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Chapter 1

INTRODUCTION AND REVIEW OF LITERATURE

1.1 TIntroduction

Finite mixtures of distributions provide an important tool in
modelling a wide range of observed phenomena, which do not normally yield to
modelling through classical distributions like normal, gamma, Poisson. binomial, etc.,
on account of their heterogeneous nature and inherent complexity. In a finite mixture
medel, the distribution of random quantity of interest is modelied as a mixture of a
finite number of component distributions in varying proportions. A mixture model is,
thus, able to model quite complex sitvations through an appropriate choice of its
components to represent accurately the local areas of support of the true distribution.
It can handle situations where a single parametric family is unable to provide a
satisfactory model for local variation in the observed data. The flexibility and high
degree of accuracy of finite mixture models have been the main reason for their
successful applications in a wide range of fields in the biological. physical and social

sciences.

The concept of finite mixture distribution was pioneered by
Newcomb (1886) as a model for outliers. However, the credit for the introduction of
statistical modelling using finite mixtures of distributions goes to Pearson (1894)
while applying the technique in an analysis of crab morphometry data provided by
Weldon (1892, 1893). The data was a set of measurements on the ratio of forehead to
body length for 1000 crabs. A plot of the data showed that they were skewed to the
right. Weldon (1893) suggested that the reason for this skewness might be that the
sample contained representatives of two types of crab but when the data were
collected no such differentiation had been recorded. Thus. Pearson (1894) proposed

that the distribution of the measurements might be modelled by a weighted sum of
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two normal distributions, with the two weights being the proportion of the crabs of
each type. Mathematically, Pearson suggested the distribution for the measurement on

the crabs was of the form
f(xX)=pN(x;4,,0)+ (1= p)N(x 41,,0,), (L.1)

where p is the proportion of a type of crab for which the ratio of forehead to body
length has mean £, and standard deviation &, and (1- p) is the proportion of a type
of crab for which the ratio of forehead to body length has mean 4, and standard

deviatong,. In (1.1). N(x; 4,.0,) 1s the normal density given by

1 1 )
()= exXpl-——s(x=4)7], -o<x<oo,
J V2o, pl 20" A

1
—o < Y, <o, 0,>0, i=12.

The density (1.1) will be bimodal if the two component distributions are widely
separated or will simply display a degree of skewness when the separation of the
components is not so great. To model the distnbution (1.1) to a set of data, the

parameters p,t,,4,,0, ando, has to be cstimaied. Pearson (1894) obtained the

moments-based estimates of the five parameters of the mixture of normal distribution
as a solution of a ninth degree polynomial which was a task, at the time so
computationally demanding. Various attempts were made over the ensuing years to
simplify Pearson’s (1894) moments based approach to fitting of a normal mixture
model. The use of mixture of normal distributions (1.1) to model the different species
of crab motivated extensive use of finite mixture distributions in other applied

sciences.
1.2 Definiticn

Let X be a random variable with a family of probability
distributions {g (%:8);8¢ @}, where the parameter space © is a subset of R", the

th

m" dimensional Eucledian space. Let G(8) be a cumulative distribution function of

6. Then the probability density function f{x) defined by



f(x)= [¢(:0)dG(8), (1.2)
[©]
is called a general mixture density function. In (1.2), G(.)is called the mixing
distribution.

When G(.) i1s discrete and assigns positive probability to only a

finite number of points 8 (i =1,2,...,k), the density (1.2) can be written in the form

fx,0)=p fi(x,)+p,f[,(x,0)+ ..+ p, f,(x,0) (1.3)

where
£x.9)20, [f(x.0)dx=1, p,20 (i=12...k) and p,+ p,+..+p, =1.

Then (1.3) is called a finite mixture of densities. The constants p,’s are called mixing

weights and f,"s are called component densities.

1.3 Identifiability

The concept of identifiability plays a vital role in the analysis of the
finite mixture models. A mixture is identifiable if there exists a one-to-one
correspondence between the mixing distribution and the resulting mixture. Mixtures
that are not identifiable cannot be expressed uniquely as functions of component and
mixing distributions. For example, the finite mixture of uniform distributions is not

identifiable. since the mixture density f(x) can be represented in two different forms

1 2
fx) —§U(~1,1_)+§U(~2,2)
and
F(0=LU(2.041U(-1.2).
. 5 5 :

where U{a,b) is a uniform distribution over the interval («.b).



1.3.1 Definition

Consider the mixture density function given in (1.2). Let Abe the

class of all mixing distributions G and ¢ be the corresponding class of mixtures.

DefineQ: A — {byQ(G)= f . The class Aand equivalently the family ¢ is said to
be identifiable with respect to the family{f (x,8);0¢€ @} of probability distributions

if the mapping Q is a one-to-one mapping between Aand{ . That is, for each
element in one class we can identify one corresponding element in the other class. A

class ¢ of finite mixtures of densities is said to be identifiable if and only if, for all

f(x,€) belonging to ¢, the equality of two representations

k
pfi(x6)=3 pf(x.6)

k
=] i=]

implies that & =k, p = p,' and 6 =6,.', i=L2,...k.

The importance of identifiability is whether or not the distribution G
can be uniquely determined from observations. The inference procedures on the
mixture distributions can be meaningfully discussed only if the family of mixture

distributions is identifiable,

Teicher (1960, 1961, 1963, and 1967) introduced the concept of
identifiability and developed a theory to identify mixtures. Teicher (1960) showed
that a finite mixture of Poisson distnbutions is identifiable, where as mixtures of

binomial distributions are not identifiable if

N <2k—1,

where N is the common number of trials in the component binomial distributions and
k is the number of components in the mixture. Yakowitz and Spragins (1968) showed
that finite mixtures of negative binomial component distributions are identifiable.
Titterington et.al. (1985) has given a lucid account ot the concept of identifiability of
mixturcs. They pointed out that most of the finite mixturcs of continuous densities are
identifiable; an exception is a mixture of uniform densities. Some discussion on

identifiability of finite mixtures is given in Patil and Bildikar (1966), McLachlan and
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Basford (1988) and Maritz and Levin (1989). Prakasa Rao (1992) and Lindsay (1995)

have given a nice review on this topic. Recently, Al-Hussaini et.al. (2000) showed

that a finite mixture of Gompertz densities is identifiable.

1.4 [Estimation of parameters

Over the years, a number of methods have been suggested for
estimating the parameters in a finite mixture model. Pearson (1894), for example,
applied the method of moments, which nceds to find the roots of a ninth degree
polynomial to derive the estimates of the five parameters involved in the model (1.1).
Cohen (1967) subsequently developed an iterative method for solving the same

problem that only requires solving cubic polynomials.

The method of moments was shown to be inferior to maximum
likelihood estimation (M.L.E) in a mixture of two normal distributions by Fryer and
Robertson (1972) and Tan and Chang (1972). Indeed, the method of moments does
not guarantee any sort of optimality of solutions but was initially useful in certain
situations where the- M.L.E solutions were intractable. However, M.L.E became
popular for general mixture problems with the availability of digital computers and
the development of the expectation maximization (E.M) algorithm by Dempster et.al.

(1977).

Redner and Waiker (1984) pointed out some difficulties with M.L.E
for finite mixtures. First, the likelihood function cannot be assumed generally to have
an upper bound, creating the possibtlity of divergence. Second, there are often many
sub-optimal local minima of the likelihood function. McLachlan and Basford (1988)
pointed out that these difficulties make the performance of the E.M algorithm very
sensitive to the starting value of the model parameters. The E.M algorithm does not
have the ability to escape sub-optimal local minima and can diverge if initialized
close to a singularity in the likelihood function. Furthermore, the convergence is

generally slow and this is exacerbated by a poor initialization.

Another method for the estimation of parameters of the mixture
models 1s Bayes estimation, where the likelihood of the data is combined with prior
belicf about the parameters to draw an inference. Use of prior information gives an

advantage for Bayes method over M.L.E since an inference can be made even with a
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small number of data points. M.L.E solutions, especially for models with many
paramecters, become ill-posed when the data set is small. However, in certain
situations, Bayes estimation of parameters of mixture distributions currently suffers
from the lengthy computations required to perform the inference, as integrals must be
performed over a potentially unbounded multidimensional space. Further, the
posterior inference can rarely be sampled directly, simplifying conjugate priors rarely

exist, and in many situations there are no sufficient statistics to simplify the analysis.

1.5 Estimation of number of components

In the analysis of finite mixture models. a question that remains is
how to estimate k , the number of components in the mixture. A likelihood ratio test is
a natural candidate for testing, say k =k, againstk =k (k, >k,), but this is well

known to have problems in the context of finite mixture densities (sec Everitt (1996));
nevertheless, the test can still often be useful as an informal indicator of number of

components.

A variety of other techniques to estimate the number of components
in a mixture is described in McLachlan and Peel (2000). The problem is essentially
equivalent to that of determining the number of clusters in the samples. (see Everitt et.

al. (2001)).
1.6 Fields of applications

Finite mixture models are being used extensively for statistical
analysis in many real life situations. For example. in the study of the distribution of
length of fish, the sample of measurements consist of observations either from more
than one species or from more than one age group of one species. The biologist,
however, would have no way of classifying the items of the sample according to
different age group. Thus the situation becomes a mixture distribution, the mixing
being over a parameter depending on the unobservable variate age. The graph on
measurements on length of tish will show multimodality if the fish stock contains

populations from different years’s spawning.

In reliability theory, the mixture distributions are uscd for the

analysis of the failure times of a sample of items of coherent laser used in
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telecommunication network. In an experiment, one hundred and three laser devices
were operated at a temperature of 70 degree Celsius until all had failed. The
experiment was rur longer than one year before all the devices had failed, because
most of the devices were extremely reliable. The sample thus consists of two distinct
populations, one with a very short mean life and one with a much longer mean life.
This can be considered as an example of a mixture of two exponential distributions
with probability density function of the form

ol -x, (d-p)

fxh Aoy = expl T+ exp{%} L0<x<oo

where 0< p<l and 4 >0 ,i=12.

The above model will be useful to predict how long all manufactured
lasers should be life tested to assure that the final product contained no device from

the infant mortality population.

There are several areas in which mixture distributions are being
applied more frequently. Chronologically, a representative cross-section of the field of
applications include the study on distributions of evening temperatures (Charlier and
Wicksell, 1924), mice death times (Muench, 1936), comet frequencies (Schilling,
1947), chromosome association (Skellam, 1948), lifeime of valves (Davis, 1952;
Everitt and Hand, 1981), plankton frequencies (Cassie, 1962), plant heights (Tanaka,
1962). response times (Cox,1966), death notice frequencies (Hasselblad, 1969), pike
lengths (Macdonald, 1971), gaps in traffic (Ashton, 1971), Pollen grains (Usinger,
1975), crop concentrations {Peters and Coberly, 1976), clinical test scores (Symons,
1981), crime frequencies (Harris, 1983), mixed stock fishery composition (Miller,
1987), philatelic mixtures (lzenmann and Sommer,1988), and task completion
(Desmond and Chapman, 1993). Apart from these applications, mixture models are
useful in robustness studies (Hyrenius, 1950; Tan, 1980), cluster analysis and latent
structure models (Fielding. 1977; Symons, 1981 and McLachlan and Basford, 1988),
approximating other distributions (Dalal. 1978), random variate generation (Peterson
and Kronmal, 1982). kernel based density estimation (Titterington, 1983), analyzing
outliers (Barnett and Lewis, 1984), modelling prior densities (Diaconis and Ylvisaker,

1985) and artificial neural networks (Ripley, 1994). Finite mixture densities are also
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useful in medical research to model age of onset of schizophrema (Levine, 1981;
McLachlan, 1987; McLachlan and Peel, 2000 and Everitt, 2003). Finite mixture
distributions are useful to mcdel variation of mortality rates between geographical
areas (Betemps and Buncher, 1993), to model survival data (McGitfin et.al., 1993;
McLachlan and McGiffin, 1994 and McLachian and Peel, 2000) and to identify
regions of brain activation in functional magnetic resonance imaging (Bullmore et.al.,

1996; Everitt and Bullmore, 1999 and Evenitt, 1998).

In the present study, the role of finite mixture of Pareto and finite
mixture of beta distributions in the context of reliability and income analysis is

examined.

1.7 Mixture distributions in reliability analysis

Various parametric models are used in the analysis of lifetime data
and in problems related to the modelling of ageing or failure processes. Among
univariate models, a few particular distributions occupy a central role because of
their demonstrated usefulness in a wide range of situations. The exponential
distribution appeared suitable for modelling the lifetimes of various types of
manufactured items (see Davis, 1952; Epstein and Sobel, 1953). Later, Weibull and
lognormal distributions were employed as popular models for lifetimes of
manufactured items (see Kao, 1959; Nelson, 1972; Nelson and Hahn, 1972,

Whittemore and Altschuler, 1976).

In lifetime data analysis, the population of lifetimes can be
decomposed into subpopulations, based on lifetimes of units in different production
periods, with differences in designs, made up of different raw materials etc. In such
situations, it 1s usual to model the data using a finite mixture of distributions.
Accordingly, Mendenhall and Hader (1958), considered the finite mixture of two
exponential distributions for the analysis of failure times for ARC-1 VHF
communication transmitter-receivers of a single commercial airline. Cox (1959) has
analyzed the data on failure times using a mixture of exponential models by
classifying the data on failure times into two subpopulations depending on whether
the cause of failure was identified or not. Kao (1959) used finite mixture of two

Weibull components for life testing of electron tubes. The finite mixtures of inverse
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Gaussian distributions in the context of reliability were studied by Ahmad (1982),
Amoh (1983) and Al-Hussaini and Ahmad (1984). Characterizations using reliability
concepis of finite mixture models are discussed in Ahmad (1996). Al-Hussaini and
Osman (1997) obtained the median of finite mixture of & components. Al-Hussaini
(1999) used the Bayesian method to predict observations under a mixture of two
exponential components model. Later, Al-Hussaim et.al. (2000) studied the finite
mixture of two-component Gompertz densities as a lifetime model. Bayesian
predictive densities for finite mixture models based on order statistics have been
discussed by Al-Hussaini (2001). Block et.al. (2003) studied the monotonic behaviour
of the hazard rate of finite mixture of distributions. Jaheen (2003} obtained Bayesian
prediction under a mixture of two-component Gompertz lifetime model. Recently,
Cross (2004) has developed efficient tools for reliability analysis using finite mixture
distributions. The finite mixture of distributions can also play a useful role in
modelling time to failure of a system in the competing risk situations (see Crowder,
2001). For more properties and applications of finite mixture models in reliability

theory, one could refer to Al-Hussaini and Sultan (2001).

1.8 Basic concepts in reliability

The term rehability is used to denote the probability of a device,
component, material or structure, performing its intended function satisfactorily, for a
given length of time in an envirenment for which it is designed. Even though the
above definition of reliability 1s explained with reference to the failure behaviour or
length of life of equipment, it 1s equally applicable in the analysis of any duration
variable that describes a well detined population subject to decrementation due to the
operation of forces of attrition over time. Accordingly, the concepts and tools in
reliability have found applications in many areas of study such as biology, medicine,
engineering, economics, epidemology and demography. It is evident that most of the
difficulties in rehability modelling can be substantially reduced by understanding
certain concepts associated with the failure process. In the present section, we discuss

such basic concepts that are useful to model lifetime data.
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1.8.1 Reliability function

Let X be a non-negative random variable defined on a probability
space  (,A,P) with distribution function F(x)=P(X <x). In the reitability
analysis, X generally represents the length of life of a device, measured in units of

time and the function,
S(x)y=P(X > x), (1.4)

is called the reliability (survival) function. §(x) gives the probability that the device

will operate without failure for a time x.

1.8.2 Hazard rate

Let L =inf{x;F(x)=1}. Then for x < L, the hazard rate h(x) of X ,
is defined as

P{r<X <x+dxI1X >x}

h(x)= 61‘1113 N (1.5
When f(x) is the probability density function of X , (1.5) reduces to
h(x)= pAC) :
S(x)
d
=—/(~log S(x)). (1.6)
dx

h(x) measures instantaneous rate of failure or death at timex, given that an
individual survives up to time x. In extreme-value theory, A(x) is known as the

intensity rate and its reciprocal is termed as Mills ratio in economics. For various
applications of the hazard rate, one could refer to Mann et.al. (1974), Kalbtleisch and
Prentice (1980), Elandt-Johnson and Johnson (1980), Nelson (1982) and Lawless
(2003).

When X is non-negative and has absolutely continuous distribution

function, (1.6) provides that

S(x) =exp[~vjh(l)(itl. (L.7)
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I

Examination of (1.7) indicates that k(x)is a non-negative function with Ih(t)dt < oo,
0

for some u >0 and Ih(z)dt =oq,
0

In view of (1.7), h(x) determines the distribution uniquely. It is
shown that the constancy of A(x) is a characteristic property of the exponential model

{Galambos and Kotz (1978). Mukherjee and Roy (1986) has established that for a
non-negative random variable X in the support of the set of non-negative real

numbers, hazard rate of the form

1

h(x)= (1.8)
ax+b
characterizes
(i) the exponenttal distribution with survival function
S(x)=exp[~Ax},x20,4>0. (1.9)
(11) the Pareto I distribution with survival function
Y
S(x)=( Y . x20,>1,0<a< o, (1.10)
x+a
(ii1)  the beta distribution with survival function
SU):U—%Y,O<x<R£>I. (1.11)

according as a=0,a4 >0 and a <0.

