectrophotometer, 15 minutes were given for
warm up of the instrument before taking the spectra.
For the high resolution absorption edge measurements a

spectral band width of 0.1 nm was used. Data was taken
manually at 1 nm interval with an accuracy of 0.1% in
transmission. Base line of the spectrophotometer was
also recorded manually and the ratio between the observed
transmission and the base line was taken as the true
transmission. For other measurements a spectral band
width of 1 nm was used. A computer (ECIL, micro 78) was
used to process the data.

D1?l.TE1i1‘.4_.I l§U%_'Il3ZQliLi  Q9 ;DU§l_l_Y1l1_‘l l-_cOF N YPE
Hot probe method is a simple and convenient test

to identify the type of carriers present in a semiconduct­
or. This is based on the thermoelectric properties of a
semiconductor. This method is practicable even when Hall
effect measurements are difficult to make.

The distribution of thermal velocities of the
charge carriers in a small region of the semiconductor
will depend on the temperature of that region. If the
crystal is heated with the hot probe, charge carriers
near the hot probe have higher velocities than those

Beckmann IH - 20 spectrophotometer was used. Measure­

ments were made in the transmission mode. After switch­

ing on the spectrophotometer, 15 minutes were given for 

war~ up of the instrument before t2king the spectra. 
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4.6 DETERHlNATIOlt OF CONDUCTIVITY TYPE 

Hot probe method is a simple and convenient test 

to identify the type of carriers present in a semiconduct­

or. This is based on the thermoelectric properties of a 

semiconductor. This method is practicable even when Hall 

effect measurements are difficult to m~e. 

The distribution of therr1Cll veloci ties of the 

charge carriers in Et small region of the somiconductor 

will depend on the tempernture of that region. If the 

crystal is heated with the hot probe, charge carriors 

near the hot probe have higher volocities than those 



near the cold probe. This disturbance in the equili­
brium distribution of charge carriers produces an
electric field. The field will be positive with res­
pect to the cold end if the charge carriers are electrons
(n-type) and negative if the carriers are holes (p-type).

To test the type of conductivity of the cry­
stals grown, one probe of a digital multimeter was heated
and both probes were made to touch the crystal. The de­
flection of the meter was noted to determine the type of
the conductivity of the crystal.

EhMEASUPEM 1liQ.F_.ll!£L__L:clQLEi1%§_E_..-—— -— ~ _- _ ____-‘ ..__...-_

Hall effect measurement give the carrier con­
centration and the type of current carriers present in
the crystal. These results together with the knowledge
of the conductivity of the specimen can be used to deter­
mine the mobility of the charge carriers. If the crystal
is small and the shape is irregular, ordinary Hall effect
measurement techniques are impracticable. In such cases
van der Pauw's technique /2/ is very effective.

For the measurement of resistivity and Hall

effect perpendicular to c-axis by van der Pauw's techni­
que, current through the specimen was kept below 1 mA
and was measured using a digital multimeter
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(Pla, model DM ~ 14B). A Hewlett—Packard BA65 A

digital multimeter which has a resolution of IFIV was
used to measure the voltage developed across the speci­
men. A magnetic field of 0.5 tesla was used for the
measurements.

The specimens were mounted on an etched PCB.

The contacts made to the specimen should be ohmic in na­
ture. Four contacts were pressed to the crystal using
tin or indium. The whole setup is then heated to the
melting point of the contact metal and kept at that
temperature for some time and then the system is allowed
to cool. Because of this temperature treatment, alloy­
ing of the metal with the crystal take place, which
ensures good ohmic contacts.

MEA5UBElfiE1_\VLQF _.13L,EQTRl  RRQPEBTL'1i$i.,U_$LI_Nr§lMcIl’L 5T.RUQTUR13c-3

Conductivity measurements as a function of

temperature can give informations about the levels in
the forbidden gap and also the value of the band gap in
certain cases (in the intrinsic region). Since the
thickness of layered platelet like crystals was usually
a few microns, MIM structures were used to measure the
conductivity parallel to c-axis (perpendicular to the
layers). Using MIM structures, the conduction mechanism
involved in the crystals, trap concentration, carrier

(PIa, model DM - 14B). A Hewlett-Pack,!J.rd 3465 A 

digi to..l mul timetor which has a resolution of 1 tu V was 

used to measure the voltage Q8veloped ~cross the speci­

men. A m&gnetic field of 0.3 tesln was used for the 

mGasurements. 

The specimens were mounted on a."1 etched PCB. 

The contacts made to the speciwen should bo ohmlc in na­

ture. Four contacts woro press0d to the crystnl using 

tin or indiun. The who10 setup is then hoated to the 

melting point of the contnct metal and kept at that 

temperature for some time and then the system is allowed 

to cool. Because of this temp~rature treatment, alloy­

ing of the metal with the crystal take place, which 

ensures good ohmic contaots. 
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4.8 MEASUREMENT OF ELECTRICAL PROPERTIES USING MIM STRUCTURE3 

Conductivity measurements as a function of 

temperature can give informations about the levels in 

the forbidden gap and also the value of the band gap in 

certain cases (in the intrinsic region). Since the 

thickness of layered platelet like crystals was usually 

a feW microns, MIM structures were used to measure the 

conductivity parallel to c-axis (perpendicul~r to the 

layers). Using HIM structures, the conduction mechonism 

involved in the crystals, trap concentration, carrier 
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concentration, position of the Fermi level etc. can be
evaluated.

To study the electrical properties parallel to
c-axis, a specially made jig and an evacuated all-metal
cell was used. The setup is shown in figure A. The
measurements were made in a vacuum of 1O_2 Terr and all

the electrical insulatiens in the cell and the jig were
made of teflon. The cell has provisions for heating and
temperature measurements. Chromel—alumel thermocouples

were used to measure the temperature,

The contacts made on the crystal should be ohmic

in nature and these were made by vacuum evaporation of
suitable metals (Al or Sn). For this, crystals were
placed over suitable masks in the vacuum system. The
metal to be evaporated as the electrode was taken in a
molybdenum boat or tungsten filament and evaporated on

to the specimen at a vacuum of 1O'5 Terr. The resulting
metal-semiconductor-metal system was placed in the jig

and measurements were made. Current was measured using

a digital piceammeter (ECIL, model EA 5600) and the volt­
age using a digital multimeter (HP, model znes A).

concentration, position of the Fermi level etc. cem be 

evnluated. 
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measurements were mD.de in D. vncuum of 10-2 Torr c,nd <111 

the electrical insul~tions in the cell and the jig were 

mD.de of tcflon. The cell has provisions for he:-::ting Md 

tempero.ture mOD.surements. Chromol-nlunel thermocouples 

were usod to me~sure the temper~ture. 

The contC'..cts made on the crystal should be ohmic 

in nD.ture Md th0se were r.l£'..de by vC.cuum 8vo.poro.tion of 

suitable metals (Al or Sn). For this, crystll.ls were 

plD.ced over suitable masks in the vGcuum system. The 

metal to bc eV·J.por[ttod as the electrode was t:1.ken in a 

ffi~lybdenum boat or tungsten filnment Ctnd evaporated on 

to the specimon c.t 0. vacuum of 10-5 T'orr. The resulting 

metctl-semiconductor-meto..l system WLlS placed in the jie 

and mOD.surements were m~dG. Current was meD.sured using 

a digitc.l picoammeter (ECIL, model EA 5600) and the volt­

D.Ce using Cl. dieitD.l multim6ter (HP, model 3465 A). 
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Current and voltage were measured with an accuracy of

0.5%. Sufficient time was given for the current reading
to stabilize and extreme care was taken to avoid speci“
men heating due to current flow.

Current Gnd v01tcgG were me~surod with 8n uccuracy of 

0.596.. Sufficient time W2S given for the curron t reo.dinG 

to stabilize c..nd extrome c:',rG Vlc..S tnkcn to avoid spoci-­

men heo.ting dUG to current flo·w. 
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Crystals of tin disulphide are usually grown
by vapour transport methods /1-9/. The technique for
growing single crystals with layered structures have

been described by Levy /9/ and he has grown SnS2 cry­
stals with and without using the transporting agent.
Mikkelsen /1O/ has grown these crystals by Bridgmann~
Stockbarger method and has obtained bulk crystals with

higher purity. For the growth of tin disulphide by
chemical transport method, all of the investigators had
used iodine as the transporting agent. Crystals grown
using transporting agent are usually contaminated by the
incorporation of transporting agent. It has been found
that the growth conditions of the crystals have a marked
influence on their properties. Good quality crystals are
obtained when growth is performed without using the
transporting agent. One of the most striking features
of crystals with layered structures is the existence of
screw dislocations with Burgers vector perpendicfilar to
the plane of the layers giving rise to growth spirals.
Bletskan /6/ and Mitchell /8/ have reported growth

spirals on SnS2 crystals but no systematic study of
their growth morphology have been made. In this
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chapter the growth of tin disulphide by physical
vapour transport method and their morphological studies
are presented.

