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Chapter 1 

iNTRODUCTION AND REVIEW OF LITERA TURE 

1.] lntroduction 

Finite mixtures of distributions provide an important tool In 

modelling a wide range of observed phenomena, which do not normally yield to 

modelling through classical distributions like normal, gamma, Poisson. binomial, etc., 

on account of their heterogeneous nature and inherent complexity. In a finite mixture 

model, the distribution of random quantity of interest is modelled as a mixture of a 

finite number of component distriblllions in varying proportions. A mixture model is, 

thus, able to model quite complex situations through an appropriate choice of its 

components to represent accurately the local areas of support of the true distribution. 

It can handle situations where a single parametric family is unable to provide a 

satisfactory model for local variation in the observed data. The tlexibility and high 

degree of accuracy of finite mixture models have been the main reason for their 

successful applications in a wide range of fields in the biologicaL physical and social 

sCIences. 

The concept of finite mixture distribution was pioneered by 

Newcomb (1886) as a model for outliers. However. the credit for the introduction of 

statistical modelling using finite mixtures of distributions goes to Pearson (1894) 

while applying the technique in an analysis of crab morphometry data provided by 

Weldon (1892, 1893). The data was a set of measurements on the ratio of forehead to 

body length for 1000 cmbs. A plot of the data showed that they were skewed to the 

right. Weldon (1893) suggested that the reason for this skewness might be that the 

sample contained representatives of two types of crab but when the data were 

collected no such differentiation had been recorded. Thus. Pearson (1894) proposed 

that the distribution of the measurements might be modelled by a weighted sum of 
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two normal distributions. with the two weights being the proportion of the crabs of 

each type. Mathematically, Pearson suggested the distribution for the measurement on 

the crabs was of the form 

(l.1) 

where p is the proportion of a type of crab for which the ratio of forehead to body 

length has mean f.1, and standard deviation (), and (1- p) is the proportion of a type 

of crab for which the ratio of forehead 10 body length has mean f.12 and standard 

deviation 0"2' In (1.1). N (x; f.1,. 0") is the normal density given by 

1 1 , 
J;(x):=; ~ expl--, (x - Ji, t], 

....;27ra, 20",-
-00 < x < 00, 

-oo<f.1, <00, a, >0, i=1,2. 

The density 0, J) will be bimodal if the two component distributions are widely 

separated or will simply display a degree of skewness when the separation of the 

components is not so great. To model the distribution (1.1) to a set of data, the 

parameters P,f.1"f.12 ,a, anda2 has to be estimated. Pearson (1894) obtained the 

moments-based estimates of the five parameters of the mixture of normal distribution 

as a solution of a ninth degree polynomial which was a task, at the time so 

computationally demanding. Various attempts were made over the ensuing years to 

simplify Pearson's (1894) moments based approach to filting of a normal mixture 

model. The use of mixture of normal distributions (1.1) to model the different species 

of crab motivated extensive use of finite mixture distributions in other applied 

sCIences. 

1.2 Definition 

Let X be a random variable with a family of probability 

distributions {oR ( Jr.; {l); {l E El}, where the parameter space e is a subset of Rill, the 

m'I! dimensional Eucledian space. Let G ({l) be a cumulative distribution function of 

f!. Then the probability density function f(x) defined by 
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/ (x) = fg ('cfl)dG(fl), (l.2) 
e 

is called a general mixture density function. In (1.2), GO is called the mIXing 

distribution. 

When G(.) is discrete and assigns positive probability to only a 

finite number of points B; (i = 1, 2, ... , k) , the density (1.2) can be written in the form 

(1.3) 

where 

f(x,B) "? 0, ff(x,B)dx=l. p; '"20 (i=1,2, ... ,k) andp]+P2+"'+Pk =1. 

Then (J.3) is called a finite mixture of densities. The constants P; 's are called mixing 

weights and 1,'s are called component densities. 

1.3 Identifiability 

Thc concept of identifiability plays a vital role in the analysis of the 

finite mixture models. A mixture is identifiable if there exists a onc-to-one 

correspondence between the mixing distribution and the resulting mixture. Mixtures 

that are not identifiable cannot be expressed uniquely as functions of component and 

mixing distributioils. For example. the finite mixture of unifonn distributions is not 

identifiable. since the mixture density lex) can be represented in two different forms 

and 

1 1 
( (x) = -U(-2, I) + -U(-L 2). 
. 2 2· 

where U(a,b) is a uniform distribution over the interval (a.b). 
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1.3. t Definition 

Consider the mixture density function given in (1.2). Let A be the 

class of all mixing djstributions G and ( be the corresponding class of mixtures, 

Define Q: A ~ (by Q(G)::: f ' The class A and equivalently the family ( is said to 

be identifiahle with respect to the family{f (X;~);~E e} of probability distributions 

if the mapping Q is a one-to-one mapping between A and (. That is, for each 

element in one class we can identify one corresponding element in the other class. A 

class (of finite mixtures of densities i!) said to be identifiable if and only if, for all 

f(x,f]) belonging to ( , the equality of two representations 

k t 

I p,f(x.8)::: I pi,f, (x, B;') 
;=J i=J 

implies thatk = k'. Pi::: P,· and 8i ::: 8;', i::: L 2 •... , k . 

The importance of identifiability is whether or not the distribution G 

can be uniquely determined from observations. The inference procedures on the 

mixture distributions can be meaningfully discussed only if the family of mixture 

distributions is identifiable. 

Teicher (1960, 1961. 1963, and 1967) introduced the concept of 

identiriahility and developed a theory to identify mixtures. Teicher (1960) showed 

that a finite mixture of Poisson distributions is identifiable. where as mixtures of 

binomial distributions are not identifiable if 

N <2k-l, 

where N is the common number of trials in the component binomial distributions and 

k is the numher of components in the mixture. Yakowitz and Spragins (1968) showed 

that finite mixtures of negative binomial component distributions are identifiable. 

Titterington et.a1. (1985) has given a lucid account of the concept of identifiability of 

mixturcs. They pointed out that most of the finite mixtures of continuous densities are 

identifiable; an exception is a mixture of uniform densities. Some discussion on 

identifiability of finite mixtures is given in Patil and Bildikar (1966). McLachlan and 
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Basford (1988) and Maritz and Levin (1989). Prakasa Rao (1992) and Lindsay (1995) 

have given a nice review on this topic. Recently, Al-Hussaini et.al. (2000) showed 

that a finite mixture of Gompertz densities is identifiable. 

1.4 Estimation of parameters 

Over the years, a number of methods have been suggested for 

estimating the parameters in a finite mixture model. Pearson (1894), for example, 

applied the method of moments, which needs to find the roots of a ninth degree 

polynomial to derive the estimates of the five parameters involved in the model (1.1). 

Cohen (1967) subsequently developed an iterative method for solving the same 

problem that only requires solving cubic polynomials. 

The method of moments was shown to be inferior to maxImum 

likelihood estimation (M.L.E) in a mixture of two normal distributions by Fryer and 

Robertson (1972) and Tan and Chang (1972). Indeed, the method of moments does 

not guarantee any sort of optimality of solutions but was initially useful in certain 

situations where the· M.L.E solutions were intractable. However, M.L.E became 

popular for general mixture problems with the availability of digital computers and 

the development of the expectation maximization (E.M) algorithm by Dempster et.a!. 

( 1977). 

Redner and Waiker (1984) pointed out some difficulties with M.L.E 

for finite mixtures. First, the likelihood function cannot be assumed generally to have 

an upper bound, creating the possibility of divergence. Second. there are often many 

sub-optimal local minima of the likelihood function. McLachlan and Basford (t 988) 

pointed out that these difficulties make the performance of the E.M algorithm very 

sensitive to the starting value of the model parameters. The E.M algorithm does not 

have the ability to escape sub-optimal local minima and can diverge if initialized 

close to a singularity in the likelihood function. Furthermore, the convergence is 

general1y slow and this is exacerbated by a poor initialization. 

Another method for the estimation of parameters of the mixture 

models is Bayes estimation, where the likelihood of the data is combined with prior 

belief about the parameters to draw an inference. Use of prior information gives an 

advantage for Bayes method over M.L.E since an inference can be made even with a 
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small number of data points. M.L.E solutions, especially for models with many 

parameters, become ill-posed when the data set is ~mall. However, in certain 

situations, Bayes estimation of parameters of mixture distributions currently suffers 

from the lengthy computations required to perform the inference. as integrals must be 

performed over a potentially unbounded multidimensional space. Further, the 

posterior inference can rarely be sampled directly, simplifying conjugate priors rarely 

exist, and in many situations there are no sufficient statistics to simplify the analysis. 

1.5 Estimation of number of components 

In the analysis of finite mixture models. a question that remains is 

how to estimate k , the number of components in the mixture. A likelihood ratio test is 

a natural candidate for testing, say k:::: ko against k :::: k) (k l > ko)' but this is well 

known to have problems in the context of finite mixture densities (see Everitt (1996)); 

nevertheless, the test can still often be useful as an informal indicator of number of 

components. 

A variety of other techniques to estimate the number of components 

in a mixture is described in McLachlan and Peel (2000). The problem is essentially 

equivalent to that of determining the number of clusters in the samples. (see Everitt et. 

al. (2001)). 

1.6 Fields of applications 

Finite mixture models are being used extensively for statistical 

analysis in many real life situations. For example. in the study of the distribution of 

length of fish, the sample of measurements consist of observations either from more 

than one species or from more than one age group of one species. The biologist, 

however, would have no way of classifying the items of the sample according to 

different age group. Thus the situation becomes a mixture distribution, the mixing 

being over a parameter depending on the unobservable variate age. The graph on 

measurements on length of fish will show lllultimodality if the fish stock contains 

populations from different years's spawning. 

In reliability theory, the mixture distributions are used for the 

analysis of the failure times of a sample of items of coherent laser used in 



7 

telecommunication network. In an experiment, one hundred and three laser devices 

were operated at a temperature of 70 degree Celsius until all had failed. The 

experiment was run longer than one year before all the devices had failed, because 

most of the devices were extremely reliable. The sample thus consists of Lwo distinct 

populations, one with a very short mean life and one with a much longer mean life. 

This can be considered as an example of a mixture of two exponential distributions 

with probability density function of the form 

f (x: J , A., ) = P exp [-x] + (1- p) exp[ - x] , 0 < x < DO 

.''1 .- ~ ~ ~ ~ 

where 0 < p < 1 and A, > () , i = 1,2. 

The above model will be useful to predict how long all manufactured 

lasers should be life tested to assure that the final product contained no device from 

the infant mortality population. 

There are several areas In which mixture distributions are being 

applied more frequently. Chronologically, a representative cross-section of the field of 

applications include the study on distributions of evening temperatures (Charlier and 

Wicksell, 1924), mice death times (Muench, J 936), comet frequencies (Schilling, 

1947), chromosome association (Skellam, 1948), lifetime of valves (Davis, 1952; 

Everitt and Hand, 1981), plankton frequencies (Cassie, 19(2), plant heights (Tan aka, 

1962). response times (Cox, 1966), death notice frequencies (Hasselblad, 19(9), pike 

lengths (M acdonald, 1971), gaps in traffic (Ashton, 1971), Pollen grains (V singer, 

1975), crop concentrations (Peters and Coberly, 1976), clinical test scores (Symons, 

1981), crime frequencies (Harris, 1983), mixed stock fishery composition (Miller, 

1987), philatelic mixtures (Izenmann and Sommer,1988), and task completion 

(Desmond and Chapmall, 1993). Apart from these applications, mixture models are 

useful in robustness studies (Hyrenius, 1950; Tan, J 980), cluster analysis and latent 

structure models (Fielding, 1977; Symons, 1981 and McLachlan and Basford, 1988), 

approximating other distributions (Oala1. 1978), random variate generation (Peterson 

and Kronmal, 1982), kernel based density estimation (Titterington. 1983), analyzing 

outliers (Barnett and Lewis, 1984), modelling prior densities (Diaconis and Ylvisaker. 

1985) and artificial neural networks (Rip1ey, 1994). Finite mixture densities are also 
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useful in medical research to model age of onset of schizophrenia (Levine, 1981; 

McLachlan, 1987; McLachlan and Peel, 2000 and Everitt, 2003). Finite r!1ixture 

distributions are useful to model variation of mortality rates between geographical 

areas (Betemps and Buncher, 1993), to model survival data (McGiffin et.al., 1993; 

McLachlan and McGiffin, 1994 and McLachlan and Peel, 2000) and to identify 

regions of brain activation in functional magnetic resonance imaging (Bullmore et.al., 

1996; Everitt and Bullmore, 1999 and Everitt, 1998). 

In the present study, the role of finite mixture of Pare to and finite 

mixture of beta distributions in the context of reliability and income analysis is 

examined. 

1. 7 Mixture distributions in reliability analysis 

Various parametric models are used in the analysis of lifetime data 

and in problems related to the modelling of ageing or failure processes. Among 

univariate models, a few particular distributions occupy a central role because of 

their demonstrated usefulness in a wide range of situations. The exponential 

distribution appeared suitable for modelling the lifetimes of various types of 

manufactured items (see Davis, 1952; Epstein and Sobel, 1953). Later, Weibull and 

lognormal distributions were employed as popular models for lifetimes of 

manufactured items (see Kao, 1959; Nelson. 1972: Nelson and Hahn, 1972; 

Whittemore and Altschuler, 1976). 

In lifetime data analysis, the populatioll of lifetimes can be 

decomposed into subpopulations. based on lifetimes of units in different production 

periods. with differences in designs, made up of different raw materials etc. In such 

situations, it is usual to model the data using a finite mixture of distributions. 

Accordingly, Mendenhall and Hader (1958), considered the finite mixture of two 

exponential distributions for the analysis of failure times for ARC-I VHF 

communication transmitter-receivers of a single commercial airline. Cox (1959) has 

analyzed the data on failure times using a mixture of exponential models by 

classifying the data on failure times into two subpopulations depending on whether 

the cause of failure was identified or not. Kao (1959) used finite mixture of two 

Weibull components for life testing of electron tubes. The finite mixtures of inverse 
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Gaussian distributions in the context of reliability were studied by Ahmad (1982), 

Amoh (1983) and AI-Hussaini and Ahmad (1984). Characterizations using reliability 

concepts of finite mixture models are discussed in Ahmad (1996). AI-Hussaini and 

Osman (1997) obtained the median of finite mixture of k components. AI-Hussaini 

(1999) used the Bayesian method to predict observations under a mixture of two 

exponential components model. Later, AI-Hussaini et.al. (2000) studied the finite 

mixture of two-component Gompertz densities as a lifetime model. Bayesian 

predictive densities for finite mixture models based on order statistics have been 

discussed by Al-Hussaini (2001). Block et.a!. (2003) studied the monotonic behaviour 

of the hazard rate of finite mixture of distributions. laheen (2003) obtained Bayesian 

prediction under a mixture of two-component Gompertz lifetime model. Recently, 

Cross (2004) has developed efficient tools for reliability analysis usmg finite mixture 

distributions. The finite mixture of distributions can also play a useful role in 

modelling time to failure of a system in the competing risk situations (see Crowder, 

200 I). For more properties and applications of finite mixture models in relillbility 

theory, one could refer to AI-Hussaini and Sultan (2001). 

1.8 Basic concepts in reliability 

The term reliability is used to denote the probability of a device, 

component, material or structure, performing its intended function satisfactorily, for a 

given length of time in an environment for which it is designed. Even though the 

above definition of reliability is explained with reference to th~ failure behaviour or 

length of life of equipment. it is equally applicable in the analysis of any duration 

variable that describes a well defined popUlation subject to decrementation due to the 

operation of forces of attrition over time. Accordingly. the concepts and tools in 

reliability have found applications in many areas of study such as biology, medicine, 

engineering, economics, epidemology and demography. It is evident that most of the 

difficulties in reliability modelling can be substantially reduced by understanding 

certain concepts associated with the failure process. In the present section, we discuss 

such basic concepts that are useful to model lifetime data. 
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1.8.1 Reliability function 

Let X be a non-negative random variable defined on a probability 

space (Q,A,P) with distribution function F(x) = P(X :s; x). In the reliability 

analysis, X generally represents the length of life of a device, measured in units of 

time and the function, 

Sex) = P(X > x), (l.4) 

is called the reliability (survival) function. Sex) gives the probability that the device 

will operate without failure for a time x . 

1.8.2 Hazard rate 

Let L = inf{ x; F(x) = I}. Then for x < L, the hazard rate hex) of X , 

is defined as 

p {x < X :s; x + 8x I X > x} 
hex) = lim . 

S,··-.o· /5x 

When j(x) is the probability density function of X ,0.5) reduces to 

hex) = j(x) , 
Sex) 

d 
=-(-logS(x». 

dx 

( 1.5) 

(l.6) 

hex) measures instantaneous rate of failure or death at time x. gIven that an 

individual survives up to time x. In extreme-value theory, hex) is known as the 

intensity rate and its reciprocal is termed as Miils ratio in economics. Fur various 

applications of the hazard rate, one could refer to Mann et.a!' (1974), Kalbtleisch and 

Prentice (1980), Elandt-Johnson and Johnson (1980), Nelson (1982) and Lawless 

(2003). 

When X is non-negative and has absolutely continuous distribution 

function, (1.6) provides that 

x 

Sex) = exp[- Jh(I)dtl. (l.7) 
u 
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11 

Examination of (1.7) indicates that hex) is a non-negative function with fh(t)dt < 00, 

~ 

for some u > 0 and fh(t)dt = 00. 

o 

o 

In view of 0.7), hex) determines the distribution uniquely. It is 

shown that the constancy of hex) is a characteristic property of the exponential model 

(Gal ambos and Kotz (1978). Mukherjee and Roy (1986) has established that for a 

non-negative random variable X in the support of the set of non-negative real 

numbers, hazard rate of the form 

characterizes 

] 
h(x)=-­

ax+h 

(i) the exponential distribution with survival function 

Sex) = exp[~Ax], x ~ O. A> O. 

(ii) the Pareto 11 distribution with survival function 

s (x) = ( ~ )p , x ~ 0, fJ > I, 0 < a < 00 , 

x+a 

(iii) the beta distribution with survival function 

Sex) = (I ~ x)' .0< x < R,e > I. R . 

according as a = 0, 11 > 0 and a < O. 

1.8.3 Mean residual life 

(1.8) 

( 1.9) 

(1.10) 

(1.11) 

The mean residual life (M.R.L), known as expectation of life in 

actuarial studies. was reintroduced in the reliability context by Knight in 1959 (see. 

Kupka and Loo, 1989). When X is defined on the real line with E( X I ) < 00, the 

Borel-measurable function r(x) given by 

r(x)=EIX~xIX ~x], (1.!2) 
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for all x such that PlX ~ x] > 0, is called the M.R.L function of X. r(x) represents 

the average lifetime remaining to a component, which has already survived up to 

time x. When X is non-negative with E(X) < 00 and F(x) is absolutely continuous 

with respect to Lebesgue measure, ( 1.12) becomes 

I 00 

r(x) = - JS(t)dt . 
Sex) x 

Further, for every x in (0, L), 

and 

hex) = 1 + r'(x) 
r(x) 

reO) x dt 
S(x) =-exp[-J-]. 

r(x) () r(t) 

(1.13) 

(1.14) 

( 1.15) 

From equation (l.15). it follows that a M.R.L function uniquely 

determine a distribution and therefore, mode11ing can be done through an appropriate 

functional form for r(x). A set of necessary and sufficient conditions for r(x) to be 

an M.R.L. given by Swartz (1973) is that 

(i) r(x) :2: 0, 

(ii) r(O):::: E(X), 

(iii) r'(x):2:-1 

and 

. ) "'f dx d' (IV - lverges. 
o r(x) 

Cox (1972) has established that the M.R.L function is a constant for 

the exponential distribution. Mukherjee and Roy (1986) observed that a relation of the 

form 

r(x)I1(.-.:):::: k (1.16) 
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where k is a constant, holds if and only if X follows the exponential distribution (1.9) 

when k = 1, the Pareto 11 distribution (1.10) when k > 1 and the beta distribution 

(1.11) when 0 < k < 1. rn view of (l.15), Hitha (1991) has observed that a linear 

M.R.L of the fonn 

r(x) = ax+b ( 1.17) 

characterizes the exponential distribution (1.9) if a = 0, the Pareto Il distribution 

(1.10) if a> 0 and ihe beta distribution (1.11) if Cl < O. 

1.9 Reliability and hazard rate for finite mixture models 

Let X be a non-negative random variable with probability density 

function (p.d.t), j(x) given by (l.3).The reliability function Sex) corresponding to 

the finite mixture of k components (1.3) is given by 

(1.18) 

where S j (x) is the reliability function corresponding to the /" component in the 

mixture, j = 1,2 . ... ,k. For simplicity, we consider the case of finite mixture model 

(1.3) with two components. The hazard rate function and mean residual life function 

of a mixture may be written in terms of the hazard rate functions and mean residual 

life functions of the two components as follows. 

h(x) = A(x)h,(x)+ (1- A(x»h2(x), ( 1.19) 

and 

r(x) = A(X)1i (x) + (1- A(x»r~ (x). ( 1.20) 

where hj (x) and r i (x) are hazard rate functions and M.R.L functions of 

/' component, j = 1, 2; and hex) and r(x) are hazard rate function and M.R.L 

function of the mixture and 

with Sj(x) is the reliability function of the /' component, j = L 2. 
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On differentiation, the identities (1.19) and (1.20) give 

h' (x) :::: A(x)~' (x) + (1- A(x»l'l:z' (x) - A(x)(1- A(x)(h] (x) - h2 (X»2 (1.21) 

and 

r (x):::: A(x)Tj' (x) + (1- A(x»r2' (x) - A(x)(1- A(x)(Tj (x) -'2 (X»2 . (1.22) 

where prime denote the derivative with respect to x. 

From (1.21), it follows that if hj ' (x) < 0, for all x , (j :::: 1,2), then 

h' (x) < 0, for all x. Therefore, a mixture with decreasing hazard rate components has 

decreasing hazard rate. However, if the components have increasing hazard rates, 

their mixture need not have increasing hazard rate. For more details, one could refer 

to Al-Hussaini and Sultan (200 I). 

1.10 Censoring 

In reliability studies, censored data often occurs due to many reasons. 

In many practical situations, it is desirable to discontinue the study prior to failure of 

an items in the sample, the resulting data are called incomplete data. The data are 

incomplete in the sense that we do not know the exact time to failure of the unfailed 

items, but only known that their failure times are greater than the recorded study time. 

Then we have two types of observations in the sample, actual failure limes and 

bounds on faiiure times. Data of this type are caned censored data. Various types of 

censoring are possible in life testing experiments and the type which depends on the 

criterion used to determine when to conclude experimentation. 

1.10.1 Type I censoring 

Censoring that occurs as a function of time is called type 1 censoring. 

In this case, the period of study terminated at a particular point of time and the data 

recorded are lifetimes of items that failed prior to that time. More specifically, data of 

this type are calIcd right censored. If an items are put on test or put in service at the 

same time and the observation period is the same for all items (that is, observation 

stops at a fixed timeT). the data are singly censored. (more precisely, singly right 

censored). Data for which unfailed items have been operating for variable amounts of 

time are called multiply censored (multiply right ccnsored). 
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Data may also be censored on the left. Left censored data result when 

it is only known that failures have occurred prior to some time. In lifetime data 

analysis, right censoring is very common, but left censoring is fairly rare. 

1.10.2 Type II censoring 

Type I censoring may provide limited amount of information if the 

study period is too short. An alternative is to continue observation until a 

predetermined number r( < n) of failures have occurred. This also results incomplete 

data, since the lifetimes of the remaining n - r items are not observed. This type of 

censoring is called type n censoring. An extension of this type of censoring is 

progressive type Il censoring. Under this censoring scheme, batches of items are 

removed from test as in type 11 censoring in two or more stages, as follows: n items 

are initially put on test. After ~ failures have occurred, an additional 111 - ~ items arc 

removed from test. Testing is continued on the remaining n ~ 111 until an additional r2 

failures are observed, at which time an additional n2 - r2 items are removed, with 

testing continuing on the remamIng 11 -Ill - 112 items, and so on, through k 

stages (k > 1). 

1.10.3 Other types of censoring 

Various other combinations of censoring mechanisms are sometimes 

used. For example, it may be desirable to observe a reasonable number of failures and 

limited test time. In this case, a combination of type I and II censoring may be used; 

that is testing continues until either r failures occur or test duration T is reached, 

whichever comes first. 

1.11 Stress-strength models 

The word "stress" has acqi.lired a special meaning to a modern world, 

as all of us are continuously under stress and not always have the strength to over 

come it. The stress-strength relationship is nowadays studied in many branches of 

sciences and social sciences such as psychology, medicine, pedagogy, pharmaceutics 

and engineering. 
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[n the context of reliability, the stress- strength model describes the 

life of the component, which is having a random strength X that is subjected to a 

random stress Y. The component fails at the instant the stress applied to it exceeds 

the strength and the component works properly if there is no other cause of failure 

whenever Y < X . 

Thus the system reliability for stress-strength model 

R= P(Y < X) 

oox 

= J Jg(Y)f(x)dydx (1.23) 
o 0 

IS an important measure of component reliability, where f(x) and g(x) are the 

probability density functions of X and Y respectively. For example, if Y represents 

the maximum chamber pressure generated by ignition of a solid propellant and X 

represents the strength of the rocket chamber. then R is the probability of the 

successful firing of the rocket. The receptor in the human eye operates only if it is 

stimulated by a source where magnitude X is greater than a random lower threshold 

Y for the eye. In this case, R is the probability that the receptor opcrutes. For more 

details on stress-strength models. see Kotz, et.a\. (2003). 

1.11.1 Estimation of system reliability 

One of the major problems in the analysis of stress-strength models 

is the estimation of the stress-strength reliability R = PlY < X J • The point and interval 

estimation of R in the non parametric setup was considered by Birnbaum (1956), 

Birnbaum and McCarty (1958). Owen et.al. (1964) and Govindarajulu (1967, 1968). 

The problem of estimation of R , with different parametric models for X and Y was 

discussed in Kel\y et.a!. (1976), Tong (1974), Chur(;h and Harris (1970), Downton 

(1973), Woodward and Kelley (1977), Beg and Singh (1979), Tong (1977), Enis and 

Geisse1 (1971), Ferguson (1973), Hollander and Korwar (1976) and Bhattacharyya 

and Johnson (1974). 

The estimation problem when X and Y have joint bivariate 

exponential distribution was considered by Aw<!d et.al. (1981), Jana (1994), Jana and 
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Roy (1994) and Hanagal (1995, 1997b). leevanand (1997) and Hanagal (1997a) 

studied the estimation of reliability under bivariate Pareto stress-strength model. 

Jeevanand and Naif (1994) considered the estimation of stress-strength reliability 

from exponential samples containing spurious observations. AI-Hussaini et.a!' (1997) 

studied the role of finite mixture of lognormal components in a stress-strength mode!. 

The estimation of R when the stress and strength follows finite mixture of inverse 

Gaussian distributions was developed by Akman et.a1. (1999). Inference for stress­

strength models based on Wienman multivariate exponential samples were obtained 

by Crnmer (200 I ).Stress-strength model for skew-normal distributions was obtained 

by Gupta and Brown (200 I). For more details, we refer to 10hnson (1988) and Kotz 

et.al. (2003). Recently. Nadarajah (2004) considered a class of Laplace distributions 

and derive the stress-strength reliability for this class of distributions. 

1.12 Mixture models in income analysis 

Modelling of income data for studying the patterns and causes of 

prevnlent distributional inequalities is of vital importance in socia-economic policy­

making. This has been a very live area of research since the variegation and 

dynamism of income distributions allow as well as demand experimenting with new 

models and theories for purpose of increasing accuracy and interpretational 

capabilities. Statistical analysis of personal income distributions originated with the 

formulation of the famous Pareto's income law in 1897 which states that the number 

of persons in a population whose incomes exceed 'x' can be approximated by a curve of 

the form h- a
• where k is any real number and a is a positive real number. 

Accordingly. this distribution is known as Pareto type I (classical Pare to) and it is 

widely accepted as an income model. The law proposed by Pare to holds good only for 

the upper tail of the income distribution. Gibrat (1931) suggested the two-parameter 

lognormal distribution. further examined by Aitchinson and Brown (1969). for the size 

distribution of income. Champernowne (1953) proposed a Markov chain model for 

income distribution. Lomax (1954) introduced Pareto type n distribution that has come 

to stay as a very viable model in income studies. The beta distribution of first kind was 

used for modelling income data by Thurow (1970). Sa1cm and Mount (1974) proposed 

gamma distribution and Bartels and van Metelcl (1975) suggested Weibull to model the 
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income data. For various models useful in income analysis, one could refer to Kleiber 

and Kotz (2003). 

In income analysis, population of income of individuals can be 

divided into Income from different sources. Further, any set of income data with 

earners in different categories will be well described as a finite mixture of 

distributions. Accordingly, Flachaire and Nunez (2004) proposed an explanatory 

model te study the structure of the income distribution based on mixture models. Reed 

and Jorgensen (2004) suggested a mixture of lognorrnal and Pareto distributions for 

modelling size distributions. However, this mixture function is still unimodal and 

cannot catch bi-modality. Paap and van Dijk (1998) considered a mixture of two 

distributions to model the world income distribution. They used different choices of 

distributions-truncated normal, lognormal, gamma and Weibull- and they selected the 

best mixture model based on a criterion of goodness -of- fit tests. 

1.13 Basic economic concepts 

The problem of modelling income data as well as that of 

measurement of income inequality has a history of about two hundred years and has 

been attracting a lot of researchers in economics, statistics, and sociology etc. As is 

customary in most statistical analysis, the extend of variation in incomes is 

represented in terms of certain summary measures. Thus a measure of income 

inequality is designed to provide an index that can abridge the variations prevailing 

among the individuals in a group. For a detailed study on various measures of income 

inequality, we refer to Kakwani (1980), Anand (1983) and Amold (1987). 

Recently concepts and ideas in reliability theory have been 

extensively used to study measures of income inequality. Chandra and Singpurwalla 

(198') established certain relationships among concepts in reliability theory and in 

economics. These aspects were further investigated by Klefsjo (1984). Later 

Bhattacharjee (19Sg, 1993) investigated the role of anti-ageing distributions in 

reliability theory as reflecting certain features of skewness and heavy tails. typical for 

income data. One of the fundamental concepts in the measurement of income 

inequality is Lorcnz curve. 
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1.13.1 Lorenz curve 

The Lorenz curve IS an important tool for the measurement of 

income inequality. Lorenz (1905) defined this concept for finite populations as a 

function L(p) on [0, I] , such that for fixed p, L(p) represents the proportion of the 

total income in the population accounted for by the 100p% poorest individuals in the 

population. 