1.8.3 Mean residuat life

The mean residual life (M.R.L), known as expectation of life in

actuarial studies, was reintroduced in the reliability context by Knight in 1959 (see,
Kupka and Loo, 1989). When X is defined on the real line with E(X') <o, the

Borel-measurable function r(x) given by

r(x)=E|X —x1 X >x], (1.12)
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for all x such that P[X >x]>0, is called the M.R.L function of X. r(x) represents

the average lifeime remaining to a component, which has already survived up to

time x . When X is non-negative with E(X ) <eco and F{(x) is absolutely continuous

with respect to Lebesgue measure, (1.12) becomes
r(x)——l—?S(t)dt (1.13)
S | . 13

Further, for every x in (0, L),

hx) =7 (1.14)
r(x)
and
r(0) ‘
5(_-)_— 015
9= [f(t) (1.15)

From equation (1.15), it follows that a M.R.L function uniquely
determine a distribution and therefore, modelling can be done through an appropriate
functional form for r(x). A set of necessary and sufficient conditions for r(x) to be

an M.R.L, given by Swartz (1973) is that
Hr(xy=0,

(i)r(0)=E(X),

(iif) r'(x)=-1

and
Gv) Jﬂ diverges.
ARy

Cox (1972) has estabhished that the M.R.L function is a constant for
the exponential distribution. Mukherjee and Roy (1986) observed that a relation of the

form

r(oh(x)=k% (1.16)
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where k is a constant, holds if and only if X follows the exponential distribution (1.9)
whenk =1, the Pareto II distribution (1.10) when k£ >1{ and the beta distribution
(1.11) when O0<k <1. In view of (1.15), Hitha (1991) has observed that a linear
M.R.L of the form

r(x)=ax+b (1.17)

characterizes the exponential distnbution (1.9) ifa=0, the Pareto I distribution

(1.10) if a@ >0 and ihe beta distribution (1.11) ifa < 0.

1.9 Reliability and hazard rate for finite mixture models

Let X be a non-negative random variable with probability density
function (p.d.f), f(x) given by (1.3).The reliability function S(x) corresponding to

the finite mixture of k components (1.3) is given by

S()=pS,(x)+ p,S,(x0)+..+ p, S, (x). (1.18)

where S, (x) is the reliability function corresponding to the j" component in the

mixture, j =1,2,...,k. For simplicity, we consider the case of finite mixture model

(1.3) with two components. The hazard rate function and mean residual life function
of a mixture may be written in terms of the hazard rate functions and mean residual

life functions of the two components as follows,

h(x)=A(x)h (x)+ 1A —- A(x)h,(x), (1.19)
and

r(x)=A(x)n(x)+ (1~ A())r(x). (1.20)
where h,(x) and r(x) are hazard rate functions and M.R.L functions of

j" component, j=1,2; and h(x)and r(x) are hazard rate function and M.R.L

function of the mixture and

Alx) = pS(x)
pS,(x)+(1- p)S,(x)

with §,(x) is the reliability function of the j" component, j=1.2.
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On differentiation, the identities (1.19) and (1.20) give

h (x) = AR (x)+ (- AR, (x) = A= Ax)(h (x) — hy (X)) (L.21)
and
r(x)= A(x)r, (x)+ (1= A, () — A1 = AR (x) = K (x)°. (1.22)

where prime denote the derivative with respect to x.
From (1.21), it follows that if hj'(x)<0, for allx,(j=12), then

h (x) <0, for all x. Therefore, a mixture with decreasing hazard rate components has

decreasing hazard rate. However, if the components have increasing hazard rates,
their mixture need not have increasing hazard rate. For more details, one could refer

to Al-Hussaini and Sultan (2001).

1.10 Censoring

In reliability studies, censored data often occurs due to many reasons.
In many practical situations, it is desirable to discontinue the study prior to failure of
all items in the sample, the resulting data are called incomplete data. The data are
incomplete in the sense that we do not know the exact time to failure of the unfailed
items, but only known that their failure times are greater than the recorded study time.
Then we have two types of observations in the sample, actual failure times and
bounds on faiiure times. Data of this type are called censored data. Various types of
censoring are possible in life testing experiments and the type which depends on the

criterion used to determine when to conclude experimentation.
1.10.1 Type I censoring

Censoring that occurs as a function of time is called type 1 censoring.
In this case, the period of study terminated at a particular point of time and the data
recorded are lifetimes of items that failed prior to that time. More specifically, data of
this type are called right censored. If all items are put on test or put in service at the
same time and the observation period is the same for atl items (that is, observation
stops at a fixed tmeT ). the data are singly censored. (more precisely, singly right
censored). Data for which unfailed items have been operating for vanable amounts of

time are called multiply censored (multiply right ccnsored).
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Data may also be censored on the left. Left censored data result when
it is only known that failures have occurred prior to some time. In lifetime data

analysis, right censoring is very common, but left censoring is fairly rare.

1.10.2 Type Il censoring

Type I censoring may provide limited amount of information if the
study period is too short. An alternative is to continue observation until a
predetermined number r(< n) of failures have occurred. This also results incomplete
data, since the lifetimes of the remaining n—r items are not observed. This type of
censoring 1s called type II censoring. An extension of this type of censoring is
progressive type II censoring. Under this censoring scheme, batches of items are
removed from test as in type Il censoring in two or more stages, as follows: »n items

are initially put on test. After » failures have occurred, an additional », —v, items are
removed from test. Testing is continued on the remaining »-n, until an additional r,
failures are observed, at which time an additional n, —r, items are removed, with
testing continuing on the remaining n-n,—n, items, and so on, through &k

stages (k >1).

1.10.3 Other types of censoring

Various other combinations of censoring mechanisms are sometimes
used. For example, it may be desirable to observe a reasonable number of failures and
limited test time. In this case, a combination of type I and II censoring may be used;
that is testing continues until either rfailures occur or test duration 7 is reached,

whichever comes first.

1.11 Stress-strength models

The word “stress™ has acquired a special meaning to a modern world,
as all of us are continuously under stress and not always have the strength to over
come il. The stress-strength relationship is nowadays studied in many branches of
sciences and social sciences such as psychology, medicine, pedagogy, pharmaceutics

and engineering.
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In the context of reliability, the stress- strength model describes the
life of the component, which is having a random strength X that is subjected to a
randoin stress Y. The component fails at the instant the stress applied to it exceeds
the strength and the component works properly if there is no other cause of failure

wheneverY < X .
Thus the system reliability for stress-strength model

R=P(Y<X)
= Hg(.v)f (x)dvdx (1.23)
00

is an important measure of component reliability, where f(x) and g(x) are the

probability density functions of X and Y respectively. For example, if Y represents

the maximum chamber pressure generated by ignition of a solid propellant and X
represents the strength of the rocket chamber, then R is the probability of the
successful firing of the rocket. The receptor in the human eye opcrates only if it is
stimulated by a source where magnitude X is greater than a random lower threshold
Y for the eye. In this case, R is the probability that the receptor operates. For more

details on stress-strength models, see Kotz, et.al. (2003).

1.11.1 Estimation of system reliability

One of the major problems in the analysis of stress-strength models

is the estimnation of the stress-strength reliability R = P[Y < X]. The point and interval

estimation of R in the non parametric sctup was considered by Birnbaum (1956),
Birnbaum and McCarty (1958). Owen et.al. (1964) and Govindarajulu (1967, 1968).
The problem of estimation of R, with different parametric models for X and Y was
discussed in Kelly et.al. (1976). Tong (1974), Church and Harris (1970), Downton
(1973). Woodward and Kelley (1977), Beg and Singh (1979), Tong (1977), Enis and
Geissel (1971), Ferguson (1973). Hollander and Korwar (1976) and Bhattacharyya
and Johnson (1974).

The estimation problem when X and Y have joint bivariate

exponential distribution was considered by Awad et.al. (1981), Jana (1994}, Jana and
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Roy (1994) and Hanagal (1995, 1997b). Jeevanand (1997) and Hanagal (1997a)
studied the estimation of reliability under bivariate Pareto stress-strength model.
Jeevanand and Nair (1994) considered the estimation of stress-strength reliabtlity
from exponential samples containing spurious observations. Al-Hussaini et.al. (1997)
studied the role of finite mixture of lognormal components in a stress-strength model.
The estimation of R when the stress and strength follows finite mixture of inverse
Gaussian distributions was developed by Akman et.al. (1999). Inference for stress-
strength medels based on Wienman multivariate exponential samples were obtained
by Cramer (2001).Stress-strength model for skew-normal distributions was obtained
by Gupta and Brown (2001). For more details, we refer to Johnson (1988) and Kotz
et.al. (2003). Recently, Nadarajah (2004) considered a class of Laplace distributions

and derive the stress-strength reliability for this class of distributions.

1.12 Mixture models in income analysis

Modelling of income data for studying the patterns and causes of
prevalent distributional inequalities is of vital importance in socio-economic policy-
making. This has been a very live area of research since the variegation and
dynamism of income distributions allow as well as demand experimenting with new
models and theories for purpose of increasing accuracy and interpretational
capabilities. Statistical analysis of personal income distributions originated with the
formulation of the tamous Pareto’s income law in 1897 which states that the number

of persons in a population whose incomes exceed ‘x’ can be approximated by a curve of

the form k<, where &k is any real number and a is a positive real number.
Accordingly, this distribution is known as Parcto type I (classical Pareto) and it is
widely accepted as an income model. The law proposed by Pareto holds good only for
the upper tail of the income distribution. Gibrat (1931) suggested the two-parameter
lognormal distribution, further examined by Aitchinson and Brown (1969), for the size
distribution of income. Champemowne (1953) proposed a Markov chain model for
income distribution. Lomax (1954} introduced Pareto type II distribution that has come
to stay as a very viable model in income studies. The beta distribution of first kind was
used for modelling income data by Thurow {1970). Salem and Mount (1974) proposed

gamma distribution and Bartels and van Metelel (1975) suggested Weibull to model the
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income data, For various models useful in income analysis. one could refer to Kleiber

and Kotz (2003).

In income analysis, population of income of individuals can be
divided into income from different sources. Further, any set of income data with
earners in different categories will be well described as a finite mixture of
distributions. Accordingly, Flachaire and Nunez (2004) proposcd an explanatory
model tc study the structure of the income distribution based on mixture models. Reed
and Jorgensen (2004) suggested a mixture of lognormal and Pareto distributions for
modelling size distributions. However, this mixture function is still unimodal and
cannot catch bi-modality. Paap and van Dijk (1998) considered a mixture of two
distributions to model the world income distribution. They used different choices of
distributions-truncated normal, lognormal, gamma and Weibull- and they setected the

best mixture model based on a criterion of goodness -of- fit tests.
1.13  Basic economic concepts

The problem of modelling income data as well as that of
measurement of income inequality has a history of about two hundred years and has
been attracting a lot of researchers in economics, statistics, and sociology etc. As is
customary in most statistical analysis, the extend of variation in incomes is
represented in terms of certain summary measures. Thus a measure of income
inequality is designed to provide an index that can abridge the variations prevailing
among the individuals in a group. For a detailed study on various measures of income

inequality, we refer to Kakwani (1980), Anand (1983) and Arnold (1987).

Recently concepts and ideas in reliability theory have been
extensively used to study measures of income inequality. Chandra and Singpurwalla
(1981) established certain relationships among concepts in reliability theory and in
economics. These aspects were further investigated by Klefsjo (1984). Later
Bhattacharjee (1988, 1993) investigated the role of anti-ageing distributions in
reliability theory as retlecting certain features of skewness and heavy tails, typical for
income data. One of the fundamental concepts in the measurement of income

inequality is Lorenz curve.
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1.13.1 Lorenz curve

The Lorenz curve is an important tool for the measurement of
income inequality. Lorenz (1905) defined this concept for finite populations as a

function L(p) on [0,1], such that for fixed p, L{p) represents the proportion of the
total income in the population accounted for by the 100p% poorest individuals in the

population.

For a non-negative random variable X with distribution

function F(x) and finite mean £, the Lorenz curve L(p) is then defined in terms of

the following two parametric equations in x (see Kendall and Stuart (1958)) namely

p=F(x)= [f(Odi (1.24)
0
and
1 X
Lp)=, fif e (1.25)

where f(t) is the p.d.f of X .L(p) determined by (1.25) is called ‘the standard
Lorenz curve’. L(p) can be viewed as the proportional share of the total income of

the population receiving an income less than or equal to x. It follows from (1.25) that

the Lorenz curve is the first moment distribution function of F(x). One can easily see

that

(i)  LO)=0.L()=1, L(p) is continuous and strictly increasing on(0,1), as
oo 1 S
L'(p)=—x, which is greater than zero.
Y7,

(i)  L(p) is twice differentiable and is strictly convex on (0,1) as

L(p)= > ().

Hf(O

Gastwirth (1971) relaxed the assumption that the distribution function

F(x) is absolutely continuous and defined the Lorenz curve L(p) by
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L(p)=i jQ(:)dt, 0<p<l (1.26)
(]

where
Q(x)=inf{x: F(x) 2 x}

is the quantiie function. When F(x) is absolutely continuous, Q(x} is the inverse

function of F(x) and (1.26) is the solution for L{p) obtained from (1.24) and (}.25).

Chakrabarthy (1982) pointed out that the analysis and criticism of
Lorenz curve constitute a major part of the growing literature on inequality , its
measurement and interpretation and stated that Lorenz curve has remained the most
popular and powerful tool in the analysis of size distribution of income, both
empirical and theoretical. For various applications of the Lorenz curve, one may refer
to Chatterjee and Bhattacharya (1974). Gastwirth (1972), Kakwani and Podder
(1976), Goldie (1977) and Moothathu (1985a, 1985b and 1990).

1.14 Present study

The generalized Pareto family, constituting the three distributions,
namely. exponential, Pareto II, and beta are extensively employed in modelling of
lifetime data as it possess linear mean residual life functions. For the exponential
distribution, the mean residual life function is constant. The mean residual life
function is increasing (decreasing) for Pareto Il (beta) distributions. These three

distributions are widely employed in life testing situations and in income analysis.

As mentioned carlier, the situation of heterogeneity is tnherent in
most of the observed data in reliability and income analysis. For example, in
reliability analysis, the populaton of lifetimes can be decomposed into
subpopulations, based on lifetimes of units in different production periods, with
differences in designs, made up of different raw materials etc. In the case of income
data with earners in diferent categories or of different sizes makes the data
heterogeneous. The heterogeneity prevents modelling the data using standard
univariate distributions. As finite mixture models are typically used in describing
heterogeneous populations, they have become very popular models in such situations

and they offer realistic interpretations of the mechanisms that generated the data.
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Accordingly, finite mixture of distributions becomes useful tools for the modelling

and analysis of data in the context of reliability and income analysis.

In literature, considerable work has been devoted to study the
properties and applications of finite mixture of exponential distribution in the context
of reliability analysis (see Mendenhall and Hader, 1958; Nassar, 1988; Nassar and
Mahmoud, 1985 and Al-Hussaini, 1999). Despite the importance and flexibility of
Pareto 11 distribution in modelling and analysis of life time and income data, a
comprehensive study on finite mixture of Pareto II distribution has not been
considered so far. In many practical situations, the observed lifetimes of an item
varies over only a finite range. Further, beta distribution is employed for modeliing
lifetime data of svstems having increasing hazard rate pattern. Accordingly, beta
distribution is considered to be useful model in the context of reliability analysis.
However, a systematic study on finite mixture of beta distributions in the context of

reliability and income analysis is not yet carried out.

Motivated by these facts, the present work aims to study the role of
finite mixture of Pareto II and finite mixture of beta distributions in the context of

reliability and income analysis.

The present work is organized into seven chapters. After this
introductory chapter, in Chapter 2, we study the properties of finite mixture of Pareto
II distributions in the context of reliability analysis. We develop estimation of
parameters of the finite mixture of Pareto II distributions using different methods for
complete as well as censored samples. Simulation studies are carried out to assess the
performance of the estimators. We, then, illustrate the method with a real life data on

survival times of iecukemia patients.

In Chapter 3, we study various properties of the finite mixture of beta
distributions in the context of reliability analysis. We discuss estimation of parameters
of the finite mixture of beta distributions using differcnt methods such as maximum
likelihood. Bayes, method of moments and maximum product of spacing. We carried
out a simulation study to observe finite sample propertics of the estimates and their
robustness. We, then, apply the procedure to a real life data on survival times of

cancer pattents.
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Chapter 4 discusses the Bayesian predictive densities when the
underlying distribution is assumed to have a finite mixture of Pareto Il distribuiions.
Based on type I censored samples. prediction bounds for the k-th future order
statistics and survival functions are obtained. The prior belief of the experimenter is
measured by Jeffrey’s invariant prior and also by a proper conjugate prior which was
suggested by Al-Hussaini (1999). We then consider the real life data on survival times
of leukemia patients and we estimate the reliability and prediction bounds using
Bayesian predictive density function. The last part of this chapter deals with the
Bayesian predictive density function of finite mixture of beta distributions. We

illustrate the procedure for a real life data on survival times of cancer patients.

The analysis of stress-sirength models using finite mixture of
distributions is discussed in Chapter 5. The maximum likelihood estimation of the
stress-strength reliability for complete as well as censored samples are obtained in
which we assume the distribution of strength as finite mixture of Pareto Il and the
distribution of stress as different models such as exponential, Pareto II and finite
mixture of Pareto H. Simulation studies are carried out to assess the performance of
the estimators. The method of estimation of stress-strength reliability is illustrated
using a real life data. Chapter 5 concludes with the discussion of the same for the

finite mixture of beta distributions.

The role of finite mixture of Pareto Il distributions and finite mixture
of beta distributions in income analysis is studied in Chapter 6. We derive the
maximum hkelthood estimate of the Lorenz curve based on complete as well as type 1
censored samples of finite mixture of Pareto Il distributions. We, also, develop the
maximum likelihood estimate of Lorenz curve for the finite mixture of beta
distributions. We carried out a simulation study to assess the performance of the
estimates. Finally. we illustrate the method for a real data on household expenditures

of men and women on four commodity groups.

