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Preface

B lack hole’s response to external perturbations will carry signif-
icant information about these exotic objects. Its response, shortly
after the initial ‘kick’, is known to be ruled by the damped oscillation
of the perturbating �eld, called quasinormal modes(QNMs), followed
by the tails of decay and is the characteristic of the background black
hole spacetime.

In the last three decades, several shortcomings came out in the
Einstein’s General Theory of Relativity(GTR). Such issues come, es-
pecially, from observational cosmology and quantum �eld theory. In
the �rst case, for example, the observed accelerated expansion of the
universe and the hypothesized mysterious dark energy still lack a sat-
isfactory explanation. Secondly, GTR is a classical theory which does
not work as a fundamental theory, when one wants to achieve a full
quantum description of gravity. Due to these facts modi�cation to
GTR or alternative theories for gravity have been considered. Two
potential approaches towards these problems are thequintessence
model for dark energy andHo�rava-Lifshitz (HL) gravity. Quintessence
is a dynamical model of dark energy which is often realized by scalar
�eld mechanism. HL gravity is the recently proposed theory of grav-
ity, which is renormalizable in power counting arguments. The two
models are considered as a potential candidate in explaining these
issues.

In this thesis, the signature of these new theories are probed on
the evolution of �eld perturbations on the black hole spacetimes in
the theory.

Chapter 1 gives a general introduction to black holes and its
perturbation formalism. Various concepts in the area covered by the
thesis are also elucidated in this chapter.

xiii



xiv Preface

Chapter 2 describes the evolution of massive, charged scalar �eld
perturbations around a Reissner-N�ordstrom black hole surrounded
by a static and spherically symmetric quintessence. The complex
frequencies of the normal modes associated with the evolution are
evaluated using third order WKB approximation approach. The in-

uences of quintessence on the QNMs are studied. The dependence of
QNMs on the charge of the black bole, mass and charge of perturbing
scalar �eld and the quintessential parameters are also clari�ed.

Chapter 3 comprises the evolution of massless scalar, electro-
magnetic and gravitational �elds around spherically symmetric black
hole whose asymptotes are de�ned by the quintessence, with spe-
cial interest on the late-time behavior. The complete evolution pro-
�le is obtained through numerical methods for di�erent values of
quintessence state parameter and compare the results with case in the
absence of quintessence. We examine how the di�erent multipoles of
perturbation for di�erent spin �elds evolve with time. Possible rea-
sons for the di�erent behavior of late-time tails are discussed.

Chapter 4 examines the evolution of Dirac �eld around a Schwar-
zschild black hole surrounded by quintessence. Detailed numerical
simulations are done to analyze the nature of �eld on di�erent sur-
faces of constant radius.

Chapter 5 is dedicated to the study of the evolution of mass-
less �elds around the black hole geometry in the HL gravity. From a
knowledge of the evolution of scalar, electromagnetic and Dirac per-
turbations around black holes, we try to distinguish the the nature of
the HL theory from that of GTR. QNM and tail phases are studied
using the numerical integration and the WKB approximation method.

Chapter 6 concerns the study of the evolution of massive scalar
�eld in the spacetime geometry of black hole in HL gravity by numer-



xv

ical analysis. Di�erent regimes of the late-time evolution are studied
in detail.

Chapter 7 summarizes the substantial �ndings of the works pre-
sented in the thesis and suggests future scopes of the works that can
be undertaken.

Notations and conventions

Throughout the thesis we have chosen the natural unit systems with
c = 1 = G. Signature of spacetime metric: (� ; + ; + ; +). Semicolon
after a vector or tensor stand for its covariant derivative. Prime over
any quantity denotes derivative of that quantity w.r.t the radial co-
ordinate and dot represents the time derivative. Indices�; �; a and b
generally run over 0; 1; 2; 3. The letter c is used in this thesis for the
normalization factor of quintessence.
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1
Introduction

One of the greatest creations of speculative science is the Einstein’s
General Theory of Relativity. Its �rst solution-a black hole- is hap-
pened to be more strange and mysterious. The words of John Wheeler,
the coiner and popularizer of the name ‘black hole’, expresses this en-
chantment.

\Of all the entities I have encountered in my life in physics, none
approaches the black hole in fascination. And none, I think, is a
more important constituent of this universe we call home. The black
hole epitomizes the revolution wrought by general relativity. It pushes
to the extreme-and therefore tests to the limit-the features of general
relativity (the dynamics of curved spacetime) that set it apart from
special relativity (the physics of static, \
at"spacetime) and the earlier
mechanics of Newton. Spacetime curvature. Geometry as part of
physics. Gravitational radiation. All of these things become, with
black holes, not tiny corrections to older physics, but the essence of
newer physics."

{John Archibald Wheeler

Let me introduce black holes through the words of Kip Thorne[1],
\...black hole: a hole in space with a de�nite edge into which any-

thing can fall and out of which nothing can escape, a hole with a
gravitational force so strong that even light is caught and held in its

1



2 Introduction

grip, a hole that curves space and warps time........ well-tested laws
of physics predict �rmly that black holes exist. In our galaxy alone
there may be millions, but their darkness hides them from view. As-
tronomers have great di�culty �nding them."

{Kip S. Thorne

It is this weird nature made the black hole deeply entrenched in
human imagination and one of the most studied objects in science.

1.1 From \dark stars" to \black holes"

The �rst scienti�c ideas on regions of gravity so strong that light can-
not escape, were kicked to the late 1780s. Combining Newtons theory
of gravitation with his corpuscular theory of light, John Mitchell, a
British natural philosopher, presented the idea of ‘dark stars’at the
Royal Society, London. He argued that if a star is compact enough,
the escape velocity on its surface may be greater than the velocity
of light corpuscles, and the star becomes invisible. Later in 1797,
mathematician Laplace promoted the same idea and he wrote on his
book,

\It is therefore possible that the greatest luminous bodies in the
Universe are on this very account invisible."

{Pierre-Simon Laplace

But the general acceptance of wave theory of light in the begining
of 19th century forced him to drop out the notion of dark stars.

The modern understanding of black holes begins when Karl Schwa-
rzschild derived an exact solution for Einstein’s �eld equation in 1916,
almost immediately after Einstein formulated his relativistic theory
of gravity.
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His solution showed that if the mass of the compact object con-
�ned with in a critical circumference, the space will be strongly curved
and the 
ow of time at the star’s surface will be in�nitely dilated. A
star as small as a critical circumference, called Schwarzschild radius,
must appear completely dark. This did not seem at all reasonable to
physicists and astrophysicists of 1920s or even as late as the 1960s.
Even Eddington, a relativity expert of his time and Einstein himself
opposed the ‘Schwarzschild singularity’theory.

But several discoveries in the 1930s made them recognized as re-
alistic objects. Among them three major developments were,

� Chandrasekhar’s 1931 proof that there is an upper limit on the
mass of white dwarfs (M � 1:4M � )

� Chadwick’s 1932 discovery of the neutron and the subsequent
idea { due to Baade and Zwicky { that entire stars made up of
these particles may exist. Such neutron stars would be limited
to a mass less than something like 3M � .

� the seminal work on gravitational collapse by Oppenheimer and
Snyder from 1939, that provided the �rst demonstration of how
the implosion of a star forms a black hole[2].

Eventhough these �ndings con�rmed that the black holes are the-
oretically possible, it had to wait until 1970, for the �rst observation
evidence for the actual existence of black holes in the Universe. It
came from the detection of Cygnus X-1, one of the strongest X-ray
sources we can detect from Earth. It is widely believed that the
Cygnus X-1 is a binary black hole system with a companion smaller
than Earth but with a mass greater than that of a neutron star.

Presently we have many black hole candidates, with stronger evi-
dences due to the advanced optical, X-ray and radio telescopes. It is
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now strongly suspect that almost all galaxies contain gigantic black
holes in their centers, millions or even billions of times more massive
than the Sun. Our own galaxy, Milky Way is expected to harbor a
supermassive black hole, known as Sagittarius A*, at the center[3].
Several gravitational wave operators are now actively searching for
the signal coming from black holes and may make it possible to di-
rectly observe them in the near future.

1.2 Characteristics of black hole

Eventhough black holes possess a complex mysterious nature, they
have a perfect mathematical description. The mathematically de�ned
black hole is the picture of simplicity as Chandrasekher wrote in his
monograph[4],

\The black holes of nature are the most perfect macroscopic objects
there are in the Universe: the only elements in their construction
are our concepts of space and time. And since the general theory of
relativity provides only a single unique family of solutions for their
descriptions, they are the simplest objects as well."

{S. Chandrasekher

As we mentioned already, the Schwarzschild solution is the �rst
solution of Einstein’s �eld equation, represents spacetime outside a
spherically symmetric massive object. The line element, which de-
scribes such a geometry is given as,

ds2 = �
�

1 �
2M
r

�
dt2 +

�
1 �

2M
r

� � 1

dr2 + r 2(d� 2 + sin2 �d� 2):

(1.1)
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An important property of this solution is that it is independent
of the temporal, t coordinate and depends only onr and that it is
determined by only a single parameter,M , its mass. Far from the
center of gravity(r ! 1 ) the spacetime dissolve to the 
at Minkowski
spacetime,

ds2 = � �� dx� dx� = � dt2 + dr2 + r 2(d� 2 + sin2 �d� 2): (1.2)

One can notice from Eq.(1.1) that the gravity of the massive ob-
ject not only curves the space around it but warp the time near its
premises. One can visualize the Schwarzschild spacetime in the em-
bedded diagram shown in Figure 1.1 and observe the following points.

Figure 1.1: Embedded diagram of Schwarzschild black hole.
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The solution is singular at two values of the radial coordinate,
r = re = 2M and r = 0. The �rst one is a coordinate singularity that
can be transformed away by choosing suitable coordinates systems.
The second one is the actual gravitational singularity marked by an
in�nite curvature. The radial distance, re is called the Schwarzschild
radius and it marks a boundary called the event horizon of the black
hole, which is a causality barrier through which anything can go inside
but nothing can come out.

Schwarzschild black hole is the simplest case, with only one param-
eter determines its geometry, its mass. A theorem known as‘no-hair
theorem’[5] limits the other properties of a black hole reaching to an
external observer. According to this theorem a black hole formed
by the gravitational collapse of a charged rotating star, will rapidly
relax to the stationary state, characterized by only three quantities,
its mass, charge and angular momentum(MQJ ). Any other hair,
will disappear after the collapsing body settles down to its stationary
con�guration(Section 1.4.2). Consequently there are four varieties of
black holes in GTR,

Black hole Signatures
Schwarzschild M
Reissner-N�ordstrom(RN) M and Q
Kerr M and J
Kerr-Newmann M, Q and J

I summarizes this section with the words of Wheeler,
\[The black hole] teaches us that space can be crumpled like a piece
of paper into an in�nitesimal dot, that time can be extinguished like
a blown-out 
ame, and that the laws of physics that we regard as
‘sacred’, as immutable, are anything but."

{John Archibald Wheeler
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1.3 Linear perturbations of black hole

The concept and formulation of black hole perturbation theory dates
back to 50’s and was �rst introduced by Regge and Wheeler in their
seminal paper [6]. Their intention was to study the stability of the
equilibrium con�guration of black hole represented by the Schwarzschild
spacetime. The relevance of the stability problem was of two kind.
Firstly the notion of black holes were not widely accepted at that
time. Unless these objects formed by the gravitational collapse are
proved to survive the perturbations, that can be expected in the col-
lapse, one cannot treat them as the �nal state of the massive stars.
Secondly, being solutions of Einstein’s equation does not ensure the
stability of the black holes.

Since Einstein’s equations is highly nonlinear in metric tensor, it
is very di�cult to analyze the generic perturbation around black hole
spacetime. So Regge and Wheeler con�ned their study in to a lin-
earized level. They investigated the question of stability up to terms
of the �rst order in the departure from sphericity. This approximation
leads to linear equations and it is possible to decompose the given dis-
turbances in to normal modes using tensor spherical harmonics. Now
if the complex frequiencies of these modes have negative imaginary
parts, then one can conclude that the black hole is stable and un-
stable if the imaginary parts are positive. We brie
y explain the the
Regge-Wheeler equation describing the black hole perturbation.
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1.3.1 Gravitational perturbations

The spherically symmetric uncharged stationary background space-
time is described by,

ds2 = �g�� dx� dx� (1.3)

= �
�

1 �
2M
r

�
dt2 +

�
1 �

2M
r

� � 1

dr2 + r 2(d� 2 + sin2 �d� 2):

Consider small perturbations,h�� in background spacetime, �g��

with jh�� j=j �g�� j � 1, such that the total metric can be taken as the
sum of unperturbed background metric and the perturbation,

g�� = �g�� + h�� : (1.4)

Now we want to construct the Einstein equation for this perturbed
system up to the linearized level. So in the calculation we only keep
quantities up to �rst order in h�� , at each step. Rising and lowering
of indices are done using the background metric. For example,

h�� = �g�� �g�� h�� : (1.5)

Variation of Ricci tensor can be found from the expression[80]

�R �� = � � � �
�� ;� + � � �

�� ;� ; (1.6)

where the variation of a�ne connections is,

� � �
�
 =

1
2

g�� (h�� ;
 + h
� ;� � h�
 ;� ); (1.7)

Einstein �eld equation for the perturbated system is,

�G �� (g) = � 8��T �� ; (1.8)
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whereG�� (g) is the Einstein tensor computed from the total metric
g�� + h�� . Since we are considering perturbations in the Schwarzschild
exterior, which is empty, the �eld equation reduced to,

R�� (g) = 0 ; (1.9)

whereR�� (g) is the Ricci tensor computed from the total metric
g�� + h�� . Since we assume that the perturbation is small, taking
terms up to linear in h�� , above equation can be expanded as,

R�� (�g) + �R �� (h) = 0 ; (1.10)

whereR�� (�g) is the Ricci tensor computed from the unperturbed
metric �g�� which we know will vanish and the equation becomes,

�R �� (h) = 0 : (1.11)

With the expressions Eqs.(1.6) and (1.7) in hand one can com-
pute the perturbation equation, Eq.(1.11). Making use of the spher-
ical symmetry of the background, we can decouple the angular part
of the perturbation equation and obtain an equation depending on
the radial and time variables. Any arbitrary perturbations can be
decomposed in to normal modes and for any given value of the angu-
lar momentum ‘ , associated with these modes, there are two classes
of perturbations. Even (� 1)‘ and odd (� 1)‘ +1 parity perturbations.
Here we proceed considering the axial perturbation case since the two
were shown to have a similar QNM spectra. The canonical form of
odd wave perturbations in Regge-Wheeler gauge[6] is,
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h�� =

0 0 0 h0(r )
0 0 0 h1(r )
0 0 0 0

h0(r ) h1(r ) 0 0

sin�
@
@�

P‘ (cos�)e� i!t :

(1.12)
Substituting Eq.(1.12) in Eq.(1.11) we can separate the angular

and radial parts of the equation and we get the following radial equa-
tions by equating �R �� , �R r� and �R t� to zero, respectively as[7],

i!h 0�
1 � 2M

r
� +

d
dr

��
1 �

2M
r

�
h1

�
= 0 ; (1.13)
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2M
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2r 2

�
= 0 : (1.15)

De�ning  (t; r ) =
�
1 � 2M

r
� h1

r the above equations can be com-
bined to get a second order equation, after eliminatingh0(r ).

d2 ‘
dr2

�
+

�
! 2 � Vef f

�
 ‘ = 0 (1.16)

were we have employed the radial tortoise coordinate, de�nes as
r � = r + 2Mln

� r
2M � 1

�
, such that it pushes the event horizon, 2M

all the way to �1 . As,

r �! + 1 ; r � �! + 1 ;

r �! 2M; r � �! �1 : (1.17)



Gravitational perturbations 11

The e�ective potential, Vef f appearing in Eq.(1.16), usually called
the Regge-Wheeler potential, is given by,

Vef f =
�

1 �
2M
r

� �
‘ (‘ + 1)

r 2 �
6M
r 3

�
: (1.18)

The e�ective potential plotted in Figure 1.2. The potential is
positive real everywhere and has a maximum just outside the event
horizon at r ’ 3:3M . The asymptotic structure of the potential shows
an inverse-square fall o� asr � ! + 1 and vanishes exponentially as
r � ! �1 . Modes with larger multipoles will experience a higher
potential barrier.
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Figure 1.2: The Regge-Wheeler potential for di�erent multipoles of
perturbation. Curves from bottom to top are for l = 2 ; 3; 4 and 5.

Perturbations with even parity, can also be reduced to obtain a
second order equation of the form, Eq.(1.16), but with a more com-
plicated form for the potential, called the Zerilli potential[8]. But it
looks very similar to the Regge-Wheeler potential, shown in Figure
1.2 and has nearly identical properties[4].
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Now the study of stability is reduced to �nding the solutions of
the di�erential equation, Eq.(1.16). With the time dependence of
perturbation as e� i!t , if the perturbation equation allows solutions
having positive imaginary part for frequency, then the perturbations
will grow exponentially in time and leads to an unstable con�gu-
ration. If the frequiencies have positive imaginary parts, then the
perturbations will decay in time and �nally settle to the equilibrium
con�guration. A satisfactory explanation to this problem was �rst
provided by Vishveshwara[9]. By examining the asymptotic behavior
of the solutions in Kruskal coordinates, he proved that the perturba-
tions with imaginary frequency are physically unacceptable and hence
that the Schwarzschild metric is stable. A rigorous proof was given
later by Kay and Wald[10].

