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CHAPTER 0

INTRODUCTION

ln the last two decades (iraph theory has captured wide attraction

as a Mathematical model for any system involving a binary relation. The theory

is intimately related to many other branches of Mathematics including Matrix

Theory Group theory. Probability. Topology and Combinatorics . and has

applications in many other disciplines.

Of the numerous books and research notes that we come

across. only a handful concentrate on infinite graphs; the remaining deal with

finite graphs. As a model. finite graphs may give more intuitive and aesthetic

appeal. The transition firom a finite graph to an infinite graph evolves when

either the set ofvertices or the set of edges (arcs For digraphs) becomes infinite.

Based on the degree ofthe vertices. infinite graphs are widely classified into two:

(i) infinite graphs OF infinite degree and (ii) infinite graphs having tertices of

finite degree [ Konig].The latter were later called locally finite infinite graphs.

lhey Fomi the intermediate link between finite graphs and infinite graphs ol‘

infinite degree. In this work. we concentrate on locally finite. infinite graphs.

Results on infinite graphs haying only a finite number ol'\"ertiees ol‘ infinite

degree are available in the literature ['29].

.~\n_\" sort ol‘stutl_\" on infinite graphs. nattimlly in\'Ol\'e‘.\.' an attempt

to extend the well knottn results on the much litmiliar finite graphs. .\ graph is
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completely determined by either its adjacencies or its incidences. A matrix can

convey this information completely. This makes a proper labelling of the

vertices. edges and any other elements considered, an inevitable process. Many

types of labelling of finite graphs as Cordial labelling, Egyptian labelling,

Arithmetic labeling and Magical labelling are available in the literature. In

Chapter ll we have considered logical numbering (topological ordering) of

infinite digraphs, motivated by the following observation.

Among the various matrices associated with a finite graph or

digraph. the adjacency matrix is the most popular and widely investigated one

[24], [25], [35],etc. In I982, Mohar B [33] defined an adjacency operator A(G)

for a locally finite, infinite graph G. A(G) acts as a linear operator on Frv),

Later. in E989. Fujii_ Sasaoka and Watatarti [I8] extended .\/lohar s definition

to locally finite, infinite directed graphs. For a finite graph (digraph) the

adjacency matrix is nilpotent if and only if the graph(digraph) contains no cycles

(directed cycles). In other words. for a finite digraph, the adjacencyimattix is

nilpotent if and only ifthe digraph has a logical numbering. Eventhough [18]

has extended most ofthe results in [33]. [34]. and [35] to infinite directed graphs.

t-he nilpotency ofthe adjacency operator is strictly restricted to finite digraphs.

The shifi from a finite graph to an infinite graph brings forth a

radical difference in the treatment oi‘ matrices. For a finite graph or digraph.

results and methods otialgebra can be used. especially for matrices. In the finite

matrix theory determinants play a fiindamentztl role. but their value is lost. to a



3

very large extent, in the theory of infinite matrices. Existence problems

fiequently arise for infinite matrices, which have no counterpart in the finite

theory. For example, even though two infinite matrices A and B may both exist,

-:n

their product AB may not exist, since Zia”,/2,7. may diverge for some or all
k=l

values of i, j. Owing to convergence problems and other difficulties, the

extension of theorems, established for finite matrices, to infinite matrices rarely

happens. But there are some exceptions, [19], [47] and [48].

A product of infinite matrices is associative if (a)-the product

exists for every succession of the multiplication involved, the order of the

factors remaining the same; (b) all the products so obtained are equal.

Multiplication of infinite matrices is not in general associative. But the products

of lower and upper-semi matrices, diagonal matrices and row-finite and column­

finite matrices are associative. Also diagonal matrices and row-finite and

column-finite matrices are closed for finite sum and finite products. -These basic

properties of infinite matrices justify the choice of locally finite, infinite graphs.

The main reference is Cooke R.G [I 4].

The number of matrices associated with a finite graph are too

many For a study ofthis type to be exhaustive. A large number oftheorems have

been established by various authors for finite matrices. The extension of these

results to infinite matrices associated with infinite graphs is neither obvious nor

always possible due to convergence problems.
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In this thesis our attempt is to obtain theorems ofa similar nature

on infinite graphs and infinite matrices. We consider the three most commonly

used matrices . or operators, namely, the adjacency matrix. the incidence matrix

and the Laplacian which is closely related to the incidence matrix and the cycle

matrix. Besides, we have defined another matrix with its entries in {-1 ,0,l.} based

on the asymmetric adjacency relation in a directed graph.

In the last decade, many important results between Laplace eigen­

values and eigen vectors offinite graphs and several other graph parameters were

obtained by Biggs [I0]. Woess [37]. Shawe-Taylor [32] etc. An extension of

these results —on Laplace Spectntm. Amenability and Random wall<s- to locally

finite infinite graphs are given in [i6_]. Bapat. Grossman and Kulkarni [8] have

recently (2000) considered the edge version ofthe Laplacian matrix For a finite

graph G, in particular a tree. We consider the same matrix for an infinite graph.

denoted by Q5 and called the Arc Laplacian. Analysis OfQ[r_ in comparison with

Q, the Laplacian, has given another matrix/1;; indexed by the arcs.

ln a directed graph. the adjacency relation defines a partial order

on the set of its vertices. On the other hand every partially ordered set has a

directed graph representing it. This intrinsic relation between partially ordered

sets and digraphs helps in interpreting structures delined on partially ordered

sets in a "graph" sense. We have chosen the algebraic structure “ Incidence

.-\lgebta" ofa locally finite partially ordered set over a commutative ring with

identity. This topic has a place in a study on matrices and graphs tor ti) etety

\
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partially ordered set has a graph representing it. (ii) every member of the

incidence algebra has a matrix representation.

Concerning the applications, somewhere in between pr'Obability_

harmonic analysis, geometry, graph theory and algebra we come across Random

Walks. They are time—homogeneous Markov Cha_ins whose transition

probabilities are in some way adapted to a structure of the underlying state space.

lf the structure is discrete and infinite, it can be viewed as an infinite locally

finite graph.[5 1]

A briefsummary ofthe thesis is given below.

,/l
CHAPTER I -THE PRELIMINARIES

This chapter contains the basic definitions, results and notations­

in infinite graphs and digraphs, infinite matrices, linear operators. partially

ordered sets and rings- used in the following chapters.

CHAPTER I1 -THE ADJ ACENCY MATRIX

2.] The Adjacency Matrix ofa Finite Digraph

A logical numbering (topological ordering) of the finite digraph

D = (\".E). on n vertices. is a function f': V —» { l_2.3-....tn 1 in;;_'n} which assigns
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to each vertex vi of D an integer f(vi) such that each integer is assigned to a venex

exactly once, and if(vi, vi) e E, then f-It-'5) < f( vi ). (Definition 2.1.4)

We define analogously.

When D is infinite and locally finite, an injection f: V—> N such

that if(vi, vj) e E(D), then fly,-) < fl vj ) is a logical numbering of D.(Definition

2.1.5)

The following results are well l<nown.[l 1,20,41,42]

Proposition 2.1.3

Any finite acyclic digraph has at least one s0urce(i.e. v:d'(v)

= 0) and at least one sink ( i.e. v: d*(v) = 0).

Theorem 2.1.8

The following are equivalent for a finite digraph D.

(i) D is acyclic

(ii) D has a logical numbering.

(iii) The adjacency matrix A ofD is upper triangular.

(iv) A is nilpotent.

2.2 Adjacency Matrix (Operator) oflnfinite Digraphs

Proposition 2.1.3 and Theorem 2.1.8 are not generally true for

locally finite infinite acyclic digraphs.

As an example. we have the doubly infinite directed path D = (V. E)
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where

V= {v,-: i = O,i l. :t2, i3...}

E: { ( vi, \-1,1) I i =0. i l, i2, i3,...}

D is acyclic; but it has neither a source nor a sink.

ln section 2.2 the mutual implications ofthe statements ( i ) ,( ii )

and ( iii ) of theorem 2.1.8 are discussed in the case of locally finite infinite

acyclic digraphs .

The main results in this section are

( a) Theorem 2.2.3

Let D = (V, E) be a locally finite. infinite acyclic digraph whose

vertex set V is countably infinite. If ( i ) S = { ve V: d'(v) = 0} is non-empty

and finite and ( ii ) D contains no in-rays. then D has a logical numbering of its

vertices.

( b ) Remark 2.2.4

The converse ofTheorem 2.2.3 is not true. An example is given.

2.3 Nilpotent adjacency Operator oflnfinitc Digraphs

A necessary and sufiicient condition for the nilpotency of the

adjacency operator is given in section 2.3.

Theorem 2.3.4

l.ct /\ he the non-zero adjacency operator olia locally finite
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acyclic digraph D = (V. E) satisfying the conditions given in theorem 2.2.3.

Then A is nilpotent ifand only ifD contains no 0ut- rays.

Theorems 2.2.3, and 2.3.4 provide a complete extension of

Theorem 2. I .8 on finite directed graphs to locally finite, infinite digraphs.

CHAPTER HI —ANOTHER ADJACENCY OPERATOR OF A DIGRAPH

The adjacency operator considered in the previous chapter is

expressed as a finite matrix or a row-column finite infinite matrix, whose entries

are 0 and l.The same adjacency relation is used here to define another matrix

~

denoted by A (G) with entries in {-1 .0.‘ }. The corresponding linear operator TA

which is closed on a Hilbert space H defined on /2(V) is analysed.

3.1 The Operator T__\

The new matrix A is defined as follows.

Definition 3.1.2

Let V = { v1,v3,\-"_;.....} be the vertex set ofa digraphiD. A= [aid

where

(I . if‘(\;.\'j) E E

/-___.__/‘~%
F3

a,J = -l_il‘(\[,_\",)eE (*)
O I hetwi Se
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Definition 3.1.3

The id‘ row of the adjacency matrix A associates with

each ii e V. a sequence (xi) whose entries belong to {-1 _O_1 }. Since G is locally

finite {(.\q)}is a closed subspace of‘12(V).Denote the Hilbert space { (xi)} by H.

Let {e\-:\' e V } be the canonical basis of H, where e‘-(u) =5,:'.- For any

.\'= Z xueu in H, xv 6 {-1_0,1},define
ueV

T,\(x) = Z 2:xve,,. where
~<»_v 1-<-0-an

Dom(T,\)= {x=Z xueu; Z i Zx‘_eu|2< oo}.
UCV UFV M;--(,,,

Properties ofT,\ are listed below.

1 i )T,\ is a closed operator on H . (Proposition 3.1.5)

( ii )T,, is bounded ifand only if D is ofbounded degree. (Proposition 3.1.6)

(iii )[1r,,@\, " = £18,, 2=d(»-) (Result3.1.9.(a))

T 1. in eD'(u)

(iv) (TAeu.e\.> == {L -1, ifv E Di(u) (Result 3.1 .9(b))

K O. otherwise

K

1‘! l .il'\" 6 D‘(u)

X] ('7' ti, t»> = <; -1 in ?<_=. D‘(u) (Result3_1.9(c 1).-f I ' \' ‘
I

pi 0. otherwise
k
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(vi ) <T,,'T_. e“.e\_> = d+(u.v) +d'(u.v)-d(u'i.\-")-d(u',v") (Result3.l.9.(d))

( \'ii ) TA is always nomral. ( Proposition 3.1.10)

CHAPTER IV - THE INCIDENCE ALGEBRAS |((;, z) AND ttc  .2)

The directed graphs considered in this chapter are the “graphs” of

partially ordered sets. (V, 5), finite or infinite and bounded or unbounded.