Finally, Chapter 7 summarizes the major conclusions of the present

study.



Chapter 2

FINITE MIXTURE OF PARETO 11 DISTRIBUTIONS

2.1 Introduction

In literature, considerable work has been devoted to study the
properties and applications of Pareto distribution, in the context of reliability analysis.
Mixture models, as discussed in Chapter 1, provide additional flexibility in modelling
and analysis of lifetime from a heterogeneous population. Despite its importance and
flexibility in modelling and analysis of lifetime data, a comprehensive study on finite
mixture of Pareto 1l distributions has not been considered so far. Motivated by these
facts, in the present chapter, we discuss the statistical analysis of finite mixture of

Pareto I distributions in the context of reliability theory.

We give the definition and properties of the finite mixture of Pareto
distributions in Section 2.2. In Section 2.3, we study the reliability characteristics of
the model. We show that a finite mixture of two Pareto II densities is identifiable in
Section 2.4. Sections 2.5 to 2.7, discuss various estimation procedures for complete as
well as for censored data. In Section 2.8, simulation studies are carried out 1o assess
the performance of the estimators. In Section 2.9, we illustrate the method for a real
data on survival times of leukacmia patients and finally, in Section 2.10, we give the

conclusion of the chapter.
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2.2 Definition and properties
Let X be a non-negattve random vanable admitting an absolutely
continuous distribution function F(x) with respect to a Lebesgue measure in the

support R*. Assume that the probability density function (p.d.f.) of X , f(x) exists. A

finite mixture of Pareto II distribution with & components can be represented in the

form
F)=p fi0)+ pofo(X)+ .4 p f(X) 2.1
where
k
p.>0,i=12,.,k;) p =1
pun
and

f=ab(t+ax)™", x>0,4>0,b>0, (i=12,.k).
As a special case of (2.1) with k£ =2, we have,
fx)=pab,(+ax) """ +(1-plab,(l+a,x) ™", (2.2)
x>0,a>0,b>0, 1=12).

Throughout this chapter, we consider a fintte mixture of two Pareto II distributions.

The results can easily be extended to the general set up.

The r" moment of the distribution (2.2) is given by

o

E(X")= J.x’[p,alb,(l+a,x)_('“” +(1= p)a,b, (L +a,x) " dx

0

_pUr+DIG, -r) N (- p)(r+DI(b,-r)
a,Th, a,'Th, '

(2.3)

oc

where I'p = fe *x"'dx . is the gamma function.
0

When r=1.(2.3) reduces to the mean of X , which is equal to



(8]
wh

)= P TR g s g 50,0212 (2.4)
‘ ab -1 a,(b,—-1)

When r =2, (2.3) becomes

E (X?)=—, 2p, ey Y
a’(b=)(b,-2) a,’(b,~1)(b,—2)

Thus the variance of (2.2) is given by

Vo(x)= P (=2+2b+2p —bp,) N (= p)b, +(b,-2)p,)) 2p,(1-p,)
I a, (b, ~1)’(b,—2) a’ (b, 1Y (h,~2)  aa,(b—1)b,~1)

(2.5)

2.3 Reliability characteristics

Let X represents the lifetime of a component with survival function

S(x) . Then the survival function of the model (2.2) is obtained as
S(x)= p|(_l+a,x)_”' +(1- pl)(l+azx)""?, x>0, a,>0, b >0, (i=1,2). 0<p, <.
(2.6)

For the model (2.2), the hazard rate #{x) and the mean residual life function r(x) are

given by

plalbl (l + alx)—d),ﬂ-) + (l -p, )azbz(l + azx)—uz:+ll

h(x) = PN -y
p+ax)? +(1-p)d+a,x)™

2.7
and

. (b, =D +a,x) " + (1= p)a, (b, - Dl +a,x)"™ "
' aafp(I+ax) (- p)d +az_x)'/’3 J(h, —1)(b, = 1)

(2.8)

From (2.7) and (2.8). we obtain an identity connecting r(x)and h(x) as

)~ A+ a x)(1+a,x) [ a,(b, —1)—a,(b,-1)+a,a,(b, — b, )ﬁ
aa,(b, -6, -1 | ab, ~ a,b, —a,a,(b, —b)x

_alh (b =D+ a,0)° —aib, (b, — D+ a,x)
a,a,(b, — 1)(b, = D[ab, — ab, —a,a,(b, —b)x]

(2.9)
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Figures 2.1 to 2.8 show the behaviour of hazard rate and the mean residual life
function for different parameters of the model (2.2). From the figures, it follows

that A(x) is decreasing in x while r(x) is increasing in x .
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The distribution (2.2) and the identity (2.9) involve five parameters.

Reduction of one paramcter can be achieved if we take either q,=a, or b =b,

without sacrificing much of the flexibility of the model. This motivation leads to

consider the following;

When b, = b, = b, the identity (2.9) reduces to
a,a,b(b—1)r(x) + h(x)(1 + a,x){1+ a,x) = bla,(1+ a,x) + a, (1 + q,x)] 2.10)
and

for a, =a, =a, (2.9) becomes
a’ (b, = )b, — Dr(x)+ h(x)(1+ ax)’ = al(h, +b, - 1)(1+ ax)]. (2.11)

It is well known that A(x) (r(x))uniquely determines the
distribution. But in many situations A(x) (r(x)) is not in a simple closed form and
hence cannot be used for characterizing the distributions. In such situations, one may
explore simple relationships among /i(x)and r(x) to characterize the distributions

(see Nair and Sankaran, 1991). Motivated by this, we prove a characterization result

for the mixture of Pareto I distributions.

Theorem 2.3.1

A continuous random variable X in the support of positive reals with E(X) < co, has

survival function
S(x)= p,(1+a|x)"’ +(l—p,)(l+azx)_1’,.\'>0, a,>00=12).b>0,0<p, <.

(2.12)
if and only if the relationship (2.10) holds.
Proof.

Suppose that the identity (2.10) holds. Then we have

a,a,blb—1) _[S(t)dl + )+ ax) 1 +a,x)=bla, +d, + 2a,4,x]S(x). (2.13)
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Diffeientiating (2.13) twice with respect to x, we get
a,a,(b+ )b+ 2)f (x)+(b+2) f (O, 1+a,x)+a,(1+a,))+ f ()1 +ax)1+a,x)=0

(2.14)
where f'(x) and f"(x) respectively denote the first and the second derivatives of

f(x) with respect to x. The solution of the differential equation (2.14) is obtained as

S(x)=c¢,(1+ax) "+C:(l+a2x)'b. (2.15)
Since §(0) =1, we bavec, =1-¢, which gives (2.15) as required in (2.12).The proof
of the converse part is direct.

Theorem 2.3.2

The relationship (2.11) characterizes a mixture of Pareto II distribution with survival

function
S{x)=p 0+ ax) ™ +(1- p 1+ ax)™
For the proof, see Abraham and Nair (2001).

2.4 Identifiability

As mentioned in Chapter 1. lack of identifiability is common even for
finite mixtures. In the following. we show that a finite mixture of two Pareto Il

densities is identifiable.

Theorem 2.4.1

Finite mixture of Pareto Il densities is identifiable.
Proof:

From Teicher (1961), it follows that a finite mixture of & exponential

component densities is identifiable. If Z follows exponential with parameter A and

y=%

. then Y tollows Pareto I1 with density
a

g(V)y=aA(l+ ay)y .
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i . ) e
Since the transtormation Y =

s one to one and onto, a finite mixture of Pareto
«

11 with component densities g.(v)=a A (+ay) > | i=1.2 isidentifiable. The rest
p fuyl . 14 1 [

of the proof 3s similar to the one given for finite mixture of Gompertz densities (see

Al-Hussaini et.al. 2000).
2.5 Estimation of parameters

In this section, we discuss the estimation of parameters q,.a,,b,,b,

and p, of the model (2.2), using different methods for the complete as well as

censored samples.

2.6 Complete sample sct up

2.6.1 Estimation of parameters when the observations belonging to each

subpopulation are known

We consider the situation when there are only two subpopulations

with mixing proportions p, and (I1-p) and f(x) and f,(x)are Pareto Il densities
with parameters (¢,,b,) and (a,,b,) respectively. We consider the case when items

that fail can be classified and can be attributed to the appropriate subpopulations.

Then the likelihood of the sample is given by (see Sinha (1986})

L(a,,azsb,,bg, P ll)

n!

= P;”' (] - p, )n; aln. blu, a2113]72ﬂ: H(‘ + alxu )—((’1 +Iln (] + a,x, / )f(b_»+l]. (2 16)
j= J=

n!n!
where  x; denote the failure time of the j-th unit belonging to the i-th
subpopulation, j=12,...n., i=12 and the observed data

i

A= {xl s Xy 3 X Xoaa e Xy } .
(@) Maximum likelihood estimation (M.L.E).

Maximization of log-likelihood function of (2.16) with respect to the parameters

yields the following equations,



ft_,_ (b, +l)z(l

m (DS L

a, a,

J=t 27V

%—Zlog(l+a1x”) =0,

r=

%Y log(l +a,x, ) =0,

b, i3

and

m__ My,
P\ (I_P|)

The equation (2.21) implies

N n
D= !

n, +n:

2.17)

(2.18)

(2.19)

(2.20)

(2.21)

The solution of the equations (2.17) to (2.20) provides the estimates of the parameters

a,,a,,b, and b,. Standard numerical methods like Newton-Raphson method can be

used to solve above equations.

To obtain variance of the estimates, we need to compute the observed

information matrix /(a,,a,,b,.b,. p,).

The second derivative of log L{a,.a,,b,,b,, p, | x) leads to the following

S

q 4 = xl‘/a{ a X,

3,

d°loglL d’loglL RS
— &~ =— l +—
aa,ab, abpaa| lial ;( ay X g :l

a'logL:_Ii_n_,_Jr(b,H) & 1+ ] )_z_(bgtl)i(HL)_



9 log L [ U e +1)
—-—“_ —_ — - 1
da,” ! a, ; X0, a,x,, ,Z,:(
0’ logL _ d° log L _ [i s
da,0b,  0db,da, | a, 1 a X |
d’log L _n
b: b
d’logL  n,
ob,’ b’
d°log L __(n+ny)
Ip,’ P

and all other second derivatives are zero.

The observed information matrix 1s thus

_d'logL  d'logL 9d’logL 9d’logL  d’logL
da,’ dada,  da,0b,  da,ob, da,op,
I(a,,a,,b,b,. p)) =
_d’logL  d’logL 9d’logl 9d’logL  9’logL
ap,da, dpda, opodbk,  dpodb, ap,’

~ -~

For large n. the joint distribution of the estimates gq,,d,.b,b, and p, is
approximately multivariate normal with mean (q,.a,.b,,b,, p,) and covariance matrix

1"(&,,&3.5,,5:, p,), which is the inverse of 1(4,.4,.5,,b,.p,)



(b) Bayes estimation.

We assume that the parameters a,,a,.b.b, and p, are independent. Using
Jeffrey’s invariant prior for a, a,,b, and b,and uniform prior in the interval (0, 1)

for p,, the joint prior distribution of a,,a,,#,,h,and p, is given by

gla,.a,,b.,b,.p) « (2.22)

a,a,b,b, .
From (2.16) and (2.22), the joint posterior distribution ofa,,a,,b,,b, and p, is given
by

n(al,a:,b], bz, p| I l) a plnl (1 _ pl o a]n. --Iazr1: —lblnl—lb:n:-.l

L s

exp[—(b, + l)z tog(1+ ax,, yexp[—(b, + l)z log(l+a,x, )] (2.23)
=l

j=

From (2.23), we obtain the marginal posterior distributions of

a,,a,,b,b,and p, as

a"” exp[—Z]og(] +ax ) a"! exp[vz log(1+a,x, )]
M,(q!x)=C i f = da,. (2.24)

ﬂ] n "

[Z‘]Og(] +a]x,j)] ‘ [Zlog(l+ag-x2j)]

=

" expl—Y log(l+a,x, )1, a" " expl-Y_ log(i+ax,,))
My(a,lx)=C = | = da, (2.25)

1> log(l+a,x, )] S 1> log(1 +ayx, )]
=1 i1
C =l Y n-1 "!
I, 1 x)= B [ expl—(b, + D log(l+ ayx, ) Mg,
) I'(n,) h = :

La exp{—z log(l+a,x,,)]
[ = —da,, (2.26)

! {Zlog(] +a,%,,)) .

i)
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C -
[1,,1x)= b, jaz": 'expl—(b, +l)(Z]0g(] +a,x, Ya,
n, o j=1
La exp[—Zlog([-&-a,x,j)J
j = ; de, ,
"D log(l+ax,)]
=1
and
c mal"“l exp[~Z log{l+a,x, )]
[I(p 1) = p" (- p)~ = da,

B(n, +1+n,+1) ; B

[ilog([—%—a,x,}.)]

j=1

" exp(— log(l+a,x, )]

~
L da, .

D logll Fayx,)]
jel

where

n

"l

_a exp[—Zlog(] +ax )l a,””! exp[—Zlog(l +a,x,,)]
Cc'= I A da I = — da,

" n !

> log(l+a,x,;)] 0 [Zlog(nazx:_/n'

j=t s=

and

B{p,q) is the beta function of the first kind.

(2.27)

(2.28)

(2.29)

Under squared crror loss function, we obtain the Bayes estimators of q,,a,,b,,b, and

p, as
Laexpl-Y logl+ax, )] _a, " exp[~Y log(l+a,x, )]
ay = CI = da I = s

n, i ! n

Y Sloglhran)l " (Ylogll+ay,))
=1

j=1

(2.30)
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a,” CXP[_ZIOg(l +ta,x,)] La I exP[_Z log(d +a,x,,)]
da, | da, Q3D

!

a, =C

v

1> log(1+ayx, )] " D logl+a,x,,))

i

S B

La exp[—Zlog(] +ax;)  _a" exp[—z log(l +a,x,,)]
b =Cn, | I —da, | ! da,, (2.32)

-+l n,

> logll+a,x,,)) " Dlogli+a,x, )]
=

i=t

n

_a exp[—z logl+a,x,)) . a"" exp[—Zlog(l +ax,;))
b =Cn, | = da, | = da,, (2.33)

ny+1 7

’ [ilog(l +a,%,;)] ° [ilog(l +a.x,,))
jol

J=1

and

s B(n+2,n,+1)
B(n, +1,n, +1)

P

n +1

= (2.34)
n+n,+2

Bayes estimators ofq,,a,,b, and b,will be obtained by numerical integration

procedure.

To obtain the performance of the estimators, we calculate the

posterior variance of the estimates. We first compute

) aln.ﬂ exp[—zlog(l +ax)l a2"2-' exp[—Zlog(l +a,x, ;)]
E@a*1x)=C | = da, | = ——da, (2.35)

n n s

YD legi+ax,)) [ilog(l +a,x,,)]

=

0

"

La exp[—Zlog(l tax, )] a exp[—z log(l+a,x, )]
E@’'1x)=C| i) ———da, | = da, (2.36)

ity 2 " ny

¢ [z log(1+a,x, )] ’ [Z log(1+a,x,,)]
=1 =1
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alm_l exp[—z log(l+a,x,,)] ag"-‘_| eXp[-—Z log(t +a,x,,)]

E(b]z I E) = Cnl (nl + 1) j " = n|+2 dal I ", = Ny daZv
D log(i+ax)] D logl+a,x, )]
il Jj=1
(2.37)
La exp[—z log(l+a,x, )l a" exp[~z log(1+a,x, )]
E®, 1 x)=Cny(n, +1 cj R ——da, Oj . —— da,,
D log(1+a,x, )] (> log(1+ax,,)]
j=1 j=t
(2.38)
and

B{n, +3,n,+1)

E(p’lx)= .
(P 12) B(n, +1,n,+1)

(2.39)

Then, the posterior variance of g, is obtained from (2.30) and (2.35) as,
V(a1 x)=E(a’ | x)-[E(a, | 0)J .

Similarly, we obtain the posterior variances V(a,|x),V(b1x), V(b,1x) and

V(p, | x) from (2.31), (2.32). (2.33), (2.34), (2.36), (2.37), (2.38) and (2.39).

Remark 2.1

One can use other types of priors for the analysis. However, when we use

conjugate priors for p,,a,, a,, b, and b,, the estimation procedure will become more

complex.

2.6.2 Estimation of parameters when the observations belonging to each

subpopulation are unknown

We consider the situation when there are only two subpopulations
with mixing proportions p, and (1- p,) and f/(x) and f,(x)are Pareto Il densites
with parameters (a,,b) and (a,.b,) respectively. In this case, we cannot assign a

unit to a particular subpopulation and hence the likelihood of the sample is given by

"

L(a,,a,,b,,b,, p, 1 x) = H[p]a,b,(l +a,x) " (1= ppash, (t+ax) N (2.40)

i=t
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where x, denote the failure time of the j-th unitin a sample (x,, x,,...,x,) of size n.

(a) Maximum likelihood estimation (M.L.E).

Maximization of log-likelihood function of (2.40) with respect to the parameters

yields the following equations,

; pby (1 )1+ ax)
= p|a|b1 (] + a]xj)—(b\ oy (- pl)azbz(l + ¥, )f(b_wn

k]

n (1 - Pl)b2(1 - a:'bej )(] + azxj)—(b3+2) 0
= pab (14 ax; )"+ (1= payb, (1 +azxj)v(b3+” o
e pad-blogd+ax)dtax)™”
= ‘D'a‘bl(] + alxj)_(bl“) +(1- p])azbz(l + a,x; ).-(h:‘*'! o

N - - Y
(1 pl )az(] bZ ]0g(l+azxj )(] +(l)_'xj) ) =()’

= b0+ axx_,-)_(b'”) +({1=p)ab,(1+a,x; y e
and

2 ab(t+ax) """ —ab,(1+a,x,)"""

= pab (1+ax,) " + (1= pab, (1 +a,x) ™ B

(241

(2.42)

(2.43)

(2.44)

(2.45)

The solutions of above equations provide the estimates of the

parameters a,,a,,b,,b, and p . Standard numerical methods like Newton Raphson

mcthod can be used to solve above equations.