1.3.2 Perturbations by classical wave �elds

When a nearly spherical star collapses through its gravitational ra-
dius, non spherical perturbations can be expected in its electromag-
netic and various other spin �elds coupled to sources in the stars,
along with the gravitational disturbances. One can also study the
perturbation of these �elds in curved spacetime, using the �eld the-
ory.

If the �elds are assumed to be week, the slight deformation in the
background black hole spacetime, caused by the energy-momentum
tensor of the �eld, can be neglected. The general approach to solving
these problems is as follows. The �eld is expanded in spherical har-
monics, scalar harmonics for scalar �eld(s = 0), vector harmonics for
electromagnetic �eld(s = 1) and tensor harmonics for gravitational
�eld( s = 2). Each spherical harmonics represented by the multipole
number, ‘ can evolve separately satisfying an equation of the form
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Eq.(1.16), with an e�ective potential characteristic of the �eld under
consideration. For massless integer spin �elds, in the Schwarzschild
background spacetime, we can write[11](A detailed derivation for var-
ious �eld perturbations are presented in the coming chapters),

V =
�

1 �
2M
r

� �
‘ (‘ + 1)

r 2 + �
2M
r 3

�
(1.19)

where� depends on the spin,s of the perturbing �eld as, � = 1 � s2

and is given by,

� =

8
><

>:

+1 scalar �eld
0 electromagnetic �eld

� 3 odd gravitational perturbation:
(1.20)

The fermionic �eld(s = 1=2) has a di�erent form for potential[12],
even though it has similar shape as shown in Figure 1.2.
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�
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r 2
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�
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2M
r

� 1=2

�
M
r

�
�

1 �
2M
r

� #

:

(1.21)
The particular shape of the potential and Eq.(1.16) suggest many

similarities with the standard scattering problem in the quantum me-
chanics. The underlying physical problem is the scattering of waves
by one dimensional potential barrier[4]. So, once the potential is
obtained, one can use the standard analyzing tools in the quantum
theory, with appropriate boundary conditions, associated with the
the black hole spacetime.

1.4 Time evolution of perturbation

Even though the initial intention of the formulation perturbation
equation was to address the stability problem, later it was widely
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used for the study of various dynamical processes involving black
hole, from the realization that the perturbation method is adequate
to describe various interaction of black hole with its surroundings.
All these disturbances can be described by the perturbation equation
provided the perturbation is very small and the particular behavior
of potential appearing in all these problems suggests the similarity
with the one dimensional scattering problem in standard quantum
mechanics.

It was Vishveshwara[13] who made the �rst attempt to apply the
principles of the standard quantum theory to the scattering problem
of gravitational waves by the black holes. His motivation as he later
remembered[14] was\how do you observe a solitary black hole? To
me the answer seemed obvious. It had to be through scattering of
radiation, provided the black hole left its �ngerprint on the scattered
wave."

The striking feature that he observed, in his classical scattering
experiment was, in his own words[14],\So, I started pelting the black
hole with Gaussian wave packets. If the wave packet was spatially
wide, the scattered one was a�ected very little. It was like a big wave
washing over a small pebble. But when the Gaussian became sharper,
maxima and minima started emerging, �nally leveling o� to a set pat-
tern when the width of the Gaussian became comparable to or less than
the size of the black hole. The �nal outcome was a very characteristic
decaying mode, to be christened later as the quasinormal mode. The
whole experiment was extraordinarily exciting.

The remarkable thing about the discovery of the scattering exper-
iment was that the resulted wave pattern is completely independent
of the initial shape of the scattering waveform. This can be shown
by numerical integration of the time dependent form of Eq.(1.16),
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with out assuming the harmonic time dependence. Figure 1.3 demon-
strates this feature, where we have plotted the outcome of scattering
of gravitational wave packets by the Schwarzschild spacetime.
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Figure 1.3: Simulations showing the temporal evolution of thel = 2
mode of gravitational perturbation around Schwarzschild black hole
with di�erent initial shapes for the perturbing wave packet.

In the �rst set of simulations we sent a Gaussian wave packet
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and the scattered waveform is shown in linear scale and the absolute
value of the wavefuncion in logarithmic scales, to visualize the weak
waveform at late times. In the second set we use a square wave
packet and the scattered waveform is analyzed. The remarkable thing
that can be read from the simulations is that after a transient phase,
where the waveforms show the trails of the particular shape of the
perturbing waveform, there comes di�erent phases of evolution for
which the waveforms are identical for the both cases.

For any generic perturbation, an observer at a �xed distance out-
side the black hole can easily distinguish the following stages of the
wave evolution:

1. a transient stage formed by direct emission from the source of
perturbation,

2. the stage comprised by the damped characteristic oscillations-
the quasinormal modes,

3. late-time the so called ‘tail’decay stage dominates.

Figure 1.4 shows these phases of evolution. The observer �rst
records the original waveform from the perturbing source, then the
exponentially decaying oscillating phase. Finally the QNMs are sup-
pressed by the tails of waves. As we already mentioned, the last two
stages are completely independent of the initial shape of the perturb-
ing agent, but depends entirely on the background spacetime under
consideration.
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1.4.1 QNMs of black holes

The asymptotic form of the e�ective potentials, V (r � ! �1 ) ! 0,
suggests that the solution behaves as plane waves near the boundaries,
r � ! �1 ,

 �

(
A in e� i!r � � Aoutei!r � as r� ! + 1 ;
B in e� i!r � as r� ! �1 ;

(1.22)

where we have to impose purely ingoing boundary condition at the
black hole event horizonr � ! �1 , means waves entering in to the
black hole and obviously nothing can come out. QNMs are the mani-
festation of the resonance oscillations of the black hole spacetime itself
and it dominates the soon after the initial transient stage. During this
stage of evolution we require a purely outgoing boundary condition
at r � ! + 1 . This means the incoming waves already passed and
there is no other waves coming from1 to disturb the system and
we setA in = 0 in Eq.(1.22). While applying this boundary condition
in to Eq.(1.16), one can obtain a discrete set of solutions, the QNMs
having the time dependence,e� i! q t with complex frequencies called
the quasinormal(QN) frequencies.

! q = ! R + i! I (1.23)

The real part of the QN frequency,! R corresponds to the actual
oscillation frequency and the absolute value of the imaginary part,
j! I j represents the rate at which each mode damps or grows. If the
black hole is stable against the perturbations, it should have negative
imaginary part for the QN frequencies, so that the perturbations will
damp exponentially and the black hole can come to its equilibrium
con�guration. In this case part of the energy of the perturbations
is carried away to in�nity in the form gravitational radiations and
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another part goes in to the black hole through the event horizon. In
this sense these modes are not normal but ’quasinormal’.

It was Chandrasekhar and Detweiler who �rst computed the quasi-
normal frequencies of the Schwarzschild black hole and explored their
properties[15].

Why QNMs are important?

QNMs emerged in the quest of understanding the stability of black
holes. Even though one can not judge the stability completely, the
existence of QNMs with! I < 0 can at least ensures that the pertur-
bations will decay with time and the BH is stable for that multipole
order of perturbation. This is because the QNMs do not form a com-
plete set and consequently, a general perturbation cannot be written
as a combination of these modes[16].

The present interests in studying the QNMs can broadly classi�ed
in to two, astrophysical and theoretical.

(i) Astrophysical interests
The QNMs dominate the radiation from most dynamical process that
involve a black hole. This ranges from the formation of black hole
in a gravitational collapse to the collision of black holes: no matter
how we kick a black hole, its response will be dominated by QNMs
at intermediate time. If the new generation gravitational wave de-
tectors manage to detect a gravitational wave signal from a black
hole, the dominated contribution to such a signal will be the funda-
mental QNMs. The fundamental QN frequency for the quadrupole
mode(‘ = 2) in Schwarzschild spacetime is given by,

M! = 0 :37367� 0:08896i: (1.24)

Converting to physical units, the frequency and damping time are
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given by,

� = 2 � 5142(M! R)
M �

M
Hz � 12

M �

M
kHz;

� =
1

2� 5142(M! I )
M
M �

s � 0:347
M
M �

ms: (1.25)

The band width of ground based gravitational interferometer like
Virgo and LIGO comes in the range about 10� 40Hz , up to few
kHz. If the signal are su�ciently strong these detectors can detect
the signals emitted by an oscillating black hole with mass in the range,

10M � . M . 103M � : (1.26)

The expected band width of the space based interferometer, LISA
is 10� 4Hz to 10� 1Hz , and this can detect the signal from black holes
with mass range,

105M � . M . 108M � : (1.27)

It is worthwhile to mention that the predicted black hole at the
center of our galaxy, SagittariusA � have a massM ’ 4:31� 106M � [3].

Although these studies refer to very idealized situations, they have
been very useful because they showed that quasi-normal modes can
be excited, and because they provided a �rst understanding of the
mechanisms underlying the mode excitation. However, astrophysi-
cal phenomena are much more complicated, and only recently ma-
jor advances in numerical techniques allowed the modeling of more
realistic processes involving black holes. Black hole coalescence is
probably the most violent process occurring in the Universe (after
the big bang), and it is expected to be the most powerful source of
gravitational waves to be detected by interferometric detectors Virgo
and LIGO. Once we succeeded in recording these signals, one can
easily deduce the parameters of the black hole in the precess, from
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the fact that these signals in QNM stage depend only on the black
hole parameters[17].

(ii) Theoretical interests
The extreme gravity of the black holes makes them the popular test-
ing ground for the ideas of quantum gravity as the Hydrogen atom
for the quantum mechanics. Consequently interpretations of their os-
cillations are also have a major role in understanding various puzzles
in fundamental physics.

There are attempts to interpret the black area spectrum using the
highly damped quasinormal modes. In 1974 Bekenstein proposed a
heuristic argument to quantize black hole that the horizon area of
a black hole is an adiabatic invariant, and therefore he conjectured
that the black hole should have a discrete eigenvalue spectrum[18].
Later Hod concluded that the quantization condition of the black hole
surface area should be of the form[19],

An = n
l 2
p; n = 1 ; 2; ::: (1.28)

wherel2p is the Plank’s length and
 is an unde�ned dimensionless
constant. He further made use of the results of Nollert[20] that the
highly damped QNMs of Schwarzschild black hole is independent of
the multipole index and spin of �eld and is the characteristics of the
black hole itself,

M! = 0 :0437123�
i
4

(n +
1
2

) + O[(n + 1) � 1=2]; (1.29)

and made the crucial observation that the real part of the this
QNM exactly agrees with the expressionln3=8� . Identifying ! R as
the "transition frequency", he calculated the change �A in the area
corresponds to a change, �M in mass,

� M = ~! R =
~ln3
8�M

(1.30)
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Since the area,A of Schwarzschild black hole,A = 16�M 2, Hod
concluded that the � A = 4 ln3l2p and identi�ed the factor appearing
in Eq.(1.28) as
 = 4 ln3[19]. Statistical physics arguments also sug-
gests that 
 = 4 lnk , k being a constant. These �ndings trigger a
wealth of research on the QNM spectrum of various black holes. But
the attempts to interpret the QNMs of Kerr black hole is still not
succeeded.

Apart from their role in the quantization of black hole area, study
of QNMs �nd signi�cance in the correspondence between the anti-de
Sitter(black hole solution with negative cosmological constant) space-
time and the Conformal Field Theory(CFT)[21]. The interpretation
is that the decay of QNMs of black hole in AdS corresponds to relax-
ing of thermal state in CFT, to its equilibrium. Exact QNMs of AdS
black holes[153] are usful for these studies.

For these reasons QNMs of black hole were extensively investi-
gated in the past, for great variety of black hole spacetimes and for
di�erent types of �eld perturbations. Two excellent reviews on the
topic are wrote in 90’s[22, 23]. Recent reviews on the topic are avail-
able in [24{26].

1.4.2 Late-time tails

As we have already seen, the QNM stage in the evolution of pertur-
bation around black holes lasts only for a limited period of time and
is not the asymptotic behavior. At late times, the perturbations do
not cut o� sharply but decays as the ’tails’ of perturbation. This
observation was �rst made by Price[11], while studying the dynamics
of nonspherical gravitational collapse. His original motivation was
to see how does an imploding star with tiny mountains on its sur-
face results in a perfectly spherical black hole. The answer he found
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was, as now known as Price’s theorem: \Whatever can be radiated
is radiated." It means the protrusions or any perturbations on the
surface of the collapsing star will be converted in to ripples in the
spacetime(gravitational radiation) once the horizon is formed, will get
radiated away and makes the hole with a perfectly spherical shape[1].

Price showed that at late times of the formation a black hole
described by the Schwarzschild spacetime, any multipoles with‘ � s,
called the radiative multipole, of a �eld perturbation with spin, s, die
out with a power-law tails,

 � t � (2‘ + p+1) ; (1.31)

wherep = 1, if a static ‘ -pole �eld is present outside the star, prior
to the onset of collapse and if there is no �eld initially outside the
star, but an ‘ -pole perturbation develops during the collapse process,
then p = 2. Figure 1.5 demonstrates the numerical simulation of this
feature for the later case.

Modes with ‘ < s do not evolve with time. These represent the
conserved quantities and they are nonradiative. For gravitational
perturbation, s = 2, a perturbation with l = 0 describes the change in
the black hole mass and‘ = 1 describes an increment of small angular
momentum. In the case of electromagnetic perturbation(s = 1), the
‘ = 0 mode represents the radially pointing electric �eld lines.

Later, in[27] a detailed analytical analysis supported by numeri-
cal results of massless �elds around Schwarzschild and RN black hole
showed that power-law tails are also present on null in�nity where
they decay asu� ( ‘ + p) and on future event horizon asv� (2‘ + p+1) .
Studies on the rotating black holes also suggest that the power-law
tails holds for non-spherical black holes also[28{30]. Numerical anal-
ysis of fully non-linear dynamics of the �elds, also indicates the same
power-law decay pattern[31, 32].
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Figure 1.5: Late-time decay of gravitational perturbations around
Schwarzschild spacetimes. Absolute value of wave amplitude,j j is
plotted against time in logarithmic scales. A straight line in log-log
plot corresponds to a power-law decay in time. At late times the
perturbations decay as, � t � 7, t � 9 and t � 11, for ‘ = 2 ; 3 and 4
multipoles of perturbations.

The late-time tails are due to the backscattering of the primary
wave from the e�ective potential at great distances(asymptotic cur-
vature). By a systematic study of various potentials Chinget al.[33]
and later by Hod[34] had shown that the Schwarzschild case with a
power-law tail is exceptional among the class of the potentials having
a logarithmic spatial dependence and the the inverse power-law decay
is a property of asymptotically 
at spacetimes.

Why late-time tails are signi�cant?

Price’s theorem explains the mechanism of the working of ’no-hair
theorem’ which predicts that any \hair"other than mass, charge and
angular momentum, will disappear after a collapsing body settles
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down to its stationary state. The physical mechanism responsible for
the vanishing of these hairs is the radiative tails. For this reason the
study of late-time tails are intriguing on its own.

Ching’s[33] study revealed that depending on the spatial asymp-
totic, the late-time decay is not necessarily a power law in time.
and that di�erent behaviors should be expected in black-hole space-
times that have di�erent asymptotic properties. This is indeed the
case. The existence of an exponentially decaying tails contrasting
the power-law tails in asymptotically 
at situation, was reported for
spacetime with a non vanishing cosmological constant[35, 36].

The study of late-time tails has crucial relevance to the exploration
of the internal structure of black holes. For black holes with more than
one horizon, for example a charged black hole(which have a inner
Cauchy horizon), the radiation that goes through the event horizon
will eventually be blue shifted by an arbitrary large amount at the
inner horizon[37]. The mass function of the black hole diverges at
the Cauchy horizon called mass in
ation and this e�ect is expected
to preserve the causality. One of the key ingredient which determines
the strength of the mass-in
ation singularity at the Cauchy horizon
inside charged and rotating black holes is radiative decay along outer
horizon[38]. The knowledge of radiative tails on the event horizon
provides the input for the internal wave evolution of such problem.

1.5 An overview to the thesis

1.5.1 Motivations

Black holes are the testing ground for many of our understandings
about gravity, since they are the centers of extreme gravity. Since we
can’t expect any electromagnetic signals coming from a black hole, the
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of the response of black holes to the external perturbations outside its
event horizon is the best way to get information from these objects.
As we have explained in the previous sections, these responses are
dominated by the QNMs and late-time tails of the perturbations.
Besides some relation to the perturbative �eld, the relaxation process
re
ects a characteristic of the background geometry.

On the other hand several shortcomings of Einstein’s GTR were
pointed in the past and there are several modi�cations to the GTR
have been proposed motivated from observational evidences and other
fundamental issues in the theory. Black hole perturbation in two such
modi�ed theories is the subject of study of this thesis.

The �rst one is the quintessence model put forward to explain
the observed accelerated expansion of our Universe[49{51]. Second
modi�cation is a proposed model theory of renormalizable gravity
called Ho�rava-Lifshitz gravity[52{54]. The evolution of �eld and the
spectra of QNMs may be di�erent in these theories of gravity and
would help us to distinguish these theories.

1.5.2 Methods used

One can study the time evolution of perturbation once the solution
of Eq.(1.16) is obtained. But the complex nature of e�ective po-
tential precludes the exact solution in most cases. Several methods
were introduced to tackle the evolution equation. These ranges from
the direct numerical integration of the time-independent perturba-
tion equation to various analytical approximations like P�oschl-Teller
potential approximation, WKB techniques. The method of contin-
ued fractions and Horowitz-Hubeny method give accurate values of
QNMs.

We use two e�ective methods for our studies, the WKB technique
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and characteristic integration method.

