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ABSTRACT

Keywords: Bufler Overflow, Anomaly Detection, Intrusion, Security.

Modern computer systems are plagued with stability and security

problems: applications lose data, web servers are hacked, and systems crash under

heavy load. Many of these problems or anomalies arise from rare program

behavior caused by attacks or errors. A substantial percentage of the web-based

attacks are due to buffer overflows. Many methods have been devised to detect

and prevent anomalous situations that arise from buffer overflows. The current

state-of-art of anomaly detection systems is relatively primitive and mainly

depend on static code checking to take care of buffer overflow attacks. For

protection, Stack Guards and I-leap Guards are also used in wide varieties.

This dissertation proposes an anomaly detection system, based on

frequencies of system calls in the system call trace. System call traces represented

as frequency sequences are profiled using sequence sets. A sequence set is

identified by the starting sequence and frequencies of specific system calls. The

deviations of the current input sequence from the corresponding normal profile in

the frequency pattern of system calls is computed and expressed as an anomaly

score. A simple Bayesian model is used for an accurate detection.

Experimental results are reported which show that frequency of system

calls represented using sequence sets, captures the normal behavior of programs

under normal conditions of usage. This captured behavior allows the system to



detect anomalies with a low rate of false positives. Data are presented which show

that Bayesian Network on frequency variations responds effectively to induced

buffer overflows. It can also help administrators to detect deviations in program

flow introduced due to errors.
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CHAPTER 1

INTRODUCTION

All advanced forms of life are gifted with self-awareness. Because of this

consciousness, living systems are able to detect and respond to changes in their intemal

state. In contrast, computer systems normally fail to detect and respond to changes in

their behavior. In the current scenario most of the operating systems do not have

sufficient mechanisms to thoroughly profile or monitor the system behavior.

As a result many a times, systems deviate from the normal behavior and lead to

unauthorized access and other security violations. Unusual program behavior often leads

to data corruption, program crashes, and denial of services. Despite these problems,

current computer systems have no effective general-purpose mechanism for detecting and

responding to such anomalies.

This dissertation is an attempt towards overcoming this shortcoming. It is based

on the idea that computer operating systems can be augmented with mechanisms to

improve security, without much compromise on system performance. In the ensuing

chapters, a prototype system, based on system call frequency representation, to profile

processes and to detect anomalies during process executions, is proposed and evaluated.

It can detect changes in program behavior and is particularly good at responding to

security violations caused by buffer overflows.
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1.1. MOTIVATION

As our computer systems have become increasingly complex, they have also

become more unpredictable and unreliable. Today we routinely run hundreds of programs

on any given computer. Many of these executables require tens of megabytes of memory

and hundreds of megabytesof disk space. As our systems become faster and larger,

programs continue to expand in size and complexity.

Although these programs contain a remarkable amount of functionality, the

additional capabilities have necessitated a correspondingly higher cost in reliability and

security. New vulnerabilities are found almost every day on most major computer

platforms. Even worse, we have all become trained to program quirks and outright

crashes. No sooner does one version seem to stabilize, than a new one comes out

providing new capabilities and new problems. One of the main drivers of this rise in

complexity is the need to be connected, both in local area networks and on the Internet.

Web browsers and chat clients continuously communicate with the outside world, peer­

to-peer file sharing services turn workstations into servers, and even word-processors

have become Internet-aware, able to transfer documents to and from web servers with a

mouse click. Thus, the complexity of flexible user-friendly software is compounded by

the need to interact with unpredictable outside data sources. While an isolated system

might behave consistently over time, a networked system forms a new system every day,

as the rest of the Internet changes around it. These two factors, namely complexity and

connectivity combine to undermine our trust in computers. Fundamentally, there is too

much going on for even the most sophisticated user to keep track of. If we cannot keep

track of what our systems are doing, our computers must monitor what they do.
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Imbibing self-awareness and consciousness to our system, or attempting to add a

little bit of intelligence to the system, is the motivation behind this work.

1.2. PROBLEM FORMULATION

Most computer users would like a system to function consistently over long time,

since installation. Given that such consistency cannot always be achieved, it would be

nice to know when new circumstances cause a change in system behavior, especially if

that behavior could cause problems. Most of the time a program’s behavior is confined to

the inner circle of normal behavior around codes which are used often. A program

wanders out of this region into that of unusual but legal program regions when strange

events such as communication failures or invalid input data cause normally unused code

to be executed.

If hardware has never executed code incorrectly, and if our programs have

perfectly accounted for all possible errors and interactions, then all legal program

behavior would be permissible and safe, and no other behavior would be possible. In

practice, our programs are far from perfect, and the interactions of these imperfect

programs can cause one program to behave like another program, like for example

turning a word processor into a file deletion utility. Such unexpected functionality can\ n
lead to security violations and data loss.

One way to handle dangerous program behavior is to create detectors to recognize

these states explicitly. This approach is used by most misuse intrusion detection systems,

usually through the scanning of data streams for attack signatures. Although it can be

effective, this strategy has two basic limitations. One is that, generally it is impossible to

specify all the ways in which programs can malfunction, and so we are left with systems
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that must be continually updated as new threats arise. The other is that, a dangerous

pattern of activity in one context may be perfectly valid in another; thus, signatures in

software products must be created for the lowest common denominator to minimize false

dams

The new approach, however, has been to recognize the fact that most programs

work correctly most of the time, and so normal program behavior is almost always safe

program behavior. By learning normal program behavior through observing a system, and

by using this knowledge to detect and respond to unusual, potentially dangerous program

behavior, we can improve the stability and security of our computer systems.

The fundamental idea of this dissertation is that we can improve the security and

integrity of computer systems by ensuring that processes do not deviate from their normal

behavior. Practical computer users are often found to avoid program upgrades, precisely

to avoid disturbing their stable computational environment. The idea is to evolve a

system that can detect and respond to harmful system changes, whether they are caused

by a configuration error, misuse of a service, or an outright attack.

1.3. ANOMALY DETECTION

Normally programs make well-defined sequences of system calls, perform

predefined steps and invoke functions in a particular fashion. Any deviation from this

normal behavior or flow of control can be called an anomaly. All anomalies are not very

harmful. But many anomalies lead to unsafe situations where there is a potential

possibility of a deliberate unauthorized attempt to access information, manipulate

information, or render a system unreliable or unusable.
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The most commonly exploited vulnerability in general-purpose operating systems

is the buffer overflow. It is encountered due to insufficient bounds checking on

arguments that are supplied by users and occurs whenever a request for a buffer access

crosses the array / buffer boundary that was allocated for it. In Linux almost every

Internet application, including Sendmail daemon, Finger daemon, Talk daemon etc., has

at least one point from which it can be compromised through a buffer overrun. Many

attackers use this method for overwriting data that controls the program execution path

and hijack control of the program to execute the attacker’s code in place of the process

code. So programmers who intend to write codes to be run as the root, or perform inter

process communication, or wish to use extemal files, have to be careful about the buffer

OVCITUIIS.

In an overflow attack, the objective of the attacker is to corrupt information in a

carefully designed manner. Commonly they make use of functions that do not check the

size of the arguments and pass very large strings as argument to these functions, which

either overwrites the function return address or places an executable code in the stack.

One method to prevent such attacks is to provide range checking for arrays or buffers

used. Owing to the heavy overhead involved, it is usually not preferred. Also for

languages like C where the size of arguments are unknown in most cases, range checking

is not a good option. The usual method is to go for static code checking to determine

risky functions and to substitute them with safer functions. Whenever a new application

is developed or a new version is released the same process has to be applied to make it

safe. If range checking is applied after analyzing the situation by using a number of

parameters, the overhead can be reduced. Also in situations where range checking cannot

5



be directly applied the same parameters can be used to categorize whether the current

state is safe or not. Since the verification process is done during runtime the method is

quite accurate.

Race condition also leads to anomalies. A race condition is a flaw in a system or

process where the output exhibits unexpected critical dependence on the relative timing

of events. These are time-of-check-to-time-of-use (TOCTTOU) attacks arising as a result

of lack of mutual exclusion. TOCTTOU attacks occur when a system utility (program)

perfomis some important operation at a time t2 after ensuring that some condition C

holds at time tl such that t2 succeeds tl and at time t2, C does not hold. A malicious

program can execute in the interval (tl, t2) even when C does not hold. This can cause

the utility to perform an unintended action. Xterm, Binmail, Passwd, Sendmail etc. are

vulnerable to race condition based attacks [Goyal 03]. In computer memory a race

condition may occur if commands to read and write large amount of data are received at

almost the same instant, and the machine attempts to overwrite some or all of the old data

while that old data is still being read. This is very common in systems, which support

Remote Procedure Call. This is especially true in networks with long lag times, because

of the high probability of granting multiple remote requests. Occurrence of race

condition depends on many factors such as CPU speed, network latency, channel speed,

system load at the target station.

Both buffer overflow and race condition may lead to denial of service attacks.

CPU, memory and other resources may be used up at a higher rate rendering the system

nonfunctional. A steep rise in the utilization rate of the resources beyond the expected

level can be predicted as a denial of service attack.
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1.4. SYSTEM-CALL MONITORING AND RESPONSE

On UNIX and UNIX-like systems, user programs do not have direct access to

hardware resources; instead, one program, called the kemel, runs with full access to the

hardware, and regular programs must ask the kernel to perform tasks on their behalf.

Running instances of a program are known as processes. Multiple processes can execute

the same program; even though they may share code, each process has its own virtual

memory area and virtual CPU resources. The kernel shares memory and processor time

between processes and ensures that they do not interfere with each other.

When a process wants additional memory, or when it wants to access the network,

disk, or other I/O devices, it requests these resources from the kernel through system

calls. Such calls normally take the form of a software interrupt instruction that switches

the processor into a special supervisor mode and invokes the kernel’s system call dispatch

routine. If a requested system call is allowed, the kernel performs the requested operation

and then returns control either to the requesting process or to another process that is ready

to run.

With the exception of system calls, processes are confined to their own address

space. If a process is to damage anything outside this space, such as other programs, files,

or other networked machines, it must do so via the system call interface.

Unusual system calls indicate that a process is interacting with the kernel in

potentially dangerous ways. Interfering with these calls can help prevent damage;

therefore, a computational mechanism that monitors and responds to unusual system calls

can help maintain the stability and security of a computer system.
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1.5. RESEARCH QUESTION

The main research objective of this work is to develop a system that will detect

anomalies occurring in the computing system and to explore ways and means to enhance

its security. To achieve the above research objective the following research question is

formulated:

“How can we enhance the security of the computer system by effectively monitoring

anomalies?”

In order to answer the main research question given above, the following sub­

questions are to be dealt with:

1. How do anomalies arise and what are the counter measures in practice?

2. Which is the most crucial and unresolved vulnerability and how does it occur?

3. Will buffer overflows change the execution sequence of processes?

4. What are the approaches for intrusion detection? Which one of them is suitable

for buffer overflow detection?

5. Is it possible to use system call traces, commonly used in general anomaly

detection, to detect anomalies caused specifically by buffer overflows?

6. How can system call tracesbe collected and represented? \

7. What are the criteria for selecting a process for buffer overflow experiments?

8. How can we profile normal behavior of processes and how can we classify input

processes as normal and abnormal?

9. What are the parameters for measurement of effective performance of the

detection mechanism?

I0. How do we develop and evaluate a model based on the concepts‘?

8



1.6. RESEARCH METHODOLOGY

Many of the security problems and anomalies (rare program behaviors) are caused

by attacks (unauthorized programs). There are many security threats and there are diverse

manners in which the attacks can be carried out. . Hence, a thorough literature study was

conducted to identify the possible methods of attack and the solutions available to take

care of the situations caused by such attacks. A close examination of the existing data

revealed that, buffer overflows constitute a substantial portion of the attacks. Hence it

was decided to focus on buffer overflow vulnerability.

A detailed study was conducted on intrusion detection to determine the approach

to be used for detecting rare program behavior. Intrusion detection techniques are

traditionally categorized into two classes: anomaly detection and misuse detection.

Anomaly detection is based on the normal behavior of a subject such as a user or a

system; any action that significantly deviates from the normal behavior is considered

intrusive. Misuse detection catches intrusions in terms of characteristics of known attacks

or system vulnerabilities; any action that conforms to the pattern of known attack or

vulnerability is considered intrusive.

Buffer overflow is an exploitation technique, and any attack code can be run

during exploitation. There is no specific attack signature for buffer overflow. So the

misuse detection approach, where, the intrusions are detected by identifying the attack

signature becomes complex and not suitable for buffer overflow detection. Hence it was

decided to use anomaly detection approach, and to profile the normal behavior of

processes, so as to detect deviations from the normal as anomalous.
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Further survey of literature was focused on how buffer overflows are utilizedby

attackers to gain unauthorized access. Initial experiments were conducted in RedHat

Linux to exploit simple processes using buffer overflows. Buffer overflows were created

by passing very large strings containing intrusion code. It was observed that buffer

overflows often change the execution sequence of processes.

Many researchers have used system call traces generated by processes to profile

process executions. The next set of experiments verified whether buffer overflows could

be detected by tracing system calls generated. System call traces were collected using the

command strace. It was clear from the experiments that buffer overflows could be

detected by analyzing the system call sequences. The next question was to identify a

suitable representation for the system call sequences, which is compact and which would

ease the course of detection. The commonly used methods, subsequences and look-ahead

pairs, were found to be complex and using much storage space. It was seen that the

method using frequency representation of system calls is very compact and simple,

though some information (appearing order and parameters) is lost. Further experiments

concentrated on frequency representation. The system call sequences were represented

using frequencies of around 200 system calls of the system. It was observed that during

buffer overflows, frequencies of certain system calls in the frequency sequence get

changed. Further experiments were conducted on Sendmail daemon, a commonly used

program that is vulnerable to buffer overflows. It was ensured that buffer overflows can

be detected by measuring variations in frequency count of system calls of the system. A

new approach to represent normal frequency profiles using the concept sequence sets was

10



identified and developed. A simple Bayesian network was used to classify the input

profile into normal and abnormal.

A concept prototype was developed and implemented to detect buffer overflows.

To ensure the correctness of method, more varieties of traces were needed. To

experience the wide varieties of executions and for a standard evaluation, bench marked

data sets of Sendmail available at University of New Mexico for buffer overflow was

used. Only normal sequences were used for training. Samples were selected using

rand0m() function from the list of normal sequences. The prototype was tested using

random samples from the list of normal and abnormal sequences.

1.7. RESEARCH FINDINGS

The main research findings can be listed as follows.

0 Buffer overflows constitute a major portion of attacks.

0 Anomaly detection approach is more suitable for detection of buffer overflow

attacks.

0 Buffer overflow attacks can be detected by analyzing system call traces generated

by the process.
\

0 Frequencies of some system calls change due to buffer overflows and frequency

representation of system call traces is good enough to detect buffer overflows.

0 System call traces represented as frequency sequences can be grouped into

sequence sets and frequency profiling using sequence sets captures the normal

behavior of processes.
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0' Bayesian network on frequency variations respondingeffectively to induced

buffer overflows.

0 The use of sequence sets allows the system to detect anomalies with a low rate of

false positives.

0 It can also help administrators to detect deviations in program flow introduced

due to errors.

1.8. CONTRIBUTIONS

This work makes several concrete contributions. It monitors the system calls

executed by every process on a single host, maintaining separate profiles for every

executable that is run. As each process runs, the possible normal sequences of system

calls issued by the particular process is collected and stored. Once the possible sequences

are collected, the system will be ready to check for anomalies. It supports the idea

presented in the past work that system call trace can be used to detect anomalies and

ensures that it can be extended to detect novel attacks caused by buffer overflows, Trojan

code, and any type of anomaly that causes deviation in the system call sequence. System

call monitoring can also detect other problems such as configuration errors, helping

administrators to find problems before a loss of service is reported.