For a non-negative random variable X with distribution 

function F(x) and finite meanp, the Lorenz curve L(p) is then defined in terms of 

the following two parametric equations in x (see Kendall and Stuart (1958)) namely 

and 

x 

p = F(x) = jlU)dt 
() 

L(p) =! fif(t)dt 
Po 

( 1.24) 

0.25) 

where !(t) is the p.d.f of X . L(p) determined by (1.25) is called 'the standard 

Lorenz curve'. L( p) can be viewed as the proportional share of the total income of 

the population receiving an income less than or equal to x . It follows from (] .25) that 

the Lorenz curve is the first moment distribution function of F(x). One can easily see 

that 

(i) L(O) = 0 , L( I) = I, L( 1') is continuous and strictly increasing on (0,1) , as 

L' (p) = ~ x, which is greater than zero. 
J1 

(ii) L(l') is twice differentiable and is strictly convex on (0,1) as 

". I L (1')= >0. 
p/(x) 

Gastwirth () 971 ) relaxed the assumption that the distribution function 

F(x) is absolutely continuous and defined the Lorenz curve L(p) by 
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1 p 

L(p) = - jQ(t)dL 0:::; p:::; 1 
f.1o 

Q(x) = inf{x: F(x) ~ x} 

( 1.26) 

is the quantile function. When F(x) is absolutely continuous, Q(x) is the inverse 

function of F(x) and (1.26) is the solution for L(p) obtained from (1.24) and (1.25). 

Chakrabarthy (1982) pointed out that the analysis and criticism of 

Lorenz curve constitute a major part of the growing literature on inequality , its 

measurement and interpretation and stated that Lorcnz curve has remD.ined the most 

popular and powerful tool in the analysis of size distribution of income, both 

empirical and theoretical. For various applications of the Lorenz curve, one may refer 

to Chatterjee and Bhattacharya (1974). Gastwirth (1972), Kakwani and Podder 

(1976), Goldie (1977) and Moothathu (1985a, 1985b and 1990). 

1.14 Present study 

The generalized Pareto family, constituting the three distributions, 

namely. exponential, Pareto 11, and beta are extensively employed in modelling of 

lifetime data as it possess linear mean residual life functions. For the exponential 

distribution, the mean residual life function is constant. The mean residual life 

function is increasing (decreasing) for Pareto 11 (beta) distributions. These three 

distributions are widely employed in life testing situations and in income analysis. 

As mentioned earlier. the situation of heterogeneity is inherent m 

most of the observed data in reliability alld income analysis. For example, m 

reliability analysis, the popUlation of lifetimes can be decomposed into 

subpopulations, based on lifetimes of units in different production periods, with 

differences in designs, made up of different raw materials etc. In the case of income 

data with earners in different categories or of different sizes makes the dat« 

heterogeneous. The heterogeneity prevents modelling the data using standard 

univariate distributions. As finite mixture models are typically used in describing 

heterogeneous populations, they have become very popular models in such situations 

and they offer realistic interpretations of the mechanisms that generated the data. 
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Accordingly, finite mixture of distributions becomes useful tools for the modelling 

and analysis of data in the context of reliability and income analysis. 

In literature, considerable work has been devoted to study the 

properties and applicutions of finite mixture of exponential distribution in the context 

of reliability analysis (see Mendenhal1 and Hader, 1958: Nassar, 1988; Nassar and 

Mahmoud, 1985 and Al-Hussaini, 1999). Despite the importance and flexibility of 

Pareto II distribution in modelling and analysis of life time and income data, a 

comprehensive study on finite mixture of Pare to 11 distribution has not been 

considered so far. In many practical situations, the observed lifetimes of an item 

varies over only a finite range. Further, beta distribution is employed for modelling 

lifetime data of systems having increasing hazard rate pattern. Accordingly, beta 

distribution is considered to be useful model in the context of reliability analysis. 

However, a systematic study on finite mixture of beta distributions in the context of 

reliability and income analysis is not yet carried out. 

Motivated by these facts, the present work aims to study the role of 

finite mixture of Pareto 11 and finite mixture of beta distributions in the context of 

reliability and income analysis. 

The present work IS organized into seven chapters. After this 

introductory chapter, in Chapter 2, we study the properties of finite mixture of Pareto 

11 distributions in the context of reliability analysis. We develop estimation of 

parameters of the finite mixture of Pareto 11 distributions using different methods for 

complete as well as censored samples. Simulation studies are carried out to assess the 

performance of the estimators. We, then, i!!\lstrate the method with a real life data on 

survival times of Icukemia patients. 

In Chapter 3, we study various properties of the finite mixture of beta 

distributions in the context of reliability analysis. We discuss estimation of parameters 

of the finite mixture of beta distributions using different methods such as maximum 

likelihood. Bayes. method of moments and maximum product of spacing. We carried 

out a simulation study to observe finite sample properties of the estimates and their 

robustness. We, then, apply the procedure to a real life data on survival times of 

cancer patients. 
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Chapter 4 discusses the Bayesian predictive densities when the 

underlying distribution is assumed to have a finite mixture of Pareto II distributions. 

Based on type I censored samples, prediction bounds for the k -th future order 

statistics and survival functions are obtained. The prior belief of the experimenter is 

measured by Jcffrey's invariant prior and also by a proper conjugate prior which was 

suggested by AI-Hussaini (1999). We then consider the real1ife data on survival times 

of leukemia patients and we estimate the reliability and prediction bounds using 

Bayesian predictive density function. The last part of this chapter deals with the 

Bayesian predictive density function ot finite mixture of beta distributions. We 

illustrate the procedure for a real life data on survival times of cancer patients. 

The analysis of stress-strength models using finite mixture of 

distributions is discussed in Chapter 5. The maximum likelihood estimation of the 

stress-strength reliability for complete as well as censored samples are obtained in 

which we assume the distribution of strength as finite mixture of Pareto JI and the 

distribution of stress as different models such as exponential, Pareto 11 and finite 

mixture of Pare to 11. Simulation studies are carried out to assess the performance of 

the estimators. The method of estimation of stress-strength reliability is illustrated 

using a real life data. Chapter 5 concludes with the discussion of the same for the 

finite mixture of beta distributions. 

The role of finite mixture of Pareto 11 distributions and finite mixture 

of beta distributions in income analysis is studied in Chapter 6. We derive the 

maximum likelihood estimate of the Lorenz curve based on complete as well as type I 

censored samples of finite mixture of Pareto 11 distributions. We, also, develop the 

maximum likelihood estimate of Lorenz curve for the finite mixture of beta 

distributions. We carried out a simulation study to assess the performance of the 

estimates. Final1y. we illustrate the method for a real data on household expenditures 

of men and women on four commodity groups. 

Finally. Chapter 7 summarizes the major conclusions of the present 

study. 



Chapter 2 

FINITE MIXTURE OF PARETO II DISTRIBUTIONS 

2.1 Introduction 

In literllture, considemble work has been devoted to study the 

properties and applications of Pareto distribution, in the context of reliability anlliysis. 

Mixture models, as discussed in Chapter 1. provide additional Oexibility in modelling 

and analysis of lifetime from a heterogeneous population. Despite its importance llnd 

flexibility in modelling and anlllysis of lifetime data, a comprehensive study on finite 

mixture of Pareto 11 distributions has not been considered so far. Motivated by these 

facts, in the present chapter, we discuss the statistical analysis of finite mixture of 

Pareto II distributions in the context of reliability theory. 

We give the definition and properties of the finite mixture of Pare to 

distributions in Section 2.2. In Section 2.3. we study the reliability characteristics of 

the model. We show that a finite mixture of two Pareto IT densities is identifiable in 

Section 2.4. Sections 2.5 to 2.7, discuss various estimation procedures for complete as 

well as for censored data. In Section 2.8, simulation studies are cmTied out to assess 

the perfonnance of the estimators. In Section 2.9, we illustrate the method for a real 

dllta on survival times of leukaemia patients and finally, in Section 2.10, we give the 

conclusion of the chapter. 
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2.2 Definition and properties 

Let X be a non-negative random variable admitting an absolutely 

continuous distribution function F(x) with respect to a Lcbesgue measure in the 

support R+ . Assume that the probability d~nsity function (p.d.f.) of X , f(x) exists. A 

finite mixture of Pareto II distribution with k components can be represented in the 

form 

(2.1) 

where 

k 

Pj >0,i=I,2, ... ,k ;Ip; =:1 
;=1 

and 

.!;(x) =a,b,(l + U;Xflbi
+1) ,x>O, (l; >0, b, >0, (i=1,2, ... ,k). 

As a special case of (2.1) with k = 2, we have, 

(2.2) 

x> 0, (l, > 0, bj > 0, (i = 1,2). 

Throughout this chapter, we consider a finite mixture of two Pareto 11 distributions. 

The results can easily be extended to the general set up. 

The rh moment of the distribution (2.2) is given by 

= 

E(x ')-Jr[ bel )-(I~+1) (1 ) '(I )(",+1'11 f - X PIUI I +alx. + - PI a/)2 +a2x (.\ 
() 

~ 

where rp = Je'xl>-Idx. is the gamma function. 
/) 

When r = I . (2.3) reduces to the mean of X , which is equal to 



Er(X) :::: (2.4) 

When r:::: 2, (2.3) becomes 

Thus the variance of (2.2) is given by 

V/ex)::: p,(-~+2b, +22p,-b,p,) + (1- ~,)(b2 +~b2 -2):,) _ 2p,(1- PI) (2.5) 
a, (bl-I) (b,-2) a 2 (b2 -1) (h2 -2) o,G2(bl -l)(h2-1) 

2.3 Reliability characteristics 

Let X represents the lifetime of a component with survival function 

S(x). Then the survival function of the model (2.2) is obtained as 

(2.6) 

For the model (2.2), the hazard rate h(x) and the mean residual life function r(x) are 

given by 

and 

r(x) ::: P,{/'2 (b:. -1)(1 + {/Ixr(/!,-'J + (1- p, )", (bl -1)(1 + a2xru" ') 

",([cl 1', (1 + {/,Xr h, + (1- 1',)(1 + {/2Xr b, ](b, -1)(b2 -I) 

From (2.7) and (2.8), we obtain an identity connecting r(x) and hex) as 

::: "1
2 h, (b, -1)(1 + (I2 X )2 - (/;b2 (h2 -1)(1 + (/,.ti 

"'(/2 (h, -1)(b2 - 1)[ a/J, - a2b:. - a,(I2 (b2 - b, )x J 

(2.7) 

(2.8) 

(2.9) 



26 

Figures 2.1 to 2.8 show the behaviour of hazard rate and the mean residual life 

function for different parameters of the model (2.2). From the figures, it follows 

that h(x) is decreasing in x while r(x) is increasing in x . 
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The distribution (2.2) and the identity (2.9) involve five parameters. 

Reduction of one parameter can be achieved jf we take either Q, = Q2 or bl = b2 

without sacrificing much of the flexibility of the model. This motivation leads to 

consider the following; 

When bl = bz = b , the identity (2.9) reduces to 

(2.t 0) 

and 

for a, = a2 = a , (2.9) becomes 

(2.11 ) 

It is well known that h(x) (r(x» uniquely detennines the 

distribution. But in many situations hex) (r(x» is not in a simple closed form and 

hence cannot be used for characterizing the distributions. In such situations, one may 

explore simple relationships among hex) and r(x) to characterize the distributions 

(see Nair and Sankaran, 1991). Moti vated by this, we prove a characterization result 

for the mixture of Pare to 11 distributions. 

Theorem 2.3.1 

A continuous random variable X in the support of positive reals with E( X) < 00, has 

survival function 

(2.12) 

if and only if the relationship (2.10) holds. 

Proof. 

Suppose that the identity (2.10) holds. Then we have 

~ 

Cl I (l2 b(b -I) J S(t)dl + f (x)(I + (1,-,,)(1 + a~x) = hla, + ({2 + 2U'{/2 X lS(x) . (2.\3) 
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Diffel entiating (2.13) twice with respect to x, we get 

(2.14) 

where j'(x) and f"(x) respectively denote the first and the second derivatives of 

f(x) with respect to x. The solution of the differential equation (2.14) is obtained as 

(2.15) 

SinceS(O)=l, we havec2 =l-cl . which gives (2.15) as required in (2.12).The proof 

of the converse part is direct. 

Theorem 2.3.2 

The relationship (2.1l) characterizes '1 mixture of Pareto 11 distribution with survival 

function 

For the proof, see Abraham and Nair (2001). 

2.4 Identifiability 

As mentioned in Chapter I, lack of identifiability is common even for 

finite mixtures. In the following. we show that a finite mixture of two Pareto [[ 

densities is identifiable. 

Theorem 2.4.1 

Finite mixture of Pareto n densities is identifiable. 

Proof: 

From Teicher (1961), it follows that a finite mixture of k ~xponential 

component densities is identifiable. If Z follows exponential with parameter ,A_ and 

y = e~ -1 , then Y follows Pareto 11 with density 
a 
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e" -1 
Since the transformation Y::; -- is one to one and onto, a finite mixture of Pareto 

a 

n with component densities g, (Y) = a,A, (l + ll;yf(I., +I) , i = 1,2 is identifiable. The rest 

of the proof ;s similar to the one given for finite mixture of Gompertz densities (see 

AI-Hussaini eLal. 2000). 

2.5 Estimation of paramtters 

In this section. we discuss the estimation of parameters al' a2 , bp b2 

and PI of the ml)del (2.2), using different methods for the complete as well as 

censored samples. 

2.6 Complete sample set up 

2.6.1 Estimation of parameters when the observations belonging to each 

subpopulation arc known 

We consider the situation when there are only two subpopulations 

with mixing proportions PI and (1- PI) and f,,(x) and f 2(x) are Pareto II densities 

with parameters (alA) and (a2'/)2) respectively. We consider the case when items 

that fail can be classified and can be attributed to the appropriate subpopulations. 

Then the likelihood of the sample is given by (see Sinha (1986» 

, ~ ~ 

- n. 111(1- ')'" "'b'" "'I "'rI(l+ )-(/~+lln(l+ )-(bdl) - PI PI (/1 I a~ ), (lIXI . (I, X , . • , , - - .I - -I 
n, " n2 • ';=1 j=J 

(2.16) 

where x denote the failure time of the j -th unit belonging to the i -th 
I) 

subpopuJation, j::; L2, ... ,n;. i::; 1,2 and the observed data 

X={XII'XI' •.. ·'Xll ;X",X", ... ,X'1 }. 
- -' 1 - -- -' .' 

(a) Maximum likelihood estimation (M.L.E). 

Maximization of log-likclihood function of (2.16) with respect to the paramcters 

yields the following equations, 
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(2.17) 

(2.l8) 

(2.19) 

(2.20) 

and 

3._ n2 = O. 
p, (1- p,) 

(2.21 ) 

The equation (2.21) implies 

The solution of the equations (2.17) to (2.20) provides the estimates of the parameters 

a" a2 A and he.' Standard numerical methods like Newton-Raphson method can be 

used to solve above equations. 

To obtain variance of the estimates, we need to compute the observed 

information matrix I (a" a 2 , hi' b2 , PI) . 

The second derivative of log L(a, ,a2 ,b"b2 , P, I:!) leads to the following 
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d21o~ L = _f 112, + (b2 + 1) I_l-o (l +_1_r2 _ (h2 ~ 1) I (l + -l-r'l, 
da2 - 1_ (12 - a2 j=1 x2ja2 • (12 X 2j a2 - j=1 a2-":2j J 

d
2

10g L a2
10g L r 1 ~, 1 -I] --=---= =- -L..(l+--) 

da2db2 ab2da2 L a2 j=t a2x2j , 

d 2 log L -~ = 
CJb 2 

1 
b 2 ' 

I 

d2 10gL 110 
= 

db/ b
2

2 
' 

and aB other second derivatives are zero. 

The observed information matrix is thus 

d2 10g L 

dPldat 

d2 10g L d"log L d2 log L 

i)2 log L _ i)2 log L _ i)2 Jog L 

dPlda2 dPldlJ1 dPldb2 

For large n. the joint distribution of the estimates QI,a2,bl'b2 and PI IS 

approximately multivariate normal with mean (at, a2 ,bl' b2 , p) and covariance matrix 

r' (at' tic' bl' b2 , i\) , which is the inverse of I (tl l , a 2' hp h2 • ill) 



(b) Bayes estimation. 

We assume that the parameters al,a2,bl,b~ and PI are independent. Using 

Jeffrey's invariant prior for a1 a"bl and b2 and uniform prior in the interval (0, 1) 

for PI ' the joint prior distribution of ai' ac' hi' h2 and PI is given by 

(2.22) 

From (2.16) and (2.22), the joint posterior distribution of ai' a2 , bl , b2 and PI IS gIven 

by 

(2.23) 

From (2.23), we obtain the marginal posterior distributions of 

~ ~ 

a/II
-

I exp[-Ilog(l + a1xl)L at I exp[-I Jog(l + (J2X2)] 

D1(a
l 
I:!) = C ;=1 "1 J j=1 da o • 

I~ n, ~ 

LIlog(1+Cl t x t)] (I [1)og(l+a 2x2j )] 

(2.24) 

;=1 

~ ~ 

at I exp[ - I logO + a2x2j )J "" a l n, -I exp[ - I logO + a1xlj)J 

D2 (a:, I:!) = C ;=1 '" - J j=1 dOl' (2.25) 
Il, I1I n l 

(~)ogO + (l2 X:,)J () [I log(1 + (lIX1)] 

j=1 ;-.:1 

'" 
00 (12",-1 exp[-LlogO + a2x2 )J 

.f }=1 . duo. (2.26) 
Ih ,,, 

() lLlog(1+o2x2})] 
;-1 
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c ~ Jh 

H,(b, I x) = --b, n,-l JU2",-1 exp[-(b~_. + l)(~ log(l + a,_x~J )}1(l~_ 
. • - r(n~)" ~-

~ 0 ~I 

(2.27) 

j=l 

amI 

(2.28) 

where 

~ ~ 

~ G,n,-I exp[-2)og(l + U]XI)] ~ at-I exp[-2)og(1 +a2x2j )J 
C-] = J ", ;=1 n, dal f---",----=-j=-I---r-, -- da2 (2.29) 

o lL 10g(1 + (lIXIj)] () lL logO + a2x2j )] 

j=1 .1=] 

and 

B( p, q) is the beta function of the first kind. 

Under squared error loss function, we obtain the Bayes estimators of G
I
,a

2
,b

l
,b

2
and 

~ ~ 

~ a]n exp[ - L logO + a].\"I)l = a/,,-I exp[-Llog(1 +ozx2 )] 

al' = C f-- 1=1 dal f .1=1 du, , 
111 rll n, ".1 

(2.30) 

\l lL 10g(l + ([I XI ,)] 0 lL 10g(l + {l2xz)l 
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~ ~ 

~ a~ n, exp[ - I logO + aZx2j )] ~ a/,i I exp[ -I logO + alxlj )] 

a2' = C J n, j~1 n, da 2 f ", j~1 ", dUI' 

o (~)Og(l+UyT2)] I) lIlog(t+ulxl)] 
j~1 j=1 

~ ~ 

~ al",-I exp[-I logO + UIXI i)J ~ al"' -I exp[ - I log(l + U 2X 2j )] 

hi" = Cnl J n, j=1 n,+1 dUI J rh j~1 n, da2 ' 

() [~)og(1+aIXlj)J 0 [2:)og(1+uzx2)J 
j=1 ;=1 

~ ~ 

~ a2",-1 exp[-I log(l + a2x2;)J DO (/1",-1 exp[-Ilog(1 + alxl)J 

b1' = Cn2 J j~! da2 J----"'-"=-I -----dal ' 
n~ n: +] n] nJ 

() 

[Llog(l+a2xz)] 0 [Ilog(l+alxl)J 
j=1 

and 

PI' = B (n l + 2, n2 + 1) 

B(nl + 1,nz + 1) 

= 

j=1 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

Bayes estimators oful,a2,bl and b,will be obtained by numerical integration 

procedure. 

To obtain the pertormance of the estimators, we calculate the 

posterior variance of the estimates. We first compute 

~ ~ 

~ a/,,+I exp[-Ilog(l +ulxlj)J ~ (1,/,-1 exp[-Ilog(l +a2x;;)J 

E(G
I
2 1.:!) = C J .1=1 "" da, J _---','-.;=_1 ------,da2 ,(2.35) 

Ji
l 

11, fI~ 

[Ilog(l+alxl)] 0 lLlog(l+(I~x2)1 o 

;=1 

Ih 11, 

~ a2",+1 exp[ - L logO + (/2 X 2)] ,~(/I",-I exp[ -I logO + alxl)J 

E(a/ I.:!) = C J ;=1 n, daz J ;=1 -----,da
l
,(236) 

Ih HI ri, 

LLlog(l+£lzx2)1 0 [Ilog(l+(/lxl)] 
(I 

;=1 ;=1 
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~ ~ 

~ al",-I exp[-I logO + alxl)] ~ a~",-I exp[--Ilog(1 +a~X2j)] 

E(bl" 1 :!) = enl (nl + 1) f '" j=1 ",+2 dal f I', )=1 /l, da 2 , 

o [I log(1 + alxl)] 0 t2:)og(l + U~X2;)] 
j=1 

(2.37) 

11, Il. 

~ at-' exp[-~)og(l +a~X~j)J 00 Q,"'-' exp[-2::log(1 + alxl)j 

E(b/ I:!) = Cn2 (n2 + 1 f 11, j=' 11,+2 da2 f ", )=, Il, da" 

o [I log(1+ a2x2 )] () lIlog(1+a l x:;)] 
j=L 

(2.38) 

and 

21) B(n. +3,n2 +1) 
E(PI x = . 

- B(n, + 1,n2 + I) 
(2.39) 

Then, the posterior variance of a. is obtained from (2.30) and (2.35) as, 

Similarly, we obtain the posterior vanances V(a2 1:!),v(b.I:!), V(b2 1:!) and 

V(PI I:!) from (2.31), (2.32), (2.33), (2.34), (2.36), (2.37), (2.38) and (2.39). 

Remark 2.1 

One can use other types of priors for the analysis. However, when we use 

conjugate priors for PI' ai' a2 , bl and b2 , the estimation procedure will become more 

complex. 

2.6.2 Estimation of parameters when the observations belonging to each 

subpopulation are unknown 

We consider the situation when there are only two subpopulations 

with mixing proportions PI and (1- PI) and .I; (x) and 12 (x) are Pareto 11 densities 

with parameters (alA) and (a2 ,b:.) respectively. In this case, we cannot assign a 

unit to a particular subpopulation and hence the likelihood of the sample is given by 

11 

L(a,,(ll ,b
L 
,b

2
, p, I:!) = n [P

I
l7 l iJl (\ + u,x)-'I>I+ L

' + (1- P
L 
)a2b2 (I + ((2X; rl/I,tl)]. (2.40) 

J=L 
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where x. denote the failure time of the j -th unit in a sample (XI' x~, ... , xn) of size n. 
J 

(a) J\Jaximum likelihood estimation (M.L.E). 

Maximization of log-likelihood function of (2.40) with respect to the parameters 

yields the following equations, 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

and 

(2.45) 

The solutions of above equations provide the estimates of the 

parameters al'a~,bl'b2 and PI' Standard numerical methods like Newton Raphson 

method can be used to solve ahove equations. 

(b) Bayes estimation. 

We assume that the joint prior density of al,a~,bl,b2and PI is (2.22). From (2.22) and 

(2.40), the joint posterior distribution of (ll' a~, bl, b~ and PI is ohtained as 
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11 n (apaz ,b"b2 , PI I:!) a rTI (Plalbl (1 + alx)-(/~+I) + (1- PI )a]b2 (1 + (l2Xi r1b,+II] 
;=1 

We, then, obtain the marginal posterior distributions of ({" a 2 , b" b2 and p, as 

<X> !Xl Q(J I n 

D t (a l I:!) = D f f f flTI (p,a,b, (1 + a,xJ-(l~+'J + (1- PI )a2b2 (l + ({]x.)-(l" +1)] 