� WKB method is a semi-analytic method originally developed by
Schutz and Will[55], modifying the standard WKB technique to
get QNMs for the lowest order. They made use of the barrier
shape of the e�ective potential. The two WKB solutions were
matched across both turning points simultaneously and obtain
a formula for QNMs. Later Iyer and Will[56] carried this ap-
proach to third WKB order and Konoplya[57] to sixth order
to get more and more accurate results and is found to be ac-
curate for low lying modes. Comparing with other numerical
methods, WKB method gives result with a relative error 0:5%,
for lower frequency modes[58] and can be used to explore the
QNM behavior of black holes e�ciently, without going to the
complicated numerical methods. This method is explained in
Chapter 2.

� The most direct approach to study the evolution of perturba-
tion is the numerical integration of the time-dependent pertur-
bation equation and obtain directly the wave form. An e�ective
method was developed in[27], after recasting the wave equation,
in the null coordinates and using the �nite di�erence scheme.
This approach gives the complete evolution pro�le with promi-
nent frequencies of the QNM stage and the late-time behavior.
This method is described in Chapter 3.

We take the mass of the hole, M equal to unity for the numerical
calculations unless otherwise mentioned and measure other quantities
like charge of the black hole and mass and charge of �elds etc., in
terms of black hole mass.



28 Introduction

1.5.3 Outline

The evolution of �eld perturbations in black hole spacetimes in the
modi�ed theories of gravity is the subject of study of the present
thesis. The signature of new theories on the evolution of �elds on the
black hole spacetimes is probed. The entire work presented in the
thesis is divided in to �ve chapters and a �nal concluding chapter.

In the following three chapters we describes the investigations on
the black holes in a quintessence �lled Universe.Chapter 2 comprise
the evolution of massive charged scalar �eld perturbations around a
Reissner-N�ordstrom black hole surrounded quintessence. The QNMs
are evaluated and its behavior is analyzed for various parameters in-
volved in the problem. Chapter 3 contains the study of the late-time
evolution of massless integer spin �elds around Schwarzschild black
hole surrounded by quintessence. The complete evolution pro�le is
obtained through numerical method and the late-time decay is stud-
ied in detail. Chapter 4 examines the late-time behavior of Dirac
�eld around Schwarzschild black hole encircled by quintessence.

Next two chapters describes our attempts to distinguish the Ho�rava-
Lifshitz gravity from standard GTR, from the knowledge of the evolu-
tion of �eld around spherically symmetric black hole in these theories.
This part is split up in to two chapters. Chapter 5 is dedicated to
the study of the evolution of massless �eld perturbations in the space-
time geometry black hole in the HL gravity. The QNM and late-time
phase of evolution is obtained and compared with the results in GTR.
Chapter 6 concerns the study of the evolution of massive scalar �eld
in the spacetime geometry of black hole in HL gravity by numerical
analysis.

Chapter 7 presents the overall conclusion of the works described
in the thesis and in the light of this, future scops are discussed.
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Massive, charged scalar �eld
around a charged black hole
surrounded by quintessence

2.1 Introduction

2.1.1 The expanding Universe

D uring 1920s, Alexander Friedmann showed that the Einstein’s
equation admits a solution with an expanding Universe. Initially
Albert Einstein declined this notion because, like most of the 20th
century physicists, he believed in the concept of a static Universe
and �ve years earlier he had published a static model of the Uni-
verse. Later, Einstein admitted his mistake and conceded that his
�eld equations do allow the possibility of an expanding universe.

In 1929, Edwin Hubble, who was analyzing the spectra of light
coming from distant galaxies, made the remarkable discovery which
completely revolutionized astronomy. He noticed that the spectra
coming from most of the galaxies are shifted towards the red region
indicating that they are moving away from us. By cataloging the dis-
tances to these galaxies Hubble formed what we now know as \Hub-
ble’s Law": the residing velocity of the distant galaxy is proportional
to its distance from us and thus he concluded that the universe is

29
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surrounded by quintessence

expanding. These discoveries made the building block of the modern
Big Bang theory.

Later in 1980, the cosmic in
ation model of the universe was pro-
posed by Alan Guth to overcome some of the enigma of the Big Bang
cosmologies. The model predicts a 
at Universe and the total energy
density of the Universe is equal to the critical density, the energy
density required for the universe to be spatially 
at. Observations
point towards a spatially 
at Universe and the prediction of in
ation
theory is consistent with current measurements of CMB anisotropy
by the WMAP spacecraft. But current calculations suggest the to-
tal matter density of the Universe only amounts to about one third
of the required critical density indicating the presence of a missing
component.

In 1998, two groups of scientists, the High-z Team headed by
Schmidt and Riess[59] and the Supernova Cosmology Project by Perl-
mutter[60] independently made another path breaking discovery in
modern cosmology. Analyzing the type Ia supernovae (SNe Ia) at
high redshifts, they reached the conclusion that the expansion of the
universe is now accelerating rather than holding steady or deceler-
ating. The discovery of cosmic acceleration opens a deep mystery
because the two known constituents of the universe, ordinary mat-
ter and radiation will gravitationally attract each other and therefore
should lead to a slowing down of the expansion. Since the expansion
is speeding up we are forced to believe that there is some mysterious
form of energy density called dark energy permeating all around the
universe which pushes the galaxies each other against their gravita-
tional attraction, thus causing the expansion of the Universe to speed
up. At present we hardly know what exactly this dark energy is, how
it originates or how it works.
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The �eld equation describing the dynamics of the Universe can
take the form of an equation for the second time derivative of the
expansion factor,

�a
a

= �
4�
3

X

i

(� i + 3pi ): (2.1)

Both the energy and the pressure govern the dynamics of the Uni-
verse and the algebraic combination,

P
i (� i + 3pi ) contributed by the

gravitational e�ect of various components determines the expansion
rate. It is customary to de�ne the parameter representing each com-
ponent of the mass-energy, by the ratio of their pressure to density,
known as equation of state(EOS),� i = pi =� i . For ordinary gas, � i is
positive, ordinary matter � i = 0 and for radiation � i = 1=3. Each
component contributes an amount� 4�� i (1 + 3 � i ) to the expansion
factor �a=a. Since the energy density,� i is a positive quantity, it re-
quires a component with su�cient negative pressure(� i drops below
-1/3) for a positive value of �a=a. Thus ark energy requires a negative
pressure to drive the acceleration of the Universe. We can take this
to be the de�ning property of dark energy.

2.1.2 The Cosmological constant

The simplest and oldest candidate for dark energy is the cosmological
constant, �, which was �rst introduced by Einstein for the purpose of
constructing a static model of the Universe. When he applied GTR
to cosmology Einstein could not get a stationary solution to the �eld
equations. So he modi�ed the original �eld equations by adding a
positive constant term to the �eld equations and adjusted the value
of the constant so that the gravitational attraction of matter would
exactly counterbalanced by this term. Later, he regretfully dropped
this idea knowing the �ndings of Hubble.
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However, observations including the discovery of cosmic accelera-
tion and measurements of the CMBR have brought the cosmological
constant back in to the picture. If the cosmological constant had a
slightly larger value than Einstein proposed for getting a static solu-
tion, its repulsion would exceed the attraction of matter, and induces
cosmic acceleration. Cosmological constant has� precisely equal to
-1. It has the same value everywhere in space for all time, and is
chemically inert. Even though the model with cosmological constant
(�CDM) provides a reasonably good match to the observations, there
are some fundamental issues.

The cosmological constant, � was later identi�ed to be mathemat-
ically equivalent to the vacuum energy, an energy inherent to empty
space itself. The principle of quantum �eld theory allows the quan-
tum 
uctuation in empty space and the resulting zero-point energy
for empty space. An estimate of the total vacuum energy produced by
all known �elds predicts the vacuum energy density� cal

� � 1076GeV4.
But this predicts a huge amount-123 orders of magnitude more than
than the present observed value� obs

� � 10� 47GeV4. This is called the
cosmological constant problem[61, 62] and a fundamental solution to
this problem has not yet been found.

So it requires some cancellation mechanism which zeros out most
of the vacuum energy. One proposal is that there may be some secret
symmetry in fundamental physics results in a cancellation of large
e�ects. But it is hard to conceive why the mechanism only cancels
to 120 decimal places instead of making the cosmological constant
exactly zero. To explain the amount of dark energy today, the value of
the cosmological constant would have to be �ne tuned at the creation
of the universe to have the proper value.



Quintessence models 33

2.1.3 Quintessence models

Fortunately, vacuum energy is not the only way to generate cosmic ac-
celeration. Alternatively, dark energy may be a transient phenomenon
and the realm of possibilities goes under the rubric ofquintessence[49{
51]. The word quintessence stands for ‘�fth element ’in the ancient and
in medieval philosophy, earth, air, �re and water being the other four
components that constitute the Universe, according to their imagi-
nation. It seems adequate to give this name to the contribution to
the overall mass-energy content of the Universe, in addition to the
previously known baryons, leptons, photons and dark matter.

Unlike �, which has the same value everywhere in space for all
time, quintessence is dynamical, which can interact with matter, vary
with space and evolve in time. For quintessence,� has no �xed value,
but it must be � � 1=3, for a repulsive nature. Quintessence gener-
ates the required repulsive force from the energy resulting from the
potential energy of a dynamical �eld, a mechanism similar to the in-

ationary cosmology theory, in which the in
ation �eld drives the
expansion in the early Universe. But the repulsive force excreted by
quintessence is much weaker than the in
ation. Quintessence may
take many forms. The simplest model for quintessence is the energy
density associated with a scalar �eld,� slowly rolling down in a po-
tential V (� ). The energy density for a homogeneous scalar �eld is a
sum of kinetic, and potential energies and pressure is the di�erence
of the two,

� =
1
2

_� 2 + V (� ); p =
1
2

_� 2 � V (� ): (2.2)

The kinetic term has positive pressure and the potential term
has negative pressure and the total pressure can be negative if the
�eld rolls slowly enough that the kinetic energy density is less than
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the potential energy density. To realize the cosmic acceleration the
equation of state,

� � �
p
�

=
1
2

_� 2 � V (� )
1
2

_� 2 + V (� )
; (2.3)

must be less than� 1=3. Quintessence is characterized by its equa-
tion of state, � 1=3 � � > � 1. The smaller the value of� , the greater
its acceleration e�ect. Quintessence with� near -1 may be the closest
reasonable approximation. Since the value of� di�ers from that of
vacuum energy, quintessence produces a di�erent rate of cosmic accel-
eration. Even though these dynamical dark energy candidates lack a
concrete motivation from fundamental physics, quintessence hypoth-
esis is found to be �t with many of the current observations. More
precise measurements of supernovae over a longer span of distances
and imprint on the CMB anisotropy and mass power spectrum may
separate the two cases in future.

2.2 Quintessence and black holes

The exact solution for the Einstein’s equations for a static spherically
symmetric charged black hole surrounded by the quintessential matter
under the condition of additivity and linearity in energy momentum
tensor is obtained by Kiselev[63]. The general metric of spherically
symmetric static gravitational �elds is given by,

ds2 = e� dt2 � e� dr2 � r 2(d� 2 + sin2 �d� 2): (2.4)

Now the Einstein’s equation for this spacetime have the form,
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2T t
t = � e� �

�
1
r 2 �

� 0

r

�
+

1
r 2 ; (2.5)

2T r
r = � e� �

�
1
r 2 +

� 0

r

�
+

1
r 2 ; (2.6)

2T �
� = 2T �

� = �
1
2

e� �
�

� 00+
� 02

2
+

� 0� � 0

r
�

� 0� 0

2

�
; (2.7)

where prime denotes di�erentiation with respect to r. The principle
of linearity and additivity de�nes as,

T t
t = T r

r ) � + � = 0 : (2.8)

Under this condition, the energy momentum tensor for the quintess-
ence is given by,

T t
t = T r

r = � q;

T �
� = 2T �

� = �
1
2

� q(3� + 1) ; (2.9)

where� is the quintessence EOS which is connected to the density
as,

� =
� c
2

3�
r 3(1� � ) : (2.10)

Since the density of energy to be positive for quintessence,� > 0
and � to be negative, we demand that the normalization factorc � 0.
De�ning � = � ln(1 + f ), we get an equation for f as,

(3� + 1) f + 3(1 + � )rf 0+ r 2f 00= 0 ; (2.11)

with the solutions of the form, f = 1 � r g
r � c

r 3� +1 , c and rg being nor-
malization factors. Thus the general form of spherically symmetric
charged solutions for Einstein’s equation describing black hole with
energy momentum tensor satis�es the additivity and linearity condi-
tion, so that the metric is given by,
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ds2 = � f (r )dt2 + f (r )� 1dr2 + r 2d
 2; (2.12)

with,

f (r ) =
�

1 �
2M
r

+
Q2

r 2 �
c

r 3� +1

�
; d
 2 = ( d� 2 + sin2 �d� 2);

(2.13)
M and Q can be identi�ed as the mass and the charge of the black

hole respectively. In the limit c = 0, the metric reduces to the pure
RN spacetime.

The studies on QNMs of black holes were started in the presence of
quintessence, after the spacetime for a black hole with quintessential
matter were derived by Kiselev. Earlier works considered the simplest
case, the Schwarzschild black hole surrounded by quintessence [64{68]
and obtained the QNMs by WKB method.

But one can expect a charged black hole, formed when the mat-
ter which collapses to form a black hole have a net charge and a
charged perturbations will develop outside the collapsing star. And
if quintessence exists everywhere in the universe, it will surely distort
the spacetime around black holes. So it is interesting to see how the
perturbations of RN black hole behave in the presence of quintessence.
In this work we are addressing this question by considering massive
charged scalar �eld perturbations.

2.3 Scalar �eld around charged black hole
surrounded by quintessence

2.3.1 Evolution of scalar perturbations

Now we consider massive charged scalar �led perturbations around
the charged black hole spacetime given by Eq.(2.12). The scalar per-
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turbations can be described by the Klein-Gordon(KG) equation[37,
72],

� ;�� g�� � ieA � g�� (2� ;� � ieA � �) � ieA � ;� g�� � = m2� ; (2.14)

where A � is the electromagnetic potential ande and m are the
charge and mass of the scalar �eld. In a spherically symmetric space-
time speci�ed by Eq.(2.12), the KG equation can be simpli�ed to,

1
f (r )

@2
t � �

1
r 2

�
r 2f (r )@2

r + 2 rf (r )@r + r 2@r f (r )@r
�

�+
�

�
1

r 2sin�
�
sin�@2

� + cos�@�
�

�
1

r 2sin2�
@2

�

�
� �

�
2ieA tgtt @t � e2A2

t gtt � � = 0 : (2.15)

Expanding the charged scalar �eld in scalar spherical harmonics,

� =
1
r

X

l;m

� l
m(t; r )Ym

l (�; � ); (2.16)

the wave equation can be reduced to an equation for the scalar
function, � l

m(t; r ) for each multipole moment:

@2
t �

rf (r )
+

‘ (‘ + 1)
r 3 �

2ieA t@t �
rf (r )

�
e2A2

t
f (r )

�
@r f (r )

r 2 � f (r )r@2
r � = 0 ; (2.17)

where the centrifugal term comes from the action of the angular
momentum operator on the spherical harmonics,

�
�
@2

� + cot�@� + 1=sin2�@2
�
�

Ym
l (�; � ) = ~L2Ym

l (�; � ) (2.18)

= ‘ (‘ + 1) Ym
l (�; � ):

Now using the coordinate transformation de�ned by,
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dr � =
dr

f (r )
; (2.19)

we can rewrite the perturbation equation as,

@2
t � � 2ieA t@t � � @2

r �
� + f (r )

�
l(l + 1)

r 2 +
@r f (r )

r
+ m2

�
� � e2A2

t � = 0 :

(2.20)
The time component of the electromagnetic potential,A t = C � Q

r ,
with C being a constant and to avoid this physically unimportant
quantity, we de�ne,

� = eieCt  ; (2.21)

The auxiliary �eld,  assumes to have a harmonic time depen-
dencee� i!t . Now the radial perturbation equation can be written
as,

@2 
@r2�

+ �  = 0 ; (2.22)

where � = ! 2 � V 2, V being the e�ective scattering potential,
arises from the curvature of the spacetime, is given by,

V = f (r )
�

l(l + 1)
r 2 +

2M
r 3 �

2Q2

r 4 +
c(3� + 1)

r 3� +3 + m2
�

+
2eQ!

r
� e2Q2

r 2 :

(2.23)
It can be noticed that the e�ective potential depends not only on

the parameters,M; Q; ‘ and e but also on the frequency of perturba-
tion, ! . This will make it di�cult to evaluate the quasinormal mode
frequencies using the WKB approximation. Figure2.1 shows the gen-
eral behavior of the potential. It can be observed that the height
of the potential barrier decreases if quintessence is present and the
asymptotic value,V (r ! 1 ) increases with mass of the �eld.
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Figure 2.1: E�ective potential for di�erent �eld masses for l = 3 ; Q =
0:1; e = 0 ; � = � 1 and c = 0 :01 along with the the Schwarzschild
case(c = 0).

2.3.2 Quasinormal modes of perturbations

The third order WKB approximation method can be used to de-
termine the complex normal mode frequencies of black hole. This
method gives a simple condition which can be used to get the dis-
crete, complex frequencies of the normal modes,

i � 0p
2� 00

0

� �( n) � 
( n) = n +
1
2

; (2.24)

wheren is the mode number, � and 
 are second and third order
WKB correction terms,

� =
1

(� 2� 00

0)1=2
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1
8
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�
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0
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288

#

;

(2.25)
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� = n +
1
2

; n =

(
0; 1; 2; ::::::::::::::::::Re(E ) > 0
� 1; � 2; � 3; ::::::::::Re(E ) < 0

(2.27)

where,

� (n)
0 =

dn �
drn

�

����
r � = r � (r 0)

; (2.28)

denotes the nth derivatives of � evaluated at r0, the value of r at
which V attains maximum. Here a complexity arises from the fact
that the potential V is a function of frequency! . This makes di�cult
to calculate the numerical value ofr0. We make use of the procedure
suggested by Konoplya[73] to �ndr0 by �xing all the parameters other
than ! , on which V depends and then �nd the value ofr at which
V attains maximum as a numerical function of! . Substituting this
value of r0, we have found the values of real and imaginary parts of
! which satis�es the condition (2.24) by numerical methods.