QTEXQTTAL BQJ{l‘ltlG

Tin.disulphide single crystals were grown by
the physical vapour transport method. For the growth
process quartz ampoules of 17 cm length and 1.6 cm dia­
meter were used. Stoichiometric amount of tin (99.999%)
and sulfur (three times recrystallised from solution)
were sealed in pre~cleaned ampoules at a final pressure
of 10-5 Torr. The ampoules were placed in a two zone
linear gradient furnace. Before starting growth, a
reverse temperature gradient was applied such that the
source region is at a lower temperature than the condenl
sation zone. After one to three hours in a reverse tem­
perature gradient, any traces of starting material in the
growth zone are removed. Figure 1 shows the temperature

profile of the furnace used for the crystal growth. The

source temperature was maintained at T1 = ?Od=C and the

growth temperature at T2 : 656,0. Temperature ofi"the
zones were controlled with an accuracy of i fLC using
temperature controllers as described in chapter IV.
After a growth period of 40 ~ 150 hrs., golden yellow
platelet like crystals of 2 cmz area and 10 - 6O}Jm
thickness were obtained.
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temperature controllers as described in chapter IV. 
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thickn~ss were obtained. 

fl7 



J. ‘ _‘ _)‘bk Umcp _ U) 0 *2 H1 map “O ®€HqOk; ogséflgm t P_hH&AEUV 80390II I IIFIII ‘ I II |‘1|‘.'t I/N H\ I lMlh‘\ iii ‘ ||||| I [||1 I \ !‘\ H\\lH|‘]ll’H'_l3wd3JD1HJ‘M(

t= 

i 0 
'4" 

0 
Itt) 
! 

o o -

0 
N 

0 -

-E 
u 
'-" 
~ 

~ 
t1 
~ 

.'t2 
0 

DB 

(l.) 

~\.-:; 
.~ 

~, 

.... -:1 
~ 

'0 
'.) 

" 
~., 

~) 

0 
~, 

"J 

::::: 

~, 

rH 

(!) 
r'" 

... > . 
~J 

Cr. ,-1 
0 (' 

.J.-) 

(I) t-J , ... >, 
• .-! ~ . 
4, () 

0 
h 0.J 
~". {!) 

Cl 
h 
(I) 

h 
~ ...... 

.. p 0 
CS 
h .. ~ 
(1) +.:> 
~ ~ .. ! 

':.:! C 
(I) H 
E-' t . .) 

• 
1;,;) 

~ 



6 3 4 ‘P 9  "M §~~r.~.\ 99r?‘  "~‘! /R. \Kai ;\
‘\ (gt-J. 5?! '' . "2 I, ' .',-"‘ \ <'

Crystals with good plane surfa&§e$wero add?
for the morphological studies. The as grdwfiasarfaces

~__ ‘X

I: 1 ‘\\:"'\.___- '1
\_ .1Ar.u3)

.44\.

0.4 /
I Z

of the crystals were observed in reflection as described
in Chapter-IV.

BES§LTS,A§QiDl§QU55lQH5.

The theory of crystal growth in presence of
screw dislocation mechanism has been developed by

Burton, Cabrera and Frank /11/. When a single screw
dislocation emerges on the face of the crystal, a mole­
cular ledge will run from the point of emergence on the
crystal surface, to the boundary of the face. when the
supersaturation of the vapour in contact with the crystal
is raised to a certain critical value, growth will start
and the ledge willkurl up and form a spiral. Frank /12/,
Cabrera and Levine /15/ have shown that if a Burgers
vector of a dislocation becomes relatively high, a cylin~
drical hollow core will be developed around the dislocation.
Cabrera and Levine generalised the BCF theory by introduc­
ing the influence of the strain energy around the dislo­
cation. According to this a hollow core could develop
due to the stress and from the hollow core a spiral
step emerges. Hollow cores are developed in the centre
of dislocations with Burgers vector larger than 10 K’.
Hollow core at the centre of a growth spiral had been
reported by many authors /14.17/.

Dn 
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Beautiful circular and hexagonal spirals have
been observed on all the tin disulphide crystals grown by
the physical vapour transport method establishing that
these crystals grow from the vapour phase by the screw
dislocation mechanism. In vapour growth when the rate
of advance of the ledge is independent of the crystallo­
graphic orientation, a rounded spiral will result. When
the displacement velocity of the straight growth front
varies with the orientation on the crystal face, polygonal
spirals will result. A typical hexagonal spiral pattern
with a central core is shown in figure 2. The hexagonal
spiral pattern exhibits the symmetry of the tin disulphide
crystal face. The distance between the successive turns of
the spiral is constant. The step separation in this case
is obtained as 3O}Jm. Since the step height of the spiral
is very large, the spiral can be observed easily under
ordinary reflected light.

Sunagawa and Bonnema /15/ have shown that when

the step height of the spiral is very high, a hollow core
is formed at the centre of the spiral and from the core,
the step escapes with a change of curvature depending on
the stress field. In figure 3 such a spiral pattern with
a hollow core 'showing a clear change of curvature as the
step leaves from the hollow core, observed on tin disule
phide crystal is shown.. The degree of the change of
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curvature varies depending on the stress field. Growth
spirals showing such change of curvature at the centre
has been observed on SiC and hematite crystals by
Sunagawa and Bennema /15/. Figure Q shows two growth

spirals of opposite sign originating from two screw dis—
locations. It can clearly be seen that a spiral start
from the centre of the hollow core marked A in the

figure and another outer spiral layer originates from
the point where the inner spiral meets the surface.

A hollow core with a closed loop around the

central core is shown in figure 5, the spiral starting
from the closing point of the loop. This closed loop
may be the result of the interaction of two independent
screw dislocations with their emergence points very close
to each other. Figure 6cis a case where the hollow tube
is partly closed. This may be created not as a result
of the spiral growth but by an unfilled portion during
growth. It can also be seen that this act as a source
of screw dislocation resulting in spiral growth. Growth
spirals without a central core have also been observed in

SnS2 crystals (figure 7). Here neither a hollow core nor
a change of curvature is observed at the centre. This
may be due to the higher supersaturation value which
dominates the stress effect at the centre of the growth
spiral. Figure 8 is a case in which three dislocation
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of same strength and same sign originate from different
emergence points. Two spirals show central cores at the
emergence of the dislocation. In this case, the

‘U
O
!.Jo
£3
<+
U1

ledges meet together, they fuse and annihilate each other
over the common portion and successive closed loops are
formed. The hyperbolic curve of intersection between the
spirals are clearly seen.

Figure 9 shows the eccentric growth spirals
observed on the basal plane of tin disulphide crystals.
Originating from a single screw dislocation, this shows
increasing wider separation towards the centre portion
and narrower towards the base. The direction in which

step separation becomes narrower is the direction towards

the sides of the ampoule. Atfhis portion, the temperature
is higher than the centre portion and hence at a low
supersaturation. The supersaturation increases towards
the centre portion of the ampoule because of the lower
temperature there, and the spiral step becomes more wider.
Thus the reason for the eccentric shape of the spiral
must be the anisotropy of environmental conditions such
as supersaturation gradient over the surface.
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The growth spirals observed on basal surface

of SnS2 crystals indicate that the crystals are grown
by the screw dislocation mechanism. The hexagonal spiral
exhibits the symmetry of the unit cell of the tin disulphide
crystals. Hollow core at the centre of the spirals are
due to the stress field around the dislocation. The
eccentric shape of the spirals observed are due to
the supersaturation gradient over the surface.

Ill
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CHAPTER - VI
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Optical absorption studies of tin disulphide
have been reported by many authors. Optical studies were
first reported by Greenaway and Nitsche /1/. They report­
ed that tin disulphide is an indirect band gap semicon­
ductor and the transition leading to fundamental absorpt­
ion is an indirect allowed one at 2.21 eV. Domingo et al
/2/ reported an indirect forbidden band gap value of
2.07 eV and a direct gap of 2.88 eV. Lee et al /5/ stud­
ied the optical properties of the solid solutions of tin
disulphide and tin diselenide. They reported an indirect
allowed transition at 2.22 eV. From the pressure depend­
ence of absorption edge, Powell /4/ reported an indirect
transition at 2.29 eV and a direct transition at 2.44 eV.
From the electrical measurements, Acharya and Srivastava

/5/ reported band gap values for different polytypes of

SnS2 crystals. It was found that band gap varied with
polytype periodicity. Nozaki and Imai /6/ reported an
indirect allowed transition at 2.1M eV. Absorption edge
measurements of tin disulphide in thin film form has been
carried out by George and Joseph /7/ and they also reported
indirect allowed transitions at 2.21 eV and 2.51 eV.
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duc tor and the transition leading to fundamen t2J I.bsorpt-

ion is an indirect allowed one at 2.21 eV. Domingo et al 

/2/ report od an indirect forbidden band gap value of 

2.07 oV and!} direct gap of 2.88 eVe Lee et 0.1 /3/ stud-

iod the optical properties of the solid solutions of tin 

disulphide and tin disolenide. They reported an indiroct 

allowed transition at 2.22 eVe Frolfl the pressure depend-

ence of absorption edge, Powell /4/ reported an indirect 

t~ansition at 2.29 cV and a direct tr2nsition at 2.44 eV. 

From the elee tric 8.1 meD.sure!':ren tG, Acharya and Sri vCtstava 

/5/ reported band gap values for different polytypes of 

SnS2 crystals. It was found that band gap varied with 

polytype periodicity. Nozaki and Imai /6/ reported an 

indirect allowed transition at 2.1Lj. eVe Absorption edge 

measurements of tin disulphide in thin film form has been 

carried out by Georgo and Joseph /7/ and they also reported 

indirect allowed transitions at 2.21 eV and 2.31 eVe 
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In all these studies, the reported value of
the band gap and the nature of the absorption edge trens­
itions are found to be different. Such differences can
possibly occur due to the presence of impurities, imper~
fections and the consequent free carrier absorption in
the crystals used in the studies.