o G 0 0 ;=1 

0000001 11 

D2 (a2 I:!) = D f J f flTI (PI({,b, (1 + a,xyl", +1) + (1- PI )a2b2 (l + (l2 X,rfh,+'l] 
[) 0 0 [) ;=1 

~~~, n 

D, (b
l 
I:!) = D f f f f[ TI (P1a,b, (l + (lI X y(l\ +1) + (1- PI )a

2
b

2 
(l + lI.2ot";)-lb,+1 J J 

o 0 0 0 i=1 

0000001 H 

D4 (b
2 

I:!) = D f f f flTI (p,({/J1 (l + (ll o:)J-U
'!+11 + (1- Pt )a2b2 (l + (i2 X ) (!',+1l I 

o 0 0 0 ;=1 

and 

00000000:;> n 

DS (Pl I:!) = D f f f flTI (p,(/,b, (l + (/,X,rlh
,
+,) + (1-- p, )a2b2 (1 + (l2X)fh, 1'1] 

o 0 () 0 ,=1 

where 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51 ) 
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iocClCloooo 12 

D- I = I I I I I[ n (P I(llb1 (I + alxYU
>' +Il + (1- PI )a2b2 (1 + Q2 XYU>, +1)] 

000 () 0 i~1 

(2.52) 

Then the Bayes estimates of the parameters, under squared error loss function, are 

given as 

00000000 I n 

a
l
" = D If I I Irn (p,a ,bl (1 +a1xJ-1b,+lf +(1- PI)a2b2 (1 +a2x;)-lh,11l] 

00 0 0 0 ;~, 

00 ocoo coo I n 

a2" = D I I I I Iln (p,(l,b,(l +alxYU~+') + (1- P1)a2b2 (1 +a2xy(b,+Il] 

o 0 U 0 () 1=1 

OOOOOODCI I n 

b,' = D I I I J I[n (p[arbl(l +Qlx,rr",+I) + (1- PI )(l2b2(l + Q2XJ- rh
,+I) J 

o 0 0 0 0 ;=1 

OQOO[XJDO I 12 

bz" = D f I I I Iln (P1(llb, (I + Q]xy(h,+I) + (1- PI)a2b2 (l + a2x, r(b,+I) J 
o 00 () 0 i~1 

and 

loooo[)(JOO n 

PI' = D J J I I I p,ln (P,(l,b, (I + alxy(/~+I) + (1- PI )a2b2 (1 + (l2 X ;}-lb,+IJ J 
(l U 0 {1 0 ;=1 

(c) Method of moments. 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

Of the classical methods. one that is simple for the estimation of 

parameters is the method of moments. 
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Let XJ, X 2 ...• Xn be a random sample from the model (2.2). Let 

rnl ' rn
2

, m, m4 and m~ denote the sample raw moments. Now we equate the 

sample moments to the population moments, which provide the following equations. 

(2.58) 

(2.59) 

(2.60) 

(2.61 ) 

and 

120 PI 120(1 - PI) . ,. + _ = m,. (2.62) 
aj(b

l
-J)(b

l
-2)(bl -3)(b, -4)(b

l
-5) a;(b, -l)(b, -2)(b, -3)(b2 -4)(b, -5) -

The estimates of GI'G2,bl'b2 and PI can be obtained by solving the 

above five equations. An important difficulty which may arise in this process is the 

multiple solutions of (2.58), (2.59), (2.60), (2.61) and (2.62). In such situations we 

choose those values, which minimize the standard error. Pearson (1894) has 

recommended choosing the set of estimates which is in closest agreement to the actual 

value. This is not possible in the real world situation since we do not know the actual 

values. 

(d) Maximum product of spacing. 

In most applications, the parameters in the mixture model are 

estimated by the method of maximum likelihood (M.L.E), It is well known, however, 

that the maximum likelihood estimation can be very sensitive to outliers in the data. 

In such situations, we obtain the estimate of parameters G I , G2 , bl , b2 and PI using the 

maximum product of spacing method introduced by Cheng and Amin (1983). In the 

presence of outliers, this approach is superior in comparison with the M.L.E. The 
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estimates by this method are obtained by maximizing the geometric mean of the , 
spacmg 

G =! I 10g[F(xi )- F(xi_ I )]· 

n i=1 

For the model (2.2), G will be equal to 

(2.63) 

where Xi and \_1 denote the failure times of the i -th and (i -1) -th unit in a sample 

Differentiating (2.63) with respect to at, a2 , hI' b2 and Pt and equating to zero, we have 

and 

The solution of above equations provides the estimates of the 

2.7 Censored set up 

In this situation, we discuss the estimation of parameters of mixture of 

Pareto Il model (2.2) for the censored data. 
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2.7.1 Estimation based on type I censored samples when the observations 

belonging to each subpopulation are known 

Consider the situation, when there are only two subpopulations with 

mixing proportions PI and (1- PI) and J;Ct) and i](x) are respective Pareto 11 

densities with parameters (al,hl) and(az,b]). Consider a life testing experiment with 

n items and the experiment is terminated after a preassigned time T hours have 

elapsed. Suppose that r units have failed during the interval (0, T) of which 'i units 

from the first subpopulation and r] units from the second subpopulation with 

r = r.1 + I; and (n - r) units are still functioning. Let t .. denote the failure time of the - '/ 

l unit belonging to the i'h subpopulation, tu:$ T , j = 1,2, ... , r;; i = I, 2 and 

t 
letfJ.=aT and X . = ~and observed datax={xll,xl"""xl ;XOI'xo" ... ,xo }. Now 

I I I} T -... 1j......... "": 

we discuss the estimation of parameters using M.L.E. and Bayes technique. 

(a) Maximum likelihood estimation (M.L.E). 

The likelihood function based on a type I censored sample (see Mendenhal1 

and Hader (1958), Sinha (1986» is given by, 

For the model (2.2), (2.69) becomes 

I " (1 )"" 
L(j3 j3 b b I ) - n. __ PI -PI n{bR ·J..LfJ )-U),+I'} 

i' 2''' ~.PI:! - () ,. IfJl( • IXI· 
r. 'r , n - r ' T I~I .I I • 2" . 

(2.70) 

Maximization of log-likelihood function of (2.70) with respect to the model 

parameters yields the following equations, 

(2.71) 
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(2.72) 

(2.73) 

(2.74) 

and 

~_ ,; +~r)[(l+Plrbl -(1+P2) h, J =0. 

PI (1- PI) [PI (1 + ,81 r'~ + (1- PI )(1 + P2 r il
, J 

(2.75) 

The solution of the five equations (2.71) to (2.75), using numerical 

iteration method, yields the maximum likelihood estimate (M .L.E) of A, P2 , hi' b2 and 

PI and thus we obtain the maximum likelihood estimate of °1.°2 A. b2 and PI' 

(b) Bayes estimation. 

The method of Bayes estimation provides accurate estimates In many 

censored situations (see Sinha, 1998). To discuss the method of Bayes estimation for 

the model (2.2) based on type I censored data, we assume that PI' P2 , hi' h2 and PI are 

independent. Using Jeffrey' 5 invariant prior for PJJ2 , bl and b2 and uniform prior in 

the interval (0,1) for PI ' the joint prior distribution of A, P2 , hi' b2 and PI is given by 

(2.76) 

From (2.70) and (2.76), the joint posterior distribution of PI ,P2 ,h,.hc and PI is 

obtained as 

H-r 

D(fJ, 'Pc ,hi' h2' PI I~) a I (;-r) p,"-r,-k (1- PI t +t Ar, 'fJt'h/i
-
1b2

r
;-1 

b() 



44 

From equation (2.77), we obtain the marginal posterior distributions of 

/31' /32 ' hi' h2 and PI as 

'1 
n-r /31'1-

1 
expl-I)og(l+ PIXI)J 

n
l 
(/3, I:!) = EI <;-r )B(n - r2 - k + L re -/- k + 1) -r, ------'--j=...:...' -------

k=O [I log(1 + /3JX! ,)] + (n - r - k) log(1 + /3J )]', 
j=J 

r, 

~ /3/2-' cxp[ -l)og(l + /32X2)J 

J '2 )=1 d/32' (2.78) 

o [I logO + /32X2)] + k log(l + /32))'2 
j=1 

r, 

11-' /3/,-1 exp[-Llog(l + /32 X2)] 
n

2
(/32 I:!) = EI C-')B(n- r

2 
-k + 1, r

2 
+ k + 1)_,, ___ ------'-j_=I _____ _ 

k=O [L log(l + /32X2)J + k log(l + /32)t 

'; 

/3/' 1 exp[-I log(1 + /3IXI)] 

(2.79) 

j=i 

QO,~ 'I 

Jp",-I expl-b, (I log(l + /3,XIj) + (n - r - k)log(1 + A »Jexp[ - I log(l + /3I Xlj)}:i PI 
o j=J )=1 

" 
~ /3/' I exp[-L log(1 + /32-'2)1 

J ;=1 d/3 
" 2 ' 

(2.80) 

o II logO + /32X2j)] + k log(1 + /32)r 
;=1 
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~ ~ ~ 

Jp/,-I exp[-b/Llog(l + P2X2) + k log(1 + P2»]exp[-'2)og(1 + P2X2)JdP2 
o j=1 j=1 

r, 

PI,,-I exp[-2:)og(l+ PI-\;)] 
(2.81 ) 

and 

" 
n-r ~ P/,-I exp[-I logO + PIXI)] 

fl ( I )=£,("-r) lI-r'-*(I_ )r,+k J pi dP 
5 PI ~ L.... k ,PI PI r, I 

bO {) [Ilog(l + PIXI)J + (n - r - k) logO + PI )J~ 
j71 

r, 

~ p,/,-I expl-Ilog(1 + P2 X2)] 
J r, j=1 d P2 • (2.82) 

() [Ilog(l+ P2 X2j)]+klog(l+ P2)r 
j=1 

where 

T, 

P/,-I exp[-~)og(1 + P2X2)] 
£-1 = I G- r )B(n - r

2 
- k + I, '2 + k + 1)} r, j=1 d P'2 

k=O () [I log(l + P2X2)] + k log(l + P2»)'2 
)=1 

r, 

~ 
PI'i- 1 exp[-I logO + PIXI;)J 

J T, }=I dPI· (2.83) 

() LIlog(l + PIXI)] + (n - r- k)log(i + PI W 

with B( p, q) is the beta function of the first kind. 

Under squared error loss function, we obtain the Bayes estimators of /31' P2 ' hi' b2 and 
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'J 

IJ-r 00 

PI' = E~::C;-Y )B(n --'2 - k + l,r~ + k + I) f 'J )=1 d PI 
k=O 0 [I logO + PIXI})J + (n - r - k) logO + /3, »)', 

PI" expl-I logO + Axlj )] 

j=' 

(2.84) 

Y, 

n-Y co P2Y) expl-L logO + P2X2)] 

P2'=EI(;-Y)B(n-r~-k+l,r2+k+l)J r) j=1 dP2 

k=O 0 [I log(l + P2 X 2j)] + k logO + P2)Y' 
j=1 

'J 

~ 
P/i -I exp[ - I logO + P,x,)} 

J j=1 d R 
Y, PI' (2.85) 

o [I logO + PI XI )] + (n - r - k) log(L + A)]" 
j=1 

" 
n-r oc; 

hi' = Efj I c-r )B(n - r2 - k + 1"2 + k +1) J " j=1 d A 
PI,,-I exp[-I logO + PIXI)} 

k=O 0 [I logO + PIXlj)} + (n - r - k) logO + PI )J'I+I 
)=1 

h 

co p/,-lexpl-Llog(1+P2X2j)] 

J j=1 dP 
". - 2' 

o II log(1 + P2X2;)} + k logO + P2)r 
(2.86) 

,;=' 

" 
11-' ~ P/,-I expl-LlogO + P2X~)] 

b2'=Er2IG-')B(n-r~-k+1,/2+k+I)J r, )=1 dP2 

1=0 0 [I logO + P2 X:, j )] + k logO + /32 )],,+1 
)=1 

~ Plr,-I expl-tlog(l + PI);'I)] 

J 'J ;=1 dP, ' (2.87) 

() [I logO + AXil )J+ (n - r - k) logO + p, )]'i 
;=, 

and 
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I, 

n-r 00 /3/~ -I exp[-2: log(1 + /32 X2j)] 

PI*=EIG- r )B(n-12-k+2,r2 +k+l)f r~ j:1 d/32 

i.:1I 0 [2)og(l + /32X2j)] + k log(l + /32)1" 
j~1 

r, 

00 
/3/,-1 exp[-Llog(l+ ~XI})] 

f ~ j~1 d /3
1 

• (2.88) 

() lL logO + /3I Xlj )J + (n - r - k) logO + /31»)" 
j=1 

Bayes estimators of /31' /32' bl ' b2 and PI and hence that of ai' a2 • bl, b2 and PI will 

obtained by numerical integration procedure. 

Remark 2.2 

As mentioned earlier, one can use other types of priors for the analysis, 

which may yield complex situations. 

2.7.2 Estimation based on type I censored samples when the observations 

belonging to each subpopulation are unknown 

(a) Maximum likelihood estimation (M.L.E) 

In this section, we develop maximum likelihood estimator of 

parameters under type I censoring. Suppose there are n sample units (XI' x2, ... , x,,) 

from the mixture model (2.2) and the lifetime of the units is censored by the time 

T and _\ denote the failure time of the i -th unit in a sample of size n. The likelihood 

function based on a typf I censored sample (see Lawless, 2003) is given by 

n 

L = n {f(x}" S(T)IS, }, (2.89) 
1=1 

where g = 1 if x S; T and 8. = 0 if x > T . 
, , I I 

For the model (2.2), (2.89) becomes, 
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i=1 

(2.90) 

Maximization of log-likelihood function of (2.90) with respect to the model 

parameters yields the following equations. 

_ 0- b)plbl (l + alT)-(~+IIT 1 = 0, 

[pJl + alTr'>' + (1- PI )(1 + Q2Trb, ] 

(1- ~ )(1- PI )b2 (I + ([2T f th
, ... I)T ] = 0 

r PI (I + alr'" + (1- PI)(1 + Cl 2T r": ] , 

+ (1- 5)[ - PI (1 + ClITf'" log(l + al) :::; 0 
fpIO+aITf'" +(l-P)(I+ll~Tf":l] • 

~ [{ <>; {(1- PI )G2 (1 + G2X i r l [(l + a2x)-h, - b2 (I + G 2xyb, logO + (l2 X j )]} 

L. [b (1 )-11>, ... 1'1 (1 ) b (I )-11>,+1)1 
;=1 Pial I +alx; + - PI a2 2 +a:,x; -

and 

+ (1- ~ )[-(1- PI)(1 + ll2T)-h, logO + a2T)] = 0 

[PI (1 + alTr'" + (1- PI )(1 + a2Tf'" ] , 

+ (1- 5,)1 (I + alTf"l - (1 + {/2T f'" ]j = O. 
r PI (l + GIT)-I" + (1- PI)(I + (/]Tr'" 1 

(2.91 ) 

(2.92) 

(2.93) 

(2.94) 

(2.95) 
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The solution of the five equations (2.91) to (2.95), using numerical iteration scheme, 

yields the maximum likelihood estimate (M.L.E) ofal,a2,hl,h~ and PI 

(b) Bayes estimation. 

To estimate the parameters, consider the joint prior distribution (2.22). Using (2.90), 

we then obtain the joint posterior distribution of ai' (12' hi' h2 and PI as 

We then obtain the marginal po~teriur distributions as 

00 :;a::; Q<; I rr 

0 1 (al I~) == K I I I In {[ P1a1h, (l + alx; rfl>I~IJ + (l ~ PI )a2h2 (1 + (/2 X )-U>:+IJ]o. 

o 0 0 0 ;=1 

0<: ( ..... XI I It 

02(a2 I.!) == K I J I In {[ P1alhl (l + a1xylhl+lf + (l ~ p)a2b2 (l + a2x)-lh,+Il]o. 

If 0 0 0 ;=1 

Cl<) 00...,) " 

03(bl I.!) == K f I I In {[Plalhl (I + a1xyl!>I+
1
, + (1 ~ PI )a2h2 (l + a2x)-lh,+1,],5, 

0·0 () {) ;=1 

'X 'XI:~ I 11 

n~ (h2 I.!) = K I I I In {[ P'(/Ih, (1 + (lIXyil>, +1 1 + (1 ~ PI )a2h2 (l + a2x, )-11>-+11 t 
() () () () ;71 

and 

(2.96) 

(2.97) 

(2.98) 

(2.99) 
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where 

I ouoc ~(k:; 1I 

K-' = I I I I m {[ p,Q,b, (l + Q,xylb, +'} + 0 - PI )a
2
b

2 
(l + ayr)-(/),+I)]J: 

() () () () n i=~ 

(2.101) 

Then the 8ayes estimates of the parameters, under squared error loss function, are 

given as 

(2.103) 

(2.105) 

00 00 l'" '><" I f/ 

b2' = K I I I I In ([ P1ll,b, (l + a,xY(~+'\ + (1- PI )a2b2(l +a2xy(I!'~')t, 
() () () (} f) I=! 

and 



51 

1 x x 00 x 11 

PI' = K f f f f J PI IT {[p,a,b, (l + alxyi.'!I+I) + (I ~ PI)a2b2 Cl + a2xy(h,+I)t, 
o 0 0 0 0 ;~I 

(2.107) 

Bayes estimators of ai' a2 , bl ' b2 and PI will obtained by numerical integration 

procedure. 

Remark 2.3 

One can use other types of pnors for the analysis, which may yield 

complex situations as in the previous case. 

2.7.3 Estimation based on type 11 censored samples 

In type IJ censoring, we observe r smallest lifetimes, X(I),X(2)' ... , x(r) of n 

units (1 ::; r::; n ). 

(a) Maximum Likelihood estimation (M.L.E). 

The likelihood function based on a type IT censored sample (see Lawless, 

2003) is given by 

(2.108) 

For the model (2.2), (2.108) becomes, 

(2.109) 

Maximization of log-likelihood function of (2.109) with respect to the parameters 

yields the following equations. 

(2.110) 
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(2.111 ) 

(2.112) 

_ (n-r)(l- PI)(l+a1X(I)-I" log(l+ a2x{r») =0 

PJ(l+aJXrrlrl~ +(1- PJ)(l+a2Xrr,rh, ' 
(2.113) 

and 

(2.114) 

Solving the equations (2.110) to (2.114) we obtain the M.L.E s of 

(b) Bayes estimation. 

From (2.22) and (2.109), we obtain the joint posterior distribution of (l1,(/:"bl ,b2 and 

(2.115) 
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We then obtain the marginal posterior distributions as, 

ITI (a l I~) = Q 1}1 S{r tI (Plalbl (l + Q1XUy,h,+I> + (1- PI )a2b~ (l + (/2XU) r U1,+1»)} 
000 0 1=1 

112(u2 I:!) = Q 111s{tI (P1a/JI (l + aIX(iJr(l~+11 + (1- PI )azb/I +azxU)r(b,+I)) L
J
, 

o 0 0 0 1=1 

ITl (bl I:!) = Q 111 s{tI (PI(llb1 (l + alxu I r(/~+IJ + (1- PI )a:>b2 (1 + a2x(i) r(h2+")} 
000 0 1=1 

IT4 (bz I:!) = Q 1} 1 s{tI (Pllllhl (l + (ll Xfl)-O),+11 + (I - PI )(l2b2 (l + (lzXU1 rfb.~+J1 } 

000 0 1=1 

and 

where 

Q-l = 1111 s{tI (Pla,bl (I + a l -,"(;, rf/II+I) + (1- PI )a2bz (1 + aZx,il rl",+I)} 
() {) 0 0 () ,=1 
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Then the Bayes estimates of the parameters, under squared error loss function, are 

gIven as 

al' = Q IIIIJ{n (p,arbr(l + a)x(, J-(b, +1i + (1- Pr)a2h2 (l + G2X(i)f<O,+ll)} 
() 000 () ,=1 

hi' = Q III} JJln (Plalhl(1 + alxU)r(/~+I) + (1- PI )aiJ2(l + a2X(i)f(/J,+Il} 
000 00 ,=1 

<Xl 0000 00 ] r 

h2* = Q f f f f fl n (PI(llhl (I + alx(i) rO)1 +1) + (1- PI )a2h2 (I + a2xuJ-<b,+1l 1 
o 0 0 0 0 ;=1 

and 

Bayes estimators of ai' a2 , bl , b2 and PI will obtained by numerical integration 

procedure. 

Remark 2.4 

One can use other types of priors for the analysis, which may yield complex situations 

Remark 2.5 

When r=ll, the estimators obtained under type II censoring situation reduces to those 

under complete sample set up. 
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2.8 Simulation Study 

In Section 2.5, we have described different methods for estimation of 

parameters of the model (2.2) for the complete as well as for type I and type 11 

censored samples. In this section, we carried out simulation studies to assess the 

performance of the estimates. 

For the type J censoring, in which observations belonging to each 

subpopulation are known, we generate two sets of samples, one from a Pareto II 

distribution with parameters Q I and hi and the second from a Pareto II distribution 'With 

parameters ao and bo • 
" . 

For the type I censonng, 111 which observations belonging to each 

subpopulation are unknown and for type 11 censoring, first we generate two sets of 

samples, one from a Pareto 11 distribution with parameters a l and bl and the second 

from a Pareto JJ distribution with parameters Q 2 and b~ and then, we obtain samples 

from a finite mixture of Pareto II distributions using Bernoulli probability 

The estimates of parameters by the method of maximum likelihood, 

Bayes technique, method of moments and method of maximum product of spacing 

under complete sample set up are developed for various combinations of QI' a2 , bp b2 

and PI. Table 2.1 presents the estimates for a l = 0.05,a1 = 2,bl = b2 = 5 and PI = 0.5. 

Here, we take hi = b2 = b for the simplicity of calculation of moment estimates and we 

choose b = 5, since in method of moments h should be greater than 4. 

The estimates of parameters by the method of maximum likelihood 

and Bayes technique under type J censoring, in which observations belonging to each 

subpopuJation are known, for a] = .03, Q 2 = 3.b] = l,b2 = 2 and PI = 0.5 with various 

combinations of n (sample size) and T (censoring time) are given in Table 2.2. In 

Table 2.3. we give the estimates of parameters by maximum likelihood and Bayes 

technique under type I censoring, in which observations belonging to each 

subpopulation are unknown, with various combinations of 11 and T for the same set 

of parameters. Table 2.4 provide estimators by the maximum likelihood and Bayes 
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under type IJ censoring for the same set of parameters with various combinations ofn 

and r. 

The values in brackets provide the variance of the estimates .. In the 

case of Bayes estimate, we calculate posterior risk. The result obtained under type JI 

censoring is extended to the complete sample by taking r:::::'l1. Simulation study reported 

here and other simulations that are not given here, shows that M.L.E. and Bayes methods 

provide estimates with small bias .. The variance (posterior risk) of the estimates decreases 

as n Increases. 

Now, we compare the different estimates to measure the efficiency. For 

that we define risks improvement (RI) factor, as 

where 5 is the new estimate and 50 is the existing estimate (see Jin and Pal, 1992) and 

Var(5) denotes the variance of 5. The results are presented in Table 2.S 

We used the software, Mathematica, to evaluate integrals involved in the 

expressions. It may be noted that the efficiency of the maximum likelihood estimates 

depends on starting values in the iterative procedure. 
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Table 2.1 Estimates of parameters under complete sample for 

a
J 
= .05,a2 = 2,b = 5 and p) = 0.5 

Estimate M.L.E Bayes Method of 
moments 

el) =.050104 a)' =.048875 Cl) =.05178 

(2.34E-05) (2.371E-05) (.0198) 

a~=2.1498 a~' =2.102 a2 =1.791 

n=30 I (8.47E-06) (8.83E-06) (.0476) 

b =4.829962 b' =4.9426 b =5.2075 
I 

(.025288) I (.0408) (.1209) 

PJ =.518161 ! Pi' =.51815 p) =.4876 

(.000518) (.000518) (.00178) 

ell =.0491342 aJ' =.049001 QI =.05156 

(1.88E-05) (1.892E-05 ) (.0132) 

ii, =2.02265 a2* =2.0208 Q2=1.89 

n=50 (5.05E-06) (5.72E-06) I (.0219) 

b* =4.9474 

I 
-

b =4.918252 h =5.176 
(.01636) (.044573) (.1 138) 

PI =.5271 PI' =.513624 ! PI =.4894 

(.000354) (.000857) (.00112) 

ell =.0491522 al* =.5101 ilJ =.0511 

0.387E-05) 0.882E-(5) (.00987) 

ii 2 =2.022 a2' =2.0202 a2 =1.9037 

n=loo (3.8E-06) (4.98E-06) (.0187) 
-

b =4.929 b' =4.858 b =5.1257 
(.008508) (.007085) I (.0732) 

PI =.5136 

I 
PI' =.5255 

I 
- - -0')38 PI-·,) --

(.000227) (.000318) (.000179) 

Maximum I 
product of I 

spacing 

G) =.04912 

(.00351 ) 
~ -200 ')3 a2 - • j-

(.0346) 
-' 

h =4.9231 
(.21052) 

p) =.49942 

(1.9E-1O) 

0, =.04989 

(.00218) 

°2=1.9976 

(.001753) 

b =5.017 
(.1208) 

PI =.50173 

(1.3E-12) 

GI=·0508 

(1.1E-03) 

02 =2.00 13 

(.000521) 

b =5.0078 
(.02371) 

PI =.500012 

( 1.1E-13) 



58 

Table 2.2 Estimates of parameters under type I censoring for 
a, = .D3, Cl2 = 3, b, = 1, b:. = 2 and p, = 0.5 in which observation" belonging to each 

subpopulation are known. 
Censoring 

time 

T=3D 

Estimate 

M.L.E 

8ayes estimate 

M.L.E 

n=3D 

a1 =.0321006 

L--- (3.7E-03) 

L a2 =2.87634 

(J)9324) 

I b, =1.21304 

l (.1128) 

(.15712) 

n=5D n=IOO 

a, ~.0310114 a, =.0299031 

(2.8E-03) (2.1 E-03) 

a2 =2.90125 (!2=3.09768 

(.03352) (.01127) 

b, = 1.1 0 124 b, = I J)09S 

(.0156) (.01376) 

b2 =1.973 b2 =1.99243 

(.08741) (.0127) 

p, =.49967 p, =.49989 p, =.49991 

(3.0SE-IQ) (2.9E-IO) (1.1 E-l 0) 

a,' =.0312301 a,' =.0309141 a,' =.0302004 

(2.87E· (3) (l.9E-03) (I.27E-04) 

az·=2.89137 I az'=3.10642 a2*=2.99104 

(.027648) (.01139) (.OI03S) 

br' =1.13203 b,' =.9890 b,* =.99124 

(.1428) (.1014) (.10014) 

b2' =2.09913 b2' =2.0897 h~' =1.99884 

(.10519) (.08431) (.0653) 

PI' =.490578 PI' =.49952 p,' =.500124 

(2.08E-II) (1.99E-II) (1.08E-II) 

a, =.031198 a, =.030987 a, =.0300321 

(2.1 E-03) (1.97E-03) (1.9E-04) 

a2 =2.9124 a2 =2.975 (!z=3.0432 

(.057H94) (.016S09) (.OOI7S) 

b, =1.1096 h, =1.0864 b, =-1.00031 

(.10742) (.09656) (.02376) 

I bz =2.1087 h2 =2.1)965 bz =2.0432 

I 

~ ____ ~(._H_)4_3) ____ 4-___ (~.0_3_65_0~) __ -4 __ ~(._0_13_6~S)~~ 

I p, =.49998 p, =.49999 p, =.5002 

T=IOD 
(2.076E-12) (1.9SE-12) (1.34E-12) 

a,' =.03109 a,' =.03098 a,' =.1)30024 

(2.(HE-03) (J.8E-03) (1.0IE-04) 

I (~~~~;~~:~I a;~0~:~::2 ~2:)(:~;~~:8 
r--. . 

hi" =1.0543 b,' =1.0412 hr' =1.003 

(.1021) (.0357) (.009986) 
Bayes estimate 

b2< =2.0657 h2' =2.023 bo' =1.9991 

(.10042) (.02341) (.0032) 

p,' =.49999 1'1* =.49999 p," =.5001 

, , (2.79E-14) (1.20E-14) (l.IE-14) 
~. ----------~.~--.---------~--~----~~~~----~--~--~--~--~ 
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Table 2.3 Estimates of parameters under type I censoring for 
a l ::::: .03, a~ ::::: 3. hi ::::: 1, b2 = 2 and PI = 0.5 in which obsenations belonging to each 

subpopulation are unknown. 
Censoring 

Estimate n=30 n=50 I n=100 
time I 

I I 

QI =.02789 

I 
QI=·030932 ill =.0299987 

(2.8E-04) (2.iE-04) (I.7E-04) 

I Q2=2.91 132 
I 

Q2 =2.92786 Q2 =3.09764 

I (5.4E-03) (2.9E-03) (2.8E-03) 

I I M.L.E 
bl =1.1043 bl =1.10213 I hi =1.012 

(.00279) (.00 1247) (\.5E-03) 

b2 =2.0918 b2 =2.07521 b2 =2.009 

COOI7f.) I (2.7E-03) ( 1.5E-(3) 

PI =.49Q8 PI =.49999 PI =.50()] 

T=30 
(3.0IE-12) (2.7E-12) (2.2E-12) 

al' =.02917 
. 

al' =.03002 al =.03009 

I 
I 

(1.9E-04) (1.6E-04) 0.3E-04) 
I . 

a: =2.9429 I 
. 

a, =3.1164 G 2 =3.0917 

(4.7E-03) (2.2E-03) (1.9E-03) 

Bayes estimate bl' =.9426 hi" =1.0975 b," = LOO 13 

(.0017) (2.3E-03) (1.1 E-03) 

b2' =1.9543 b2* =1.985 b: =2.0019 

(4.IE-03) (3.7E-04) (2.4E-04) 

PI' =.4999 PI* =.500112 
. 

I 
Pi =.5001 

( 1.8E-13) ( 1.5E-13) (I.3E-13) 
I al =.03098 al =.03074 al =.03003 
I (2.4E-04) ( 1.98E-(4) ( 1.5E-(4) 

a2=2.9469 Q, =2.98 Q2 =3.0031 

0.6£-(3) (2.7E-03) ( 1.9E-(3) 

M.L.E 
bl =0.9912 bl =0.9936 bl =1.00021 

(2.3E-03) ( 1.3E-03) (5.9E-04) 

b, =2.1087 I bo =2.0965 bo :::2.0432 

I (:.~E.03) I (2.IE-03) (1.1 E-03) 

I 
PI =.5(Xn6 I PI =.5001 1',-.5017 

T=JOO 
(2.6E-12) (1.9E-12) I ( I.7E-12) 

I al' =.03003 al' =.0299 
. 

a l =.03001 

( 1.9E-(4) ( 1.4E-04) ( I.3E-(4) 
* a2

x 

=3.0863 I a,' =3.0056 a, =3.096 
I 

I 
0.2E-(3) (2.5E-03) i (1.2E-03) 

bl ' =1.0023 bl ' =.9989 ! hi' = LOOO 1 I Bayes estimate 
I ! (7.8E-04) (5.6E-04) (2.1 E-04) 

I h: =2.0657 h2' =2.023 b
2

> =1.9991 I 
I 

(2.9E-03) ( 1.8E-03) (1.02E-03) . 
PI" :::.50007 PI' =.SOOO I I PI =.4999 

I L----
(UE-D) I ( 1.5E-I3) I (1.2E-\3) 
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Table 2.4 Estimates of parameters under type 11 censoring for 
a l = .01 a? = 3,bl = l,b, = 2 and P. = 0.5 - -

I I I I I 
n=30 

I 
n=50 

I 

n=100 

Estimate I I 

I r=50 
! 

I r=1O r=30 I r=30 I r=60 r=100 

(11=·03113 cll =.0301 I al =.0305 
I 

al =.03021 al =.0301 (11=·02999 

(.000913) (.000804) (.000691) (.0006780) ! (.0005478) (.0000780) 
-

£12 =3.003 I (12 =3.125 £1,=3.098 £12 =3.097 
I 

&, =2.999 

I 
£1 2 =3.001 

(.09453) I (.05417) (.00571 ) I (.002168) ! (.00106) (.00087) 

M.L.E bl =1.1103 bl =1.093 hi =1.091 hi =1.082 hi =) .002 bl =1.001 

(.0090037) (.007396) (.0020381) (.002000) (.001600) (.0002600) I 

b2 =2.135 b,=2.091 b,=2.065 °2=2.049 h2 =1.998 I h2 = 1.999 
I 

(.00883956) I (.007023) I (.0065277) (.0048) (.001821) (.000980) 

JJ I =.4981 iPI =.4989 I PI =.4998 PI =.5005 PI =.5002 PI =.5001 

(2.43E-12) (1.01E-12) (2.63E-16) (2.1 ]E-16) (3.11 E-18) (1.01 E-18) 

ai' =.03123 ai' =.0304 I al' =.0287 al' =.0298 ai' =.031 
al' =.0302 

( 1.38E-5) I ( I.03E-5) 0.0IE-5) (2.22E-6) 
(1.98E-6) 

(] .22E-5) I 

a2' =3.101 I a,' =3.087 a: =3.054 a2' =2.995 a,' =2.998 a,' =2.999 

(.09743) (.0532) (.0247) (.02187) (.00590) (.00210) 

Bayes bl*=1.125 I b: =1.0987 , b
l
' =1.085 bl' =1.0043 hi' =1.0021 

I 
bl ' =1.001 I 

(.0016) (.0032) I 
I 

estimate (.0023) (.00191) (.00086) (.00012) 

I h; =2. 1054 1 b; =2.045 I b2'=2.014 b2' = 1.997 I b
2
' =2.004 h2* =2.001 

I 
I 

i (.1 0490) (.0978) (.01752) (.00951) (.00219) (.00019) 

U:=.4976 (~:~::~183~ I (~:~~::~ 
PI' =.4999 PI' =.50021 PI' =.5001 

! (2. 13E-13 ) (1.1 E-15) (2.9E-19) (2.0E-19) 
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TabJe 2.5 Risk improvement of the Bayes estimator over the different estimators 

for the set of parameters {l, = .05, {l2 = 2. b = 5 and PI = 0.5 in the complete sample 

set up. 
, I I I 

I 
Maximum I 

Estimate M.L.E. (%) Method of product of I 
I I 

moments (%) spacing (%)-i 