4.1 Incidence Algebra ofa Partially Ordered Set

ln section 4.1 the basic ideas on the Incidence Algebra ofa

partially ordered set (XS). over a commutative ring R are given.

4.2 Graph ofa Partially Ordered Set

The graph (G, 5) associated with a partially ordered set (V . 5) is

defined as (G. 5) = (V.E). where V = (V5) and E ={(u.v) I u<v in (V5) }(4.2. l _).

The graph (G. 5) has no cycles and multiple arcs (4.22). ll‘ the partially ordered

set (V5) is infinite. the corresponding graph is denoted by (G.,. . 5).

An ideal jl of (G. 5) is an induced subdigraph ot‘G such that all

directed paths with its terminal \ enex in _‘/ are contained in _';' ( Definition 4.2.5).
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If I, is a principal ideal of (V, 5) then -"IVE , the subdigraph

induced by the vertices in I‘. is the principal ideal generated by v in (G, 3).

is denoted by 1- (Definition 4.2.6).

4.3 The Incidence Algebra [(C, Z) 0f(G, 5)

A discussion of the incidence algebra l(G.Z) of the graph ((1.5)

ofa finite partially ordered set (\/,5) is the content of section 4.3. The main

definitions as well as results are the following.

The incidence algebra l(C-. Z) o1“(G.$) over the commutative

ring Z with identity is defined by l(G. Z) = { ii. fi':V x V —-> Z. i = O.l.2...._n-1}

with operations defined by

to tat r‘,=><t1~> = ix<u,~1> +t,~<u,»=>

on <f..£.><u,v> = Z fi <u.w>-fitwn
“.

( iii ) (2: fi)(u_v) = 2 fi(u,v) for fi_.  e I(G. Z), z 6 Z and u,v.w e V

where ti (u.v) denotes the number ofdirected paths oflength ‘ii from u to \-' and

ti. (u.\') = - f‘,(u_\?) (Definition 4.3.2).

With each ideal ],t.=  of(G. é ) we associate an incidence

algebra l(_7,-. Z) = { F -:5 I(G. Z) : ftlt >< L -~->'/.-} such that fly. \~-J) = O. For

all  \.1 1/ l\‘  It (Definition 4.3.4). l(_’/;- _  is a subalgebrzt of l{O. Z).
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l(_7,, , Z) is called the subalgebra generated by the vertex v. For each principal

ideal _7,, of(G, 5 ), I(_7,, , Z) is an ideal of the ring l(G, Z) (Proposition 4.3.7 ).

Also. every ideal ofI(G, Z) has the form I(],, ,2) for some principal ideals], of

(G. S ) (Proposition 4.3.9).

4.4 A Subalgebra ofI (G, Z)

The construction of a subalgebra for I(G, Z) is given in

section 4.4. In (G, 5). an equivalence relation 91 is defined on G’, the set ofall

directed paths. The functions in I(G, Z), which are Q compatible as well as the

cases offl being 5 - compatible are examined and a subalgebra is defined.

4. 5 The Incidence Algebra l(Gm , Z)

Section 4.5 contains the extension of the concepts given in

section 4.3 to graphs oflocally finite. infinite partially ordered sets. The partially

ordered set may be bounded or unbounded. ln general. the graph ofa locally

finite . infinite partially ordered set need not be locally finite. The extensions are

obtained on weak partially ordered sets.

/-\ locally finite partially ordered set (V. §) is weak ilionl)-'

fznitelt many chains intersect at every element ye V (Definition 4.5.1). Let
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(G0, , 5) be the graph representing a locally finite, weak partially ordered set.

The incidence algebra I(G,0 ,2) ofthe graph (G,,, ,5) over the ring Z of

integers is defined ( Definition 4.5.2 ) as in the finite case ( Notation 4.3.1 &"

Definition 4.3.2).

In a bounded, locally finite weak partially ordered set (V, 5 )

the principal ideal generated by v e V is defined as Iv ={ u e V: u 5v}. The

corresponding principal ideal of (G ,0 , 5) is given by 7,, =(10) (Definition

4.5.5 ). Also, I (J, , Z) is an ideal of I(G ,0 ,2 ) (Proposition 4.5.6 ), extending

Proposition 4.3.7 to a locally finite, infinite graph.

When (V. 5) is unbounded . the principal ideals of (V, 5) as

well as (G,0 ,5) are not well-defined. Also Proposition 2.2.3 is not true for

unbounded partially ordered sets. in general. But. there are unbounded locally

finite partially ordered sets which satisfy Proposition 2.2.3. ln such cases,

I(G ,0 , Z ) is isomorphic to a subring ofthe ting ofupper triangular matrices.

Then,

(a) principal ideals of (G ,0 ,5) are defined as JV =  where

l,={u eV: u 5 v}

(b) for each J, , I (J, ,2) is a subalgebra of I(G ,0 ,Z).

(c) for every J0. . l (07, .2) is an ideal 0l‘l(G ,0 , Z).
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CHAPTER V- THE ARC LAPLACIANQE

The Laplacian matrix Q = BB ' ,where B represents the

incidence matrix for some orientation of a finite or locally finite, infinite graph is

well- known. Here the matrix B'B is considered as a linear operator on 12 (E).

B ‘B is called the Arc Laplacian of G and is denoted by Q 5 .
k\

For any finite or locally finite infinite graph G = (V,E), we define

its incidence matrix B as given by Biggs in [10]. B represents an operator

B: 12(5)-»1’(v), such that, forx 6 11(5), (Bx)u = Zr, - Zn, where
u(e)=u v(e)=u

u (e) and v (e) are respectively referred to as the positive and negative ends of e.

5.1 The Arc Adjacency Operatorjlfi
I

0

In section 5.1 .the arc adjacency operator fig is defined and a few­

properties of /‘IE are also given.

Two arcs e,- and ej of a digraphD are adjacent if they forma

2-path in D (a directed path oflength 2). Arcs e,~ and e,- are weakly adjacent

(w-adjacent), ifthey are not adjacent in D. but form a 2- path in the underlying

graph.( Definiti0n.5.l .4).
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Vfith every arc e of D, we associate two sets S(e) and W(e) as

follows.

S (e) = {fe E(D) : u(f) = v(e) or v(’r) = u(e)}

W (e) = {Fe E(D) : u(t) = u(e) or v(f) = v(e)}

S (e) and W(e) are disjoint for all e E E(D). (Definition 5.1.5).

The arc adjacency matrix jl Eof a directed graph D is defined by

/1,ifei and ej are adjacent

[25],] = < ~l ,if ei and ell are w-adjacent
0, otherwise. (Definition 5.1.6)
it

The arc adjacency operatorflt; is defined on 12 (E) by

/’IE(x) = Z { Zxf- Zr, }B,,_wh.ere {B,,: eeE} is the standard basis of
CGE f(_$(e) fu;W(c)

l2(E) and any xe12(E) is represented as x=Z x¢B¢ where x: e {-1,0,1}.
:65

Properties o_fJ\ 5

(=1) llfisll 5 3-[l\(G)-ll (51-9)­

(b) If D has only finitely many arcs then /1,; is a compact linear operator on

/2 (E). (Proposition 5.1 .l0)

(c ) If d(v) € k. then ||,?I,;!| é 2(l<-l). (Proposition 5.I.l I)
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5.2 The Arc Laplacian Q5

Let D be an orientation of a finite or countably infinite, locally

finite graph G and B the incidence manix of D with respect to this orientation.

The arc Laplacian matrix Q E is defined by Q E = B‘B. The matrix Q E is closely

related to /‘IE. The following are the main results in this section.

( a ) Q5 == 2 ILE 5 - /IE where it}; | is the identity matrix of order IE1.

(Proposition 5.2.6)

( b ) Let Q and Q E denote the Laplacian and Arc Laplacian matrix,

respectively, ofa locally finite, countably infinite graph G. The matrices Q and

Q5 are equal ifand only ifthe orientation D, of G, considered is a disjoint union

of directed cycles. (Proposition 5.2.8)

(c ) If p is an eigen-value of‘.}\E,then p S1 (Proposition 5_:g_9)

( d ) Let A (G), AL(G) and J5“; (D) denote the adjacency matrix of G, the

adjacency matrix of the line graph L(G) of G and the arc adjacency matrix for

some orientation D of G respectively. The eigen values of A, A1, and,fA L:

coincide ifand only iFG is a cycle (Proposition 5.2.12)
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5. 3 Eigenvalues of Q5

As matrices, Q and Q1; are transposes to each other. Some results

on Q5 in comparison with those ofQ, are given here.

( a ) If Xi, 1 5 is m are the eigen values of the arc adjacency

man-ix$E(D) of a finite digraph D, then i-1; = 2- FL; are the eigen values of Q5

(Proposition 5.3.2)

(b) 1.; 5 2 Hi 20 (Proposition 5.3.3)

( c ) Let { 1-1; 1i e1 } denote the eigen values ofthe arc Laplacian

Q5 ofa locally finite, connected graph G. [ii = 0 if and only ifG contains a

cycle. The multiplicity ofzero as an eigen value of Q13 is the dimension of the

cycle subspace ofG. (Proposition 5.3.5)

#****#



CHAPTER I

THE PRELIMINARIES

This chapter contains the basic definitions, key concepts and

notations that are used in the forthcoming chapters.

1.1 Graphs and Digraphs

For graphs and directed graphs the references are mainly Bondy

and Murty [1 1], I-larary.F [20], Parthasarathy K.R[4l] and Robinson & Foulds

[42] whereas for infinite graphs we referto Konig .D [28].

Definition 1.1.1

A graph is a pair G = (V, E) of two disjoint sets V and E,

where V is non-empty and E is a set of 2—element subsets ofV.

A multigraph may have several edges between the same vertices

and edges whose end vertices coincide. Such edges are called multiple edges and

loops respectively.

Definition 1.1.2

The degree or valency d(,(v) = d(v) ofa vertex v ofG is the

number of edges at v. The number 5(G) = min{d(v) / veV} is the minimum

degree ofG. A(G)= max {d(v) / veV} is the maximum degree 01°C}. If all the

vertices have the same degree k then G is l<- regular.
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Definition 1.1.3

Let G = (V, E) and G1 = (V1, E1) be two graphs such that

V1 g V and E1 g E. Then G1 is a subgraph ofG (and G is a supergraph ofG1 )

written as G1 Q G.

Definition 1.1.4

If G1 _<; G and G1 contains all edges uve E with u, ve V1 then

G1is an induced subgraph of G.

Definition 1.1.5

A subgraph G1 ofG is a spanning subgraph ofG if‘V = V1_

Definition 1.1.6

A path P in a graph G is a non-empty subgraph P = (V, E) of

the form V = {v11, v1, v2 . . . v11}, E = {e1, 63, . . .e1<} where e = v, _lv,, for

ie{ 1,2, . . .k} and v,-are all distinct. The number ofedges ofa path is its length.