(b) Bayes estimation.

We assume that the joint prior density of a,,a,.b,.b,and p,is (2.22). From (2.22) and

(2.40). the joint posterior distribution of «,.a,.b,,b,and p, is obtained as
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H(a,,az,bl,bz, plx)a [H(p,alb,(lwha,x,.)*””” +(1- p)ab,(1+a.x,) ="
i=1

1
) (2.46)
aa,bb,
We, then, obtain the marginal posterior distnibutions of a,,a,,b,,b, and p, as
o w o | n
(g tx)=D jjjﬁn(plalb, (+ax) """ + 1~ p)ab,(1+a,x) """
ocoo =l
dp,db,db.da, , 247
a,a,bb, -
woooo |y
I, 10 =D [ [ [ [[[T(rab 0 +ax) ™ + (1= pab,(1+a,x)""]
0000 i=l
dp db db.da, , 2.48
a,a,bb, P (248)
mowo | p 7
1,1 0 =D [ [ [([T(pab(+ax) ™" +1=pab,(+ax) ")
vpooo =l
dp db,da.da, , (2.49)
a,a,bb, PEREGE
0 0o oo | n
1L,(b, ) ) =D [ [ [ [I[T(pab 0+ ax) ™" + (1~ pah,(+ayx) ")
0000 =
dp,dbda,da, (2.50)
aa.bb, -
and
I(p 1 x)= D_””[ (pab,(1+ax)"*" +(1- ppab.(1+a,x) """
oooo =l
L dbdb,da,da, . (2.51)

a,u,bb,

where
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1 0a o0 oo
D= J.-”j [ (p,a,b](l-!-a,x,.)"""'” +(1- p,)azb:(l+a2x,.)'“””]
000 =]

i

a,a,bb,

dbdb,da,dadp, . (2.52)

Then the Bayes estimates of the parameters, under squared error loss function, are

given as

wmoeoe |
o' =D [[[[[[[T(rab+ax)™" +1-p)ap,A+ax)y*"]
00000 i=l
!

a,bb,

dp,db,db,da,da, (2.53)

a; =D D]‘].T]‘]J- H(p,a b(+ax )—uw) +(1= pah, (1 +azx;)_(b2+”]
00000

1

abb,

dp,dbdb,dada,, (2.54)

|
I[ (P a, b (1 +a,x )"”H” +(1- pl)(12b2(1+ agx,‘)w(hzﬂ)J

dp,db,da,da,db, , (2.55)

a,a,b,

o0 00 o3 oo |

b, =D [ [[[ T Trab(+a5y ™" +0=pab+ax)™™)

00000 =t

dp,db,da,da,db, . (2.56)

a,a,b,

and

o 00

Dﬁ?”plln(p ab (1+ax)""" +(1- pab,(1+a,x,)y""™")
00

0 00 i=l

]

a,a.bb,

dbdb,da,dadp, . (2.57)

(¢) Method of moments.

Of the classical methods, one that is simple for the estimation of

parameters is the mecthod of moments.
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Let X, X;..., X, be a random sample from the model (2.2). Let
m ,m,, m, m, and m; denote the sample raw moments. Now we equate the

sample moments to the population moments, which provide the following equations,

P, 1=p) o, (2.58)
a® -1 a,(b,-1
: 2p, v 20-p)) i, (2.59)
a (b—1)b-2) a;(b,-1(b,—-2)
. 6p: + - 6(1—P|) , :’n;, (2,60)
a, (b, —1)(b, -2)(b,—-3) a,(b,—1)(b,—2)b,-3) ‘
: 24pI - 24(1-p)) =m'“ 2.61)
a, (b, —=1)(b, = 2)(b, =3)(b,-4) a; (b, —1)(b,—2)(b, - 3)(b,—-4)
and
120p, 12001 - p)) m‘; L (2.62)

+ - =
af (B, —1(b, —2)(b, =3}, — (b, —5)  a,(b, =1)(b, = 2)(b, - 3)(b, —4)(b, - 5)

The estimates of a,,a,,b,,b,and p, can be obtained by solving the
above five equations. An important difficulty which may arise in this process s the
multiple solutions of (2.58), (2.59), (2.60). (2.61) and (2.62). In such situations we
choose those values, which minimize the standard error. Pearson (1894) has
recommended choosing the set of estimates which 1s in closest agreement to the actual
value. This 1s not possible in the real world situation since we do not know the actual

values.

(d) Maximum product of spacing.

In most applications, the parameters in the mixture model are
estimated by the method of maximum likelihood (M.L.E). It is well known, however,
that the maximum likelihood estimation can be very sensitive to outliers in the dara.
In such situations, we obtain the estimnate of parameters a,,4,,b,,b0, and p, using the
maximum product of spacing method introduced by Cheng and Amin (1983). In the

presence of outliers, this approach is superior in comparison with the M.L.LE. The
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estimates by this method are obtained by maximizing the geometric mean of the

[
spacing
1< . \
G= ;Zlog[ﬁ (x,)— F(x,_)].
i=1
For the model (2.2), G will be equal to

G=;Z!0g{p,[(l+a,x,._,) " (I+ax) "1+ A= p)l(A+a,x )" —(+ax) ]},

i=1
(2.63)

where x, and x,_, denote the failure times of the i-th and (i 1) -th unit in a sample

(x,,%,,...,x,) of size n.

Ditferentiating (2.63) with respect to a,,a,,b,,b, and p, and equating to zero, we have

l " [_)l]bl[(1+alxi)—-(:|+l)xi__(-l+alxll_l)f(lh+“:f:_l,l — :0’ (264)
Ry P][(l+a,x,-_]) "—(]-}-a'x,-) ']+(l—p])[(l+a:x,._,) : —(l+(12X‘-) *]

" 1- . . by X “htly
1 $ ( _p.)b-l(1+aﬁ_.b) X ({ ta,x.) ~ %] =0, (2.65)
nS pld+ax_ )" —(1+ax) ]+ (1= p)i(+a,x_ )" —(1+ax) ™)
Iy pl+ax) " logtax)-(tax )" loglrax)l o 5o
ng pl[(1+a]xl._l)_"‘ -1 +alx‘.)"'”]+(l—p,)[(l+azx.'-1)-b: -(I+a.x )] ’ .
iy (= p)ld+ayx) ™ log(+ayr) =t ax )™ loglvax )l _ o ) )
nog p][(l "'arx,'-])—bi "(l+a|x,‘)_b‘ J+- pl)[(1+a2xi--l)_b: —( T a)X, )--h:} ’ .
and

» b Nh “b _ =,
lZ [Q+ax, )" —(+ax)" ++ax) ™ —(I+a,x_ ) "] =0. (2.68)

n pld+ax )" —(+ax) "+ 0-p)id+a,x_ )" —(I+a,x,) "]

The solution of above equations provides the estimates of the

parameters a,.da,,b,b, and p, .

2.7 Censored set up

In this situation, we discuss the estimation of parameters of mixture of

Pareto Il model (2.2) for the censored data.
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2.7.1 Estimation based on type I censored samples when the observations

belonging to each subpopulation are known

Consider the situation, when there are only two subpopulations with
mixing proportions p,and (I-p,) and f{x) and f,(x) are rcspective Pareto Il
densitics with parameters (a,,bh) and(a,,b,). Consider a life testing experiment with

n items and the experiment is terminated after a preassigned time 7 hours have
elapsed. Suppose that r units have failed during the interval (0,7) of which r, units
from the first subpopulation and r, units from the second subpopulation with
r=r+r, and (n—r) units are still functioning. Let 1, denote the failure time of the

th

j* unit belonging to the ”

subpopulation, 7, <7T,j=12,...r; i=12 and

t..
letf=aTl andx = % and observed datax = {x,,X,;,-.., X, 1%, Xppes Xy, ). NOW
we discuss the estimation of parameters using M.L.E. and Bayes technique.
(a) Maximum likelihood estimation (M.L.E).

The likelihood function based on a type I censored sample (see Mendenhall

and Hader (1958), Sinha (1986)) is given by,

= . Al — n : ~ g yln—r)
L(ﬁl’ﬂZ’bl’bZ,pl li)_mpl I-p) IJ:l[fl(xlj)lj:’[jz(xzi)[S([)j . (2.69)

For the model (2.2), (2.69) becomes

B n! B p (1-p)~ o L ~thy+1)
LA Pobiober | D= nin,n-r)! T g{b,ﬂ,(l “Bx) }

@,{’%ﬁ: 1+ B3, = Hp 0+ B) ™ + A= p)+ B ) (2.70)

Maximization of log-likelihood function of (2.70) with respect to the model

parameters yields the following equations,

AR (nw,.)plbl(l_*_ﬂl)wwn )
__—-———Z(l-r ) ~~h - —0
BB S Bx I+ B) = p)+ B0

(2.71)
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r, (b+DL 1, (n=r)(1-p)b,(+B,) """
2 1+ N A =0, (2.72)
132 132 ; ﬂ:xzv; [P[(l'i'ﬁ[) " +(l_p|)(l+ﬁz) ")

n -h
5 S log(t+ iy, )— —npEA) doeltf) 273
b2 ) s B ] 7
oS, (n-r)1-p)1+ ) " log(1+ B,)
2N log(1+ By ) - o 2 “2 g, 2,74
b, g‘og hx, [p,(1+ B) " +(1—p)(+ )] (74
and

B _ b b,

n_on, (enldef)" -4 ) ") 2.75)

p (U=p) Lp(+B8)" +(1=p)d+B)™"]
The solution of the five equations (2.71) to (2.75), using numerical
iteration method, yields the maximum likelihood estimate (M.L.E) of f.f,.b,,b,and

p, and thus we obtain the maximum likelihood estimate of @,.a,,b,.b, and p,.

(b) Bayes estimation.

The method of Bayes estimation provides accurate estimates in many
censored sitnations (see Sinha, 1998). To discuss the method of Bayes estimation for

the model (2.2) based on type I censored data, we assume that 3. 5,.b,,b,and p, are
independent. Using Jeffrey’s invariant prior for £ f,,b, and b,and uniform prior in

the interval (0,1) for p, , the joint prior distribution of £, 5,,b,.b,and p, is given by

1
B.Bbb,

From (2.70) and (2.76), the joint posterior distribution of 8, 8,,b.b, and p, is

2B, B..b.b.p) « (2.76)

obtained as

n(ﬁl,ﬁz,bl.bz, P, I._\') o Z(:—r)/)ln—r:—k(lw p])rzék ﬁlﬁ'IﬁZQ *Ib‘qflbzr;fl

k=0

exp[-(h, + l)zlog(l + ﬁ,.rjj)]exp[—(bz + l)ilog(] +,63,r21.)](] + By R+ gy L (277)

j=1 j=l
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From equation (2.77), we obtain the marginal posterior distributions of

B.B,.b,b,and p, as

B expl—> log{l+ Bx, )]

n:(ﬂ||£):EHZ_€(:7')B(H—Q—k+1.r:-l-k+]) - =
- [Zlog(1+ﬂ]x” ]+ (n—r—k)log(1+ g)HI"

B expl=3 log(1+ Bix; )]
dp, (2.78)
[> log(l+ f,x, )1+ klog(t+ )1

J=

O e, 8

n—r ﬁ2r27] exp[(z log(] + ﬂ2x2j)]
LB =EY (B(n—r,—k+1r+k+1)— ot
k=0

[ log(1+ B,x, )1+ k log(1+ B,)]”

=1

_ B 'exp[fzilog(1+,5,~tl‘,)]
- p., 2.79)
D[ 10g(1+,5;x|, ]+(n—r—k)log(l+,5,)]"

[L.h1x)= éZ(Z')B(n— n—k+lLrn+k -+!)b]""'

h k=0

T 7

Iﬁ{"’ expl-b, (Zlog(l +fx,)+(n—r—k)log(+ B )]exp[-Y_log(+ Bx, Y 5,

0 J=1 =

- B ! CXP[*Z log(l+ ﬂ:—rz,/)]

= dp,, (2.80)
91> log( + Box, N+ klog(+ B

j=1
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I, (b, 1) ==

Z(:_’ Bn—rn—k+Ln+k+ l)bzrzﬂ

r k=0

o

J-,Bz’f' exp[—b, (2 log(1+ B,x,,) +klog(1+ f3,))] exp[—z log(1+ B,x,,)}d 5,
j=1

0 =1

B expl=Y log(l+ Bx,))]
=

J' : g, (2.81)
Y[ log(1+ Bix, D]+ (n—r—k)log(l+ B}’

and

nor - B exp[—Zlog(Hﬁle)]
M (p, II):EZ(Z_r)p(Prrk (]*pl)'ﬁk J. 5 - dp,
k=0

0 [Zlog(l+,3,xu)1+(n— r—k)log(l+ )"

B expl—i log(1+ f))
j=t

dp, . (2.82)
"D log(1+ fox, )+ k log(1+ B,)]1"
j=1

where

n—r oo ﬁz':—] CXP{_Z 10g(1 +ﬂ2,‘(2! )]
E'=Y (Bi—r—k+Ln+k+) [ = )
k=0

0 [Z log(1+ B,x, )1+ klog(1+ f3,)]"

- B expi*zlog(l +hx)l

[ - dp,. (2.83)
o1 : log(l+,3,xlj)]+(n—r—k)log(l+,3;)i"

with B(p,q) is the beta function of the first kind.

Under squared error loss function, we obtain the Bayes estimators of 5, 5,,b,,b, and

p, as
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. N B expl-> log(l+ B,x, )]
B =EY G B(n-r—k+Ln+k+1) [— = dp,
k=0 O[> log(l+ Bx, M+ (n—r—k)log(+ B))"
j=1
- ﬂ:rz_l exp[—Zlog(l + IB’zij |
f— = dp,. (2.84)
O[> log(l+ Byx, I+ klog(1+ B,)]?

. Brexpl-D log(l+ Byx, )]
B, =EY (IBn—r,—k+Ln+k+1)|— = dp,

k=0 O[> log(l+ By, )1+ klog(1+ B,
. B exp[—Zlog(] +Bx, )
[— ! dp, (2.85)
of ZIOO(H,B,r, N+ (n—r—k)log(l+ B)]"
m B expl-3 log(1+ B.x, )]
b= EnS ()B(—r,—k+1.1, +k+1)j = dp

k=0

Zlog(l+,6’, X )1+ (n—r—k)log(1+ B!

oa IB:'V:_I CXpl—Z 10g(1+,82x2j)]
= = dp,, (2.86)
0

Z}oo(l+ﬁ x,,)]+k100(l+,8 )"

. B expl-) log(1+ Bix )]
b, —Er,Z(‘ "VB(n—r, - k+l),+k+l)j - = dp,

[ log(l+ Box, 1+ klog(L+ )1

j=!

L BT expl=Ylog(1+ Bix,,)]

— ! dp,, (2.87)
“[Zlo (L+ Bx, )]+ (n~r—k)log(1+ 3"

and
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. B expl-log(+ o, )
pl=EY (B ==k 2 k4] [— B i
"D log(l+ Box, T+ klog(L+ BT
j=1

_ B exp[Azlog(l + ,B]x“ )]
[~ sl dB,. (2.88)
O logll+ Bx, M+ (n—r—k)log(1+ B)]’

1

Bayes estimators of 8./,.h,b,and p; and hence that ofa,.a,.b,,b,and p, will

obtained by numerical integration procedure.
Remark 2.2

As mentioned earlier, one can use other types of priors for the analysis,

which may yield complex situations.

2.7.2  Estimation based on type I censored samples when the observations

belonging to each subpopulation are unknown
(a) Maximum likelihood estimation (M.L.E)

In this section, we develop maximum likelihood estimator of

parameters under type I censoring. Suppose there are n sample units (x,.x,,...,x,)

h]
from the mixture miodel (2.2) and the lifetime of the units is censored by the time

Tand x, denote the failure time of the i-th unit in a sample of size n. The likelihood

function based on a type I censored sample (see Lawless, 2003) is given by
L=TT{re)’ s}, (2.89)
i=1

where &, =1 if x, <T and §, =0 ifx, >T.

For the model (2.2). (2.89) becomes,
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L(a,,a,,b,,b,,p,/ | x)=

[T{ipaba+as) ™+ - poab,a+any ™ P Ipd+al "+ p)1+a,T) ™1},

(2.90)

Maximization of log-likelihood function of (2.90) with respect to the model

parameters yields the following equations,

réi[p!bl (a+ alxi)_(b]m - pba (b +D(1+ax ) h X,
i=) l [plalbl (I+ a,x )_(MH) +(1— P )a:bz 1+ a,x; )-[b3 L“]

_ (1=8)pbp(+aT)yT
[p(1+aT)™" + (= p)(+a,T)™"]

1=0, (2.91)

2[5[(1 pOb, (i +a,x ) = (1= pb,a, (by + D1 +a,x) " x ]
[p,a,b,(1+a,x)™ """ +(1- pab, (1 +a,x, )™

- (l . 5')(1 — P )bz(l + (IZT)"”:'*I)T
[l’l (l + alT)_}’| + (] - pl )(] + azT)—h: ]

i {(Si{p|a|(1 +a,x,)_l[(l+alxi )_b' —bl(] +a]xi)—h. lOg(l+a,x,.)]
=1 [pab (+ax) " +(1-p)lab,(1+a,x)""*"]

)

L - SH-p,A+aT)y" log(1+aT)

2.93
ipQral) +U-pyd+a )] (2.93)
Sy Sz padax) Ut ag) ™ -b,(+ayg)™ logll+ay)],
[pab (1+ax) """ + (1~ pab,(1+a,x)""]
+ {\l _(s,)[_(! - p] )(1 +(12T)_b: ]Og(l +azT)} _ 0 (2 94)
[pd+aTY" +(1-p)d+a,T)™"] ’ :
and
> Slab(+ax)" " —ab(d+ax)""]
= [ pab(+ax)"™"" + 0= plab,(+a,x)""]
-Iy _ —in
4 (- +aT)Y" ~U+a,T)"] . _o. 2.95)

[p,(l+a )" +(1-p)U+a, 7Y "]
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The solution of the five equations (2.91) to (2.95), using numerical iteration scheme,
yields the maximum likelihood estimate (M.L.E) ofa,,a,,b,,b, and p, .