84 I 98 98 I 
89 

I 
99 93 

n=30 87 95 96 

88 99 95 

89 96 90 

85 97 94 

n=50 84 98 98 --l 
87 96 

9H 
80 97 95 

f--- -
I 87 99 94 

n= t ()() 
85 94 96 I 

I 

J--- ---1 
86 98 97 , 

---.J 

2.9 Data analysis 

For the illustration of the estimation procedure, we consider a data on time to 

death of two groups of leukaemia patients (see Feigl and Zelen, 1965), which is given 

in Table 2.6. We then estimate the parameters using M.L.E and Bayes technique. 

Table 2.7 provides the values of the estimates by M.L.E and Bayes method. We then 

used the Kolmogorov- Smirnov statistic to test the goodness of fit. The values of the 

test statistic DlI is given in Table 2.8. The tahle value at 5 % significance level is 

0.233. From the analysis, it concludes that the model (2.2) is a plausible model for [he 

data with parameters given in Table 2.7. Table 2.9 provides the maximum likelihood 

estimate of survival function at various lime points. 
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Table 2.6 Survival times of leukaemia patients 

AG positive AG negative 
I 
I 

patients patients I 

65 56 

156 65 

~ 
17 

7 l 
16 16 

108 22 

121 3 

4 4 

39 2 

143 3 I 
56 8 

26 4 
--

22 3 

1 ,30 i 

I 1 14 

Table 2.7 Estimates of parameters of survival times of leukaemia patients. 

M.L.E Baye, method -] 

at = 0.0213968 a l * =0.0194 I 
1---------------+-------------11, 

I (J2' =0.0280742 I 
I -J 
I b; ~ 2.8557 ! 

a~ = 0.0387068 

hi = 1.14671 

I < I I h2 =2.70599 i 

~PI_=_(_).5_0_1_3_7 _____ ~I_p_I'_,=_0_._50._9_7_1~ 
b2 =2.02603 
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Table 2.8 Kolmogorov-Smirnov test statistic 

Max Dn (M.L.E) Max Dn (Bayes) 

0.1019749 0.052931 

Table 2.9 Maximum likelihood estimate of survival probability at various time 

points 
I I 

x t 10 50 75 100 120 I 140 I 
1 

A 

.951048 .658389 .273978 .198853 .155183 .131571 .113936 S(x) 

2.10 Conclusion 

The role of finite mixture of Pareto II distributions in reliability analysis 

is studied. We proved that finite mixture of two Pareto 11 distributions is identifiable. In 

the present chapter. we developed estimates of parameters using different approaches for 

both complete and censored samples. Maximum likelihood and Bayes methods provide 

estimates with small bias and less vmiance (in the case of Bayes, we calculate posterior 

risk) and the variance of the estimates decreases as n increases. The results derived under 

type 11 censoring can be specialized to the complete sample case by taking r = 11. As 

expected, the method of moments was shown to be inferior to maximum likelihood 

estimation (M.L.E), Baycs method and maximum product of spacing (M.P.S). The role of 

finite mixture of Pareto 11 distributions is illustrated using a real life data on time to death 

of two groups of leukaemia patients. The part of this chapter has appeared in Sankaran 

and Maya (2005). 



Chapter 3 

FINITE MIXTURE OF BETA DISTRIBUTIONS 

3.1 Introduction 

In practical situations, the observed lifetimes of an item varies over 

only a finite range. Accordingly, Mukherjee and Islam (1983) studied the properties of 

finite range (beta) model in the context of reliability analysis. The finite mixture of beta 

distributions is widely used as a lifetime model due to the property that beta distribution 

has flexible skewed density function over the finite range. Further, beta distribution is 

widely employed for modelling lifetime data of systems as it has increasing failure rate 

pattern. 

The finite mixtures of beta distributions arise frequently in Bayesian 

conjugate prior analysis. An example introduced by Diaconis and Ylvisaker (1985) uses 

finite mixture of beta distributions as a prior for a binomial parameter. They noticed that 

there is a big difference between spinning a coin on a table and tossing it in the air. The 

tossing often leads to about an even proportion of heads and tails, while spinning gives 

an uneven proportion of heads and tails. They justified that the shape of the edge would 

be a strong detennining factor for this bias and used a finite mixture of beta 

distributions as a reasonable plior. 

A systematic study on finite mixture of beta distributions in the 

context of reliability is not yet carried out. Motivated by this. in the present chapter, 

we study the properties of finite mixture of finite range (beta) distributions in the 

context of reliability. Throughout this chapter, we consider a finite mixture of two 

beta distn but ions. 

In Section 3.2, we give definition and properties of finite mixture of 

beta distributions. Section 3.3 discusses the important reliability characteristics of the 

model. Identifiability of finite mixture of beta distribution is discussed in Section 3.4. 

Estimation of parameters of the model for complete as well as cen~ored case by 
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different techniques is studied in Sections 3.5 to 3.7. Section 3.8 deals with simulation 

study to investigate the finite sample properties of the estimator:;. In Section 3.9, we 

illustrate the role of finite mixture of beta distributions using a real life data. Finally, 

in Section 3.10, wc give the conclusion of the chapter. 

3.2 Definition and properties 

Let X be a non-negative random variable admitting an absolutely 

continuous distribution function F(x) with respect to a Lebesgue measure. Assume 

that the probability density function (p.d.f.) of X , f(x) exists. A two-component 

mixture of beta distribution is given by 

o < x < 1/ Cl • 0 < PI < I . 

where c~ 2 Cl > 0 and d l , d 2 > O. Notice that the support of the component densities 

need not be same. For (3. J), the support of the first component is 0 < x < If Cl and that 

of the second is 0 < x < 1/ c2 ' where c2 ;;:: Cl is assumed, without loss of generality. 

When d l = d 2 = I , (3.1) reduces to a mixture of two uniform distributions. 

The rill moment of the distribution (3.1) is given by 

~ 

where JP = Je-'x,,-Idx. is the gamma function. 
() 

When r = I , (3.2) reduces to the mean, which is equal to 

= PJ + (1- pJ . 
cJ(dl+l) c2 (d 2 +1) 

When r = 2, (3.2) becomes 

(3.3) 
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Thus the variance of (3.1) is given by 

V(x)= p,(2
2
+2d,-;p,-d,p,) + (1- ;,)(d2 -;d2 -2)p,) _ 2p,(I- PI) (3.4) 

c, (d, + I) (d, + 2) c2 (d2 + I) (d2 + 2) c,c2 (d, + 1)(d2 + I) 

3.3 Relia bility characteristics 

The survival function for the model (3.1) is given by 

Sex) = p,(1-c,x/' +(1- p,)(1-c2x/', 0 < x < 1/c" 0 < p, < I. (3.5) 

For the model (3.1), the hazard rate hex) and the mean residual life function r(x) are 

given by 

and 

hex) = p,c,d, (l-c,X)d,-, + (1- p, )czd2 (1- C2X)d,-, 

P,(l-c,x)'" +(1- p,)(l-c2x)'" 
(3.6) 

From (3.6) and (3.7), we obtain an identity connecting r(x) and hex) as 

r(x) _ l1(x)(1- c,x)(I-c2x) [c2 (d2 + 1) -Cl (d, + I) + c,c2 (d, - dz)X] 

c,c2 (d, +1)(d2 +1) cA -C~d2 -c,c2(d,-dz)x 

_ c,2d,(d, +])(l-cr,i -(~d2(d2 + 1)(1-C,X)2 

C'C2 (d, + 1)(d2 .+ ])[c,d, - c2dz - ("C2 (d, - dz )X] 

(3.8) 

Figures 3.1 to 3.16 show the behaviour of hazard rate and the mean residual life 

function for different parameters of the model (3.1). From the graphs, it is easy to see 

that the behaviour of hex) and r(x) arc depending on the parameters of the model. 
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The situations where the model can be used to represt:nt lifetime data 

wi11 be made clear only if we know the ageing behavior of the system represented by 

the model (3.1). Obviously, the component density of (3.1) possesses the increasing 

failure rate (lFR) at all time points. However, the mixture model (3.1) can possess 

decreasing failure rate (OFR) behaviour. The hazard rate h(x) is OFR in Figures 3.1 

and 3.2. A bathtub model for h(x) is obtained for a different set of parameters (see 

Figures 3.3 to 3.5). In Figures 3.6 and 3.7. the hazard rate h(x) is IFR and it is 

constant in Figure 3.8. 

As discussed earlier in Chapter 2, the distribution (3.1) and the 

identity (3.8) also involves five parameters. Reduction of one parameter can be 

achieved if we take either Cl = c2 or dl = d~ without sacrificing much of the flexibility 

of the mode1. This motivation leads to consider the following, 

when d l = d2 = d , the identity (3.8) reduces to 

(3.9) 

and 

for Cl = c2 = c, the identity (3.8) becomes 

(3.10) 

In the following, we prove a characterization result for the finite 

mixture of beta distributions through simple relationship between h(x) andr(x). 

Theorem 3.3.1 

A continuous random variable X in the support of positive rea]s 

with E(X) < DO. has survival function 

S(x) = PI (1- CIX)d + ([- Pt )(1- c2·x/ ,0 < x < 1/ Cl • c~ ~ Cl > O. d > 0, 0 < PI < 1. 

(3.11 ) 

if and only if the relationship (3.9) holds. 
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Proof. 

Suppose that the identity (3.9) holds, and then we have, 

~ 

chd(d + 1) fS(I)dl + j(x)(l-c)x)(l-c2-,) = dtc) +c2 - 2c)c2xJ5(x). (3.12) 
er 

Differentiating (3.] 2) twice with respect to x, we get, 

(3.13) 

where j'(x) and f"(x) respective1y denotes the first and the second derivatives of 

j(x) with respect to x. The solution of the differential equation (3.13) is obtained as 

(3.14) 

Since 5(0) == 1, we have e} =]- el' which gives (3.14) as required in (3.1l).The proof 

of the converse part is direct. 

Theorem 3.3.2 

The re1ationship (3.10) characterizes a mixture model with survival function 

S(x) = PI(l-CX/' +(1- PI)(l-cxr"'. 

For the proof, see Abraham and Nair (200 1). 

3.4 Identifiability 

In the following. we show that a finite mixture of two beta densities 

is identifiable. 

Theorem 3.4.1 

Finite mixture of beta densities is identifiable. 
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Proof: 

From Teicher (1961), it fol1ows that a finite mixture of k exponential 

component densities is identifiable. If Z follows exponential with parameter A and 

y = 1- e-: ,then Y follows beta distribution with density 
c 

g(y) = CAO _cy),l-" 0 <: y < Ijc. 

Since the transformation Y = 1- e< is one to one and onto, a finite mixture of beta 
c 

with component densities gi (y) = £",.1,/1- c i y)'1;-1 , i:.= 1,2 is identifiable. The rest of the 

proof is analogues to that of Al-Hussaini et.a1. (2000). 

3.5 Estimation of parameters 

In this section, we discuss the estimation of parameters c" c~, d,. d 2 

and PI of the model (3.1), using different methods under the complete as well as 

censored sample set up. 

3.6 Complete sample set up 

3.6.1 Estimation of parameters when the observations belonging to each 

subpopulation are known 

We consider the situation, when there are only two sUbpopulations with mIxIng 

proportions PI and (1- p,) and _~ Cr) and .f~(x) arc beta densities with parameters 

(c,.d,) and (c~,d~)_ Assuming that items that fail can be classified and can be 

attributed to the appropriate subpopulations so that the data would consist of the n 

lifetimes grouped according to the subpopulations {(XII' X'2' ... , XI,,)' (x21' X2~ .... , x2,,)}, 

where it is assumed that n l and n
2 

are the observed frequencies in the sample of 

the units belonging to respective subpopulations . 

Then the likelihood of the complete sample is given by 
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which can be written as 

, ~ 

- n. /l1(1 )n, '"'d''' .n'd'" [Cd 1)'1 (I . ) ---,-, PI - PI_ Cl I (2 2 exp 1- ~ og -CIXlj 
nl ., n2 • j~1 

", 
exp[(d2 -1) 2:)ogO- C2 X 2)· 

j=1 

(a) Maximum likelihood estimation (M.L.E). 

To estimate parameters, we consider the logarithm of (3.16), which provides 

n' where C=--·-. , , 
III .n2 . 

~ ~ 

+(d, -I)Z)og(1- ('IXI) + (d] - I) I 10g(1- C2X2) , 

)=1 

(3.15) 

(3.16) 

(3.17) 

Maximizution of (3.17) with respect to the model parameters yields the following 

likelihood equations. 

(3.18) 

(3.19) 

CL20) 

(3.21) 



and 

!i_ n2 =0. 
1', (1- p,) 

The equation (3.22) provides, 
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(3.22) 

The solution of the equations (3.1 R), (3.19), (3.20) and (3.21) by 

Newton-Raphson iterative procedure yields the M.L.E.'s of cl' c2 ' d, and d 2 • 

For obtaining variance of the estimntes, we need to compute the 

observed information matrix I (cl' cz' d,. dz' PI)' 

The second derivative of log L(cl'cz' d l , d 2 • 1', I.!) leads to the following 

d210~L =_[ n~ _ (d, -l)f __ 1_, o--I-r2 + (d, ~ 1) t(1-_1-r']' 
dC,- c,- c, ;=1 xl /',- c,xlj c,- ;=1 c,x, j 

d21~gL = d
2

10g L = ~ to __ J_rl , 
dclddl ddldCI C, j~' (',xlj 

d210~L =_[ n; _ (dz -1) f -~(l---. J __ r2 + (dz ~]) I(l--, 1-rl l, 
dCz c2 c2 )=1 x:'/z (2 X 2j c2 j=1 (zX2j 

aZlogL = _ n2 

adz
2 d/ ' 

and 

and all other second derivatives are zero. 

The observed information matrix is thus 
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d2 10gL d2 10gL d2 ]OgL 

dCl dC2 dClddl dCldd2 

For large n, the joint distribution of the estimates CI,c2 ,dl ,d2 and PI IS 

approximately multivariate normal with mean (cl'c2 ,dl ,d), PI) and covariance matrix 

(b) Bayes estimation. 

Using Jcffrey's invariant prior for cl ,e2 ,dl and d 2 and uniform prior 

over (0,1) for PI' the joint prior distribution of Cl' c2 ' dl , d} and PI is given by 

(3.23) 

where we assume thut Cl,C2,d\,d~ and PI are independent. 

From (3.16) and (3.23), the joint posterior distribution ofc l ,c2 ,dl ,d2 and PI IS gIven 

by 

n( d d I) PI '" (1- PI )n, ('In,-lc __ n,-ldlfl,-ld2,,,-1 
Cl' C 2' 1 ' 2' P1 :! a . 

(3.24) 

From equation (3.24), we obtain the marginal posterior distributions 

of cl ,c2 ,dl ,d2 and P, as 

~ ~ 

<,,-I cxpl-Llog(1-cl'~\)) ~ C/,,-I exrl-Llog(l-c2x2)] 
H(cl I:!) = KI j~1 f i~' dC

2 
' 

"1 "t r1~ n~ 

[-Llog(l-c,x,)] " [-Llog(l-c2x2j )J 

(3.25) 

.1=1 .1=' 
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"l:~ n) 

C
2

",-1 exp[-l:)og(1-C
2
x

2
)L, ('1",-1 exp[-l:)og(1-c

I
X

1j
)] 

Il2 (c2 I:!) == K2 ", j~1 "2 f ;=1 n, dc l • (3.26) 
"; [-L log(1- C2X2 i)J 0 [-I log(1- C,_\)] 
j=1 

Il (d ' ) - K d n,-I fd ",-I f 11,-1. ,-, r ",-I ,-, d d' dd 
{ 

r '.' ( ~ ) 1 ~) ~ loo (d," I) Llogfl-c,x: i) c, Id, -I) 2)0,1;1 I-c,',,' 

3 I I:! - 3 I 2 C 2 e • c, e Cl (2 2' 

o 0 0 J 

(3.17) 

(3.28) 

and 

(3.29) 

where 

(3.30) 

". 
'" C/,-I CXp[ - L log(J - C2X2)] 

f--------'-'='----------
/1" n, 

(3.31) 
() 

[-Llog(l-c2x:?)1 
j=1 

(3.32) 
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(3.33) 

and 

(3.34) 

Under squared error loss function, we obtain the Bayes estimators of 

cl ,c2 ,dl'd2 and PI as 

11] I n~ 
~ cl

nl exp[-'~)og(1- CIXI)J ~ C/,-I expl-2:)og(l- ('2X2)] 

c· = K 
I I J j~1 J----J'-·~-I -----dc

2 
dCI ' 

III 11] 1!-. H ... 

o l-~10g(l-elxlj)J le: [-~lOg(1-e2X2)] 
(3.35) 

11, 11. 

00 et exp[-Llog(l-c2x2)1 e, ('1"
1

-
1 expl-Llog(1-c l xlj )] 

J---~j~-I-----,,~ n::. J-----------'.I'---~-I -----,dcl dC
2 

, (3.36) 
n) "1 

o 
[-2)og(l-C2X 2)] 

() 

f-Llog(l-clxl)J 
j~1 j~1 

(3.37) 

d; ~ K'Id,,,, {Id,"'-' l fe, "'-'e"'''f''''''-c'''' '[J c,"'-'e"'-"t"'''-'''' 'dc, lde2 ] dd, }dd' ' 

(3.38) 
and 

PI' = K:.B(n l + 2,11 2 + I) , (3.39) 

where B( p, q) is the beta function of the first kind. 

Bayes estimators of C1.('2,dl andd2 will obtained by numerical integnHion procedure. 
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The posterior variance of Cl is obtained as. 

(3.40) 

where 

nl n, 

~ Cl
nl

+
1 exp[-2:10g(1- clxlj)j = ct -1 exp[ - ~)og(l- C2X lj )J 

f----J~·=-'-----"1 n] f---------J-=�----~dc2 dc, . 
n, IJ'2 

o 
[-2)og(l-cIX I)J [-:2)og(1- (:2X2)J 

j=1 j=1 

and E(c, I~) is given by (3.35). 

Similarly, we obtain the posterior variances of c2 ' d l , d l and PI using the following 

identities, 

2 r - c,"''' exp[ - t,IOg(l- C ,x,,)] "c,"' ~, exp[ - t,IOg(l - c, x,,)] 

E(c2 1:!)=K2 ) f 11, n2 f "l n
l 

dC1 dC2 ' 

l n [-~log(1-C2X2)] U [-~log(l-c,X,)] 

and 

Remark 3.1 

One can use various types of priors depending on the situation for the 

Bayesian analysis. Hmvever, when we employ conjugate priors for c j ,c2 ,dl'd2 and PI 

the estimation procedure will become complex. 
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3.6.2 Estimation of parameters when the observations belonging to each 

subpopulation are unknown 

We now consider the case when there are only t\VO subpopulations, 

with mixing proportions PI and (1- PI) and I, (x) and I2(x) are beta densities 'Nith 

parameters (Cl' d) and (c2 ,d2 ) respectively. The likelihood based on sample 

(3.41) 

(a) Maximum likelihood estimation (M.L.E). 

Maximization of Jog-likelihood function (3.41) with respect to the model parameters 

yields the following likelihood equations, 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

and 

(3.46) 

The solution of the above equations provides the M.L.E:s of 
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(b) Bayes estimation. 

From (3.23) and (3.41), we have the joint posterior distribution of 

From (3.47), we obtain the marginal posterior distributions as, 

00 oc. <..>0 l Ir 

n, (Cl I:!) = M, I I I I[n (PICldl (1- CIXi t,,-Il + (1- PI )C~d2 (1- C2X;)(d,-I)] 
c, 0 0 0 i=l 

C2 OCI 00 I n 

n2(C~ I:!) ~ M 2 I I I If n (Plcldl (1- C1X)(,},-11 + (1- PI )c2d~(l- c2·tj,}:-IJ)] 
o () 0 0 i=1 

(>000001 n 

n3(d1 I~) = M 3 I I I Iln (Pl'A (l-clxjd,-Il + (1- Pl)C2d2(1-C2Xi )ld,-11)] 
o () c, 0 i=1 

IXI 00 00 I f1 

n
4
(d

2 
I~) = M 4 I I I Ir n (PICldl (1- CIX)(d,. I1 + (1- PI )c2d2 (1- c2xjd,-IJ)] 

o 0 "I 0 J~I 

and 

fI,(p, I~) = M, 1111[Il: (p,cA(l- C,X)(d,-JI + (1- PI)c2d2 (I-C2XYd,'IJ)} 
0(", () 0 i~1 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 
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where 

00 UOOO DO I n 

M,-! = I I f I frn (p,c,d, (l-c,xjd,-,) + (1- PI)c2d2(1-C2·tjd
z-')J 

o c, (I 11 I) ;~l 

00 ('::: ou 00 I 11 

M 2 -I = f f f I I[ n (p,c,d, (1- Cl:\-';)(d,-I) + (1- PI)c2d2 (1- C2X)(dz-l)] 
o 0 () () () ;=1 

0000001..>0 I " 

M 3-' = I I I I I(n (P1c1dl (1- C,X)(d,-ll + (1- PI )c2d2 (1- C2x,tl,-I)] 
o 0 0 c, 0 ;=1 

OOI.XJUOOC I " 

M 4 -I = I I I I Il n (PIC,dl (1- c,xjd,-II + (1- PI )c2d2 (1- C2X)(d"')J 
o () 01", () i=l 

loo~I00000 It 

M ,-' = I I I J Il n (Plc,dl (l-CIX)(d,-11 + (1- P, )c2d2(1- c2xjd,-1)J 
o 1I 1", () (I ;=1 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

Then Bayes estimates of the parameters, under squared error loss function, are givt:n 

as, 

-,.-, ~n""" ~ I " 

Cl' = M, I I I I Itn (P1cldl(l-CIX,t,,·I' +(1- PI)C2d20-C2X)(d,-I)J 
o c, () () (I ;=1 

Xl c::: ""- lX: 1 " 

c2' = M 2 I I I I Iln (PICldl(l-C,X)'d, 11 + (1- PI k 2d 2 (i--c2xjd,-I»J 
() 0 () 0 () ,=1 

(3.58) 

(3.59) 
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0000:.000 I n 

d,' = M 3 J J f J f[ n (p,CA (1- C,X;)(d, -I) + (1- PI )c2d2 (1- C2X)«i~-I))] 
U (I ') c, () i~, 

:..00 -:10 0:0:;, CJO I n 

d2' = M 4 f f f f flfI (p,cA(l-c,x, )(d: -I) + (I - p,)c2d2 (l-C2X,)(d'-'))j 
() 0 0 c, 0 i~' 

(3.6 t) 

and 

100000000 n 

PI' = M 5 J f f f J[fI (p,c,d, (1- C,Xjd,-,) + (1- p, )c2d 2(l- C2Xjd2
-'))] 

o () ", 0 0 j~' 

(3.62) 

Bayes estimates of Cl' c2 , d p d 2 and p, will obtain by numerical 

integration procedure. 

(c) Method of moments. 

As discussed earlier in Chapter 2, let m; ,m~, m~ m~ and m~ denotes 

the sample raw moments. Now we equate the sample moments to the population 

moments, which provide the following equations, 

(3.63) 

(3.64) 

(3.65) 
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(3.67) 

solving the equations (3.63), (3.64), (3.65), (3.66) and (3.67). 

(d) Maximum product of spacing. 

Tn this section, we obtain the estimate of parameters cl'c2 ,d l ,d2 and 

PI using the maximum product of spacing method introduced by Cheng and Amin 

(1983). The estimates by this method are obtained by maximizing the geometric mean 

of the spacing based on a sample (XI,X~, ... ,xJ. 

Differentiating G with respect to Cl' c2 , d l , d2 and PI and equating to zero we have, 

0.69) 

(3.70) 

! I __ P, [(1- C1Xi_1 )'" 10g(1- C'.:\"i_l) - (\- c,x),,' log(l- c,x)] :::: 0 
n d PI [(1- cl .\";_, )'" - (1- c,x)," J + (1- PI )W - C2X i_1 )d, - (1- c2x)'" J ' 

(3.71) 

! I (1- PI)[(l-C2Xi_/' )og(1-C,Xil )-(1-C2X)d, iog(l-czx)] ::::0, 

n ,=1 PllO- Cl Xi-! )'" - (1- c1xy, ] + (1- PI )l(1- C2 Xi_J 
)'" - (1- CzX)'" J 

(3.72) 

and 

(3.73) 

Solving the above equations by Newton-Raphson iterative procedure, 

we obtain the estimates of c"cc,dl,de and PI 
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3.7 Censored set up 

3.7.1 Estimation based on type I censored samples when the observations 

belonging to each subpopulation are known 

Consider the situation, when there are only two subpopulations with 

mixing proportions PI and (1- PI) and f" (x) and f2 (x) are respective beta densities 

with parameters (cl,d) and(c2 ,d1 ). Let li; denote the failure time of the ph unit 

belonging to the i'h subpopulation, tij ~ T , j = 1,2, .. " 'i; i = L 2 and let Y; = ciT , 

Now we 

discuss the estimation of parameters. 

(a) Maximum likelihood Estimation (M.L.E). 

The likelihood function based on a type I censored sample IS given by (see 

Mendenhall and Hader ( 1958) and Sinha (1986» 

(3.74) 

Maximization of log-likelihood function with respect to the model parameters yields 

the following likelihood equations, 

(3.75) 

(3.76) 

(3.77) 

(3.78) 
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and 

2_ r2 + (n-r)l(l-I'J)'" --(1-YJ
d
,] =0 

PI (I-PI) [PI(l-~)d'+(l-PI)(1-YJd'J . 
(3.79) 

The solution of the above five equations, using numerical iteration 

method, yields the maximum likelihood estimate (M.L.E) of YI , Y'2' dp d2 and PI and 

thus we obtain lhe maximum likelihood estimate of Cl' c2 ' d l , d2 and PI' 

(b) Bayes estimation. 

We assume that I'J, Y2 , d l , d2 and PI are independent. Using Jeffrey's 

invariant prior for y1 y2 ,dl and d2 and uniform prior over (0, I) for PI' then joint prior 

(3.80) 

From (3.74) and (3.80), the joint posterior distribution of YI.Y'2.dl' d2 and PI is given by 

nO" r 

D(YI'Y2,dl,d2,Pli,!) a I(;")PIn-f,-k(1-Plt+kYtr,-ly/,-ldl,,-ldt-1 
k=O 

(3.81) 

From equation (3.81), we obtain the marginal posterior distributions of 

r;, y2 ,dl ,d2 and PI as, 

'i 

/I-r Yi".l exp[-Ilog(l-Ylxl)J 

H(I'J I,!) = AII(~-r)B(n-12 -k +1,r2 +k+ I)~-'J~~~~------,},---'=-I ~------

<=0 [-I log(l- YIXI;)J - (n - r - k) log(1- Yl)P 
j=1 

r, 

y/,-I exp[-2:)og(l- Y2X 2)J 
(3.82) 

j-I 
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" 
n-, yt-' exp[ - I log(l- Y2X 2 i)] 

n2 (y
2

1:!) = A2 LG-')B(n-12 -k+l,r2 +k+l)--,,-----"-j-='-------

k=O [-L log(1- Y2X2j)] - k log(1- Y2 )P 
j=' 

" 
r, Yi r

,-, exp[-2)og(l- riX,j)J 

J " )=, dy, ' 

() [-L lug(l- riX,)J - (n - r-k) log(l- y, )]', 
(3.83) 

;=, 

Il-r 

f13 (d, I:!) = A~L G-' )B(n -'2 --k + L,::> + k + I)d,,,-I 
k=O 

(3.84) 

I/-r 

n4 (cl::> I:!) = A4L G-' )B(n -'2 - k + 1. r,_ + k + I)d/'-' 

(3.85) 

and 

n-r 

n,,(PI I:!) = A, I (tr)p,n-,,-k (1- pJ:H 
k=O 

" 
00 

ri" I exp[ - I log(l- YIXIj)] 

f " 
)=, 

() r-Llog(] - Y,X'j )]- (11- r -k) log(1- Y1»)" 
)=1 

(3.86) 
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where 

n-·' 

AI-I = LG-')B(n-r2 -k+l,r2 +k+l) 
k=() 

I 
" r ,. -I 1 

~ r;"-'CXP[-~IOg(I-r.X")Jl I~ y,"-'expl-Llog(l-r,x'i)] I' , 

, J ) , J i-' dy, ,d" . I r
l 

,. _ 1 ( 

i " [-I log(l- Y,x,,)J- (11- r - k)JogO- 1, )r' T, l-Llog(l- Y,X'jJ]- k log(l- Y,)J" J JI 
l rl J-I 

(3.87) 

n-r 

A] -I = L (;-' )B (n - ';, - k + 1, I~ + k + I) 

1\ I; 

~ y/,I exp[-~)og(l- Y2 x2)1 

I ~, 
" ,---'-----

y. /'j,,-I exp(-~)og(l- Y,x,)] 

J " j-I dYI dY1 ' 

o [-~)og(l- h'{Zj)J - k log(l- Y2 )]': o [-L)og(l- /'jx,)l- (n - r - k)\og(l- y, )1" 

IJ-r 

A] -I = Le' )B( n - r2 - k + 1, r2 + k + i) 
k=O 

"-'r 

A4-
1 = LG-')B(n-';,--k+I,r2+ k + 1) 

k~O 

and 

It-r 

~-I = L(~')B(n-r2-k+l,r2+k+l) 
k=O 

" 

'" 
yl'i-

1 exp[ - I log(l- YI_t,)] 

J " 
,H 

j-I 

(3.88) 

(3.89) 

(3.90) 

I, 

~ Y2,,--1 exp{-~)og(l- y
2
xc})J 

J j~1 d 
~ ~ 

Y, [-L log(l- Y7. X 2 i »)- k logO - Ye) r 
)=1 

(3.91) 
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with 

B( p, q) is the beta function of the first kind. 

Under squared error loss function, we obtain the Bayes estimators of 

r,'Y2,dp d2 and p,as, 

n-r 

'Yr' = A, LC- r
)B(n-'2 -k + 1"2 +k + 1) 

.=0 

r " I " - : 

j 
_ y," exp[-I log(l- Y,x,,)] I ~ y,"-' cxp[-L log(l- Y,x,,)] ), 
f .i=' f )., dy. dy, 

lO [-t, log(l- r,X'j )]-(n - r- kllog(l- r,J]" IT, [-t, log(J- y,x" )]-k Jog(l- y,)J" - , 

n-r 

Y2* =A2 L<;-r)B(n-'2 -k+l"2 +k+1) 

(3.92) 

~ rt exp[-Ilog(1-Y2x2)] lly, YI,,-Iexp[-Ilog(l-Ytxl)] 

J j=1 J j=1 d 
'2 1j IJ 

o l-~10g(1- Y2X2j)J- k log(1- Y2 )]" 0 [-~log(l- Y,x1j)J- (n -, - k) log(l- YI)Y 

fl-r 

d,' = AJLc;-')B(n -'2 -k + 1,r2 +k + 1) 
l.=() 

n-r 

d2* = A4~)~-r)B(11-r2 -k +1,r2 +k+1) 
k=O 

and 

(3.93) 

(3.94) 

(3.95) 
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n-' 

PI' =: ~IG-')B(n -'2 -k + 2"2 +k + 1) 
k=O 

j ~ Yt,,-I exp[-Ilog(l- Ylxl)l r= y/,-I expl-IJog(1- Y2 X2)] 

f " }~I f r, ]=1 dY2 dYI • 

lo [-~log(l- YjXI,)] - (n - r -k)log(l- Yt)Y' lrl r-~ log(l- Y~X2)J- k log(l- Y2 )J" 

(3.96) 

Bayes estimators of Y
1

, Y2 , d
" 

d2 and PI and hence that of 

Cl' c2 ' d l , d2 and PI will obtained by numerical integration procedure. 

Remark 3.2 

One can use different types of priors for the analysis. However. when we 

use conjugate priors for c
J
,c2 ,dJ ,d2 and PI ' the estimation procedure will become 

complex. 

3.7.2 Estimation based on type I censored samples when the observations 