P + v11 vo is called a cycle. A graph without any cycles is called an acyclic

graph.

Definition 1.1.7

A non-empty graph G is called connected if any two of its

venices are linked by a path in G.

Definition. 1 . 1.8

Let G = (V, E) be a graph. A maximal connected subgraph ofG

is called a component.
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Definition 1.1.9

In definition l.l.l, if either V or E is infinite, then G is an infinite

graph.

Definition 1.1.10

The infinite graph G = (V, E) is locally finite or G is ‘of finite

degree ifd (v) is finite for all veV. G is ofbounded degree ifthere is a positive

integer lc, such that, d(v) 5 k for all v e V.

Theorem 1.1.11 [28]

The set of vertices as well as the set of edges of a connected

(infinite) graph G of finite degree is finite or countably infinite.

Remark 1.1.12

The infinite graphs considered in this thesis are in general

assumed to be locally finite and the vertex sets to be countably infinite.

Definition 1.1.13

The graph formed by an infinite set ofedges {v,v;+1 :i= 0,1,2, ...}

is called a singly infinite path._It is also called a one-way infinite path or a ray.

Under the same conditions the edges {v,v;+1: i=0,i 1, i 2,...}

form a doubly infinite path.

Remark 1.1.14 [28]

A singly infinite path has a unique endpoint.

Definition 1.1.15

A directed graph or digraph D is a pair (V_ E) ofdisjoint sets of
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vertices and arcs where E g V x V. The arcs “e” of D are defined by two maps

u : E-—>V and v: E->V assigning to every arc e an initial vertex u(e) (tail) and a

terminal vertex v(e) (head). If u(e) = x and v(e) = y, then e = (x, y), is directed

fi'0m x to y.

Arcs of D are represented by ordered pairs throughout this work.

D may have several arcs between the same two vertices x and y.

Such arcs are called multiple arcs; if they have the same direction, they are

parallel. lfu(e) = v(e) the arc e is called a loop.

Definition 1.1.16

A directed graph D is an orientation of an (undirected) graph or

multigraph G, if V(D) = V(G) and E(D) == E(G) such that, for every arc e = (x,y)

ofD there is an edge x yin G for which {x,y} = {u(e), v(e)}.

Definition 1.1.17

The outdegree d * (v) of a vertex v in a digraph D is the number of

arcs having v as its tail. The indegree d" (v) is defined similarly and the degree

d(v) ofa vertex is given by d(v) = d ' (v) + d *(v) .

Definition 1.1.18

A vertex v ofa digraph having zero indegree. i.e. d' (v) = 0 is a

called a source. lfd ' (v) = O. v is called a sink.

Definition 1.1.19

A directed walk in a digraph D is a sequence vne, \",. . wk. , ek vk

ofvertices and arcs such that e, = (v1 1, . \=, ). The number ofarcs in a walk is
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called its length.

A (directed) walk through distinct vertices is a (directed) path.

Directed cycles and acyclic digraphs are defined as in 1.1.8.

Theorem 1.1.20

(a) A (finite) acyclic digraph has at least one vertex of outdegree zero

(b) A (finite) acyclic digraph has at least one vertex of indegree zero.

Definition 1.1.21

Let V ={v1, v; , v3,...}. A directed graph D = {V, E} where

E = {(vivi,.,), i= 1, 2, 3,...} is called an out-ray and denoted by (vi). Similarly, if

E = { (V; V ,-, ) 1 i= .2,3,...} then 0 = (\/.5) is the in-ray ($5.

IFE = {(v.v;..1): i=0, 1: I. i 2,...}, D = (V,E) is called a doubly

infinite directed path.

Remark 1.1.22 ~
0

In-rays and out-rays are acyclic digraphs. An in(out)~ray has a

unique vertex ofout(in)degree zero.

Definition 1.1.23

With every directed graph D=(V. E) thene is an associated

graph G = (V. E) called the underlying graph. which is obtained by replacing

each arc oi‘ D by an edge (undirected).

l)efiniti0n l.l.24

A digraph is weakly connected ifthe underlying graph is connected.
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1.2 MATRICES

Several matrices are defined in association with graphs and

digraphs both in the finite and infinite cases. In this work, the emphasis is on

infinite matrices, the main reference being C0oke.R.G [14].

Definition 1.2.1

An infinite matrix is a twofold table A = (a,-J), i,j = 1, 2,... . of

real or complex numbers with addition and multiplication defined by

A+B=(a,j+b,)), 7LA=(7ta,)-) wherelisascalar and

AB =[ Za,,‘b,gt
k=l

If AB = (C5), then c,-J-=Za¢b ,5, whenever this sum exists.
k I

The sum of two infinite matrices always exists and is

commutative and associative. The distributive laws A (B+C) = AB + AC and

(B+ C)A = BA + CA hold in the sense that ifAB and AC exist, then A(B + C)

also exists and is equal to AB + AC. But A(B + C) may exist even when AB and

AC do not exist.

Definition 1.2.2

If every row ofan infinite matrix A contains only a finite number

of non-zeno elements, A is said to be row-finite; if the same is true for every

column. A is said to be column- finite.
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The matrix A is a diagonal matrix if all of its entries, except those

in the main diagonal, are zeros.

If av = O for j < i, A is called upper-semi matrix or upper

triangular matrix. If av. = 0 for i< j, A is called a lower-semi matrix or lower­

triangular matrix.

Definition 1.2.3

We say that a product of infinite matrices is associative if (a) the

product exists for every succession of the multiplications involved, the order of

the factors remaining the same and (b) all the products so obtained are equal.

Multiplication of infinite matrices is not in general associative.

But the product of any number of diagonal matrices, lower semi matrices and

upper-semi matrices is associative.

Definition 1.2.4

If in a set S of matrices, (a) S contains the scalar matrices, (b)

every finite product of matrices belonging to S exists and is associative (c) S is

closed under finite sum and finite product ( i.e every finite sum and finite product

of matrices of S belongs to S) then, S is called an associative field.’

Note 1.2.5

lt should be noted that, the field so defined for infinite matrices is

not the same as the field defined in the algebraic sense.

Remark. 1.2.6

Diagonal matrices. and row-finite and column-finite matrices

form associative fields. For any such matrix .»"\. positive integral powers ot°A are
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defined as, A2 = A.A, A’ = A.A2‘ . . . , A" = A.A‘*'.

Definition 1.2.7

If A2 = A ;¢ 0, A is said to be idempotent.

If r is the least positive integer such that A’ = 0, (A¢0), then A is said to be

nilpotent with index r.

Certain well known matrices, associated with graphs and

digraphs, which are considered in the present work are given below.

Definition 1.2.8

Let G = (V, E) be a graph. The adjacency matrix A(G) = A = (a ,-J. ),

where a,, is 1 or O according as E contains an edge joining v, and vj or not.

The adjacency matr-ix,A is a symmetric matrix .

Proposition 1.2.9

If A is the adjacency matrix of a finite graph G, then [A"],,~ is

the number of walks of length k between vi and Vj. IRemark 1.2.10 _
If the graph G is infinite and locally finite, A is treated as an

operator on G.

Definition 1.2.11

The adjacency matrix A ofa digraph D = (V, E) is defined as

A= (av) where a,j = l, if(v,, vi) eE and aye = O, otherwise.



26

Remark 1.2.12

no

In 3.1.2 we associate another matrix A (based on the same

adjacency relation) with the digraph D.

Definition 1.2.13

Let D = (V, E) be a finite digraph where V = {v|, v2, . . vn} and

E = {e1, e2,. . . em}. The Incidence matrix B = (by) of D has entries by--"=1, if

ej. = (v , ,w), by = -1, ifej = (w, vi) for some vertex w and b,-J = O otherwise.

Definition 1.2.14

Let c be any cycle in the graph G and D some orientation of G.

Fix some orientation for the cycle c. The cycle matrix C has a row for each

cycle c and a column for each arc e such that C as +l,if eec and its cycle

orientation coincides with its orientation in D, C 0,, = -1, if eec and its cycle

orientation is the reverse of its orientation in D and C 0,, = 0, if e is not in c.
I

Definition 1.2.15 [10]

The cycle subspace of D is the kemel of the incidence mapping of D.

Q.

1.3 LINEAR OPERATORS (TRANSFORMATIONS)

The term linear operator is used as a synonym for linear

ransformation so that the terminology followed agrees with that given in the

nain references [9], [I0], [33] etc. For infinite graphs and digraphs the associated
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matrices are treated as operators. Two Hilbert spaces l2(V) and 12(E) are

considered for infinite digraphs and certain operators are defined on these spaces.

The basic results given here, for fin-ther use, are available in any standard book on

Functional Analysis.

Definition 1.3.1

An operator T :)(-:I>Y is closed if and only if whenever

x,,eDom(T), x,,-—> x in X , T(x.,) ——> y in Y , then x e Dom(T) and T(x) = y.

Definition 1.3.2

(a) T is bOUJ1d€d, if 3 1<>o 1 "Tr" 5 /C“X“,VX eDom(T).

(b) Tis unitary, if T*T=TT*'=I

(c) T is normal, if T*T=TT*.

(d) Tisan isometry if T*T=l.

(e) Tisaprojection ifT=T* = T2.

(f) T is nilpotent if3n: T“= 0.

(g) T is idempotent if T = T’

(h) T is positive if (Tx,x) 2 0, VxeDom(T).

1'-"I'D  :-  =--"ii.-ii. F

1.4. PARTIALLY ORDERED SETS

This section contains the basic definition and results used

in chapter IV-The Incidence Algebras l(G, Z) and I(G.e.. Z). The tnain references

are Aigner M [1], Spiegel and O’Donnel [45] and Stanley P [46].

Definition 1.4.1

A set X with a binary relation 5 is a partially ordered set if‘,
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(i) 5 is reflexive (i.e x 5x, VxeX)

(ii) antisymmetric (x 5 y and y 5 x :> x =y)

(iii) transitive (x 5 y, y 5 z => x 5 z)

5 is a pre-order on X if it is reflexive and transitive.

Definition 1.4.2

An element x of a partially ordered set X is maximal if whenever

x5ythen x=y. IfXhasanelementxsuch thaty5x for eveiyyinXthen xis

the maximum element of X and denoted by l. The minimum element 0 of X is

defined dually.

Definition 1.4.3

A subset C ofa partially ordered set is a chain if for any x, y e C

either x 5 y or y 5 x holds. The chain C has length n ifC has n elements.

Remark 1.4.4

The length of a chain is defined to be one less than its cardinality.

Definition 1.4.5

Two elements x, y of X are comparable if either x 5 yor y 5 x

Hence, a chain is a partially ordered set in which any two

elements are comparable and an antichain is a subset in which any two elements

are incomparable.

Definition 1.4.6

An element z covers the element x ifx < z and ifx 5 y < 2, then

y=x.
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Definition 1.4.7

The atoms of a partially ordered set are the elements covering O,

if 0 exists.

Definition 1.4.8

Given x and z in a pre-ordered set, the interval or segment ii-om x

to z is the subset {y eX: x 5 y s z} and is denoted by [x,z].

A pre—ordered set X is locally finite if every interval of X is finite.

Definition 1.4.9

An interval [x,y] in a partially ordered set X is said to have length

n, if there is a chain of length n in [x,y] and any chain in this interval has length

less than or equal to n.