(b) Bayes estimation.

To estimate the parameters, consider the joint prior distribution (2.22). Using (2.90),

we then obtain the joint posterior distribution of a,,a,,b,,b,and p, as
H(a,,az,b;,bz,p] lx) a H{(p!alb,(l+a]xm)""'+"‘ +(1- p)a,h,(1+a,x,))""="1°
i=1

[p,(14+aT)™" + (- p)(1+a,T) ™" }~#lw : (2.96)
a,a,bb,

We then obtain the marginal postenior distributions as

L |

I, (a 1x)=K HHH U pab L+ ax) ™ + (1= pab,(1+a,x) """ )

0000 =l

[p,(1+a, )" +(1- p)A+a,T)™" ]"_‘i’};dpldb]db,daq : (2.97)
. a,a,bb, T

® w o |

I_Iz(a2 lx)= K.[I,[Illl{[p)alb|(l+a,Xi)_(bH“ +(1_p])azbz(l+azxi)—lbg+n]5,

0600 =l

1

a,a,bb,

[p,(0+aTy" +(1~p)1+a,T) """} dp,dbdb,da, (2.98)

oo w0 m ]

M6, 1 5= K [ [ [T pab 0+ a5 ™ + (- pagh,(+ax) "7

000 b i=1

1

a,a,bb,

[p,(+aT)" +(- p)(+a,T) """ dp,da,da,db, , (2.99)

w0 |

b, 1x)=K IJ_”H{ [pab (1+a,xy""" +(1- p)ab,(1+a,x ) ")

000y =t

; |
[p,(1+ a,T)"" +(-p)d+ a, ™ ]”'”’ N dp,da,da db, (2.100)
- a,a.bb, -

and
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50 20 oc oo

Myp 10 =K | [[[[T1Pab0+ax) ™" +(1- pab,d+a,x) P

00600 =t

[p,(t+a )" +(1— p)i+a,T)"1"%) db,dbda,da,.  (2.101)

ala2b1 2

where

1 oo w0 o3

k' =1]]] Iﬁ{ [pab(1+ax) " +(-p)ap,(+a,)""""T

00000 i=t

1

a,a,bb,

[p,(d+aTY" + (- p)l+a, Ty} db,dbda,dadp,. (2.102)

Then the Bayes estimates of the parameters, under squared error loss function, are

given as

w e w o ]

o’ =k [ [Tt P@b+ax)y ™ + (- pab,d+ax) ")

00000 =1

1
[p,(+aT)" +(1-p)1+a,T) """\ ——dpdbdbda,da, .  (2.103)

4,00,

o0 a0 00 co |

o) =K [T [TTUpah 0+ am) ™"+~ plabi+ays) ™"y

poo0ono i=l

[p,+aT)" +(1-p)1l+a,T) """ Ldp,db,dbzdaldaz . (2.104)

alll

woo ol

=k ] [TT1pab0+ax) "+ = pab,d+a,x) ")

¢0o000 =1

[p,0+aT)y" +(-p)l+a,T)™ 1"'4'}Ldp,da2daldbzdb, ,  (2.105)

alll

: - KD].O]J.].IJIL[[ [plalbl (I+ax )—m,m +(1- I )a:bz(l ta,x )—u>3+1)]¢>‘,

0000y =t

s

g 1
[p,(+aT)Y" +(1-p)1+a, Ty} — dp,da,dadbdb,, (2.106)
a,a,n,

and



51

1 ¢ 0 o o

=K _”_” [p,l {pab(d+ax)""" +(1~p)lab,d+a,x) "}

H0DeoD i=1

, 1
[l)l (1+ alT)_bl +(1- P, 1+ aZT)—b: ]”‘JA‘)}-———Z—)—b_(lbzdblda?daldpl . (2.107)
a,a,0,0,

Bayes esumators of a,.a,,b,b, and p will obtained by numerical integration

procedure.
Remark 2.3

One can use other types of priors for the analysis, which may yeld

complex situations as in the previous case.

2.7.3 Estimation based on type II censored samples

X x of n

In type II censoring, we observe r smallest lifetimes, x,,,x, ..., X,

(y?”

units (1< r<n).
(a) Maximum Likelihood estimation (M.I..E).

The likelihood function based on a type II censored sample (see Lawless,
2003) is given by

L(ay,ay, by by, py 1) = _,) H O S G, 1 (2.108)

(n-r)!

For the model (2.2), (2.108) becomes,

L(a,,a,,b,,b,, p, 1 x)= [H(P;a;b](l +ax, )"+ (- p)ab,(1+a,x,,) "))

n!
(n—r)' i=1
[p(+ax, )" +0-p)U+a,x,) " 1" . (2.109)

Maximization of log-likelihood function of (2.109) with respect to the parameters

yields the following equations.

\ pb(—abx, Y +ax,) "
])lalbl(.l+al-x(”)f(b|+|)+(l_ [)])azbz(l-l-CL “)) thy+1)

b(n—rx, (1+ax,,) """

(ry

pl+ax,) b + (1= p)l+a, rm)

=0, (2.110)
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r (l—P;)b (I-a bzx(,,)(1+ll rm) (h+2) ]
»ab (1+a, x,,)—w,m +(1—p,)a b (1+a, xm)-m +|,i

i=l

1- p)b,(n—r)x, (1 +a,x, )"
(= p)bn=nx, (+ax,) =0, (2111
pQ+ax,)) +(1—P-)(1+az"

. pa,(1-b log(1+ax, H(1+ax, ) """
pab (+ax;) (1= phab L+ ayx,, )

(n—r)p,(1+ax, )" log(l+a,x,)

—b,

pl(1+al‘x(r])_b! +(]— pl )(1+af' (r)) )

(r)

(2.112)

r (1= p)a,(1-b, log(l+a,: (,,))(|+a2xm)'”*-*"'
plalb'“+al (r)) (b|”)+(l pl)ajbj(l+ag-x(il)_(b:ﬂl

_ (n=r)1-p X1 +azx(,_))_’“- log(1+a,x,,,) 3

2.113
p(+ax, )" +1-p)l+ax, )" ( )

and

r { a,b,(l+alx“.,)_(b‘+” ~a,b, (1 +a2x(,.))"“’3+" }

pab (1 +ax,)"" " + (1= payh, (1+ayx,) ™"

(1)
(n-r)[(l+a, x,) " =(+a, x(,‘)"’:]
p,(1+a, )= p)l+ayx, )"

~0. (2.114)

Solving the equations (2.110) to (2.114) we obtain the M.LE s of
a,,a,,b,.b,and p, .

(b) Bayes estimation.

From (2.22) and (2.109), we obtain the joint posterior distribution of a,,a,,b,,b,and
p,as
o )
[1@.a.b,.b,.p)10) @ {H(plalb,(l+al )"+ - payh, (] +az.x,,.,)"“’-*")Jl
i=1

1

a,a,bb.

e, )"+ (1= p)I+ayx, ) ") (2.115)
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We then obtain the marginal postenor distributions as,

oo o000 ; |
M@ 1x=0 .[ ”{H“’l‘ﬁb (+ax,,) i H)+(1_Pl)ﬂzb:(l'*‘az-‘(fz)_(b:+]')}
0000

1

{(p,0+ax, )" +0=p)i+aux,)™)" "} dp,db,db,da, , (2.116)

a,a.bb,

T

m oo co |
M,(a,lx)= '”J.J.{H(p,a h(I+ax,) """ + (1= p)ab,(l +a2xm)'“’1”’)}
0000

]

{(p+aux, )" +(- ppU+a,x,,) ")} dp,db,db,da,, (2.117)

a,a,00,

mmwl

me1n=0ff U{Hwbﬂw. ) 4 (- pab,(+ax,, >}

¢c000

1
{(pa+ax )" +0=p)(+aux, )" "} ———dpdbda,da,, (2.118)
- a,a,bb, T

60 o0

w ] I
I,(b, | x) = Q“j’j{n(p,a,b,(ncz,.xm)“’>'*” +(1- pash,(1+ ayx, )" *“}
oo Uit

00

- n-r l
{(p|(l+a|x(”) by +(1—p,)(|+a \,“)) )( '}mdp.db,dazdal, (21 19)

and

20 00 DO OV

]
Ryp1n=0f]] J{H(P abyil+ax,) """ + (1= pasby(1 +az.r(_,-,)“”:*"’)f

0000

, 1
(p,(I+ax, )" +(1-p)d+a,x,)™)"" —db db,da,da, . (2.120)
pl 1 (rh 1 (r) | 2 2 1

a,a,bb,

{H(p.a,b(lm,x“,) @ 11 payh, 1+ ayx,)" “}

i=1

{(p,1+ax, )" +(=pXi+aux, )" "} dp db,db,da,da, . (2.121)

a,a,bb,
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Then the Bayes estimates of the parameters, under squared error loss function, are

given as

00 00 00 wa |

QHI”{“”’“““M.J O (L= paghy (14 G, %)™ +n)}

00000
1
{(p+ax, " +1=p)U+a,x,,)" )"} ——dp dbdb,da,da, ,(2.122)
a,no,

w0 0000 0c |

QIIIIHH(P,ab( +ax;,) B (1~ pab,(1+a.x, ""’-‘*")}

00000

1
{(p](1+a] (r)) b +(1‘P|)(1+(l x(”) fn r)}a dp|db|db:da|da2’ (2.123)
172

o 0o 00 00

QJ‘J-'“-IJH(MG[) (I+a,x,) (B +1) +(1- ppa,b,(1+a,x,;,) N +n}

00000

{(py 1+ ay, " + (= p)0+ay, ™)' —— dp db,da,dadb, , (2.124)

a,a,o,

©o 00 06 00 ]

QJ-J-J-‘“‘[H([J,(I[) (1+a,x,) (h+b +(1= p)a,b, (1+ayx,,) (b 40

00000 =l

[p,(+ax, )" +(1-p)(1+ax, )"

dpdbda,dadb,, (2.125)
a,a,b, - -

and

} o 00 0000

QJ-J-J-”‘,D, {H(p,ab (I+a,x,) ™"+ (1= pab,(1+ a,x,;,) ™" +”)l

00000 J

]

a,d,b,b,

{(p,+ax, )" +0-p)d+ax,,) ") "} db.db,da,da,dp, . (2.126)

Bayes estimators ofa,,a,.b.b,and p will obtained by numerical integration
procedure.

Remark 2.4

One can use other types of priors for the analysis, which may yield complex situations

Remark 2.5

When r=n, the estimators obtained under type Il censoring situation reduces to those

under complete sample set up.



2.8 Simulation Study

In Section 2.5, we have descnibed different methods for estimation of
parameters of the model (2.2) for the complete as well as for type 1 and type II
censored samples. In this section, we carried out simulation studies to assess the

performance of the estimates.

For the type I censoring, in which observations belonging to each
subpopulation are known, we generate two sets of samples, one from a Pareto Il

distribution with parameters a,and b and the second from a Pareto II distribution with

parameters a,and o, .

For the type 1 censonng, in which observations belonging to each
subpopulation are unknown and for type II censoring, first we generate two sets of

samples, one from a Pareto II distribution with parameters a,and b and the second
from a Pareto IT distribution with parameters a,andb, and then, we obtain samples

from a finite mixture of Pareto Il distributions using Bernoulli probability

p(0< p <.

The estimates of parameters by the method of maximum likelihcod,
Bayes technique, method of moments and method of maximum product of spacing

under complete sample set up are developed for various combinations of a,,a,,b,,b,
and p,. Table 2.1 presents the estimates for a, =0.05,4, =2,5,=b, =5 and p,=0.5.
Here, we take b, = b, = b for the simplicity of calculation ¢f moment estimates and we

choose b =35, since in method of mements b should be greater than 4.

The estimates of parameters by the method of maximum likelihood
and Bayes technique under type I censoring. in which observations belonging to each

subpopulation are known, for a,=.03,a,=3.h,=1.h,=2 and p, =0.5 with various

combinations of » (sample size) and 7 (censoring time) are given in Table 2.2. In
Table 2.3, we give the estimates of parameters by maximum likelihood and Bayes
technique under type 1 censoring. in which observations belonging to each
subpopulation are unknown, with various combinations of n and 7 for the same set

of parameters. Table 2.4 provide estimators by the maximum likeiihood and Bayes
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under type Il censoring for the same set of parameters with various combinations of n

and r.

The values in brackets provide the variance of the estimates. . fn the
case of Bayes estimate, we calculate posterior nisk. The result obtained under type 11
censoring is extended to the complete sample by taking r=n. Simulation study reported
here and other simulations that are not given here, shows that M.L.E. and Bayes methods
provide estimates with small bias.. The variance (posterior risk) of the estimates decreases

as n increases.

Now, we compare the different estimates to measure the efficiency. For

that we define risks improvement (RI) factor, as

Var(6,)—Var(9d) o

RI =
%) Var(6,)

100,

where & is the new estimate and &, is the existing estimate (see Jin and Pal, 1992) and

Var(0) denotes the variance of & . The results are presented in Table 2.5

We used the software, Mathematica, to evaluate integrals involved in the
expressions. It may be noted that the efficiency of the maximum likelihood estimates

depends on starting values in the iterative procedure.
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Table 2.1 Estimates of parameters under complete sample for

a,=.05,a,=2,b=5and p, =0.5

Maximum
Estimate M.LEE Rayes Method of product of
moments spacing
4,=.050104 a,"=.048875 d,=.05178 a,=.04912
(2.34E-05) (2.371E-05) (.0198) (.00351)
4,=2.1498 a,’ =2.102 a,=1.791 a,=2.0923
2230 (8.47E-06) (8.83E-06) (.0476) (.0346)
b =4.829962 b* =4.9426 b=5.2075 b =4.9231
(.025288) (.0408) (.1209) (.21052)
p,=.518161 p, =.51815 p,=4876 p,=49942
(.000518) (.000518) (.00178) (1.9E-10)
4,=.0491342 | g =.049001 d,=.05156 a,=.04989
(1.88E-05) (1.892E-05) (.0132) (.00218)
,=2.02265 a, =2.0208 a,=1.89 a,=1.9976
=50 (5.05E-06) (5.72E-06) (.0219) (.001753)
b=4.918252 b*=4.9474 h=5.176 b =5.017
(.01636) (.044573) (.1138) (.1208)
p,=5271 p, =.513624 p,=.4894 p,=.50173
(.000354) (.000857) (.00112) (1.3E-12)
4,=.0491522 a’=.5101 a,=.0511 a,=.0508
(1.387E-05) (1.882E-05) (.00987) (1.1E-03)
a,=2.022 a,” =2.0202 a,=1.9037 a,=2.0013
1=100 (3.8E-06) (4.98E-06) (.0187) (.000521)
b =4.929 b’ =4.858 b=5.1257 b =5.0078
(.008508) (.007085) (.0732) (.02371)
p,=.5136 p, =.5255 p,=.50238 p,=.500012
(.000227) (.000318) (.000179) (1.1E-13)
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Table 2.2 Estimates of parameters under type 1 censoring for
a,=.03,a,=3,b,=1.b,=2and p, =0.5 in which observations belonging to each

subpopulation are known.

Censoring Estimate n=30 n=50 n=100
time
a,=.0321006 a,=0310114 a,=.0299031
(3.7TE-03) (2.8E-03) (2.1E-03)
a,=2.87634 a,=2.90125 4,=3.09768
(.09324) (.03352) (.01127)
MLE b,=1.21304 b,=1.10124 b,=10098
(.1128) (.0156) (.01376)
b,=2.11321 b,=1.973 by=1.99243
(.15712) (.08741) (.0127)
P, =.49967 P, =49989 P, =49991
T=30 (3.08E-10) (2.9-10) (1.1E-10)
a,"=.0312301 a, =.0309141 a,” =0302004
(2.87E-03) (1.9E-03) (1.27E-04)
a, =2.89137 a, =3.10642 a,” =2.99104
(.027648) (.01139) (:01038)
Bayes estimate b, =1.13203 b, =.9890 b, =99124
(.1428) (.1014) (.10014)
b, =2.09913 b, =2.0897 b, =1.99884
(.10519) (08431) (.0653)
P, =.490578 p, =.49952 p, =.500124
(2.08E-11) (1.99E-11) (1.OBE-11)
a,=031198 a,=.030987 a,=.0300321
(2.1E-03) (1.97E-03) (1.9E-04)
a,=29124 a,=2.975 a,=3.0432
(.057894) (.016809) (.00178)
MLE b,=1.109% b, =10364 b,=1.00031
(.10742) (.09656) (.02376)
b, =2.1087 b,=2.0965 b,=2.0432
(.1043) (.03650) (.01368)
P, =49998 P, =49999 p, =.5002
T=100 (2.076E-12) (1.98E-12) (1.34E-12)
a, =.03109 a, =.03098 a,”=.030024
(2.01E-03) (1.8E-03) (1.O1E-04)
a, =2.9521 a, =3.10032 a, =2.9998
(.017094) (.003456) (001127
Bayes estimate b, =1.0543 b, =1.0412 b’ =1.003
(.1021) (0357) (.009986)
b, =2.0657 b, =2.023 b, =1.9991
(.10042) (.02341) (0032)
P, =49999 p, =49999 P, =.5001
(2.79E-14) (1.20E-14) (1.1E-14)
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Table 2.3 Estimates of parameters under type I censoring for
a,=.03,a, =3.b,=1,b, =2and p, =0.5 in which observations belonging to each

subpopulation are unknown.