belonging to each subpopulation are unknown 

(a) Maximum likelihood Estimation (M.L.E) 

In this Section, we develop maximum likelihood estimators of 

parameters under type I censoring. The likelihood function based on a sample 

(xl' x2 , ... , xJ from the model (3.1) is given by 

11 

L(cp c
2

• dl' d2 • PI t~) =: n {Plc1dl (1- CIXJrJ,-lf + (1- PJ )c
2
d

2 
(1- C

2
X i )(d

2-1)}J; 
id 

where 0; = I if Xi sTand 0; = 0 if X, > T . 

(3.97) 

Maximization of log-likelihood function with respect to the model parameters yields 

the following likelihood equations. 
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+ (l-b)[PI(I-clT)"'log(1-cIT) 1=0 

[PIO-cITy/, +(1- PI)(1-c2T)"'J ' 

~) {c>: {(1- PI )c:! (1- C~.tJ-I [(1- c2x)'" + d/l- C2X)'I, log(l ~ cytJ ]} 
i=1 [PIcA (1-cIX}dl

-1) + (1- PI )C2d2(l-c2X)(d,-lll 

and 

+ (1- 0)[(1- cIT)'" - (1- c2T)"~] ] = o. 
r PI (1- cIT)'/, + (1- PI )(1- c~Tr" 1 

(3.98) 

(3.99) 

(3.100) 

(3.101) 

(3.102) 

The solution of the above equations usmg numerical iteration 

scheme, yields the maximum likelihood estimate (M.L.E) of Cl' c2 • d l , d:! and PI . 
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(b) 8ayes estimation. 

From (3.23) and (3.97), we obtain the joint posterior distribution of 

11 n (Cl' c2 • dp d2 , PI I:!) a [n (Plcldl (1- CIXUY"I-IJ + (1- PI )c2d2 (1- c2XUY"c- II
]e>: 

i=1 

Then, we obtain the marginal posterior distributions as, 

C; c.::a:..c I IJ 

TI 2 (C2 I:!):::: E2 J J J m lp1cldl (1- C1.:I:j"I-I) + (1- PI )c2d2 (1- C2X)ldo.-I) J~ 
(I 0 0 Il ,=1 

00 OX! c.o;:, 1 n 

ll:, (d , I:!):::: E3 J J J m [P1c,d, (1- CI XJ
1d

l-
1I + (1- PI )c2d2 (1- C2Xj")-I)]~ 

Il 0 (0
1 

(I i=1 

and 

TI<;(pl I:!):::: B,} }}}tI lPIC1dl (l-c1otj",-11 +(1- PI )c2d2(1-cco,jd,-11 Jil; 
o c, 0 Il ,=1 

(3.103) 

(3.104) 

(3.lO5) 

(3.106) 

(3.107) 

(3.108) 
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where 

(3.109) 

(3.110) 

oOC>OOOOO I n 

B -1 - IIIIIlTIl . d (1- )(d,
-!) + (1- ) d (1-' )(d~-I'JJ. 3 - PICI I Cl X; PI Cl 2 [2'\ 

o 0 () c, 0 ;~I 

(3.111) 

(3.112) 

and 

IU<JCKlWcr 1I 

B~-! = I I I I IPllTI[p;c)d,o _c1xjd,-ll +(1- Pl k 2d20-C2X)(d,-I'],S: 

() () c, n 0 ;=1 

(3.113) 

Then Bayes estimates of the parameters, under squared error loss 

function, are given as, 

(3.114) 
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(3.120) 

(3.121) 

(3.122) 

(3.123) 

and 

(3.124) 

Solving the above equations we obtain the M.L.E s of Cl' C2 ' d l , d1 and PI ' 
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(0) Bayes estimation. 

From (3.23) and 0.119), we obtain the joint posterior distribution of 

r n (cl' c2 .dp d 2 • p! I:!:) a [TI (p!c,d! (1- clXUY"J-1
) + 0- PI )c2d 2 (1- C2X 1i )ld,-I,] 

i=1 

From (3.] 25), we obtain the marginal posterior distributions. 

CoO ou w l ,. 

D I (Cl I!) = HI I I I I[TI (PicA (l-cIXfjjdl·l) + (1- PI )c2d2(l- C2X(ijd,-I) J 
CJ 0 0 0 1=1 

".:: (.>{) 00 I '" 

D 2(c2 1:!)= H2 I I I I[TI (PlcAO-c1xU)ldl-ll +(1- PI)c2d 2 (1-C2 XU)ld, I)] 

() () () () i=1 

(1<,)00001 r 

D, (d l I!) = H3 I I I IlTI (PIcA (1- C!Xu) yell-I) + (1- 1') )c2d 2 (1- C2XII ,)ld,-11 J 
01', 1I II i=1 

OI..ItxJoc.) r 

D~(d2 I:!:) = H~ I I I I[TI (PlcA(l-CIXUJdl-11 + (1- PI)c2d2(1-C2XU,t,,-I'] 
() Cl (J (J i~1 

and 

(3.125) 

(3.126) 

(3.127) 

(3.128) 

(3.129) 
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(3.130) 

where 

0:.)000000 1 r 

H 1-
1 = I I I I I[n (P1c)d] (1- C]X(,)id,-I' + (1- PI )c2d2(1- C2X ii ) )(d,-I) J 

() c, 0 0 0 i=1 

0.131) 

::.uC:?OOOO] r 

H -I - IIII r[n( d (\ . )UI,-I) (1 ). d (1 ,. )(,I,-IIJ 
2 - J PlC] I - (IXIi) + - PI (2 2 - (2 XU) 

() () () 0 0 i=1 

(3.132) 

(3.133) 

(3.134) 

and 

J IXlOOUOOO ,. 

H ~-I = I I I I J Pll n (Plc,d l (1- CIXU)ld,-11 -I- (1- PI )c2d 2 (1- C2.t,il )",,-'1 J 
o () ,-, () () ,=1 

(3.135) 

Then Bayes estimates of the parameters. under squared error loss 

function, are given as, 
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OOC>OOCtOO J r 

cp' = Hr I J J I I[n (Ppcrdr (1- crxujd,-I) + (1- Pr )c2d 2 (1- c2 X
U

) )Id,--I) J 
o Cl 0 0 0 i~r 

00 ('2 00 00 1 r 

Cl· = H2 I I I I Iln (PrCrdr(1-crXII)t'I-I) +(1- Pr)c2d2(1-C2X(i)Y'I;-II] 

o 0 0 0 0 i~r 

000000001 r 

dc' = Ht f f I f I[Il (PlcAO-clx(i)Y d
l-1) +(1- PI)cZd2(l-cZXIi )'d,-II] 

o 0 Cl 0 0 i~1 

and 

(J 0 c, 0 0 

Remark 3.3 

(3.136) 

(3.137) 

(3.138) 

(3.139) 

(3.140) 

When r=l1, the results obtained under type II censoring becomes complete sample case. 

3.8 Simulation study. 

We have described four methods for estimation of parameters of the 

model (3. i). Now. we illustrate these procedures using simulated data. We generate 

observations from two beta densities with vnrious combinations of parnmeters Cl 'C2 ,dp,d} 

and PI' The smnples from the finite mixture of beta distributions are generated using 

Bernoulli probability PI (0 < PI < \). Then. the estimates of parameters for complete as 

well as censored cases are computed. The estimates for one set of parameters are given in 
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Tables 3.1 to 3.4. The variances of the estimates are presented in brackets. For Bayes 

estimates, the posterior risks are given in brackets. We compared the estimates using risk 

improvement factor as mentioned in Chapter 2. We use the software 'Mathematica' for 

numerical calculations. The bias and variances (posterior risks) of the estimates decreases 

as sample size increases. Table 3.5 gives the risk improvement of the estimator by 

Bayesian over the different estimators in the complete sample case. 
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Table 3.1 Estimates of parameters under complete sample for 
cJ =.I,c, =.6,d l =2,d2 =3and P

J 
=0.5 

-

Maximum 
Estimate M.L.E. Bayes Method of product of 

moments ~acin...s. 

CJ =.098544 · 
I 

CJ =.102 Cl =.150339 cJ=.1012 

(.0079187) (.OO02i4) (.00017) (2.34E-05) 

C2 =·6068R6 
. 

c2 =.600364 Cz =.6190161 c2 =.602212 

(.0012954) (.00214) (.465196) (I.7E-05) 

n=30 dl = 1.93653 dl ' =1.96168 d
J 
=2.34851 dJ =1.829962 

1 

(.0053) (.005195) (.075758) (.008508) 

d2 =2.9R7 d:!' =3.01 d2 =3.0911 d,=3.1201 

(.00059) (.00054) I (.03348) (4.98E-05) 

I PI =.500693 
. 

I 
PJ =.500816 PI =.5071 PI =.5028 

~- (.000409) (.00022) (,005623) (.000762) 

Cl =.OR9 Cl" =.09949 (-1=·1764 cJ=.091 

(.000153) (.000237) ( .O()O5368) ( 1. 887 E-05) 

I 
(;2",,·600474 C2' =.6033154 

1 

(-2=·554747 (\=.60214 

(lWSE-05) (.00125) (.04244) O.SE-06) 

n=50 d l =2.01248 dl ' =2.039314 d l =1.83284 d l =1.918252 

(,000237) (.00508) (.04841) (.00252) 

d, =3.0042 dl ' =3.00l d2 =2.60939 dz =3.020S72 

(.OOU) (.0023) (.00184) (S.72E-06) 

PI =.49894 PJ' =.499592 PI "".50089 PI =.50181 

I (5. 17E-06) (S.65E-05) (.000171) (.00051S) 

tl =.1034 · 
I 

Cl =.102 CJ=.1142 (\=.09IS 

(.0009316) (,0002136) (,00027) ( 1.38E-05) 

C, =.60075R · 
I 

(\ =.601 C2 =.5807978 (2=·60022 

(.000197) (.00002) (.06039) (I.4E-06) 

d
J 
",,1.989 dl' =2.0009 

-

n=100 I 
d

l 
::01.9011 dJ ::01.967 

I (.0023) I (.00041 ) (.03013) (.001636) 

cl, =3.1)032 d, . =3'()0362 -
- -

I 
dl =2.89221 dz =3.022694 

(.000098) (2.7E-05) (.03396) (2.6E-06) 

.~ 
PI =.49961 PI' =.50224 I PI =,49979 PI =.50032 

I 

(,00011 ) (.00016) I (.0{)()23!) (.OOO227) 
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Table 3.2 Estimates of parameters under type I censoring for 
Cl =']'('2 =.6,dl =2,d2 =3and PI =0.5 in which observations belonging to each 

subpopulation are known. 
Censoring 

Estimate n=30 I n=50 n=lOO 
time i 

I 
Cl =.10377 

i 
C. =.10289 Cl =.1025556 

I 

(.000101) (.0002714) (1.254E-05) ,--,-

C 2 =.5765176 c,:::.5815027 c,=.60581409 

(.002683) (.00069) (.00001859) 

I M.L.E d l =2.089226 d, =2.083 I 78 dl =1.988662 

(.085652) ~.O 11878) (.00814) 
~ 

ti2 =2.954112 d2 =3.030418 d2 =3.00084 

(.005939) (.002761) (8.28E-05) 

PI =,511808 P, :::.49159 PI =.501296 

T=]5 
(.000628) (.000182) ( I. 13E-(5) . • c,* =.1036792 Cl =.103922 Cl =.103746 

(.000121) (.0001) (.0000134) 
, . I • 

C, =.5S208 c2 =.59 J 24005 
I 

c2 =.595432 I 
(.000445) (.0002638) (.0000938) 

Bayes estimate d,' =1.973064 dl' =2.026086 d,' :::2.009246 

(.051677) (.00608) (.005297) 

d; :::3.104115 d: =3.019295 

I 
d: =3.003463 

(.051996) (.048365) (.004104) 

PI' =.519985 PI' =.507185 I • 

I p, =.50 19385 

(.000618) (.000546) (.000442) 

C,=.11822 C,=.II06404 Cl =.107364 

(.0032826) (.0001595) (1,89E-05) 

(\ =.5840347 C2 =.5890734 C2 =·595951 

(.002485) (.000215) (7.63E-05) 

M.L.E 
I til = 1.908292 dl =1.947618 d

l 
~1.981732 

(.032296) (.02298) (.000372) 

d, =2.838636 d, =3.05251 d 2 =2.971 

I 
(.026488) (.005917) (.004022) 

I 
PI =520284 PI =.518547 PI =.50048 

(,(Xl0415) (.000477) (.000032) 
T;:::19 

I ('1'=·106812 
. 

CI* =.10464 Cl =.10529 

(.0001538) (.000128) (,0001232) 

C2' =.5829069 c: =.5919147 • 
C, =.595122 

(.(X)()648 ) (.000818) (.<lO0485) 

Bayes estimate 
dl' =1.970258 dl ' = 1.989864 d

l
' =2J) 104686 

(.003023) (.()()1 {) J3) (.00042186) 

I d: =3.1078 d2* =3J)6085 d2' =3.01443 

(.05431 ) (.037744) (.0042331) . 
PI* =.499283 P,' =.499421 PI =.500481 

(.00028) ( 1.97E-(5) (3.97E-06) 
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Table 3.3 Estimates of parameters under type I censoring for 
Cl = .1. C2 = .6, d l = 2, d 2 = 3 and PI = 0.5 in which observations belonging to each 

subpopulation are unknown. 
Censoring 

Estimate n=30 n=50 n=IOO 
time 

Cl =.120847 Cl =.11535 . Cl =.105021 

(8.84167E-6) (2.093E-7) ( 1.61564£-7) 

C2 =·623705 C2 =·58986 (;2 =.5899636 

(3.71 57E-7) (4.524E .. 8) (S.37E-9) 

M.L.E 
dl =!.6995 I d l =2.05192 d l =2.04821 

(.0389693) I (.0216674) (.0158107) 

~.7917 d2 =3.07168 
I 

d, =3.03136 

~.3~7985) (.25694) (.14817) 

PI =.4956 PI =.5009347 PI-·50592 
I (5.55E-5) (1.0356E-6) (1.01E-7) 

T=15 . 
Cl' =.10593 Cl' =.09989 Cl =.098265 

(.OO(X)2027) (5.485E-5) (4.387E-6) 

C2' =.660765 
, . 

c2 =.610666 c2 =.606123 

(3.103E-4) (1.5481 E-5) (3.7448E-8) 

Bayes estimate d l ' =1.944494 d l ' = 1.98061 d l ' =1.998 

(.462066) (.240225) (.10416) 

d 2* =2.88663 d 2' =3.011622 d,' =3.05533 

(.244156) (.1255) (.11254) 

PI' =.502641 PI" =.505561 PI' =.50569 

(8.34E-5) (2.087E-6) (4.50117E-7) 

Cl ='<)958657 C, =.0990615 (;1 =.1094232 

O.877E-6) (8.7407E-7) (9.8030E-8) 

(;2=·65287 C 2 =.5979633 C2 =.60624 

(7.37E-6) (l.574E-7) (2.8456E-9) 

M.L.E 
d, =1.8689 d, :=02.11241 d, ::02.02673 

(.297627) (.008808) ('()00259) I 

d2 =2.9735 d 2 =2.89674 d:. =2.90433 

(.911787) (.232003) (.0013144) 

PI =.502694 1\ =.501733 PI =.500493 

T=19 
( 1.38E-6) (3.19135E-7) (4.98E-IO) 

Cl' =.123137 Cl" =.1209 Cl' =. I 10868 

(.00003422) ( 1.53073E-6) (2.67083E-7) 

C2' =.6170304 C
2
' =.6103 * c2 =.60163 

(.00001157) O.225E-6) (5.76747E-8) 

Baycs estimate 
d l' :=02.1024 I d,' ::02.05645 dl' ::01.96753 

(.374128) (.0127) (.(}()564882) 

d
2
" :=02.82344 d}' =2.93161 

I 
d 2' ::02.989 

(.168282) (.0346'18) (.001055) 

PI' =.501724 
. 

I PI' =.501262 PI =.503564 

(1.01612E-6) (25009E-7) t (6.57077E-8) 
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Table 3.4 Estimates of parameters under type 11 censoring for 
Cl = .1,c2 =.6,d l = 2,d2 = 3 and PI = 0.5 

n=30 n:::50 n=lOO 

Estimate 

r=10 r=30 r=30 r=50 r=60 r=100 

Cl =.09764 Cl =.098544 CI =·108 Cl =.089 C. =.09865 CI =·1034 

(.008179) (,0079187) (.002353) (.000 153) (.003364) (.0009316) 

I 
C2 =.60734 C2 =.60688 C2 =.600654 C2 =.600474 C2 =·59328 C2 =.60075 

M.L.E I (.013239) (.0012954) (.000243) (8.05E-05) (,019827) (.000 197) 
~ 

dl =1.91236 d l =1.93653 dl =2.9167 d l =2.01248 d l =2.03508 dl =1.989 

(.014286) (.0053) (.028538 ) (.000237) ('009212) (.0023) 
~ 

d2 =2.94572 d2 =2.987 

I 
d 2 =3.08145 d2 =3.0042 d2 =2.98562 d2 =3.0032 

(.004187) (,00059) (.009609) (.0013) (.000534) (.000098) 

PI =.5092 

I 
PI =.500693 PI =.4991 JJ I =.49894 PI =.48852 PI =.49961 

(.000757) (,(lO0409) (.OOft293) (5. 1 7E-06) (.000323 ) (.00011) 

CI* =.098246 I * * . . . 
Cl =.102 Cl =.1066 Cl =.9949 Cl ;.097432 Cl =.102 

(,0006511 ) (.000214) (.00247) (.OO02.m ('001504) (.0002136) . • , . . . 
('0 =.59829 C2 =.60036 C2 =.606782 C, =.603315 C2 =.59925 c2 =.601 

(.()05643) (.00214) (.009528) (,00125) ('000249) (.00002) 

Baye, dl ' = 1.93876 dl ' =1.96168 dl' =2Jl4128 dl' =2.039314 dl' =2.0601 dl ' =2.0009 

estimate (.006492) (.005195) (,049616) (.00508) ('0006274) (.0004 i) 

d2* =2.9607 £12' =3.01 d,' =3.05456 d
2
* =3.001 d 2' =3.02 £12' =3.00362 

(.002012) (.00054) (.014672) (.0023) (1.7E-04 ) (2.7E-05) 
, , • . . • 

PI =.50324 PI =.50081 PI =.49978 PI =.491J592 PI =.49965 PI =.50224 

(000372) (.00022) (.000103) (8.65E-05) (.000451 ) (.00016) 



I 

102 

Table 3.5 Risk improvement of the estimator by Bayesian over the different 
estimators for the set of parameters Cl = .1, c2 = .6, d, = 2, d2 = 3 and Pt = 0.5 in the 

complete sample set up. 

Maximum 

I I Estimate M.L.E. (%) Method of product of 
moments (%) spacing (%) 

91 98 96 

87 95 99 
f-

n=30 90 97 95 

91 94 94 

92 95 93 
--

90 97 94 

91 96 95 

n=50 92 95 96 

89 98 93 

87 96 92 

91 99 95 

89 98 94 
n=100 

86 97 97 

87 94 95 

89 97 93 I 

3.9 Data analysis 

For the illustration of the role of finite mixture of beta distributions in 

practical situations, we consider a data on survival times of cancer patients with 

advanced cancer of the bronchus or colon were treated with ascorbate (see Cameron 

and Pauling, 1978). The data is given in Table 3.6. We estimate the parameters using 

the method of M.L.E and Bayes technique. Table 3.7 provides the values of the 

estimates by M.L.E and 8ayes. We then used the Kolmogorov-Smimov statistic to 

test the goodness of fit. The values of the test statistic D" are given in Table 3.8. The 

tablc value at 5 % significance level is 0.224. From the analysis, it concludes that the 

model (3.1) is a plausible model for the data with parameters given in Table 3.7. 

Table 3.9 gives the maximum likelihood estimate of the survival function at various 

time points. 
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Table 3.6 Survival times of cancer patients 

Bronchus Colon 

81 248 

461 377 

20 189 

450 1843 

246 180 

166 537 

63 519 

64 455 

155 406 

859 365 

151 942 

166 776 

37 372 

223 163 

138 101 

72 20 

245 283 
Table 3.7 Estimates of parameters of survival times of cancer patients. 

M.L.E Bayes method 

Cl =0.0001758 
,~ 

=0.000231 c I 

(1 =0.00164 . , 
Co =0.00172 

dl =25.8821 d l ' =28.93 
I 

d, = 12.2915 d2' = 14.537 

PI =0.5 
, 

=0.5 PI 
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Table 3.8 Kolmogorov-Smirnov test statistic 

Max Dn (M.L.E) 

0.063211 

! 
I 

I 
Max Dn (8ayes) 

0.1067 

Table 3.9 Maximum likelihood estimate of survival probability at various time 

points 
--

'WOO 
I 

x 20 100 500 

S(x) .847882 .457781 .05028 .00402 

3.10 Conclusion 

The role of finite mixture of beta distributions in reliability analysis 

was extensively studied. We derived some important reliability characteristics of the 

model. Obviously. the component density of finite mixture of two beta distributions 

possesses increasing failure rate pattern at all time points. However. the finite mixture 

of beta distributions can possess decreasing failure rate behaviour, which will be 

useful in many practical situations. We then proved that finite mixture of two beta 

distributions is identifiable. The estimation of the parameters by different techniques 

for the complete as well as censored samples was discussed. Simulation studies were 

carried out to assess the performance of the estimators. Both M.L.E and Bayes 

estimates provide estimates with small hias and the variance of the estimates 

decreases as n increases. The result devcloped under type 11 censoring can be 

specialized to the complete sample situation by taking r = 11. We illustrated the use of 

finite mixture of heta distributions based on a real data on survival times of cancer 

patients. The part of the work in this chapter has appearcd in Sankaran and Maya 

(2004). 



Chapter 4 

BA YESIAN PREDICTIVE DISTRIBUTION 

4.1 Introduction 

Statistical prediction is the problem of inferring the values of 

unknown future variables or functions of such variables from current available 

informative observations. Whitmore (1986), Nelson (1982) and Dudewicz (1976) 

have illustrated the application of prediction limits in government industry and quality 

assurance. For example, the government may wish to predict the total revenue income 

for the next fiscal year from a historical record of revenue accumulation to formulate 

the taxation poliey or allocation of resources for various projects. A wide range of 

potential applications of statistical prediction includes density function estimation, 

calibration, classification, regulation, model comparison and model criticism. For 

more applications and references, see, Bernardo and Smith (1994), 10hnson et.al. 

(1995). 

As in estimation, a predictor can be either a point or an interval 

predictor. Parametric and nonparametric prediction has been considered in literature. 

Frequentist and Bayesian approaches have been used to obtain predictors and study 

their properties. Reviews on parametric point and interval predictors may be found in 

Patel (1989), Kaminsky and Nelson (1998) and AI-Hussaini (2001).The problem of 

prediction can be solved fully within the Bayes framework (Geisser, 1993). Several 

researchers have srudied Bayesian prediction based on homogeneous populations. 

Among others are Dunsmore (1983), Lingappaiah (1989), How!ader and Hossain 

(1995). 

Recently, many authors have investigated [he Bayesian prediction 

based on heterogeneous populations. Al-Hussaini (1999) obtained Bayesian 
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prediction for a mixture of two exponential distributions based on type I censored 

sample. Bayesian prediction bounds based on type 1 censoring for a finite mixture of 

Lomax components were obtained by AI-Hussaini etal. (2001). AI-Hussaini (2001) 

provided Bayesian predictive density of finite mixture models based on order 

statistics. Recently, Jaheen (2003) ohtained Bayesian prediction for a mixture of two­

component Gompertz lifetime modeL 

in this chapter, we develop Bayesian predictive distribution for the 

future observations based on type I censored samples from a finite mixture of Pareto 

II as well as beta distributiuns. The rest of the chapter is organized as follows. We 

give the definition of the Bayesian predictive distribution in Section 4.2. Section 4.3 

discusses the reliability function of the Bayesian predictive distribution. The Baycsian 

two sample predictive distribution when the underlying distribution is finite mixture 

of Pareto 1I is given in Section 4.4. Section 4.5 illustrates the procedure using the real 

data given in Chapter 2. In Section 4.6, we discuss the Bayesian predictive 

distribution when the underlying distribution is finite mixture of beta. In Section 4.7, 

we give the conclusion of the chapter. 

4.2 Definition 

Suppose It units have been subjected to a life testing experiment. Let 

the failure times i =(tl't~, ... ,tn) be a random sample from the distribution with 

probability density function f(t I e). Suppose m units of the same kind are to be put 

into future use and let the future failure times Y=(Yl'Y2""'.v
lII

) be the second 

independent sample from the same distribution. In life testing and quality control 

problems, it is often important to make prediction about some function of 

y=(yl'y2 .... 'y"') on the basis of the available data {=(11'12 , ••• ,/,,). Then, the 

Bayesian predictive distribution of a future observation Y is defined as the posterior 

expectation of fev I e), and is given by 

hey I i)::: C J fey I e)Il(e I {)de, (4.1 ) 
El 

where C is the normalizing constant and nee I i) is the posterior distribution of B 

with (» is the range space of e . 
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Then lOOrlk prediction interval (L,U) of a future observation Y is defined by 

1"=P[L<Y<U] 

u 

= fll(Y IJJdy . 
L 

One can usually take 

~f 1+1" 
h(y IJJdy = ~~ 

i. '" 

and 

~f 1-1" 
hey IJJdy = -2- . 

u 

(4.2) 

Let {t(l),t(~), ... ,/(n)} be the ordered failure times of n components of 

a system and let {Yf))'Y(2), ... ,Y(m)} be the ordered failure times of a future sample of 

m similar components. Given {t(l), t(2)' .... I rll )}, we are interested in the predictive 

distribution and the prediction interval of the k'" failure lime t;k)' Let 

predictive distribution of r;.) as 

hy" , (y I L') = C ff);, , (y I B)n(B I L*)dB. (4.3) 
El 

Then, the 100 rCk prediction limits (L. U) of t;'l are solutions of 

~f . 1+1" 
h. (vi t )dr:=-
1",. - - ') 

L -

and 

~f . 1-1" 
h.. (r I t )dy = - _ 
-Yr~l· _. 2 

[' 

(4.4) 
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4.3 Predictive distribution and reliability estimation 

Let X be a random variable representing the life of an item or a 

component with probability density function I(x 18). The reliability function at any 

time t is defined by 

Set) = P(X ~ t) 

~ 

= J/(xI8)dx. 

Under squared-error loss function Bayes estimate of S(t) is given by 

From (4.1), we get 

~ 

5" (t) = Jh(), I ,!)dy , (4.5) 

which is the reliability function of the predictive distribution. 

Thus, under squared-error loss function, Bayes estimator of the reliability function of 

a distribution is the reliability function of the predictive distribution. 

4.4 Bayesian two sample prediction for finite mixture of Pareto II distributions 

In this section. Bayesian prediction bounds for the k -th future 

observation from a heterogeneous population represented by a finite mixture of two 

component ParelO 11 life time distribution under type I censoring are obtained. 
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Suppose that n units from a population with probability density 

function (2.2) are subjected to a life testing experiment and the test is tenninated aftrr 

a predetermined time T. It is assumed that an item can be attributed to the appropriate 

subpopularion after it had failed. Suppose that r units have failed during the 

interval (0. T) with i: from the first and r2 from the second subpopulation, such that 

r = tj + r2 • The remaining n - r units cannot be identitied, which are still functioning. 

Naturally, neither 'i nor r2 (and consequently r) is fixed, but they are rather 

determined by knowingT . Let to denote the failure time of the j'h unit that belongs 

to the i'h subpopulation and that tjj :::; T, j = \,2, ... , r; and i = 1, 2. Such scheme of 

sampling was suggested by Mendenhall and Hader (1958). 

4.4.1 The scale parameters QI and (12 are known. 

In this section, we compute Bayesian predictive density function of 

finite mixture of Pareto 11 components based on order statistics when the prior 

distribution is Jcffrey's invariant prior when (11 and Q 2 are known. AI-Hussaini et.a\. 

(2001) obtained the Bayesian predictive density of finite mixture of Lomax 

components based on order statistics using natural conjugate prior when QI and a2 are 

known. 

Rewriting (2.70), the likelihood function is given by 

H-f 

L(bp b'2' PI I () oc I (';,')pl,,-r,-;, (\ - Plt+I hl~h,/' 
;t =0 

b I · h '111 b I' < T . I 2 . I 2 d e ongmg to t e I su popu atlOn , tu - .) = J, .... , r;, I =, an I; + ''-2 = r . 

Rearranging (4.6), we have 

I/-T 

L(b
l
, b

2
, PI I.() ex: I <';,") p/,-r, -), (1- PI r +;, hl'i he" 

i, ~O 

expl-b, 1 t log(l + ",t,,) + (a - r- j,) log(l + d,T)}- b, {t log(l + o,t,,) + j, log(l + 0,T)}. 
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which can be written as 

n-, 

L(bl'b2 , PI I {) QC L C,-')Pl n
-,,- i, (1- PI )',+it bl"b/' exp[ -A: j , bJ - A;u,b2 J. (4.7) 

J, =0 

with 

'i 

Aj , = L log(l + aJ,) + [(n - r)(2 - i) - (-1)(i-J) jl JIog(1 + a,T), i = 1, 2. 
j=1 

Now, suppose that PI' bl and b2 are independent such that PI follows U (0, I) and for 

i == 1,2, bi follows Jeffrey's invariant prior. Then the joint prior density is given by 

1 
~ (bl ' b, , PI ) ex: - , 0 < PI < 1, b > O. , - b

l
b

2 
I 

(4.8) 

From (4.7) and (4.8), the joint posterior density function of PI' bl and b2 is given by 

Jj-r n (bl'b2 , PI I {) ex: ~)~,-') p/' (1- PI )0, bl ,,-lb2 ,,-1 exp[ -Ali,b) - ~j,b2 J. (4.9) 
j,=O 

where 

and 

A future sample of size m is assumed to be independent of the past 

(informative) sample of size n and is obtained from the same population with 

probability density function (2.2). Let >-:k) be the ordered lifetime of the k -th 

components to fail in a future sample of size In, 1 ~ k ~ m. The k -th order statistic in 

a sample of size m represents the iife length of an (m - k + 1) out of m system which 

is an important technical structure in reliability theory. The density function of >-:,,) is 

then given by 

k-I 

= L(-l)j'(~:')[S(Y)r-k+;' fey)' (4.10) 
;, =0 

where se)') and fey) are the reliability function and probability density function of 

the finite mixture model (2.2). For the model (2.2), (4.10) becomes, 
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where 

k-I m-k+ j, 

I = L I", Cl = (_I)h (~:I )C:-k
+

h ) and JJ = 111 - k + j2 - j3 + 1. 
h=O /,=0 

The product of (4.9) and (4.11), then yields 

fYrl I (y I bl ,b2 ' PI )TI (bl ,b2 • PI I .!.') ex: 

ICIPlo,·I O- PI);' cxp[-hl(J1-1)log(]+aly)-b~j31og(l+a2Y»] 

n-r 
,,(n-r) "~(l )O'b"-'b'~-' [Ab A bl ~}, PI - PI I 1 exp - I J, I - 2}, 2 J 