Definition 1.4.10

The partially ordered set X is bounded if there is an integer n

such that each interval [x,y] of X has length atmost n.

X is unbounded, if it is not bounded.

Definition 1.4.11

Two partially ordered sets X and Y are isomorphic if there exists

an 0rder- preserving bijection ¢>: X——>Y whose inverse is’order preserving.

i.e.,x 3 yin Xifandonlyif ¢>(x)$.¢>(y)inY.
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1.5 RINGS

A few results from the theory ofrings are given here. [44]

Definition 1.5.1

A non-empty set R on which there are defined two operations ‘+’

and ‘.’ is called a ring if the following axioms hold.

(a ) R is an abelian group under ‘+’

(b)  is associative: a.(b.c) = (a.b).c for all a,b,c in R

(c ) The two distributive laws hold.'a.(b+c) = a.b + a.c &(b+c).a = b.a + c.a

If, in addition, R contains an element 1 called the identity element

or unity, such that a.1 = l.a = a for all a in R, then R is called a ring with unity.

If the operation  is commutative, then R is a commutative ring.

Definition 1.5.2

A non-empty subset S ofa ring R is a subring ofR iFS itselfis a

ring for the operations defined in R.

Definition 1.5.3

A non-empty subset l ofa ring R is said to be an ideal ofR if I

is a subgroup ofR under ‘+ ‘and for every r eR and xel, both xr, rxel.

Definition 1.5.4

If R is a commutative ring with identity and aeR, the ideal

{ra / reR} is called the principal ideal generated by a.



CHAPTER II

THE ADJACENCY MATRIX

A finite graph G is defined as a pair of sets (V,E) where

V is finite and non-empty and E is a set of unordered pairs of elements of V.

If {v ,, v I }e E, then we say that v, and v J. are adjacent, and adjacency defines a

binary relation A on V. Hence in any study on matrices related to graphs, the

adjacency matrix must have its place at its outset. Instead of the graph G = (V ,E)

if a directed graph D is considered on the same vertex set V and the edges in E.

are replaced by arcs according to some orientation, the adjacency relation in D is

not required to be symmetric, for E g V x V.

In the graph G = (V, E) if either V or E is infinite, then G

is an infinite graph. In the study of a finite graph or digraph, results and methods

of algebra can be used especially for matrices associated with the graph/digraph

[10]. The shift from a finite graph to an infinite graph brings forth a radical

difference in the treatment of the same matrices [14]. With infinite graphs,

graphs of finite degree or locally finite graphs play a distinguished role as they

form an intermediate link between finite graphs and infinite graphs of infinite

degree.

Mohar B. (I982) [33] has defined an adjacency operator for

resultshgiven in séé.2.2 haves publishai in Janis Ofthe Tripura Mathematical
Society, 3 (2001) 21-2s.
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infinite graphs followed by Biggs [10] Woess [3 7] Shawe-Taylor [9] and many

others. In 1989, Fuji Sasaoka and Watatanj [18] have extended the definition of

Mohar to locally finite, infinite directed graphs.

The results contained in this chapter are mainly based on

[18] in which. the nilpotency of the adjacency operator is strictly restricted to a

finite digraph whose adjacency operator has an upper triangular representation

(section 2.2) The main result is the necessary conditions for the adjacency matrix

of an acyclic, infinite and locally finite, digraph to have an upper triangular

representation. This result is used in section 2.3 to characterize nilpotent

adjacency operator of infinite, locally finite, digraphs.

no

2.1 THE ADJACENCY MATRIX OF A FINITE DIGRAPH

Throughout this section, D = (V,E) represents a digraph whose

vertex set is V and the arc set E is a subset of VxV. From definition 1.2.11, it is

evident that the matrix A of a digraph need not be symmetric. A has a diagonal

of zeros if D has no loops. If A, and A,are the adjacency matrices

corresponding to two different labellings of the same digraph D then for some

permutation matrix P we have A 2 = P "1 A, P.

The preliminary definitions and results given in this section are

mainly from [41] & [42].
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Theorem 2.1.1

Let A be the adjacency matrix of a digaph D. Then the (i,j) entry

ofA* is the number ofdirected walks oflength k fi'om v, to vj .

Note 2.1.2

If D is an acyclic digraph, every directed walk from v, aw, is a

directed path.

Proposition 2.1.3

Any finite acyclic digraph has at least one source and at least one sink.

Definition 2.1.4

A logical numbering (topological ordering) of the finite digraph

D on n vertices is a fimction f: V——-> {1,2,3,...,m : mg n} which assigns to

each vertex v , of D an integer f (v,) such that each integer is assigned to a

vertex exactly onceand if(v,,vj)e E, then f(v,)<f(v/).

.D¢finition 2.1.5

When D is infinite and locally finite, an injection f ; V+>N

such that if(v,,vj)e E(D), then f(v,) < f(vj)is alogical numbering ofD.

Remark 2.1.6

A finite digraph D on n vertices, n >2, may have difierent logical

numberings, if it has any.

Note 2.1.7

The function fin 2.1.5 is a reaarangement ofthe rows and
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columns of the adjacency matrix A by the same permutation, so that A becomes

upper triangular.

Theorem 2.1.8

The following are equivalent for a finite digraph D.

( i) The digraph D is acyclic.

( ii ) The digraph D has a logical numbering.

( iii) The adjacency matrix A of D is upper triangular.

( iv) The matrix A is nilpotent.

2.2 ADJACENCY MATRIX ( OPERATOR) OF INFINITE DIGRAPHS.

An infinite digraph D is a pair ( V,E ), V being countably infinite

and Eg Vx V. The digraphs considered are locally finite; i.e d (v) is finite for all

v e V. We begin this section with the following observation.

Let D = ( V, E) represent the doubly infinite directed path, for

which V={ v,: i=0,:t 1, :t2,,...} and E={(v,.,v,.+,),i=-"0, i 1, i2,,...}

The digraph D is represented by the diagram

. . . . . . . ... O'—‘7'O*')O**'O'_*O.......

D is acyclic and has neither a source nor a sink, which is

obviously a case of failure of the extension of Proposition 2.1.3 and Theorem

2.1.8 to the infinite case.
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Theorem 2.2.1 [28]

The vertex set as well as the edge set of a connected infinite

graph of finite degree is countable.

Remark 2.2.2

Since every weakly connected, infinite digraphjwhich is locally

finite, is an orientation of a connected infinite graph of finite degree, Theorem

2.2.1 has an extension to such graphs.

Theorem 2.2.3

Let D = (V, E) be a locally finite, infinite, acyclic digraph, whose

vertex set V is countable. Ifl the set S = { ve_V : d*( v ) = 0 } is non-empty and

finite, and D contains no in-rays, then D has a logical numbering of its vertices.

Proof:

Without loss of generality we can assume that the digraph D is

weakly connected, so that both V and E are countable. Otherwise we consider the

components of the digraph D, ( i.e the components of the underlying graph) each

of which is a weakly connected digraph, whose vertices as well as arcs are

countable.

Let S = { s,,s2, s,,....,s,,}

Let D0 be the subdigraph of D, formed by the uvertices and arcs

of D, which lie on any path joining any two vertices in S, in the graph

associated with D. D0 is a nontrivial , weakly connected acyclic subdigraph of D.
c

Also D0 is finite, since D is locally finite. By Theorem 2.1.8, D0 has a logical

numbering foof its vertices.
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Let Q) denote the collection of all weakly connected subdigraphs

of D, which admit a logical numbering and contains D0 as a subdigraph. <D is

non-empty as D0 e <1).

For (D, , f,.), (Dj , t3) e®, define (Di, fl.) <(Dj , ii) if D,.is a

subdigraph of Dj and fi is the restriction of t:ito D, .

i.e for any ueV(Di ) and ve V(Dj ) - V(Di ) , we have f ,_ (u) = i3-(u), and

f ,. (u) < i:i(v) ,whenever (Di , fi) < (Dj , ii).

With this definition of ‘<’ in <D , (Q), <) is a partially ordered set.

Let K= { (Di , fi): i e1} ,(l being some index set), be any chain in(<D, <) .

We claim the following for K

(a) \f1Di is weakly connected for (Di , fi) e K.

For, let u, v be any two vertices in ax/Di . Then ue V(Di ) and

v e V(Dj ), for some i and j. Without loss of generality, assume (Di , fi) < (Dj, £3).

Then, u,ve Dj, a weakly connected subdigraph of D. Hence , there is a u-v path

in the gaph associated with DJ-, which is a sub/graph of the graph associated

with arDi .

(b) \1JDi has a logical numbering.

CIearly,V( KI) Di ) is countable and ti) Di is locally fnite, being a

Subdigraph of D.

For any u e V(\1;Di ), we have ue V(Di) for some i.

Let fv(u) = f , (u), so that fv is well defined.

Let (u,v) be any arc in YD?
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Then, u eV(Di ) and v e V(Dj ) for some i,j.

Without loss of generality suppose (D , , fi), < (Dj , f3).

If i=j, then f I. (u) < f , (v), by the definition of logical numbering ft.

If i=‘ij , then fl. (u) < ii-(v), since f1l= ti] Di .

In either case, fu (u) < fv (v), for any arc (u,v) e E(§_)Di )

Hence, fv is a logical numbering of k.')Di.

(c) (\.,1Di, fU)e (D

This follows fiom the definition of <D .

(d) For any (Di , fi) eK , we have (Di , fi) <(§_.1Di, fu)

This is implied by (E1) and (b) and the definition of fu.

HeI1°ei(:/Di, fo) is an upperbound for K.

By Z01-n’5 1¢mma_ (<D, <) contains a maximal element (D*,P').

Suppose D* is-D.

D‘ is a weakly connected subdigraph of D. ,
The vertices and arcs in D — D* fomt, either subpaths of

directed paths from some v eV(D') to w e \/(D) - V(D"‘) 0_r subdigraphs of

some out-ray (7)) fi'om some v eV(D*).

In efher case, for any such w e v([))-V(1)*), there are v-w paths

from the same v or difierent v,s in V(D*), the lengths of the paths being equal

or different . For a -' fixed w in V(D) —\/(D*), choose v ,_ fiom all such v,s' such

that f*( vi) > f“‘(v), for every other v. in D*. Let {P,} denote the set of all

directed paths from vi to w. Let W, denote the set of all vertices on { Pi }
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which are at a distance one from vi. Since D is locally finite, W1 is finite. Hence

the vertices in W; can be arranged as w;1,w1;,w13,____, W1, for a finite r.

Consider the subdigraph D1=(V1,E]) of D, where

V1=V( D1) = V( D‘) u W; and

E1=E(D1)=E(D*)u{(v,,w1s):1Ss§r}},

Define fl on D] such that

(1) fl (W15 ) > f‘ (v) , ‘v’veV (D*),

(2) "V arc (wlp, Wlq) eE (D1), fl (wlp) < fl (w1q)

(3) fl (w1s)< f}(w), for 1 £ s S r, whenever w e V(D1) and

(4) fl (u) = f“‘(u), VueV([)*)

fl is a logical numbering of D1. Also, ( D*, P‘ ) < (DI,f1), contradicting the

maximality of (D*,f“). ’
Thus D‘ = D and hence the theorem.