Theoretical band structure calculations have

been made for tin disulphide crystals by the empirical
pseudopotential method /8,9/. Murray and Williams /1O/
calculated the band structure using the semi empirical
tight binding method. The first principles pseudopotent­
ial band structure calculation was made by Hula and
Aymerich /11/ and Powell et al /12,15/. These calculat­
ions showed similar features of the energy bands, but
gave different results in the detailed ordering of energy
levels and in the band profiles.

Photoconductivity measurements of SnS2 crystals
was reported by Domingo et al /2/, Patil and Tredgold /14/,
Nakata et al /15/ end Bletskan et al /16/. All of them
have reported a photoconductive peak at 2.50 eV. Generally
the band gap value coincides with the photoconductive peak

value. But in the case of SnS2, there is a disagreement
in these two values. Only George and Joseph /7/ have
correlated their band gap value obtained at 2.51 eV with
the photoconductivity peak at 2.30 eV.

In all these studies, the reported value of 

the band gap and the nature of the absorption edgo tr!o'.ns­

itions are found to be different. Such differenc8s can 

possibly occur dUG to the presence of impurities, impor­

foctions and the consequent fr~o carrier absorption in 

the crystals used in the studies. 

Thooretical band structuro calculations have 

been made for tin disulphide crystals by the ompirical 

pSGudopoten tial method /8,9/. Murr6.y and Willia!.'ls /10/ 

calculated the bczud structure using the somi oli':pirica1 

tight binding mothod. The first principles pscudopotcnt-

inl band structur~ c:l.lcuL:;tion was made by Hula and 

Ay:r.8rich /11/ and POVli::ll et al /12,13/. Tl18S0 cc~lculDt-

ions showed sinil:1r fecttur8s of the E::nGrgy DcUlds, but 

gave different results in the d8t'::liled ordering of energy 

levels and in tho band profiles. 

Pho toconduc ti vi ty mcasureEiOn ts of S11S2 crysto.1s 

1;I!QS reported by DOl!lingo et 8.1 /2/, Po.til ~d Tredgold /14/, 

Nnknt& et a1 /15/ and Blotsl\:c.u1 et D.l /16/. All of then 

have reported D. photoconductive peak at 2.30 eVe Genorally 

the band gap value coincides with the photoconductive pe:.:l.k 

vp..lue. But in the Cc~so of SnS2 , there is n. disagreement 

in these two v~luG8. Only Gcorge and Joseph /7/ hQve 

correlated their bo.nd gnp vr'lue obte,ined at 2.31 oV with 

the photoconductivity peak nt 2.30 8V. 
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Optical absorption studies made by the
previous workers have used n spectral band width of
about 5 nm which gives an energy resolution of about
0.02 eV. This chapter presents high resolution abSOrpt­
ion edge measurements of tin disulphide single crystals.
For these measurements s spectral hand width ofQ.11nn

which gives an energy resolution better than 0.0005 eV
was used.

l3l§l735l?.Il‘.tIi~_1‘1I_11:L

Single crystals of tin disulphide grown by
vapour transport method were used for absorption edge
measurements. The crystals were platelets of 0.5 X 0.5 cm
and thickness around 100 microns. Cleaved crystals with

good plane surfaces were selected for transmission meas­
urements. For transmission measurements a Cary 1? D

double beam spectrophotometer and a Hitachi 200 — 20

UV ~ Vis. spectrophotometer were used. All the measure­
ments were carried out parallel to c-axis and at room
temperature. Refractive index and absorption coefficient
of the crystal was determined using equations as discussed
in Chapter IV.

UBlili-l_1LiilNlDi,.Dl:5_§ll$.5lQIl§L

The transmission spectra of a typical tin
disulphide crystal is shown in figure 1. From the
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Opticnl absorption studies made by the 

provious Vlorkers hD.ve used .:i. spectr':l.l band width of 

about 5 nrn which gives nn energy resolution of about 

0.02 eV. This cl'i.::.ptor pres(;n tf3 high reGolu tion rcbsorpt­

ion odse measuroments of tin disulphi~B cinglo cryst~ls. 

For thc£30 meas 11reJ:J.cnts c:. spcctrnl br.md width ofO.1 nrn 

which GiveG an encrgy resolution bottur thetn 0.0005 oV 

w[tS usod. 
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Single crystals of tin disulphido grown by 

vapour tr~nsport m8thod woro used for absorption edge 

me2.surements. The cryst:J.l13 were pl,J.tel0ts of 0.5 x 0.5 cm 

ctnd thickn0ss nround 100 microns. Cleaved cryst.;tls with 

good plane surfc'}ces were solected for transmission meas­

urements. For transmission me::1suT'ements Cl Cary 1'1 D 

double bec~ spectrophotometer ~nd a Hitachi 200 - 20 

DV - Vis. spectrophotomoter were used. All the measure­

ments were cnrriod out p:::.rnllel to c-Qxis and at room 

tempor~ture. Refractive index and absorption coefficient 

of the crystnl w~s determined using equations as discussed 

in Cho.pt8r IV. 

The transmission spectra of a typical tin 

disulphide crystal is ShO'¥ID in figure 1. From the 
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interference fringes obtained, refractive index was
calculated and the variation of refractive index with
wavelength is shown in figure 2. Although the value
obtained by Domingo et al /2/ are slightly higher than
the present value, there is good agreement with that
of Lee et al /3/.

The crystals exhibit a wavelength independent
absorption (dlz 15 cm_1) before the onset of band to
band transitions. This wavelength independent part of
the absorption coefficient was subtracted from the total
absorption to obtain the absorption coefficient due to
fundamental absorption. The variation of absorption
coefficient with photon energy is shown in figure 5.
It can be seen that the absorption begin around 1.90 eV,
shows a shoulder and then increases rapidly. This shoulder
is due to the presence of ionized donor impurity levels
just below the conduction band. Unlike the exciton absorp­
tion which occurs between a discrete level and the well

defined edge of a band, a transition between an impurity
and a band should manifest themselves by a shoulder in
the absorption edge. This occurs at a threshold value

lower than the energy gap by an amount Ei, where Ei is
the energy value of the impurity level /1?/. The absorp~
tion coefficient for transitions involving the impurity
levels covers a much smaller range than the transitions

i~terferencG fringes obtained, refractive index was 

calculated and the variation of refractive index with 

wc-:tvel(mgth iD 3hovm in figure 2. Al though tho value 

obtEined by Dor::inGo et 8.1 /2/ ar0 slightly higher than 

the prosent value, thero is good agrGGment with that 

of Loe et al /3/. 
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The crystals exhibit Cl wavelength independent 

absorption (c:(.:::: 15 cm -1) before the onset of band to 

band transi tions. This wavelength indopcndcmt part of 

the absorption coefficient Was subtracted from the total 

absorption to obtain the absorption coefficiont due to 

fundD1ll8ntC1.l absorption. Th0 vari2.tion of absorption 

coefficient wi th photon energy is shovm in figur~ 3. 

It CQn be seen that the absorption begin around 1.90 eV, 

shows a shoulder and then increas0s rapidly. This Bhou!~Gr 

is due to the presonce of ionized don.or impurity levels 

just below tl18 conduction br:md. Unlike the exci ton aosorp­

tion which occurs betvJeen Cl discreto lovel :1.l1d the well 

defin8d edge of 0. band, a tr2.nsition between an impurity 

and a bLU1d should m.:mifest thGmselvGs by n shoulder in 

the absorption Gdge. This occurs at Cl. threshold value 

lower th.-m the energy gop by an wnount Ei' where ~ is 

the cn.::rgy vcl.uc of the impurity level /17/. The n.bsorp-

tion coefficiGnt for tr~nGitions involving the impurity 

levels covers 2 much smi1ller r2nge than the transitions 
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between valence band and conduction band because the

density of impurity states is much lower than the dens­
ity of states in the bands. From the absorption data
(see figure 5) the energy value for the impurity level
is obtained as 0.1? eV. From the electrical conduction
studies, Said and Lee /18/ reported the values of impurity
levels in tin disulphide as 0.40 eV, 0.11 eV and 0.05 eV.
Recently George and Joseph /19/ has reported that in tin
disulphide thin films, two donor levels exist at 0.20 eV
and 0.25 eV below the conduction band. These are due to

the presence of doubly ionizable sulphur vacancies in the
films. The crystals we studied also exhibit n-type con~
ductivity and it may possibly due to the presence of
sulphur vacancies which act as donor impurities as in
the case of thin films.

Exciton spectra at room temperature was ob~

served before the fundamental absorption in GaSe by
Bassani et al /20/ and in InSe by Piacentini et al /21/
which are layer compounds like tin disulphide. In order
to distinguish between exciton absorption and impurity
absorption, the infrared spectra of the crystals by the
KBr pellet process was taken. This, as expected showed
a broad absorption band starting from 7 microns (0.177 eV)
to 16 microns which was the limit of the IR spectrophoto­
meter used. This is certainly due to transitions from
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between valence band and conduction band because the 

density of impurity states is much lower than the dens­

ity of states in the bands. From the absorption data 

(see figure 3) the energy valUe for tho impurity level 

is obtained as 0.17 eVe From the electrical conduction 

studies, Said and Lee /18/ reported the values of impurity 

levels in tin disulphide as 0.40 eV, 0.11 eV and 0.05 eVe 

Recently GQorge and Joseph /19/ has reported that in tin 

disulphide thin films, two donor levels exist at 0.20 oV 

and 0.25 eV below the conduction bend. These are due to 

the presence of doubly ionizable sulphur vacancies in thu 

films. The crystals we studied also exhibit n-type con­

ductivity and it may possibly due to the presence of 

sulphur vacancies which act as donor impurities as in 

the case of thin films. 