1.9. OVERVIEW

The rest of this dissertation is organized as follows. Chapter 2 presents essentials

of computer security, intrusion detection and related work in the area. Chapter 3 describes

process profiling using system call sequences. Chapter 4 discusses buffer exploitation

techniques while Chapter 5 describes the detection model developed and the detection

experiments. Chapter 6 presents the performance evaluation of the model. Chapter 7

12



presents a discussion on the shortcomings. The thesis ends in Chapter 8, where the ideas

for future work are described.
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CHAPTER 2

COMPUTER SECURITY

With the advent of World Wide Web, Computer Security is receiving much

attention. Some significant efforts were taken by developers and entrepreneurs to enhance

application level security, which contributed to technological developments in the field of

cryptography. Secure protocols such as SSL, SHTI‘ P have brought privacy and

authenticity to Web sessions, but they do not secure the computers that are connected to

the Intemet.

The field of computer security ultimately deals with the problem of unauthorized or

dangerous computer access. Covered within this umbrella are issues of data integrity,

confidentiality, and system availability. When dealing with these problems, there are

three basic approaches one can take:

1. Build systems in such a way that dangerous or unauthorized activities cannot take

place.

2. Detect such activities as they happen and ideally stop them before systems are

compromised.

3. Detect systems that have been compromised, and determine how much damage

has been done.

Clearly the first option is preferable, and before the rise of the Internet this was the

main focus of the field.

14



2.1. OPERATING SYSTEM SECURITY - MAJOR ISSUES

A system is secure only if all the data residing in it and all the resources it

manages are secure. The level of protection provided should be in accordance with the

criticality of the data and the resources managed by the operating system. Information in

a banking system may have great financial value. In a medical system mishandling of

information may lead to a life or death problem. A secure operating system can be

defined as the resident software controlling hardware and other software functions in an

information system that provide a level of protection or security appropriate to the

classification, sensitivity, and/or criticality of the data and resources it manages [Its 01].

Sharing and protection are two contradictory goals [Deitel 00]. There should be a

compromise between these two. It should be ensured that only authorized users use the

available resources, in only authorized ways. In a networked environment data has to be

protected from unauthorized retrievals, at the client, at the server, and while transmission.

The major security aspects at the client and server are resource protection and user

authentication. There should be mechanisms in the underlying operating system to protect

objects in the network from unauthorized access and to assure the receiver that the

message came from the actual source and that it has traveled to him with out being

modified.

The best possible method for data security during transmission is the use of

encryption. Many public key and secret key algorithms are available for this purpose and

currently most of the applications use this technique as the basic security mechanism. In a

network scenario the following are the major security flaws that compromise security in

the common operating systems.
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2.1.1. Inadequate Security Mechanisms:

Most of the current operating systems require some kind of password

authentication before logging on to the system. But most of the passwords are common

names, phrases or text only words, all of which can easily be guessed. Password

protection can also be bypassed by accessing world readable password files, capturing the

passwords when it travels through the net (sniffing), by deriving the original password

from the encrypted password or hijacking a session after successful login. Dictionary

attacks are possible even in cases like Windows NT where only password hash is stored.

But if the hash value incorporates “salt” a secret random value such as in UNIX,

performing a dictionary attack is not very easy. In a networked environment

authentication is even more tedious because the pass phrase has to travel through the net.

The current standard protocols do not send password information directly across the

network. Instead it uses a challenge response mechanism, where the client sends the

stored hash value in response the challenge posed by the server. But the fact that client

needs to know only the hash value makes it susceptible to modified client attacks. Now

there are single-sign-on products integrating multiple password systems. These

authentication systems will help to remove ‘clear-text’ passwords from the common\ .
protocols such as Telnet and FTP [Visser 97].

For authorization most of the multi-user operating systems depend on privilege

levels and access controls. The concept of privilege levels is applied to the processes in

the hardware while that of access controls is applied to the operating system resources.

The operating system kernel executes in the highest level, and has full access rights. User

processes execute in the lowest ring, and have access only to limit the memory segments.
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If a user process violates access restriction or tries to increase its privilege level, then the

control is passed to the kernel. The kernel then handles the error, either as a segmentation

fault (UNIX) or general protection fault (Windows) [Mahoney 00].

Access control mechanisms decide who can perform which operations and on

what objects. There are many access control approaches [Goscinski 92, Milankovic 00].

The first is the access matrix model. It provides general representation of access control

policies in which the access rights of each subject (user, process) with respect to each

object (resource, process) are defined as entries in a matrix. This sparse access matrix is

usually implemented using access control lists and capability lists. Though other models

based on mandatory access control are available only access control lists and capabilities

are used in common operating systems. It is necessary to emphasize that few operating

systems so far provide protection mechanisms that prevent unauthorized accessing of

system objects.

Inadequate and improper access controls lead to security violation. Some system

administrators fail to effectively implement even the available access control

mechanisms, by granting excessive privileges to some users. Spoofing attacks, Viruses,

Trojans all are results of inadequate access control mechanisms. Some systems allow the

concept of trusted hosts. Intruders can impersonate these trusted hosts and get

unauthorized access (Spoofing attacks).

Applications or routines can contain errors, which could allow access to

applications running in parallel, or to the operating system. Data sharing causes malicious

code to be loaded without the permission of the user. Trojans and viruses come under this

category. lf these programs are executed in a domain that provides the access rights of the
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executing user, they may misusethese rights and cause information leakage. Now most of

the programs come with checksums and signatures. This feature will reduce such attacks

to some extend.

Authorization mechanisms should take care of unauthorized release of the

resources in addition to the unauthorized, access. The researches in this area are very

scanty. A commonly occurring problem is the allocation of previously used space without

first erasing it. Any type of swapped memory system is insecure because traces of data

are left within that swap file or swap area. If the previously contained information is

released to the new owner of the space, it will be a real threat to security [Anonymous

01].

2.1.2. Holes in Operating Systems and Packages

A hole is a feature that allows unauthorized users to gain access or increase their

level of access with out authorization. Holes in OSs and packages open a good horizon

for the crackers. Any flaw that a cracker can exploit will probably lead to other flaws.

Each flaw is a link in the network chain. By weakening one link they can loosen all other

links.

Statements or code segments in the available.services that cause buffer overflow,

unhandled and unexpected combination of inputs, race conditions in a multitasking

environment etc. are some examples of common vulnerabilities in operating systems that

hackers can make use of [Its 01].

Based on the degree of vulnerability, holes can be classified into 3:

-Holes that cause denial of service (Class C)

l8



-Holesthat allow local users with limited privileges to bypass authorization checks (Class

B)

-Holes that permit unauthorized access to the network by outside parties (Class A).

Class C holes are almost always operating system based; they often exist in the

networking portions of the operating system. Though intruders cannot harm data or gain

unauthorized access through this type of holes, they are just nuisances. They often

overload the servers and make them inoperable. These attacks are generally called Denial

of Service (DoS Attacks).These attacks are common on the Internet. Many of the

commonly used DoS attacks are based on high—bandwidth packet floods, or on other

repetitive streams of packets.

2.1.3. The Most Common DoS Attacks

A "denial-of-service" attack is characterized by an explicit attempt by attackers to

prevent legitimate users of a service from using that service. A wide variety of DoS

attacks are possible. Examples include blocking of the network traffic, disruption of web

services and prohibiting particular persons from accessing certain services [Loscocco 98].

Most of these attacks use flooding of the network to achieve the purpose [Anonymous

01, Cert 99].

The most common DoS attacks are Smurf, Fragile and SYN flood [Cert 96]. In

the “Smurf” attack the attacker broadcasts Internet Control Message Protocol (ICMP)

echo requests with return addresses spoofed to the target [Cert 98]. This attack has two

victims: an "ultimate target" and a “reflector”. For each packet sent by the attacker, many

hosts on the reflector subnet will respond, flooding the ultimate target and wasting
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bandwidth for both victims. “Fragile”, is ta similar attack and uses directed broadcasts in

the same way, but uses UDP echo requests instead of ICMP echo requests.

In the SYN flood attack the target machine is flooded with TCP connection

requests. The source addresses and source TCP ports of the connection request packets

are randomized; the purpose is to force the target host to maintain state information for

many connections that will never be completed. SYN flood attacks are usually noticed as

the target host (frequently an HTTP or SMTP server) becomes extremely slow, crashes,

or hangs. It is also possible for the traffic returned from the target host to cause trouble on

routers; because this retum traffic goes to the randomized source addresses of the original

packets, it lacks the locality properties of "real" IP traffic, and may overflow route

caches. This hole exists with in the heart of the UNIX OS or any OS running full fledged

TCP/IP over the intemet.

Now a days Distributed Denial of Service (DDoS) attacks are also popular. The

attacker breaks into hundreds or thousands of machines all over the Internet, installs

DDoS software on them and launches coordinated attacks on victim sites from these

machines. These attacks typically exhaust bandwidth, router processing capacity, or

network stack resources, breaking network connectivity to the victims. Many sites such

as Yahoo, Buy, eBay, Amazon, Datek, E*Trade, and CNN have fallen victims to this

attack and were unreachable for several hours each [Zdnet 01, McMillan 07,

Sethumadhavan 07 1.

Worms also act as vehicles for DDoS aatacks, as in the case of the fast spreading

worms Slammer [Moore 03], Blaster [Symantec 03-1] and Sobig [Symantec 03-2]

which caused wastage of millions of dollars in downtime and IT expenses.
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2.2. VULNERABILITY ANALYSIS

Microsoft Windows has a significantly higher share of the web when one counts

by the computer. Various surveys reveal that among the current commercial operating

systems NT is more popular for attacks [Netcraft 01]. According to Attrition, 61% of

hacked web sites between. August l999 and May 2001 were running Windows NT/20t)0,

with most of the remainder running variations of UNIX (22% Linux, 7% Solaris, 2%_Irix,

8% others) [Attrition 01].

In addition to the above NT suffers from the following security vulnerabilities

[Chalmers 01]. NT servers lack a single sign on capability for the user’s activities.

Though Microsoft provides challenge response mechanism for its servers the password

encryption is not very strong. For local logins, NT uses an MD4 hash of a 14 character

password, with single round (allowing fast password guessing), and does not use a salt

(allowing table lookup attacks)[Visser 97].

The effectiveness of memory protection varies from one operating system to

another. In most versions of UNIX, it is almost impossible to corrupt the memory of

another process. Even though Windows NT provides memory protection, it is susceptible

to natiye VDD-based virus attacks.  program can potentially access memory outside its

program space, leading to a system fault which can cause the entire server to fail. Virtual

Device Driver viruses have the ability to modify memory, infect or damage files, and

directly access both hard drives and floppy diskettes. File level security is provided in

Windows NT, only if it’s proprietary system NTFS is chosen.

Windows NT Server does allow users to write kernel extensions, and this point of

flexibility can also become another point of vulnerability. Windows NT's capability to
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boot from a floppy diskette as an item of convenience also opens a way for Trojan horse

attacks. The way Windows NT schedule the tasks, makes it vulnerable to cpu hog attacks

[Sullivan 01]

Windows NT Server security is organized by the entire domain, rather than the

individual Web server. As a result, if a hacker can manage to control a single server

within a domain, he can use that control to access all other servers within the domain

[Mahoney 00].

NT provides limited SYN Attack defense, limited firewall capability and has

moderate virus susceptibility.

2.3. SECURITY MECHANISMS

Computer security is an enormously difficult problem for which no simple

solution exists. An attacker might exploit a design error (holes, weak encryption), a

programming error (buffer overflow, unhandled input) a configuration error (accounts

with no password, excess rights), or user error (running a Trojan email attachment). Most

of the attacks arise from the fact that there is much difference between the user privileges

and their actions. Often users get involved in unauthorized retrieval, manipulation and

usage of information. The major disadvantage of the existing protection mechanisms is

that it is impossible to determine whether such unauthorized information leakage exists.

The semantics of the information to be accessed is not considered. Thus it is necessary to

find suitable and viable mechanisms according to which the security of a system will not

only be decidable, but the system will be secure [Goscinski 92, Dynamoo 85].
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2.4. TAXONOMIES OF SECURITY

Military organizations in particular funded the development of provably secure

systems. Many taxonomies exist for classifying operating systems and applications based

on the level of security offered. These taxonomies are mainly based on access control,

resource protection and security violations. The widely accepted taxonomy is the one

introduced by Department of Defense U.S (DoD I983). By this taxonomy most of the

commercially available operating systems are marked as less secure with a rating of

either C or B. [Goscinski 92, Radium 02, Bcs 01, Dynamoo 85, Dynamoo 02]. The

famous document produced by the US Department of Defense, known as the Orange

Book, enshrined various requirements for different levels of trust. By trust, they meant

three things: how much you could believe that your system was secure; if it was

compromised, how much the system would limit damage; and, after security violation,

how well you could trust the logs of the system to tell you what damage had been done.

Several trusted operating systems have been built and major UNIX vendors, such as

Hewlett-Packard and Sun have trusted (Bl-certified) products available [Radium 01].

These orderings are generally expensive and hard to administer, and no operating system

certified at the B1 level or higher has been successful outside of niche markets. Instead,

the broader market has been dominated by systems that are inexpensive, fast, flexible,

and feature-rich.

Since modern, widely deployed computer operating systems and applications

have well-known fundamental security limitations; users have turned to add-on programs

to enhance security. Some of these additions stop attacks before they can succeed. For

example, network firewalls [Cheswick 94] and the TCP Wrappers package [Venema
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92] restrict network connections in an attempt to exclude dangerous machines and

services. Vulnerability scanners such as SATAN [Farmer 95] and Nessus [Deraison 02]

search and fix known vulnerabilities on a host or network. Packages such as StackGuard

[Cowan 98] and the Openwall Linux Kemel Patch [Openwall 01] prevent many kinds of

buffer-overflow attacks from succeeding, either by killing programs that experience

stack corruption, or by preventing the foreign stack-resident code from running.

Other additions detect damage after it has occurred. Packages such as Tripwire

[Kim 93] detect changes to system files by maintaining a set of cryptographically-secure

checksums that are periodically recalculated and verified. Virus-protection software, such

as Norton Anti Virus [Symantec 06] scan local or network storage for signatures of

known viruses, allowing users the opportunity to either clean or delete infected files.

The isolation of security functions in a general~purpose operating system is

difficult and results in a very large security kernel, which would slow down the

performance. A simple solution to ensure security is to monitor the processes that

perform access control and logging, giving special emphasis to the security of those

functions, and to monitor the processes that manage memory and other resources. Two

approaches exist for monitoring and predicting security violations, namely: Misuse

detection and Anomaly detection.

The misuse detection system searches for attack signatures and detects already

known attacks. But anomaly detection system acts as a supportive subsystem to the

operating system for ensuring security by detecting anomalies. An anomaly is the

potential possibility of a deliberate unauthorized attempt to access information,

manipulate information, or render a system unreliable or unusable. Whenever an object
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is modified, a privilege used, an authorization granted, or an access to an object or other

resources denied, the system sends an audit record to the anomaly detection mechanism.

Normally programs make well-defined sequences of system calls, which can be learned

by observing the program during its normal behavior. A change from this normal

behavior can be predicted as an anomaly.

2.5. INTRUSION DETECTION

An intrusion detection system or IDS is a tool used to detect unauthorized access

to a computer system or network. In terms of detection approaches, intrusion detection

systems can be broadly divided into two categories - attack-knowledge based and normal­

behavior based systems. Attack-knowledge based IDSs apply knowledge accumulated

about past attacks to detect future ones. One advantage of attack- knowledge based

approach is that it has the potential for very low false positives. Drawbacks, however,

include the difficulty of gathering the required information on known attacks and keeping

up with new attacks. Normal-behavior based IDSs detect attacks by observing deviations

from normal behavior of systems or users. If a deviation is observed, an alarm is raised. A

key advantage of normal-behavior based IDSs is that they can detect new, previously

unknown attacks. However, a high false alarm rate, due to complex ever-changing normal

behavior, is a typical drawback of most normal-behavior based IDSs._

The field of intrusion detection dates back to Anderson's 1980 technical report

[Anderson 80] and Denning‘s 1987 intrusion detection model [Denning 87]. Early work

in this field was motivated by the needs of government and the military; the need for

better security on the growing Internet, however, has led to numerous research projects

and commercial systems. Although there is no set of widely accepted rigorous
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classifications of intrusion detection systems, they can be broadly classified by what level

they monitor (host-based or network-based), and by how they detect attacks (signature,

specification, or anomaly). A complete overview of intrusion detection systems is

available at Bace [Bace 99]. Different taxonomies of the intrusion detection are available

at Herve Debar et pal. [Debar 99], Axelsson [Axelsson 00] and Kaziienko  Dorosz

[Kazienko 04].