Remark 2.2.4

(a) In the statement of Theorem 2.2.3, the condition “S is finite” is not

essential.

Example: The directed graph D having the vertex set V = {l,2,3,....}
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and (i,j) is an arc of D if and only if j=i+l or i+3, has a logical numbering as

shown in the diagram.2» 4 8 9;\ / ll/ i /[\
61 3 5 7 ...... ..

Here, the setS= { veV:d'(v)=0} isinfinite.

(b) If S is empty, then D has no logical numbering.

Example: The set S is empty for the doubly infinite path D=(V,E), where

V= { 0, fl, 1-2, i3,.....}and E= {(i,i+l),ieV}.

_), ye >5 tyk —>o .-~- 2 -1 O :1 Z2» .

( c ) If D contains an in-ray, then D has no logical numbering, even if S isfinite. ’
Example: .....  $4  4<~.. .. ..9 ‘V

Here S= {s}, 6L‘M.Ci Cg?) C’ 1)

Remark 2.2.5

Theorem 2.2.3 partially extends the equivalent conditions (i) and

(ii) of theorem 2.1 sen finite digraphs to locally finite, infinite acyclic digraphs.

These results are ofimmediate use in discussing the nilpotency
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of the adjacency matrix of an infinite digraph, which is given in the next section.

2.3 NILPOTENT ADJACENCY OPERATUR OF INFINITE DIGRAPHS

When the digraph D= (V, E) is infinite, the adjacency matrix A is

treated as a linear operator on vectors in I2 (V). Since D is locally finite, its

action is well defined on all vectors in I 2 (V).

Definition 2.3.1

An infinite matrix A = [a;,~] in which a;,- ;¢ 0 for only finitely many j

(respectively i) for each i(respectively j) is called a row finite(respectively

column finite) matrix.

Remark 2.3. 2

The adjacency matrix of a locally finite digraph is both row finite

and column finite.

Definition 2.3.3

Let D = (V, E) be a locally finite infinite acyclic digraph which

has a logical numbering. Then every arc of D is of the form (vi, Vj) where i<j, so

that the adjacency matrix A is upper triangular. Powers of A are defined by,

2000-02  art '1 _ _ ‘at--1},   .<j'1 '2 ’--1
[A°]iJ =

0 for i 2. j

for n =1,2,3,....
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Theorem 2.3.4

Let A be the non-zero adjacency operator of a locally finite

acyclic digraph, D == (V, E), where (i) V iscountable (ii) S =- {v e V : d ' (v) = 0}

is non-empty and finite and (iii) D contains no in-rays. Then, A is nilpotent if

and only if D contains no out-rays.

Proof :

D admits a logical numbering by Theorem 2.2.3 and hence

powers of A are defined.

Assume that A is nilpotent with index n.

Then we have, A“ = 0, and A'¢ 0, for, r = ‘l, 2,. ., n-1.

The operator A is represented by an upper semi matrix.

Hence, powers of are also upper semi.

Let A“ = [bij] and A” = [0] = [Cij] , where ,

1-1

Cg; = Z a;,b,-5 for i<j and cij==O,otherwise.
r=:'+l

For,i+1s rs j-1, ake {0, l} and b1-1'20.

Hence, ci,-=0 :>a;,=O or b,,- =0

Case(i) a;,=0, bd :0

Then the arc (vi, vr) e E(D) and D contains b.,- paths from v, to V,­

each of length n—l. None of these paths can be extended to a v, - Vj path in D.
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Hence if D contains a directed path from vi to vi, then d (vi, vi) 5 n—l.

Case(ii) ai,= 1, b,,- =0.

Here also, d (vi, vi) 5 n—l as in case (i).

Since i, j are arbitrary, we conclude that, if D contains a directed path from vi "

to vi, then d (vi, vi) s n — l. Therefore D contains no  ouié rays.

Conversely,

let, D be an acyclic digraph, satisfying conditions (i), (ii) (iii) and

having no out-rays. Then d(vi, vi) is finite for every vi, vi in V and the adjacency

operator A of D is represented by an upper semi matrix.

Let k = maxmaxd(vi,vi)I .1

Then d (vi, vi) 5 k for all vi, vi in V.

M it 0 and [A“*‘]i,- = o, v i andj.

A is nilpotent with index k + 1.

Remark 2.3.5

Theorem 2.3.4 is restricted to locally finite acyclic digraphs.

There are infinite acyclic digraphs, having vertices of infinite degree whose

adjacency operator is nilpotent.

The following digraphs are examples.

(1) D = (V, E) where V={l,2,3,...} and E ={( vl, vj);j -"= 2, Ii, 4,...}

(2) D"‘= (V"',D*) where V*={l,2,3,...}and E*= {(vi,vi);j'-=2,3,4,...}



A =-500000 .......... andA'=lI0000.........

0 Q__ ­0, ‘Vé -O , V- V._ \»
1:/° vs‘u

'v.‘+ 11+
Vs. ‘Q

v, i 2 >""“’z ,,<  W.
ID Di“

Theiradjacency matrices A and A* ,respectiveIy, where,

To 1 1 1 1 .........  T50 0 0 0......._.'l

l0 O 0 0 O .......... .. I0 0 0

........................ .. 1 0 0 0 0......
I 0 O O n u 0 0 0 n I 0 I Q 0 0 O I0 -0 4. . . . . . . . . . . . . . . . . . . . . ..  I” -J

satisfy A2 = (A"')2 =0. .
Theorems 2.2.3, 2.2.4 and 2.3.5 give an extension of the four eq

conditions of theorem 2.1.8 to locally finite, infinite digraphs.‘

###*##
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uivalent



CHAPTER III

ANOTHER ADJACENCY OPERATOR OF A DIGRAPH

The adjacency operator considered in the previous chapter is

expressed as a finite matrix or row-column finite infinite matrix, whose entries

are 0 and 1.The same adjacency relation is used here to define another matrix viz.

another adjacency matrix denoted by}-I (D) with entries in {-1, 0, l}.The

corresponding linear operator T A , which is closed on a Hilbert space H defined

on 12 (V) is analysed.

3.1 THE OPERATOR T A

The directed graph D = (V, E) is locally finite, countably infinite,

having atrnost one arc between any two vertices and no loops.

Definition3.l.1 [18] ,
We associate the following sets with vertices of D. ‘

1. D+(v)= {we V:(v,w) E E}

2. D'(v) = {ue V 1 (u, v) e E}

3. D* (u, v) = Di (u) rw D* (v)

Some results arepublished in the proceedings of the International Conference on Analysis and
Applications and III Annual conference of K.M.A(2000),AJlied Pub.New Delhi.
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4. D_(u, v) = D“ (u) rw D" (v)

5. D (u* ,v') = D‘ (u) rwD'(v)

Their cardinalities are denoted by d + (v), d‘(v), di (u, v) , d‘ (u, v) and d (u*, 'v')

respectively.

Definition 3.1.2

Let V= {vi ,v2 ,v, ,. ..}be the vertex set of D. The adjacency-v -5
matrix A is defined as A = [35] where

1, if(Vi, VJ‘) G E

flij = -1, if(Vj, Vi) G E (*)
0, otherwise.

Definition 3.1.3

flu

The id‘ row of the adjacency matrix A associates with each

vie V a sequence (xi) whose entries belong to {-1, 0, 1}. Since G is locally finite,

{(x;)} is a closed subspace of I2. Denote the Hilbert space {(x;)} by H.

Let {evl v e V} be the canonical basis of H, where ev (u) = 6.,"

TA (x) = 2 Z xveu where
IJGV v€D'(U)

Dom(TA)={x=-Z x.,e.,eel—I: Z I Z ><,|2<<>o} (1)YGV ll vGD_(u)
Remark 3.1.4

(TA e.,).,- = aw and hence the matrix representing TA is the

transpose ofthe matrix given by (*)



46

Pmposition 3.1.5

TA is a closed operator on I-I.

Proof:

Let (xn) be any sequence in Dom (TA)

x,,= Xx: eu where Z] Zxf |2<oo (2)v u veD'(u)
Supposexn->'x. Then x= Z xueu

andZ(x..“-x.,)2->0fora11veV(D). (3)

2| ZX.|’= Z1 Z (r.- - XI’ + If)!’=4 veD'(u) u veD‘(u)

SZU XXI.-XZ')+|n ZXZIV
ll VéD'(u) vG.D'(u)

$2{Z| Z0‘, -Xl')’|*-Z1 XXIII}.. ten-<..) .. veD'(u)

By (*) -2 5 xv - xv” S 2 and by the local finiteness of G, these extreme values

are attained only for finitely many v.

Hence 2| Xx, I’ < co and x e Dom (TA)
u vet)‘ (u)

Assume, TAX“-—> y. i.e. 2 Zxfeu —>Zyueuu veD'(u) v

2
4

Thenz { Zxf—y“} —> 0 . i.e. Zxf -—>y,,=If veD'(u) veD'(u)
Using (3), Zxv =~' yu and Z Zxveu = Z yueuv€D-(u) ll \'€D'(u} "
Hence TA x = y i.e .T,\ is a closed operator on H.



Proposition 3.1.6

TA is bounded if and only if G is of bounded degree.

Proof:

Suppose TA is bounded.

Then, 3 a constant k > 0 ,such that, HTA x|| 5 k || x ll, V x eDom (TA)

Also, ev e Dom (TA) for v e V.

||m.,|1’ "(T*""T*"’"> “}.,:"’,.~|’ =<1<v> $181: e~||*= ki vvev

Hence, D is of bounded degree.

Conversely,

assume that, D is of bounded degree.

Then we have a constant k >0, such that, d (v) 5 k for all v e V (D).

By the definition of d(v), d + (v) 5 k and d‘(v) 5 k.1 2
l|TA><ll’= Z Xxx. =2 XX.eVvep'(u) ueV y£D_(y) ’

‘  lL;3,’L§..f~ ll

5 kg Kzlxfj =  d(u)]x,,l2véi’ sci) (1)
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s K’ Z x,’= 1<’n><u’ => llTA><ll$kll><ll

TA lS
Definition 3.1.7

We consider another closed operator TB, closely related to

TA ,asfollows.

Forx=2 xueu inH, TBx=Z Zxveu_ueV ueV yep’ (3)

and Dom(TB) = {xeH:Zl Zxv|2<oo} (4)u (u)vGD*

Result 3.1.8 TB <_; TA‘

For, let xi = Z xuieug Dom (T A) and xi-= Z xuj eu eDom (TB) .u€V uGV
TAXi=E lkzgfl.-kl er and TEX]: i  er by (1')

( TAx;,x,- ) =2 a,,[ 20¢] and ' (5)kfllbzl

raf1= ' T =< Xi,TBXj )= 2 air [ 20,] = Eaj.:[ 2%,] (6)r 3 1 1 ra, I
by the local finiteness of G

Also, Dom (TB) c; Dom (T,~,*) Hence TB;TA*.

Proposition 3.1.9

Let TA be defined on D as in (1)



.e{/; A907ffi %¢$'

‘$53

5‘I

492 ':_ffq.-M3  ‘Ita) 1| TA en = law em’ = d (v)  *
‘Z\rs»?