},=ll 

( .) S, +0,-1 (1 ).5,+ },+I b r,-Ih r, [ h n b]} (4 12) +£2.l PI -PI I 1 exp -'I" 1-'1222' . 

where 

l1-r 

I'=II, £i(J')=(Oi(l+a,yr ' ). i=1,2. 
i , =0 

and 
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Substituting (4.12) in (4.3), we have 

\1' (y I ();:: C J J ffr,,, (Y i b"b2 , PI )I1(b"b2 , PI I ()dPl dbldb2' 

I) 0 0 

On simplifying (4.13), we gtt the predictive distribution as 

~~I 

11y" , (y I i. *) ;:: Cl: • (:,-r )CI f f JI EJy) plo,+s, (1- PI )0,+ j, bl" h/,-I exp [-7]Ih, -l]2h2] 
00 0 

~ 

where C is the nonnalizing constant satisfying f/~;" (y I ()dy;:: 1, 
tl 

and 

Remark 4.1 

(4.13) 

(4.14) 

AI-Hussaini eLat. (2001) obtained the Bayesian predictive density of 

finite mixture of Lomax components hased on order statistics using natural conjugate 

prior when a l and a~ are known. They have consideret.l the joint prior density as 
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(b b ) "-1(1 )"-lbA-lb {J,-I r b b J g I' 2' PI ex PI - PI 1 2 exp -YI 1- Y2 2 ' o < PI < 1, bi > 0 . (4.15) 

From (4.7) and (4.15), the joint posterior density function of PI' bt and b2 is given by 

rr-r n (bpbz' PI I () ex I (~,-r) P/" (1- Pt )0, blW.-lbt,-1 exp[ -Vllbl - '112b2 ]. (4.16) 
j, ~O 

where 

~ = n - r2 - jl + b -I , J~ = r2 + j) + d - J and for i = 1, 2, ~ = 1; + p., VIi = Ai), + Y; . 

From (4.11) and (4.16), we have, 

where 

l,:-I m-k+h 

L = I I ' DI = (-1)1, (~;I )C;-k+.h) and 8., = m - k + j~ - /1 + 1. 
h~[) j,~[) 

After simplification, the above product becomes, 

~T("-r)D{ ( . <5;+.5'(1 )iJ~-+j,bW.b(/J.,··1 [ b I] 
ex ~), I El y) PI . - PI - ) ~ - exp -171 I -'7~ )2 

+ co (,) '),+s,-I(I_ )S,+j)+lh('1--ll~ {o,. [-'7 b -'7 b ]} 
c~ ) PI PI 1.12 exp II I 22 2 • (4.17) 

where 

fI-r 

I' = II, for i=1.2, Ei (y)=(ai (1+a i yr l
), 

I, =() 

and 
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TJ22 = '1/2 + U:" + 1) log(l + a 2 .\-")· 

Then, the predictive density is obtained as 

~=I 

hy", (y 11-*) = CI · (';,.' )D1 J J J{ El (y) pl(j,+6, (1- PI )',,+ j, hi r<.\ b~ m,-I exp [-17lbl - 172b2] 

() 0 () 

-l- () 6,+.5,-1(1 )",+j'+!bW,-lb (<J. [ b b l}d dbdb . E~ Y PI . - PI -. I 2 - exp -TJII I - 1722 2 J PI I 2 

= c I . DI' [ (/JI ( y) + f/J2 ( y) ) , 

= 

where C is the normalizing constant satisfying Jl't;, , (Y 1 ()dy = 1, 
() 

and 

(4.18) 

In this section. we compute Bayesian predictive density function of 

finite mixture of Pareto 11 distributions based on order statistics when prior 

distribution is Jeffrey's invariant as wel1 as natural conjugate prior when QI' Q 2,bl ,b2 

and PI are unknown. 

From (2.70), the likelihood function is given by, 
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/1-'-

L(al'a 2 ,bl'h!." PI I () ex: I (~;")PI"-,,-j, (1- p]t+
j
, lll"a/'b/'b/' 

J, =0 

which leads to 

Il-f 

"("-') n-,,-.l, (1 )"+i,,, "b "h " [A b Ab] [B B] ~ J, PI - PI (/1 a2 ] 2 exp - Ij, I - 2j, 2 exp - I - 2 ' 

j,=O 

where, for i= \.2, Aij, is given in (4.7) and Bi = Ilog(l+aJu)]' 
j=1 

(4.19) 

(4.20) 

Now, assume that PI' a l" (/2' bl and h2 are independent such that PI follows U (0,1) 

and for i = 1,2, ai and hi follows jeffrey's invariant prior. Then, the joint prior 

density is given by 

(4.21) 

The posterior density function of PI' ill ,il2 , bl and b2 is given by 

11-' 
"("-') (', (1 )'" ,,-I ,,-Ib ,,-11 ',-I [A b Ab] [B B] L,.j, PI ,-PI- a l a2 1)2 exp-lj,l- 2J,2 exp- 1- 2' (4.22) 
j,=O 

The density function of k -th order statistic ~kl is given in (4.11). 

The product of (4.11) and (4.22) then yields 
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11-' 

,,(n-,) t'j, (1 )i>~ ',-I. ,,-Jb r,-Ib r,-l [A b A h ] [B B J L j, PI - PI u I III - 1 2 exp - lj, I - 2), 2 exp - I - 2 

1,=0 

where 

k-I m-k+ j, 

" " ,,' M 'l)j, (k--I )(m-k+
j
,) d 5: k" 1 ~ = ~ L' I = ~ - - h h . - an U3 = m - + h -- h + . 

j, =0 }.=O 

(4.23) 

where 

E (v) = (1 + a v)" I), i = 1 2 , ~ { . , , 

and 

Substituting (4.23) in (4.3), we have 

oooooo=-ot 

hr." (y I () = CI -C;,-r)M 1 f J J f fexp[-B, - B2 ] 

() 00 0 () 
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~rll,r'£,(y)exp[-B,] f ~J(Jlrl-I£,(y)eXp[-BI] f ] 
- - - (a - la 

- ('7 )lr,.I', ~ (" )Ir,) I 
U 22 0 I1 

=CI*MI*[rfJl(y)+rfJ2(YJ], 

~ 

where C is the normalizing constant satisfying fh};, , (y I ()dy = J , 
o 

and 

f/J () ( s: . 1)~fa,r'£,(y)eXPl-B,J d ~Jalr,-I£'(Y)CXPl-BIJd v = r u. + J + - - - a' a 
~. 2 2 3 ()( r, +\) 2 ()I r, ) I • 

() 1722 0 'Ill 

(4.24 ) 

Now, we consider that PI' a p a2 .b. and b2 are independent random variables such that 

p, follows beta(b,d), fori=1,2, a j follows gamma(,lli,v) and for ;=1,2, h, 

foHows gamma (p', rJ. Then the joint prior density is gi ven by 

o < PI < I , h, > 0, (Jj > 0 . (4.25) 

From (4.20) and (4.25), the joint posterior density function of a,.a2 ,b .. b2 and p, 

glvenL' is given by 
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II-r 

~("-') 11-'--1'(1 )"+),,, "b"b" lAb A I] r BB] ~ 11 PI .' - PI - ul Q 2 - I 2' exp - 1.IJ I - 1),)2 exp - I - 2 

u-r 

0( I e,-')P1o.. (1- p])J, a](7,-la/r~-lb/tJ,·-lb/I1,-1 exp[-'I'lb
1 

- 'I'~b"]expr-XI - ;(21. (4.26) 
j,=O 

where 

J. = n - re - jl + b - I , J2 = r2 + jl + d -1 

The product of (4.11) and (4.26) is given by 

where 

k I m-k+ j, '=' , , Q -( "I)i,(,-I)(m-kt-j,) d s: - k . . 1 L. L. L... I - - J, j, an u3 - m - + h - h + . 

(4.27) 

where 

If-I 

I' = II, £;<'\,)=(1+0;y)'l, i=I,2, 
i,~() 

TJ? = 'I'~ + /1 logO + (/2Y)' 



119 

'Ill = 'Ill + (8, -1) log(\ + Cl I y) , 

and 

By substituting (4.27) in (4.3), the predictive density function is given by 

000000001 

IIIII [ y l{ ( ) Jj+O, (1 )6d j , "", a.--ibU-lh (0,-1 ['Ih b] exp -AI - %2 El Y PI - PI - -a l a~ - I 2 - exp - I I - '72 2 

0000 () 

= Cl: *QI' [qJ.. (y) + t/J~(y)] , 

~ 

where C is the normalizing constant satisfying I hr." (y I ()d.r = 1, 
o 

and 

(4.28) 
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4.5 Data analysis 

In this section, we illustrate the procedure given in Section 4.4.2 

using the datd given in Chapter 2. We, here, e~timate the reliability function using 

predictive density function. We obtained the lower and upper prediction bounds for 

~I) and r;m ~, the first and last failure times in a future sample of size In = 10. The 

failure times are assumed to follow finite mixture of Pareto II distribution with 

density function given in (2.2). Table 4.1 provides the Bayes estimate of parameters 

when the data is censored at the point T and r, and T2 are the number of 

observations belonging to the respective sUbpopulations. Using our results in (4.4) 

and (4.24) with r = 0.95, the lower and upper 95% prediction bounds for >';I~' the 

first failure time, are 7 and 12 respectively. Whereas the 95% prediction bounds 

for >';\0)' the last failure times are given by 89 and 97 respectively. The reliability 

S' (t) at t = 25 is obtained as 0.423 J by putting k = 1 in (4.24) and using (4.5). 

Table 4.1 8ayes estimates of parameters of survival times of leukaemia patients. 

T=80 
. 

=.0336 " =.0662 bl ' = .9743 b,' = 1.138 • = .4519 (" = 13,(2 = 16) (/1 Q
2 PI 

4.6 8ayesian two sample prediction for finite mixture of beta distributions 

In this section, we consider finite mixture of two-component beta 

model and two-sample prediction using Bayesian technique is employed. 

Suppose that n units from a population with probability density 

function (3.1) are subjected to a life testing experiment and the test is terminated after 

a predetermined lime T. It is assumed that an item can be attributed to the appropriate 

subpopulation after it had failed. Suppose that r units have failed during the 

interval (0. T) with 'i from the first and r2 from the second subpopuJation, such that 

r = 'i + r2 · The remaining n - r units which cannot be identified as to subpopulation 

are still functioning. N aturaJly, neither 'i nor '2 (and consequently r) is fixed, but 
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they are rather determined by knowing T . Let 1 denote the failure time of the J'" 
(I 

unit that belongs to the i'h subpopulation and that tij ~ T ,j = 1,2, ... , 1;, i = 1,2. 

4.6.1 The scale parameters Cl and c1 are known 

In this section, we compute Bayesian prt'dictive distribution when the 

prior distribution is Jeffrey's invariant as well as natural conjugate prior when Cl and 

Co are known. 

Rewriting (3.74), the likelihood function is given by, 

/1-' 
L(d d 1 to) '("-') lI-r:- J'(I_ )r2,j'd~d T, I' l' PI _ 0<: L.... J, PI PI I 2 

i, =0 

exPI<t log(1- ell l } )]exp[d2 ~)Og(l-C212J )](1- clr,,(II-r-J
,) (1- ('2T)°')' . (4.29) 

}=I j=) 

Rearranging (4.29), we have 

n-r 

L(d d It *)o<:'("-') 11-'2-)'(1_ )',+J'd"/'2 
I' C' PI _ L.... i, PI PI I l 2 

;,d) 

(4.30) 

with 

" 
Au, ::: - Llog(i -CJij) -[ (n- r)(2 - i)-(-l)li-I

) j,]log(l- (7). i = 1,2. 
j=1 

Now, assume that PI' d l and d2 are independent such that PI follows U (0,1) and for 

i::: i, 2. hi follows Jetfrey's invariant prior. Accordingly, the joint prior density is 

given by 

I 
g(dl,d"PI)O<: -- ,0< PI < 1, d >0. 

- d
l
d

2 
I 

( 4.31) 

The joint posterior density function of PI' d , and de is given by 
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(4.32) 

The density function of k-th order statistic ~k) is given in (4.10), 

where Se)') and fey) are the reliability function and probability density function of 

the finite mixture model (3.1). For the finite mixture of beta distributions (3.1), (4.10) 

becomes, 

k-I . 

I . k I r- I J J"'-k • h f (Y'ld,d J})CX: (-l)h(.-)Lp(l-cv)"+(l-p)(I-c,v)") 'f(v) 
~ ,., I 2' 1 l, I I. 1 _. . 

h~O 

,t-, m-K+ h 0<" ,,' (-J)h (k.'.J )(III-k+ j,) ",·k f },-J, q _ );' 
~ L. J: h PI \ PI 
},=(I },=il 

(4.33) 

where 

<-I m-Hi, 

I = I I', NI = (_l)h (~,-I )<,;;-k+;,) and 8, = m - k + j2 - j3 + 1 . 
h=O ;,=0 

The product of (4.32) and (4.33), then yields 

11-' 

"("-r) s'(l ·t5'd~·'ld r,-I fAd Ad] L;, PI - PI) I 2 exp - Ij, I - 2;, 2 
i =0 ., 

"(Il-r)N ( (.) b~+t5'(l )t5,fj\d~d ',-I [ d d] 
<X ~;, I El .\ PI - PI 1 2 exp -Ill I - 'h 2 
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where 

n-r 

I* = II· t";{Y)=(Ci(l-ciyr
l
), ;=1,2, 

';,=0 

and 

Substituting (4.34) in (4.3), we have 

==1 

h",,, (y I () = c J J Jfr", (Y I dl'd2 • PI )n(dl , d2 , PI I ()dplddldd2 • 

() 0 () 

On simplifying (4.35), we get the predictive distribution as 

-~~ I 

h (vlt*)=c,*("-r)N JJJ{£(v) 5,+<>'(1_ ),)~+jld'idr2-lex [-nd -nd 1 
Y,,, - - ~.Ii I I . PI PI I 2 P "I I '(2 2 

00 () 

( .) 0,+0,-1(1 )",+11+1 I~-II r, [ d n d 1}d dddd +£2)- PI -PI {I {2 exp -'711 !-'f22 2 PI I :> 

= 

where C is the normalizing constant satisfying Jhr" , (y I ()d)' = 1, 
() 

and 

(4.35) 

(4.36) 
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Now, consider the Bayesian analysis when the prior distribution is 

conjugate prior. Suppose that PI' d l and d2 are independent such that PI follows 

beta (b, d) and for i = 1,2, di follows gamma (Pi' r,). 

A joint prior density is then given by 

From (4.30) and (4.37), the joint posterior density of dl , d2 and PI given ( is given 

by 

(4.38) 

where 

~I = n - ro - jl + b -1 , 80 = 1; + jl + d -I and for i = 1,2, ((). = r + P, 'I' = A + r. _ _ ~ , , J , 'lJ I 

The product of (4.33) and (4.38), we obtain, 

n-r 

'("-') 1i·(1 )J'd,<\-Idll),-I [ d d) L. j, PI' - PI . I 2' exp -1fI1 I -1fI2 2 • 

j,=O 

where 

RI = (_I)h(".··I)(".'-k+ i,) .'lnd ~ k" I u .. ~=m- +h-J.,+. 
}~ h -

which can be reduced to 

where 
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/l-( 

I' = II, for i=1,2. £;(Y)=(Ci (1-ci yr 1
), 

;,=0 

171 = 'lfl - 15, log(l- Cl y) , 

Then, the predictive density is obtained as 

~~J 

hy,(, (y I () = CI . C.-r)N, f f f{cl (Y) Plo,+S, (1- PI )0,+/, d/V,d/0.-1 exp[ -17A -172d2] 

000 

( ) o,+Ol-I(} )O:+j,+ld "'l-Id "" [ d d J}d dd Id + c2 Y PI _. PI I 2 exp -1711 I --1722 2 PI le 2 

~ 

where C is the normalizing constant satisfying Ihy,(, Cv I ()dy = 1, 
o 

and 

(4.40) 
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4.6.2 The parameters c,' C2 ' d l , d2 and PI are unknown 

In this section, we obtain Bayesian predictive distribution function 

when the prior distribution is Jeffrey's invariant as well as nmural conjugate prior 

From (3.74), the likelihood function is given by, 

IJ-r 

L(C I ,c2 ,dl'd2 , PI I () ex: L (~,-')PI"-',-J, (1- PI)"+;' (/'c/'dl"d/' 
j,=O 

Rearranging (4.41), we have 

L(cl ,c2 ,d"d2 ,p,I()cx 

exp[-{ tIOg(l- c,c,) + t IOg(I-C,c"ll}. 

II-r 

,(n-,) 11-"-)'(1 )"+i,.r,,r'd'id" [A I Ad] [B B] ~ j, p, - P, (, (2 , 2 ex P - '1, ( ,- 2), 2 exp - ,- 2 ' 

),=U 

where,fori=I,2, Aj}, is given in (4.30) and Bj=Ilog(l-C,fij)}' 
j=' 

(4.41) 

(4.42) 

Now, consider that P" ['"cl,d, und d 2 are independent such thut P, follows 

U (0,1) and for i = 1,2, c
j 

and d j follows jeffrey's invariant prior. 

A joint prior density is then given by 

(4.43) 

The joint posterior density function of p, ' Cl' c2 ' d, and d2 is given by 

IC;,-')p/'O- p,)')'c/'c2"d/'d/' exp[ -A'iA -A2J,d2]e'xp[-BI-B2]' (4.44) 
.i,=O 

The density function of k -th order statistic ~t) is given in (4.33). 

The product of (4.33) und (4.44) gives 
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where 

k-l m-k+j, "= '" "-, K::: (-l)j, (J..-l)(III-k+h) and s: k" 1 i..J i..J ~ I ;, h U 3 = m - + h - 10 + . 

+£ ( ,) <5,+0,-1(1_ )O,+j,+1 .'1-1 . r'd~-Id" [-11 d _11 d ]} 
2 ) PI PI (I (.2 I 2 exp 'fill '/22 2 . (4.45) 

where 

1/-' 

I' = II. £,(y)=(1-c,yr
l
), i=I,2, 

j,=O 

and 

Substituting (4.45) in (4.3), we have 

co c·, ~,oo I 

hr." (y l L') = CI "c;,-')K1 f J f f fexp[-B I - B21 
II 0 \1 Cl () 
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= cI '(~~r)KI[{B(~ + b~ + 1,62 + j, + 1)n1j + 1)r(r2) 

~ 

where C is the normalizing constant satisfying J/\" (y I ()dy = 1, 
() 

and 

(4.46) 

Consider the situation of conjugate pnor. Now, assume that 

Pl'CI ,c2 ,dl and d2 are independent such that PI follows beta(b,d), for i=I,2, c, 

follows gamma (f.1" v,) and for i = L 2, di foliows gamma (Pi' Yi ). 

A joint prior density is then given by 

o < PI < 1 ~ di > 0, c, > 0 

(4.47) 

From (4.42) and (4.47), the joint posterior density function of C I ,c2 ,dl ,d2 and PI 

given 1... is given by 
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n(ci'c2,di'd~, PI I () ex: 

~,,-, n-,·-j' (1 )'d f, I; "d"!" fA I A," [B B] ~(i' )PI' -PI" Cl Cl' I l2'exPL- U/I- ~J,(i2Jexp - 1- 2 
11=0 

(4.48) 

where 

and for i = 1, 2, ~ = r; + P;, (5, = 1j + Ji" If, = A'h + y, and X, = B, + v,a,. 

From (4.33) and (4.48), we get, 

},=U 

where 

k--I JrI-k+ j. 

I = I I', '-1 = (- i)"~ (~:I )(7,-k+ I,) and 8., = m - k + j2 - j3 + 1. 
I:=U .h~O 

(4.49) 

where 

n-r 

I' = IL· c,(y)=(l-ciyr
l

• i=I,2, 
/,=0 

'711 = Ifl - (8, -]) log(l-c,y), 



130 

and 

Substituting (4.49) in (4.3) , we have the predictive distribution as 

~I' c,"'cocv)exp[-x.,]"s' C,"'-'C2 (y)exp[-x,] i I 
- - - . {C{c. 

(1] ) "~+I) (11 )(lL\ I '2 
Il n 0 '/11 

00 

where C is the normalizing constant satisfying J~" (y I ()dy = 1, 
o 

and 

(4.50) 
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4.7 Data analysis 

For the illustration of the role of finite mixture of beta distributions 

for predicting future observations, we consider a data given in Chapter 3, on survival 

times of cancer patients with advanced cancer of the bronchus or colon were treated 

with ascorbate. We, here, estimate the reliability function using predicti ve density 

function. We obtained the lower and upper prediction bounds for Y(lJ and ~ml' the 

first and last failure times in a future sample of size m = 15. The failure times are 

assumed to follow finite mixture of beta distribution with density function given in 

(3.1). Table 4.2 provides the Bayes estimate of parameters when the data is censored 

at the point T and 1j and r2 are the number of observations belonging to the 

respective subpopulations. Using our results in (4.4) and (4.46) with r=O.95, the 

lower and upper 95% prediction bounds for t;1)' the first failure time, are 21 and 26 

respectively. Whereas the 95% prediction bounds for ~J5)' the last failure times are 

given by 542 and 551 respectively. The reliability S*{t) at t = 250 is obtained as 

.00147 by putting k = I in (4.46) and using (4.5). 

Table 4.2 Bayes estimate of parameters of survival times of cancer patients. 

T=800 I. . . i 
(~ = 16'(2 = 15) I cJ = .00017 c2 = .0012 d J' = J 5.77 d

2
' = 1.45 

I PJ' =.5516 

_. 

4.8 Conclusion. 

In this chapter, the role of finite mixture of Pareto II and finite 

mixture of beta distributions on prediction of future observations are explored using 

Bayesian approach. The role of finite mixture of Pareto 11 distributions is iIlustrated 

using a real life data on time to death of two groups of leukaemia patients. We, also 

here, illustrated the use of tinite mixture of beta distributions based on a real data on 

survival times of cancer patients 



Chapter 5 

ESTIMATION OF RELIABILITY UNDER STRESS-STRENGTH MODEL 

5.1 Introduction 

]n reliability theory, stress- strength models desclibe the life of a 

component, which is having a random strength X that is subjected to a random stress 

Y . The component fails at the instant the stress applied to it exceeds the strength. 

ThusR = P(Y < X) measures the component reliability. It has many applications 

especially in engineering concepts such as structures, deterioration of rocket motors, 

static fatigue of ceramic components, fatigue failure of aircraft structures, and the 

ageing of concrete pressure vessels. Accordingly, in practical applications, the 

estimation of R = P(Y < X) is important. The estimation of reliability R when the 

distribution of X and Y have exponential, Weibull, log normal etc. has already been 

done in the literature. 

However, the estimation of R when the distributions of X and Y 

have mixture form is not seen widely discussed in literature. The estimation of 

reliability based on finite mixture of inverse Gaussian distributions was studied by 

Akman et.a!' (1999). AI-Hussaini et.a!. (1997) considered finite mixture of lognormal 

components for the estimation of R = P(Y < X). As mentioned in Chapter 1, censored 

data are commonly encountered in reiiability analysis. So it is worthwhile to estimate 

the reliability R for type I and type 11 censored data. Accordingly in the present 

chapter, we consider the estimation problem of R when the distribution of X is finite 

mixture of Pareto 11. We consider different distributions for Y such as exponential, 
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Pareto 11 and a finite mixture of Pare to 11. We develop the maxImum likelihood 

estimation of the system reliability for complete as well as censored samples. 

The rest of the chapter is organized as follows. The definition of 

stress-strength reliability is given in Section 5.2. In Section 5.3, we derive the 

reliability, when the strength X follows finite mixture of Pareto n, and the stress Y 

takes different distributions such as exponential, Pareto II or finite mixture of Pareto 

n. The maximum likelihood estimation of parameters for the different models under 

type I and type 11 censoring is discussed in Section 5.4. In Section 5.5, we develop the 

maximum likelihood estimate of reliability in various situations. A simulation study is 

conducted to assess the performance of the estimator in Section 5.6. We apply the 

method to a real data in Section 5.7. In Sections 5.8, 5.9 and 5.10, we discuss the 

estimation of reliability, when the strength X follows finite mixture of beta, and the 

stress Y takes different distributions such as exponential, beta and finite mixture of 

beta. Section 5.11 provides the simulation studies to assess the performance of the 

estimates. Finally, Section 5.12 gives the conclusion of the chapter. 

5.2 Definition 

Let X and Y be two non-negative random variables having 

absolutely continuous distribution functions F(x) and G(y). Let f(x) and g(y) 

respectively denote the probability density functions of X and Y. If X and Y are 

independent, then the stress-strength reliability R is given by 

R = P(Y < X) 

'--"X 

= J Jg(Y)f(x)dydx, 
00 

which is already mentioned in Chapter I. 

5.3 Finite mixture of Pareto 11 distributions 

In this section. we assume that the strength X follows finite mixture 

of Pareto II distribution with p.d.f (2.2). Lindlcy and Singpurwalla (1986) pointed out 

that if the distribution of life times measured in a laboratory environment is 

exponential, then the distribution of life lengths in a different environment is Pareto 

H. Accordingly in this Section. we consider various distributions such as exponential 
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and Pareto II for the stresses. We also consider the situations, where the stress has 

finite mixture of Pareto 11 distribution. 

5.3.1 The stress Y follows exponential distribution 

When the stress Y follows exponential with p.d.f 

g(y)=k-'<'; y>O,-1>O. 

and if X and Y are independent we obtain the reliability R as 

~, 

R - J J( 1 -AY)l' b (1 )-(b, +1) ('I ) b (1 _)-11>,+1) Jd 'd - /Le PIal I _ + QI X + - PI Q2 2 ,+ uyt )- X 

o 0 

~ 

- f(1 -,tx)[ b (1 )-Ib, +1) '(1- ) b (I )-11>, +I)]d - -e Pial I +UIX + PI Q2] +a2x x 

o 

~ ~ 

1 b J '-;''''(1 ,)-ul,+I)d (1 ) b J -;'X(l )-'b,+I)d = - Pial I e + ulx x - - PI Q2 2 e + U2x . X 
o 0 

where r( -bi , i), i = 1,2 is the incomplete gamma function. 
a, 

5.3.2 The stress Y follows Pareto 11 distribution 

Suppose that the stress Y follows Pare to n with p.d.f. 

gCv)=ab(1+ayfU,+I,; a>O,b>O. 

When X and Y arc independent, the reliability R is obtained as 

CoO , 

R = J J(ab(l + ayr(/HII)[PI(/Ibl (1 + alxr (/~+i' + (1- PI )a
2
b

2
(l + (/2 X r ,IJ,+II]dydx 

() 0 

(5.1 ) 

(5.2) 

(5.3) 
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~ 

= J[l-O+axrb][p,a,h,(l+a,xr(/~+Ii +0- PI)a~b2(1 +a2Xr 1b'+"]dx 
o 

~ = 

= 1- p,a,b, JO + axr" (l + a,xr(b,+I) dx - (1- PI )a2h2 JO + axrh (l + a
2
xf fb

,<1\ dx 
o 0 

__ }_ b - [bJ l(b,+b) -b][I_~J-(l~+h) b] - I" I'a, 

{

r Hv2F.[lhl-b q-Jtl 
P'I J[CSC J[ I a, a +-------'----

rbr(l +h,) a l hI 

(5.4) 

where Hy 2 F, [I,b,l- b" : l (i = 1, 2) i "he h ypergeomctricfunetion and ese [ ltb J is 

the cosecant of J[b 

5.3.3 The stress Y follows finite mixture of Pareto 11 distributions 

When the stress Y follows finite mixture of Pare to 11 with p.d.f 

and if X and Y are independent, we obtain the reliability R a" 

'" , 
R = f f[P3 f1 3b, (1 + a,Y rfb,+I) + (1- P3)(l + a~y r(h,+IJ] 

(} (} 

~ 

= 5[1- pJ(l + (':lXr()' - (1- p)(1 + u~xr"4 ][Pluihl Cl + u1xril),+I] + (1- PI )a~b2(J + u2xr(I>,+I) Jdx 
o 
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~ 

- I J (1 )~b, l b (1 .)-lb,+J) (1- ) b (I )-Ib,+l)]d· - - P3 + ([3 X Pial I + alx + PI a~ 2 + (/2 X X 

o 

~ -J(I- p,)(1 + a~xrh, lp,a,b, (l + a,xr1b,+l) + (1- p)a
2
b

2 
(I + (/2Xr(n,+I) ]dx 

o 

00 00 

-I b J(l )-1>., (I )-(l~+')d 'I ) b J(1 )-1>, (I )-U>;,t'Jd --P3Pl a ll +03X +alx X-P3t-PIG12 +(I3X +(/2X x 

o 0 

~ 00 

-(1- P3) PIQ,bj J(l + a~xrh, (I + {/IXr(b,tI
J dx - (1- P3)( I - PI )a

Z
b

2 
JO + 04X rh, (I + (l2X r Ib,tl) dx 

o 0 

5.4 Estimation of parameters 

In this section, we estimate the parameters of the models by the 

method of maximum likelihood, for the complete as well as censored samples. 

5.4.1 Exponential distribution 

Suppose the stress Y is a non~negative random variable which 

follows an exponential distribution with probability density function (5.1). 
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(a) Estimation of parameter b2sed on type I censored samples. 

In this section, we develop maximum likelihood estimators of 

parameters under type I censoring. Suppose there is a random sample of n units with 

lifetimes >-; 'Y2 , ... , Yn having distribution (5.!). We observe ~ only if 1';. '5:. T . where T 

is a fixed censoring time. The observed data therefore consists of pairs CVi , 5;), 

i = 1,2, ... ,11 where Yi = min (Y;,T) and 

5 = 1 if Y '5:. T 
1 1 

=OifY;>T. 

The general form of the likelihood function for type J censored 

sample is given by (2.89) and for the exponential model (5.1), (2.89) becomes 

" L(A I f) = n (Ae-'!'·')o. e-..lT<I-.s; 1 (5.7) 
i~1 

Maximization of log-likelihood function with respect to the parameter yields the 

estimate of It as 

A= r 

ilvA +T(1-5)J 
(5.8) 

1=1 

" where r = L. ~ is the observed number of lifeti mes. 
;=1 

(b) Estimation of parameter based on type 11 censored samples. 

Suppose that only the first r smallest observations 

Y(l1 '5:. Yr~) '5:. ..• '5:. Y(rl are available in a total sample of size n. From (2.108), the 

likelihood function for type JI censored sample is given by 

(S.9) 
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By maximizing the log-likelihood function with respect to the parameter, the 

maximum likelihood estimate of A can be obtained as 

l= ____ r __ _ 
r 

(5.10) 
1:Y(i) + (n - r)Yfr) 
;=1 

Remark 5.1 

When r=n, the results obtained under type 11 censonng becomes 

complete sample case. 

5.4.2 Pareto 11 distribution 

The stress Y follows Pareto 11 distribution with probability density 

function given in (5.3). 

(a) Estimation of parameters based on type I censored samples. 

For the model (5.3), the likelihood function (2.89) based on a sample 

n 

L(a,b Il) ::::: n {(ab(l + ay; r(/'+IJ)O: (l + aTf ',(1-0: J} (5.1l) 
;=1 