Since intruders often attack a system through its connections with the outside,

modem virus-protection packages also scan web pages and email messages for viruses,

and can detect when a program attempts to modify executables (a common method for

virus propagation). When acting in this mode, these programs are also acting as intrusion

detection systems.

A natural approach to intrusion detection is to monitor network traffic and

services. Because of the complexity of network traffic, much attention has been devoted

to the problem of what parts of the stream should be examined. One interesting approach

is taken by the Network Security Monitor, which focuses on characterizing the normal

behavior of a network by examining the source, destination, and service of TCP packets

[Heberlein 90]. This work served as the basis for Hofmeyr‘s work on LISYS, a~ 1
distributed anomaly network intrusion detection system [Hofmeyr 99].

Based on different data sources, IDSs can also be classified into two groups­

network-based and host-based. Network-based IDSs, located at choke points (e.g.,

routers, gateways) in the network to be monitored, capture and analyze network packets

for malicious traffic. Host-based IDSs are used to monitor hosts or programs. Another

category is application-specific IDS, where IDS is designed for a particular application
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(e.g., web application, database). As its data source comes from an application which is

part of a host, it can be included in host-based IDS category.

In the case of a majority of current intrusion detection systems used to detect

human inside attackers, rule-based detection plays an important role. This is due to the

fact that the inherent variation of human behavior. makes it much harder to extract

signatures of inside attacker behaviors compared with those of malicious codes (e.g.,

viruses). In addition, the other approach—normal behavior-based detection technique,

typically has high false alarm rates. Rule-based approaches, in contrast, have the potential

to produce low false alarm rates. However, they have difficulty in defining rules which

can cover whole attack behaviors because of the diversity of attack behaviors.

There is another category of IDS known as User Behavior based IDSs. This type

II)S monitor user behavior. There are two perspectives—general host-based and domain­

focused. The data collected by a general host-based IDS represents how users generally

behave in a host, while the data collected by a domain-focused IDS is about user

behaviors with respect to a particular domain. In the computer world, a domain can be

considered as one kind of computer application such as web application, database, or

email application.

Owing to the inherent variation of human behavior, the biggest challenge in

general host based user-level anomaly IDSs is to decrease false positives without

reducing the ability to capture attackers. A number of researchers focus on using different

methods to model users via patterns of UNIX commands. DuMouchel [DuMouchel 99]

uses Bayesian statistics to model command sequences. Schonlau et al. [Schonlau 01]

investigate and evaluate six statistical approaches for detecting masqueraders. Oka et al.
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[Oka 04] propose a novel method called Eigen co-occurrence matrix to model UNIX

commands. As an extension of Schonlau’s work, Maxion et al. [Maxion 02-2] propose a

new classification algorithm with improvement on detection rates and false alarm rates.

Like the above researchers, Lane [Lane 00] also uses UNIX command sequences

as features to model user behavior. Along with computer security issues (storage, speed).,

he also adopts machine-leaming techniques to address these problems in modeling high

noise environment, concept drift, skewed class distribution, and variable mis­

classification costs. One noteworthy user behavior-level intrusion detection system is

NLDES [Anderson 95], which consists of both rule-based and anomaly-based detection

approaches. In the anomaly detection part, NLDES creates a set of statistical components

to model behavior for individual subjects: users, groups, remote hosts, and the overall

system. Parameters of models are dynamically adjusted and specific to each subject. A

vector of intrusion detection measures can be used to describe the audited activities. As

each audit record arrives, the relevant profiles are retrieved from the knowledge base and

compared with the vector of intrusion detection measures. Thus, NIDES evaluates the

total usage pattern, not just how the subject behaves with respect to each measure

considered singly. Distinguishing features of NIDES are that multiple measures and

dynamically adjusted parameters. However, like other user behavior based anomaly IDSs,

NIDES has high false positives.

Wisdom & Sense [Vaccaro 89] studied historic audit data to produce a forest of

rules which describe normal behavior. These rules are then fed to an expert system that

evaluates recent audit data and alerts security officers, when the rules indicate anomalous
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behavior. Majority of the raw information was obtained from computer audit data (e.g.,

locations, object types, days of the week, person names).

Attack knowledge-based IDSs can be divided into signature-based and rule-based.

Signature-based systems analyze data streams for specific pattems (e.g., network packets

for. substrings correlated with attacks). Rule-based systems compare data to pre-specified

rules (e.g., access policy to a specific file).

Signature-based intrusion detection techniques allow for very efficient

implementation, and are therefore applied in commercial intrusion detection products

such as the ISS RealSecure [Iss 07], WheelGroup Netranger [Wheelgmup 05] and

Cisco Secure Intrusion Detection System [Cisco 07]. The primary advantage of

signature-based systems is that they can detect known attacks immediately upon

deployment (unlike anomaly-based systems), and they do not need detailed information

on the behavior of applications (unlike specification-based systems). The downside is that

these systems require frequent signature updates to recognize new attacks, and signatures

developed in the laboratory may generate unexpected false positives in the real world.

Most virus and worm scanners also use signature-based techniques. However,

conventional signature extraction for novel. viruses and worms is an expensive and slow

manual procedure that can take hours or even days to complete. Some researchers

propose automatic generation of signature of unknown worms without human

intervention. EarlyBird [Sin 03-1, Sin 03-2], Autograph [Kim 04], and Honeycomb

[Kreibich 03] all make use of worm propagation characteristics to automatically generate

signatures that can then be used to filter or moderate the spread of worms elsewhere in

the network. EarlyBird is based on two key worm behavior characteristics, highly
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repetitive packet content and increasing traffic volume. Autograph detects worms that

propagate by randomly scanning IP addresses. Honeycomb extracts signatures from

suspicious traffic caught in honeypots [Honeypots 07].

But with knowledge of a specific domain, it is possible to define rules covering a

large majority of attack behaviors _ in that domain. Therefore, .rule-based IDSs are

appropriate for those domains which have very clear, critical security requirements such

as military, govemment and finance. In the work of Wisdom & Sense [Vaccaro 89],

NIDES [Anderson 95], Haystack [Smaha 88] and Emerald [Porn-as 97], intrusive

behavior rules play an important role in detection. The rules defined in Haystack are tied

to characteristics and security requirements of the domain (Air Force defense).

Normal behavior-based intrusion detection systems (also called anomaly intrusion

detection systems) rely on models of the “normal” behavior of computer systems, users,

applications or network usage to detect intruders. Behavior profiles can be built by

performing a statistical analysis of historical data or by using rule-based approaches to

specify behavior pattems. Anomaly IDSs can be classified into Network based IDS and

Host based IDS according to the data sources. They respectively use data transmitted

over the network and the data pertaining to the host.

For network anomaly detection, IDSs build profilesbased on different parts of

packets transmitted over the network. NSM [Heberlein 90] uses a four dimensional

matrix of which the axes are: source, destination, service, and connection ID. LISYS

[H0fmeyr 99] is an immunological model of distributed detection which was similar to

NSM except that its architecture permits the set of normal network flows to be distributed

across a set of hosts. PHAD [Mahoney 01] extracts a total of 34 attributes from the
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packet header fields of Ethernet, IP, TCP, UDP and ICMP; Similar to PHAD, NATE

[Taylor 02] treats each of the first 48 bytes as a statistical feature, the first 40 bytes of

which are in the header part and the latter 8 bytes of which are in the payload part. The

work of Krugel et al. [Krugel 02] and PAYL by Wang and Stolfo [Wang 04] present

service-specific intrusion detection systems that combine the service type, length and

payload distribution of the request as features. Instead of directly using packet data, some

systems like EMERALD [Porras 97] reconstruct the network packets and extract

features from semantic level data.

Host-based anomaly IDSs use two basic strategies: one is to model program

behavior, which is mainly used for detecting viruses and worms; the other is to model

user behavior, which is mainly used for insider attacks. In order to model program

behavior, a number of researchers have studied system calls [K0 94, Somayaji 02].

Host-based intrusion detection systems potentially can use many different data

sources. Rather than designing custom tools to observe system behavior, most early

research in host-based intrusion detection focused on the use of data from audit packages.

Audit packages record events such as authorization requests, program invocations, and

(some) system calls. ‘This voluminous data is generally written to a special-purpose

binary log file. Care is taken to record the data in a secure fashion so that unauthorized

users cannot easily conceal their activities. Audit trails are designed to provide forensic

evidence for human analysts; however, they can also provide a basis for an automated

intrusion detection system. Some of the most sophisticated uses of audit trails were the

IDES and NIDES projects, which used SunOS Basic Security Module (BSM) audit data

and statistical models to look for unusual patterns of user behavior [Lunt 92]. Audit
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packages by themselves tend to be "costly in terms of system performance and storage

requirements, and packages such as NIDES only add to the burden. As a result, audit­

based intrusion-detection systems have not been widely used outside of government

agencies.

Although audit data has been a populardata source, many other sources have been

used. Products such as the ISS RealSecure OS Sensor [Iss 07] and the free log check

package [Psionic 01] detect intrusions by scanning standard system logs for attack

patterns. Kuperman [Kuperman 99] developed a technique for generating application­

level audit data through library interposition. Zamboni [Zamboni 01], using an internal

sensors approach, modified the applications and kemel of an OpenBSD system to report a

variety of attempted attacks and other suspicious activity.

One noteworthy product is the CylantSecure intrusion detection system [Cylant

01]. Rather than observing system calls, it uses a heavily modified Linux kernel to detect

anomalously behaving programs. Published papers [Elbaum 99, Munson 01] indicate

that Cylant's technology can be used to instrument the source code of arbitrary programs

to report as to when different modules are entered and exited. In the CylantSecure

product, the behavior of an instrumented Linux kernel is fed into a statistical model that

then detects dangerous program behavior and network connections by observing unusual

patterns of kernel behavior caused by those programs and connections. Cylant Secure

gathers data at the kernel level and performs anomaly detection. It is difficult to make a

detailed comparison, though, because little has been published on the algorithms or

performance of the system, particularly with respect to false-positives. Audit systems

record events after their occurrence. An automated response mechanism based on audit
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data would generally be triggered after the occurrence of anomalous events, rather than

during the events.

Jones and Lin [J0nesK 01] used sequences of library calls to detect attacks. Many

other groups have chosen to use system calls to detect security violations. K0 et al. [K0

94] formally specified allowable system calls and parameters for privileged programs.

Wagner and Dean created a two-part prototype system that would dynamically monitor

the system calls of a program based on a pre-computed static model derived from the

program's source. An anomaly is noted when the program makes a system call that the

source would not permit [Wagner 01]. This approach is effective in detecting two of the

most common forms of attack, namely buffer overflows and trojan code not present in

normal binaries; however, it cannot detect attacks that require only existing code.

Endler [Endler 98] trained a neural network to detect anomalies in sequences of

Solaris BSM audit data. Jones and Li [Jones 01] examined temporal signatures

constructed from system-call sequences augmented with inter-call timing information.

Maxion & Tan [Maxion 02-1] compared sequence and markov anomaly detectors using

artificial data sets, focusing on their coverage of possible anomalies. Separately, they

have also set forth a set of criteria for comparing anomaly detection systems [Maxion

00].

One of the most promising innovations was made by Sekar et al. [Sekar 01].

They developed a technique for inferring a finite-state machine using system call data

along with the corresponding program counter values. They claimed that their method

converges much faster than the sequence method; however, because of the complications

introduced by dynamic linking, they ignored the structure of system calls made by library
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functions. But the sequence method considered this information. So the comparison is

somewhat unfair. Nevertheless, the method is promising enough that it deserves a more

careful study. [Somayaji 02] describes an anomaly detection system pH, which detects

changes in program behavior by observing changes in short sequences of system calls.

pH can detect buffer overflows, Trojan code and kemelsecurity exploits; however, it has

very limited ability to detect masqueraders. Higher-level system behavior has also been

studied.

2.6. CONCLUSION

From a study of the literature described in this chapter, it may be concluded that

operating systems could be augmented with suitable mechanisms to ensure security.

Some useful observations from the research in intrusion detection are the following:

- Unlike misuse detection, which searches for known intrusion patterns, anomaly

detection is more popular since it trains normal behavior.

- Normal behavior can be defined in terms of user activities or process execution steps.

- Audit data is slightly expensive in terms of space requirements and speed compared to

system call traces to profile process execution steps.
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CHAPTER 3

PROCESS PROFILING
WITH SYSTEM CALL SEQUENCES

The first step towards detecting the abnormal behavior is to profile the normal

program behavior. The method used for profiling should be lightweight so that it will not

cause significant loss in performance. It should also not interfere with normal program

functioning so that monitored programs can continue to work properly. Most importantly,

the mechanism used for profiling normal behavior should be capable of discriminating all

possible varieties of security violations.

There are several reasons why system calls are a good basis for a normal program

behavior detector. Programs interact with the outside resources through the system call

interface. So security violations can be detected by monitoring the system calls generated

by the program. The system calls are also relatively easy to observe. Standard methods

are available to observe system calls. All system calls invoke the kernel; hence we can

observe every process on a system by instructing the kernel to report system call events.

There are different methods to analyze system calls. Many researchers concentrate

on how the system call is made. A method for classifying program behavior based on

system-call usage could measure system calls in many ways. It could compare the

timings of different system calls, or their relative frequencies. It could analyze arguments

to specific system calls, or could only look at a subset of all possible system calls.

[Krugel 03] describes a Bayesian event classification based on system call parameters.
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For anomaly detection, many researchers have used the method of analyzing the

pattern of system calls generated by a process. In [Forrest 96], short sequences of system

calls are used to distinguish normal from abnormal program behavior.

[Somayaji 02] describes two methods to analyze system-call traces: sequences

and look-ahead pairs. In both methods, the normal behavior is defined in terms of short

sequences of system calls. Both of them use a fixed length window to partition a process‘s

system calls into sequences. In sequence method, a profile of a program's behavior

consists of the entire set of sequences produced by that program. The literal contents of

each of fixed windows in the profile are recorded, and the set of these sequences are used

as the model of normal program behavior. In sequence method, the use of system call

sequences of length nine was observed to be optimal.

With the other technique, known as the look ahead pair method, the pairs formed

by the current and a past system call are stored in the program's profile. A small fixed

size window of system call is used to analyze the system call sequence that slides over

each trace, recording which all calls precede the current call within the sliding window. A

set of pairs of system calls known as look-ahead pairs are recorded, with each pair

representing the current call and a precedingcall. For a window of size x,‘ there will be

x-l pairs, one for each system call preceding the current-one. The collection of unique

pairs over all the traces for a single program constitutes the model of normal behavior for

the program.

The look-ahead pair method is very popular for analyzing system call sequences;

look-ahead pairs characterize normal program behavior; and the look-ahead pairs method

is effective at detecting a variety of anomalies. The sequence method works surprisingly
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well in comparison to other more sophisticated algorithms; Warrender [Warrender 99]

compared the sequence method with several others, including a Hidden Markov Model

generator and a rule inference algorithm (RIPPER). By analyzing several data sets with

each method, she was able to estimate the false and true positive rates of each method.

She also “roughly measured the execution time required by each method. She observed

that the sequence method is as accurate as any other sophisticated algorithm and is much

less computationally expensive than other published results [Hofmeyr 98, Forrest 97].