It is a general experience that the quasinormal frequencies with
lower mode number will decay slowly and are relevant to the descrip-
tion of �elds around the black hole. So we consider frequencies of
low lying modes for our study. For a charged black hole the relative
error of third order WKB method is of the order of 10� 2 for l = 3,
n = 0 mode[74]. We put the normalization factor,c = 0 :01, so that
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the deviation of frequencies from the pure RN case can be clearly
understood and is much larger than the relative WKB error. In what
follows we examine the behavior of QNMs.

First, we analyze the dependence of QNMs on the charge of the
black hole, Q, in the presence of quintessence. Figures2.2 and 2.3
shows the real and imaginary parts of! as a function of Q for �xed
l = 3 ; n = 0 ; e = 0 :1; m = 0 :1 and for di�erent values of � . The case
with absence of quintessence is also plotted. The plot shows that
the quasinormal frequencies for scalar �eld in a charged black hole
is in
uenced by quintessence. The magnitudes of real and imaginary
parts of ! is lower in the presence of quintessential �eld. This im-
plies that due to the presence of quintessence, the quasinormal mode
frequencies for scalar �eld in RN black hole damps more slowly. In
the presence of quintessence,Re(! ) increases monotonically with the
increase inQ while the magnitude ofIm (! ) �rst decreases, falling to
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Figure 2.2: Re(! ) as a function ofQ for l = 3 ; n = 0 ; e = 0 :1; m = 0 :1
and for di�erent values of � with c = 0 :01. The dotted line represents
the no quintessence case(c=0).
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Figure 2.3: Im (! ) as a function ofQ for l = 3 ; n = 0 ; e = 0 :1; m = 0 :1
and for di�erent values of � with c = 0 :01. The dotted line represents
the no quintessence case(c=0).

a minimum aroundQ = 0 :8 and thereafter increases sharply. If we
discard quintessence (c = 0) the results coincide with those obtained
in [75, 76].

Figure2.4 shows the explicit dependence ofRe(! ) and Im (! ) with
quintessential parametersc and � for �xed l = 3 ; n = 0 ; e = 0 ; Q = 0 :5
and m = 0 :1. For a �xed c, as the value of� increases,Re(! ) increases
while the magnitude ofIm (! ) increases meaning damping is less for
lower values of � . As the normalization factor c increases,Re(! )
decreases and magnitude ofIm (! ) decreases. In Figure2.5Re(! )
and Im (! ) are plotted as functions ofe with l = 3 ; n = 0 ; m = 0 :1 for
Q = 0 :1; 0:3 and di�erent values of � . Dotted line represents absence
of quintessence(c=0). The variation is almost linear. In the presence
of quintessence, the magnitudes ofRe(! ) and Im (! ) increase withe,
as in the no quintessence case (c = 0), but with lower values of Re(! )
and jIm (! )j. A neutral �eld decays slower than a charged �eld.
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Figure 2.4: Variation of Re(! ) and Im (! ) with quintessence param-
eters � and c, for l = 3 ; n = 0 ; e = 0 ; Q = 0 :5 and m = 0 :1

Finally, we study the role of mass of scalar �eld on quasinormal
frequencies. For low-lying QNMs, to occur tunneling,! 2 must be
smaller than the peak value of the potentialV (r = rmax ) and the
energies of the �eld are always larger thanm2[12]. This means that
there is a maximum value for mass,mmax beyond which quasinormal
modes will not exist. The value ofmmax can be calculated from the
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Figure 2.5: Variation of Re(! ) and Im (! ) with e, for l = 3 ; n =
0; m = 0 :1, Q = 0 :1; 0:3 and di�erent values of � . Dotted curve is for
c = 0.

condition for the existence of quasinormal modes,

V (rmax;! = mmax) = ( mmax)2 (2.29)

These values ofmmax obtained for di�erent values of � are tab-
ulated in Table2.1. In the presence of quintessence,mmax decreases
because quintessence lowers the height of the potential barrier as we
have seen in Figure2.1 and when� = � 1, it has the lowest value.

WKB approximation gives less accurate results as the mass of the
�eld increases but we can use this method to obtain the qualitative
dependence of QNMs on �eld mass. The dependence of QNMs on
mass of scalar �eld is plotted in Figures2.6 and 2.7.Re(! ) increases
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c � mmax

0 { 0.88516
0.01 -1/3 0.86762
0.01 -2/3 0.81848
0.01 -1 0.67582

Table 2.1: The limit of mass of scalar �eld,mmax for the existence of
quasinormal frequencies withl = 3 ; e = 0 ; Q = 0 :1

with increase in mass, whilejIm (! )j decreases, which indicates that
QNMs of massive �elds damp slowly. This behavior is in agrement
with numerical results obtained in [75].

But QNMs behave abnormally nearmmax . This is due to the
fact that for larger values of �eld mass, the potential looses its bar-
rier shape by broadening the potential peak as shown in Figure2.1
and WKB method gives less accurate results. Lower modes show
less abnormality showing that WKB method is more accurate for
fundamental modes. An interesting feature, we noticed is that this
abnormal behavior is lower in the presence of quintessence and when
the quintessential parameter� = � 1, we can get a satisfactory curve
because of the peak of e�ective potential broadens much less in the
presence of quintessence comparing with the normal case(c=0) as
understood from Figure2.1 and quintessence helps to retain barrier
shape and give more accurate results at larger mass range.
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0; 1; 2 and di�erent values of � . Dotted curve is for the Schwarzschild
case.
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2.4 Conclusion

The studies on the perturbations of black holes in accelerated ex-
panding Universe with quintessence model for dark energy are pre-
sented in this chapter. Massive charged scalar �eld perturbations are
considered around the charged black hole immersed in quintessence
and WKB approximation method are used to evaluate the associated
QNMs. The results show that quintessence in
uences the QNMs of
charged black hole. It shows a decrease in the oscillation frequency
and slowing up in the damping of QNMs in the quintessence present
case than the asymptotically 
at spacetime case. The behavior of
QNMs vary as the equation of state for the quintessence changes.
The damping are less for lower values of� . The dependence of QNMs
on other parameters such as charge of black holeQ, charge and mass
of scalar �eld is similar to that obtained in quintessence less case, but
with lower oscillation frequency and higher damping time. The e�ect
of quintessence is to retain the barrier shape of e�ective potential
for larger �eld masses and thus to reduce the abnormal behavior of
QNMs evaluated using WKB method at these mass ranges.



3
Late-time tails of

Schwarzschild black hole
surrounded by quintessence

3.1 Introduction

P resently we have a clear picture about the late-time behavior of
the radiating �elds around black holes with asymptotically 
at space-
time, during the process of gravitational collapse. All the radiative
multipole ( ‘ � s) of any �eld with spin s, will completely radiated
away during the late stage of collapse with a power-law fall o� of
the �eld t � (2‘ + p+1) at late times[11]. The non-radiatable multipoles
(‘ < s ) of the collapsing star are happened to be the only three non
vanishing hairs of the subsequently formed black hole and the mech-
anism responsible for the relaxing to this �nal asymptotic state is the
late-time decay. The study of the radiative tails of perturbations at
late times plays a crucial role in the exploration of the internal struc-
ture of black holes[77]. The knowledge of late-time radiative tails
serve as initial data for studies of the interior of the black hole and
plays a major role in the analysis of the stability of inner Cauchy
horizon.

The late-time tails in black hole spacetimes are understood as a

49
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result of particular form of the e�ective potential far away from the
black hole. The tails are generated by the scattering of the waves o�
by the e�ective potential at great distances. By a systematic study
of various potentials Chinget al.[33] and later by Hod[34] had shown
that the inverse power-law decay is a property of asymptotically 
at
spacetimes and that di�erent behaviors should be expected in black-
hole spacetimes that have di�erent asymptotic properties.

The evolution of �elds propagating on spacetime with a non van-
ishing cosmological constant was addressed in[35] and suggested that
an exponential decay of the tails replaces the power-law behavior
observed in asymptotically 
at spacetimes. The �rst detailed numer-
ical investigation in to the late-time behavior of �elds propagating
in black hole in de Sitter spacetimes were performed by Brady et
al.[36, 78]. They have studied, in some detail, the behavior of a mass-
less, minimally coupled scalar �eld propagating on spherically sym-
metric spacetimes with a positive cosmological constant and demon-
strated the existence of exponentially decaying tails at late times. The
evolution of electromagnetic and gravitational perturbations propa-
gating on black holes with de Sitter backgrounds were studied in[81].

Spherically symmetric black hole solutions[63] were obtained in
quintessence model of dark energy and many authors[64{71] consid-
ered the evolution of various �elds around black holes surrounded by
quintessence. All these studies are based on the calculation of the
QNMs using the third order WKB approximation method while the
late-time behavior remained unexplored till now. In fact the late-time
decay is determined by the asymptotic curvature of the spactime, so
it is interesting to see how the �elds evolve in a spacetime in which
the asymptotic structure is modi�ed by the quintessence �eld.
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3.2 Fields around black hole surrounded
by Quintessence

To explore the late-time behavior of �eld perturbations in a black
hole spacetime in the presence of quintessence, we here consider the
static, spherically symmetric, uncharged black hole surrounded by the
quintessential matter. The relevant metric is obtained in[63],

ds2 = � f (r )dt2 + f (r )� 1dr2 + r 2(d� 2 + sin2 �d� 2); (3.1)

where,

f (r ) =
�

1 �
2M
r

�
c

r 3� +1

�
; (3.2)

and � is the quintessential state parameter andc, the normaliza-
tion factor. It is di�cult to analyze the evolution of perturbations
around the above metric for arbitrary values of the parameter� . For
our study we take three special cases of the quintessence parameter,
� = � 1=3; � 2=3; � 1 and the Schwarzschild case(c = 0), so that the
calculations become viable.

Case1 � = � 1=3 : the black hole event horizon is located at
re1 = 2M=(1 � c), corresponding to zero of the function,f (r ) and the
tortoise coordinate can be de�ned as,

r � = r + re1ln(r � re1): (3.3)

Case2 � = � 2=3 : here, in addition to the black hole event horizon
at r = re2 the spacetime possesses a cosmological horizon atr = rc2,
with re2 < r c2. In terms of these horizons we can writef (r ) as,

f (r ) =
c
r

(r � re2)(rc2 � r ): (3.4)
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The surface gravity associated with the horizons atr = r i , is
de�ned by

� i =
1
2

jdf=dr jr = r i ; (3.5)

and we get,

� e2 =
c(rc2 � re2)

2re2
; � c2 =

c(re2 � rc2)
2rc2

: (3.6)

These quantities allow us to write,

1
f

=
1

2� e2(r � re2)
+

1
2� c2(r � rc2)

: (3.7)

Now we can get an expression for the tortoise coordinate,r � =
R

f � 1dr as,

r � =
1

2� e2
ln

����
r

re2
� 1

���� +
1

2� c2
ln

����1 �
r

re2

���� : (3.8)

Case3 � = � 1: this is the extreme case of quintessence, the
Schwarzschild-de Sitter(SdS) spacetime. The roots of the polynomial
equation, f (r ) = 0 corresponding to the the event horizon atr = re3,
the cosmological horizon atr = rc3 and a negative root atr = r0 =
� (re3 + rc3), with r0 < r e3 < r c3.

We can recast the functionf (r ) as,

f (r ) =
c
r

(r � re3)(rc3 � r )(r � r0): (3.9)

The surface gravity associated with the horizons are given by,

� e3 =
c(rc3 � re3)(re3 � r0)

2re3
;

� c3 =
c(rc3 � re3)(rc3 � r0)

2rc3
; (3.10)

� 0 =
c(re3 � r0)(rc3 � r0)

2(� r0)
:
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Writing f (r )� 1 as,

1
f

=
1

2� e3(r � re3)
+

1
2� c3(rc3 � r )

+
1

2� 0(r � r0)
; (3.11)

we can de�ne the tortoise relation in terms of the horizons and the
corresponding surface gravity as[78],

r � =
1

2� e3
ln

����
r

re3
� 1

���� �
1

2� c3
ln

����1 �
r

rc3

���� +
1

2� 0
ln

����
r
r0

� 1
���� : (3.12)

3.3 Evolution of �elds

3.3.1 Scalar perturbations

The evolution of massless scalar �eld � is governed by the Klein-
Gordon equation (Eq.2.14 withm = e = 0),

� � =
1

p
� g

@� (
p

� gg�� @� )� = 0 ; (3.13)

Using the scalar spherical harmonics(Eq.2.16), the radial part of
the perturbation equations (Eq.3.13) can be decoupled from their
angular parts and reduced to the form,

�
�

@2

@t2
+

@2

@r2�

�
 ‘ (t; r ) = � V‘ (r ) ‘ (t; r ); (3.14)

with the e�ective potential,

VSC = f (r )
�

‘ (‘ + 1)
r 2 +

2M
r 3 +

c(3� + 1)
r 3� +3

�
: (3.15)

3.3.2 Electromagnetic perturbations

The evolution of the electromagnetic(EM) �eld is described by the
Maxwell’s equation,
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F ��
;� = 0 ; with F �� = A �;� � A �;� ; (3.16)

whereA � is the electromagnetic vector potential. Since the back-
ground is spherically symmetric, the vector potentialA � can be rep-
resented as 4-dimensional vector spherical harmonics[79],

A � (t; r; �; � ) =
X

‘;m

0

BBBB@

2

66664

0
0

a‘m (t;r )
sin � @� Y‘m

� a‘m (t; r ) sin �@� Y‘m

3

77775
+

2

6664

f ‘m (t; r )Y‘m

h‘m (t; r )Y‘m

k‘m (t; r )@� Y‘m

k‘m (t; r )@� Y‘m

3

7775

1

CCCCA
:

(3.17)
The parity of �rst term in the vector harmonics is (� 1)‘ +1 (mag-

netic) and that of the second term is (� 1)‘ (electric). For odd parity,
the components of electromagnetic tensorF �� are obtained as,

F �t =
cosec�

r 2f
@a
@t

@Y‘m
@�

; (3.18)

F �r =
� cosec�f

r 2
@a
@r

@Y‘m
@�

; F �� = 0 ; (3.19)

F �� =
� cosec�

r 4

�
1

sin2�
@2Y‘m
@�2

+
1

sin�
@
@�

�
sin�

@Y‘m
@�

��
a

=
cosec�

r 4 ‘ (‘ + 1) Y‘m a: (3.20)

The covariant derivative of electromagnetic tensor,F ��
;� are ob-

tained as,

F �t
;t =

� cosec�
2r 2f

�
f f 0@a

@r
� 2

@2a
@t2

�
@Y‘m
@�

; (3.21)
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F �r
;r =

� cosec�
2r 3

�
rf 0@a

@r
� 2f

�
@a
@r

� r
@2a
@r2

��
@Y‘m
@�

; (3.22)

F ��
;� = 0 ; F ��

;� =
cosec�

r 4

�
‘ (‘ + 1) a � rf

@a
@r

�
@Y‘m
@�

: (3.23)

Now the Maxwell’s equation becomes,

F ��
;� = 0 )

�
‘ (‘ + 1) f � r 2

�
@
@r

f 2 @
@r

�
@2

@t2

��
a‘m (t; r ) = 0 (3.24)

Other equations obtained from Eq.(3.16) are equivalent to the
above equation. Using the tortoise coordinate de�ned bydr � = 1

f dr
the above equation can be reduced in to Eq.(3.14), with,

VEM = f (r )
�

‘ (‘ + 1)
r 2

�
; (3.25)

where the wave function, ‘ = a‘m . The even parity wave also sat-
isfy the above equation with the wave function having the functional
dependence, ‘ = r 2

‘ (‘ +1)

�
h‘m

;t � f ‘m
;r

�
.

3.3.3 Gravitational perturbations

Equation governing the gravitational perturbation(GR) is,

R�� (g + h) = 0 ; (3.26)

where R�� (g + h) is the Ricci tensor computed from the total
metric g�� + h�� . Here the variation on right hand side of Einstein’s
equation, Eq.(1.8) is taken to be zero since we are considering three
special cases of quintessence state parameter and assuming it to be
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�xed, at least for the interval of time that we have considered here
for the evolution of perturbation.