Mllximization of log-likelihood function with respect to the model parameters yields 

the following likelihood equations, 

1/ 

n 8 - 1:(1- ~)T 
~::::: (b+ 1)1: ,.v, tb=;=I'----
a ,=1 (1 + as', ) (I + aT) 

(5.12) 

r " n - = I ~ logO + a,V;) +- I (1- ~) logO + aT) 
h ;=1 ;=1 

(5.13) 

" 
where r = I ~ is the ob.served number of lifetimes. 

;=1 

Solving {he equations (5.12) and (5.13) numerically, we obtain M.L.E. s of a and h 
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Cb) Estimation of parameters based on type 11 censored samples. 

Based on a sample of size n, we observe only r smallest lifetimes 

Y(I) :::.:; Y(2) :::.:; ••• :::.:; Y(r)' then, for the modei (5.3), the likelihood function (2.108) 

becomes 

(5.14) 

Maximization of log-likelihood function with respect to the model parameters yields 

the following likelihood equations, 

r r)' . ben - r) v 
-=(b+l)L: ·11' -:- .(r) 

a i=1 (1 + aJ'(i) 1 + ay, r) 
(5.15) 

r r 

b = ~log(1 + ayf ;) -l-(n - r)log(l +ayu)' (5.16) 

The estimates of a and b can be obtained by solving the equations (5.15) and (5.16) 

by Newton- Raphson iterative method. 

Remark 5.2 

When r=n, the results obtained under type 11 censoring becomes 

complete sample case. 

5.4.3 Finite mixture of Pareto n distribution 

Estimation of parameters of finite mixture of Pare to II is already 

discussed in Chapter 2. 

5.5 Estimation of stress-strength reliability 

When the strength X follows finite mixture of Pare to Il with 

parameters (/1' Q 2 ,bl , b2 and PI and the stress Y follows exponential distribution with 

parameter A , then the maximum likelihood estimate of R is given as 
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~ 

Then from appendix B of Lawless (2003), the asymptotic variance of R is given by 

( ~ \ ( oR J2 ~ ( dR )2 ( ~ ( dR Y \I ~ Var R) = - Var(a l )+ -- Var a2 )+ ... + -) vllr(PI ) 

" dal da2 apl / 

dR dR ~ ~ dR dR A ~ dR dR ~ ~ 
+--Cov(a a )+--Cov(a b)+ +--Cov(b p) a da ' " da db ,','" db a ' ' , . 

(I, , , , , 'P, 

where variances and covariances are directly obtained from the inverse of the matrix 

(flogR d2 10gR d2 logR 

da 1da2 da,db, da ,db2 

_ d2
logR _ a2

10gR _ d2 logR _ d2
10g RJ 

dPlda2 dP,db, dp Jdh2 apI2 

When the strength X follows finite mixture of Pareto II with 

parameters al' a2 , bl , b~ and PI and the stress Y follows Pareto 11 distribution with 

parameters a and b, then the maximum likelihood estimate of R is obtained as 

When the strength X follows finite mixture of Pareto II with 

parameters al'll2,bl ,b2 and PI and the stress Y follows finite mixture of Pareto II 

distribution with parameters£l1,ll4,b"h.. and P3 ' then the maximum likelihood 

estimate of R is given as 
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5.6 Simulation Study 

In this section, we carry out simulation studies to observe the finite 

sample properties of the estimates and their robustness. 

(a) Exponential distribution 

We generate observations from exponential distribution with 

parameter A = 0.7. Table 5.! and 5.2 provides maximum likelihood estimates of 

parameters under complete as well as censored situations with various combinations 

of n (sample size), T (censoring time) and r (number of failures). The variances of 

the estimates are given in brackets. 

(b) Pareto 11 distribution 

We generate samples from Pareto 11 distribution with parameters II = I,b = 4 .The 

estimates under complete as well as type I and type 11 censoring set up are given in 

Tables 5.3 and 5.4 for various combinations of n ,T and r 
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(c) Finite mixture of Pareto 11 distribution 

For the type I censoring, in which observations belonging to each 

subpopulation are known, we generate two sets of samples, one from a Pareto II 

distribution with parameters a l and bl and the second from a Pare to Il distribution 

with parameters a2 and b2 • 

For the type I censoring (in which observations belonging to each 

subpopulation are unknown) and type n censoring, first we generate two sets of 

samples, one from a Pareto II distribution with parameters a l and bl and the second 

from a Pareto 11 distribution with parameters el2 andb2 and then, we obtained finite 

mixture of Pareto n distributions using Bemoulli probability PI (0 < PI < I). 

The estimates of parameters by the method of maximum likelihood 

under type I censoring and type 11 censoring for the set of parameters 

a l = .03, a2 = 3, bl = I, b2 = 2 and PI = 0.5 with various combinations of n (sample 

size) and T (censoring time) are given in Chapter 2. The result obtained under type 11 

censoring is extended to the complete sample by taking r=n. 

Tables 5.5 to 5.7 give the maximum likelihood estimates for another 

set of parameters a~ = .005, a.) = 2,b3 = 3,b4 = 5 and P3 = 0.6 under complete as well 

as censoring for same combinations of n,T and r, where P3 is the mixing Bemoulli 

probability (0 < PJ < I) . 

Stress strength reliability when strengih is finite mixture of Pareto 11 

and stress is exponential is given in Table 5.8. Table 5.9 provides the Stress strength 

reliability when strength is finite mixture of Pareto 11 and stress is Pareto 11. When 

stress and strength are finite mixture of Pareto It the reliability is given in Table 5.10. 

The variances of the estimates are given if} brackets. 

We use the software 'Mathematica' to evaluate the integrals 

numerically. 
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Table 5.1 Maximum likelihood estimates of parameters under type I censoring 

for A = 0.7 (exponential) 

I I I 

I Censoring n=30 n=50 n=100 
time 

1=0.670027 
" " 
A=0.6827 A=0.70022 

T=30 
(0.001320) (0.000271 ) (0.000050) I 

1=0.71027 
" 

tl=0.70001 A=0.6987 

T=lOO 
(0.000871 ) (0.000154) (O.OOOOl!) 

Table 5.2 Maximum likelihood estimates of parameters under type 11 censoring 

for A. = 0.7 (exponential) 

I 

n:=30 n=50 n=100 

r=lO ! r=30 r=30 r=50 1'=60 r=100 

1=0.68175 1=0.68886 
A 

tl=0.7019 1=0.68899 tl=.7012 A=0.68892 

(0.002764) (0.001159) (0.001042) (0.000987) (0.000125) (.0000654) 



I 
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Table 5.3 Maximum likelihood estimates of parameters under type I censoring 

for a -= 1, b ;:::: 4 (Pareto II) 

Censoring n=30 n=50 n=100 
time 

a =1.13372 a =1.05943 a =1.00058 

(2.7E-2) (1.08E-4) (l.01E-6) 

T=30 ~ ~ 

b=3.78796 b=3.87436 b=4.01902 

(.00821) (.000275) (2.7E-7) 

a =1.1164 a =1.02179 a =1.00012 

(l.2E-2) (l.01E-4) (1.01 E-7) 

T=lOO " ~ 

b=3.864 b=3.90l9 b=4.00l7 

(3.4E-3) (2.9E-5) (1.3E-7) 

Table 5.4 Maximum likelihood estimates of parameters under type II censoring 

for a = 1, b ;:::: 4 (Pareto 11) 

n=30 n=50 n=lOO 

r=IO r=30 r=30 r=50 r=60 r=100 

a =0.9764 a =0.9889 a =0.9899 a =1.015 a =1.011 a =1.007 

(.000453) (0.000124) (2.6E-4) (2.S6E-S) ( 1.2E-S) (1.1E-6) 

" A A A A 

b=3.8643 b =3.9117 b=3.9547 b=4.0743 b=3.998 b=4.0012 

(.0001975) (.000124) (1.8E-4) (l.OlE-S) ( 1.1E-5) ( 1.02E-6) 
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Table S.S Maximum likelihood estimates of parameters under type I censoring for 
Q3 = .005, u4 = 2, b) = 3, b4 = 5 and P3 = 0.6 in which observations belonging to each 

subpopulation are known. 

Censoring 
n=30 n=50 n=100 

time 

£l3 =.0051004 £l3 =.00491342 £l3 =.00497522 

(9.08E-05) (5.53E-05) (1. 13E-05) 

I 
£l4 =2.1098 £l4 =2.02653 £l4 =2.02132 

(9.44E-05) (6.81 E-05) (1.49E-05) 

A A A 

h3 =2.829962 h3 =2.918252 h3 =3.029122 
T=30 

(.000386) I (.000124) (1.1 E-4) 

A A A 

h4 =5.0976 h4 =4.9973 b~ =4.99843 

(.0437) (.00631 ) (.000289) 

I 
P3=·608161 P3 =.6008275 P3=·6001367 

(5.9E-ll) (9.7E-12) (4.97E-12) 

£l3 =.0051106 I 
a3 =.0051058 £l3 =.0050117 

(2.37E-05) (l.892E-05) (l.882E-05) 

£l4 =1.9124 Q4 =1.975 £l4 =2.0232 

(8.83E-06) (5.72E-06) (4.98E-06) 

A A A 

b3 =3.1096 h3 =3.0864 b3 =3J)0031 
T=100 

(.040889) (.040573) (.007085) 

A A A 

h4 =5.1087 b~ =5.0965 b4 =5.0132 

(.00963) (.00149) (.000397) 
, 

pJ=.59998 1>3=·59999 p.~=.6002 

I (5.ISE-ll) (8.57E-12) (3.18E-l2) 
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Table 5.6 Maximum likelihood estimates of parameters under type I censoring for 
0, = .005, Q4 = 2, h) = 3, h4 = 5 and P3 = 0.6 in which observations belonging to each 

subpopulation are unknown. 

~ Censoring n=30 n=50 n=100 
tIme 

Q3 =.00512 Ql=·005098 Q3=·005087 

I 
(3.7E-03) (2.4E-03) (1.5E-03) 

I 
Q4=2.0912 Q4 =1.92786 Q4=2.01764 

I (2.4E-03) (1.9E-03) (1.8E-03) 

,.. ,.. ,.. 
b, =3.101 b3 =3.107 b1 =3.028 

T=30 
(2.7E-03) (2.1E-03) (1.5E-03) 

,.. ,.. 
b4 =5.0875 h4 =5.07121 b4 =5.019 

(5.4E-03) (3.7E-03) (2.2E-03) 

P3=·6009 Pl=·59989 P3=·6002 

(4.2E-12) (3.7E-12) o .8E-12) 

Q)=.00509 Q3 =.005054 £13 =.00508 

(3.2E-03) ( 1.98E-03) 0.32E-03) 

Q4 =1.9469 Q.j =1.9R £14 =2.0031 

(2.6E-03) (1.7E-03) (1.3E-03) 

,.. ,.. ,.. 
b3 =3.0942 b3 =3.023 b, =2.9976 

T=100 
(2.IE-03) (1.1 E-03) (2.7E-04) 

,.. 

b.j=5.1087 b.j =5.0965 b.t =4.9832 

(4.1E-03) (2.1 E-03) (1.08E-03) ~ 

P3=·59917 P3=·60034 p,,=.6000J 

(7.6E-14) (3.9E-14) (2.2E-14) 
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Tabl~ 5.7 Maximum likelihood estimates of parameters under type 11 censoring 
for a3 =.005,a4 =2,b3 =3,b~ =5 and P3 =0.6 

n=30 n=50 n=100 
I 

r=lO r=30 r=30 r=50 r=60 r=100 
I 

it, =.00511 Q3 =.00504\ Q3 =.00494 &3=·00498 Q3 =.00508 Q3 =.00502 . I . 
(2.9E-4) (1.22E-5) 0.7E-5) (1.01E-5) (2.4E-6) I (1.98E-6) 

Q4 =1.9537 Q4 =2.087 &4 = 1.987 &4 =1.995 &4 =2.05 Q4 =1.999 

(.0711) (.0532) (.0532) (.02 I 87) (.00721) (.00210) 

~ A A ~ 

b3 =3.10 b3 =3.0987 b3 =2.9897 b3 =3.0043 b3 =3.014 b, =3.001 

(.0057) (.0032) (.00654) (.00191) (,0007) (.00012) 

A A ~ A A 

b4 =5.075 
I 

b4 =5.045 b4 =4.9855 b4 =4.997 b4 =4.998 b4 =5.00] 

(.1001) (.0978) (.0325) (.00951) I (.00782 J) (.00019) 

1\=·6103 P3=·5987 P3 =·5988 P3=·5999 P3=·6002 p,=.6001 

(6.7E-12) (1.09E-13) (3.1E-15) (1.1E- 15) (7.2E-18) (2.0E-19) 

Table 5.8 Stress-strength reliability when strength is finite mixture of Pareto 11 

and stress is exponential 

Sample size n=30 
I 

n=50 n=100 

Stress-strength 0.553244 0.555229 0.559292 
reliability R 

Table 5.9 Stress-strength reliability when strength is finite mixture of Pareto Il 

and stress is Pareto 11 

Sample size n=30 10=50 n=]OO 

0.79128 
I 

Stress-strength 10.7991 0.80127 
reliability R I 
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Table 5.10 Stress-strength reliability when strength is finite mixture of Pareto II 

and stress is finite mixture of Pareto II 

Sample size n=30 n=50 n=IOO I 
Stress-strength 0.6759 0.69131 I 0.71297 J reliubility R i 

5.7 Data analysis. 

For the illustration of the method, we consider a stress-strength data 

which is given in Table 5.11. (see Rao (1992)). The stresses induced in power 

transmitting shafts and the experimental values of the strength of the shaft material 

are given as stress and strength values. The values are given in k(lb/in2). We then 

estimate the parameters using the method of maximum likelihood. We used the 

Kolmogorov Smirnov statistic to test the goodness of fit. From the analysis, it 

concludes that model (2.2) with a l == 0.59, u2 = 3.35x 1012
• hI = b2 = b = .05 and 

PI = 0.5 is a good model for strength data and the model (5.1) with A = .S7 is a 

plausible model for stress data. Then we estimate the reliability of the shafts as 0.213 

Table 5.11 Stress-strength data 

strength 31.8 25.2 28.3 29.6 30.1 32.7 26.5 28.9 30.8 33.5 

stress 23.4 28.6 23.9 25.2 25.5 26.7 20.3 27.7 19.2 22.8 
I 

strength 27.4 129.1 30.7 32.2 29.9 30.6 31.7 31.3 33.9 34.3 

I stress 23.1 24.6 25.9 26.8 J 27.5 21.7 24.1 24.9 24.8 22.6 
i 

5.8 Finite mixture of beta distribution 

In this section, we consider the strength X as finite mixture of beta 

distribution with p.d.f (3.1). As in the previous case. we consider three different 

distributions for the stress Y . 
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5.8.1 The stress Y fonows exponential distribution 

The stress Y follows exponential with probability density function given in (5.1) and 

assumes that X and Y are independent. Then the reliability R is obtained as, 

)/ 
,'Cl x 

R = J JCAe-- AY )[P1C ld l (J - c)xtl
]-l) + (1- PI )c

2
d

2 
(1- C2XYd1 -IJ]dydx 

lJ lJ 

I,' 
/'c] 

= J (1- e- A1
)[ Plcld) (1- clxtl

]-)) + (1- p)c
2
d

2 
(1- czXYd,-I']dx 

o 

o () 

= 1-- p,c,d, [{-Ir" e- X,,,-,, (rd, - r( d,. -,YcJ )C,-"d,] 

-(1- PI )c2d~ [( - I)-d~ e -~;, A-d, (id:! -r( d~, -X2) )C21+d~ ] 

= 1- p,d, [( -I)" e':, (L~r (rd, - r( d,. -,YcJ)] 

-(1- P,)d,[(-L)d, e';, (~r (rd, -r( d,,-X))} 
5.8.2 The stress Y follows beta distrihution 

The stress Y follows beta with probability density function 

1 fCv) = cd(l-cy)(d-II ; C > O,d > 0,0< y <-
C 

If X and Y are independent, the reliability R is given by 

c: .\ 

R = J J(cd(l- cy)(d-II Hp,C,d, (1- c,xyd]-II + (1- PI )c~d~(\ -c
2
xYd,-I)]dydx 

o () 

(5.17) 

(5.18) 
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V 
-' c, 

= J [1- (1- CX)d][PICldl(l-CIX)ld,-11 + (1- PI)c2d2(1- C2X)ld2-I)]dx 
o 

I,' 1--
IG :~ 

=:: 1- PICldl J (l-CX/(l-CIX)ld,-IJdt-(l- PI)c~d2 J (l-CX)d(l-C2X)ld2-ll dx 
o 0 

S.S.3 The stress Y follows finite mixture of beta distribution 

The stress Y follows finite mixture of beta with probability density function 

fe ,,)' =pcd (l-c V)IJ, -II+(I_p )cd (I-c )'yd.-IJ. 
,- :1 3:1 3. J "" 4. , 

When X and Y are independent, the reliability is given by 

1/ 
/ c, .f 

R = J J[P3 C3d3(1- c3y)ld,-11 + (1- P3)c
4
d

4 
(1- c"yyeJ4 -1)] 

o 0 

1./ 
'Cl 

(5.19) 

= J [1 - p, (1- c,x)", - (1- p,)(l- C~X)"4 H p,c,d, (1- ('IX ye',-I) + (1- PI )cede (1- C 2X)(d~-I)}:lx 
o 

I. 
'"(I 

= 1- J p, (1- C,X)'" [Plc,d l (1- cixyel,-I) + (1- PI )c2d2(l- C2xtl~-I)]dx 
o 

'("1 - J (1- P1)(l- c~:t)", [PIcA 0- clxy",-I) + (1- PI )c2d2(l- C2Xytd2-11 letx 
Il , 

" '('I (", 

= 1- p,p,c,d l J (I-cl X)d'(J -CIX),d,-lidx- p,(\- PI)c/): f (J-CJX)'I'()-l~2xtl,-I'dx 
o n 

L 
(', i(" 

-(1- pJ Plcldl f (I - C~X)d, (1- CIX)'d,-ll dx - (1- p, )(1- PI )c2d2 f (I - C~X)d, (1- C2X),d,-ll ]dx 
o () 
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-(1- p,) p,d, [rd,HY2FIR[ I. -d, ,I + d" :: ]] - (1- p,)(I- p,)d, [rd,H)'2FIR[ I, -d" I + d" :: II 
(5.21 ) 

where Hy2F I R [I, -dj, I + d<; l i = I, Z and j = 3,4 is the regularized 

hypergeometric function. 

5.9 Estimation of parameters 

In this section, we discuss the estimation of parameters of the 

different models by the method of maximum likelihood for the complete as well as 

censored si tuations. 

5.9.1 Exponential distribution 

Estimation of parameters in this case is mentioned in Section 5.4.1. 

5.9.2 Beta distribution 

The stress Y follows beta distribution with probability density 

function given in (5.18). 

(a) Estimation of parameters based on type I censored samples. 

In this section. we develop maximum likelihood estimators of 

parameters under type I censoring. Suppose there is a random sample of n units with 

lifetimes >';'Y2""'Yn from the model (5.18) and associated with each unit, a fixed 

censoring time T. We observe Y; only if y;::; T and the data therefore consists of 

pairs (5"'~)' i:::l,2, .... n and .Y, :::min(>,:,T) 

where ~::: I if >': ::; T and ~ = () ifY; > T . 

The general form of the likelihood function for type I censored 

sample is given by (2.89) and for the bcta model (5.18), (2.89) becomcs 
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" L( c. d 12:) == rH (cd (1 - C.V, )'1-1 )()~ (l - cT)"i11~ '} . (5.22) 
i-I 

where ~ = (YI ' Ye' ... , .'"" ). 

Maximization of log likelihood function with respect to the model parameters yields 

the foHowing differential equations. 

11 

" (I - o. )T s: -r L. I " UV 
_=d H +-(d-l)L: i.; , 

c (I-eT) i=I(1-c5J 
(5.23) 

/. n Jl 

- = L: ~ log(l-cy) t I(I-0 )log(l-eT) . 
d 1=1 I~I 

(5.24) 

" 
where r = 2: ~ is the observed number of lifetimes. 

;=1 

Solving the equations (5.23) and (5.24) using Newton-Raphson 

method, we obtain M.L.E.s of c and d . 

(b) Estimation of parameters based on type 11 censored samples. 

In type II censoring, the number of observations r is decided before 

the data are collected. The data consists of the r smallest lifetimes YCI) ~ Y(2) ~ .•• ~ Y(r) 

out of a random sample of n lifetimes. From (2.108). the likelihood function is 

given by 

(5.25) 

Maximization of log likelihood function with respect to the parameters yields the 

following equations, 

r d(n-r)y r y. _= (r)+(d-l)L: ·(Il 

C l-cY(r) i=1 (J-cyu) 
(5.26) 

r r 

d = (n - r) log(l- cY(r») -J. ~ log(l- c)'U)) (5.27) 

Solving the equations (5.26) and (5.27) using Newton-Raphson method, we obtain 

maximum likelihood estimates of c and d . 
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5.9.3 Finite mixture of beta distribution 

Estimation of parameters of finite mixture of beta is discussed in Chapter 3. 

5.10 Estimation of stress-strrngth reliability 

When the strength X follows finite mixture of Beta with parameters 

PI and the stress Y follows exponential distribution with 

parameter A , then the maximum likelihood estimate ef R is given as 

When the strength X follows finite mixture of Beta with parameters 

CI ,c2 ,dl'd2 and PI and the stress Y follows Beta distribution with parameter c and 

d , then the maximum likelihood estimate of R is obtained as 

When the strength X follows finite mixture of Beta with parameters 

Cl' c2 ' dl • d2 and PI and the stress Y follows finite mixture of Beta distribution with 

parameters Cl' c4 , dl'd4 and 1'3 then the maximum likelihood estimate of R is 

provided as 

R ~ 1- p,p,d, [rd,HY2F1R[I,-J" 1 +d" ~: ]]- ;',0- p,)d, [rd,HY2FIR[I,-J,, 1 +J" ::]] 

-(1- p,j p,d, [ r ,1, lIy2FIR [I, -J" 1+ ,1" ~: J] -(I _. p, )(1- p, )J, [r J,H,,2FIR [ I, -,1,,1 + d" ~: ]] 
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5.11 Simulation Study 

In this section. we carry out simulation studies to assess the performance of 

the estimators and we obtained s.tress strength reliability for simulated datum. 

(a) Exponential distribution 

We generate observations from exponential distribution with 

parameter A =.8. Table 5.12 and 5.13 provide maximum likelihood estimate of 

parameter under complete as well as censored situations with various combinations of 

n (sample size), T (censoring time) and r (number of failures). 

(b) Beta distribution 

We generate samples from beta distribution with parameters c = L d = 5 . 

The estimates under complete as well as lype I and type 11 censoring set up are given 

in Tables 5.14 and 5.\5 for various combinations of n . T and r 

(c) Finite mixture of beta distributions 

For the type I censoring, in which observations belonging to each 

subpopulation are known, we generate two sets of samples, one from a beta 

distribution with parameters c3 and d , and the second from a beta distribution with 

parameters Col and d 4 • 

For the type I censoring (in which observations belonging to each 

subpopulation are unknown) and type 11 censoring, first we generate two sets of 

samples, one from a beta distribution with parameters c, and d3 and the second from a 

beta distribution with parameters c4 and d 4 and then, we obtained finite mixture of beta 

distributions using Bemoulli probability P3 (0 < p, < 1) . 

The estimates of parameters by the method of maximum likelihood 

under type I censoring, in which observations belonging to each subpopulation are 

known, for c3 =.1,c4 =.9,d, =3,d4 =1 and P3 =0.7 with various combinations of 

n (sample size) and T (censoring time) are given in Table 5.16. The variances of the 

estimates are gi ven in brackets. 
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Stress strength reliability when strength is finite mixture of beta and 

stress is exponential is given in Table 5.17. Table 5.18 provides the stress strength 

reliability when strength is finite mixture of beta and stress is beta. When stress and 

strength are finite mixture of beta, the reliability is given in Table 5.19. We use the 

software 'Mathematica' to evaluate the integrals numerically. 

Table 5.12 Maximum likelihood estimates of parameters under type I censoring 

for A = 0.8 (exponential) 

Censoring n=30 n=50 n=100 
time 

~=0.794166 ~=0 .. 794354 ~=0.805804 
T=30 

(0.0297) (0.00581 ) (0.00185) 
--

~=0.819436 ~=0.8171227 ~=0.805074 
T=IOO 

(0.0476) (0.00328) (0.00012) 

Table 5.13 Maximum likelihood estimates of parameters under type II censoring 

for A = 0.8 (exponential) 

n=30 n=50 n=IOO 

r=1O r=30 r=30 r=50 r=60 r=100 

" ~=0.794501 } ~=O.789441 ~=0.80875 ~=0.79951 ~=.80035 ..1=0.821529 

(0.0115) (0.00276) I (0.00173) (0.000111) (0.0001 ) (.0000 I) 
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Table 5.14 Maximum likelihood estimates of parameters for beta 

c == 1, d == 5 under type I censoring 

Censoring time n=30 n=50 n=lOO 

I 
c=.98976 c=1.1023 c=1.003 

(2.5E-2) (2.1E-4) (l.IE-5) 

T==30 
A 

d =4.965 d =5.118 d =4.991 

(1.7E-3) (1.4E-3) (2.7E-5) 

c ==1. 1098 c=1.1003 c=0.9989 

(3.3E-3) (2.0IE-4) (2.1E-5) 

T==100 d =4.985 d =5.076 d =5.0021 

(3.8E-4) (1.9E-5) (2.4E-6) 

Table 5.15 Maximum likelihood estimates of parameters for beta c = 1, d = 5 

under type 11 censoring 

n=30 n=50 n=IOO 

r=1O r=30 r=30 r==50 r=60 r=100 

.-

c==1. 1002 c=1.0085 2=0.9965 c=1.0032 2=0.9998 c=1.00012 

(O'{)0467) (0.00013) (4.lE-4) . (3.8E-5) (2.54E-5) (2.IE-6) 

d =4.973 d=5.0064 d =5.0012 d=5.0027 d =4.9987 d =5.001 

(0.00041 ) (0.000032) (2.1E-5) ( 1.9E-5) (1.6E-5) (1.0 I E-6) 
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Table 5.16 Maximum likelihood estimates of parameters under type I censoring for 
('3 = 0·1,('4 = 0.9,dJ :;;;;;. 3,d4 :;;;;;.1 and p, = 0.7 in which observations belonging to each 

subpopulation are known. 

I I I 
I 

Censoring 
11=30 n=50 n=IOO 

time 

(;3 =.0893 c3 =.0953976 C., =.107286 

(.0000221 ) (5.25E-7) (3.062E-7) 

(\=.86014 Col =.91216 c4 =.90179 

(.000017) (9.85E-8) (1.22E-9) 

d l =3.1105 d3 =2.8069 d, =2.98003 
T=19 

(.842805) (.100405) (.0833) 

~ 

d.j =1.0268 d4 =1.0197 d4 =1.00527 

(.265423) (.19532) (.000135) 

P, =.7211 p,=.70653 PJ =.70423 

I (S.S6E-6) ( 1.15E-6) (2.06E-7) 

Table 5.17 Stress-strength reliability when strength is finite mixture of beta and 

stress is exponential 

Sample size 11=30 n=50 n=100 

Stress-strength 0.6591 0.6927 0.69816 
reliability R 

Table 5.18 Stress-strength reliability when strength is finite mixture of beta and 

stress is beta 

Sample size 111=30 n=50 n=100 

Stress-strength (UH27 0.84316 0.84417 
reliability R I 
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Table 5.19 Stress-strength reliability when strength is finite mixture of beta and 

stress is finite mixture of beta 

Sample size r..=30 n=50 n=lOO 

Stress-strength 0.7128 I 0.7517 I 10.7556 
reliability R 1 I I ~ 

5.12 Conclusion 

In this chapter, the role of finite mixture of Pareto 11 distributions and 

finite mixture of beta distributions as stress-strength models is examined. To study the 

finite sample properties of the estimates we carried out a simulation work. The use of 

finite mixture of Pare to 1I distributions is illustrated using a real life data. As n 

increases, the bias and variance of the estimate decreases. 



Chapter 6 

ESTIMATION OF THE LORENZ CURVE 

6.1 Introduction 

As mentioned earlier in Chapter I, the Lorenz curve is an important 

tool for the measurement of income inequality. Lorenz curve can be interpreted as the 

cumulative proportion of income to the cumulative proportion of popUlation, after 

ordering the population according to the increasing level of income. Most of the 

popular parametric models have been employed in different situations of income 

analysis. For more details on this, one could refer to Kleiber and Kotz (2003). When 

population of income of individuals can be divided into popUlation of income from 

different sources or any set of income data with earners in different categories, it is 

usual to model the data using finite mixture of distributions. However, the finite mixture 

of Pareto II and finite mixture of beta have not been explored much in literature in the 

context of income analysis. 

Censored data are commonly encountered in practical applications to 

income and weaith distributions, for several reasons. Some hjgh-income observations 

may have been removed from the sample because of concern for confidentiality-if it 

were not so, a skilful data-detective would have no difficulty, in identifying the 

individuals or households corresponding to individual observations in the sparse 

upper tail. In certain other instances, low- income observations may have been 

removed or modified for reasons of convenience. As pointed out in Fichtenbaum and 

Shahidi (1988), type I censoring is commonly used in such situations. So it is 

worthwhile to estimate Lorenz curve for type I censored data. 

Motivated by these facts, in this chapter, we study the properties and 

applications of both finite mixture of Parcto II and finite mixture of beta distributions 

in the context of income analysis. The definition of the Lorenz curve is given in 

Section 6.2. Sections 6.3 and 6.4 give the maximum likelihood estimation of Lorenz 
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curve for the finite mixture of Pare to Il distributions. Simulation studies are carried 

out in Section 6.5. We, then, illustrate the method using a real data on household 

expenditure of men and women in Section 6.6. We obtain the estimate of the Lorenz 