I,ifve D“ (u) l,ifveD (u)
(b)( TAeu, ev >== -1,ifve DJ’ (u) (c)< T,\*eu,e, )= -l,ifveD'(u)

O, otherwise O, otherwise

( TA*TAe\-ls CV > = d+  +  '_ d(u+v V“) _ d (u_a V+)

Proof :

ta) "TA9v"2=< m..,"rA=. )= Z rw’= <1*<v>+<r<v>= do»)
us!’

The second part follows from TB g TA‘

we)’

1,ifveD'(u)

(b) < TAeu,e, >= < Z a,.,,ew,ev )=aw = —l,ifv eD+(u)
0, otherwise

* _-2 e : a cw(c)(TA eu,ev> <eu,T/\V> (emf WV )
wGV

l,i if v eD+ (u)
=a.,., == -1,ifv eD'(u)

0, otherwise

T/\‘TAeu,ev> = ( TAeu,TAev) =< E aruefsz asves)

=Zawa~

1, ift e (D_ (u) rw D"(v)) u (D+ (u) n D+ (v))
am aw = -1, if te (D_ (u) rw D+ (v)) v (D+ (u) rw D“ (v))

0 otherwise
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Hence,< T; TA cu, 6. ) = <1* (U, V) + <1" (u, v) - d (ti, n - <1 (tr, V‘)

Proposition 3.1.10

TA is always normal.

Proof:

< TATA* cu, Bv >=l< TA‘ eu, TA” Ev)

Also, e.,, ev e Dom (TB) and TB; TA‘

He"nce,< TATA‘ ewes) = { TBe.,,TBev > = ( Z aqwew, Ea“, cw)we?

= Z; auwavw = ( TA‘ Tamer)WE

fi-om proposition 3.1 .9(d)

TA is normal.

Proposition 3.1.11

Let the adjacency operator TA be defined on a digraph D = (V ,E)
I

The following are equivalent

(a) TA is an isometry.

(b) d (v) = l for any vertex v e V.

( c ) The non-trivial components of G are --92

Proof:

Assume (a) i.e. TA is an isometry. Then TA‘ TA = I

For any v EV, < "rpm ewe... )=< @.,¢.. >=n@.||’=1



A150 < TA* TA ewev >= < TA ev>TAev >= llTA evflz

= d(v) from Result 3.l.9(a)

HenCe,d(v)=l ,‘v’v€V.

;\'ow suppose, d (v) = 1, V v e V. i.e. d'(v) + d*(v)=1, V v Q

:_> <1‘ (v) = 0, d* (V) =1 or d‘(v) = 1, d+ (V) = 0

:> The nontrivial components of G are .--sq

Given (c), we have,

d(v) = 1, v ve v => lln @412 = d(v) = ||¢.,.|;, v v G v

:> TA is an isometry.

Hence the proof.

Remark 3.1.12

Since TA is normal, TA has no non-unitary isometry.

Corollary 3.1.13

TA is a projection if and only if D has no arcs.
0

******



CHAPTER IV

THE INCIDENCE ALGEBRAS I(G, Z) AND I(G.,.,, z)

In this chapter, an algebraic object called Incidence Algebra is

defined in association with a directed graph and its structure as well as subobjects

are studied. This association leads to results which have a pure algebraic‘ nature.

The digraphs considered are the “Graphs” of posets (V,5), finite or infmite

and bounded or unbounded. This justifies the symbol “(G, 5)” for the

representation of (V, 5).

4.1 INCIDENCE ALGEBRA OF A POSET

Incidence Algebras were defined over fields, when introduced.

Later a more general setup was considered over commutative rings with identity.

The general setup as well as the basic concepts given in Spiegel & O’Donnel[45]

are quoted below.

Definition 4.1.1

The incidence algebra I(X, R) ofa locally finite partially ordered

set (poset) (X, 5) over the commutative ring R with identity is defined as

Some results given in this chapter are published in International Journal of Mathematics and

Mathematical Sciences ,3l:5.(2002) 301-305.
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I (X,R) = { i‘: XX X—> R ; f(x,y) = 0 ifx 5 y } with operations given by

(f+ s) (w) = F (ml) + 2 (ml

(f. 8 J mi) 1 Z f(><.z > - g (ay)
,t=$,

(r. D (;~;,;.') = r. f(x,y ), for fig e l (X, R), reR and x, y. ze X.

PI'0[)U.'.I:ii=')I_l 4.1.2

Let X be a locally finite partially ordered set and R a

Commutativc ring with identity. Then, I(X, R) is isomorphic to a subring of

Mpq(R), where {XI denotes the cardinality of X.

Lemma 4.1.3

A finite partially ordered set X can be labelled as X={x;,x;,x;,...}

SO1hZ1{ >1; S xi implies i S

Rentzirlz  l.~é

Many countable partially ordered sets can be labelled as in

lemma‘: -1.1.3. Any such partially ordered set is necessarily locally finite.

Apply Zap: l’:n;:osition 4.1.2 to these posets, we have the following result.

Pr0pt',>..I;;t_>n -1.1.5

Let X = { xi: i=1,2,3,...} be a partially ordered set. IfX is so

labellei :1-1.1: .\'; 5 Xj implies is j, then there is an R-algebra isomorphism

W: 1(>;.:- --i 'l‘;;<,(R).

Pr‘t)[)0.~;§i;;>:1 -1.1.6

It‘ X‘ is a panially ordered subset of X.then l(_X‘.R) is a
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subalgebra of I(X,R). This subalgebra consists of those fimctions f e I(X,R)

such that f(x,y) =0, if(x,y) G x‘ ><x‘.

Pnoposition 4.1.7

For an ideal S of R, I(S, R) is a subalgebra ofl(X, R).

Proposition 4.1.8

Let E be an equivalence relation on the set of non-empty intervals

of X. A function f e I(X, R) isan E-fiinction, if [x,y] E [u,v] implies

f(><,y) = f (var )­

1 (XE, R) is the collection of all E — fianctions.

Definition 4.1.9

Let E be an equivalence relation on the set of non-empty

intervals of X. E is order— compatible, if f. g e I (XE, R), whenever

f9 g E I (XE:

Definition 4.1.10 ,
Let x be an element of a partially ordered set (X, 5). The

collection Ix= {y e X : y 5 x } is the principal ideal of X, generated by the

element x.

4.2 GRAPH OF A PARTIALLY ORDERED SET

Every partially ordered set (V, 5) has a graphical

representation as a directed graph in which a pair of elements u, v e\/.
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satisfying u < v is represented by the ordered pair (u, v). In terms of notations,

we deviate a little fi-om the previous chapters and use (G, 5) for the digraph

representing (V, 5).

Definition 4.2.1

The graph (G, 5) associated with a partially ordered set (V, 5)

is defined as (G, 5) = (V, E) where V = (V, 5) and E = {( u, v); u<v in(V, 5)}.

Note 4.2.2

(G, 5) has no cycles and multiple arcs.

Remark 4.2.3

Proposition 2. I .7 and Lemma 4.1.3 have motivated the choice of

the arcs in (G, 5).

Remark 4.2.4

(V, 5) may be a finite or infinite and locally finite partially

ordered set with respective graphs (G, 5) or (Gm, 5). ’

Definition 4.2.5

An ideal _7 of (G, 5) is an induced subdigraph of G such that all

directed paths with its terminal vertex in j are contained in J.

Definition 4.2.6

If Iv is a principal ideal of (V, 5) then  , the subdigraph

induced by the vertices in I. is the principal ideal generated by vin (G, 5).

is denoted by 1,.
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4.3 THE INCIDENCE ALGEBRA 1((;,z ) OF (6,5)

Any partially ordered set (V, 5) has a graphical representation

(G, 5) and any directed graph G = (V, E) without any cycles and multiple edges

can be represented by a partially ordered set VG. Hence, it is natural for (G, 5 )

to have an incidence algebra, the properties of which depend on those of G. Here

(G, 5) represents the finite partially ordered set (V, 5), where V={ v1, v2,  ,v,, }.

The ring R in definition 4.1.1 is replaced by Z, the ring of integers.

Notation 4.3.1

For u, v e V, let pi (u, v) denote the number of directed paths

oflength ‘i’ from u to v.

FOri=1,2,3,...,n-1, define :1, ri';v><v-> 2 by

fi(11>v) = Pa(11,\’), fi'(l1,\') = - Pi(11,v)

Definition 4.3.2

The incidence algebra l(G, Z) of (G, 5 ) over the commutative

ring z with identity is C18firl6d by 1(o,z) = { 5, 5'; v xV -> z },

i= 0, l,  n-l with operations defined by

(i) (g;.g,-)(u.v) = g;(u.v) +g,-(u,v)

(ii) (g, .g,-) (u.\') = Z gt (u.w). l_}(w_\')
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(iii) (z gt) (u,v) = z g,(u,v) for gt, g,-, e I(G, Z), z e Z and u, v, w e V.

Remark 4.3.3

(i) ft is the graph analogue of Xe I(X, R) [45] or g-6 eAK (P) [1].

( ii) The matrix [ ft ( vt, Vj)] is the adjacency matrix of (G, s) - and

f,“ (ta, v,) = fk(v;, v,~).

( iii ) For any interval [tt, v] of (v, g) with length k, rm, v) = 5. (tt, v) = 0.

Hence for every f e I (G, Z) there is a constant me Z, such

that f'm(u, v) = 0, for all (u, v) e V x V.

Definition 4.3.4

With each ideal 1,. = (1,) of(G, 5) we associate an incidence

algebra, I(J,,, Z) = { fe I(G, Z) : f:I., >< Iv —> Z} such that f(v;, v,-)=0,

for all (vi, v,-)0; 1,, ><I,, ’
Remark 4.3.5

If ( H, 5) is a subdigraph of (G, 5 ) then I (H, Z). is a subalgebra

of I(G, Z). In particular I(],,, Z) is a subalgebra of I(G, Z). I(_7,,, Z) is

called the subalgebra generated by the vertex v.

Remark 4.3.6

As the graph analogue of proposition 4.l.7,we have, if S is
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an ideal of Z then, I(G, S) = { f e I(G, Z) :f(u,v) e S} is a subalgebra

of I (G, Z) .

Proposition 4.3.7

For each principal ideal 7,, of (G,s), I(],,, Z) isan ideal of

the ring I(G, Z)

Proof:

Let J, be a proper principal ideal of (G, 5 ). Denote the elements

of I(G, Z) and l(],,, Z) by f and fl respectively. For every

fl e I( 3,. , Z) there is a unique f e l(G, Z) such that f} (u,w) = f(u,w) ,

V(u,w)e Ivxiv and f; (u,w) = 0, V(u,w) E Ivxlv.

Hence for any (u,w) eV><V, fel (G, Z), glel (_7,, , Z)

1’ (f.g)(u,v), if(u,v) e1.><1,,

(f-8|)(L1,W) = <
: 0, otherwise.
l

with similar values for(g1.t) (u, v) also.

Hence. flgl and glf el (JV . Z). Therefore. l (fly . Z) is an ideal 0fl(G, Z) .
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Remark 4.3.8

I (G, Z) is isomorphic to a subring of the ring of upper triangular

matrices over Z. In general every ideal of Mn (Z) has the form M,,( S) for

some ideal S of Z.