Any arbitrary perturbations can be decomposed into normal modes,
since the background we are considering is spherically symmetric. For
any given value of the angular momentum‘ , associated with these
modes, there are two classes of perturbations. Even, (� 1)‘ and odd,
(� 1)‘ +1 parity perturbations. Here we are considering only the axial
perturbation for our study. The two were shown to have a similar
QNM spectra and late-time behavior in de Sitter spacetime[81]. The
canonical form of odd wave perturbations in Regge-Wheeler gauge[6],
keeping the time dependence, can be written as,

h�� =

0 0 0 h0(r )
0 0 0 h1(r )
0 0 0 0

h0(r ) h1(r ) 0 0

sin�
@
@�

P‘ (cos�)Q(t): (3.27)

Following the calculations described in Section 1.3.1, we get the
radial equations,

h0

f
dQ
dt

�
d (fh 1)

dr
Q = 0 ; (3.28)

1
f

dQ
dt

�
2h0

r
�

dh0

dr

�
+ h1

(
‘ (‘ + 1)

r r +
1
f

d2Q
dr2 �

2
r 2 �

6c�
r 3� +3

)

Q = 0 :

(3.29)
Eqs.(3.28) and (3.29) comes from�R �� = 0 and �R r� = 0, respec-

tively.
De�ning  (t; r ) = fh 1(r )

r Q(t) and employing the tortoise coordi-
nate, the above two equations can be combined to get a second order
equation, Eq.(3.14) after eliminatingh0(r ). The e�ective potential of
the system is,
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VGR = f (r )
�

‘ (‘ + 1)
r 2 �

6M
r 3 �

c(3� + 3)
r 3� +3

�
: (3.30)

Now we analyze the nature of the e�ective potentials. Figures
3.1 and 3.2 show the potentials experienced by the scalar, EM and
GR �elds. To clearly see the behavior of the potential between the
horizons, we choose the value of the parameterc = 10� 5 for � = � 1
case and a larger value ofc = 10� 2=2 for � = � 2=3 case, so that we
can bring down the separation between the horizons.
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Figure 3.1: Plot of e�ective potentials for � = � 1=3 with c = 10� 2=2.
Set of curves formbottom to top is for ‘ = 0 ; 1; 2 and 3 modes. The
scalar(solid curves), EM( dashed) and GR(dotted) �elds are drawn.

For � = � 1=3(Figure 3.1), the e�ective potential of scalar �eld is
positive de�nite for r � 2 [�1 ; + 1 ] and have a potential barrier near
the event horizon but vanish asymptotically asr � ! �1 . But for
smaller values of the quintessence parameter,� = � 2=3 and -1(Figure
3.2), after a barrier nature near the event horizon, the potentials with
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‘ = 0 mode of scalar �eld, vanish at somer � = r 0
� and there after

form a negative well in the ranger 0
� < r � < + 1 .
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Figure 3.2: Plot of e�ective potentials for � = � 2=3 with c = 10� 2=2
and � = � 1 with c = 10� 5. In each plot set of curves frombot-
tom to top is for ‘ = 0 ; 1; 2 and 3 modes. The scalar(solid curves),
EM(dashed) and GR(dotted) �elds are drawn. At large distances, GR
potential is merged with the scalar case for� = � 2=3 and with EM
case for� = � 1. The potential is scaled asV � = V (re � r )2(‘ + 1=2),
to enhance the nature at large r.
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3.4 Numerical integration and results

The complex nature of the potentials makes it di�cult to obtain the
exact solutions of Eq.(3.14) and we have to tackle the problem by
numerical methods. An e�cient method to study the evolution of �eld
were developed in[27], after recasting the wave equation, Eq.(3.14),
in the null coordinates,u = t � r � and v = t + r � as,

� 4
@2

@u@v
 (u; v) = V (u; v) (u; v): (3.31)

To discretize the wave equation we replace the derivatives with
the �nite di�erences,

@ 
@u

(ui ; vj ) !
 (ui + 4 u; vj ) �  (ui ; vj )

4 u
;

@ 
@v

(ui ; vj ) !
 (ui ; vj + 4 v) �  (ui ; vj )

4 v
: (3.32)

Denoting the wavefunction on the uniformly spaced grid points of
the null rectangle(Figure 3.3), as N ;  W ;  E and  S with an overall
grid scale factor of4 u = 4 v = h, we use the following �nite di�erence
scheme for Eq.3.31,

 N =  W +  E �  S �
h2

8
V (P )(  W +  E ) + O(h4); (3.33)

where the potential is evaluated on the centroid P, ((uS + uW )=2;
(uS + uE )=2).

To perform the numerical integration on an uniformly spaced grid,
we have to specify the initial conditions. Since the late-time behavior
of the wave function is found to be insensitive to the initial data, we
set null data on u axis and a Gaussian pro�le onv axis,

 (u; v = 0) = 0 ;  (u = 0 ; v) = Ae� ( v � v0 ) 2

2� 2 : (3.34)
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Figure 3.3: The null grid for the numerical integration.

In all our calculations in this chapter, we set the initial Gaussian
distribution with width, � = 3 centered at v0 = 10. Due to the
linearity of the equation one has the freedom to choose the ampli-
tude of the initial wave A = 1. To proceed the integration on the
above numerical scheme one has to �nd the value of the potential at
r (r � ) = r ((v � u)=2) at each step. Employing the Newton-Raphson
method one can invert Eqs.(3.3), (3.8) and (3.12) and getr (r � ) for
the characteristic integration.

Figure 3.4 shows typical evolution pro�le of scalar �eld in a black
hole surrounded by quintessence, in comparison with that in the pure
Schwarzschild spacetime. We observe that the evolution shows de-
viations from the Schwarzschild case, after initial transient phase.
The damped single frequency oscillation(QNM) phase and the late-



Numerical integration and results 61

time tail of decay in the �nal phase shows the characteristics of the
quintessence. We analyze each phase in detail.

3 4 5 6 7 8

−16

−12

−8

−4

0

ln(t)

ln
|ψ

|

 

 

Schw
ε = −1/3

ε = −2/3

ε = −1

l = 0

3 4 5 6 7 8
−40

−30

−20

−10

0

ln(t)

ln
|ψ

|

 

 

Schw
ε = −1/3

ε = −2/3

ε = −1

l = 1

Figure 3.4: Log-log graph of the evolution of scalar �eld in a
quintessence �lled black hole spacetime with quintessence parame-
ters � = � 1=3; � 2=3; � 1 and c = 10� 2=2, in comparison with that in
the pure Schwarzschild(Schw) spacetime. The case of‘ = 0 mode is
shown in the top panel and ‘ = 1 on the bottom panel.



62
Late-time tails of Schwarzschild black hole surrounded by

quintessence

3.4.1 Quasinormal modes

QNMs of various �eld perturbations around black hole surrounded
by quintessence were evaluated in [64{71] using third order WKB
method. The typical nature of QNM phase can be seen in Figure 3.5,
where we have shown the evolution pro�les of the di�erent �elds in a
quintessence surrounded black hole for‘ = 2, in comparison with the
corresponding mode in the pure Schwarzschild black hole. On theleft
panel the decay of scalar �eld is shown for� = � 2=3 and � 1 along
with the Schwarzschild case.
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Figure 3.5: Semi-log graph of the QNM phase of evolution for the
‘ = 2 modes of various �elds. The plot on the left is for scalar
�eld where the curves frombottom to top is for the Schwarzschild,
� = � 2=3 and -1 cases, respectively. On theright, EM and GR
�elds are shown wherebottom curve in each sub plot represents the
Schwarzschild case and the other ones are for� = � 2=3. We take
c = 102=2 for these plots. All the three �elds damp more slowly in
the presence of quintessence.

It can be seen that the decay of the �elds in the QNM phase is
slower in the presence of quintessence than in the pure Schwarzschild
cases. Also the damping is lower for smaller values of� . This re-
sult is not in agreement with the results presented in [64], where
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they obtained that a massless scalar �eld damps more rapidly due to
quintessence. Electromagnetic and gravitational �eld perturbations
also show similar behavior as that of scalar �eld, in the QNM phase.
So we have shown the� = � 2=3 case only in the plots. These results
are in agreement with the observations made in [65{67], using the
WKB method.

3.4.2 Late-time tails

The QNM phase is followed by the regime of late-time tails of �eld
decay. We �nd that the nature of late-time tails are sensitive to the
parameters of quintessence, the angular momentum index and also
the type of �eld perturbations under consideration. Below we discuss
the di�erent cases in detail.

‘ = 0 mode

Scalar �eld perturbations can have the‘ = 0 mode, while EM and
GR �elds can only have modes with‘ � 1 and ‘ � 2 respectively.
From Figure 3.4, which is a log-log plot, it can be seen that for the
‘ = 0 mode, scalar �eld with � = � 1=3 case of quintessence has the
form of a power-law tail, with slightly slower decay rate than the
corresponding Schwarzschild tail.

The peculiar shape of potentials for� = � 2=3 and -1(Figure 3.2)
re
ects in the late-time tails, that the �elds settle to a residual con-
stant value, rather than decaying to zero. We have evaluated the �eld,
� =  =r on the surface of constant r(atr � = 10), the cosmological
horizon(approximated by the null surfacev = vmax ) and the black
hole event horizon(approximated by the null surfaceu = umax ). In
the asymptotic late times, �eld settles to the same constant value� 0,
on all these surfaces, as shown in Figure 3.6. It was �rst observed
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in[36], for scalar �eld in the SdS spacetime and they have shown that
at late times,

� j ‘ =0 ’ � 0 + � 1(r )e� 2kc3 t : (3.35)
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Figure 3.6: The decay of‘ = 0 mode of scalar �eld with quintessence
parameters � = � 2=3 with c = 10� 2=2, and � = � 1 with 10� 5.
The �elds are evaluated on the constant surfacer � = 10(dotted
curves), black hole event horizon(dashed curves) and cosmological
horizon(solid curves).

Figure 3.7 demonstrates the‘ = 0 mode of scalar �eld for di�erent
values of c. The smaller the value of c, the later the �eld descends to
the constant value,� 0. The dependence of� 0, on the parameterc is
shown in Figure 3.8. We observe that the asymptotic value of �eld
scales as 0 � c0:995, when � = � 1 as found in[36] and as 0 � c1:873,
when � = � 2=3.
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Figure 3.7: The decay of‘ = 0 mode of scalar �eld with quintessence
parameters � = � 2=3 with c = 10� 1=2; 10� 2; 10� 2=2 and 10� 3, and
� = � 1 with c = 10� 2=2; 10� 3; 10� 4; 10� 5; 10� 6 and 10� 7.
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Figure 3.8: The asymptotic value of scalar �eld,� 0 versus c, in log-
arithmic scale. A linear �t( dotted lines) gives the slopes 1.873, for
� = � 2=3 and 0.995, for� = � 1.
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‘ > 0 modes

Now we report the results obtained for the decay of‘ > 0 modes of
�eld perturbations. Figure 3.9 demonstrates the evolution of scalar,
EM and GR �elds around a black hole surrounded by quintessence
with � = � 1=3, along with pure Schwarzschild case. The �elds, are
evaluated on the surfacer � = 10. A straight line in such a plot shows
a power-law tail. The late-time tails follow the power-law decay for
� = � 1=3, but with a smaller decay rate, than the Schwarzschild case
of,  � t � (2‘ +3) . For the quintessence case withc = 10� 2=2, we get
 � t � (2‘ +2 :7).
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Figure 3.9: Log-log plot of the evolution of �elds for� = � 1=3, with
c = 10� 2=2. On the left, the decay of scalar �eld is shown in com-
parison with the Schwarzschild case. Curves fromtop to bottom is
for ‘ = 0 ; 1; 2; 3 and 4. The decay has a lower power-law constant,
t � (2‘ +2 :7) for quintessence case. The‘ = 3 mode of di�erent �elds is
shown on theright. All the �eld has an identical tail of decay for
� = � 1=3.
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As the value of the quintessence parameter decreases to� = � 2=3
and to -1, though in the intermediate time the �elds follow the power-
law decay, in the asymptotic late-time it deviates from the power-law
form. Figure 3.10 is a semi-log plot of the decay of scalar, EM and
GR perturbations for the � = � 2=3 case withc = 10� 2=2. A straight
line in such a plot corresponds to an exponential decay. We can see
from the plot that for ‘ > 0, the intermediate time power-law form of
decay is replaced by an exponential decay of �eld, in the asymptotic
late-time. In particular, in the asymptotic late times, the decay can
be �tted in the forms,

 � e� pkc2 ‘t ; for Scalar and GR;

 � e� kc2(‘ +1) t ; for EM; (3.36)

where p is some constant, for the plots shown in Figure 3.10 with
c = 10� 2=2 we getp = 1 :089. The evolution of �eld for the � = � 1
case is plotted in Figure 3.11, in semi-log scale, where we have chosen
c = 10� 5, in order to see the decay for large‘ . All the ‘ > 0 modes
at late-time relax as an exponential tail, according to the form,

 � e� kc3 ‘t ; for Scalar;

 � e� kc3(‘ +1) t ; for EM and GR: (3.37)

The late-time tails are generated by the scattering of the waves
by the potential at great distances. By a systematic study of various
potentials Ching et al.[33] and later by Hod[34] had given the fol-
lowing heuristic picture. The late-time tails reported by an observer
at r � are caused by the waves that are scattered by the potential,
V (r 0

� ) at the point r 0
� � r � and at late times,  / V (r 0

� ) ’ V (t=2).
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Figure 3.10: Semi-log plot of the decay of scalar, EM and GR per-
turbations for � = � 2=3 with c = 10� 2=2. GR has an identical decay
pattern as that of scalar �eld.
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Figure 3.11: Semi-log plot of the decay of scalar, EM and GR pertur-
bations for � = � 1 with c = 10� 5. The gravitational perturbations
are merged with the EM pro�les
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Their studies showed that the inverse power-law decay is a property
of asymptotically 
at spacetimes, and that di�erent behaviors should
be expected in black-hole spacetimes that have di�erent asymptotic
properties. The results that we obtained can be explained as fol-
lows. For � = � 1=3, all the �elds have inverse power nature of the
e�ective potentials as that in asymptotically 
at spacetime and lead
to inverse power-law decay of �elds at late times. When� = � 2=3
and -1 the potentials exponentially drop o� in the asymptotic region,
V (r � ) � e� kcr � and one can expect an exponential tail of the forms
Eq.(3.36) and (3.37) at late times.

3.5 Conclusion

This chapter investigates the late-time behavior of various �eld per-
turbations in the geometry of black hole residing in an universe ex-
panding with acceleration, adopting the quintessence model of dark
energy. Massless scalar, EM and GR perturbations are considered
around a spherically symmetric uncharged black hole with the asymp-
totes determined by the quintessence.

The evolution picture obtained con�rms that in the QNM stage,
all the �elds decay slowly due to the presence of quintessence. At
late times, QNMs are suppressed by the tail form of �eld decay. As
the value of the quintessential parameter� , decreases, the late-time
decay of ‘ = 0 mode of scalar �eld gives up the power-law form of
decay, relaxing to a constant residual �eld. This asymptotic values
of the �eld is determined by the value of the parameter� and c. For
the behavior of ‘ = 0 mode when � = � 2=3 and -1, there is no
analogue case in black holes with 
at space. This can be understood
as a consequence of cosmological no-hair theorem[35]. Comparing
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the situation in SdS spacetime with the scattering inside the charged
black hole it was argued that a constant mode can be transmitted
to both black hole and cosmological horizons. However the constant
solution carries no stress-energy.

For large values of� , the ‘ > s modes of scalar, EM and GR
perturbations, still show a power-law decay, having a slower decay
rate than the corresponding Schwarzschild case. As the value of�
decreases, the power-law decay gives way to an exponential decay.
The results for the SdS black hole spacetime, the extreme case of
quintessence, are consistent with the previous studies[36, 78, 81].



4
Dirac �eld around

Schwarzschild black hole
surrounded by quintessence

4.1 Introduction

A ccording to the black hole \no-hair theorem" a black hole formed
by the gravitational collapse of a charged rotating star, will rapidly re-
lax to a stationary state, characterized by three quantities, its mass,
charge and angular momentum. Any otherhair, will disappear af-
ter the collapsing body settles down to its stationary con�guration.
Later counterexamples of this theorem were presented obtaining solu-
tions for black holes with varioushairs. Among them are black holes
dressed with Yang-Mills, Proca-type Yang-Mills, and Skyrme �elds
in various combinations with Higgs �elds[90{92]. Some, but not all,
of these black holes are unstable. The manner and rate with which
the hair of the black hole decays is thus an important question. All
known black-holeno-hair theorems were extended to spacetimes en-
dowed with a positive cosmological constant[89]. Speci�cally, they
proved that static spherical black holes with positive cosmological
constant cannot support scalar �elds in convex potentials and Proca-
massive vector �elds in the region between the black hole and the
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cosmic horizon.
Most of the studies on the late-time decay are devoted to integer

spin �elds. There are only few studies on the fermionic tails. The
problem of the late-time behavior of massive Dirac �elds in black
hole with asymptotically 
at spacetime was studied in [84{86]. The
intermediate and late-time behavior of massive Dirac �eld in the static
spherically general black hole spacetime is studied in [87]. The late-
time behavior of a massive Dirac �eld in the background of dilaton
black hole solutions is investigated in [88]. It is revealed that for black
hole in 
at spacetimes, the long-lived oscillatory tail of Dirac �eld,
observed at timelike in�nity decays ast � 5=6.

The evolution of �elds propagating in de Sitter spacetime were ad-
dressed in[35, 36, 78, 81] and they have demonstrated the existence of
exponentially decaying tails at late times contrasting the power-law
tails in asymptotically 
at situation. QNMs of SdS black holes have
been calculated for �elds of di�erent spin, including the Dirac �eld, us-
ing the sixth-order WKB and P�oschl-Teller approximation[93]. Since
the spherically symmetric black hole solutions[63] were obtained in
quintessence model of dark energy, there are studies [68, 70] on evo-
lution of Dirac �eld around black holes surrounded by quintessence.
These attempts are based on the calculation of the QNMs using the
third order WKB approximation method while the late-time behav-
ior of Dirac perturbations remained unknown. In fact, the late-time
decay is determined by the asymptotic curvature of the spactime, so
it is interesting to see how Dirac �eld evolves in a spacetime in which
the asymptotic structure is determined by the quintessence �eld and
our study �lls this gap.

The rest of the chapter is organized as follows. In Section 4.2 the
master wave equation for Dirac �eld perturbations around black hole
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surrounded by quintessence is derived. The results are discussed in
Section 4.3. The major conclusion is given in Section 4.4.