Exciton spectra at room temperature was ob­

sorved before the fundamental absorption in GaSe by 

Bassani et al /20/ and in InSe by Piacentini et al /21/ 

which are layer compounds like tin disulphide. In order 

to distinguish between exciton absorption and impurity 

absorption, the infrared spectra of the crystals by the 

KBr pellet process was taken. This,- as expected showed 

a bro~d absorption band starting from 7 microns (0.177 eV) 

to 16 microns which was tho limit of the IR spectrophoto­

meter used. This is certainly due to transitions from 
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unionized donor impurity levels to the conduction band.
It can be seen that the impurity level obtained from
the IR spectra (0.177 eV) agrees very well with that
obtained from the fundamental absorption data (0.17 eV).

hhe fundamental absorption data was analyzed

in terms of the theory of Bardeen et al /22/ which gives
for an indirect transition

_ I‘
OQ = -%_;(*1il}# _Psi_r?ip_2sr

nu

where Eé is the indirect band gap; 1113 is the photon
energy and Ep is the energy of the absorbed (+) or
emitted (-) phonons. If r a 2, the transition is allowed
and if r'= 3, the transition is forbidden.

The plot of @Chv)1/3 versus h19 is given in

figure 4. Absorption coefficient was obtained after
subtracting the impurity contribution assuming that it
obeys a law of the form

<,(,= B (hv - Eé - Bi)‘/2

where B?is a constant /23/. It has been previously
reported that both @Chv)1/3 and GChU)1/2 gives a
straight line /1-A/. The previous authors have not
subtracted out the wavelength independent part of the

unionized donor impurity levels to the conduction band. 

It can be seen that the impurity level obtained from 

the IR spectra (0.177 eV) agrees very well with that 

obtained from the fundamental absorption data (0.17 eV). 

'IDle fundamental absorption data was analyzed 

in terms of the theory of Bardeen et al /22/ which gives 

for an indirect transition 

= 
A (hU - Et + E ) r 

g - p 
hU 

where Eg is the indirect band gap; h~ is the photon 

energy and Ep is the energy of the absorbed (+) or 

emitted (-) phonons. If r • 2, the transition is allowed 

and if r = 3, the transition is forbidden. 

The plot of (cChV) 1/3 versus hv is given in 

figure 4. Absorption coefficient was obtained after 

subtracting the impurity contribution assuming that it 

obeys a law of the form 

B (hV - E'> - E.) 1/2 
g 1. 

where B is a constant /23/. 

reported that both ~hu) 1/3 

It has been previously 

and (~hV)1/2 gives a 

straight line /1-4/. The previous authors have not 

subtracted out the wavelength independent part of the 
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absorption coefficient and also the impurity contribut—
ion. It may be the reason for the above discrepancy.

From the plot of GChv)1/5 versus photon

energy, the value of the band gap obtained is
2.070 i 0.001 eV. Three straight line portions are
clearly seen in the figure. This may be due to the
presence of three valence bands. This is highly prob­
able because in tin disulphide the valence band is
roughly divided into two groups, the lower two bands
being split off from the upper six bands /12/. Lower
valence band originate from sulphur s-states and the
upper bands from sulphur p-states. The Six Sulphur
p-states from the two sulphur atoms in the unit cell
are split under the action of the crystal field into

four px, py states and two pz states. These states
then combine to form bonding and antibonding bands. The

final ordering of the states could give either a pz
state or px, py degenerate state for the valence band
maximum. The degenerate px, py states can be further
split due to spin orbit interaction.

Figure A gives the energy difference between
the first valence band and conduction band as

2.070 i 0.001 eV, for the second valence band
2.228 j 0.001 eV and for the third valence band

absorption coefficient fu'1d also the impuri ty contribut-

ion. It may be the reason f'Jr the above discrepancy. 

From the plot of (oCh1J) 1/3 versus photon 

energy, the value of the band gap obtained is 

2.070 :!;. 0.001 eV. Three straight line portions are 

clearly seen in the figure. This may be due to the 

presence of three valence bands. This is highly prob­

able because in tin disulphide the valence band is 

roughly divided into two groups, the lower two bands 

being split off from the upper six bands /12/. Lower 

valence band originate from sulphur s-states and the 

upper bands from sulphur p-states. The six sulphur 

p-states from the two sulphur atoms in the unit cell 

are split under the action of the crystal field into 

four Px' Py states and two Pz states. These states 
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then combine to form bonding and antibonding bands. The 

final ordering of the states could give either a Pz 

s~ate or Px ' Py degenerate state for the valence band 

maximum. The degenerate Px ' Py states can be further 

split due to spin orbit interaction. 

figure L~ gives the energy difference between 

the first valence band and conduction band as 

2.070 + 0.001 eV, for the second valence band 

2.228 : 0.001 eV and for the third valence band 
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2.50 i 0.001 eV. From these values, assuming that the

first two bands are the degenerate px, py bands split
by spin-orbit interaction, we get 0.158 eV as the spin
orbit interaction energy. This value agrees quite well
with the spin—orbit splitting in sulphur atom, which is
0.157 eV /2%/. Greenaway and Nitsche /1/ also observed
this three line structure, but they arbitrarily took
the mean of the extreme ones to get the band gap. The
present value and the nature of transition is the same as
that given by Domingo et al /2/.

The ordering of the valence band agrees with
the pseudopotential band structure calculation of Powell
et al /13/. It is shown that the top most valence band
is doubly degenerate and the lowest conduction band is
non-degenerate. Phonon energies reported in tin disul~
phide are 0.40 eV and 0.25 eV /25/ and it can be seen
that the structure observed in the @Chv)1/3 plot is not
due to the emission or absorption of the phonons. The
photoconductivity maxima observed at 2.5 eV by the earlier
workers /2, 14-16/ was not explained satisfactorily because
the absorption edge data at that time gave the indirect
band gap value at 2.07 eV and the direct gap value at
2.88 eV. It can now be explained from the present observe
ations, that the transition from the third valence band
should be responsible for the reported photoconductivity
peak at 2.3 eV.

2.30 : 0.001 eVe From these values, assuming that the 

first two bands are the degenerate p ,p bands split x y 

by spin-orbit interaction, we get 0.158 eV as the spin 
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orbit interaction energy. 1his value agrees quite well 

with the spin-orbit splitting in sulphur atom, which is 

0.157 eV /24/. Greenaway and Nitsche /1/ also observed 

this three line structure, but they arbitrarily took 

the mean of the extreme ones to get the band gap. The 

present value and the nature of transition is the saIne as 

that given by Domingo et al /2/. 

The ordering of the valence band agrees ~~th 

the pSBudopoteptial band structure calculation of Powell 

et al /13/. It is sho~m that the top most valence band 

is doubly degenerate and the lowest conduction band is 

non-degenerate. Phonon energies reported in tin disul-

phide are 0.40 aV and 0.25 eV /25/ and it can be seen 

that the structure observed in the (~hV) 1/3 plot is not 

d~e to the emission or absorption of the phonons. The 

photoconductivity maxima observed at 2.3 eV by the earlier 

workers /2, 14-16/ was not explained satisfactorily because 

the absorption edge data at that time gave the indirect 

band gap value at 2.07 eV and the direct gap value at 

2.88 eVe It can now be explained from the present observ­

ations. that the transition from the third valence band 

should be responsible for the reported photoconductivity 

peak at 2.3 eV. 
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Thin crystals of tin disulphide were used to
detect the direct transition in this material. Figure 5
shows the variation of absorption coefficient with photon
energy obtained for a crystal of thickness <115}4m. From
the figure it can be seen that the absorption coefficient
exhibits a shoulder around 2.4 eV, which is due to the
onset of the direct transitions. According to Bardeen's
theory /22/, for a direct transition

B (hv - E )1"
hi?

where Eg is the direct band gap. If r = 1/2, the
transition is allowed and if r = 5/2, the transition is
forbidden,

The PI0t Of Q€hV)2/3 versus h19 is given in
figure 6. The energy intercept gives a direct forbidden
band gap of 2.hO 1 0.002 eV. Powell /4/ has reported
the direct band gap of tin disulphide crystals (2!)
as 2.q4 1 0.05 eV from the pressure dependence measure­
ments and the present value is in agreement with this.
The reported values of band gap for tin disulphide are
given in table 1.

127 

Thin crystals of tin disulphide wero used to 

detect the direct transition in this material. Figure 5 

shows the vElriation of absorption coefficien t \vi th photon 

energy obtained for a cryst2l of thickness < 15 f.Jm. Frorl1 

the figure it can be seen that the c:.bsOrl)tion coefficient 

exhibits a shoulder around 2.4 eV, which is due to the 

onset of the direct transitions. According to Bardeen's 

theory /22/, for a direct transition 

B (hU - Eg)r 

h't7 

where Eg is the direct band gap. If r = 1/2, the 

transition is allowed and if r = 3/2, the transition is 

forbidden. 

~. 6 ~1.gure • 

The plot of (~hlJ)2/3 versus hU is given in 

The energy intercept gives a direct forbidden 

band gap of 2.40 ~ 0.002 eVe Powell /4/ has reported 

the direct band gap of tin disulphide crystals (2.) 

as 2.44 + 0.05 eV from the pressure dependence measure--
ments and the present value is in agreement with this. 