However, the look-ahead pair method is both very fast and very easy to implement, and

as in [Forrest 96], it is also effective at detecting security violations.

One potential drawback of using fixed length subsequences for detecting

intrusions is that the size of the database that contains fixed-length contiguous

subsequences increases exponentially with the length of the subsequences. For example,

if the number of system calls is 200 and the length of the subsequences is 6, the size of

the database is theoretically 2006 = 64 X 1012. In practice, only normal subsequences are

stored, so actual database size is smaller, but still considerably very large.

In 2005 Dae-Ki Kang used ‘bag of system calls’ representation and compared

methods such as supervised leaming(SVM) decision trees(C4.5) and Naive Bayesian etc.

for detection [Kang 05]. He has observed that the bag of system calls can effectively

represent intrusions.

Given these constraints, what we needed was a way to compress the traces of

system calls into a compact profile that quickly converges to a fixed state, given “normal”

program behavior, while still allowing one to detect abnormal behavior as sets of patterns

that are not represented in the profile. In addition, this modeling algorithm must be able
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to capture differences in 200 discrete types of events (the "size of the system-call

vocabulary); it must also permit fast incremental updates, detect low frequency

anomalous events, and have modest memory and CPU requirements.

3.1. THE METHOD

The process profiles are represented using a frequency-based method. The profile

consists of the frequencies of system calls in the sequence. Processes behave differently

in different conditions. But for each process the number of possible behavior is limited.

So the possible sequences for a particular process are finite. With the most

straightforward technique, which can be described as the sequence set method, a profile

of a program's behavior consists of a number of sequence sets, where each sequence set

represent a unique frequency pattem in the entire set of sequences produced by that

program.

The sequence set method works surprisingly well in comparison to other more

sophisticated algorithms. The experiments showed that the sequence set method was

almost as accurate as the best algorithm in any given test, while being much less

computationally expensive.

3.2. REPRESENTATION

In our approach, the input sequence is converted into frequency components of

the system calls Xi = {f|, f2,  fn} where n is the total number of possible system calls.

The ordering information of adjacent system calls in the input sequence is lost and only

the frequency of each system call in the sequence is preserved. Intrusion in this

representation is defined according to frequency count of system calls.
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More formally, let s1, S2, s3,  sk be the system call trace for a particular

process. If i|, i2, i3, .... .., in be the possible system calls in the sequence. The profile Pseq

is defined as: Pseq = f;1,f,2,f,3, ....  fin, where fi, represents the frequency of the system

call i, in the sequence. To make these formal definitions more concrete, it is instructive to

work through an example. Figure 3.1 lists the trace of pwd obtained using ‘strace pwd’.

l execve("/bin/pwd", ["pwd"], [/* 35 vars */]) = 0 "
1“ uname([sys="Linux", n0de=-"server.mace.edu",  }) = 0
1 brk(0) = 0x8ec0000

access("/etc/ld.s0.pre1oad", R_OK) = -1 ENOENT(No such file or directory)
open("/etc/1d.so.cache", O_RDONLY) = 3
fStat64(3, {st_m0de=S_IFREG|O644, st_size=115457,  }) = 0
o1d_mmap(NULL, 115457, PROT_READ, MAP__PR1VATE, 3, 0) =0xb7fe3000c10se(3) = 0 ;

1 open("/lib/tls/libc.so.6", O_RDONLY) = 3
read(3,"\177ELF\1\1\l\0\0\0\O\0\0\0\0\0\3\0\3\0\1\0\O\0 \237v\000"., 512): 512 3
fstat64(3, {st_mode=S_IFREG|0755, st_size=1454835,  }) = 0
o1d_mmap(0x755000, 121 5644, PROT_READ [PROT_EXEC, ‘
MAP_PRlVATE|MAP_DENYWRITE, 3, 0) = 0x755000
01d_mmap(0x878000, 16384, PROT_READ[PROT_WRITE,
MAP_PRIVATE|MAP_F1XED|MAP_DENYWRITE, 3, 0x123000) = 0x87 8000

l 01d_mmap(0x87c00O, 7324, PROT_READ]PROT_WRITE,
MAP_PRIVATE|MAP_FlXED|MAP__ANONYMOUS, -1, 0) = 0x87c000c1ose(3) = 0
o1d_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRlVATE|MAP__ANONYMOUS, -1.
0) = 0xb7fe2000

mprotect(0x878000, 4096, PROT_READ) = 0
mprotect(0x74d000, 4096, PROT_READ) = 0

set_thread_area({entry_number:-1 -> 6, base_addr:0xb7fe2aa0, limit:1048575, seg_32bit:l, ,
contents:0, read_exec_on1y:0, 1imit_in_pages:1, seg_not_present:0, useablezl }) = 0
munmap(0xb7fe3000, 115457) = 0
brk(0) = 0x8ec0000

1 brk(0x8ee1000) = 0x8ee1000
0pen("/usr/1ib/locale/locale-archive", O_RDONLY|O_LARGEFILE) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=39542304,  }) = 0
mmap2(NULL, 2097152, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7de2000c1ose(3) = 0

getcwd("/usr/local/jd1<1.1 .1", 4096) = 20
Y fstat64(1, {st_mode=S_lFCHR]0620, st_rdev=makedev(136, 1), ...}) = 0 1

mmap2(NULL, 4096, PROT_READ |PROT_WRITE, MAP_PRIVATE|MAP__ANONYMOUS, -1, 0) 5
= 0xb7de1000

write(1, "/usr/local/jdk1.1.1\n", 20/usr/local/jdkl.1.1) = 20f munmap(0xb7de1000, 4096) =0 :
1 exit__gr0up(0) H _p=? pp _ W pp _ _ ppm

Figure 3.1. A sample system call trace
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The parameters passed to system calls and the order in which the system calls

appear are not considered. The Trace without parameters is shown in Figure 3.2.

execve, uname, brk, accesss, open, fstat64, old__mmap,close,open,

read, fstat64, old_mmap, old_mmap, old_mmap, close,old__mmap,

mprotect, mprotect, set_thread_area, munmap, brk, open,fstat64,

mmap2, close, getcwd, fsat64, mmap2, write, munmap, exit _group

Figure 3.2. A sample system call sequence

The first step in defining a profile for this trace is to record the frequencies of each

system call in the sequence. Figure 3.3 lists frequency of system calls for the ‘pwd’

example along with the corresponding system call names.

Exec ve

Uname
Brk
Access

Open
fstat64

0ld_mmap
close
read

mprotect
set_thread_area

munmap
mmap2
getcwd
write

exit _gr0up

Figure 3.3. A sample system call frequency list with system call names

The system calls are encoded as numbers between 0 and 255. The system call

names are replaced with the corresponding system call numbers. The corresponding list is

shown in the Figure 3.4.
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l l I, 122 I, 45 2, 33 1,
5 3, 197' 4, 90 5, 6 ' 3,
3 1, 125 2, 243 1, 91 2,
192 2, 183 I, 4 l, 252 1

Figure 3.4. A sample system call frequency list with system call numbers

The list of frequencies is then converted into a sequence with 256 entries where

the km entry in the sequence represents the frequency of system call with system call

number k+1. So each sequence will have entries corresponding to system calls 0 to

255.The sample list shown in Figure 3.4 can be represented as a sequence given by

Figure 3.5.

[ 0,0,0, 1 , 1 ,3,3,0,0,0,0, l,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, l ,0,0,0,

0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,2,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,l ,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0, ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, l ,0,0,0,0,0,0,

0,0,2,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0, l ,0,0,0,0,0, 0,0,0, l ,0,0,0 ]

Figure 3.5. A sample frequency sequence

These frequency sequences of system calls from different traces of the process are

collected and traces with similar frequency components are grouped into sequence sets.

Process profiling and anomaly detection using sequence sets are detailed in sections 5.4

through 5.7.
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3.3. CONCLUSION

Use of frequency sequence is a compact method for profiling processes using

system call traces. Dae-Ki Kang has used frequency-based representation [Kang 05] and

has observed that the method can effectively represent intrusions. In the ‘bag of system

calls‘ representation used by Kang, long sequences of system calls are compressed into

short, fixed length sequences called bag containing only frequency values of the system

calls. The basic form of representation used in this research is the same as the ‘bag of

system calls’ representation. Incorporation of the new concept called ‘sequence sets’ in

the proposed method simplifies classification of processes, in comparison to Kang’s

method.
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CHAPTER 4

EXPLOITING THE BUFFER OVERFLOWS

Buffer overflows have historically been one of the most popular and best

understood methods of exploiting software [Koziol 94]. Buffer overflows account for

more than 50% of today’s vulnerabilities, and this ratio seems to be increasing over time

[Wagner 00]. Stack overflows have theoretically been around for as early as the C

language and exploitation of these vulnerabilities has occurred regularly for well over 25

years. Over the past few years there has been a large increase of buffer overflow

vulnerabilities being both discovered and exploited. Examples of these are syslog,

splitvt, sendmail, Linux/FreeBSD mount etc. Even though they are most likely the best­

understood and most publicly documented class of vulnerability, stack overflow

vulnerabilities remain generally prevalent in software produced today.

There are several different approaches for finding and preventing buffer

overflows. These include enforcing secure coding practices, statically analyzing source

code, halting exploits via operating system support, and detecting buffer overflows at

runtime [Cowan 03, Zhivich 05].

Human code reviews are time-consuming and expensive but can find conceptual

problems that are impossible to find automatically. But the probability of missing bugs is

high. Code reviews depend on the expertise of the human reviewers, whereas automated

techniques can benefit from expert knowledge codified in tools.
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Static analysis is performed using an automated tool that scans through the source

code with an aim to spot program bugs and suspicious code fragments. This is performed

when the program is being compiled. Rather than observing program executions, they

analyze source code directly. So not only test cases, but all possible program execution

patterns are monitored. From a security viewpoint, this is a significant advantage.

There is a range of static analysis techniques, offering tradeoffs between the

required effort and analysis complexity. At the low-effort end are standard compilers,

which perform type checking and other simple program analyses. At the other extreme,

full program verifiers attempt to prove complex properties about programs. They

typically require a complete formal specification and use automated theorem provers.

These techniques have been effective but are almost always too expensive and

cumbersome to use on even security-critical program.

However, current static analysis tools have unacceptably high false alarm rates

and insufficient detection rates [Zitser 03]. One disadvantage of using this approach to

find errors in source code is that an input revealing the overflow is required, and the input

space is generally very large. Therefore, dynamic buffer overflow detection makes the

most sense as part of a system that can generate these revealing inputs.

Dynamic buffer overflow detection and prevention is an attractive approach,

because fundamentally there can be no false alarms. Tools that provide dynamic buffer

overflow detection can be used for a variety of purposes, such as preventing buffer

overflows at runtime, testing code for overflows, and finding the root cause of

segmentation fault behavior [Zhivich 05].
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Several run-time solutions to buffer overflow attacks ‘have been proposed.

Operating system patches, such as marking stack memory non-executable, can only

protect against a few types of exploits. StackGuard [Cowan 98] is a compiler that

generates binaries that incorporate code designed to prevent stack smashing attacks. Run­

time solutions especially that are based on checking stack memory always incur some

performance penalty (StackGuard reports performance overhead of up to 40% [Cowan

99]). Other problem with run-time solutions is that while they may be able to detect or

prevent a buffer overflow attack, they effectively turn it into a denial-of-service attack.

Upon detecting a buffer overflow, there is often no way to recover other than terminating

execution.

To overcome the problems of run-time solutions based on stack, David Larochelle

[Larochelle 01] recommends static code checking so as to detect likely vulnerabilities

before deployment. A static analysis tool requires human intervention for accurate

detection [McGraw 04]. Automating static analysis for buffer overflow is an

undecidable problem. He also comments that static checking in general will not provide

the complete solution to the buffer overflow problem.

Nguyen et al. [Nguyen 01] reported that many privileged programs are inherently

capable of doing very limited things, but if the attacker can convince them to fork a

general execution shell under their privileged identity, the attacker can gain general

privileged access. They observed that a process-oriented model gives better statistical

results than user behavioral based model for detecting buffer overflows. They found that

process-calling behavior is sufficiently regular for large classes of programs to serve as a

good indicator of misbehavior. They also claimed that more than 90% of processes have a
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deterministic set of authorized children (list of child programs that the ‘program normally

forks), and by tracing the sequence of child processes generated, buffer overflows can be

detected effectively.

However the detection model described in this dissertation is based on process

behavior. This chapter describes the experiments related to buffer overflows that lead to

the detection model. Experiments were conducted to generate buffer overflows on simple

processes and were extended to other processes. Experiments were also performed to

verify whether buffer overflows alter the execution sequence of a process and attempts

were made to detect anomalies caused by buffer overflows by analyzing system call

sequences.

There are many documents describing buffer overflow exploits and the

countermeasures to be taken [Koziol 04, Balaban 04, Mixter 04, Desai 05, Grover 03,

Rider 04]. The following sections describe how buffer overflow can be used to exploit a

program's code so that it will eventually lead to arbitrary code execution. This hack can

be used to exploit a program with suid set to gain better permissions on a Linux machine.

4.1. MEMORY MANAGEMENT PERSPECTIVE

A buffer overflow is the result of stuffing more data into a buffer than it can

handle. Attackers may utilize this often found programming error so as to execute

arbitrary code. To understand the buffer overflow and the corresponding attack strategies

different components used in the buffer overflow has to be examined in detail. The

following sections describe the memory management perspective of buffer overflow.
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4.1.1. Buffer

A buffer is defined as a limited, contiguously allocated set of memory. In many

languages Buffer overflows are possible because of the lack of inherent bounds-checking

mechanisms for buffers. Many languages like C do not have a built-in function to ensure

that data being copied into a buffer will not be larger than the buffer size. To overflow is

to flow, or fill over the top, brims, or bounds. The exploitation with the overflow of

dynamic buffers, otherwise known as stack-based buffer overflows is the main concern of

this thesis.

4.1.2. Process Memory

Process memory is divided into three regions: Text, Data, and Stack as shown in

Figure 4.1. The text region is fixed by the program and includes code (instructions) and

read-only data. This region corresponds to the text section of the executable file. This

region is nomially marked read-only and any attempt to write to it will result in a

segmentation violation.

The data region contains initialized and un-initialized data. Static variables are

stored in this region. The data region corresponds to the data-bss sections of the

executable file. Its size can be changed with the brk(2) system call. If the expansion of

the bss data or the user stack exhausts available memory, the process is blocked and is

rescheduled to run again with a larger memory space. New memory is added between the

data and stack segments.

4.1.3. The Stack Region

A stack is a contiguous block of memory containing data. A register called the stack

pointer (SP) points to the top of the stack. The bottom of the stack is at a fixed address.

47



The kernel dynamically adjusts its size at run time. The CPU implements instructions to

PUSH onto and POP off of the stack. The boundary of the stack is defined by the

extended stack pointer (ESP) register, which points to the top of the stack. In most

architectures, SP points to the last address used by the stack. In other implementations, it

points to the first free address.

Lower memory
addresses

Data address space
(lntialized and

uninitialized data)

Stack address space _
(grows towards the H'9her memory

data segment addresses

Figure 4.1. Process Memory Regions

The stack consists of logical stack frames that are pushed when a function is

invoked and popped when returned. A s.tack frame contains the parameters to a function,

its local variables, and the data necessary to recover the previous stack frame, including

the value of the instruction pointer at the time of the function call.

Depending on the implementation, the stack will either grow down (towards

lower memory addresses), or up. In the examples described, a stack that grows down is

used. This is the way the stack grows on many computers including those using Intel,

Motorola, SPARC and MIPS processors. The stack pointer (SP) is also implementation
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dependent. It may point to the last address on the stack or to the next free available

address after the stack. Here the case where SP points to the last address is considered.