4.2 Perturbations of Dirac �eld

The Dirac equation for a massless �eld in spacetimeg�� , speci�ed by
Eq.(3.1) can be written as[94]

i
 ae�
a(@� + � � )	 = 0 ; (4.1)

where 
 a are the Dirac matrices,


 0 =

 
1 0
0 � 1

!

; 
 i =

 
0 � i

� � i 0

!

; i = 1 ; 2; 3; (4.2)

� i being Pauli matrices. e�
a is the tetrad de�ned by the metric

g�� ,

g�� = � abea
� eb

� : (4.3)

with � ab = diag(� 1; 1; 1; 1) being the Minkowski metric. � � is the
spin connections de�ned by,

� � =
1
8

�

 a; 
 b� e�

aeb� ;� : (4.4)

Choosing the tetrad to be,

e�
a =

0

BBB@

f � 1=2 0 0 0
0 f 1=2 sin � cos� cos� cos�

r
csc� sin �

r
0 f 1=2 sin � sin � cos� sin �

r
csc� cos�

r
0 f 1=2 cos� sin �

r 0

1

CCCA
; (4.5)
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The spin connections de�ned by Eq.(4.4) are,

� t =
1
4

@r (rf ) 
 0~
 ; ~
 = (sin � cos�
 1+sin � sin �
 2+cos �
 3); (4.6)

� r = 0 ; � � =
1
2

�
1 � f 1=2

� �

 3
 1 cos� + 
 3
 2 sin �

�
; (4.7)

� ’ =
1
2

�
f 1=2 � 1

� �

 1
 2 sin � + 
 1
 3 cos� sin � � 
 2
 3 cos� cos�

�
sin �:

(4.8)
Now the second term in Eq.(4.1) can be reduced to get,


 ae�
a � � = ~


�
(r 2f )0

4r 2f 1=2 +
f 1=2

2r
�

1
r

�
(4.9)

Substituting these in Eq.(4.1) results in the following form for the
Dirac equation,

i
 0

f 1=2
@	
@t

+
i ~
f 1=4

r
@
@r

�
rf 1=4	

�
�

i ~

r

�
~� :~L + 1

�
	 = 0 ; (4.10)

where ~L is the standard angular momentum operator with com-
ponents,

L1 = isin�@� + icot� cos�@� ;

L2 = � icos�@� + icot� sin�@� ;

L3 = � i@� ; (4.11)

and in the Dirac representation,

~� =

 
~� 0
0 ~�

!

: (4.12)
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For the separation of variables, we write the wave function as,

	 =
1

rf 1=4 � ; (4.13)

where,

�( t; r; �; � ) =

 
iG (� )(t; r )’ (� )

jm (�; � )
F (� )(t; r )’ (� )

jm (�; � )

!

; (4.14)

with the angular parts of the wave function given by,

’ (� )
jm =

0

@

q
l+1 =2� m

2l+1 Ym� 1=2
l

�
q

l+1 =2� m
2l+1 Ym+1 =2

l

1

A ; (4.15)

for j = l � 1
2, and we de�ne,

k(� ) =

(
�

�
j + 1

2
�

, j = l + 1
2;

�
j + 1

2
�

, j = l � 1
2:

; (4.16)

where k (� ) and k (+) are negative and positive integers respec-
tively. The angular functions ’ (� )

jm satisfy the eigen equations

k ’ (� )
jm = �

�
j +

1
2

�
’ (� )

jm and ~�’ (� )
jm = ’ (� )

jm , (4.17)

where k = ~� :~L + 1 and ~� = sin � cos� 1 + sin � sin �
 2 + cos �
 3.
Then the coupled radial equations can be simpli�ed to,

f
@
@r

 
F (� )

G(� )

!

�
(j + 1=2)f 1=2

r

 
F (� )

� G(� )

!

= �
@
@t

 
� G(� )

F (� )

!

;

(4.18)
and moving to the tortoise coordinate,r � we can write,
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@
@r�

 
F (� )

G(� )

!

+ W(� )

 
� F (� )

G(� )

!

= �
@
@t

 
� G(� )

F (� )

!

; (4.19)

where,

W(� ) =
f 1=2k(� )

r
: (4.20)

The equations forF (� ) and G(� ) can be decoupled to get,
�

�
@2

@r2�
+ V(� )1

�
F = �

@2F
@t2

; (4.21)

�
�

@2

@r2�
+ V(� )2

�
G = �

@2G
@t2

: (4.22)

where
V(� )1;2 = �

dW(� )

dr �
+ W2

(� ) ; (4.23)

Here the (+) case is fork being a positive integer with, k =
j + 1

2 and j = ‘ + 1
2, and the case with negative integer values for

k is represented by (� ), with k = � (j + 1
2) and j = ‘ � 1

2. The
Dirac potentials appearing in Eq.(4.21) and (4.23) are shown to yield
the same spectrum of quasinormal mode frequencies[95]. So here we
considerV1, denoting with the subscript D , and combining the (+)
and (� ) cases we can write the explicit form for the potential,

VD =
jkj

p
f

r 2

�
jkj

p
f +

r
2

@f
@r

� f
�

: (4.24)

For � = � 1=3, the e�ective potential is positive de�nite with r � 2
[�1 ; + 1 ] and have a potential barrier near the event horizon but
vanishes asymptotically asr � ! �1 . As the parameter� decreases
below -1/3, a cosmological horizon is created by the quintessence.
Figure 4.1 shows e�ective potential of the Dirac �elds, with� = � 1
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Figure 4.1: Plot of e�ective potentials experienced by the Dirac �eld
for quintessence parameters� = � 2=3 with c = 10� 2=2 and � = � 1
with c = 10� 5. Curves form bottom to top is for ‘ = 0 ; 1; 2 and
3 modes. The potential is scaled asV � = V (re � r )2(‘ + 1=2), to
enhance the nature at large r. Potentials has a negative dip near CH

and -2/3. In this case, after a barrier nature near the event horizon,
the e�ective potential for all modes, vanishes at somer � = r 0

� and
there after form a negative well in the ranger 0

� < r � < + 1 . This
behavior of Dirac �eld is in contrast with other �elds. For scalar �eld
even if the ‘ = 0 mode shows the negative dip in the potential, all
other higher modes have a positive value for the potential between
the horizons (Figure 3.2).
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4.3 Numerical integration and results

After recasting the wave equations, Eq.(4.21) and (4.22), in the null
coordinates,u = t � r � and v = t + r � as,

� 4
@2

@u@v
	( u; v) = V (u; v)	( u; v); (4.25)

we perform the numerical integration using the method described
in Section 3.4. We scale the �eld as,� =  =r . The evolution of �eld
is monitored on di�erent surfaces viz.,

1. cosmological horizon(CH), approximated by the null surface,
v = vmax ,

2. the black hole event horizon(EH), approximated by the null
surface,u = umax ,

3. di�erent surfaces of �xed radius, r � = K , approaching future
timelike in�nity.

Figure 4.2 shows the evolution pro�le of the Dirac �eld around the
black hole in a quintessence �lled universe along with that in the pure
Schwarzschild spacetime. We observe that the evolution of Dirac �eld
shows deviations from the Schwarzschild case, after initial transient
phase. The QNM phase and the late-time tail of decay in the �nal
phase show the characteristics of the quintessence and the spin of
the �eld. The �elds decay slowly in the QNM phase, if quintessence
is present as it was shown in[68, 93], using the WKB method. The
QNM phase is followed by the regime of late-time tails of �eld decay.
It is well known that, at late times, the Dirac �eld perturbations has a
power-law decay in the Schwarzschild spacetime and is represented by
the straight curves in a log-log plot. We �nd that the nature of late-
time tails of Dirac �eld is sensitive to the parameters of quintessence.
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A. � = � 1=3

For quintessence with EOS,� � � 1=3, there is only one zero for the
function, f (r ) in Eq.(3.2) and that corresponds to the event hori-
zon of the black hole. It can be observed from Figure 4.2 that for
quintessence with EOS,� = � 1=3, the decay of Dirac �eld also shows
a power-law tail, but with slightly slower decay rate than the corre-
sponding Schwarzschild tails. Forc = 10� 2=2, we get� � t � (2‘ +2 :7),
a slower decay rate than the� � t � (2‘ +3) of the pure Schwarzschild
case. This can be expected since the e�ective potential for� = � 1=3
case has almost the same pro�le as that of the Schwarzschild space-
time.

B. � < � 1=3

As the EOS lowers from -1/3, a cosmological horizon will be created
by the quintessence and for Dirac �eld a negative dip appears in the
potential appears. For � = � 2=3 and � 1, all the ‘ modes of Dirac
�eld relaxes to a constant residual �eld, at asymptotic late times.
This behavior is contrary to other �elds, where all the‘ > 0 modes
are found to be decaying exponentially. Even if the monopole of
the scalar �eld is observed to settle down to a constant asymptotic
value, all the higher modes were found to be exponentially decaying.
The nature of Dirac �eld is little surprising and it strengthens the
dependence of the unusual dip in the potential and the relaxation of
the �eld to the constant value, although a detailed investigation on
this is required. Figure 4.3 shows the evolution pro�le of the Dirac
�eld for � = � 2=3 and � 1, and di�erent multiploles. We can �t the
decay form as,

� j ‘ ’ � 0 j ‘ + � 1(r )e� 2kc t : (4.26)
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Figure 4.2: Log-log graph of the evolution of Dirac �eld in a
quintessence �lled black hole spacetime withc = 10� 2=2, in com-
parison with that in the pure Schwarzschild spacetime, evaluated at
r � = 10. ‘ = 0( top) and ‘ = 1( bottom) modes for � = � 1=3; � 2=3
and -1.
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Figure 4.3: Evolution of Dirac �eld on the surface of �xed radius
r � = 10. Solid curves are the� = � 2=3 case withc = 10� 2=2 and
� = � 1 case with c = 10� 5, is represented by the dashed curves.
In each case, curves fromtop to bottom is for ‘ = 0 ; 1; 2; 3 and 4,
respectively

The dependence of the asymptotic residual �eld,� 0, on the pa-
rameter c, is shown in Figure 4.4, on a logarithmic scale. The �eld
is evaluated on the event horizon. For� = � 1, a least square �t for
ln j� 0j = m1 ln(c)+ c1, gives the slops,m1 = 0:973; 1:933; 2:942; 3:915
and 4:921 for ‘ = 0 ; 1; 2; 3 and 4, respectively. For� = � 2=3, we get
the slopsm1 = 1:768; 3:630; 5:559; 7:330 and 9:625, for ‘ = 0 ; 1; 2; 3
and 4, respectively. These results suggest that,

� 0 � c(‘ +1) ; for � = � 1;

� 0 � c1:782(‘ +1) ; for � = � 2=3: (4.27)
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Figure 4.4: The asymptotic value of the Dirac �eld along EH,� 0,
versus c, in logarithmic scale.Dotted lines represents a linear �t for
each modes. Curves fromtop to bottom is for ‘ = 0 ; 1; 2; 3 and 4.

To con�rm that the behavior of Dirac �eld is not an artifact of the
particular location, we monitor the evolution of the �eld on di�erent
null surfaces of constant radius and on the event and cosmological
horizons. Figures 4.5 and 4.6 show the decay of‘ = 2 mode of
Dirac �eld on the black hole event horizon, cosmological horizon and
three surfaces of �xed radius,r � = 10; 100 and 300. The constant
asymptotic value of the Dirac �eld, � 0, varies from the black hole
event horizon to the cosmological horizon. The� 0 has a lowest value
on the EH, increases as radial position goes farther and farther, and
has the highest value on the CH.
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Figure 4.5: The decay of‘ = 2 mode of Dirac �eld with quintessence
parameters � = � 2=3 with c = 10� 2=2 on di�erent surfaces. Solid
curves represents the �eld on EH(bottom) and CH(top). Dotted
curves from bottom to top corresponds to the �eld on surfaces at
r � = 10; 100 and 300.

Price’s original work demonstrates that there can be no static
solution to the scalar wave equation that are well behaved at in�nity
and black hole EH. Even though the‘ = 0 mode of the scalar �eld in
the SdS spacetime is observed to settle down to a constant asymptotic
value, it relaxes to thesameconstant value on all the surfaces(Figure
3.6). It can be argued that the constant �eld does not carry any stress
energy tensor and it is equivalent to vanishing of the hair. But the
behavior of Dirac �eld is rather intriguing since the all ‘ modes of the
�eld have non zero value at late times and it varies with the position.
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Figure 4.6: The decay of‘ = 2 mode of Dirac �eld with quintessence
parameters� = � 1 with c = 10� 5 on di�erent surfaces. Solid curves
represents the �eld on EH(bottom) and CH(top). Dotted curves from
bottom to top corresponds to the �eld on surfaces atr � = 10; 100
and 300.

4.4 Conclusion

The evolution of Dirac �eld perturbation in the spacetime of a black
hole immersed in a quintessence �led, is investigated in this chapter.
The quintessence EOS,� plays a dramatic role in the late-time de-
cay of the Dirac �eld. For � = � 1=3 the late-time decay follows a
power-law form, but with a lower decay rate than the corresponding
Schwarzschild case. As the value of the quintessential parameter� ,
decreases, the CH forms and a negative dip appears in the e�ective
potential near the CH. For � = � 2=3 and -1, the Dirac �eld do not
decay to zero, but relaxes to a constant residual �eld, at late times.
These asymptotic values of the �eld is determined by the values of
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the parameter � and c. This behavior of Dirac �eld seems to be odd
comparing with the scalar, EM and GR perturbations, where the all
the ‘ > 0 modes of the �eld decay exponentially. The asymptotic
value of the Dirac �eld varies on di�erent surfaces. It has the lowest
value on the black hole EH and increase as the radial distance increase
and maximizes on the CH. This behavior may indicate the presence
of a fermionic hair even though a detailed numerical and analytical
studies are required to con�rm this result.
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Massless �eld perturbations

around a black hole in
Ho�rava-Lifshitz gravity

5.1 Gravity and quantization

G ravity , one among all the known four fundamental interactions,
is well described by Einstein’s General Theory of Relativity at the
classical level. The predictions of GTR were tested with high degree
of accuracy and successfully passed various classical tests in the weak
gravitational �eld limit.

Most of the everyday physics can work well with GTR, with out a
detailed understanding of quantum gravity. But it becomes annoying
when one fails to combine the two fundamental theories in physics-
Quantum mechanics and GTR- at extream situations like the one at
the time of the Big-bang, black hole singularities etc., where both
theories come in to play. The classical spacetime continuum concept
breaks down at these regimes.

GTR is a classical theory based on the concept of geometry of
spacetime. For all other theories the spacetime is an arena where
the events can take place but in GTR spacetime itself is a physical
entity of the theory. On the other hand electromagnetism, weak and
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strong nuclear interactions are well described by standard model of
quantum �eld theory. The consistent implementation of the gravita-
tional interaction into the quantum framework is considered to be an
outstanding problem in fundamental physics.

5.1.1 General Relativity and renormalizability

One of the major open challenges facing theoretical physics today is
to accommodate general relativity in the framework of quantum �eld
theory. The main problem one encounters is the non-renormalizablity
of gravity at the perturbative level. GTR is plagued with its noto-
rious ultraviolet divergence[96]. Electromagnetism, weak and strong
nuclear interactions are well described by renormalizable quantum
theories, viz., quantum electrodynamics and quantum chromodynam-
ics, respectively. GTR fails the usual tests of renormalizability while
checked using the precise covariant rules for calculating Feynman dia-
grams in quantum theory of gravitation. The attempts of uni�cation
of all the four forces are waiting till we know how to tackle the UV
divergence of gravity.

A heuristic picture of the problem can be visualized by a simple
dimensional analysis. For a �eld theory, the integral for a Feynman
diagram of orderN will behave like,

R
pA � Nddp, whereA counts the

processes under consideration and is independent ofN and d is the di-
mension of the coupling constant [mass]d. Now if d < 0, at su�ciently
large orders, the integral diverges. For Newton’s constant(GN ), the
coupling constant of gravity,d = � 2. This implies that the quantum
�eld theory of gravity have ultraviolet divergence everywhere. For
graviton, the propagator scales with the four-momentum,k� as,

G(!; k ) =
1
k2 ; (5.1)
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where k2 = ! 2 � k2. Each loop in the Feynman diagram con-
tributes an integral,

R
d!d 3k / k4, resulting to a total contribution

from the combination of one loop and one internal propagator,

k4k� 2 = k2 ! 1 ; as k ! 1 (5.2)

To bring the divergence of the higher loop orders under control, it
is necessary to introduce in�nitely many number of counter terms in
curvature. One way to improve the UV behavior is to add relativistic
higher-derivative curvature terms to the Lagrangian. For instance, an
addition of a quadratic term, R2 will change the graviton propagator
as,

1
k2 +

1
k2GN k4 1

k2 +
1
k2GN k4 1

k2GN k4 1
k2 + ::::: =

1
k2 � GN k4 (5.3)

Now the propagator at high energies is scaled as1k4 and the total
contribution from one loop and one internal propagator now is

k4k� 2 = k0 ! f inite; as k ! 1 (5.4)

This cures the problem of the UV divergence but at the same time
brings new issues. This can be immediately understood if we rewrite
the propagator as,

1
k2 � GN k4 =

1
k2 �

1
k2 � 1=GN

(5.5)

The �rst term on the right had side represents the massless gravi-
ton while the second is a ghost term which also causes the unitary
violation.

It is the higher order time derivatives that we introduced actually
makes the problem rather than the space derivatives. This observa-
tion immediately points to a possible resolution. One can think of
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introducing higher order spatial derivatives by omitting the higher
order time derivatives. The former should improve the UV behavior
of the propagator as we have already seen, whereas the latter guar-
antees the absence of ghosts, but at the cost of giving up the Lorentz
invariance as a fundamental symmetry of the theory.