Ceqsormg Estimate n=30 n=30 n=100
ume
a,=.02789 a,=.030932 a,=10299987
(2.8E-04) (2.1E-04) (1.7E-04)
a,=2.91132 a,=2.92786 d,=3.09764
(5.4E-03) (2.9E-03) (2.8E-03)
MLE b,=1.1043 b,=1.10213 b =1.012
(.00279) (.001247) (1.5E-03)
b,=2.0918 b, =2.0762] b, =2.009
(.00176) (2.7E-03) (1.5E-03)
P, =-4998 P, =49999 P, =5001
T=30 (3.01E-12) (27E-12) (2.2E:12)
a, =.02917 a,” =.03009 a, =.03002
(1.9E-04) (1.6E-04) (1.3E-04)
a. =3.1164 a, =2.9429 a, =3.0917
(4.7E-03) (2.2E-03) (1.9E-03)
Bayes estimate b =9426 b, =1.0975 b, =1.0013
(.0017) (2.3E-03) (1.1E-03)
b, =1.9543 b, =1.985 b, =2.0019
(4.1E-03) (3.7E-04) (2.4E-04)
p, =4999 p, =500112 p, =.5001
(1.8E-13) (1.5E-13) (1.3E-13)
a,=.03098 a,=.03074 a,=.03003
(2.4E-04) (1.98E-04) (1.5E-04)
a,=2.9469 a,=2.98 a,=3.0031
(3:6E-03) (2.7E-03) (1.9E-03)
MLE b,=0.9912 b,=0.9936 b,=1.00021
(2.3E-03) (1.3E-03) (5.9E-04)
b,=2.1087 b,=2.0965 b,=2.0432
(3.4E-03) (2.1E-03) (1.1E-03)
p,=5017 P, =.50076 P, =.5001
T=100 (2.6E-12) (1.9E-12) (L7E-12)
a, =.03003 a, =.0299 a,"=.03001
(1.9E-04) (1.4E-04) (1.3E-04)
a, =3.096 a, =3.0863 a, =3.0056
(3.2E-03) (2.5E-03) (1.2E-03)
Bayes estimate b, =1.0023 b, =.9989 b, =1.0001
(7.8E-04) (5.6E-04) (2.1E-04)
b, =2.0657 b, =2.023 b, =1.9991
(2.9E-03) (1.8E-03) (1.02E-03)
p, =4999 P, =.50007 P, =.50001
(2.2E-13) (1.5E-13) (1.2E-13)
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Table 2.4 Estimates of parameters under type II censoring for
a,=.03,a,=3,b=1,b,=2 and p,=0.5

n=30 n=50 n=100
Estimate
r=10 r=30 r=30 =50 r=60 r=100
4,=.03113 | 4,=0301 | 4,=0305 | 4,=.03021 | 4=.0301 | 4=02999
(.000913) | (.000804) | (.000691) | (.C006780) | (.0005478) | (.0000780)
4,=3.125 | 4,=3.098 | 4,=3.097 | @,=3.003 | 4,=2.999 | &,=3.001
(09453) | (05417) | (.00571) | (.002168) | (.00106) | (.00087)
MLE | 5=1.1103 | 5=1.093 | b=1.091 | 5h=1.082 | 5=1.002 | b=1.001
(0090037) | (.007396) | (.0020381) | (.002000) | (.001600) | (.0002600)
b,=2.135 | b,=2.091 | b,=2.065 | 5,=2.049 | 5,=1.998 | b,=1.999
(.00883956) | (.007023) | (0065277) | (.0048) | (001821) | (.000980)
p,=4981 | p,=4989 | 5 =4998 | p,=.5005 | p,=.5002 | p,=5001
(2.43E-12) | (1.01E-12) | (2.63E-16) | 2.11E-16) | (3.11E-18) | (1.01E-18)
0 =03123 | 020304 | a7 =0287 | a=0298 | ar=031 | 0302
(L38E-5) | (122B-5) | (LO3E-S) | (101E-=5) | (2.226-6) | (000 ®)
a,=3.101 | a,=3.087 | @, =3.054 | a,=2.995 | a,=2.998 | a,"=2.999
(09743) | (0532) | (0247) | (02187) | (.00590) | (.00210)
Bayes b'=1.125 | b'=1.0987 | b =1.085 | b’ =1.0043 | b =1.0021 | b =1.001
estimate | (.0016) (0032) | (.0023) | (.00191) | (.00086) | (.00012)
b =2.1054 | b =2.045 | b =2.014 | b"=1997 | b =2.004 | b, =2.001
(10490) | (0978) | (01752) | (.00951) | (.00219) | (.00019)
p=4976 | p =4987 | p =4998 | p =.4999 | p, =.50021 | p =5001
(2.13E-13) | (1.09E-13) | (1.87E-15) | (1.1E-15) | (2.9E-19) | (2.0E-19)
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Table 2.5 Risk improvement of the Bayes estimator over the different estimators

for the set of parameters a, =.05,qa, =2.b=5and p, =0.5 in the complete sample

set up.

Maximum
Estimate M.LE. (%) Method of product of
moments (%) spacing (%)

84 98 98

89 99 93

n=30 87 95 96

88 99 95

89 96 90

85 97 94

n=>50 84 98 98

87 96 92

80 97 95

87

n=100 99 94

85 94 92

86 98 97

2.9 Data analysis

For the illustration of the estimation procedure, we consider a data on time to
death of two groups of lcukacmia patients (see Feigl and Zelen, 1965), which is given
in Table 2.6. We then estimate the parameters using M.L.E and Bayes technique.
Table 2.7 provides the values of the estimates by M.L.E and Bayes method. We then
used the Kolmogorov- Smirnov statistic to test the goodness of fit. The values of the
test statistic D, is given in Table 2.8. The table value at 5 % significance level i1s
0.233. From the analysts, it concludes that the model (2.2) is a plausible model for the

data with parameters given in Table 2.7. Table 2.9 provides the maximum likelihood

estimate of survival function at various time points.
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Table 2.6 Survival times of leukaemia patients

AG positive AG negative
patients patients
65 56
156 65
100 17
134 7
16 16
108 22
121 3
4 4
39 2
143 3
56 8
26 4
22 3
1 30
1 4
5 43
65
Table 2.7 Estimates of parameters of survival times of leukaemia patients.
M.L.E Bayes method
a, =0.0213968 al* =0.0194
a, =0.0387068 a, =0.0280742
b =1.14671 b, =2.8557
b, =2.02603 b, =2.70599
p,=0.50137 p, =0.509745
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Table 2.8 Kolmogorov-Smirnov test statistic

Max D, (M.L.E) Max D, (Bayes)

0.1019749 0.052931

Table 2.9 Maximum likelihood estimate of survival probability at various time

points

X 1 10 50 75 100 120 140

.§(x) 951048 | .658389 | .273978 | .198853 | .155183 | .131571 | .113936

2.10 Conclusion

The role of finite mixture of Pareto II distributions in reliability analysis
is studied. We proved that finite mixture of two Pareto II distributions is identifiable. In
the present chapter, we developed estimates of parameters using different approaches for
both complete and censored samples. Maximum likelithood and Bayes methods provide
estimates with small bias and less variance (in the case of Bayes, we calculate posterior
risk) and the vaniance of the estimates decreases as n increases. The results derived under
type II censoring can be specialized to the complete sample case by taking r=n. As
expected, the method of moments was shown to be inferior to maximum likelihood
estimation (M.L.E), Bayes method and maximum product of spacing (M.P.S). The role of
finite mixture of Pareto 11 distributions is i}llustrated using a real life data on time to death
of two groups of leukaemia patients. The part of this chapter has appeared in Sunkaran

and Maya (2005).



Chapter 3

FINITE MIXTURE OF BETA DISTRIBUTIONS

3.1 Introduction

In practical situations, the observed lifetimes of an item varies over
only a finite range. Accordingly, Mukherjce and Islam (1983) studied the properties of
finite range (beta) model in the context of reliability analysis. The finite mixture of beta
distributions is widely used as a lifetime model due to the property that beta distribution
has flexible skewed density function over the finite range. Further, beta distribution is
widely employed for modelling lifetime data of systems as it has increasing failure rate

pattern.

The finite mixtures of beta distributions arise frequently in Bayesian
conjugate prior analysis. An example introduced by Diaconis and Ylvisaker (1985) uses
finite mixture of beta distributions as a prior for a binomial parameter. They noticed that
there is a big difference between spinning a coin on a table and tossing it in the air. The
tossing often leads to about an even proportion of heads and tails, while spinning gives
an uneven proportion of heads and tails. They justified that the shape of the edge would
be a strong determining factor for this bias and used a finite mixture of beta

distributions as a reasonable prior.

A systematic study on finite mixture of beta distributions in the
context of reliability is not yet carried out. Motivated by this, in the present chapter,
we study the properties of finite mixture of finite range (beta) distributions in the
context of reliability, Throughout this chapter, we consider a finite mixture of two

beta distrnibutions.

In Scction 3.2, we give definition and properties of finite mixture of
beta distributions. Section 3.3 discusses the important reliability characteristics of the
model. Identifiability of finite mixture of beta distribution is discussed in Section 3.4.

Estimation of paramcters of the model for complete as well as censored case by
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different techniques is studied in Sections 3.5 to 3.7. Section 3.8 deals with simulation
study to investigate the finite sample properties of the estimators. In Section 3.9, we
illustrate the role of finite mixture of beta distributions using a real life data. Finally,

in Section 3.10, we give the conclusion of the chapter.

3.2 Definiiion and properties

Let X be a non-negative random variable admitting an absolutely

continuous distribution function F(x) with respect to a Lebesgue measure. Assume
that the probability density function (p.d.f.) of X, f(x) exists. A two-component

mixture of beta distribution is given by
f(x)=ped,(—cx) " +(1- p)e,d,(1—c,x)" ", (3.1)
O<x<lfe,, 0<p <1.

where ¢, 2¢, >0 andd,,d, >0. Notice that the support of the component densities
need not be same. For (3.1), the support of the first component is 0 < x <1/¢, and that
of the second isO<x<l/c,, where ¢, 2, is assumed, without loss of generality.

Whend, =d, =1, (3.1) reduces to a mixture of two uniform distributions.

The r" moment of the distribution (3.1) is given by

_pLC+DIE, +1) (1= p)T0 + W, +1

ErxD ¢, T(d, +r+1) ¢, T(d, +r+1) 5:2)
where Tp= njl-e"‘x”"dx. is the gamma function.
0
When r =1, (3.2) reduces to the mean, which is equal to
£ xy =—D0 y d=m) (3.3)

o(d, +1) o (d,+1)
When r =2, (3.2) becomes

2p, N 2(1-p,)
¢ (d, +1)(d, +2) ¢, (d, +1)(d, +2)

E (X%) =
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Thus the variance of (3.1) 1s given by

Vix)= p(2+2d,—2p, “d|p1)+ (1-p)d,-(d, _2)P1)_ 2p,(1-p)

, . . . (34
o (d,+1)(d +2) ¢, (d, +1)°(d, +2) c,c,(d, +1)(d, +1) G4
3.3 Reliability characteristics
The survival function for the model (3.1) is given by

S(x)=p,(1-cx)" +(1- p)A—c,x)", 0<x<1/¢,, O0<p <1, (3.5)

For the model (3.1), the hazard rate s(x) and the mean residual life function r(x) are

given by
h(x)= pe,d, (1 —c,x)d‘ 7: +(1- p)ed,(1- Li.lx)dfu e
Py(1= 0" +(1= p)1- ;)"
and
0y = Pl D0 =60 (1= ped, H DA e0™ (3.7)

oclp (-0 +(1= p)d-c,0)* [d, +1)(d, +1)

From (3.6) and (3.7), we obtain an identity connecting r(x)and h(x) as

r(x)

_ho(-cx)d-c,x) | ¢ (dy + ) =¢,(d + D+ e, (d, —d, )x
c,c,(d, +1)(d, +1} cd —c.d,—cc,(d,~d,))x
cid (d, +1)(1 - c,x)° = cid, (d, + (1 - ¢,x)’

_ Ny (3.8)
¢, (d, +)(d, +Dcd, —c,d, —¢,c,(d, —d,)x]

Figures 3.1 to 3.16 show the behaviour of hazard rate and the mean residual life
function for different parameters of the model (3.1). From the graphs, it is easy to see

that the behaviour of h(x) and r(x) arc depending on the parameters of the model.
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Fig. 3.2
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Fig. 3.10
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The situations where the model can be used to represent lifetime data
will be made clear only if we know the ageing behavior of the system represented by
the model (3.1). Obviously, the component density of {3.1) possesses the increasing
faijure rate (IFR) at all time points. However, the mixture model (3.1) can possess
decreasing failure rate (DFR) behaviour. The hazard rate h(x) i1s DFR in Figures 3.1
and 3.2. A bathtub model for h(x) is obtained for a different set of parameters {see
Figures 3.3 to 3.5). In Figures 3.6 and 3.7, the hazard rate h(x) is IFR and it is

constant in Figure 3.8.

As discussed earlier in Chapter 2, the distribution (3.1) and the
identity (3.8) also involves five parameters. Reduction of one parameter can be
achieved if we take either ¢, =¢, or d, =d, without sacrificing much of the flexibility

of the model. This motivation leads to consider the following,

whend, =d, =d , the identity (3.8) reduces to
c,c,d(d +Dyr(x)+ h(x)(1—cx)(1-c,x) =dlc,(1-c,x) + ¢, (1—¢\x)] (3.9)
and

forc, = ¢, = ¢, the identity (3.8) becomes
¢ (d, + )(d, +Hr(x) + h(x)(1=cx)’ =c|(d, +d, + )(1-cx)] . (3.10)

In the following, we prove a characterization result for the finite

mixture of beta distributions through simple relationship between /i(x) and r(x).

Theorem 3.3.1
A continuous random variable X in the support of positive reals
with £ (X ) < =, has survival function
S(x)=p,(0—cx) +{-pXl-c,x) ,0<x<lfc,. ¢, 2¢,>0.d >0, 0< p <.
(3.1hH

if and only if the refationship (3.9) holds.
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Proof.

Suppose that the identity (3.9) holds, and then we have,
cead(d +1) [S@dr+ ()1 -0}l —,x) =dle, +¢, = 2¢,6,xIS(x) . (3.12)

Differentiating (3.12) twice with respect to x, we get,

oc.(d—1)(d~-2)f(x)+(d - Z)f'(x)[(.‘, (I-c,x)+c,(1-¢x)]+ fxxl —¢x)(I—c,x)=0

(3.13)
where f’(x) and f”(x) respectively denotes the first and the second derivatives of
f(x) with respect to x. The solution of the differential equation (3.13) is obtained as

S =e,(1-¢,x) +e,(1—¢,x) . (3.14)

Since §(0) =1, we havee, =1—¢,, which gives (3.14) as required in (3.11).The proof

of the converse part is direct.

Theorem 3.3.2

The relationship (3.10) characterizes a mixture model with survival function
S(x)y=p, - cx) +(1— p(1- cx) ",

For the proof, see Abraham and Nair (2001).

3.4 Identifiability
In the following, we show that a finite mixture of two beta densities
is identifiable.

Theorem 3.4.1

Finite mixture of beta densities 1s identifiable.
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Proof:
From Teicher (1961), it follows that a finite mixture of k& exponential

component densities is identifiable. If Z follows exponential with parameter A and

y=—2 . then Y follows beta distribution with density
(.

g(M=cAl-cy)*". 0« y<lfc.

. ) l-e™
Since the transformation Y =

15 one to one and onto, a finite mixture of beta
¢

with component densities g,(y) =c¢,4(1 —c‘,)')""_' , i=1,2 1sidentifiable. The rest of the
proof is analogues to that of Al-Hussaini et.al. (2000).

3.5 Estimation of parameters

In this section, we discuss the esumation of parameters c,c,.d,.d,

and p, of the model (3.1), using different methods under the complete as well as

censored sample set up.

3.6 Complete sample set up

3.6.1 Estimation of parameters when the observations belonging to each

subpopulation are known

We consider the situation, when there are only two subpopulations with mixing
proportions p, and (1—-p,) and f(x) and f,(x) arc beta densities with parameters
(¢,.d)) and (c,,d,). Assuming that items that fail can be classified and can be
attributed to the appropriate subpopulations so that the data would consist of the n

lifetimes grouped according to the subpopulations{(x,,, X,5...., X, ) (X3}, Xpseeen Xy, )}

where it is assumed that n, and n, are the observed frequencies in the sample of

the units belonging to respective subpopulations .

Then the likelihood of the complete sample is given by



L(c,,¢,.d,.dy, p i X)=.

1 "

n' n n m n, 4 H~ "l - A
p" (= py=eld e, d [T -ex ) [0 - )" (3.15)
i=1

nn,!

j=t

which can be written as

L(c,,¢y.d,,dy, p, | x)

n! n, n, n, n na Ha oL
=_ P (1= p)=ed e, d," expl(d, —1)Y_log(1-c,x, )
j=I

n'n,!
expl(d, ~1)D log(1-¢,x,)). (3.16)
J=t

(a) Maximum likelihood estimation (M.L.E).