Proposition 4.3.9

Every ideal ofl (G, Z) has the formI(j,,, Z) for some

principal ideal 3,, of (G, 5 ).

Proof:

Let S be a proper ideal ofthe ring I (G, Z) . Then S = I (H, Z)

for some subdigraph (H,$.)of (G,s). For all feI(G, Z) and g1 eS,

fgq = glf e S. Hence there is some h; eS such that, fg1 = hl, and (fgl) (u,v) =

h; (u,v) = pk(u,v) for some k. i.e V (u,v) e V(I-I) >< V(H), the number ofdirected

paths of length k fi'om u to v in H is the same as that in G. Hence for any

ve\/(H), the subdigraph H contains all the directed paths terminating in v.

Thus, H=j,, for some v e\/(G).

4.4 A SUBALGEBRA OF I(G, Zn)

Here we define an equivalence relation R, on the set ofall

directed paths in a partially ordered graph (G. 5). The Functions in I (G. Z)
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which are R,-compatible as well as the cases of G’ being 5 - compatible are

examined and a subalgebta is defined.

Notations 4.4.1

v

PM denotes a path directed fi'om uto v in (G, 5). With any

PW, a subset {u0, ui, U2, ..., uk} of V is associated such that u =u0 < u|<

u; <.... < uk = v, forsome k e Z * .Foranyu,v e V Iet{ Puv }betheset

of all paths directed fiom u to v. Then V({P., .,}) = [u, v] of (G, 5).

Definition 4.4.2

Let Q’ denote the set of all non-trivial paths in (G, 5) and R

an equivalence relation on (P. f 6 I(G, Z) is called an <R,-function if

{Pxy} K {Puv} => KXJ) = f(11,V)­

I(G¢_Z) is the set of all R-fimctions in I(G, Z).

Definition 4.4.3

Let R be an equivalence relation on (P. R is 5-compatible,

if f.g e l (G t,<_ Z ), whenever f, g e l (G R, Z). ‘R, is an S-equivalence

relation if for {PX ,, }<){{ PM} there is a bijection map tp:[x,y} ——>. [u,v]such that

and {PZY} R-{P<P(3'-)V}e V2 e [X9 y]°

Proposition 4.4.4

Every equivalence relation (Rdefined on 0° is an S-equivalence relation.
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Proof:

Let R be an equivalence relation on Q’.

Let 1(Px,) denote the length of PX, and

k= max(1(P) :P e {P,,}).

Assume{Pxy}<1({P,w}.

Foranyv e V, let N,(v) ={w: PW, e G’ and I(P,,,.,)==k }.

Then [x, y] = N , (x), where each N , (x) is a partially ordered set. Also N , (x) is

finite. Let N,.(x)= {w,,.:j e some;-1} such that, w,., <w,.,,, if I<m and

w,j<w,m if z'<1.

Then, for every path PX, in (G, 5) there is a path Puv isomorphic

to it in such a way that, [x,y] and [u,v] are isomorphic partially ordered sets (of

the same cardinality). Hence there is a bijection (p : [x,y] —.> [u,v] such

that {P><y}q{{ Pu<P(1)} and {Ply} 9“ P1>(1)v}» V3 E [X>)’]­

Hence, Q is an S-equivalence relation.

Proposition 4.4.5

Let 91 be an equivalence relation on (P, the set of all non-trivial

paths in (G, 5). Then l(G K, Z) is a subalgebra of I (G, Z).

Proof:

Let {PU} Q {Puv}- By proposition 4.4.4, qqis an
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S-equivalence relation on (G, 5). Hence there is a bijection (p : [x,y] ——> [u,v]

$11611 that {Pm} R {Pvq=(z)} and {Pu} R{P¢<z>v}, V1 6 [X,y]­

Ler f , 2 E l(Gw..» Z) ="> Q’ f(><,y) = f(u,v) and g(><.y)=s(u,v)­

(F-s)(><,y) = Z f(><,z)-s(Z,y) = Z flu, ¢>(z))-s(<4>(z),v)x£zSy us¢(z)Sv

= Z flmw) s(w,v) = f -g(u,v)

2 fig e I(G Q‘ ,Z) :~ I(G Q. , Z) is a subalgebra of I (G, Z).

Proposition 4.4.6

Let R be a relation defined on (P, the set of all non-trivial paths

in (G, 5). For [x,y] R [u,v] ,let I R (G, Z) denote the set of all f e I(G, Z) such

that f(x,y) = f(u,v). If lR(G, Z) is a subalgebra of I(G,Z), then R is an

equivalence relation on GP.Proof: ,
Let IR (G , Z) be a subalgebra of I (G,Z) and f,g eh; (G_ Z)

Then, fig eIR(G, Z) ::> f. g(x,y)=f.g(u,v)

=> Z rm)-g<z,y) = Z flmw)-s(W,v)XS."§)' USw1'Iv

=> Z flxiz)-g(z,y) =2 f(u,w)-s(w,v) (I)
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By the definition of (G, 5), Z f[x,z).g(z,y) depends on the number of paths
IS:

from x to some z<y. Hence (l) defines an equivalence relation Ron (P as follows.

{Pxy} and { Pu v}are related ifthere is a bijection \|1:{Px Y} —> { Pu,-} such that

1(P, Y) = 1(\|J(Px y)) and [x,y] and [u,v] are isomorphic posets.

Then lR(G, Z) = l(G Q, Z).

Proposition 4.4.7

If <R_ is any equivalence relation on Q’, then <11 is 5- compatible.

Proof:

By pr0pOSitiOn 4.4.4, Q is an S-equivalence relation.

Hence, if {PX )1} Q{{Puv}, then there is a bijection <p:[x,y] —> [u,v] such that

{Pxy} ‘K{ Pu<o(z)} and {Pu} ‘K{ Pm) -}, V1 E [><,yl­

Let fig EI(Gq' Z). Then we have

f(><,>') = flu,‘/) f(><,Z) = flu, <P(Z)) f(Z>y) =' F((P(Z),v)

8(X»y) = 8(11»\/) 8(><,Z) = 801, <P(Z)) g(Z,y) = 8(‘P(Z),v)

I-(f-s)(><,y) =  f(><,-Z)-g(z,y) =  f(><,<i>(z))-s(<o(Z),y)

to is a bijective map from the poset [x,y] to the poset [u,v]. Hence we can

define go in such a way that for x S. zs y, u=<p(x) 5 ip(z) s cp(y)=v.

Then fig e l (G .,¢ Z):> ~R_ iss -compatible.
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4.5 THE INCIDENCE ALGEBRA I(G,, ,2)

The graph (Gm, 5 ) of an infinite partially ordered set

(V, 5) may not be locally finite, even when (V, 5) is a locally finite

partially ordered set. Also (V, 5) can be bounded or unbounded. By introducing

weak partially ordered sets, the results given in section 4. 4 are extended to

infinite weak partially ordered sets, bounded or unbounded. It is assumed

that (V, 5) is countable.

Definition 4.5.1

A locally finite partially ordered set (V,5) is weak, if only

finitely many chains intersect at every element v eV.

Definition 4.5.2

Let (V, 5) be a locally finite weak partially ordered set and

(G0,, 5) the graph representing (V, 5). The incidence algebra l(G 0,, Z) of

(G ,0, Z) over the ring Z ofintegers is given by l(G ,,,,Z) = {f,.,f: .: Vx V—- Z }

where, f,  are as given in notation 4.3.l.and satisfy the operations in

definition 4.3.2.

Note 4.5.3

Here also. each f e I (G. Z‘) has a matrix representation [t]
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where [f]  = f (u, v) and [f] is both row and column finite. If M my (Z) denotes

the ring of row and column finite matrices over Z, then I ( G ,0 , Z) is isomorphic

to a subring of M0,, (Z).

Proposition 4.5.4

Let (V, 5 ) be a locally finite weak partially orderd set

satisfying ( i) the set S of its atoms is non-empty and finite and (ii) no infinite

chain in (V, 5 ) has a maximal element in (V, 5 ), then l(Gw, Z) is isomorphic

to subring of the ring of upper triangular matrices over Z.

Proof:

The graph (G0,, 5) is locally finite. By proposition 2.2.3,

f (v,,v,) 2 0 for r 5 s, giving every f a representation as an upper triangular

matrix over Z. Hence the result follows from definition 4.5.2. »

Definition 4.5.5

ln a bounded, locally finite weak partially ordered set (V, 5 )

the principal, ideal generated by v eV is defined as 1., ={u eV: u 5v}. The

corresponding principal ideal of (GW5) is given by JV =<I,.).

Proposition 4.5.6

Let ( V. 5 ) be a bounded locally finite. weak partially ordered
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set and 3,, aprincipal ideal of (Gm, 5). Then

(a) l(_7,, , Z) is a subalgebra of I (G¢,,Z ).

(b) l(_7,,,Z) is an ideal of I(G,°,Z).

The proof is similar to that in proposition 4.3.7.

Proposition 4.5.7 [45]

Let (V, 5 ) be an unbounded partially ordered set. Then .V

contains a partially ordered set isomorphic to Z‘, Z" or u C" where C,

denotes a chain of length n.

Remark 4.5.8

When (V, 5) is unbounded , the principal ideals of (V, 5) as

well as ( Gm, 5) are not well-defined. Also Proposition 2.2.3 is not true for

unbounded partially ordered sets, in general.

But,_there are unbounded locally finite partially ordered sets

which satisfy Proposition 2.2.3. As an example, we have Z ‘ under the

usual ordering. For such partially ordered sets we have the following
result.

Let (V,5) be a locally finite unbounded partially ordered set

such that l(G,. , Z ) is isomorphic to a subring of the ring of upper triangular

matrices. Then

(i) principal ideals of (G W5) are defined as JV = (Iv) where



Iv={u eV:u$v}

(ii) for each _7,, , I(_7,, ,Z) is a subalgebra of KG“, ,Z)

(iii) for every 7,, , l(],, ,Z) is an ideal ofI(Gw, Z).

*#**1IIIll



CHAPTER V

THE ARC LAPLACIAN Q E

The Laplacian matrix Q = BB’, where B represents the

incidence matrix for some orientation of a finite or locally finite infinite, graph is

well- known and has been subjected to considerable investigation. Here the

matrix B'B is considered as a linear operator on 12 (E). B'B is called the Arc

Laplacian of G and is denoted by Q 5. Bapat, Kulkarni and Grossman [8] have

considered a similar matrix for a finite mixed graph G, which they call the edge

version of the Laplacian matrix and denote by K.

5.1 THE ARC ADJACENCY OPERATOR fig

This section contains the preliminary definitions and some results

on the arc adjacency operator fig , an operator which is closely related to Q E.

Definition 5.1.1

For any finite or locally finite and countably infinite graph

G = (V,E), we define the incidence matrix B as given in Biggs [10].

Let D be the directed graph Formed by fixing an arbitrary

orientation to the edges ofG. For an are e of D, u(e) denotes its tail and v(e) its

head. In other words, the arc e emanates from u(e) and terminates in
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v(e). Also u(e) and v(e) are referred to as, respectively, the positive and

negative ends of the arc e.

The incidence matrix B = [b ,1] where by. = i 1, according as

u(ej)=vi or v(eJ.)=vi andbg =0otherwise.