In addition to the stack pointer, which points to the top of the stack (lowest

numerical address), it is often convenient to have a frame pointer (FP) which points to a

fixed location within a frame. It is also referred to as a local base pointer (LB). In

principle, local variables could be referenced by giving their offsets from SP. However,

as words are pushed onto the stack and popped from the tack, these offsets change.

Although in some cases the compiler can keep track of the number of words on the stack

and thus correct the offsets, in some cases it cannot, and in all cases considerable

administration is required. Further more, on some machines, such as Intel-based

processors; accessing a variable at a known distance from SP requires multiple

instructions.

Consequently, many compilers use a second register, FP, for referencing both

local variables and parameters because their distances from FP do not change with

PUSHes and POPs. On Intel CPUs, the extended base pointer (EBP) is used for this

purpose. On the Motorola CPUs, any address register except A7 (the stack pointer) will

do. Because the way our stack grows, actual parameters have positive offsets and local

variables have negative offsets from FP.

The first thing a procedure must do when invoked is to save the previous FP so

that it can be restored at procedure exit. Then it copies SP into FP to create the new FP,

and advances SP to reserve space for the local variables. This code is called the procedure

prolog. Upon procedure exit, the stack must be cleaned up again, something called the

procedure epilog [Alephl 98]. When a function is invoked, EBP the frame pointer is
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pushed onto the stack. It then copies the current SP onto EBP, making it the new FP

pointer. This saved FP can be termed as pointer SFP. It then allocates space for the local

variables by subtracting their size from SP.

The memory can only be addressed in multiples of the word size. So, when a

buffer whose size is not a proper multiple of word size, is used, the number of bytes equal

to the word size or a proper multiple of word size is allocated. So SP should be

subtracted considering this word size into account. A view of the stack during the

invocation of the function is presented in Figure 4.2.

In Linux and many other operating systems, the stack grows from top to down.

When a program calls a function, the return address is pushed and stack pointer is

decremented by 4 (32 bits). So definitions of local variables, such as an array, will follow

the function return address.

When the stack is descending it can always overwrite the function return address

with the contents of the buffer when an overflow occurs. When the function returns, the

execution starts from the new overflowed address.

Stack Top i Bufier 2 .  H Lower Memory.l Bgfier 1
I

SFPg_

V Return Address A

___ a _
!  b T Higher Memory

..____ C __

Figure 4.2. An overview of stack during function invocation
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4.2. EXPLOITIN G THE BUFFER OVERFLOW

There are 3 major components in a buffer overflow attack. They are locating

overflow potential, hack exploitation and code execution. The most important and

complex component is Hack exploitation. The objective of the exploitation part is to

divert the execution path of the vulnerable program. We can achieve that via stack—based

buffer overflows, heap-based buffer overflows, integer overflows, memory corruption,

etc.

Even though we may use one or more of those exploitation techniques to control

the execution path of a program, they have to be treated separately. Different

vulnerabilities are exploited in different ways. For example, different buffer size and shell

code can be used to overflow a particular buffer. For similar buffers, the overflow

technique will be same or similar but the shell code used will be different.

Locating the vulnerable code is very easy, especially in a Linux system, since a

huge amount of open-source code applications are available for Linux. Some of these

applications are in use on almost every Linux system. The strcpy function is the classical

example for buffer overflow since it does not check the size of the copied string to ensure

that it is within the buffer limits. Many of the programs can be exploited in a similar way

with a buffer-overflow hack. Examples of such programs are ‘mount’ and some early

versions of ‘innd’. Mount did not check the length of the command-line arguments the

user enters. Innd also did not check all of the news message headers, so by sending a

specific header, a user could get a remote shell on the server.

Hack exploitation is done in two steps; code insertion and execution redirection.

The first one is to find the representation of the code to be executed; this can be done
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using a simple disassembler. Second step is to make the return address point to the new

code inserted. The second part depends on where the program reads the buffer. The

buffer can be a mail header or an environment variable or some other parameter whose

length goes unchecked. Locating the buffer is not so simple. This is because the address

to which the code is loaded, changes often. The address of buffer is determined by

guessing. The guessing is continued until the correct address is found. Several ways can

be used to make this guessing more efficient. After a few guesses, the right address can

be located and the code gets executed.

Once control over the execution path is obtained, the attack code can be executed.

A code executer spawns a shell known as shell code. Unlike Exploitation technique, a

well designed shell code can easily be reused in other exploits. The inserted code can

virtually do everything a computer program can do with the permission of the vulnerable

service.

A shell script for buffer overflow is prepared considering the following.

0 Fill initial portions of the buffer with garbage

I Place the executable attack code in the buffer

¢ Calculate the approximate position of the executable in the Stack

v Locate buffer contents which will replace the return address

0 Use the approximate address to overwrite return address in the stack

4.3. OVERFLOW EXPLOITATION EXPERIMENTS

Experiments were conducted to create buffer overflows and to execute arbitrary

code during the overflow. Following experiments demonstrate the stages in the

exploitation of the stack based buffer overflows.
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4.3.1. Crossing Buffer Boundary

Consequently, if the person designing the program has not explicitly coded the

program to check for oversized input, it is possible for data to fill a buffer, and if that data

is large enough, to continue to write past the end of the buffer. In languages, which

provide no built-in protection, it is easy to read‘ past the end of a buffer. ‘If the

programmer designs code that copies user input into a buffer, it may be possible for a

user to intentionally place more input into a buffer than it can hold. This can have a

number of different consequences, everything from crashing the program to forcing the

program to execute user-supplied instructions. This situation is known as buffer overflow

attack.

As a first example to demonstrate buffer overflow a simple function that reads

user input into a buffer, and then outputs the user input to stdout is considered. Figure 4.3

lists the example. This program has a function with a typical buffer overflow coding

error. The function copies a supplied string without bounds checking by using strcpy().

Vulnerable C Program

int function( char *data){
‘ char buffer[l0O];
strcpy(buffer, data); l
retum;
}

i main ()
A {

char overflowstn'ng[ 160];
gets(overflowstring);

; function(overflowstring);
4 retum;

l

Figure 4.3. A vulnerable function
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The function uses a buffer size of I00. With an overflow string of size‘ 100 or less

there will not be any overflow and the program will work correctly. If a string consisting

of 120 numbers of character A, is given as input, it will overflow the buffer and start to

write over other things stored on the stack. The return address in the stack also will be

replaced with 0x414l4l4l_ the hexadecimal equivalent of AAAA. When the function

exits, attempt will be made to jump to the currently stored retum address which is

0x41414141. This address is not a valid address, or is in protected address space, and the

program will terminate with a segmentation fault. The core file shows the registers at the

time of segmentation fault. During segmentation fault, it was observed that both EIP and

EBP contain 0x4l4l4l4l.

The experiment shows that a buffer overflow allows us to change the retum

address of a function and to change the flow of execution of the program.

4.3.2. Redirecting Program Flow

It is important to know where to place the code and where the return address is

stored [Ganbold 03]. If a string of 120 A’s are used in the example shown in Figure 4.2,

return address will be replaced by 0x41414141. In order to execute an attack, the return

address should be replaced by legitimate address. One of the most difficult tasks for

executing user-supplied shell code is identifying the starting address of your shell code.

Over the years, many different methods have been contrived to solve this problem.

One way to discover the address of the shell code is to guess where the shell code

is in memory. In this regard, a pretty educated guess can be made, since for every

program, the stack begins with the same address. If the starting address of the stack is

known, the distance of the buffer or shell code from the start of the stack can be guessed.
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The value of ' stack pointer can be printed using simple assembly language

statements. But exploiting programs in this manner can be tedious. The offset should be

guessed correctly and if the guess is wrong, the program crashes. That’s not a problem for

small programs, but restarting a larger application can take time and effort. More efficient

methods are required to find the offsets in large programs.

A technique called the NOP Method can be used to increase the number of

potential offsets. No Operations (NOPs) are instructions that delay execution for a period

of time. NOPs are chiefly used for timing situations in assembly, or in our case, to create

a relatively large section of instructions that do not have any operations. So the beginning

of the shell code can be filled with a number of NOPs and this portion is called NOP pad.

When the NOP pad is used before the buffer, the prediction of the starting

location of the shell code in the memory need not be l00% correct. Through function

return, program control is passed somewhere before the shell code on the stack and

through the NOP pad reaches the start of the shell code. In Intel architecture the machine

code for NOP is defined as 0x90 [Eugene 00].

4.3.3. Generating the Shell Script

To inject attack code, it should be familiar how an attack is performed and how an

attack code is represented. The attack code is some times referred as payload or shell

code and is a sequence of machine instructions or op-codes directly understandable by the

computer’s cpu. The hexadecimal values corresponding to the mnemonic instructions are

used [Maggirrotto 07].

Buffer overflows are commonly used to gain root privileges. This is done by

attacking a process that is running as root and forcing it to execute (using execve) a shell
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that inherits its permissions. Spawning a root shell isnot the only thing that can "be

performed when a vulnerable program is exploited. This type of local overflow is

increasingly popular because local exploit of a program running as non root can be used

to get root-level access. There are many exploitation methods other than root shell

spawning.

In order to get root privileges, the program should be set to be owned by root, and

the suid bit should be turned on. Setreuid can be used for this purpose. Now, an ordinary

user can use this shell script in the vulnerable program to exploit the buffer overflow and

can acquire root access. Figure 4.4 shows the sequence of steps intended to be executed

by the vulnerable program during the attack corresponding to Setreuid and Exit.

Set EBX to O

Set ECX to O

Set EAX to 0x46

Call INTR 0x80

Set EBX to O

Set EAX to 0x0l

Call INTR 0x80

Figure 4.4. Instructions to be inserted during attack

Figure 4.5 lists the Assembly and Hexadecimal codes for setreuid() , exit().

3l,db xorl %ebx,%ebx
31, c9 xorl %ecx, %ecx
b8, 46, 00, 00, 00 mov $0x46,%eaxcd, 80 int $Ox80
3l,db xorl %ebx,%ebx
b8, Ol, 00, 00, 00 mov $0xOl ,%eaxcd, 80 int $Ox8O

Figure 4.5. Assembly code corresponding to attack

56



Most shell code will be converted into a string; the presence of null byte (0x00) in

the shell code may be interpreted as a string terminator [Nomenumbra 05]. To avoid the

null bytes in the shell code, instructions were slightly modified to give a new shell

program. The resulting shell code is shown in Figure 4.6.

3l,db
31, c9
31, c0
b0, 46
cd, 80

3l,db
3l, c0
b0, 01

cd, 80

xorl %ebx,%ebx
xorl %ecx, %ecx
xor %eax,%eax
add 46 to eax

int$0x80

xorl %ebx,%ebx
xor %eax,%eax
add 46 to eax

int $01480

Figure 4.6. Modified assembly code corresponding to attack

The prepared shellcode represented as a string is known as shell script.

The shell script is used as a part of the attack script to overflow the buffer. Figure 4.7

shows the prepared shell script. This shell script with slight variations can be used to

overflow many of the common programs which use an unbounded buffer as argument.

F“\x3 l\xdb\x3 l \xc9\x3 l\xc0\xb0\x46\xcd\x8O\x3 l\xdb\x3 l\xc0\xb0\x0l\xcd\x80”'

Figure 4.7. Shell script

4.3.4. Execution of the Attack

Once the buffer contents are identified the attack can be executed by running the

vulnerable program. To perform attack, the buffer of the vulnerable function is loaded

with the preplanned attack script. Overview of the attack script is shown in Figure 4.8.

For collecting the normal traces, vulnerable program was executed by passing

small strings with size less than 100 as input. A sample trace during the normal execution

is given in Figure 4.9.

57



j fstat64(3, {st_mode=S_IFREG|0755, st_size=l53 1064,  }) = 0

close(33) = 0 ,4
4 set_thread_area({entry_number:-1 -> 6, base_addr:0x400l69e0, limit: 1048575, seg_32bit:1,

H munmap(0x400l7000, 82863) =0 _
A fstat64(0, {st_mode=S_IFCHR|0620, st_rdev=makedev( 1 36, 0),  }) = 0

l read(0, "/x90/x90\n".., 1024) = 9

A MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40018000

A exit _group(6) =? A

i A number of N OPs
Approximate Starting Address of Shellcode
A A number of NOPs
3 Shell Code

A Hex Code for Setlreuid(0,0l)l '
A Hex Code for Exit(0) ,

Figure 4.8. Attack script

# strace mins

execve("/root/smv/buffprog/mins", ["mins"], [/* 34 vars */]) = 0 ‘
; uname({sys="Linux", node="localhostlocaldomain",  }) = 0
‘ brk(0) = 0x80495ec

old__mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40016000

A open("/etc/ld.so.preload", O__RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.s0.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=82863, ...}) = 0

M old_mmap(NULL, 82863, PROT_READ, MAP__PRIVATE, 3, 0) -= 0x40017000“ close(3) = 0
open("/Iib/tls/libc.so.6", O__RDONLY) = 3
read(3,"\l 77ELF\l\I\l\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0‘ V\l B4\0"., 5 l2) = 5 l 2

0ld_mmap(0x4200000O, 1257224, PROT_READ|PROT_EXEC, MAP__PRIVATE, 3, 0) = 1
0x42000000

1 old_mmap(0x42l2e000, 12288, PROT_READlPROT_WRITE,
MAP__PRIVATE|MAP_FIXED, 3, 0x12e000) = 0x42l2e000
0ld_mmap(0x42 1 3 l 000, 7944, PROT__READ|PROT_WRITE,
MAP_PRlVATE|MAP_FlXED|MAP_ANONYMOUS, -1, 0) = 0x42131000

contents:0, read_exec_only:0, limit_in_pages:l, seg_not__present:0, useable:l }) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE,
1 MAP__PRIVATE|MAP_ANONYMOUS, -l, O) = 0x40017000

fstat64(l, {st_mode=S_IFCHR|0620, st_rdev=makedev(l 36, 0),  }) = 0
i mmap2(NULL, 4096. PROT_READ|PROT_WRITE,

write(l, "main \n", 6main ) = 6
munmap(0x400l 8000, 4096) = 0

Figure 4.9. A sample trace during normal execution
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To obtain the trace of an abnormal execution, attack was launched with the

prepared script. The execution was successfully completed and root privileges were

obtained as planned in the attack script. Once root access is obtained, any code can be

modified or accessed with root privileges. The corresponding system call trace is shown

in Figure 4.10.

strace min<in
execve("/root/smvfbuffprog/min", ["mjn"], [/* 34 vars */]) = 0
uname({ sys=="Linux",node="localh0st.localdomain",  }) = 0 .brk(0) = Ox8049790 4

l old__mmap(NULL, 4096, PROT_READ|PROT_WRITE, A
MAP_PRIVATE|MAP_ANONYMOUS, - 1, 0) = 0x40016000 2
open("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_m0de=S_IFREG|0644, st_size=82863, ...}) = 0

‘ old_mmap(NULI_., 82863, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40017000close(3) = 0
open("/lib/tls/libc.so.6", O_RDONLY) = 3

t read(3, “\ 1 77ELP\ l \l\ l \0\0\0\0\0\0\0\0\0\3\0\3\0\ 1 \0\0\0‘ V\ l B4\0" ., 5 1 2)=5 1 2
l fstat64(3, {st__mode=S__1FREG|075S, st_size=l53l064,  }) = 0

old__mmap(0x42000000, 1257224, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) =
0x42000000

old_mmap(0x42 l 26000, l 2288, PROT_READ|PROT_WRITE,
‘ MAP_PRIVATE|MAP_FIXED, 3, 0xl2e00O) = 0x42l2e000

old_mmap(0x4213 1000, 7944, PROT_READ|PROT_WRITE,
MAP__PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -l, 0) = 0x42131000close(3) = 0 ~

0 set__thread_area({entry_number:-1 -> 6, base_addr:0x400l69e0, limit:l048575, seg_32bit:l,
0. contents:0, read_exec_only:0, limit_in_pages:l, seg_not__present:0, useablezl }) = 0

munmap(Ox400l7000, 82863) = 0
fstat64(0, {st_mode=S_1FREG|0644, st_size=633,  }) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,
-1, 0) = 0x40017000
read(0, "\\x90\\x90\\x90\\x90\\x90\\x90\\x9O\\x90"..., 4096) = 633
setreuid(0, 0) = 0'1_ .  _  . _ _ _ _é _exit(0) = ?