To estimate parameters, we consider the logarithm of (3.16), which provides

logL=logC+nlog p, +n,log(l-p)+nlogc +nlogd +n,logc, +n,logd,

"

+(d, — l)z log(1—¢x, )+ (d, - ])2 log(1-c¢,x, ), 3.17)

J=1 J=t

[
where C = "

m'n,!

Maximization of (3.17) with respect to the model parameters yields the following

likelihood equations,

E+MZ(1_L)-I:O, (3.18)

() g J=1 Clxlj

n (d,=1 < | S

—= 3 - = l—- :0’ 3.19

¢, Ca é( €y, ) ( )

gl+zlog(l —cx,)=0, (3.20)
=

ﬁz—+21()g(l—c2xzj)=(), (3.21)

2 et
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and
L N T (3.22)
p, (-p)

The equation (3.22) provides,

. n

non,
The solution of the equations (3.18), (3.19), (3.20) and (3.21) by

Newton-Raphson iterative procedure yields the M.L.E.’s of ¢|,c,.d, andd,.

For obtaining variance of the estimates, we need to compute the

observed information matrix /(c,,¢,,d,.d,,p,).

The second derivative of log L(c,,¢,,d,,d,. p,| x) leads to the following

8‘10§L=_[_n,7 -0 1, | (d—l)z'(l_ }

ac,” ¢ o a0 X, clx,}
d’log L 8 log L l”z'(l_
ddd, ddoc, ¢

1=l

lj

)

SR

0’ log L n, (d,—1)< 1 (d —n 1
== —— 1_.
= [ - siareaX }

c, = x0 c,.xq DGy,

8210gL:8210gL:_"Z‘ 1_
dc,0d, dd,dc, ¢, S X,

d’logL _ n

od/’ d’
dlogl _ n,

od,’ dy’
and

d'logL _ (n +n,)

Y

op, P

and all other second derivatives are zero.

The observed information matrix is thus
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_d’logL  d’logL 9d’logL d’logL  d'logL
dc,’ dc,de,  dcdd,  0dcod, Jc,op,

I(C],ngd|9d2! p[):

_d’logL d’logL d’logL 9d’logL  9d’loglL
ap,dc, opdc, dpod, dpcd, op,”

~ ~

For large n, the joint distribution of the estimates ¢,.¢,.d,,d, and p, is
approximately multivariate normal with mean (c¢,,c,.d,.d,. p,) and covariance matrix

I"(él,éz,z},,jz, p,) . which is the inverse of I(c‘l,éz,(},,z}z.ﬁ,) .
(b) Bayes estimation.

Using Jeffrey’s invariant prior for ¢ .c,,d, and d,and uniform prior

over (0,1) for p,, the joint prior distribution of ¢,,c,.d,.d,and p, is given by

glc,c,.dd,.p) (3.23)

oc,dd,
where we assume that c.c,.d,,d, and p_ are independent.

From (3.16) and (3.23), the joint posterior distribution ofc,.c,,d,.d, and p, is given
by

¢ .c,,d,.d,.p, | x) @ p,"‘(l—p,)"zc,"'_'cz"l_'d,"‘"dz"’"'

Hy H~

expl(d, =D og(1 - ¢.x, Nexpl(d, =) log(1—c,x, )] (3.24)
i=l =1

From equation (3.24). we obtain the marginal posterior distributions

of ¢,c,.d,,d,and p, as

m

¢ cxp[—z log(1—¢,x, )] o, exp[—Zlog(l —¢,x,,))
M ! x)=K, ! f ! —de,,  (3.25)

n
" t

[—Z log(1-c,x, )} K [—Z log(l-c,x,;)] »

i=1 j=1
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c:"?" exp[—z log(l-c,x, )], c,""' exp[—z log(1 —¢,% ;0]
f=1

(=Y log(-¢x, )]
j=t

M, 10)=K, - = ——dc,. (3.26)
[-> log(l—c,x, )] " =D log(l-¢x, )
il =
r . )
w w0 (dy- 1Y tog-cye ) | 2 (d,-1 )Z]og( l-¢1;, )
[L,(d, i x)y=Kd"" Idz":" Ic_,_"f'e " le 7 de, |dc, |dd, ;.
0 0
(3.27)
= o (d, l)i]ng(l— SR VN I (dl—liilog(l—q.x‘j) 1
Mid 10 =K,d" "3 fa | fe, e 7 ¢"le T de, |de, |dd, !,
0 0 0 J
(3.28)
and
[(p 1 x)=K.p" (U= p)", (3.29)
where
n ’_ N~
o exp[*Z]og(l —cx )| e exp[—Z]og(l -¢,x,,)]
K'I_l= j = i .[ = N JCZ dcl * (330)
{" -3 log(1-¢,x,,)] C Y logl-¢yx,))) J1
=l X i) _
L expl=> log( - ¢,x, )] WG cxp[—Zlog(l -¢,x,;)] ]'
K™= j i ! ——de, |de, . (3.31)
0 '
J

_[C'z":_ e
)

L

ey~ I)Zlng( [ER SR B
| =]

’ 1~i log(1-¢,x,,)]

J=l N

(dy-1 RJ logtl-cpx ) \
_1 et f
¢"e =
(
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(=1 Tog(l-¢yx )
-] =
fere de, |dc, |dd, }dd, ,

0

0 \() I_U

(d;—l)ilng(l—f;x:/) {
\ )
(3.33)

and

K =B(n +1,n,+1). (3.34)
Under squared error loss function, we obtain the Bayes estimators of

¢.¢,,d,,d,and p, as

" [ i

Lo exp[—z log(1-¢,x, D} . ;" exp[—z log(1-c,x, )}
¢ =K1 /! | = dc, |de,t,  (3.35)

" m H: <

D log(-e )] [ [—Z:IOg(l—czxzj)] |
i =

L0 exp[—Zlog(l =X ) ¢ exp[—Zlog(l -5}
e =K1 i | s ——dc, |de, ¢, (3.36)

‘ [—ilog(] ) ’ [—i log(1-¢,x, )]
j=l

J=1 L J
o [m oo (d:»-])i]og(l—v,xh y| €2 (d,—])ﬁilug(]—(‘]x,, )
d =K, [d"{[d7) [ e 7 forte 7 de, \dc, |dd, dd,
0 0 0 0
(3.37)
oo oa [m (dy-| éilugr l—cyxs 1} 2 (d, —l')ilngl I=o3 0
d, =K, [d," J fa ] feste ferte 7 de, |dc, |dd, +dd, ,
0 0 0 0
(3.38)
and
p]‘ =K.B(n,+2,n, +1), (3.39)

where B(p,q) is the beta function of the first kind.

Bayes estimators of c,.c,,d, andd, will obtained by numerical integration procedure.
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The posterior variarce of ¢, is obtained as,
Ve, |0 =E(¢ 1 x)- E(¢,1x), (3.40)

where

m

. Cln,H exp[_ZlOg(l _ C,XU)J' . Cz":—l exp[—-z log(l_ C»_,xzj)J
E(CI? | '}:) — K= j j=1 j s=1 (lcz d(,"l .

" " R

0 [—Zlog(l—c,x,j)J o [—ilog(l—czxzj)l ‘
j=1 J=1

and E(¢, | x) 1s given by (3.35).

Similarly, we obtain the posterior variances of c,,d,,d, and p,using the following

identities,
P exp[—z log(1-¢,x, )| ., ¢ exp[—Zlog(l ~cx )]
E(CZZ | I) = K:‘. j = ER J‘ = n, dc| dcz
l" [=) log(1-¢,x, )] P =) log(l—¢x, )]
= i =1
oo oo o ld:—l)ilug(l—(':x:,) ) ((I,—I]i}og(l-—(‘,.\'“)
E(d|2 I_X‘) — 1(3 Id|m+] J‘dznrl J‘C:n;—le 1=t J’C'm—le 121 dCl ch ddz ddl,
0 0 0 0
oo wa v (dy —l)uz‘log(l—czxg,) © ld,—l)ilog(!—c,x,,)
E(dzz I_Y) — K4 J’dzng+l J‘dln,—l IV J'Czn;--le it J'Clm—le = dCl dC:, ddl ddz,
0 0 Lll 4]
and

E(p|3 tx)=K,B(n, +3,n,+1).

Remark 3.1

One can use various types of priors depending on the situation for the
Bayestan analysis. However, when we employ conjugate priors for ¢,,c,,d,,d,and p,

the estimation procedure will become complex.
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3.6.2 Estimation of parameters when the observations belonging to each

subpopulation are unknown

We now consider the case when there are only two subpopulations,
with mixing proportions p, and (1- p,} and j,(x) and f,(x)are beta densities with
parameters (c,,d,) and (c¢,,d,) respectively. The likclihood based on sample

(x,X,,....X,) 1S given by

L(c,.c;.dy,dy, p ) ) = [ [ Picd (1= c,x )" + (= p)edy (1= c,x)) 7). (3.41)
i=1

(a) Maximum likelihood estimation (M.L.E).

Maximization of log-likelihood function (3.41) with respect to the model parameters

yields the following likelithood equations,

\ pd (1-cd x Y(1-cx) ™ _o .
S ped (=¢x )7 + (1= peyd, (l—cx )@ :
n - _ W1 v YD)
. p')dzgl. oot )2 o) — =0, (3.43)
I= P,c,dl(l—c,.;iy (1= p, )ngg(l—c‘zxj)“’_’
" pc(1+d, log(l—c‘xj )(l_clxj )ul.—n 0 o
=1 p|C|d|(1 _Clxj)(d'_” +(1'—P, )Czdz(l—czxj)“"?’” ’ .
" (1= p)ey(1+dy Jog(l —cpx M1 —cpx )7 =0 (3.45)
A pod(l-cx, Y4+ (1= p, )c'2d7(l—c2xi)‘”2""
and
n S (-1 S . (dy~1
cd,(A—cx )7 —cydy (1= cyx,) ) o, 46

= ped, (1=, x )™ (1= peyd, (1-c,x,) ™"

The solution of the above equations provides the M.LEE.s of

¢,.C,,d . d,and p,.
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(b) Bayes estimation.

From (3.23) and (3.41), we have the joint posterior distribution of

¢,,¢,.d,,d,and p, is obtained as

[Tchendndypiny e [H(p,c,d,(]—c,xl)“"““ + (U= p)esd, (1=, ) ™) I
i=y ce,dd,
(3.47)
From (3.47), we obtain the marginal posterior distributions as,
o0 oo w0 |
Min=M ““[H(plc.d (1= x)" ™"+ (1= pesdy (1= ) ™)
G000 =l
dpdd,dd dc,, 3.48
cedd, TR (3.48)
€3 0aco | n
61 x)=M JIJI (p,(,‘ld,(l—clx'.)"]""' +{1- p,)edy (1 ‘C:-"i)u:_lj)]
o000 =l
dp,dd,dd dc, . 3.49
c,c,d d, Lt (3.49)
0 00 ca |
@10 =8, [ [ (TP - 60)® "+ 1= pesds=c,m) ™)
00c 0 i=I
dpdc,dcdd,, (3.50)
Clt,‘z a5
00 00 00 |
1, 10 =M, [ [ [T T(red 0= )™ "+ = pead (=) )
00¢0 it
dpdededd, | 3.51
Clcgd[d: ]l L;( t | ( )
and
IL(p,lx)=M, IIII{H(;),L,(I(] Clr,)“" -h +(1-p)eud,(1—c, r)“’ n)1
0, 00 17}
! dd dd dc,dc,, (3.52)

¢,c.dd,
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where

o0 v oo o |

- jJJJJ[H(IJICI(I (A=) + (1= pedy(1-c,) ™)

Do i=l

1

c,c,dd,

dp,dd,dd de,dc, . (3.53)

1 = -!-J‘J‘J‘[H(plc d (l X )(dl_” +(l_ Pl)ngz(l—sz,-)(‘[?‘”)]

60000 =l

dp.dd.dd dc dc, . 3.54
¢,c.dd, PELAGEaAG ( )

oo 00 oo |

M= -[-[.[.[.[H(plcld A= x) ™"+ (1= p)eyd, (1-,x) ™))

900¢0

dp,dc,dc,dd.dd, . (3.55)

¢,c,dd,

oo o s oc |

_I””ln(/’n‘ld (1= x) ™" + (1= ped, (1= %))

D000 =l

F

dp,dc,dc,dd dd,. (3.56)

¢,c.dd,
{ o0 %0 oo
=k

.[ (plcldl(l —Clxi)(dl_“ + (1 = )Clzd:(l—sz,')(dz'U)}
L 00

i=1

1

dd dd de,dc,dp, . (3.57)
CC

22
Then Bayes estimates of the parameters, under squared error loss function, are given
as,

|

=M HM‘H‘P""“ 6x) " (1= peydy(1-cyx) ™)

0,000 =t

Y dpdd.dd de.de, . (3.58)
cdd,

20 (3 oo ve |

=M, IIIIIH(P;Cd(I < \)'d e +(1-p)ed,(1-c, x)““ ™)

00000 =

: dpdd.dd dcdc. , (3.59)
cdd, i .
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000050 ca |

d =M jjjjﬁ[l(mCd(l Cx)“l”+(L—chcl(] Qx)m ”ﬂ

00¢0 =1

dpdc,dcdd,dd,, (3.60)
c,cd, } i

R |

d =M I_[IIJ‘[H([)](—ICI (1 Cx)(d a (l_pl)czdz(]_czx,)(dl—l)”

000q0 i=l

1 —dp,dc,dc,dd dd, (3.61)
€,6,d,

and

| o0 0o oo 0

=M. _”jjj“(l’.fd(l X))V + (1= peyd, (1= c,x,) )]

00¢ 00 =)

]

c,cdd,

dd,dddc,dedp,.  (3.62)

Bayes estimates of c¢.c,,d,,d, and p, will obtain by numerical
integration procedure.

(¢} Method of moments.

As discussed earlier in Chapter 2, letm, ., m,, m, m, and m, denotes

the sample raw moments. Now we equate the sample moments to the population

moments, which provide the following equations,

P + (]—pJ

=m, (3.63)
cd+)  o(d,+])
2 P Coul ) R (3.64)
c(d,+1)(d,+2)  c;(d,+1)d,+2)
6p, 60=p) = m, (3.65)
G+, +2)(d +3) S A+ 2,13 N
24p, 24(1-p)) = m (3.66)

( +1)(d, +2)(d, +3)(4, +4) c, (a': +1M(d, +2)(d, +3)(d, +4)
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120p, 120(1- p,) o
S (d, +(d, +2)(d, +3)(d, + 4)(d, 15 ASd, +1)(d, +2)(d, +3)(d, +4)(d, +5)

(3.67)
The moment estimates of ¢,,c,,d,,d,and p, can be obtained by

solving the equations (3.63), (3.64), (3.65), (3.66) and (3.67).

(d) Maximum product of spacing.

In this section, we obtain the estimate of parameiers c¢,.¢,.d,,d, and
p, using the maximum product of spacing method introduced by Cheng and Amin

(1983). The estimates by this method are obtained by maximizing the geometric mean

of the spacing based on a sample (x,,x,,....x,).

& .
== log{p[d-cx_D)* =(A=cx) )+ (1= p)l(l—cx_ )" —(1-c,x,)2 1} . (3.68)

Differentiating G with respect to ¢,c,,d,.d, and p, and equating to zero we have,

Pl - 6x) 7 x (1= ,2,,) " Vx, )

" =0, (3.69
§.I’|[(l CiX;. l)dl (- sz)dl]‘*'(l“pl)[(l X 1) == er) ] )
(il (dy-1)

_Z {171)('-.[(1 c, Y) (1 ChX ]) ,1] . O, (370)

n S pld=cx )" = (=cx) l+(i—p,)[(1 c,x ) —(1=c,x)" ]
1L pld=cx,_ )" log(1—¢,x,_ )~ (1—¢,x)" log(1—¢,x,)]
N d d 4 o =0, 3.71)
n i P|[(1—C.»\',~_|) : _(]—C]x,') IJ+(1_ P;)[(]—Cz-\’,-_l) - —(1"()2.\”») J
1 - pOl—c,x, )" log(1-cx, )= (1—c,x)" log(l-c,x,)] o -
N 4 d, _ dy 1 d, -V (" “)
e p[l(l '[- ,‘4) (1 ('|-x,‘) ]+(1 Pl)l(] szf_j) (1 (-g-x,‘) J
and
_Z —cx )" = (1—cx)" +(1—cyx)" = (1~¢,x,_)" ] (3.73)

n'7 pli—cx,_ ,)”—(I—C.\,)"‘]+(l-p (1 - c;X,-_,)"-‘—(1~t‘3-x,-)"3}:

Solving the above equations by Newton-Raphson iterative procedure,

we obtain the estimates of c¢,,c,.d,.d, and p,
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3.7 Censorcd set up

3.7.1 Estimation based on type 1 censored samples when the observations

belonging to each subpopulation are known

Consider the situation, when there are only two subpopulations with

mixing proportions p,and (1-p,) and f,(x) and f,(x) are respective beta densities
with parameters (¢,d,) and{(c,,d,). Let 1 denote the failure time of the j"’ unit

belonging to the " subpopulation, 1, <T,j=L2,.,r; i=12 and let ¥, =¢T,

L4 l'l

t..
i=12 andx, = 7:—’ and observed x={x,,x,,...X, XXy, X, }. Now we
discuss the estimation of parameters.
(a) Maximum likelihood Estimation (M.L.E).