The reported values of band gap for tin disulphide are 

given in table 1. 
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High resolution absorption edge measurements

of tin disulphide single crystals have shown that there
is a shoulder in the absorption caused by the presence
of donor levels situated just below the conduction band.
It is found that there are three valence bands which
originate due to spin-orbit interaction and crystal
field splitting. Indirect forbidden transitions at
2.0? eV, 2.228 eV, 2.50 eV and a direct forbidden trans­
ition at 2.tc eV have been detected. The photoconducti~
vity maxima at 2.30 eV reported by earlier workers agrees
with the present observations.

CONCLUSION 

H:Lgh resolution absorption edge measurc;ne;:l ts 

of tin disulphide single crystals have shown that there 

is a shoulder in the absorption caused by the presence 

of donor levels situated just below the conduction band. 

It is found that there are three valence bands which 

originate due to spin-orbit interaction and crystal 

field splitting. Indirect forbidden tr~illsitions at 

2.07 eV, 2.228 eV, 2.30 eV and a direct forbidden trans­

ition at 2.l+0 eV have been detected. The photoconducti­

vity maxima at 2.30 eV reported by earlier workers agrees 

with the present observations. 
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CHAPTER - VII

ELECTRICAL PROPERTIES OF TIN DISULPHIDE CRYSTALS_._ :4,___4,,T‘_-' _ 4, ~_—f—-~.-~*- ' -*--—~-—- —~ 4 * ' ~-'* ————~—~—-—' W *——i-—~ *~->*~ i * -L-—---¢._-~~ 4 -,_J_i---" *' #' --* --*—‘

Gowers and Lee /1/ studied the electrical
properties of tin disulphide crystals and reported a
value of 1O_# cma/V. sec. for the mobility of electrons
parallel to c—axis and 30 cmz/V. sec. for the perpendi­
cular direction. They conjuctured that when conduction
is perpendicular to the layers (parallel to c-axis),
electrons have to tunnel between the layers and hence
the low mobility. Patil and Tredgold /2/ studied the
conductivity parallel and perpendicular to the c—axis
by a probe method and their measurements showed an

anisotropy ratio sq,/cf” of the order of 104. They
interpreted that this is due to the different mechanism
of charge transport in the direction along and perpendi
cular to the layers. From the Hall effect measurements
Ishizawa and Fujiki /5/ reported mobility perpendicular
to c-axis (e.q cmz/V. sec.) and carrier concentration

(6 x 1016 cm'5) of n-type SnS2 crystals. Patil /h/
investigated AC conductivity in tin disulphide over
the temperature range -106 C to 126,0, and from the
frequency dependence of AC conductivity in the low
temperature region suggested that perpendicular to the
c-axis, electron transport is by a hopping mechanism.

3 Ii

CHAPTER - VII 

ELECTRICAL PROPERTIES OF TIN DISULPHIDE CRYSTALS 

Gowers and Lee /1/ studied the electrical 

properties of tin disulphide crystals and reported a 

value of 10-4 cm2/V. sec. for the mobility of electrons 

parallel to c-axis and 30 cm2/V. sec. for the perpendi­

cular direction. They conjuctured that when conduction 

is perpendicular to the layers (parallel to c-axis), 

electrons have to tunnel between the layers and hence 

the low nobility. Patil and Tredgold /2/ studied the 

conductivity parallel and perpendicular to the c-axis 

by a probe method and their measurements shO\ved an 
I 

anisotropy ratio t:r~y Jro-II of the order of 10Lt. They 

:i_nterpreted that this is due to the different mechanism .. ' 

of charge transport in the direction along and perpendi .. 

cular to the layers. From the Hc~ll effect measurements, 

Ishizawa and Fujiki /31 reported mobility perpendicular 

to c-axis (6.4 cm2/V. sec.) and carrier concentration 

(6 x 1016 cm-3 ) of n-type Sns2 crystals. Patil /4/ 

investigated AC conductivity in tin disulphide over 
o 0 

the temperature range -100 C to 120 C, and from the 

frequency dependence of AC conductivity in the low 

temperature region suggested that perpendicular to the 

c-axis, electron transport is by a hopping mech~~ism. 



§-h
CA:

CH

Electrical conduction mechanism in tin disulphide cry—
stals have been reported by Said and Lee /5/ using

Sn~SnS2—Sn structures. They measured the conductivity
parallel to c—axis and found that the conduction mechani­
sm in these crystals is space charge limited. Acharya
and Srivastava /6/ studied the activation energy for
conduction for different polytypes of tin disulphide
crystals and reported that activation energy decreases
with increasing polytype periodicity.

All the above mentioned investigations were
on crystals grown using iodine as transporting agent.
Crystals grown by the use of transporting agents are
highly contaminated and this usually has a pronounced
effect on the electrical properties. Resistivity and
mobility generally decreases with increasing iodine
content.

This chapter contains the electrical propert­
ies of tin disulphide crystals grown by physical vapour
transport method. The current-voltage characteristics
of the crystals in the direction parallel to the c-axis
have been investigated at different temperatures using
MIM structures and the trap depth, trap concentration,
free carrier mobility etc. have been determined.

Electrico.l conduction mechanisl~l in tin disulphide cry­

stals have been reported by Said and Lee /5/ using 

Sn-SnS~,-Sn structures. They measured the conducti vi ty 
c:. 

parallel to c-axis and found that the conduction mechani-

srn in these crystals is space charge limited. Acharya 

and SrivG.stava /6/ studied the activD.tion energy for 

conduction for different polytypes of tin disulphide 

crystals and reported that activation energy decreases 

with increasing polytype periodicity. 

All the above mentioned investigations were 

on crystals grown usj_ng iodine as transporting agent. 

Crystals grovm by the use of transporting agents are 

highly contaminated and this usually hac a pronounced 

effect on the electrical properties. Resistivity and 

~obility generally decreases with increasing iodine 

content. 

This chapter contains the electrical propert­

ies of tin disulphide crystals grown by physical vapour 

trani.3port method. The current-voltage characteristics 

of the crystals in the direction parallel to the c-axis 

have been investigated at different temperatures using 

MIM structures and the trap depth, trap concentration, 

free carrier mobility etc. have been determined. 
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The crystals were grown by PVT method as

already described in Chapter IV. To study the current
voltage characteristics, aluminium electrodes of area
0.1256 cma was deposited by vacuum evaporation on the

opposite faces of the crystals. The Al—SnS2-Al sandwich
was placed in between a jig and the measurements were
made in an evacuated all-metal cell as described in

Chapter IV. Current was measured using a digital picc­
ammeter and the voltage using a digital multimeter.
During the measurements, temperature of the crystal
was controlled by the current applied to the heater from
a low voltage stabilized DC source. The specimens were
held at the desired temperature for a sufficiently long
time before the measurements were made. Temperature of
the specimen was measured using a chromel—alumel thermo­

couple kept close to the specimen. Thickness of the
crystals used in the study were in the range of 10 - 6O}1m.

RESULTS_AND_DISCUSSIONS

The current-voltage characteristic of a
typical MIM structure is shown in figure 1. It can
be seen that at low voltages the current is proportional
to the applied voltage, indicating that the current is
controlled by thermally generated charge carriers.

7 • 1 &KPERIMENTAL 

'rhe crystals were grown by ?VT met~od as 

already descriDed in Chapter IV. '-.ro study the current 

voltage characteristics, alumi~ium electrodes of area 

0.1256 cm2 was deposited by vacuum evaporation on the 

op:oosi te faces of the crystclls. The Al-SnS2-AI sandwich 

"vas placed in between a jig and the measurements Viere 

made in an evacuated all-meta.l cell as described in 

Chapt~r IV. Current was measured using a digital pico­

ammeter and the voltage using a digital multimeter. 

During the measurements, temperature of the crystal 

was controlled by the current applied to the heater from 

8. low voltage stabilized DC source. The specimens were 

held at the desired temperature for a sufficiently long 

time before the measurements were made. Temperature of 

the specimen was measured using D. chromel-alumel thermo-

couple kept close to the specimen. Thickness of the 

crystals used in the study were in the range of 10 - 60,... m. 

7.2 RESULTS ,AND DISCUSSIONS 

The current-voltage characteristic of a 

typical MIM structure is shown in figure 1. It can 

be seen that at low voltages the current is proportional 

to the applied voltage t indicating that the current is 

controlled by thermally generated charge carriers. 
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This region A is called the ohmic law region. The
ohmic law region is followed ' a square law region at

rs’
<<.

high fields as shown in region B. This is the shallow
trap square law region. The square law region is follow—
ed by another region where current increases sharply with
voltage (I<(,Vn; n23) and this is due to the filling up
of the traps. This region is followed by yet another
square law region called trap free square law region.
These observations, where an ohmic region is followed by
a square law region, indicate a charge injection into
the semiconductor with trapping centres, which may be
interpreted in terms of space charge limited conduction
/?—9/ and the current obeys a law of the form

J = (9/8) SPEZ-2 ('7.2.1)
where J is the current density, 9 is the fraction of
total carriers which are free, Fl is the charge carrier
mobility, E.is the dielectric constant, V is the voltage
and d is the specimen thickness. Figure 2 shows a plot
of the current I in the trapped square law region as a
function of thickness d on a log-log scale at 500 K.
This straight line graph shows the d3 dependence esta­
blishing that the conduction mechanism in tin disulphide
is space charge limited.

6 in equation (?.2.1) is the ratio between
the free electrons Q, in the conduction band to the

This region A is called the ohmic law region. 'rhe 

ohmic law region is followed by a square law region at 

high fields as shown in region B. This is the shallovi 

trap sqUare lav! region. The square law region is f0110'.'I-

ed by another region where current increases sharplY vii th 

vol tage (I~ Vn ; n ~ 3) and this is due to the filling up 

of the traps. 'llhis region is followed by yet .?"nother 

square law regiol! cE~lled trap free square lay! region. 