Figure 4.10. Trace of anomalous execution
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The system call trace obtained during nonnal and abnormal execution is different.

The system calls corresponding to the attack script is visible in the abnormal trace. So

buffer overflow attacks can be detected by tracing the system calls generated during

program execution.

4.4. CONCLUSION

Based on the experiments described above, it was concluded that buffer overflows

can be effectively used by attackers to gain control over the system. It was observed that

buffer overflows do alter the sequence of system calls generated during execution of

processes. Based on the above results, a detection model was developed to detect

anomalies, with special emphasis given to buffer overflows.
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CHAPTER 5

DETECTION MODEL

Formally, the anomaly detection problem on system call sequences can be defined

as follows: Let P = {s1,s;,s3,- - -,sk} be a set of system calls where k is the number of

system calls in the sequence. Data set D can be defined as a set of labeled sequences {Di ,

C} where Di is an input sequence from the set of all possible P for the particular process

and C is a corresponding class label denoting O for “normal” label and 1 for “intrusion”

label. Given the data set D, the goal of the detecting algorithm is to find an efficient

classifier.

Many of the anomaly detection systems suffer from large false positives. Two

main problems that contribute to the large number of false positives were identified.

The first problem is that, the decision whether an event should be classified as

anomalous or as normal is made in a simplistic way. Anomaly detection systems usually

contain a collection of models that evaluate different features of an event. These models

return an anomaly score or a probability value that reflects the ‘normality’ of this event

according to their current profiles. However, the system is faced with the task of

aggregating the different model outputs into a single, final result. The difficulty is the fact

that this aggregation is not easy to perform, especially when the individual model outputs

differ significantly. In most of the current systems, the problem is solved by calculating

the sum of the outputs and comparing it to a static threshold. The disadvantage of this

approach is the fact that this threshold has to be small enough to detect malicious events
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that only manifest themselves in a single anomalous feature (i.e., only one model outputs

a high value indicating malicious behavior). This can lead to false positives, because

events with many features that deviate slightly from the profile might receive aggregated

scores that exceed the threshold.

The second problem of anomaly-based systems is that they cannot distinguish

between anomalous behavior caused by unusual but legitimate actions and activity that is

the manifestation of an attack. This leads to the situation where any deviation from

normal behavior is reported as suspicious, ignoring potential additional information that

might suggest otherwise. Such additional information can be extemal to the system,

received from system health monitors (e.g., CPU utilization, memory usage, process

status) or other intrusion detection sensors. Consider the example of an lDS that monitors

a web server by analyzing the system calls that the server process invokes. A sudden

jump in CPU utilization and a continuous increase of the memory allocated by the server

process can corroborate the suspicion that a certain system call contains traces of a

denial-of-service attack. Additional information can also be directly related to the models,

such as the confidence in a model output. Depending on the site-specific structure of

input events, certain features might not be suitable to distinguish between legitimate and

malicious activity. In such a case, the confidence in the output of the model based on

these features should be reduced.

The two problems described above can be mitigated by replacing the simple,

threshold-based decision process with a Bayesian network. Instead of calculating the sum

of individual model outputs and comparing the result to a threshold, a Bayesian decision

process is utilized to classify input events. This process permit to seamlessly incorporate
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available additional information into the detection decision and to aggregate different

model outputs in a more meaningful way.

The frequency list of system calls in system call sequences can be used to

represent process behavior and intrusion detection in process executions can be

considered as a classification problem of the system call sequences. Intrusion attempts of

processes will have more codes usually, than their normal runs. Intrusion runs will have a

different frequency distribution than the normal runs. Considering these aspects, attempts

were made to explore the application of this representation to anomaly detection tasks

using a simple Bayesian classifier.

5.1. BAYESIAN NETWORKS

Traditionally anomaly detection approaches build signatures for known attacks,

compare current behavior with those signatures and signal when there is a match.

Number of parameters involved, complex relationships among the parameters make

simple thresh hold logic less suitable for prediction. So a Bayesian network model is used

to predict the probability of an anomaly.

Bayesian Belief Networks (also known as Belief Networks, Causal Probabilistic

Networks, Causal. Nets, Graphical Probability. Networks, Probabilistic Cause-Effect

Models, and Probabilistic Influence Diagrams) have attracted much recent attention as a

possible solution for the problems of decision support under uncertainty. They are called

Bayesian networks because they make use of Baye’s rule for probabilistic inference.

Although the underlying theory (Bayesian probability) has been around for a long time,

the possibility of building and executing realistic models has only been made possible

because of recent algorithms and software tools that implement them. Bayesian Network
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is "used to model domains with uncertainty and have proven useful in practical

applications such as medical diagnosis and diagnosis of mechanical failures [Pearl 97,

Jensen 96].

The Bayesian Network model can represent dependencies among the different

objects into its structure. It is made up of a set of variables (nodes) and a set of directed

edges between variables [Jensen 96, Baeza 05]. Each node has a number of states and a

conditional probabilistic table that describes the probabilistic distribution of the states for

the corresponding variable given the states of its parent nodes. Graphically a Bayesian

network can be described by a directed acyclic graph [Ye 04].

A Bayesian Network can effectively represent the dependence between variables

as shown in Figure 5.] and can give a concise specification of the joint probability

distribution.

t M- Protected Memory Access ,
R - Root Status
V - Access control Violation

, N - Authentication Violation
l

F A - Abnormal state

V
9 @

Figure 5.1. Representation of dependencies using Bayesian model
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Here the nodes represent random variables and the directed‘ links between nodes

represent the dependence between the nodes. The Conditional Probability Table (CPT)

associated with each node lists the probability that the child node takes on each of the

different combinations of values of its parents. If both the child and the parent nodes are

binary, they can be denoted with T (true) and F (false) values and a CPT similar to the

one listed in Table 5.1 will do.

By the chain rule of probability, the joint probability of all the nodes in the graph

given in Figure 5.] is P(A)=P(N,M,R,V) = (N)*P(M/N)*P(R/M,N)*P(V/R,M,N)

Table 5.1. Conditional Probability Table

R *_ T _ . __. .
1 M___ __ _i   v n l, N  BN0“ i 1X10“ F
Y  §,x10"’ @104

By using conditional independence relationships, the equation can be rewritten as

P(A)=P(N,M,R,V)=P(N)* P(M)* P(R) * P(V/ M, R)

The simplifications of second and third terms were possible because of the non

dependence of the variables M, R and N. In the last term, simplification was possible

because given the parents M and R, V is independent of N. It can be seen that the joint

probability can be represented compactly using conditional independence relationships.

Here the savings are minimal, but in general, if there are n binary nodes, the full joint

would require O(2"n) space to represent, but the factored form would require O(n 2"k)

space to represent, where k is the maximum fan-in of a node and fewer parameters makes

learning easier [Murphy 98].
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Any type of anomaly in any application can be predicted if the parameters

of importance can be correctly identified. The use of Bayesian Network hides the

complexity that arises from the interrelationships among different process parameters that

lead to anomalies.

5.2. DETECTION EXPERIMENTS

Initial experiments were conducted in Redhat Linux on simple processes to verify

whether buffer overflows can be detected from system call traces. Buffer overflows were

created by passing very large strings with intrusion code. System call traces were

collected using the command “strace”.

Initial experiments were conducted using the simple C program listed in Figure

4.2 as described in section 4.3. System call sequences obtained during normal execution

and abnormal execution of the vulnerable program corresponding to Figure 4.9 and

Figure 4.10, are shown in Figure 5.2. The portion of the system call trace which is altered

in the intrusion trace is shown in bold face.

Nqlimal Execution Trace

Execve, Uname, Brk, Old_mmap, Open,Open,
Fstat64,0ld_mmap, Close, Open,Read, Fstat64 “

Old_mmap,Old__mmap, Old_mmap, Close,
'l3 Set_thread_area, Munmap,Mmap2, Read,
4 F stat64, Mmap2, Write, Munmap, Exit_gr0up l

l

Intrusi0n,Irace

Execve, Uname,Brk, Old_mmap, Open,Open,
§ Fstat64,0ld__mmap, Close, Open,Read, Fstat64
E Old_mmap,Old_mmap, Old_mmap, Close,

Set_thread__area, Munmap,Mmap2,Read,Setreuid, Exit ‘
Figure 5.2. System Call Trace Analysis
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It is observed that the sequences of system calls made by a program during its

normal executions are very consistent, and different from the sequences of its abnormal

executions as well as the executions of other programs. It is also observed that buffer

overflows cause deviation in normal program flow and system call sequence. Therefore a

database containing the possible normal sequences with permissible deviations can be

used as the definition of the normal behavior of a program and a profile of this database

can be used as the basis to detect anomalies. These findings motivated us to search for

simple and accurate intrusion detection models based on system call frequencies.

To conduct further experiments, as a commonly used program that is vulnerable

to common exploits and buffer overflows, Sendmail daemon was used for studying the

normal behavior and to detect anomalous behavior. Sendmail is designed to route email

between peers on a network and also to route mails between networks. Many of the

functions like crackaddr(), prescan() etc were vulnerable to buffer overflow attacks

[Farrow 03,Cert 03-1,Cert 03-2]. The syslog intrusions [Farrow 03] use the syslog

interface to overflow a buffer in sendmail. A very long message overflows a buffer in

sendmail, replacing part of sendmail's running image with the attacker's machine code.

Though patches are currently available for the most of the vulnerabilities, sendmail and

the buffer overflow attacks on sendmail are good cases for experimental study. Sendmail

daemon was examined for detection of buffer overflow attacks.

Although the idea of collecting traces of normal behavior sounds simple, there are

a number of decisions that must be made regarding how much and what kind of llOl'ITlEll

behavior is appropriate. Specifically, should we generate an artificial set of test messages

that exercises all normal modes of sendmail or should we monitor real user mail with the
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hope that it covers the full spectrum of normal. This question is especially relevant for

sendmail because its behavior is so varied. If we fail to capture all the sources of legal

variations, then it will be easier to detect intrusions and be an unfair test because of false

positives.

Once the normal profile is defined, the next decision is how to measure new

behavior and determine if it is normal or abnormal. The easiest and most natural measure

is simply to count the number of mismatches between a new trace and the normal

profiles. Ideally, we would like these numbers to be zero for new examples of normal

behavior, and to jump significantly when abnormalities occur. In a real system, a

threshold value would need to be determined, below which a behavior is said to be

normal, and above which it is deemed anomalous.

The sendmail program is sufficiently varied and complex to provide a good initial

test, and there are several documented attacks against sendmail that can be used for

testing. In order to construct a good classifier, we need to gather a sufficient amount of

training data and identify the set of meaningful features. Due to the unavailability of

enough varieties of intrusion trace data, further experiments were conducted using data

sets available at University of New Mexico [Unm 02].

5.3. EXPERIMENTS USING SENDMAIL DATA SETS

For experiments, publicly available system call sequences from UNM data sets were

used. The University of New Mexico (UNM) provides a number of system call data sets.

Each data set corresponds to a specific attack or exploit. There are data sets

corresponding to Linux and Sun systems. Each data set consists of a number of system

call traces. Each trace represents a sequence of system call numbers corresponding to the
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system calls generated. In UNM system call traces, each trace is an output of one

program. Sometimes, one trace has multiple processes. In such cases, traces

corresponding to different processes are separated and sequence per process is used for

analysis. However, most traces have only one process and usually one sequence is created

from each trace.

UNM mapping files give the mapping of system call numbers to system call names.

There are different mapping files in UNM data sets, corresponding to Sun and Linux.

UNM collection include variety data sets of sendmail and lpr. Synthetic data for

sendmail, used in the experiments, were collected at UNM on SUN SPARC stations

running unpatched SUNOS 4.1.1 and 4.1.4. The system calls were collected using the

strace package, version 3.0.Traces corresponds to the executions of normal sendmail,

successful and unsuccessful intrusion attempts on sendmail System calls generated by a

process and its children are stored in the same trace. Each trace is a sequence of (process

id, system call number). System call numbers are stored in the order in which it is

executed. The set include normal traces and abnormal traces. A normal trace consists of

several invocations of the sendmail program. The abnormal traces used are from syslog­

remote intrusion and syslog-local intrusion. Table 5.2 lists a sample short sequence from

the normal data set.

Table 5.2. A short sequence from sendmail normal dataset

l 3750 5 ‘ 3752 105 h 3752 104 ‘ 3752 104 I 3752 106 ‘

The abnormal traces include local and remote intrusions, each with variety of

commands executed during the attack.
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5.4. THE APPROACH

The approach is based on two important properties. The first property is that,

some unusual short sequences of system calls will be executed when a security hole in a

program is exploited. The second property is that variations in the sequence of system

calls executed by a program during normal operation are limited. It is assumed that in

most cases the first property will be satisfied and if a program enters an unusual error

state during an attempted break-in, then the error condition executes a sequence of system

calls that is not already covered by the normal database. Also, if an intruder replaces code

of running program, it would likely execute a sequence of system calls different from the

normal database, and we would expect to see some differences. Finally, it is highly likely

that a successful intruder will need to fork a new process in order to take advantage of the

system. This fork, when it occurs, should be detectable.

There is a good chance that the latter condition will be met by many programs,

simply because the code of most programs is static, and system calls occur at fixed places

within the code. Conditions and function calls will change the relative orderings of the

invoked system calls but the variations are limited.

However, if an intrusion does not change the system call sequence generated, it

willbe missed under the current definition of normal. So it is not possible to detect race

condition attacks. Typically, these types of intrusions involve stealing a resource (such as

a file) created by a program running as root, before the program has had a chance to

restrict access to the resource. If the root process does not detect an unusual error, a

normal set of system calls will be made, defeating the detection method. This is an

important avenue of attack. A second kind of intrusion that is likely to be missed is the
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case where an intruder uses another user's account. User profilescan potentially provide

coverage for this class of intrusions which are not likely to be detectable in root

processes. Although the method described here will not provide a fundamentally strong

or completely reliable discrimination between normal and abnormal behavior, it could

potentially provide a lightweight tool for checking executed code based on frequency of

execution.

To achieve reliable discrimination, it should be ensured that the method of

flagging sequences as abnormal does not produce too many false negatives or false

positives. Most of the exploits studied are found to be very short in terms of the length of

time the anomalous behavior takes place. There might be other more appropriate

measures than the method that is suggested, especially in an on-line system.

There are two stages to the proposed system. ln the first stage, by scanning

through the traces of normal behavior a database of characteristic normal patterns

(observed sequences of system calls) is built. In the second stage, new traces that might

contain abnomial behavior are matched against the normal database. In the current

implementation, analysis of traces is performed off-line. In the proposed method, the

input sequence is converted into a frequency list of system calls. The system makes use

of a new concept known as sequence sets, which is explained in the following

paragraphs.

5.4.1. Sequence Sets

System call trace for a particular process is termed as a sequence. A collection of

similar sequences is called a sequence set. Sequences that start with the same sequence of

system calls will be in the same sequence set if they continue to follow the same
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sequence "of system calls. Certain sequences differ only in the number of times of

executing certain subsequences. These sequences, which differ only in the number of

execution of subsequence of system calls, will be in the same sequence set. Consider the

sequences described in Figure 5.3. The sequences, sequence 1, sequence 2 and sequence

3, differ only in the number of times the subsequence S4, S5, S6 is executed. The system

calls and the order in which these system calls are executed are same in all the three

sequences. Hence they belong to the same sequence set.