5.1.2 Ho�rava-Lifshitz theory of gravity

In 2009 Petr Ho�rava proposed a new theory[52{54] based on the idea
that the time and space may have di�erent dynamical scaling in the
UV limit. This was inspired from the Lifshitz model of scalar �eld
theory in condensed matter physics, introduced to explain quantum
critical phenomena. Hence the theory is now dubbed as \Ho�rava-
Lifshitz"theory. This arguments paved a new step in achieving a
renormalizable theory for gravity. In the following we brie
y review
the main contents of the theory.

According to the theory, space and time follow anisotropic scaling,

x ! bx; t ! bzt; (5.6)

with the degree of anisotropy characterized by the \dynamical
critical exponent", z � 1. In the IR limit, z = 1 and the Lorentz
invariance is \accidentally restored". It is assumed that the Lorentz
symmetry should appear as an emergent symmetry at IR scale, but
can be fundamentally absent at high energies.

The action for Ho�rava-Lifshitz gravity (with z = 3) is given by,
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SHL =
Z

dtd3x
p

gN

(
2
� 2 (K ij K ij � �K 2) �

� 2

2W4Cij Cij

+
� 2�
2W2 � ijk R(3)

i‘ 5 j R(3) ‘
k �

� 2� 2

8
R(3)

ij R(3) ij

+
� 2� 2

8(1 � 3� )

�
1 � 4�

4
(R(3) )2 + � W R(3) � 3� 2

W

� )

;(5.7)

where the extrinsic curvature,K ij and the Cotton tensor,Cij are
given by,

K ij =
1

2N
( _gij � r i N j � r j N i ) ; (5.8)

Cij = � ikl r k

�
R(3) j

l �
1
4

R(3) � j
l

�
; (5.9)

and �; �; W are dimensionless coupling constants whereas�; � W

have the mass dimensions [� ] = 1, [ � W ] = 2. Now the modi�ed
graviton propagator in the theory has the form,

1
! 2 � c2k2 � G(k2)z : (5.10)

At high energies, the propagator is dominated by the anisotropic
term 1=! 2 � G(k2)z and for z > 1, this modi�cation improves the
short-distance behavior. Thec2k2 term becomes important only at
lower energies. Using these ideas he formulated a theory of gravity
which would be powercounting renormalizable in 3 + 1 dimensions. It
assumes a Lifshitz-like anisotropic scaling between space and time at
short distances, with z = 3 and thus breaking the Lorentz invariance.
While in the IR limit it 
ows to z = 1, retrieving the Einstein’s GTR.
In this limit, the action in Eq.5.7 becomes,
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S =
Z

dtd3x
p

gN

(
2
� 2

�
K ij K ij � �K 2�

+
� 2� 2

8(1 � 3� )
�
� W R � 3� 2

W
�

)

(5.11)
If we identify the speed of light c and Newtons constant G and �

as,

c2 =
� 2� 4

2
; GN =

� 2

32�c
; � =

3
2

� W ; � = 1 ; (5.12)

the action reduced to the standard Einstein-Hilbert action,

SEH =
1

16�G N

Z
d4x

p
� gN

��
K ij K ij � K 2�

+ R � 2�
�

=
1

16�G N

Z
d4x

p
� g(4)

�
R(4) � 2�

�
: (5.13)

The HL theory is regarded as a potential candidate of the UV com-
pletion of gravity and has received a growing interest. Even though
the theory has the remarkable features, there are some open issues
regarding Ho�rava-Lifshitz gravity. Firstly, the realization of renormal-
izability relay on power counting arguments. Even though this is a
strong indication for UV completeness, a more rigorous conformation
of renormalizability beyond power counting is still lacking. Secondly,
the coupling of matter to gravity have not been fully clari�ed yet.
The discussions on the consequences of theory in the fundamental
and application level are still going on. A detailed review of the topic
is given in [97{99]. As a new theory, it is interesting to investigate its
various aspects in parallel.
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5.2 Black holes in HL gravity

The HL theory has the same Newtonian and post Newtonian correc-
tions as those of GTR. So systems of strong gravity, like black holes,
are needed to get observable deviation from the standard GTR. Vari-
ous black hole solutions are found in HL theory[100{119]. The IR vac-
uum of pure HL gravity is found to be anti-de Sitter[100, 101]. Even
though HL gravity could recover GTR in IR at the action level for a
particular value of the parameter� = 1, there found a signi�cant dif-
ference between these black hole solutions and the usual Schwarzschild
AdS solution. The asymptotic fall-o� of the metric for these black
hole solutions is much slower than that of usual Schwarzschild AdS
black holes in GTR.

Meanwhile Kehagias and Sfetsos[120](KS) could �nd a black hole
solution in asymptotically 
at Mankowski spacetimes by applying de-
formation in HL theory by adding a term proportional to the Ricci
scalar of three-geometry,� 4R(3) to the action in Eq.5.7 while the cos-
mological constant �W ! 0. This will not alter the UV properties
of the theory but it does the IR ones leading to Mankowski vacuum
analogous to Schwarzschild spacetime in GTR.

Consider the metric ansatz for a static, spherically symmetric
spacetime,

ds2 = � N (r )2dt2 + f (r )� 1dr2 + r 2d
 2: (5.14)

Substituting this ansatz into Eq.5.7, the Lagrangian after angular
integration can be reduced to,

L =
k2� 2

8(1 � 3� )
N
p

f

�
(2� � 1)

(f � 1)2

r 2 � 2�
f � 1

r
f 0

+
� � 1

2
f 02 � 2!

�
1 � f � rf 0�

�
; (5.15)
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where ! = 8 � 2=(3� � 1)� 2. The equations of motion can be
obtained by varying the functionsf and N ,

(2� � 1)
(f � 1)2

r 2 � 2�
f � 1

r
f 0+

� � 1
2

f 02� 2! (1� f � rf 0) = 0 ; (5.16)

�
log

N
p

f

� 0�
(� � 1)f 0� 2�

f � 1
r

+ 2 !r
�

+( � � 1)
�

f 00�
2(f � 1)

r 2

�
:

(5.17)
For � = 1, one gets the KS solution with asymptotic 
at space-

time,

N (r )2 = f (r ) =
2(r 2 � 2Mr + � )

r 2 + 2 � +
p

r 4 + 8 �Mr
; (5.18)

where � = 1=2! and M is the integration constant reduced to
mass. The event horizons of the black hole are at,

r � = M �
p

M 2 � �: (5.19)

When � = 0 the solution reduces to the Schwarzschild spacetime case.
Various aspects of KS black hole were explored in the past[121{

133]. The dynamical evolution of scalar �eld in Ho�rava black hole
spacetimes is studied using Horowitz-Hubeny approach[134]. The
spectrum of entropy/area is discussed from the viewpoint of QNMs of
scalar �eld in HL gravity[135, 136]. QNMs of various �elds around KS
black hole spacetime were calculated using WKB method[137{140].
It is interesting to see how various other �eld perturbations decay in
KS black hole spacetime. In what follows, we present the study of the
evolution of various massless �eld perturbations in the KS black hole
spacetime and probe the signature of the new theory by comparing
with the results in the standard GTR.
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5.3 Massless �elds around KS black hole

The evolution of massless neutral scalar �eld �, electromagnetic �eld
A � and massless Dirac �eld in the spacetime g�� , speci�ed by
Eq.(5.14) are governed by the Klein-Gordon(Eq.(2.14) withm = 0
and e = 0), Maxwell’s(Section 3.3.2) and the Dirac equations(Section
4.2) respectively,

1
p

� g
@� (

p
� gg�� @� )� = 0 ; (5.20)

F ��
;� = 0 ; with F �� = A �;� � A �;� ; (5.21)

[
 ae�
a(@� + � � )]  = 0 : (5.22)

The radial part of the above perturbation equations can be de-
coupled from their angular parts and can be reduced to the form,

�
�

@2

@t2
+

@2

@r2�

�
 ‘ (t; r ) = � V (r ) ‘ (t; r ) = 0 ; (5.23)

where r � is the tortoise coordinate and the e�ective potentials,
V (r ) for di�erent �elds are given by,

VS = f (r )
�

‘ (‘ + 1)
r 2 +

1
r

@f(r )
@r

�
; ‘ = 0 ; 1; 2; :::;(5.24)

VEM = f (r )
�

‘ (‘ + 1)
r 2

�
; ‘ = 1 ; 2; 3; :::;(5.25)

VD � =
p

f jkj
r 2

�
jkj

p
f �

r
2

@f
@r

� f (r )
�

; jkj = 1 ; 2; 3; ::::(5.26)

herek is positive or negative nonzero integer related to the total
orbital angular momentum by ‘ = jk + 1

2 j � 1
2 and VD + and VD � are
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the super symmetric partners and give same spectra. So we choose
VD + for our study and omit the subscript.

The e�ective potential experienced by scalar �eld in the spacetime
of KS black hole is plotted in Figure 5.1. We can observe that the
KS spacetime creates a higher potential barrier for the �eld than
the Schwarzschild spacetime. Also the height of the potential barrier
increases with the increase in the value of the parameter� . But at
large distances, the potentials in the two cases coincide. The same is
the case for the electromagnetic and Dirac �elds.

0 4 8 12 16
0

0.04

0.08

0.12

r

V
(r

)

 

 

α = 0
α = 0.5
α = 1

Figure 5.1: E�ective potential faced by the‘ = 1 mode of scalar �eld
around the KS spacetime for di�erent values of� .

To get the time evolution picture of the �eld we write the pertur-
bation equations, Eq.(5.23) in terms of the null coordinatesu = t � r �

and v = t + r � as,

� 4
@2

@u@v
 (u; v) = V (u; v) (u; v); (5.27)
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and integrate this equation numerically using the �nite di�erence
scheme described in Section 3.4, We set initial conditions, (u; v =
0) = 0 and a Gaussian pro�le  (u = 0 ; v) = exp

h
� (v� vc)2

2� 2

i
, having

width � = 3, centered at vc = 10.
The computationally expensive part in the numerical integration

is to evaluate the potential at r (r � ) = r ((v � u)=2) on each grid
points. The complexity of the function,f (r ) given in Eq.5.18 made it
very di�cult to �nd an expression for the tortoise coordinate, de�ned
by dr � = 1

f dr . So we use the Runge-Kutta method to numerically
integrate the equation for the tortoise coordinate and �nd the values
of r (r � ) at each step by cubic spline interpolation as suggested in [141].
Once the integration is completed the wave function 	 is extracted
on the surface of constant r, and plotted as a function of time.

5.3.1 Evolution of massless scalar �eld

The typical behavior of time evolution of a massless scalar �eld is
shown in Figure 5.2. Thetop panel of the plot shows how the generic
behavior of wave function, the initial outburst, quasinormal oscilla-
tions, and power-law decay, in HL theory is di�ered from that in pure
Schwarzschild spacetime, taking the case of the‘ = 1 mode. We can
see that the QNM phase extends for a longer time in HL theory. The
late-time tail starts at a later time t � 257 for KS black hole with
� = 0 :8 whereas it is att � 198 for the Schwarzschild case. It is also
clear from the �gure that the oscillation frequency and the damping
time have a higher values in HL theory.
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Figure 5.2: Evolution of scalar �eld with ‘ = 1 mode. On the top,
the �eld around KS black hole with � = 0 :8(top curve) and the
Schwarzschild black hole(bottom curve) are shown. The plot on the
bottom shows the QNM region of the �eld evolution for di�erent val-
ues of � . Curves from bottom to top is for � = 0 ; 0:4; 0:8 and 1,
respectively.
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The graph on the bottom panel of Figure 5.2 describes the de-
pendence of QNM region on the value of the HL parameter,� . The
oscillation frequency increases with the increase in the value of� ,
whereas the it shows a slower damping for higher values of� .

After the QNM stage the massless �eld dies o� as an inverse power
of time. Figure 5.3 illustrates this nature, where the plot on thetop
panel shows the late-time behavior of the wave function for di�erent
values of� , with multipole index ‘ = 1. It is clear from the �gure that
the late-time behavior of massless �eld follows a power-law decay, and
is independent of the value of the HL parameter� . The tail phase is
identical to the Schwarzschild black hole spacetime case. To further
con�rm this we have studied the �eld evolution for di�erent multipole
indices for a �xed value of� = 0 :5. The plot on the bottom panel of
the Figure 5.3 illustrates the results obtained. The �eld falls o� as
	 � t � 3:06; t � 5:08; t � 7:07 and t � 9:08 for ‘ = 0 ; 1; 2 and 3 respectively,
suggesting the power-law form 	 � t � (2‘ +3) . This is the same decay
pattern that was found for the Schwarzschild spacetime[11].

Thus, it becomes evident that the QNM phase is the signi�cant
di�ering phase in the time evolution of scalar �eld around the KS
black hole when one compares with the evolution in Schwarzschild
black hole. So we further concentrate on the quantitative study of
the QNM phase. The exact values of the QNM frequencies can be
calculated from the numerically integrated data by nonlinear� 2 �t-
ting. We also use the WBK method described in Section 2.3.2 to
evaluate the QNMs. The QNMs calculated from the numerically in-
tegrated data are given in Tables 5.1 and 5.2. It can be read from
the table that the oscillation frequency of QNMs increase with the
increase of the value of� , while the damping of the �eld decreases.
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Figure 5.3: Late-time decay of scalar �eld around KS black hole for
‘ = 1 mode. The plot on the top is the ‘ = 1 mode of �eld, for
di�erent values of � . On the bottom, the �eld with � = 0 :5 for
di�erent angular momentum. Curves from top to bottom is for the
‘ = 0 ; 1; 2 and 3, respectively.
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WKB Time domain
� Re (! ) Im (! ) Re(! ) Im (! )
0 0.29111 -0.09800 0.29224 -0.09758
0.2 0.29564 -0.09424 0.29750 -0.09418
0.4 0.30071 -0.09008 0.30154 -0.09027
0.5 0.30345 -0.08777 0.30474 -0.08817
0.6 0.30636 -0.08526 0.30850 -0.08564
0.8 0.31260 -0.07937 0.31416 -0.07979
1 0.31918 -0.07162 0.32057 -0.07247

Table 5.1: QNM frequencies of massless scalar �eld for various val-
ues of � with ‘ = 1, evaluated using WKB method and numerical
integration data.

WKB Time domain
� Re (! ) Im (! ) Re(! ) Im (! )
0 0.48321 -0.09681 0.48332 -0.09676
0.2 0.49085 -0.09351 0.49087 -0.09356
0.4 0.49942 -0.08969 0.49911 -0.08981
0.5 0.50412 -0.08752 0.50266 -0.08767
0.6 0.50915 -0.08511 0.50831 -0.08527
0.8 0.52039 -0.07926 0.52029 -0.07947
1 0.53356 -0.07108 0.53272 -0.07138

Table 5.2: QNM frequencies of massless scalar �eld for various val-
ues of � with ‘ = 2, evaluated using WKB method and numerical
integration data.

5.3.2 Evolution of electromagnetic �eld

To study the evolution of electromagnetic �eld in HL black hole space-
time we numerically integrate the perturbation equation Eq.(5.23)
with e�ective potential Eq.(5.25) using the time domain method. In
Figure 5.4(top) the time evolution of the electromagnetic �eld, 	( t; r ),
evaluated at the �xed radiusr � = 10 is plotted in comparison with the
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corresponding Schwarzschild case. We can see that the time length
of the QNM phase of electromagnetic �eld increases in HL theory.
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Figure 5.4: Evolution of ‘ = 1 mode of electromagnetic �eld.
(top panel)Field around KS black hole with � = 0 :8(top curve) and
the Schwarzschild black hole(bottom curve). (bottom panel)QNM re-
gion of the time evolution of �eld for di�erent values of � . Curves
from bottom to top is for � = 0 ; 0:4; 0:8 and 1, respectively.
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The late-time tail starts at t � 300 for KS black hole with� = 0 :8
whereas it is at t � 230 for the Schwarzschild case. The oscillation
frequency of QNMs of electromagnetic �eld have higher values in HL
theory and observed a lower than in the Schwarzschild case. The
variation of oscillatory region of 	( t; r ) with the parameter � is shown
in Figure 5.4(bottom). The oscillation frequency increases with� and
shows a slower damping for higher values of� .

Figure 5.5(top) shows the late-time behavior of wave function for
di�erent values of � , with multipole index ‘ = 1. We �nd that the
late-time behavior of electromagnetic �eld is independent of� and fol-
lows the behavior of the Schwarzschild case with 	� t � 5:1. In Figure
5.5(bottom) �eld evolution for di�erent multipole index is shown with
� = 0 :5. The �eld falls o� as 	 � t � 5:08; t � 7:09 and t � 9:09 for ‘ = 1 ; 2
and 3 respectively. The perturbation dies o� at late-time ast � (2‘ +3)

as in the case of Schwarzschild case.
We have seen that quasinormal ringing phase is dominated form

of decay in the evolution of perturbations after the initial transient
phase. The QNMs calculated from the numerically integrated data
are given in Tables 5.3 and 5.4. We can �nd a good agreement with
the earlier obtained results, using the WKB method[140]. The table
shows that the QNM frequency electromagnetic �eld increase with
the increase of the value of� , meantime the damping of the �eld
reduces.
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Figure 5.5: Late-time decay of electromagnetic �eld, (top) for di�erent
values of� with ‘ = 1. The Field decay as an inverse power of time
with t � 5:08, for all values of � . (bottom)Decay of �eld with di�erent
multipole order ‘ with � = 0 :5. The �eld decay ast � 5:08; t � 7:09 and
t � 9:09 for ‘ = 1 ; 2 and 3, respectively.
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WKB Time domain
� Re (! ) Im (! ) Re(! ) Im (! )
0 0.24587 -0.09311 0.24401 -0.09051
0.2 0.25152 -0.08942 0.25225 -0.08706
0.4 0.25796 -0.08530 0.25733 -0.08447
0.5 0.26151 -0.08299 0.26383 -0.08135
0.6 0.26532 -0.08047 0.26575 -0.08009
0.8 0.27375 -0.07435 0.27771 -0.07454
1 0.28308 -0.06569 0.28478 -0.06581

Table 5.3: QNM frequencies of electromagnetic �eld for various val-
ues of � with ‘ = 1, evaluated using WKB method and numerical
integration data.