These observations, where an ohmic region iG followed by 

a square law region, j.ndicato a charge injection into 

the semiconductor with trapping centres, which may be 

interpreted in terms of space charge limited conduction 

/7-9/ and the current obeys a law of the form 

J = u irZ 
(9/8) e l-E. ~ 

where JI is the current density, e is the fraction of 

total carriers which are free, fJ.. is the charge carrier 

mobility, t is the dielectric constant, V is the voltage 

and d is the specimen thickness. Figure 2 shows a plot 

of the cu!'rent I in the trapped square law region as a 

function of thickness d on a log-log scale at 300 K. 

This straight line graph shows the d3 dependence esta-

blishing the.t the conduction mechanism in tin disulphide 

is space charge limited. 

e in equation (7.2.1) is the ratio between 

the free electrons n", in the conduction band to the 
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total electron density (no + nt), nt being the density
of the trapped electrons. Experimentally 9 is determined
from the equation

no

9 = 5:I“E£ = J1/U2 (?.2.c)
where J1 and J2 are the current densities at the start
and end of the sharp rise of the current (figure 1).
Using the experimentally determined value of 9 = 0.205

and = 7.2 /1O/, the average value of the free carrier
mobility was obtained as 6 cmz/V. sec. But Gowers and
Lee /1/ reported the free carrier mobility parallel to

c-axis in SnS2 crystals grown by chemical transport
method as 10”“ cma/V. sec. This extreme low value may

be due to the contamination of their crystals by the
transporting agent.

The threshold voltage VX where the ohmic

current crossover to the space charge limited current I
in the absence of traps is obtained by extrapolating the
trap free square law region to meet the ohmic law region.
The thermally generated free carrier density no can be

calculated from the crossover voltage VX using
equation

= >ji§**=‘-re \7 (7.2-5)
n° 1.8 x 1O"€d2 X

110 

total electron density (no + n t ), nt being the density 

of the trapped electrons. Experimentally 9 is determined 

from the equation 

e :::; :::; (7.2.2) 

where J 1 and J 2 are the current densities at the start 

and end of the sharp rise of the current (fiGure 1). 

Using the experimentally determined value of e ~ 0.205 

and :::; 7.2 /10/, the average value of the free carrier 

mobili ty vIas obtained as 6 cm2/V. sec. But Goviers and 

Lee /1/ reported the free carrier mobility parallel to 

c-axis in SnSZ crystals grown by chemical transport 

method as 10-4 cm2/V. sec. This extreme low value may 

be due to the contamination of their crystals by the 

transporting agent. 

The threshold voltage Vx where the ohmic 

current crossover to the space charge limited current 

in the absence of traps is obtained by extrapolating the 

trap free square law region to meet the ohmic law region. 

The thermally generated free carrier density no can be 

calculated from the crossover voltage Vx usiD~ 

equation 
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The average value of the density of thermally generated
free carriers was found to be equal to 2,5 x 1011 cm'3,
Using the values of na and 6 in equation (7.2.2), the

density of the trapped carriers nt was calculated as
9.1 X 1011 cm'5.

The conductivity"e~is given by 6-: noefd
where e is the electronic charge. Using the values of
no and H , er was found to be equal to 2.2 X 10:/_QT1 cm'1.
This calculated value ofcr agrees very well with the ex­
perimental value ofer obtained from the ohmic regions.
All the specimens studied shows n—type conductivity. The
sharp increase in current value after the shallow trap
square law region was due to the filling of the traps
(fig. 1). The trap filled limit voltage measures the
fraction of the total concentration of traps that is empty
in thermal equilibrium. The trap concentration is cal­
culated using the equation

6t _ J_._1rr_>;_1Oi c  >1 ­
Nt - “Ws.d2“~s s VTFL (?.2.h)

where VIIL is the trap filled limit voltage. Using the
experimentally determined value of VTFL, the trap con­

13 Cm-30centration was obtained as 2,} X 10

The temperature dependence of current—voltage

characteristics for a typical crystal is shown in figure 5.

'fhe average va.lue of the density of thermally generated 

free cnrriers was found to be equal to 2.3 x 10 '1 cm-3• 

Using the vCtlues of no and S in equation (7.2.2), the 

density of the trapped carriers n t was calculRted as 

9. 1 x 10 11 cm - 3 • 

The conductivlty 6"" is given bye-::; no e p 

where e is the electronic charge. Using the values of 
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no and p. , ~ was found to be equal to 2.2 x 10-7 ri 1 cm- 1• 

This calculated value of ID agrees very 'well with the ex­

perimental value of .. obtained from the ohmic regions. 

All the specimens studied shows n-type conductivity. The 

sharp increase in current value after the shallow trap 

square law region was due to the filling of the traps 

(fig. 1)~ The trap fille~ limit voltage ~easures the 

fraction of the total concentration of traps that is empty 

in thermal equilibrium. The tI'L'<P cone en tratioll is cal-

cule.ted using the equation 

N = t 
1 .1 x 106 x E. V 

d2 TFL 
(7.2.4) 

where VTIL is the trap filled limit voltage. Using the 

experimentally determined value of VTFL, the trap con­

centration was obtained as 2.3 x 10 13 cm-3• 

The temperature dependence of current-voltage 

characteristics for a typical crystal is shown in figure 3. 
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It can be seen that the current increases with the
increase of temperature for the same applied voltage.
At high temperatures, the current rises sharply even at
the ohmic law region and hence care was taken to avoid
specimen damage.

N

e =  exp<-Et/1<B1#> (?.2.5>“t

where Nb is the effective density of states in the con­
duction band, Et is the trap depth, kB is the Boltzmann
constant and T:is the absolute temperature. From the
temperature dependence of the I~V characteristics, the
values of 9 for various temperatures were calculated and
the log 8 versus 1/T plot is shown in figure M. From the
slope of the straight line, the value of the trap depth

Et was found to be equal to 0.10 i 0.01 eV. This trap
level may be due to the presence of doubly ionizable sul­

phur vacancies in SnS2 crystals. High resolution absorpt­
ion edge measurements (discussed in Chapter VI) in these
crystals gave an impurity level at 0.17 eV. Said and Lee
/5/ has also reported a trap depth at 0.14 eV in tin
disulphide. All these confirm that there exists an
impurity level in tin disulphide crystals around 0.10 eV.
The effective density of states in the conduction band
can be obtained by extrapolating the log 9 versus 1/T

curve. from the intercept at T“1 = O K-1, NC was found
to be equal to 5.1 x 1017 cm“3.

It can be seen that the current increases with the 

increase of temperature for the same applied voltage .. 

At high temperatures, the current rises sharply even at 

the ohmic law region and hence care was taken to avoid 

sy8cimen dal:!.age. 

e = (7.2.5) 

where N is the effective density of states in the con­e 

duction band, Et is the trap depth, kB is the Boltzmann 

constant and 'f is the absolute temperature. From the 

temperature dependence of the I-V characteristics, the 

valuos of e for various temperatures Vlere calculated and 

the log e versus 1 IT plot is shmvn in figure 4. From the 

slope of the straight line, the value of the trap depth 

Et was found to be equal to 0.10 ! 0.01 eVe This trap 

level may be due to the presence of doubly ionizable sUl-

phur vacancies in 8n82 crystals. High resolution absorpt­

ion edge measurements (discussed in Chapter VI) in these 

crystals gave an impurity level at 0.17 eV. Said and Lee 

15/ has also reported a trap depth at 0.14 eV in tin 

disulphide. All these confirm that there exists an 

impurity level in tin disulphide crystals around 0.10 eV. 

The effective density of states in the conduction band 

can be obtained by extrapolating the log 9 versus liT 

curve. From the intercept at T-1 ; 0 K-', Ne was found 

to be equal to 5.1 x 1017 em-3• 
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The Fermi level EF measured from the bottom
of the conduction band is given by

no = NC exp (— EF/kBT) (?.2.6)

Log no versus 1/T plot is shown in figure 5. The plot
is a straight line with a slope 0.15 eV. Thus it may be
seen that the position of the Fermi level in tin disul­
phide is at 0.15 eV below the conduction band.

The thermally activated electrical conducti—
vity is

6- = e—, exp <- Ea/kBT> 0.2.?)

where s3 is a constant and Ea is the activation energy.
The plot of the temperature dependence of current in the
ohmic law region (V = 800 mV) for different temperatures
is shown in figure 6. From the slope, the value of the
activation energy for conduction was obtained as

O.h0 i 0.05 eV. Said and Lee /5/ has also reported an
activation energy of o.uo eV in tin disulphide crystals.

The electrical parameters reported for tin
disulphide crystals are given in table 1. From the
table, it may be seen that carrier concentration of
the crystals grown by physical vapour transport is much
lower than that grown by chemical vapour transport method

The Fermi level EF measured from the bottom 

of the conduction band is given by 

(7.2.6) 

Log no versus 1/T plot is shown in figure 5. The plot 

is a straight line with a slope 0.15 eVe Thus it may be 

seen that the position of the Fermi level in tin disul­

phide is at 0.15 eV below the conduction band. 

The thermally activated electrical conducti-

vity is 

~ = <r. exp (- R /kBT) 
40) a (7.2.7) 

where "0 is a constant and E is the activation energy. 
a 

The plot of the temperature dependence of current in the 

ohmic law region CV = 800 mV) for different temperatures 

is shown in figure 6. From the slope, the value of the 

activation energy for conduction was obtained as 

° .4°:, 0.05 eV. Said and Lee /5/ has also reported an 

activation energy of 0.40 eV in tin disulphide crystals. 