‘F"' ' T *"‘  *' ‘
§e3uence 1 g§equence 2g§equence 3l S1 $1 S1

1 s2 S2 S2
X.

l

J ss S3
fiT_.. _

___J S3

T S4. -34 84
ss s5 515­

a,_S6 S6 ss
7 T s7 Si S4

i S8, $5 S5s9 i

S6, S6
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Figure 5.3. A set of system call sequences

Determining which all sequences belong to a particular sequence set IS a very

complicated process. Determination of sequence sets can be considered as a classification

problem. The given input sequences have to be divided into disjoint classes known as

sequence sets.
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All known algorithms for classification can be applied to the classification of

sequences.

5.5. DATA PREPARATION

Each trace in the data set is a collection of several sequences of system calls.

Sequences are separated and a frequency chart of system calls for each sequence is

prepared. Each sequence is characterized by the start sequence. All sequences with

similar starting sequences are grouped into a sequence set. It is assumed that the number

of possible normal sequence sets for a particular process is limited. As per the UNM data

sets, the number of possible sequence sets for Sendmail is nine and the first seven system

calls in the sequence and the frequency of the first system call is used to identify the

sequence set to which the particular sequence belongs. Table 5.3 shows a fragment from

frequency chart of sequence set].

5.6. ANOMALY STATUS DETERMINATION

Frequency of individual system calls in the execution trace of a process is used for

determining the anomaly status of the particular process. Frequency of each system call

in the input execution trace is determined and matched with a normal profile. Details of

deviations in frequencies of the input execution trace are fed to the Bayesian network.

The Bayesian model computes the anomaly score using system call frequencies as well as

prior probability distributions and if the anomaly score is above the threshold value,

marks it as an anomalous situation. Pictorial representation of the model used is shown in

Figure 5.4.
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Figure 5.4. Bayesian model

Anomaly status is determined with the help of a Bayesian Network. Frequency

chart for the process under consideration is prepared from the input sequence and the

corresponding sequence set is determined. A Bayesian Network defines the probability of

anomaly for different combinations of system call frequencies. The Bayesian network

makes use of a number of model parameters to detect anomalous sequences. The model

parameter values are different for different sequence sets.

System call frequencies vary highly in different sequences. Even with in the same

sequence set, for certain system calls this variation is unlimited. But for certain system

calls, with in the same sequence set, the variation in the frequency is relatively less or

limited during normal executions. During a buffer overflow. it is often necessary to insert

new code resulting in insertion, deletion or modification of the normal system call

sequence. As a consequence, frequency of certain system calls in the sequence deviate

from the normal. In most cases, frequencies of system calls can be used to detect

anomalous sequence.
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System calls are categorized into three groups depending on their frequency

variation in anomalous situations. Each model is concerned about a particular category of

system calls.

Table 5.3. A fragment from the frequency chart of sequence setl

~ Process id —) H
System 6 i ~i  E  I I X;

6 Number ; 3772 r 3805 3827 I 3783 i 37946 and y 6 y
6 r Name2- q 4, W 6 q y__  6 6l4'q4g_.  4. g4-1.A 2;g2qH._2. 2q.g2_, 66 66  66 l 66 66 ti

Start-sequence

.2 1*‘ ii 6 , is i—6 Y 6
66 66_r 66 g 66 1 66 l

f .1 4?, 4y 4tg4yg 4_. *1  _ _i _ 1
1' 138 r 138 138 gig 138 ‘IQ8 -l
6 6 6 66 66.- 66 - 66 ' 66 .
W =1, 1-fork". 1 1_i 1} 1;g1:_. , __ 6. _ .l_
» N’ 2-read y 26 26 q 26 as 6 59 H

equency Deta s

J 3-write 6 2 6* 6 by 15 ll 41| "I 6 6'4-open 29 29 29 y 29 * 29
'.  . "1 —_  —  _ --ii —_.  — __ (H5-close 96__t 66 I 96 ' 96 _96

Fr

5.7. MODEL PARAMETERS

The following section describes the model parameters, their significance and

detection mechanism.

5.7.1. Matching Profile

System calls that has limited or no variation with in the same sequence set are

considered in the matching profile model. This model approximates and profiles the
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distribution of frequencies of system calls during normal executions. The goal of this

model is to approximate the distribution of the frequencies of system calls of each

sequence set and detect instances that significantly deviate from the observed normal

behaviour.

For each sequence set there is_a normal profile. The profile, stores the minimum

for normal and maximum possible deviation from the normal for each system call

frequency component of the particular sequence set. Each input sequence is matched with

the corresponding normal profile. If the frequency components of the input sequence

match with the normal profile, with pemiissible variations, it is treated as a normal

sequence by the matching profile model.

5.7.2. Frequency Pattern

Frequencies of certain system calls and subsequences will vary highly even with

in the same sequence set. This variation can be considered as normal if this variation is

relative to the frequencies of similar system calls. Variation in the frequency of system

call Read with system call number 2 in the sequence set] as shown in Table 5.4 can be

considered as example for this case. A fragment from the frequency chart of sequence

set4, with identifying sequence “I05, 104, 10.4, I06, 105, 108, 112, 1” is listed to

demonstrate the variation in frequencies.

The frequency distribution model captures the concept of a ‘normal’ system call

frequency for such system calls by looking at the relative ranking of the frequency

component. It is based on the observation that repeating subsequences will increase the

frequency of every system call in the subsequence. The analysis is based only on the
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relative order of the frequency values and does not rely on the value of the individual

system calls.

Table 5.4. A fragment from the frequency chart of sequence set4

System 1492 1 1575 1403 1423Call 1  5
"umber- . 1 1F;  32 32,, 12 .14
i 3  15 _15 , 10 L111“.

19  4335 14335 ‘ 190 ,_;§7o ,5
15o__ 16 16117717.

1 78 4814 1 4814,,“ 168 648
1 104_ 1 16052 116052-564 2164.I , j II l I

105 9637 *9e37 344 13041 1 ll T106 8027 E 80277 283 71083‘»___~ -__._ A ~¢ 7 ‘ii ___'_­
1 108 1610 1610 H “Q1  221‘\ ““—_ 1 -'8‘ ——— —— - 1

1112 E1 4830 43301137 667
128 8 1 8 1 10 ,_,1,0__§_ _i

Table 5.5 lists the ranking of the system call frequencies, as used by the frequency

pattern model, corresponding to the processes listed in Table 5.4.

5.7.3. Irregularity count /Presence of system calls

Many of the system calls will not appear in the execution sequence of a particular

process and will have zero frequency value. This model takes care of system calls absent

in all the normal sequences encountered during training phase. The model examines the

input sequence for presence of anomalous system calls and outputs an abnormal value if

found.

Once the parameters are correctly identified, probability tables can be constructed for

predicting the anomaly score. The anomaly score is a value that specifies the extent of the
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deviation of the received request from the expected profile. It is a compound value that is

obtained from the joint probability table. The anomaly score for each request can be in a

range from 0.00 to 1.00, where 0.00 represents a completely secure state and 1.00 a sure

anomalous state.

Table 5.5. A fragment from the frequency pattern chart of sequence set4 _. _,_,  I  "
1

1 System 1492 1575  1408 1 1423@ Call 1lpllumber  5 p  11 2 J 8 H 8_ 5 9 9__1 1 1
I3 2 10 7  10 % 1019s4 pg. 4&4» l1 59 9 iQ-4 9 i 8 ‘ 8 it; 78 6 . 6 1 6  'I , l1041111 1 N1IY A , A-~~_;
l1o5g2 ,2 2106133 3131 1 1

l1108 7i7_i7@g7
I

F _ _. __ . _ _7 V_ .=112yss55126 11  11 10 10
5.8. TRAINING

Training involves determination of the sequence sets, system calls used by each of

the models, the structure and probabilities associated with each of the nodes in the

Bayesian Model. The success of anomaly detection depends on the determination of the

right sequence sets and actual probabilities associated with each of the nodes in the

Bayesian Network.

System calls used by each of the models and the sequence sets involved are

determined by analyzing the variations in system call frequencies and by matching

against the identifying sequence.
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The ‘Bayesian Network uses a separate node for each model parameter in each

sequence set. The joint probability table associated with a node involving variables X1 to

Xk is estimated from the training data as follows

N

P(Xl=I1s"'>Xk:Ik): x1:|I|\I,H_‘Xk:Ik

where N X I: I]  k Z ik IS the number of observations I11 which X1,  Xk are in

states I; ---- IR.

5.9. CONCLUSION

A simple Bayesian model to detect anomalies due to buffer overflows is presented.

Frequency sequences from system call traces are classified into sequence sets. The

Bayesian model determines whether a particular sequence matches with a sequence set or

not. Mismatches are represented as an anomaly score and if the anomaly score is above a

threshold value, the particular sequence is termed as anomalous.
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CHAPTER 6

PERFORMANCE EVALUATION

A concept prototype was developed and implemented to detect buffer overflows.

Sequences were identified with their process-id. Only normal sequences were used for

training. Samples were selected using random() function from the list of normal

sequences. The prototype was tested using random samples from the list of normal and

abnormal sequences.

6.1. PERFORMANCE MEASUREMENT

On analyzing the data set, it is observed that the number of normal profiles is

limited. For evaluating the performance, a number of parameters were measured under

different conditions. Sequences were identified with their process-ids. Only normal

sequences were used for training. Samples were selected using random() function from

the list of normal sequences. The prototype was tested using random samples from the list

of normal and abnormal sequences.

Performance was measured using cross validation method by varying training and

testing data. Only normal datasets were used for training.

Cross validation is a model evaluation method that is better than residuals. The

problem with residual evaluations is that they do not give an indication of how well the

learner will do when it is asked to make new predictions for data it has not already seen.

One way to overcome this problem is to not use the entire data set when training a

learner. Some of the data is removed before training begins. Then when training is done,
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the data that was removed can be used to test the "performance of the learned model on

new data. This is the basic idea for a whole class of model evaluation methods called

cross validation. [Schneider 97]

The holdout method is the simplest kind of cross validation. The data set is

separated into two sets, called _the training set and the testing set. The normal profile is

trained using the training set only. Then the data in the testing set is matched against the

profile. The testing data is new to detection mechanism. The errors it makes are

accumulated as before to give the mean test set error, which is used to evaluate the

model. The advantage of this method is that it is usually preferable to the residual method

and takes no longer to compute. However, its evaluation can have a high variance. The

evaluation may depend heavily on which data points end up in the training set and which

end up in the test set, and thus the evaluation may be significantly different depending on

how the division is made.

K-fold cross validation is one way to improve over the holdout method. The data

set is divided into k subsets, and the holdout method is repeated k times. Each time, one

of the k subsets is used as the test set and the other k-1 subsets are put together to form a

training set. Then the average error across all k trials is computed. The advantage of this

method is that the way in which the data gets divided does not matter much. Every data

point gets to be in a test set exactly once, and gets to be in a training set k-I times. The

variance of the resulting estimate is reduced as k is increased. The disadvantage of this

method is that the training algorithm has to be rerun from scratch k times, which means it

takes k times as much computation to make an evaluation. A variant of this method is to

randomly divide the data into a test set and a training set, k different times. The advantage
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of this metod is that the size of the test set and the number of trials can be independenly

selected.

For evaluation 100,000 runs were used. This is because of the high variation

observed in the performance of the different runs. Data sequences in each run are divided

into training and testing sets. For experiments concerned with training percentage, size of

the training data set was selected and all remaining data was used for testing. For all other

experiments a total of 10,00,000 random data sequences were selected randomly from all

the 10,000 runs. The parameters are totaled and average of all the runs was computed.

The parameters considered for performance measurement were accuracy,

detection rate and false positive rate. [Kang 05] has defined accuracy, detection rate and

false positive rate as follows.

Accuracy is a fraction of accurate identifications.

_ True Positive Count + True Negative CountA
Ccuracy Total Input Sequences

Detection rate is a fraction of the intrusions identified.

. Tiue Positive CountDetection Rate_ = P  as _ ; P M P» ; W  P
True Positive Count + False Negative Count

False positive rate is a fraction of the normal data misidentified as intrusions.

, _ False Positive CountFalse Positive Rate = —~a  4 _ F —~~ M _  P
True Positive Count + False Positive Count

where true positives are the number of abnormal sequences detected as abnormal, true

negatives are the abnormal sequences detected as abnormal, false positives are the normal
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sequences detected as abnormal and false negatives are the abnormal sequences detected

as normal.

6.1.1. Detection of abnormal sequences

The system assumes a threshold value of zero. The system was able to detect all

abnormal sequences, keeping the number of false positives small. The. false positives are

caused by system call sequences which significantly deviate from all examples

encountered during the training phase. This is a common problem in intrusion detection

practice as pointed out in [Kang 05] that the available intrusion data is not quite

balanced. In such cases the detection rate and false positive rate will not be optimal. This

is due to the huge disparity between the numbers of normal sequences belonging to

different sequence sets of the dataset used for evaluation. If this disparity can be removed

by selecting all the different varieties of data sequences for training, the number of false

positives will be zero.

Most of the false positives were caused by the absence of enough varieties of

samples. A typical situation from model2, while considering the frequency ranks of

sequence set5 is shown in Table 6.1 and Table 6.2.

Here the false positives were caused due to the specialty of the training.data set

pertaining to sequence set5. There are only 2 processes, 1423 and 2905 with a different

frequency sequence for the system calls. If both 1423 and 2905 do not appear in the

randomly selected training data, the frequency rank profile for sequence set5 will be

unique. In this situation frequency sequences corresponding to both I423 and 2905 will

be tested as false positives, since they differ from the unique profile of sequence set5.
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Table 6.1. An extract from the frequency chart of set5 showing frequency

i System ;    Frequency Values  1
1 Call Numberl PlD1408 1 PlD1393 ; PlD1423 PID 2905 1

I

I

tin-'­

2 q 12 12Mq__ 1 14 no 25 or
2-,3 21°

"F
1Q_: 1 1 1 16 i_

q 1 9 190 _,_§.c 73 :‘ 2 670 . 3070

1 60%

Q I
CD

1Zi_q 1 179 “q_ 17 q_
1

51 _166 648“

1 17
1 3046

104 564
1

174 222215 1016
_ 10s 344 110 2 , 6222139

1
2_25104 1

106 283 88  108
11 N  5063

108 1

1

1

61 22 T 221 1 1021
112 137. 70 667 3067

1~ J23 * __19_ ~ 10  _ 10: 1  _
Table 6.2. An extract from the frequency chart of set5 showing ranks

svsiem ;  frequency Rankings
Call Number PID 1408 ‘ PID 1393 PID 1423 PID 2905

; 2 A i __H.
1

i 9 9 9 81 3 10  102 1 10 2__
A __ 19 4

I

1 4 ,|
50 ____2 .1 8 _~ ~ _ 8 * 8 8Z8 1 6 21 6  6 74 6 2

i 104 1 9949 1 1 .
222 2 2

1 7 11 _ 1
2 A2_ H  :2“Iq 105

1% "106 63 3 ___ P 236 3 I
7 q 7

__ 112
r__1 103 22; is 7  WMZ__s 4;5 5 5 1 9 5 A
__128 10 10 _m_ 1Q q ______Q11

A similar situation occurs in sequence setl in model]. The increase in the number

of false positives was caused by the lack of sufficient number of variety data in the
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training data set. Table 6.3 and Table 6.4 show the situation. This is because of similarity

of the processes appearing in sequence setl. There are only two processes 3783 and 3794

in sequence setl with a different frequency profile. All other processes belonging to

sequence setl has a fixed pattern of frequency values for all system calls. In sequence

setl there are only two system calls, which are handled by the frequency pattem model or

model2. So if both 3783 and 3794 do not appear in the training data, profile for sequence

setl will contain fixed frequency values for all system calls with non zero frequency

values and are handled by modell itself. In this special situation, even system call 2 and 3

which were supposed to be handled by model2 will be handled by modell. Modell

signals both 3783 and 3794 as false positives, due to the difference in the frequency

values of system call 2 and system call 3.