WKB Time domain
� Re (! ) Im (! ) Re(! ) Im (! )
0 0.45713 -0.09506 0.45088 -0.09471
0.2 0.46531 -0.09179 0.46239 -0.09117
0.4 0.47453 -0.08799 0.47153 -0.08711
0.5 0.47961 -0.08582 0.47835 -0.08502
0.6 0.48507 -0.08339 0.48332 -0.08183
0.8 0.49736 -0.07743 0.49756 -0.07439
1 0.51197 -0.06887 0.52823 -0.06897

Table 5.4: QNM frequencies of electromagnetic �eld for various val-
ues of � with ‘ = 2, evaluated using WKB method and numerical
integration data.

5.3.3 Evolution of massless Dirac �eld

Now we present the study of the evolution of Dirac �eld in HL black
hole spacetime. The perturbation equation Eq.(5.27) with the ef-
fective potential Eq.(5.26), is numerically integrated using the time
domain method. Figure 5.6(top) displays the time evolution of the
Dirac wave function, 	( t; r ) at a �xed radius r � = 10, for k = 2.
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The deviation of generic time dependence of wave function in the HL
theory from pure Schwarzschild spacetime is clear in the plot. QNM
region lasts for a longer time in HL theory.
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Figure 5.6: Time evolution of Dirac �eld with k = 2, ( lef t )around
KS black hole with � = 0 :8(top curve) and the Schwarzschild black
case(bottom curve). (bottom)QNM region of the time evolution of
Dirac �eld for di�erent values of � = 0 :5. Curves frombottom to top
is for � = 0 ; 0:4; 0:8 and 1, respectively.



Evolution of massless Dirac �eld 107

The late-time tail starts at t � 310 for � = 0 :8 whereas it is at
t � 240 for the Schwarzschild case. Also the oscillation frequency and
the damping time have a higher values in HL theory. The variation of
oscillatory region of 	( t; r ) with the parameter � is shown in Figure
5.6(bottom). The oscillation frequency increases with� and shows a
slower damping for higher values of� .

Figure 5.7(top) shows the late-time behavior Dirac �eld for dif-
ferent values of� , with k = 2. The late-time behavior is indepen-
dent of � and �eld decays in the inverse power of time ast � 5:08.
In Figure 5.7(bottom), �eld evolution for di�erent multipole indices
are shown with � = 0 :5. The perturbation dies o� at late-time as
	 � t � 3:08; t � 5:08 and t � 7:09 for k = 1 ; 2 and 3 respectively.

The quasinormal ringing phase of the perturbation can be seen
clearly in these �gures. The calculated values of QNMs from the time
domain data are given in Tables 5.5 and 5.6. We can �nd a good
agreement of the values obtained previously [139] using the WKB
scheme. Results show that the oscillation frequency and the damping
time increase with� .

WKB Time domain
� Re (! ) Im (! ) Re(! ) Im (! )
0 0.17645 -0.10011 0.17830 -0.10744
0.2 0.18187 -0.09614 0.17952 -0.09481
0.4 0.18709 -0.09167 0.18756 -0.09312
0.5 0.18963 -0.08916 0.19040 -0.09249
0.6 0.19212 -0.08639 0.19333 -0.09172
0.8 0.19681 -0.07981 0.19635 -0.07572
1 0.20053 -0.07113 0.200101 -0.06939

Table 5.5: QNM frequencies of Dirac �eld for various values of�
with k = 1( ‘ = 0), evaluated using WKB method and numerical
integration data.
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Figure 5.7: Late-time decay of Dirac �eld, (top)for di�erent values of
� with k = 2. The �eld decay as an inverse power law of time with
t � 5:08 for all values of � . (bottom)Decay of Dirac �eld for di�erent k
with � = 0 :5. The �eld decay ast � 3:08; t � 5:08 and t � 7:09 for k = 1 ; 2
and 3 respectively.

Finally, we compare the time evolution of di�erent �elds in HL
gravity. In Figure 5.8 massless scalar, Dirac and electromagnetic
�elds are plotted for � = 0 :5. The only di�erence between evolution
of these three �elds is in the QNM phase whereas the late-time tails
follow the same decay pattern with same power law exponent. Figure
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WKB Time domain
� Re (! ) Im (! ) Re(! ) Im (! )
0 0.37863 -0.09654 0.37348 -0.08850
0.2 0.38489 -0.09317 0.38126 -0.09488
0.4 0.39195 -0.08932 0.38935 -0.09014
0.5 0.39583 -0.08712 0.39126 -0.08816
0.6 0.39998 -0.08468 0.39153 -0.08388
0.8 0.40920 -0.07869 0.40337 -0.07758
1 0.41978 -0.07021 0.41415 -0.07239

Table 5.6: QNM frequencies of Dirac �eld for various values of�
with k = 2( ‘ = 1), evaluated using WKB method and numerical
integration data.

5.9 shows the variation of real and imaginary part of QNMs with� .
All the three �elds show the same dependence on the parameter� .

3  4  5  6  
−25

−20

−15

−10

−5

0

ln(t)

ln
|Ψ

|

 

 
Scalar
EM
Dirac

Figure 5.8: Evolution of ‘ = 1 mode of massless scalar, Dirac and
electromagnetic �elds around KS black hole with� = 0 :5.
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Figure 5.9: QNMs of massless scalar, Dirac and electromagnetic �elds
as a function of� , with ‘ = 1.

5.4 Conclusion

This chapter describes the study which probes the signature of the
Ho�rava-Lifshitz gravity, on the temporal evolution of di�erent spin
�elds around the black hole spacetimes. The evolution of electromag-
netic, massless scalar and Dirac perturbations around the asymptot-
ically 
at, spherically symmetric KS black hole solution are studied.
We �nd a considerable deviation in the nature of �eld evolution in HL
theory from that in the Schwarzschild spacetime. Comparing with the
Schwarzschild case, the QNM phase of evolution prolongs to a longer
time in HL theory before the power-law tail decay begins. In the
QNM phase, the �eld is found to be oscillate with larger frequency
in HL theory but it decays more slowly than the Schwarzschild case.
The late-time decay of �eld, regardless of the spin, is found to be in-
dependent the HL parameter� , and follows the same power-law tail
behavior as in the case of Schwarzschild black hole.
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6.1 Introduction

I t is well understood in standard GR that massive �eld perturba-
tions in the vicinity of black holes behave di�erently from the massless
ones. A study on the propagation of massive scalar perturbations in
Schwarzschild and Kerr spacetimes, using third order WKB approx-
imation revealed that the QNMs of massive �elds decay more slowly
than massless ones[144]. Similar observation was made in the study of
massive charged scalar �eld in a RN black hole spacetime exploiting
WKB method[145]. These attempts are restricted to small values of
the �eld mass due to the limitations arised from the validity of WKB
approximation. A detailed investigation on the behavior of QNMs on
the �eld mass is presented in[76]. They solved the QNMs using con-
tinued fraction method and showed that there may have modes with
arbitrary long life, called the quasi-resonant modes, for speci�c values
of the �eld mass. It has been proven in [146] that the quasi-resonant
modes, which are arbitrary long living (purely real) modes, can exist
only if the e�ective potential is not zero at least at one of the bound-
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aries of the R-region. The QNMs of massive scalar and Dirac �elds
are further investigated in [75].

Late-time tail phase of massive �elds also reported to have a di�er-
ent behavior in the black hole spacetimes of GR. In contrast with the
massless �elds, where the �eld at late-time dies o� as 	 � t � (2‘ +3) ,
massive �elds have an oscillatory inverse power-law behavior. At in-
termediate late times, Mm � mt � 1=(mM )2, massive �eld with
mass m, decay as 	 � t � ( ‘ +3 =2)sin (mt) [142]. But it was shown
analytically that in the asymptotic late times (mt � 1=(mM )2)
another pattern of oscillatory tail of the form 	 � t � (5=6)sin (mt)
dominates[143] and it was numerically veri�ed for various spacetimes
and �elds[87, 147{149].

All these studies argued that late-time relaxation does not have
any relation to the spacetime parameters. Inspired from the hints that
QNMs show dependence on spacetime parameter in three dimensional
AdS[150] and de Sitter[151] spacetimes, a detailed numerical study of
relaxation process in RN spacetime was done in [152]. They showed
that for Mm � 1 relaxation depends only on the �eld parameters,
but when Mm � 1 spacetime parameters a�ect the relaxation and
found that for a Schwarzschild black hole bigger the black hole mass
is, the faster the perturbation decays.

In the light of these fascinating results, it deserves a close analysis
of massive �eld evolution in HL theory. Most of the previous studies
on the �eld evolution around black holes in HL theory has so far been
restricted to the massless �elds. Eventhough the QNMs of massive
scalar �eld is discussed in [136], they are mostly concerned on the
thermodynamic aspects of the KS black hole and a clear picture of
the evolution is not clear in their study. This chapter investigates the
modi�cations of di�erent stages of evolution of a massive scalar �eld



Massive scalar �eld around KS black hole 113

around black hole in HL theory. The rest of the chapter is organized
as follows. In Section 6.2 we derive the master wave equation for
massive scalar �eld around KS black hole and analyze the e�ective
potential. The results of the numerical simulations for massive �eld
perturbation is presented in Section 6.3 and Section 6.4 comprises the
conclusion.

6.2 Massive scalar �eld around KS black
hole

To study the properties of massive �eld we take the simplest case,
massive scalar �eld with mass,m around the KS black hole spacetime.
The scalar �eld evolves according to the Klein-Gordon equation,

1
p

� g
@� (

p
� gg�� @� )� � m2� = 0 ; (6.1)

whereg�� is the metric de�ned in Eq. (5.14). Resolving the �eld
into scalar spherical harmonics, and employing the tortoise coordi-
nate, the above equation can be reduced to the form(Section 2.3.1),

�
�

@2

@t2
+

@2

@r2�

�
	 ‘ (t; r ) = � V (r )	 ‘ (t; r ) = 0 ; (6.2)

with the e�ective potential V (r ) is given by,

V (r ) = f (r )
�

‘ (‘ + 1)
r 2 +

1
r

@f(r )
@r

+ m2
�

: (6.3)

The behavior of the e�ective potential V (r ), is plotted in Figure
6.1. The dependence of the potential with the parameter� is plotted
in Figure 6.1(a), for massless and massive(m = 0 :3) �elds. For a given
mass, as the parameter� increases, the peak of the potential increases
where as the asymptotic region of potential is largely una�ected by the
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HL parameter. It is clear from Figure 6.1(b) that as the mass of the
�eld increases the hight of the potential increases and its asymptotic
value raises asm2. The barrier nature of potential will be spoiled for
high masses of the �eld.
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Figure 6.1: Pro�les of e�ective potential, V (r ) for ‘ = 2 mode. (a)
V (r ) for � = 0 :2(solid) and � = 0 :8(dotted). (b) V (r ) with di�erent
�eld masses for� = 0 :4.
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To study the evolution of the �eld we perform the numerical inte-
gration on an uniformly spaced grid by setting the initial conditions
 (u; v = 0) = 0 and a Gaussian pro�le on 	( u = 0 ; v) as the initial
values. To evaluate the potential atr (r � ) = r ((v � u)=2) on each step,
we numerically integrate the equation for the tortoise coordinate us-
ing the Runge-Kutta method[141] and by cubic spline interpolation,
obtained r (r � ) at each step.

6.3 Evolution of massive �eld

Now we describe the �ndings on the massive �eld evolution in the
spacetime of KS black hole and compare the results with the existing
results in standard GR. Here in the �rst series of simulations we set
the mass of the black hole,M = 1 and choose the the �eld mass,m
such that Mm � 1.

6.3.1 Quasinormal modes

For the study the QNMs of the massive �eld, we set the initial Gaus-
sian pro�le with width, � = 3 centered at v0 = 10. In Figure 6.2
the wave function for massive scalar �eld(m = 0 :1) is plotted in com-
parison with the corresponding Schwarzschild case for‘ = 2. After
the prompt response in the beginning, the quasinormal ringing starts.
From the plot one can note two signi�cant di�erence between the two
cases. Firstly the QNM phase has a lower damping rate in HL theory,
than in the standard GR. Secondly, in HL theory the ringdown phase
last for a longer time. Figure 6.3 shows the variation of QNMs with
the �eld mass, m for � = 0 :4. As the mass of the �eld increases the
QNM phase shrinks in time.
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Figure 6.2: Time evolution of the‘ = 2 mode of the massive scalar
�eld( m = 0 :1) in KS spacetime with � = 0 :8(top curve) in compar-
ison with the corresponding case in Schwarzschild spacetime(bottom
curve)
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Figure 6.3: Time evolution of the‘ = 2 mode of the massive scalar
�eld with di�erent masses for � = 0 :4. Curves frombottom to top is
for m = 0 :01; 0:05; 0:1 and 0:2.
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To see the e�ects of the HL parameter,� and �eld mass, m in
QNM phase, we calculate the exact values of QNMs from the numer-
ically integrated data in the time domain, by a nonlinear� 2 �tting.
We also use the third order WKB method to obtain the results. The
WKB method is found to be accurate for low lying modes and can be
used to explore the QNM behavior of black holes for �eld with low
masses. The calculated values are given in Table 6.1 and Table 6.2.

The following points can easily be observed from the tables. QNMs
of massive �eld in HL theory have a higher oscillation frequencyRe(! )
and a lower damping rate,jIm (! )j than the Schwarzschild case. Also
the Re(! ) and jIm (! )j found to be decreasing with the increase of
the HL parameter, � . WKB method gives verse results for higher
�eld masses since the barrier nature of potential gets spoiled at these
mass ranges. This justi�es the discrepancies in the QNMs evaluated
by time domain and WKB methods at high �eld mass given in Table
6.2.

WKB Time domain
� Re (! ) Im (! ) Re(! ) Im (! )
0 0.48637 -0.09572 0.48552 -0.09573
0.2 0.49388 -0.09253 0.49377 -0.09256
0.4 0.50231 -0.08884 0.50159 -0.08888
0.6 0.51188 -0.08438 0.51142 -0.08437
0.8 0.52293 -0.07868 0.52143 -0.07893
1 0.53587 -0.07069 0.53569 -0.07106

Table 6.1: Fundamental(n = 0) QNM frequencies of massive(m =
0:1) scalar �eld for ‘ = 2, calculated using WKB method and numer-
ical integration data.
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WKB Time domain
m Re(! ) Im (! ) Re(! ) Im (! )
0 0.49942 -0.08969 0.49886 -0.08951
0.02 0.49953 -0.08966 0.49979 -0.08969
0.05 0.50014 -0.08948 0.49839 -0.08948
0.07 0.50083 -0.08928 0.50156 -0.08922
0.1 0.50231 -0.08883 0.50159 -0.08875
0.2 0.51101 -0.08622 0.51083 -0.08701
0.3 0.52571 -0.08169 0.52737 -0.08029
0.4 0.54665 -0.07501 0.53933 -0.06758
0.5 0.57423 -0.06568 0.54165 -0.05451

Table 6.2: QNM frequencies afor di�erent mass of the scalar �eldm.
QNMs calculated using WKB method and numerical integration data
(‘ = 2 and � = 0 :4).

6.3.2 Late-time decay of massive �eld

The QNM phase is followed by a phase of late-time tail behavior of
the �eld decay. In the light of the previous results obtained for the
massive �eld decay in the standard GR, we monitor the decay of �eld
for a longer period of time. We observe following behavior for the
�eld decay in di�erent regimes, in HL theory.

A. Intermediate late-time decay

First we look at the late-time tails in intermediate range,Mm �
mt � (mM )2. The decay of �eld along black hole outer horizon
H+ (approximated by the null surfaceumax = 0 :5 � 104) and future
time like in�nity i+ (approximated on �xed radius r � = 50M ) are
evaluated with the initial �eld pro�le parameters v0 = 50 and � 2 = 2.
The result for � = 0 :4 with m = 0 :01 and ‘ = 0 is shown in Figure
6.4.



Late-time decay of massive �eld 119

5  6  7  8  

−16

−14

−12

−10

−8

−6

−4

−2

ln(t)

ln
|Ψ

|

Figure 6.4: Decay of massive �eld withm = 0 :01, along outer horizon
H+ (top curve) and future time like in�nity i+ (bottom curve). The
amplitude of �eld decay as power law with exponent� 1:49 and period
of oscillation T = 314:8.

After the QNM phase the amplitude of the oscillatory �eld decays
as a power law with exponent -1.49 alongI + and H+ with a period
of oscillation T = 314:8. We have analyzed for di�erent values of HL
parameter � and found that the tail behavior is almost independent
of � and the decay is identical to the Schwarzschild case according to
the form,

	 � t � (‘ +3 =2)sin (mt): (6.4)

This can be expected since the late-time tail is originated by the
backscattering by the e�ective potential in the asymptotic region and
as it is clear from Figure 6.1, that the parameter� has no e�ect on
this asymptotic region of the potential but can only change its shape
near the peek.
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