curve for the finite mixture of beta distributions in Sections 6.7 and 6.8. Simulation 

studies are carried out to asses the performance of the estimators in Section 6.9. 

Finally in Section 6.10, we give the conclusion of the chapter. 

6.2 Definition 

The Lorenz curve, one of the important measures of income 

inequality, plays a significant role in analyzing income data. For a non-negative 

random variable X with distribution function F(x) and finite meanp, the Lorenz 

curve L(F(x» is defined by 

I x 

L(p) = - Jif(l)dt, 
Po 

(6.1 ) 

where f(t) is the probability density function of X and P = F(x) which is already 

defined in equations (1.24) and 0.25). 

6.3 Finite mixture of Parcto 11 distribution 

Any set of income data with earners in different categories will be 

wc]] described by a finite mixture of distributions. For example, if we have income 

data for families in Kerala, we would expect that families of different sizes and for 

different makeup in terms of the gender distribution of the adults in the families 

would have incomes that would follow different Pare to or other skewed distributions. 

Then the data wiJ1 be considered as a mixture of such distributions. 

Assume that the density function of the income distriblnion in the 

whole population is a finite mixture of Pareto densities, defined in (2.2). Then, the 

Lorenz curve L( F(x» is obtained as 

L(F(x» = Pial (b2 -i)ll- (l + (iIXri>, (l + (llbl );)] + (1- PI )atCbl -1)[\- (I + a2xr'" (I + a/12x)1. 

[Pl a2 (b2 -1)+(1- Pl)al(hl-l)j 

(6.2) 
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6.4 Estimation of Lorenz curve 

In Chapter 2, we have discussed different estimation procedures and 

estimated the parameters of finite mixture of Pareto II for complete as well as 

censored samples. Then the M.L.E of L(F(x)) is given by 

L(F(x» == p/l~ (b] - Oll- (1 + Q,Xrb
, (1 + Q~,x)] + (1- p, )Q, (;;~ -1)11- (1 + Q=xr

h
, (1 + a);2x )} 

lp,a2 (b2 -1)+(1- i\)Q,(b,-I)] 

(6.3) 

" Then from appendix B of Lawless (2003), the asymptotic variance of L is given by 

dL dL ~ ~ dL dL ~ ~ dL dL ~ A 

+--Cov(a a )+--Cov(a b)+ +--Cov(b I')) 
da, da, '" da, db, '" ... db, dp, '" . 

(6.4) 

where variances and covariances are directly obtained from the inverse of the matrix 

l(a"a2 ,b"h).,p,) with 

( _ d2
10g L d2 10gL d2 Jog L (

2 )og L d2 10g L 
da 2 da J)a 2 rlaldbl da

1
db2 da,dp, I 

l(a, ,G2 ,bl ,b2 • PI) = 

I (}2)ogL d2 10gL ir loo L d2 10gL d2 JogL , 

l 0 

dp,dal dp,da l dp,db, dp,db: dp," 

6.5 Simulation study 

In this section, we carry out simulation studies to find out the 

maximum likelihood estimates of the Lorenz curve under complete as well as 

censored samples. 
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For type I censoring, in which observations belonging to each 

subpopu]ation are known, we generate two sets of samples, one from a Pareto 

distrihution with parameters a, and b, and the second from a Pareto distribution with 

parameters a 2 and b2 • 

For type I censoring, III which observations belonging to each 

subpopulation are unknown, we obtained finite mixture of Pareto distributions using a 

BemouJli distribution with probability of success p, (0 < p, < 1) . 

The estimates of parameters by the method of maximum likelihood 

under complete as well as type I censoring, for the set of parameters 

a, = .004, a2 = .09.hr ::::::. 7, b2 ::::::. 3 and p, = 0.5 with various combinations of n (sample 

size) and N (censoring income) are given in Tables 6.1 to 6.3. Tables 6.4 to 6.6 

provide the estimates for another set of parameters a,:::: 2, a2 :::: 3,b, :::: 5, b2 = 7 and 

p, = 0.5 under complete as well as type I censoring with various combinations of n 

and N. The values in brackets provide the variance of the estimates. Simulation 

studies reported here shows that M.L.E provide estimates with small bias and less 

variance. The variance of the estimates decreases as n increases. Graphs of the actual and 

estimated Lorenz curve are given in Figures 6.1 to 6.3. 

Table 6.1 Maximum likelihood estimates of parameters under complete sample for 
(1, = .004,a2 = .09,b, = 7,h2 = 3 and p, = 0.5 

n=30 n=50 n=IOO 
(1,=.00411472 (1, =.00423549 (1,=.00410912 

(3.38321 E-8) , (2.46863E-8) (2.4321 E-8) 

(12 =.0983347 (12 ::::.0986351 a,=.100476 

(.0000321937) (.00001894) (3.85598E-6) 
~ 

h,=6.89626 b, =6.93539 b,=6.87722 

(.0739452) (.0661982) (.00993038) 

b2 =2.86J46 b,=2.8976 b2 =2.91442 

(.0139852) (.0124295) (.0036 J 627) 

PI =.500057 P, =.500052 p,=.500046 

(3.2202E-9) (2.70565E-9) (2.09203E-9) 
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Table 6.2 Maxjmum likelihood estimates of parameters under type I censoring for 
QI = .004,a2 = .09,bl = 7,b2 = 3 and PI = 0.5 in which observations belonging to each 

subpopulation are known. 

~nSOring 0=30 0=50 n=100 
lllcome 

°1 =.0044872 °1 =.00438394 ill =·0049R4 

(8.421E-7) (4.669E-7) (l.19918E-8) 

il2 =·0963709 02 =.0980649 il2 =·094886 

(.0008286) (l.8715E-6) ( I.S042E-6) 

N=30 bl =6.S5789 bl =6.88304 bl =6.9353 

(.151983) (.0848708) (.001556) 
I b2 =2.92781 b2 =2.9440S 

b'=2.9~t1 (.0500188) (.000855) (.0006696) 

PI =.500443 PI =.500446 PI =.501203 

(7.826E-7) (2.007E-7) (I.98099E-7) I 
ill =.00380753 ill =.00375961 I ill =.0044017 
(l.183E-6) ( 1.492E-7) (2.5361 E-S) 
Q, =.0988792 il2 =·100693 il2 =·0981161 

(.0000328) (6.25E-7) (4.62E-7) 
~ 

N=50 bl =7'()0632 bl =7.10751 bl =7.04669 

(.0308752) (.006559) (.0006628) 

b2 =2.94612 b2 =2.97302 b2 =2.97256 

(.0149049) (.0002166) (.00021) 

PJ =.499885 PI =.49968 PI =.500298 

(3.643E-8) (2.265E-8) (2. 1404E-8) 
a, =.00420753 0J =.00407865 0J=.004077 

( 1.0903E-7) (1.024E-7) (2.1194E-8) 

I 
il,=.098026 il2 =·09778 ill =.0984021 

(6.6085E-6) (1.78E-6) ( 1. 664 2E-6) I 
N=l00 bJ =6.94212 bl =7.0007 bl =6.984 

(.006307) (.000314) (.00004) 

b2 =2.96212 b2 =2.9459 b2 =2.96334 

(.001755) (.00148) (.0002764) 

PI =.50006 PI =.500086 PI =.500153 

(8.6623E-8) (3.726E-9) (3.35E-9) 
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Table 6.3 Maximum iikeHhood estimates of parameters under type I censoring for 
Q I = .004, Q 2 = .09, bl = 7, b2 = 3 and PI = O.S in which observations belonging to each 

subpopulation are unknown. 

! I I I 
Censoring 

n=30 n=50 n=l00 
mcome 

GI =.0043864 GI=·004298 QI =.00418 

(7.53E-8) (l.6192E-S) (2.022E-9) 

Gz =.0973671 G2 =·09767 Q2=·098766 

(.00001 113) ( 1.799E-6) (4.506E-7) 

N=30 bl =6.80949 b
l
-=6.83318 b,=6.94737 

(.141223) (.0527144) (.034792) 
~ 

b2=2.87988 b2 =2.94875 b2 =2.95472 

(.00386) (.001495) (.0004162) 

p, =.500074 PI =.500101 PI =.500116 

(4.8236E-8) (3.8091E-8) (4.945E-ll) 

QI =.00417876 GI =.0042373 QI=·004172 

(6. 18E-9) ( 1.60344E-9) ( 1.548E-9) 

G2 =·097445 G~ =.0986273 Q2=·09959 

(.0000237) (.00001751) (.0000111) 

N=50 bl =6.88576 bl =6.91828 bl =6.92217 

(.0126) (.002838) (.0003794) 
A 

be =2.88065 b2 =2.92881 b2 =2.93605 

(.OlOl) (.0011) (.000867) 

PI =.50062 PI =.500009 PI =.50005 

(S.5511 E-9) (2.114IE-9) (1.07E-9) 

GI =.00412299 a, =.004205 al =.0041796 

(3.414E-9) (1.57E-9) ( l.044E-9) 

a~=.096988 
I -

Q2=·098146 ll2 =.099 I 5 

(.0000231) (.0000169) (.0000lO8) 

N=lOO bl =6.86767 bl =6.91419 bl =6.9157 

(.00716) (.00287) (.0004095) 

h2=2.89201 b,=2.94047 b~=2.946S4 
-

(.010018) (.001141 ) (.0008588) 

PI =.500097 PI =.500047 PI =.500084 

(9.6565E-9) (1.4751E-9) (6.7675E-IO) 
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Table 6.4 Maximum likelihood estimates of parameters under complete sample for 
Q. = 2,Q2 = 3,b. = 5,b2 = 7 and p. = 0.5 

n=30 n=50 n~~~ £1( =2.1796 £1. =1.90602 ell =2.02431 

(.015002) (.0071) (.001621) 

£1 2 =2.77746 £1 2 =3.13001 £1 2 =2.99554 

(.090189) (.063607) (.014771) 

b. =4.61384 b( =5.24161 h. =4.94152 

(.044781) (.033323) (.01437) 

b2 =7.56975 b
2
=6.80461 b2 =7.i 6267 

(.46587) (.325679) (.1713) I 
p.=.5 p(=.5 p(=.5 

(2.7E-11 ) (2.1E-ll) (1.7E-12) 

Table 6.5 Maximum likelihood estimates of parameters under type I censoring for 
Q( = 2, Q 2 = 3, b. = 5, b2 = 7 and p. = 0.5 in which observations belonging to each 

subpopulation are known. 

Censoring 
n=30 n=50 n=100 

mcome 

£1( =2.18731 {/. =1.945499 (1.=2.04146 

(.014204) (.0097261) (.005322) 

£12=2.81789 £1 2 =3.08213 a2 =3.03947 

(.092232) (.0610755) (.020721) 

N=0.05 
b. =4.60094 bl =5.15087 b.=4.91116 

(.042512) (.032336) (.0299144) 
A 

b.=7.46988 b2 =6.89746 b2 =7.07043 
" 
(.45217) (.294549) (.174879) 

P. =.499975 PI =.500033 PI =.499973 
(3.5198E-l1) (1.8122E-11) (1.2789E-l1) 

£1(=2.1819 £1( =1.90403 (/.=2.02279 

(.0113455) (.006345) (.001711) 
£12 =2.77861 a,=3.13203 £1 2 =2.99652 

(.090253) (.0637089) (.015009) 

N=O.l 
b. =4.60695 b(=5.24602 b. =4.94477 

(.046137) (.044466) (.0141144) 
A 

b2 =7.56688 b2 =6.8007 b2 =7.1607 

(.465398) (.325851 ) (.27219) 

PI =.465398 PI =.4999 p.=.5 
(7.14726E-13) (2.4857E-14) ( 1.3237E-14) 
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Table 6.6 Maximum likelihood estimates of parameters under type I censoring for 
al == 2,a2 == 3,b1 = 5,bz == 7 and PI = 0.5 in which observations belonging to each 

sub population are unknown. 

Censoring 
n=30 n=50 n=100 

Income 

£1 1 =1.96906 £11=2.05246 al =2.14809 

(.04259) (.010876) (.004623) 

£1,=2.94507 {1~=3.23991 a2 =3.0688 

(.178502) (.11828) (.0296502) 

N=0.05 
bl =5.15519 bl =4.8908 bl =4.75426 

(.217949) (.09505) (.026343) 

b2 =7.17026 b2 =6.67554 b2 =6.97098 

(.84553) (.807092) (.79998) 

PI =.500052 PI =.4999 PI =.500011 

(6.2789E-9) (3.295E-9) (3.0716E-9) 

al =1.98499 {ll =2.02314 al =2.1451 

(.029985) (.016288) (.0092313) 

a2 =3.02692 °2 =3.23613 a2 =3.07318 

(.072712) (.01157) (.002619) 

N=0.1 
bl =5.10479 bl =4.92734 bl =4.76164 

(.134448) (.0945907) (.0441035) 
A --

b2=6.96226 b2 =6.69581 b,=6.94939 

(.252676) (.090537) (.0768141) 

PI =.49999 PI =.4999 PI =.4999 
( 1.3833E-12) (4.778E-13) (1.0539E-14) 
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Fig.6.1 Graph or actual (aL =- .OO4,a2 =- .09,b, =- 7,b2 =- 3 and PI =-.5) and £:Stimated 

Lorenz curve (al =- .0041,02 =- . I,h. =- 6.88.b2 =- 2.91 and PI =-.5 )for the complete 

sample case. 

Lorenz curve 

1.2 
1 

:=: 0.8 • 
U:

0
.
6 ~ ::r 0.4 

0.2 
o 

o 0.5 

F(x) 

1 

- Line 
- Actual 

Estimated 

1.5 

Fig.6.2 Graph of actual (a, =- .004,a2 =- .09,b, =- 7,b2 =- 3 and PI =- .5) and estimated 

Lorenz curve (a. =.0044'U2 =- .0963.b, =- 6.86,b2 =- 2.93 and PI =-.5 ) for the censored 

sample case. 

1.5 

:=: 1 
>< -LL :r 0.5 

o 
o 0.5 
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- Actual 

Estimated 

1 1.5 

F(x) 
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Fig. 6.3 Graph oC actual (a l = 2,a2 = 3.bJ = 5,b2 = 7 and PI =.5) and estimated 

Lorenz curve (a] =1.96,02 =2.94,bl =5.2,b2 =7.2 and PI =.5) for the censored 

sample case. 

6.6 Data analysis 

1.2 
1 

::: 0.8 J 
w 
iL 0.6 
::r 0.4 

0.2 
o 

o 0.5 

Lorenz curve 

--line 

- Actual 
Estimated 

1 1.5 

F(x) 

For the illustration of the method. we consider a data on household 

expenditures for four commodity groups of 20 men and 20 women (see Aitchison, 

1986). The expenditures are given in Hong Kong dollars, and the commodity groups are 

Housing. Foodstuffs. Other items and Services. The data is given in Table 6.7. To 

understand the behaviour of Lorenz curve in the censored situation, we censored the 

data with different censoring incomes, since incomes for different groups are varying. 

The estimates of parameters using the method of maximum likelihood under complete 

as well as censored set up are given in Table 6.8 to Table 6. 11 . We then used the 

Kolmogorov smirnov statistic to test the goodness of fit. The values of the test statistic 

D" for different commodities are given in Tablc 6.12. The table value at 5 % 

significance level is 0.215036. From the analysis, it concludes that finite mixture of 

Pareto distribution with common shape parameter is a plausible model for the data. We 

then estimate the Lorenz curve for different groups which are represented by Figures 

6.4 to 6.8. 

The data come from a survey of household expenditure and give the 

expenditure of 20 single men (M) and 20 single women (W) on four commodity 

groups. The units of expenditure are Hong Kong dollars, and the commodity groups 

are as follows. 
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Housing, including fuel and light 

2 Foodstuffs, including alcohol and tobacco 

3 Other goods, including clothing, footwear and durable goods 

4 Services, including transport and vehicles 

Table 6.7 Household expenditure data 

household commodity group I household commodity group 
no. no. 

1 2 3 4 1 2 3 4 

Ml ! 497 1591 153 291 I WI 820 114 181 154 I 

1942 1 M2 839 302 365 W2 184 74 6 20 

M3 798 1308 668 584 W3 921 66 I 1686 455 
I 
I I 

M4 892 842 287 395 W4 488 80 
1 103 115 

I 
1

176 1104 M5 1585 781 2476 1740 W5 721 83 

M6 755 764 428 438 I W6 614 55 441 193 
I 

M7 388 655 153 233 W7 801 56 357 214 

MS 617 879 757 719 W8 396 59 61 80 

M9 

1

248 438 22 65 W9 864 65 1618 352 

MW 1641 440 6471 2063 WIO 845 64 1935 1414 

Ml ] 1180 1243 
1

768 813 Wll 404 97 33 147 
I 

MI2 619 684 99 204 WI2 781 47 1906 452 
I 

M13 253 422 15 48 Wl3 
1

457 103 136 108 

M14 66] I 171 188 W14 
1

1029 71 244 189 1739 

11981 
I I 

11032 M]5 869 1489 WI5 1047 90 653 298 I 

MI6 1746 
1

746 2662 1594 WI6 552 91 185 158 I 
I 

\304 
I 

M17 1865 \915 5184 1767 W17 718 104 583 

175 
I 

MIS 238 \522 129 WtS 495 114 65 \74 

1147 M19 1199 \1095 \261 344 W19 382 77 230 
I 

i M20 1524 1964 [1739 1410 W20 1090 59 313 ! 177 
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Table 6.8 Maximum likelihood estimates oi parameters of housing expenses of 

men and women under complete as well as censoring. 

Censoring income(in dollars) 

N=lOOO l Item 
N=2000 N=1500 

G,=0.00007 G1=0.OOO09 G1 =0.000125 

Housing 
Q2=0.0001 G2 =0.000085 G2 =0.000112 

expenses b =b =b I 2 hi =b2 =b bl =b2 =b 

, 17=14.17 h =11.45 h=8.86776 

i\ =0.5 PI =0.408 PI =0.4047 

Table 6.9 Maximum likelihood estimates of parameters of food expenses of men 

and women under complete as well as censoring. 

Censoring income(in dollars) 
Item 

N=1400 N=lQOO N=800 

(11=0.00007 QI =0.0000719 GI =0.000082 

Food 
(12=0.0007 G2 =0.00081369 Q2=0.001328 

Expenses h. ==b, =b I _ bl =b2 =b bl =b2 =b 

b =17.42 b =15.6138 b =9.56 

L PI =0.5 PI =0.5002 PI =0.499616 
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Table 6.10 Maximum likelihood estimates of parameters of other expenses of 

men and women under complete as well as censoring. 

I Censoring income(in dollars) 

~lem 
N=6500 N=5000 N=lOOO 

£11=0.0011 £1 1 =0.00232 £11 =0.002918 

r----

Q2=0.0019 il2 =0.002815 £1,=0.00343 
Other 

"-

Expenses bl =b
2

:;;;::.b b -b -b 1- 2- b -b -b 1- 2-

b :;;;::.1.625 b =1.4675 b =1.409215 

PI =0.5 PI =0.4763 P; =0.476815 

Table 6.11 Maximum likelihood estimates of parameters of service expenses of 

men and women under complete as well as censoring. 

Censoring income(in dol1ars) 
Item 

N=2100 N=1500 N=1000 

£11=0.00011 £11 =0.0001158 £1 1 =0.0001598 

Service 
£12 =0.0004 £1 2 =0.00044 il2 =0.000514 

Expenses bl =b2 =b bl =b2 =b bl =b2 =b 

b=12.45 b =11.2505 b =9.06372 

PI =0.5 PI =0.498103 PI =0.487185 

Table 6.12 Calculated values of the test statistic for different expenses. 

Different Max Dn 
commodities (M.L.E) 
Housing 

0.200094 
Expenses 

Food Expenses 0.133804 

Other Expenses 0.0430059 

Service Expenses 0.089086 
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Fig. 6.4 Graph of maximum likelihood estimate of Lorenz curve of housing expenses 

of men and women 
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Fig. 6.S Graph of maximum likelihood estimate of Lorenz curve of service expenses 

of men and women 
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1.2 

Lorenz curves for complete as well as censored samples are almost identical for housing 

expenses and service expenses of men and women. 
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Fig. 6.6 Graph of maximum likelihood estimate of Lorenz curve of food expenses 

of men and women 
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Fig.6.7 Graph of maximum likelihood estimate of Lorenz curve of other expenses 

of men and women 
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However, L.'1renz curve in the censored set up provide more disparity for food expenses 

and other expenses of men and women. 
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Fig. 6.8 Graph of maximum likelihood estimate of Lorenz curve of different 

expenses of men and women 

lorenz curve (complete sample case) 
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In the complete sample set up. Lorenz curve gives more disparity for other expenses 

than housing, foodstuffs and service expenses of men and women. 

6.7 Finite mixture of beta distribution 

In this section, we study the role of finite mixture of beta distribution 

(3.1) in the context of income analysis. For the model (3.1), the Lorenz curve 

L(F(x» is obtained as 

L(F(x» = 

p,e, (d, + 1)[1 - (1 - e,x)" (I + e,d,x)l + (1 - p, )e, (d, + 1)[1 - (1 - e,x)" (I + e,d,x)] 

[p,e,(d, + I) + (1 - p, )e, (d, + I)l 

6.8 Estimation of Lorenz curve 

(6.5) 

For estimating the Lorenz curve, we need the estimate of parameters of 

the model (3 . J). The estimation of parameters of the model is discussed in Chapter 3. 

Thus M.L.E of L(F(x)) as 



175 

(6.6) 

6. ') Simulation study 

In this section, we carry out a simulation study to assess the 

performance of the estimator. 

For type 1 censoring, In which observations belonging to each 

subpopulation are known, we generated two sets of samples, one from a beta 

distribution with parameters c, and d, and the second from a beta distribution with 

parameters c2 and d2 • 

For type I censoring, In which observations belonging to each 

subpopulation are unknown, we obtained finite mixture of beta distributions using a 

Bernoulli distribution with probability of success PI (0 < p, < \). 

The estimates of parameters by the method of maximum likelihood 

under complete and type censonng, for the set of parameters 

C, =. L c2 = .2, d
J 
= 5, d2 = 10 and PJ = 0.5 with various combinations of Il and N are 

given in Table 6.13 to 6.15. The values in brackets provide the variance of the 

estimates. Simulation study reported here shows that M.L.E provides estimates with 

small bias. The variance of the estimates decreases as n increases. Graphs of the actual 

and estimated Lorenz curve are given in Fig 6.9 and 6.10. 
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Table 6.13 Maximum likelihood estimates of parameters under complete sample 
for Cl = .1,c2 = .2,d l = 5,d2 = 10and PI = 0.5 

n=30 n=50 n=100 
Cl =.1098236 Cl =.109352 Cl =.0916796 

(8.322E-6) (2.74217E-8) (1.31172E-9) 

(\=.188062 C, =.1789255 c2 =·179949 

(1.23116E-7) (3.2446E-6) (1.26327E-6) 

d
l 
=4.92574 d l =5.07017 d l =5.02106 

(.04452) (.0151182) (.00848767) 

d2 =10.3343 I d2 = 10.4858 d2 =10.4986 

(.08585) (.01558) (.00303049) 

PI =.5 PI =.5 PI=·5 
(3.9E-8) (2.7E-9) (1.2E-l1) 

Table 6.14 Maximum likelihood estimates of parameters under type I censoring for 
Cl =.1,c2 =.2,d, =5,d2 = 10 and PI =0.5 in which observations belonging to each 

subpopulation are known. 

Censoring 
n=30 n=50 n=100 

Income 

Cl =.1220745 Cl =.0904950 Cl =.0903679 

( 1.40616E-9) ( 1.03046E-9) (2. 76269E-l1) 
c2 =.20328749 c2 =·280551 (;2=·24784 

(1.32434E-8) (1.06227E-8) (1.80183E-9) 
A 

N=15 
d l =4.83494 dl =5.0323 d l =5.06633 

(.52921 ) (.266372) (.00135048) 

I d2 =10.1772 do = 1 0.078881 d2 =10.0850 

~ (.17411) (.038415) (.0007159) 

PI =.586043 PI =.50153 PI =.50697 
I 

(.0158459) (.008962) (.00099) 

('\ =.128464 i\ =.170163 ('\ =.132481 

(7.33582E-7) (4.38079E-7) (1.194E-8) 

I (\=.1742113 22 =.20692 (;,=.199065 

(2.597E-8) (9.55987E-9) (2.61837E-9) 

d l =5.2529 dl =4.96169 dl =4.76143 I 

N=19 , 
(.0036046) (.0199362) (.002968) 

d, =9.75696 d2 =1O·12323 d 2 =10.40191 

(.000887) (,0005169) (.000348) 

I PI =.482237 PI =.439791 1\ =.532104 

I (.000853) (.0001795) (.0000211) . 
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Table 6.15 Maximum likelihood estimates of parameters under type I censoring for 
Cl =.l,c2 =.2,d l ::;;5,d2 = 10 and PI ::;;0.5 in which observations belonging to each 

subpopulation are unknown. 

Censoring 
Estimate n=30 ! n::;;50 n=100 

Income 

Cl =.103728 i\ =.103320 Cl =.10266 

(.000666) (.000466) (.00001924 ) 

c2 =·25195 c,=.20506 c2 =·205053 

(.000535) (2.36588E-6) ( 1.6508E-6) 

N=15 M.L.E 
d l =5.9867 

! 
d l =5.2926 d l =5.03388 

(.02679) (.00149) (.000904) 

d 2 =10.32588 d 2 =10.0336 d 2 =10.0319 

(.4479) (.00312) (.002064) 

PI =.51162 JJI =.50804 PI =.507314 

(.09115) (.000272) (.0000748) 

c, =.1129162 C, =.1168359 Cl =.102233 

(.0000126) (2.9314E-6) (8.36481 E-7) 
(\=.199692 (;2=·20114 c2 =·188321 

(1.4724E-6) (3.6192E-7) (6.433E-8) 
~ 

N=19 M.L.E 
d l =5.90832 d, =5.0816 d, =5.05114 

(.704024) (.004299) (.0010644) 

d 2 =10.94874 d, =10.96933 d 2 =10.08138 

(.611743) (.013504) (.0013461 ) 

PI =.43484 PI =.447885 /'1 =.514562 
(.0000388) (.0000204) (2.167IE-7) 

Fig. 6.9 Graph of actual (Cl::;; .1, c2 = .2, dl = 5, d 2 = 10 and p, =.5) and estimated 

~ ~ 

Lorenz curve U\ =.112,c2 =.l99,d, =5.91,d2 = 10.95 and PI =.5) for the censored 

sample case. 
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Chapter 7 

CONCLUSION 

7.1 Introduction 

The remarkable fact about mixture distributions is that there are lots of 

real life situations where the concept of mixture distributions can be applied. For 

example. in life testing experiments, the systems will be failed due to different 

causes and the times to failure due to different reasons are likely to follow 

different distributions. A knowledge of these distrihutions is essential to eliminate 

cause of failures and thereby to improve the reliability. 

In the foregone chapters, we have examined the role of finite mixture 

of Pareto and finite mixture of heta distributions in the context of reliability and 

income analysis. We have proved that finite mixture of Pareto and finite mixture 

of beta distributions are identifiable. The estimation of parameters has been done 

using various techniques for complete as well as censored samples. Maximum 

likelihood and Bayes methods provide estimates with small bias and less variance (in 

the case of Bayes. we calculated posterior risk) and the variance of the estimates 

decreases as 11 increases. As expected, the method of moments was shown to be 

inferior to maximum likelihood estimation, Bayes method and maximum product of 

spacing. We have employed tinite mixture models for prediction of future 

observations and for this purpose Bayesian approach has been used. It should be 

remarked that the results obtained in Bayesian prediction seems to be quite good. 

Maximum likelihood estimation of stress-strength reliability and Lorenz curve 

using finite mixture models has also been carried out. 
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Finite mixture of Pareto always possesses decreasing hazard rate 

function. However, finite mixture of beta possesses decreasing hazard rate, 

increasing hazard rate, constant hazard rate and bathtub pattern depending upon the 

values of the parameters. We have employed the finite mixture of Pare to and finite 

mixture of beta distrihutions in modelling four different decreasing hazard rate 

situations. Siflce decreasing hazard rate is most commonly encountered in many 

real life situations, finite mixture of Pareto and finite mixture of beta can be an ideal 

choice for modelling a wide range of such situations when parametric methods are 

resorted to. 

7.2 Future works 

Estimation of the number of components is a special kind of model 

choice problem in the analysis of mixture model, for which there is a number of 

possible solutions. There is no universal method, and the implementation of the 

previous methods is often very difficult. Hence there exists a wide scope for 

attempting to find tractable solutions for the number of components in a mixture 

model, either by refining the existing ones or by trying some new approach. 

Progressive censoring and hybrid censoring occur frequently in many 

real life situations and therefore analysis using mixtures in this context is an area for 

future study. 

Bayesiun estimation of stress-strength reliability using finite mixture 

models under complete as well as censored cases may also be attempted. 

So far we have considered the maximum likelihood estimation of the 

Lorenl curve for measuring income inequality; another important area which would 

require attention is the Bayesian estimation of Lorenz curve and other income 

inequality measures using finite mixture models. 

The analysis of finite mixture of discrete distributions IS an area of 

research work that remains to be explored. 
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In this study, we have attempted parametric approach usmg finite 

mixture of Pareto and finite mixture of beta models in the univariate set up. 

However, a systematic study on finite mixture of mulrivariate distributions is not 

yet carried out. Accordingly, analysis of multivariate mixture models is also an area 

worth exploring. 
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