Table 6.3. An extract from the frequency chart of setl showing frequency

T System Call System  M gg_ _f_requency Values  pg  g_g
Name Call PID 4176 PID 4187 _ PID 3783 PID 37943 Number ..._._: r . >> soW Read  2 26  2ep_  as 59Write l 3 8 l 8 15 41

Table 6.4. An extract from the frequency chart of setl showing ranks

System Call System  Frequency Ranking  _r l .I I '
Name Call PID 4176 I PID 4187 5 PID 3783 PID 3794W l   H__ 1 __Read ‘ 2 I 1%’ , 1% _:_ 1  1l Write 3 l 2 2 2 l 2 1
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6.1.2. Effect of Training Ratio on performance

In the first set of experiments, performance was measured by varying training

percentage. The prototype was tested using random samples from the list of normal and

abnormal sequences. Figure 6.1 shows the corresponding chart.l F  T“ _* FT4 -n-Accuracy-it1-00 "  ;.,._. .11;0-98 + Positives ,1
A -9 0.96 _

T6

Performance R
53> 9 P 9 .°CD on (O (O (OO) 00 I\) -P­

‘ I
l _. |
0.84 -5

0.82 -1 QL i L"! I Lil i ....l I I i0 0.2 0.4 0.6 0.8 1
Training ratio J.

Figure 6.1. Performance evaluation 1

6.1.3. Comparison of False Positives

The number of false positives is a very important criteria to determine the success

of the ‘ method. Following sections ‘describe the comparison of false positives under

different conditions.

6.1.3.3. Effect of Training Ratio

The effect of training ratio on false positives was studied. Figure 6.2 shows the

corresponding chart.
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6.l.3.b. Effect of True Positive Ratio

Next. set of experiments compared the effect of true positive ratio on false

positives. In order to vary the true positive ratio, more abnormal samples were added to

the testing data by replicating the process sequences.

\ _ _  __ , - _ t_ __.lone» t007- ~
l'“ 0'06 5 V-I-— FP Ratfi0051 0 N

eFlato

J2 0047l l
0030

se Postv

— 0.02 IJU |

Fa

0.01 4

0 +__ -__- __, - __1 '   aaaaa  1 T at aaaaaa 1 _-,0 0.2 0.4 0.6 0.8 1 to
Training Ratio

L __ ____._i_,,. _ L: ,_ ~  _-_,. ___ 7 _ -. _ .___.

Figure 6.2. Performance evaluation 2

Figure 6.3 shows the effect of true positives on false positives when training

percentage i-s varied. The first set used 50% and the second set used 80% of random data

samples for training.

Figure 6.4 shows the effect of true positives on false positives when random

samples are used for testing.
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In the first set complete data samples were used for testing. Second set used

randomly selected data for testing. Training percentage was 80% for both set of

experiments.

The emphasis has been on determining the success of the approach and efficiency

issues were not much considered.

6.2. PERFORMANCE COMPARISON

[Kang 05] compares the different methods to analyze frequencies of system calls

for anomaly detection. A comparison of the sequence-set method with other methods is

listed in Table 6.5.

From Table 6.5 it is clear that the suggested method is highly efficient in terms of

accuracy, detection rate and false positive rate, to detect anomalies in UNM Synthetic

sendmail data set. Due to the unavailability of other buffer overflow data sets, it could not

be tested for other datasets.

Table 6.5. Comparison based on performance percentagell . ll » R . .4 UNM Synthet|c ? . A . 4 Log|st|c y
Sendmail  N c4.s RIPPER svm Regre— 1 S°q§';"°° plE A M __ __p_;  Hf A 3 $f5iOl1 A p_l O l O 7  U  -9 O
Accuracy i 20.21 t 94.87 R 94.33 -l95.68f 95.41 R 99.93 '._ O ¥_.. T _ _i_ _ _ T _- 1ll 1l r - 1

1Detection Rate? 92.00 40.00 4 48.00 440.00  64.00  100 1I i ‘ l
l. . 1

yF°'s° P°s"“’° = 04.97 = 1.15 . 2.31 0.28  2.31 0.10 ,Qaate , ._ .  Mal _ . __ i . _ ._ _ T

Figure 6.5 represents the performance parameters graphically.
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[Zhang 05] presents a comparison of HMM method and subsequence analysis

with two sequence lengths. The comparison of the methods is given in Figure 6.6.
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False positive rate for sequence ‘set method is very low in comparison to the other

methods (Figure 6.2 to 6.4). So it is not included in the graph. The highest detection rate

achieved for any false positive ratio for the different methods from Figure 6.6 was

compared with detection rate for sequence set based method (proposed method). The

results are shown in Table 6.6.

Table 6.6. Comparison of Highest detection ratio

Subsequence  Subsequence Sequence Set
y method with method with lg HMM method based methodSequence Sequence 9 V \"J |°I19"\=f6 _ __|.°"9ih=10,   l it  q

Wig p62 %  :50 %   5 %  100 % _
So the sequence set method is superior to the other methods such as HMM method and

subsequence methods in terms of high detection ratio and low false positives.

6.3. CONCLUSION

The sequence set method was evaluated using cross validation method using

UNM data sets and found to have good performance parameters such as 100% detection

rate, high accuracy and low false positive rate. Available evaluation details of HMM

method and subsequence methods were used to compare the proposed method’s

performance. The sequence set method was found to be “superior in terms of all the

performance parameters used.

From the previous paragraphs it is clear that use of sequence sets and their

analysis using simple Bayesian network is highly effective and efficient.
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CHAPTER 7

DISCUSSION

Although the detection mechanism is both remarkably efficient and effective, it

cannot be perfect in all respects.

The Detection Mechanism (DM) is useful in providing powerful security data for

review, with its capability to determine which applications are running malicious

software. It is expected that this database of applications will be extremely helpful in

performing an audit of firewall rules and monitoring for policy compliance. By setting

the anomaly detector, it is possible to quickly watch all the applications and locate

vulnerabilities and security violations. Vulnerability assessment and anomaly detection

will help the administrators to alert on or block, threats. A defense center can aggregate

information from all the sensors and this data can be used to secure the network centrally.

Using the data gathered from the anomaly detector, the defense center can raise or lower

the “relevance” of an event based upon the target’s importance and its susceptibility to

the attack. In addition to a variety of alerting methods, administrators can block traffic via

inline Intrusion Sensors, or via third-party firewalls, switches, and routers. They can also

remedy vulnerabilities via third-party patch and configuration management solutions.

DM is implemented for offline processing of system call traces. It analyses

system call traces and determines the anomalies during process executions. The current

prototype is implemented in C in windows XP. It is not easily portable from windows.
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Currently the training phase is separate and does not incorporate new sequences into

normal profile.

Detailed discussions follow, along with comparison with other approaches.

7.1. SELECTION OF TRAINING SAMPLE

Before an anomaly detection system can be effective it must have a model of

normal behavior. Normal profile is collected during training. The training data should be

very carefully selected so as to contain all different categories of sequences. The next

new code path may generate a dozen new sequences or none at all.

Perhaps the simplest way to ensure that Detection Mechanism (DM) has profiles

of normal program behavior would be for software developers to distribute default

profiles of normal program behavior. These synthetic normal profiles could be easily

generated by running some or all of a program's regression test suite. If DM detects

anomalous program behavior relative to such a profile when a program is being used

properly, then the program's test suite is not comprehensive enough. Over a period, DM

will replace many of these profiles with ones that are specialized to the usage patterns of

a host. These profiles would generally be smaller than the default synthetic normal

profiles and would restrict program behavior to those code paths that are actually used on

a given machine.

7.2. EFFECT OF THRESHOLD

For example, a per-profile anomaly threshold could be tightened as a profile

stabilized. In sequence-based methods, a change in user behavior has much effect on the

correct threshold. But in this method, the effect of threshold is very steady. Zero

threshold is a good choice since it considers all which deviates from normal as anomalous
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even if the variation is" very small. To get an accurate performance, a threshold of zero

can be chosen.

7.3. ADAPTING T0 NEW SEQUENCES

Detection Mechanism could also be improved through the addition of a user space

daemon to manage process profiles and regulate status responses. Such a daemon could

note when new programs are run and use site~specific policies to determine whether it

should be allowed or not. It could periodically scan the profiles directory for normal or

almost-normal profiles that are likely to generate false positives.

The Mechanism never forgets program behavior even if a given behavior was

encountered only once. To mitigate this limitation, the daemon could prune profiles to

remove entries that hadn't been recently used. By correlating anomalies with network

connections or log entries, a monitoring daemon could also decide whether a few

scattered anomalies indicate that the system is under attack. It could then use this

information to trigger a customized response.

7.4. PORTABILITY

DM is implemented in windows. With a few changes, the mechanism should also

be able to run in Linux kernel. Because most UNIX variants use monolithic kernels and

support similar system call interfaces, it should be straightforward to port core analysis

routines to such systems.

DM captures the essence of a program's interactions with the outside world by

observing its system calls. Hence it cannot be adopted on systems that do not support a

traditional system call interface.
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7.5. OFFLINE PROCESSING

When frequency component of system calls are used for analysis, the monitored

process should terminate, in order to collect the final sequence of samples generated. So

only the offline processing of system call traces is adopted.

With slight modifications, the. method can be applied to on.-line processing. The

frequency components at each vulnerable point can be gathered and the same may be

used for determination of anomalies.

7.6. LIMITATIONS

Similar to other monitoring approaches using system calls, the capability of the

suggested approach is limited by the information contained in the system calls. The

parameters passed to the system calls are also not considered. System calls contain

information only about the limited events that occur. Only events that use system calls

will appear in the system call sequence of a particular process. This restricts the

capabilities of the monitoring system.

7.7. IMPROVEMENTS

Instead of capturing the behavior of entire applications, a better approach may be

to monitor the execution of application components. Stillerman et al. [Stillerman 99]

have shown that sequences of CORBA method invocations can be used to detect security

violations; in a similar manner, it should be possible to detect security violations in

Windows applications.

The violations that can be detected by the anomaly detector depend on the set of

normal traces. The set of trace policies restrict the behavior of programs beyond that

enforced by the protection mechanisms built in the operating system. Further research is
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needed to identify a methodology for determining whether a given set of normal traces is

adequate for a system.

Similar to other intrusion detection approaches, the new approach is not a panacea

to the intrusion problem. Attacks that do not produce state changes (e.g., passive

wiretapping) or that require massive behavioral analysis can not be detected. This

approach also assumes integrity of the system call data. Thus, attacks that involves

spoofing, which produce the same system call trace but from a different source, may not

be detected.

Last, the new approach is a detection approach, which raises an alarm when an

intrusion occurs. This approach can, at best, detect security violations, and it is up to the

system administrator or security officer to deal with each detected violation.

7.8. COMPARISON

The proposed solution is a simple, accurate and systematic approach compared to

current approaches for monitoring the security of a system.

7.8.1. Misuse Detection

In misuse detection, the goal is to identify actions (or misuse signatures) that

represent intrusive activities and to check for occurrences of these actions in the audit

trails. Expert system rules, state-transition diagrams, and pattems in Petri networks

describe misuse signatures.

The specification-based approach can be thought of as the dual of misuse

detection. A misuse signature describes undesired behavior in a system while a trace

policy describes the desirable behavior of a subject. In particular, new approach focuses
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on thedesirable behavior of security-critical programs (e.g., privileged programs) in a

system. One way to specify the desirable behavior of a program is to enumerate the

operations the program needs to perform in order to accomplish its function.

A misuse detector matches a signature with the whole system trace to identify

intrusions while an analyzer in a specification-based execution monitor parses the trace of

a subject to determine whether the subject conforms to a trace policy. Although matching

of different signatures can be distributed over multiple hosts, each misuse detector

requires the whole system trace. In a distributed system with many hosts, the whole

system trace would be huge and cannot be processed by a misuse detector in real time. In

the suggested approach, an analyzer monitors the execution of a particular subject; only

the audit records associated with the subject are needed by the analyzer.

In misuse detection, signatures are mostly driven by previous attacks or known

vulnerabilities. Although possible, it is not intuitive to encode a policy as misuse

signatures. The new approach is more policy-oriented; a trace policy for a subject is

specified based on the functionality of the subject and the system security policy.

Therefore, it can succeed in catching attacks that exploit unknown vulnerabilities in

programs.

7.8.2. System Call Based Methods

When compared with the widely used fixed-length contiguous subsequence

models, the system call representation explored in this dissertation is somewhat simple. It

may be argued that much more sophisticated models are available that take into account

the identity of the user or perhaps the order in which the calls were made. But the

experiments show that a much simpler approach may be adequate in many scenarios. The
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results of experiments described in theprevious sections show thatit is possible to

achieve near perfect detection rates and false positive rates using a data representation

that discards the relationship between system call and originating process as well as the

sequence structure of the calls within the traces.

It is possible t.0 achieve accurate anomaly detection using fixed-length contiguous

subsequence representation of input data. In this approach, the detector will find

anomalous subsequences right after they are executed depending on user-specified

thresholds. A weakness of the subsequence based approach [S0mayaji 98] is that small

changes in user behavior can result in very different patterns of system calls. In general

the rate of novel sequences goes down; yet for all programs, there are discontinuities

when usage patterns change. A profile that has “almost settled down" is not “almost

stable"; the appearance of even a few novel sequences means that previously unseen code

paths are being executed.

The proposed model has advantages that leaming is faster, memory requirements

are significantly lower and simple Bayesian model discriminates normal sequences and

abnormal sequences.

7.9. CONCLUSION

This thesis describes a new approach to security monitoring. The main idea is to

detect buffer overrun vulnerabilities by specifying the desirable behavior of security­

critical programs in a system and to monitor their executions for behavior inconsistent

with the specifications.

The approach aims at building process profiles with system call frequencies and

to detect anomalies by measuring deviations from the process profile. Aspects of program
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behavior that are security-relevant were identified and a number of model parameters for

describing the desirable behavior of programs were developed. The detection model uses

novel ideas from probability, and provides a way to enhance accuracy of detection. The

method is demonstrated by applying it to a simple vulnerable process and sendmail.

The model is very suitable for detecting well-known attacks and trivially modified

attacks under time and space constraints. If the anomaly detector needs to be built in real­

time and the built system must be as light as possible to be able to work over limited

resources, the new approach will be a perfect fit because the generated detector is simple

and powerful to detect well known attacks.

Since no effective mechanism has been determined for dynamic detection and

prevention of buffer overflows, obtaining information about the occurrence of buffer

overflow itself is very important. The suggested method performs offline analysis of

system call traces to detect presence of anomalies due to buffer overflows. Taking into

account the security relevant information such as the time of attack, the function which is

used for attack, the user who executed the vulnerable program and the attack code used,

the system administrator can take precautionary measures to prevent further attacks, once

the anomaly is signaled. The anomaly detector presented, is a security mechanism that

moves us a step closer to a self- defending system.
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CHAPTER 8

FUTURE WORK

This chapter discusses suggestions for future research in this area. The design of a

detection mechanism is presented and implementation of an offline prototype for a single

host is discussed. The implementation serves as a proof of concept of the new approach.

The new approach can be deceived by mimicry attacks [Wagner 02], if the

attacker knows the intrusion detection mechanism. Future work in this area should be

focused on addressing this problem.

The implementation was tested using the data sets available at University of New

Mexico. Due to the difficulty in collecting sufficient varieties of intrusion data pertaining

to buffer overflow, the model could not be tested in a real environment for complex

cases. More testing in a real environment is needed. One future effort would be to

implement an on-line distributed monitoring system based on the suggested design. The

system should trace the system calls generated, update the frequency components in real

time and perform real time analysis. The distributed monitoring should work on a large

distributedsystem and have efficient communication mechanisms. In particular, it is

important to evaluate the performance of the monitoring system in a very large

distributed system. The test should clarify how large a system the monitoring system can

handle. The performance evaluation should include CPU time, memory requirements,

network bandwidth consumed by the system, and the response time of normal users.

Criteria for distributing the load of the analyzers among different machines are also

needed.
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