~he electrical p&r8meters reported for tin 

disulphide crystals are given in table 1. From the 

table, it may be seen that carrier concentration of 

116 

the crystals gro~TI by physical vapour transport is much 

lower than that gro¥m by chemical vapour transport method •. 
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This shows that crystals grown by PVT have much purity

than that grown by CVT.

QQNQLH§lQE

Electrical conduction mechanism is studied

using A1-SnS2—Al structures in single crystals of tin
disulphide grown by physical vapour transport method
and it is established that the conduction is space
charge limited. The higher mobility value parallel to
c-axis and the low carrier concentration exhibited by
the crystals shows that these crystals are more pure
than the crystals grown using the transporting agent.
The trap level situated at 0.10 eV below the conduction
band may be due to the presence of doubly ionizable
sulphur vacancies. The trap concentration is found to
be 2.5 x 1013 cm'5.

9

This shows that crystals gro~~ by PVT have much purity 

them thc.t grown by GVT. 

CONCLUSION 

Electrical c·onductiol1 mechanism is studied 

using Al-SnS2-Al structures in single crystals of till 

disulphide gro'~m by physicC!l vapour transport method 

and it is est3blished that the conduction is SJEce 

charge limited. The higher mobility value parallel to 

c-axis and the low carrier concentration exhibited by 

the crystals shows that these crystals are more pure 

than the crystals grown using the transporting agent. 

The trap level situated at 0.10 eV below the conduction 

band m.ay be due to the presence of doubly ionizable 

sulphur vacancies. The trap concentrGtion is found to 

be 2.3 x 1013 cm-3• 
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CHAPTER - VIII
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Tin diselenide is a layered semiconductor
isostructural to tin disulphide and these crystals have
been grown by chemical vapour transport method /1-5/.
Garg et al /6/ have reported the growth of these cry—
stals from vapour using synthesised charge. The most
prominent features of crystals with layered structures
is the existence of screw dislocation, giving rise to
growth spirals. None of the earlier reported workers
have studied the growth morphology of tin diselenide
crystals. But Acharya and Srivastava /5/ reported that
ithey were not able to observe any evidence of growth
spirals on the as grown faces of these crystals.

In this chapter is described the growth of
tin diselenide crystals by physical vapour transport
method and their morphology. Growth spirals have been
observed on the as grown faces of tin diselenide cry­
stals for the first time.

ErX.PERrI_ME1VTA,L

Tin diselenide crystals were grown by the

physical vapour transport method. Quartz ampoules
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of 15 cm length and 1.6 cm inner diameter were used

for the crystal growth. Ampoules were cleaned as
described in Chapter IV. Stoichiometric composition
of tin (99.999%) and selenium (99.999%) were filled in
the ampoule and was sealed at a final pressure of 1O“5
Torr. The sealed ampoules were then placed in the
horizontal two zone furnace. The temperatures of the

zones were controlled with an accuracy of i YJC using
temperature controllenaas described in Chapter IV.
Figure 1 shows the temperature profile of the furnace
used for the growth of tin diselenide crystals. The

source temperature was maintained at 64O°Cf(T1) and

the growth temperature at 475°C (T2). The transport
time was around 100 hours. Crystals obtained were

mdxfllic coloured platelets having a thickness of
15O|lm and surface areas upto 1.5 cma. As grown surfaces
‘of the crystals were observed using metallurgical
microscope.

RE§QLTSiAND,DI5QE55l0H

According to Burton, Cabrera and Frank /7/,

Cabrera and Levine /8/, Muller - Krumbhar et al /9/,
when a spiral originating from an isolated single
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sources, the spiral will take regular shape. Ideal
spirals originating from isolated screw dislocations
are not commonly observed on crystal faces. If the
growth conditions are so ccntrolled and perturbations
are not present, the whole surface will be covered by
a single spiral. Figure 2 shows a single growth spiral
observed on as grown face of the tin diselenide crystal.
Several hexagonal spirals were also observed on the as
grown faces and these growth spirals confirms that the

growth of SnSe2 crystals is due to the screw dislocation
mechanism.

Based on the theoretical predictions by Frank /1Q4
Cabrera and Levine /8/, if the Burgers vector of a dis­
location becomes relatively high, a cylindrical hollow
core will develop around the dislocation. Hollow cores
at the centre of growth spirals were first observed by

Verma on SiC /11/ and Forty /12/ on CdI2 crystals. From
the experimental evidence obtained from faces of haematite
crystals, Sunagawa and Bennema /15/ reported that if the
step height of the spiral is very high, the spiral step
escapes with a change of curvature from the hollow core
depending on the stress field. Figure 5 shows such a
spiral pattern. Both spirals having the same sign are
originating from the single screw dislocation with a
clear change of curvature as they escape from the
central core.
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When two screw dislocations of the same sign

are closer together than Zflfz where fc is the radius of
curvature of the two dimensional nucleus, they will
generate a pair of non-intersecting growth spirals.
Such an example is shown in figure A. Here the spiral
is doubled and will behave like one dislocation of

double strength. A group of spirals observed on the
basal plane of the tin diselenide crystal is shown in
figure 5. All the spirals are originating from the
central core of the same dislocation and have same sign
and strength of dislocation. Eccentric spirals originat~
ing from a single screw dislocation were also observed
on the as grown faces of these crystals (Figure 6).
During the growth process a supersaturation gradient is
over the surface of the growing crystal. Hence at the
higher supersaturation side, the spiral step advance
more rapidly and form wider step separation. At the
lower supersaturation side, step separation becomes
narrower and the spiral as a whole take the eccentric
shape.

Another interesting feature observed was the
interlaced spirals. A typical example is shown in figure 7.
In this spiral pattern, interlacing appears along the
six corners of the hexagon and the dissociation of the

When tvIO screw dislocr)_tions of the same sign 
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spiral step into its components can be seen. The
splitting have occured in orientations parallel to the
three alternate edges of the hexagonal spiral. Tin
diselenide is a polytypic crystal which exhibit 2H, AH
and other higher order structures. In the crystal, for
each successive monolayer in the repetition sequence,
the force field is slighwy different. In a given orient»
ation of the step, one of these monolayers will have the
slowest rate of growth. The other faster moving monolayer
will overtake it and pile up behind it /1Q,15/. Therefore
on alternate edges of the hexagon, the growth layers form
alternate groupings. Thus the interlacing pattern results
from the dependence of the growth rates on crystallographic
directions and the change of the growth rate of the mono­
layers in different orientations of the crystal.

§.O1\'§LLU filfil

Circular and hexagonal growth spirals

observed on the basal plane of tin diselenide single
crystals revealed that they grew from the vapour phase

by the screw dislocation mechanism. The change of cur­
vature of the spiral step as it escape from the centre
core is due to the increase in strain at the dislocation
centre. Interlaced spirals are the result of the change
in growth rate of the monolayers in different orientations

I6 2
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of the crystal. Almost all growth spirals observed on

the as grown face of SnSep crystals are similar to
that observed on SnS2 crystals.
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of the crystal. Almost all gro\vth spirals observed on 

the as growil face of SnSG2 crystals arc similar to 

that observed on SnS2 crystals. 
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CHAPTER - IX

QRTi§ALiANDiELEQIBlQAL.PEQRBBElE§lQ£

l1fiQlE§ELEElDEiQEi§1@M$

Optical and electrical properties of tin
diselenide single crystals have been investigated by
many workers. Domingo et al /1/ studied the optical
properties and reported that the fundamental absorption
occurs due to an indirect forbidden transition. A direct
transition was also observed at higher photon energies.
Lee et al /2/ reported the ordinary and extraordinary
refractive indices and from the measurement of absorpt­
ion coefficient they also found that the transition lead­
ing to the fundamental absorption is an indirect allowed
one. Evans and Hazelwood /3/ studied the optical propert~
ies at 290 K and 77 K and reported a direct allowed and
on indirect forbidden transition. Garg et al /n/ also
reported a direct allowed transition and an indirect
forbidden transition. From the pressure dependence of
absorption edge Powell and Grant /5/ reported a direct
and an indirect allowed transition.

Asanabe /6/ studied the resistivity and Hall

coefficient of SnSe2 crystals grown by melting the
elements together, at temperatures above 700 K.
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These crystalsshowed a rapid decrease in resistivity
with rise in temperature. This behaviour being attributed
to the onset of intrinsic conduction. From the plot of
resistivity versus inverse temperature, the energy gap
was estimated to be about 1.0 eV. Domingo et al /1/
reported the resistivity perpendicular to c—axis and
Hall effect measurements. Lee and Said /?/ studied the
Hall effect and reported the mobility perpendicrlar to
c—aXis and carrier concentration. Likhter et al /8/
studied the pressure dependence of the electrical resi­
stivity and Hall effect and found that the activation
energy and band gap decreases with pressure. Perluzzo

et al /9/ also studied the electrical properties of SnSe2
crystals perpendicular to c-axis.