Remark 5.1.2

B defines an operator B : I2 (E) —> I2 (V) such that for

XE12(E), (Bx),-= Xx, - Zx,.
u(e)=u v(¢):u

Note 5.1.3

By an n-path we mean a path of length n, which is directed in D

and undirected in G.

Definition 5.1.4

Two arcs e i and e", of D are adjacent if they form a 2-path. The

arcs ei and e jare weakly adjacent ~ w-adjacent for short - if they are not

adjacent in D, but form a 2-path in G.

Definition 5.1.5

With every arc e of D we associate two sets S (e) and W(e) as

follows.

S (e) = {f e E (D) : u(f) = v(e) or v(f) = u(e)}

W(@) = {f E E (D) I “(Q = 11(6) Or \/(T) = v(e)}

S (e) and W(e) are disjoint for all e e E (D).
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Definition 5.1.6

The arc adjacency matrix /'15 of a directed graph D is defined by

F 1, if e; and e J. are adjacent

[flE]U. = <-1, if er and e jare w-adjacent
he 0, otherwise.
it'\

fig is a real symmetric matrix, indexed by arcs of D, whose

columns /rows give the vectors in I 2 (E).

Definition 5.1.7 The operator /'11;

Let {B¢: eeE} be the standard basis ‘ofI2(E). Any xe 1’ (E) is

represented as x=Z xe B. , where xc e {-1,0,1}.
0&5

The arc adjacency operator fig is defined on 12 (E) by

flE<><> = Z { Zxw Ewe
065 feS(e) feW(¢)

Remark 5.1.8

For a finite digraph jig represents a bounded, self-adjoint

2
operator on I (E)

5.1.9 Computation of H}'i|.;||

For .\'€ /2(5), <//;,.;(><).;i,.;(.~<) )= Z { }:.\~,, - Zr, ;’
or-".1." _/"r- N1 0) /'<_H'<t-1
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Also Iflg (x).,| 5 Z [A(G)-1] 2, where A(G)=max d(v).

Hence. u/1B<><>1| ’ s 4 (Aw)-1] ’ Z |><.|’ = 4[A(G)-1] ’I|xIl’

And  ;<. 2 [A(G)-1] , which is finite since G is locally finite.

Proposition 5.1.10

If D has only finitely many arcs,’ then jig is a compact linear

operator on 12(E).

Proof:

If D has only finitely many arcs then the matrix J45 = [av] is

finite. Then we have a constant k, 0 < k <00 , such that 2|ay.l2 sk and
J1'.

|L)}E||= k "2. Hence jig is a compact linear operator on 12 (E).

Proposition 5.1.11

If d (v) £ k, then llfigll 5 2 (k-I)

Proof:

Eis countable. Let E = { e1, e2, e3,  }

For x = Zx,B, in 12 (E), with xi denoting (x)¢'_ and fl,- denoting B,
I

.,_-_

I/qE (X)il = Jzay xi

I -\_,| | :1 _' I
%— is.» g = Z|!r1.':|x’Ha»'!| /| '/J_ ,1 l

/\

>2/1~
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5:  alj  xi I2} 1/2  av  1/2
(£1

Zlayl =d(U(ei))+d(V(@i))‘2

U.)

Hence, sup Zlayl 5 2k-2 = 2(k-1)I
®

Prowl) l/qE (><)i|’ s 2<1<-1) {X109 u x, 2*}

ll"]8

ll./qE(X)||2= /4E<><>|’

< 2<k-1>ii|a,, 1|», P
j::I [=1

5 2 (k-1) 2 (1<_1) 2| xv, |1
j=l

5 4 (k-1)’ ||x\|’

ll./112 ll 5 2(k"1)­

Proposition 5.1.12

If d(v) s 1<, then ||B|| 5 J5 1<.

Proof:

Every column of B contains exactly two non-zero entries, each

of absolute value one. The proof is similar to that in Proposition 5.1.11.
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5. 2 THE ARC LAPLACIAN Q;;_

We recall the definition and some results on the Laplacian matrix.

Definition. 5.2.1 [10]

Let B denote the incidence matrix for some orientation of a graph

G. The Laplacian matrix Q of G is defined as Q = BB‘, where B‘ denotes the

transpose of B. Q acts on 1‘7(V) as a linear operator.

Proposition 5.2.2 [10]

Let A be the adjacency matrix of G and A the diagonal matrix

whose i‘“ diagonal entry is d(v;). Then Q = A- A.

Remark 5.2.3

This result gives a simple relationship between Q and A which is

true for finite as well as locally finite infinite graphs, connected or disconnected.Definition 5.2.4 ’
Let D be an orientation of a fmite or countably infmite, locally

finite graph G and B the incidence matrix of D with respect to this orientation.

The arc Laplacian matrix Q 5 is defined by Q 5 = B‘B.

Note 5.2.5

Q 5 is indexed by the edges of G whereas Q is indexed by the

vertices.
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Pnoposition 5.2.6

Q E = 2 It-.51 - jig , where I|E| is the identity matrix oforder |E|.

Proof:

From the computation of B‘B, it follows that

"2, if i=j

[Q5] ,1. = < 1, if er andejarew-adjacent

l -1, ife 1' and cl. are adjacent
\0, otherwise

Remark 5.2.7

Since Q and Q 5 act on different domains we can not claim any

equality between them as operators. But regarding their representation as

matrices, we have the following result.

Proposition 5.2.8

Let Q and Q 5 denote the Laplacian and Arc Laplacian matrix,

respectively, of a locally finite and countably infinite graph G. The matrices Q

and Q5 are equal if and only if the orientation D of G considered is a disjoint

union of directed cycles.

Proof:

If the matrices Q and Q ,5 are equal, then (i) d(v) ¥ 2 for every

vertex v ofG (ii) no two arcs ofD have a common head or tail (iii) if e; and e,­

are adjacent arcs in D then either ei or ei joins the vertices v; and vj. Hence every
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component of D is a directed" cycle. Moreover, no two cycles of D have a

common vertex , for if there is one such vertex v, then d(v)2 3.

Hence, D is a disjoint union of directed cycles.

Proposition 5.2.9

Proof.

If it is aneigen-value of fig then ti $2,

From Proposition 5.2.6 , /'45 = 21151 - BtB­I l
Also, the eigen values of B B are non- negative, since the matrix B B is non­

negative definite Hence, eigen values of fig are atmost two.

Proposition 5.2.10 [10]

If 1 is an eigen value of the line graph L(G) of G, then Z. 2-2.

Proposition 5.2. I 1 [20]

A connected graph G is isomorphic to its line graph L (G) if and

only if G is a cycle.

Proposition 5.2.12

Let A (G), AL(G) and fig (D) denote the adjacency matrix of G,

the adjacency matrix of the line graph L(G) of G and the arc adjacency matrix

for some orientationD of G, respectively. The eigen values of A, AL and

fig coincide if and only if G is a eycle_

Proof‘:­

Let G bethe cycle C,, on n vertices. By Proposition 5.2.11,
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G and L(G) are isomorphic. Then A(G) = AL, and hence A(G) and AL have

the same characteristic roots. lf the orientation D of G is a directed cycle

Du then A(G) and Jli;-(D) are equal.

lf not , let D* be an orientation of G which is different fiom the

directed cycle Du. The change in the direction of an arc of Dn, produces the

matrix _fl;;(D*) with a row and column having entries opposite to those in

fig(D,,), whereas det (ll -j-ltE(D)) and det (/11 - _j1\E(D,,)) have the same

polynomial expansion. Hence the proof.

The converse follows from the same results.

Corollary 5.2.13 [10]

Spec (Cm) g [-2,2].

5.3 EIGENVALUES OF Q5

As matrices Q and Q1-._ are transposes of each other, which may

reflect in their pI'Op€t‘ti€S also. Together with the results on Q1; the

corresponding results on Q are also included in this section for a comparative

study.

Proposition 5.3.1 [l0|

Let it ,, 3 it , 5 ..... .. § tt,,-; be the eigen values of

the Laplacian matrix Q ofa finite graph G on vertices. Then

ta) ti ,__=O with eigen rector [l.l......l]
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(b) If G is connected, then ;.1‘_> 0

(c) If G is regular of degree k , then ll ;= k- Z; , where Ki are the ordinary

eigen values ofG

Proposition 5.3.2.

If 1;, 1 5 is m are the eigen values of the arc adjacency

matrix /I5 (D) of a finite digraph D, then Ll; = 2- /1; are the eigen values of Q5,

This result follows from Q5 = 2 I|E| - /‘=15.

Corollary 5.3.3.

2.; $ 2 II> ,u 52
Corollary 5.3.4

If Spec OE (Cn) denotes the arc Laplacian spectrum of the cycle

Cr, on n vertices, then/' \‘\
SpecQ£(C,,) = i 0 2(l-cos21r/n) ......... ..2[l~c0s(n-l)rr/n]“ if nis od_d11 2 2 t

lg /T “~
SpecQ£(C,,) = i 0 2(l-cos21r/n) ......... ..2[l-cos(n-2)1r/n] -4 yifnis evenl 2 2 I

ll \ J‘
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Proposition 5.3.5

Let { ll; ii e1 } denote the eigen values ofthe arc Laplacian Qi.-,

ofa locally finite, connected graph G. iLl‘f =0 if and only ifG contains a cycle.

The multiplicity of zero as an eigen value of Q5 is the dimension of the cycle

subspace of G.

Proof:

The cycle subspace C is the kemel of the incidence mapping.

Hence for any (column) vector x in C,, we have B,i= 0 :> B‘Bx = Qgx = 0

:> zero is an eigenvalue of Qig.

Conversely,

let H be any connected subgraph G, such that H does not

contain any cycles and let zero be an eigen value ofQE.

Define xii: E(G)—> R by xn(e) = )5 ii (e) , where 75 ii

denotes the characterestic function. Let Bi denote the i"‘ row of the’ incidence

matrix B.

(B XH)i=(Bii xii): dii (‘/i)" d;{(Vi)

(B xH)i = 0 :>d;, (vi) = d;,(vi)

If dji (vi) = d',;, (vi) = O , then vi 6»: V(l-l),since H is connected..

Otherwise. d ,', (vi) = d ,, (vi) for all vi e V(H) , giving an Eulerian subgraph H_ of

C-. it‘H is finite. Hence we have a partition ol‘E (H) into edge-disjoint union of

cycles. contradicting the choice of H.
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Hence, (Bi,xj,,) ¢ 0, for at least one i.

:> B‘BxH $0 :r> QBXH $0

Qgx = 0 :> x is a cycle vector.

If H is infinite and d "(v,.) = d‘(v,) for all v, e V (H), then H is

either an arc-disjo int union of cycles or an arc-disjoint uni_on of doubly infinite

directed paths or both, where the first case is quite similar to the finite case

given above.

In the second case, let H1 be any doubly infinite directed path in

H. We have a one-to-one correspondence between the vertex set V (H1) of H1 and

the set E (H1) of its edges such that every vertex is an end vertex of the edge

corresponding to it [28]. For any i, B; has the entry +1 in the (i-l) column

and -l in the i column with zeros elsewhere and x H! (e ,) has a non-zero entry

in the rm column only.

Hence, (BxHl),. = (Bi,x’,, ) = -1 #0.

******
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