Not much data is available in the literature
on the electrical resistivity parallel to c—axis. Also
all the studies mentioned above were made on crystals

grown by the iodine transport method. Such crystals
may be contaminated by the incorporation of the trans­
porting agent and this may have a pronounced effect on
their properties. Optical properties of tin diselenide
crystals grown by physical vapour transport method and
their electrical properties parallel and perpendicular
to c~aXis are reported in this chapter.
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Crystals used in the present investigation
were grown by physical vapour transport method as des­
cribed in Chapter IV. As grown crystals were in the
form of platelets having a thickness of €E15O}1m and

surface area upto 1 cmz. Crystals with good plane
surfaces were selected for optical measurements. Thick­
ness of the crystals were accurately measured using a
micrometer. Transmission measurements were made using

a Hitachi 200 - 2O double beam UV - Vis. spectrophoto~

meter. To find the refractive index of the material,
very thin crystals were used and for these measurements,
a Cary 17 D double beam spectrophotometer was used. From

the interference fringes obtained, refractive index was
calculated as described in ghapter IV. All the optical
measurements were made parallel to c-axis at room tem­

perature.

Electrical resistivity parallel to c—axis
was studied by evaporating tin contacts on opposite faces
of the crystals. The contact area was .0415 cma. The

resulting Sn—SnSe2-Sn structure was placed in between
the jaws of the jig described in chapter IV and was
heated in vacuum upto the maximum temperature of

measurement prior to the actual measurement of the

G8
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temperature variation of resistance. This ensured
good alloying of the contacts and was found necessary
for good noise free ohmic contacts. During the meas­
urement sufficient time was given for the current
reading to stabilize and very reproducable results
could be obtained on all the specimens studied. Electri­
cal resistivity and Hall effect measurements in the plane
of the crystal (i.e” perpendicular to c—axis) was studied
using van der Pauw's technique /10/. Indium and tin
were used as the contact materials since bcth of them

give ohmic contact to tin diselenide crystals.

BE5ULI§_AND_DlSQU§§lQN§

The variation of refractive index with wave­

length is shown in figure 1. Earlier workers reported
a slightly higher value of refractive index in their
crystals. They reported that interference fringes in

the transmission spectra of SnSe2 was not well defined
due to various sample imperfections. Hence they cal—
culated refractive index from the reflectivity data
and this may be the reason for the high values of the
refractive index obtained for their studies.

The optical absorption data was analyzed in
terms of the theory of Bardeen et al /11/ and for an
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indirect transition

I‘
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where r = 2 for allowed indirect transitions and r = 3
for forbidden indirect transitions, hlfl is the photon

energy, Eé is the indirect band gap and Ep is the
absorbed (+) or emitted (~) phonon energy, Absorption
coefficient<C-was calculated using equations as described
in Chapter IV and the variation of @chv)1/2 with photon
energy is shown in figure 2. The intercept of the str­
aight line along the energy axis gives a band gap of
1.05 j 0.02 eV. From the functional dependence obtained
for the absorption coefficient on photon energy, it may
be seen that the transition is an indirect allowed one.
The reported values of band gap for tin diselenide single
crystals are given in table 1. Only Lee and Said /2/
and Powell and Grant /5/ have reported indirect allowed
transition. But in other reported cases, the transition
leading to the fundamental absorption is indirect in
nature, but their functional dependence of=C»on he shows
that the transition is forbidden one. The discrepancy
in functional dependence ofdl on hi) may be caused by

the presence of impurity absorption in the crystals.

indirect transition 

J:v= 
A (htJ - E + E )r g - p 

hU 

wh8re r = 2 for allowed indirect transitions and r = 3 

for forbiddon indirect tr,~8itions, hU is the photon 

cnergy, Eg is the indirect band gnp nnd Ep is the 

O-bsorbod (+) or Gmittod (-) phonon energy~ Absorption 
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coefficient c£ was c21culntod using equations as described 
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ELEQIBlQAL~Pt.EER?lE$R9

Thermal probe measurements indicated that the

crystals are n~type. Resistivity and Hall mobility of
tin diselenide crystals perpendicular to c—aXis was
obtained using van der Pauw's technique /IO/. The
measurements were made on several samples taken at rand­

om from different growth runs and the average resistivity
value obtained iszt 1?Slcm and the corresponding carrier
concentration is #11016 cm'5. Results obtained from the

present investigation along with the earlier reported
electrical parameters are given in table 2. From the
table it is clear that the crystals grown by physical
vapour transport are less contaminated (carrier concentr­
ation'~'1O16) than crystals grown by iodine vapour trans­
port (carrier concentrationrv 1018 - 1019). It may also
be seen from the table that the resistivity obtained in
the present case is much greater than that obtained by
other workers who used chemical transport methods. The

low resistivity values obtained by them may be due to the
incorporation of iodine impurities in the crystals.

In resistivity measurements parallel to c-axis,

when the Sn-SnSe2-Sn structures were heated, the resistance
of the samples increased. This may be due to the diffu­
sion of the electrode material (tin) into the crystal.
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9.3 ELECTRICAL PROgERT~ 
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crystals are n-typo. Rcsistivity a~d Hall mobility of 

tin diselenide crystals perpendicular to c-axis was 

obtained using van der Pauw l s technique /10/. The 
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present investigation along with the earlier reported 
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vapour transport are less contaminated (carrier concentr­

ation ~ 1016 ) than crystals grown by iodine vapour trans­

port (carrier concentration rv 1018 - 10 19 ). It may also 

be seen from the table that the resistivity obtained in 

the present case is much greater than that obtained by 

other workers who used chemical transport methods. The 

low resistivity values obtained by them may be due to the 

incorporation of iodine impurities in the crystals. 

In resistivity measurements parallel to c-axis, 

whon the Sn-SnSe2-Sn structures were heated, the resistance 

of the samples increased. This may be due to the diffu­

sion of the electrode material (tin) into the crystal. 
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S0 all the measurements were made after heating the
samples for a few hours at the maximum temperature of
measurement in vacuum and keeping them in vacuum

(1O'2 Torr) at room temperature for one day. After this
treatment, the specimens gave a steady value of resi­
stance. Variation of electrical resistivity parallel
to c-axis with inverse temperature is shown in figure 3.
It may be seen that the plot gives a good fit to the

relation j“= ff, exp (-Ea/kB‘iE) where P is the resistivity,
I; is a constant, Ea is the activation energy for

electrical conduction, kB is the Boltzmann constant and
T is the absolute temperature. At room temperature,
the average resistivity f’obtained for different cry­
stals is:3 35.Clcm. From the plot of resistivity versus
inverse temperature, the activation energy is found to
be within 0.072 i 0.002 eV. This activation energy is
the same as that reported by Likhter et al /?/ for con­
duction perpendicular to c-axis in the same temperature
range of measurement. It may then be possibly said that
the same defect level contributes for both parallel and
perpendicular conduction.

Assuming that the number of charge carriers

available for conduction along parallel and perpendi­
cular directions to c-axis are equal, it may be inferred
from the resistivity values that the mobility perpendicular

176 
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samples for a few hours at the maximum temperature of 

measurement in vacuum and keeping them in vacuum 

(10-2 Torr) at room temperature for one day. After this 
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to c-axis with inverse tempel"ature is shovm in figure 3. 
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to c~aXis is atleast 2 times greater than that for
parallel direction. This type of behaviour was earlier
reported in the case of tin disulphide crystals, which
is isostructural to tin diselenide, by Gowers and Lee
/12/. Their mobility values differed by a factor of
105 i.e.,(Lflh/fig~1O5). But from the studies of electri­
cal conduction mechanism in tin disulphide crystals as
reported in Chapter VII, mobility parallel to C-axis is
6 cm2/V.sec. /13/. If we take the mobility value in the
perpendicular direction as 18 cma/V. sec. /12/, then
Hmlhu = 5, which is quite small compared to 105 reported
by Gowers and Lee. Tin disulphide crystals used by Gowers
and Lee were grown by iodine transport and this growth
method may be reducing mobility parallel to c-axis. The
large difference between parallel and perpendicular
mobility values observed by Gowers and Lee was explained

by them as arising due to the existence of inter layer
potential barriers and electrons tunneling or hopping
between the layers. But from the results given here for
tin diselenide and tin disulphide crystals, it may be
said that the suggested potential barrier should be of
negligible height.

to c-axis is atleast 2 times greater them that for 

parallel direction. This type of behaviour was earlier 

reported in the case of tin disulphide crystnls, which 

is isostructural to tin diselenide, by Gowers and Lue 

/12/. Their mobility value,s differed by a factor of 

105 i.e.,(~~/A,-105). But from the studies of elcctri-

cnl conduction mecha..'YJ.ism in tin disulphide crystals as 

reported in Chapter VII, mobility parallel to c-axis is 

6 cm2/V.sec. /13/. If wo take the mobility v~lue in the 
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r::; 
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= 3, which is quite sm~ll comparod to 10/ reported 

by Gowers and Lee. Tin disulphide crystals used by Gowers 

and Lee were grown by iodine transport and this growth 

method may be reducing mobility par~llel to c-axis. The 

large difference between parnllol and perpendicular 

mobility values observed by Gowers and Loe was explained 

by them as arising due to the existence of inter layer 
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CONCLUSION

Tin diselenide is a semiconductor with an

indirect band gap of 1.05 eV. Activation energy for
conduction parallel to c—aXis is 0.072 eV. Crystals
grown by physical vapour transport method have greater

purity (carrier concentration ~»1O16) than that grown
by chemical vapour transport method (carrier concent~
ration¢~11O18 ~ 1019).

9

CONCLUSION 

Tin diselenide is a semiconductor with an 

indirect band gap of 1 .03 eV. Acti vatj.on anergy for 

conduction parallel to c-axis is 0.072 cv. Crystals 

gr-own by physical vapour transport method have gr6ator 

purity (carrier concentration ~ 10
16

) th~n that grown 

by chemical vnpour transport method (carrier concent­

ration,-....J 10 18 _ 10 19). 
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