The likelihood function based on a type I censored sample is given by (see

Mendenhall and Hader (1958) and Sinha (1986))

n! pi-p)* 0 . (dy -ty
nintn-r)t T g{d'%(l rm )"

L(}’ns}’wdndz,p» lx)=

}j‘{dzyz(l_ 739\'3,—)“}!-”}{,01(1— y:)d[ +(] - P.)(l— }/Q)d: }(n—r)- (374)

Maximization of log-likelihood function with respect to the model parameters yields

the following likelihood equations,

RGNS L mopd )t (3.75)

voon Sonx lpG=n)" +d-p)A-p)E] ’
_ n __ Sl _ (dy—t)

r_2+(d2 UZ“* l‘ ) - (” _rz(ld, pl)d_:(l 7:_) d =0, (3.76)

72 }’3 j=1 yz-‘z, [P](] /l) +(l p,)(l 72)]

e (n=r) p,(1-7)" log—7,)

4+ log(l—}/x,)Jr - —=0, (3.77)

d, Z U p A=) (= p)d - 7,)")

nooQ (n—r)3—p)-7)" log1—¥,)

=+ ) log(l-7.x,,) + = ==, (3.78)

d, Z T g =7t + (= p - 7,)" ]
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and

p (=py Ip =AY +A-p)d-7)"]

no_n, (=nld-x)" -(1-7)") (3.79)

The solution of the above five equations, using numerical iteration

method, yields the maximum likelihood estimate (M.L.E) of 7,,7%,.d,,d,and p, and

thus we obtain the maximum likeliheod estimate of ¢,,c,,d,.d, and p,.
(b) Bayes estimation.

We assume that ¥,,%,.d,,d,and p, are independent. Using Jeffrey’s
invariant prior for 7, ¥,,d, and d, and uniform prior over (0,1) for p,, then joint prior

distribvtion of ¥,,%,,d,,d,and p, is given by

(. 7%.d,.d,. p) @ (3.80)

7, %.d,d,

From (3.74) and (3.80), the joint posterior distribution of %, 7, d,,d, and p, is given by

0, 7..4d,,d,, p 1 x) & Z(:-’)Plnirfk(lkﬂ)mk%ﬁil}/:r:ildlrlildzkl

k=0

expl(d, - ])Zlog(l - 7% }expl(d, —1)Zlog(] — X, A=y T A=yt (3.81)

j= j=1

From equation (3.81), we obtain the marginal posterior distributions of

7, 7,.d,,d,and p, as,

7 exp[—Zlog(l )
=

4|

[-> log(1- 7,x, )] - (n—r—k)log(1— y,)I"

J=1

I[Iiynlx)= Ali(:{")B(nfr2 —k+hLnt+k+1)
k=0

r

. 7 expl=D log(l- 7,1,
,\ o iy, (3.82)
11=2 log( = 7%, )]~k log(1- 7))

J=1
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7. expl-> log(~ 1,x, )]

Ll 0=4,3 (7 )B—r—k+1r,+k+1)— =
k=0 (=) log(1- 7,x,, ) — klog(1 = ,)I?
j=I
. 7" expl-). log(l-%,%,,)]
! dy, (3.83)

1= logl— x, )] - (n—r=k)log(— %I

i=1

n-—r

L x)=A) (T B(n—r—k+Lr+k+Dd""
k=0

r

_ilog(!-h L

oo —d (- ilu,:(l Yy ={n=r=log(1-% » iloa(l hvit| e L I
g T L ¢ 17, |d
}/l ( e N T [# )’2 }/l s
M [(—Zkﬁg(krz.\:, =& log(1-y, )J

-1

(3.84)
[1(d, 1 )= A3 (7 IB(r=r =k +1r +k+1)d,"”
k=0
o —d:(~i]()g(1—7:,\3/l—klng(l—)’:)) ~imgu—y._h\_.,;"r: ),r.--le—j:,'logu—m.,)
0 [ 0 l[r—glog(l—y,.tl, ;-(n-r=kilogil-y ,JI
(3.85)
and
[ (p, Ix)—/LZ(: p" - l“l’l)Hk
k=0

4} S \
) }/], \ CXP[“‘Z l()g(l _ 7,«’(.‘,- )] ) },:r_\- ! eXp[—ZIOg(] - 73«\’31‘ )J ‘b
J . i=l J Tl d}/z d}/l .

=Y log(1 -y, )] (n = r— ) log(i— 7)1 | 7 (=S log(1- 75, Y}~k log(l- )"

=) i=l

(3.86)
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where

T=Y OB —k+ L +k+])

k=0

(“ %" expl- 2 3 log(l1-7.x,)) . 7 exp[—Zlog(l = ¥axy, } (3.87)
I L I L (l/ d/, {

IZIog() rx = (n—r=kog(l-»)1" | "~ ZIOE(I ¥y ))=klog(1=7.))"

il
1
[
Lo =

( Bn-rn—k+bLr+k+])

k=0

7" exp[—Zlog(l — 751 . 7 exp[—Zlog(l - 7x,))
it

-t

I3

- dy, |dy, ¢,
Zog(l— 25 )= klog(l= 7)1 | © [=D log(I= %x, )= (n— r — k) log(1 ~ )"
=

i1
(3.88)
A;‘: ( IB(n—r,—k+1r+k+i)
k= 0
o . o - —d,r—glug(l»r]_‘-“)—tn—r—k;logll—r,u —%log(l—}’,.\',’) o }/2,:_Ie_-lz!log(lf}’:,xvg,)
jd,' J.}’, e e - dy, |dy, \dd, ¢,
0 fis " (—Zlng(l-rz.x’:!)—klog(l—yz)
(3.89)
AT =D (TOB-rn—k+Ln+k+D
k=0
r 5
" - —dy (- Zk)m Yot 1k logel=7. ) —Zlogl yors, 1| P }"‘ e—l_[h)g(l—}'x.n_J
fa, | [r" e e j—- -dy, |dy, |dd,
6 0 0 [(—i]og(l—y‘xﬁ)‘(n-r-'lx)log(l—n)-!
L= .
(3.90)
and
A7 =D (B - =kt L +k+1)
k=0
. %" exp[-Y_log(l - 7,x,,)] . % expl=Y log(1-7,x, )
j n o J- ” = d}’Z d},l ‘
1= log(l= ¥, )= (n—r—k)log(= %)I* | " [~ log(1 = 7,x, )1 -k log(l - 7)1
s=1 j=1

(3.91)
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with

B(p,q) is the beta function of the first kind.

Under squared error loss function, we obtain the Bayes estimators of

%,.%..d,,d,and p,as,

n—-r

¥ =AY (G Bn—r~k+Lr+k+1)

[ a . 100
L menXhenl-xy,) EESES Y : (3.92)
I - I " = dy. |dy,
us me For M= (n—r =k logll— )T | A =3 loe(1 - 7.3, )]k Yog(1 ~ 7))

( =1

7, =43 (CB(—r, ~k+Lr,+k+1)

k=0

. eXP[—Zlog(l = 12%,;)] [,: »n eXP[—Z log(1-%x,,)]

.l. n = .l. L] = dyl d}/z ’
*1-) log(l=7ox, )] - klog(l= )" | © [—ZIOg(l—7.—¥],-)J—(n—r—k)10g(1—7.)]" {

J

(3.93)

d'=AD (TB(n—r,—k+1r+k+1)
k=0

—ZIng(l—yngI)

—d (—ilog(l -y - n=r=klog(l=-x » —il()gl 175,

d}’ﬂ d%\lddl )

o ) I . > ) . vo 7r:.— e )1
far| [re 7 em
0 0 7 (-—ZIng(l-y:,rzi)—klog(l—r_.) J
-l
(3.94)
d, =A) GIB~r—k+1n+k+1)
1
I —"Llob(l N
== 1 —dy (=Y logl=1a: -k logdd- 71 » ‘-"log(l na| 7
fd | [rte 7 |- _dy, \dy, |dd, },
0 9 0 i( ilng(! 7 - da-r=kalog(l-7)
L J
(3.95)

and
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P =AS (OB —k+2r,+k+1)
x=0

Jm ¥ expl—) log(1-7,x,,)] . 7 expl=Y log(1- 7., )]

n = J = dy, |dy, ;.

l" [—Zlog(lu}’Ix,_,)]—(nﬁr—k)log(l—}’])}’I

=1 L

7= log(l- 7,x,,)] - klog(1 - 7,))°
J=1

(3.96)

Bayes estimators of },,7,,d,,d, and p, and hence that of
¢,.c,,d,,d, and p will obtained by numerical integration procedure.
Remark 3.2

One can use different types of priors for the analysis. However, when we

use conjugate priors for c,c,,d,,d, and p,, the estimation procedure will become

complex.

3.7.2 Estimation based on type I censored samples when the observations

belonging to each subpopulation are unknown
(a) Maximum likelihood Estimation (M.L.E)

In this Section, we develop maximum likelithood estimators of

parameters under type I censoring. The likelihood function based on a sample

(%,,X,,...,x,) from the model (3.1} is given by

L, ¢y.d, dy. p )t ©) = [ T{picd, (1= ,x) 7" 4 (1= peyd, (1= 0,5) ")

i=1
{p,(1=cTY +(1—p)1-c,T)=}% . (3.97)
where 8 =1 if x,<T and 6, =0 if x,>T.

Maximization of log-likelihood function with respect to the model parameters yields

the following likeiithood equations,
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Slpd (1-,x)"™" — pidic,(d ~ DA —¢,x) "' ;]
=l [plcldl(l _clxi)(dl_') +(1- b )Czd2 a -—ng,-)(d:_])]

_ (1=8)pd,(1-¢D)“T
[p,(1—c )" + (- pl-c,T)"]

=Q, (3.98)

(= pd,(1=c,x)** ™" = (1= p))dye,(d, =D~ ,x)* ' x ]
[plcld] - C]X,-)M’—” +(1- P )C2d2(1 - szi)(d:_”]

_ (1=8)(1-p)d,(i—c, )T

=0, 3.99
(1= )" + (1= p)A-c.T)") (3.99)
ZH {ped-¢x) (0-cx)” +d,(-cx)" log(l—c;x,-)]}
= [plcldl (1 ﬂclxi)(dl_n +(1- P, )Czdz (1 —ng,')‘d:—])]
d
(l o)lp,(l-cT)" log—T) o, 5.100)

[P.(l—c T)" +(1- p)(1-c,T)"]

i[ { {0 = p)e,(1-c,x) ' [(1—c,x)" +d,(1- ¢, x,)" log(1 - ¢, x,)]

[plcldl (l - Clx,’)(d]-n + (1 - p] )Czdz(l -(.'zxi)“’z‘”] }

L U=8)[(=p)(I—eT)" log(l—e,T)

! =0, (3.101)
[p(I—¢ )" +(-p)l-c,T)*]
and
z":[ d[c,d'(] __C]xi )(d;*l) _C2d2 (] _sz,- )ld:—lrl
= [ped,(d—cx)"™" +(1-p)ed,(1—c,x) "™
_ _ dy ds
(l N~ T)Y —(1-c,T)" J] N 102

[P,(l Ty +(1=p)1-c,T)"]

The solution of the above equations using numerical iteration

scheme, yields the maximum likelihood estimate (M.L.E) of ¢,,c,.4,,d,and p, .



(b) Bayes estimation.

rom (3.23) and (3.97), we obtain the joint posterior distribution of

c,.c,,d,,d,and p as
[ .c..d.do.p 1 x) @ (J](pcd (1= c,x,) ™ + (1= peyd, = cyx, )T
i=1

[P, T)% +(1=p 1= T 1 —L— (3103

G 6,d,d,
Then, we obtain the marginal posterior distributions as,

oo au oo |

N 'x)=B jjjﬂ] [pcd,(1=c,x) %" + (1= p)e,d,(1-c,x )7 )

q 000 =l

[p,(1—e Ty +(1 = p)1=c,T)" 1% ——l—dp,dd,ddzdcz, (3.104)

cc,dd,

I, (e hx)y= B, ””T[ p’(’.'dl(l_cl'ri )“[]_” +(I-p, )Czdz(l"czxi)m"_”}&'
1000 (=

f

[p,(1=¢T)* + (1= p)(1~c, 7Y% —l—dp,dd,a’dzdc, , (3.105)

ccdd,

o oo |

1,10 =8, [ ] [Tiped 0-ex)"" + (= peds (=)™ 7

00¢ 0 =l

[p,(—¢T)" +(1—p)(i-c, Ty ———l—dpld(ydc,ddz : (3.106)
i ¢ c,dd, i

I,d,lx)= B:j‘,]‘]‘lﬂu][plcldl(l—c,x, P (1= peyd, (- ox, )

B 0¢ o =l

[p, (1= T)" +(1=p)(i—e,T) "

dp,de,dc,dd,, (3.107)

aoad,

and

0 oc oo oo

l'] (]) | \)—B ‘“'jjnlplc d (I‘C,-Y,-)ld’_])+(l—P,)Czdz(]*6'3-\’,-)“13—“}5'

0c, 00 =1

[p,(1—cTY + (1= p ) ~c,TY )" L dd,dd dc,dc, . (3.108)

¢, dd,
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=] [T Ttpcd @ -cx )™+ - ped,(1-c,x )4

0000 i=1

[p,(1=cTY" + (= p (1 —e¢,Ty= 1" 1 dp,dd,dd dc.dc, , (3.109)

¢,a,a,

o0

B'= ”” [H[p,c,d (J-6x) ™+ (1= peyd, (1-c,x,) )
oooo0 i=!
[p,(1=c,T)" + (1= p (1=, Ty "% % dp,dd dd,dc dc, (3.110)
12
= .[Jljlj.j.lnlplcldl(l_Clxi)(dl‘!) +(1-p)e,d,(d —szi)(d:_”yi
000¢ 0 =]
1
[p,(1—¢T)" +(- p)1-c,T)* "% - dpyde.de,dd,dd,. (3.111)
1722
- J.[.[.[.[[H pic,d,(l _Clxn’)“[]w” +{1-p)e,d,(1-c,x, )(dz_l)]‘s'
000¢ 0 i<l
[p,A=¢ )" +(1-p)(t—c, Ty 1" . dp,dc,dc,dd dd,, (3.112)
1Im27
and

w0 o

= HH [Pl Ttped -6) ™ + 0= ped, (1= cx) )

0 00 1=

[p,(1=¢,T)" +(1—p)l—c,T)"=1"% dd,dd,dc,dc,dp, . (3.113)

ccdd,
Then Bayes estimates of the parameters, under squared error loss
function, are given us,

oo w60 o |

¢ =B, JJIIJ[H[I)]L d (1= ¢,x )™ + (1= p)esd, (1=, ) =)

0000 1=

[p,d=cT)" + (1~ pXl—c, Ty "% dp,dd,dd de dc, . (3.114)

¢,a,d,
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Ndy =)

r pd (t—cdx, )1~-cx;)

pldj (n - "),Y(r)(l — C‘x(,) )(d,—])

2. :
(ds=1)

i=l plcld! (1 _C|xu))(d]_“ +{1- 14 )Czdz ( _C:xm)

y (l— pl )dz(l"'Czd:x”.))(l_szu))(tl_w—ZJ

p(l _Clxm)d‘ +(=p)I- CrX¢r) )d2

(3.120)

(I-p)d,(n—r)x,,(1-c,x,, )

Z 1)

m ped, (1- Clxm}(di_“ +(I=p)eyd,(I-cx ;)

4 pc,(1+d, log(l—c¢x,;, )(1— C,xm)(""”

p-cx,, )" +(-ppa —szm)d? -
3.121)

(n=r)p,(1-cx,)" logl-¢,x,)

2

= ped, (1-¢,x, ) + (1= ped,(1-c,x, )™

}

r (1= p)e,(1+d, log(l—c,x,,) )1 —c,x )=

)

P(=cx,)" +(1= pP-¢,x,,)"

(3.122)

(n - r)(l_ p] )(I_sz(” )d2 l(-)g(l —C:’x(l')) _ ()

3

= pod (I-cx

(i)

and

< Cldi - i %) )Ml_l) - Czdz (I-- (S )‘dr”

+
)((I,—l_) + (l _ l)] )C.,dz(] _ c:x_(’))id_y—l)

pl=cx, )" +(1- pI(l-c,x &

(3.123)

(n-nr)ld —c]xm)d' -(1- czx(,))"2 ] _

2

7 ped (1-cx,))" 7+ (1= ped, (1= ex, )

P, (1 _Clx(r))d, +(1 — P )(I —6 X, -

(3.124)

Solving the above equations we obtain the M.L.E s of ¢, c,,d,,d,and p, .

0.
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(b) Bayes estimation.

From (3.23) and (3.119), we obtain the joint posterior distribution of
€,.¢,.4,,d,and p, as,

227

H(C Cn, d d 2y | r) (44 [H(p]Cd (1 ] “. (f/]‘l_l+(l_pl)czd2(1_czx(” ld:.—l)]

1
[p,(t—cx, )" +A=p)d—c,x )" — . 3.125)
p(—cx, )" + (1= pX )] codd. (

From (3.125), we obtain the marginal posterior distributions,

w0 o w0 |

610 =4, [ [[ T T(red 0= 5,0 + 0= pesd, (- 3, )%

a000 =

n-r l
[pd-cx, )" +(1—-p)A—c,x, )" ———dp,dd dd,dc,, (3.126)
c,c,dd,

Cy o000 |

(e, 1x) =, _””H(p,c]d,(l X)) T (= pesdy (1= cx,) " )

0ono =l

[p,(1—¢,x, )" +(1— p)(1=c,x, )" )" ”—-l—dp,dd,ddzdc, : (3.127)

6644,
w0 00 00 |
1,10 = H, [ [ {TTrad 0 —cx,) 4 + 1= ped,1-cx, )]
e 0o (=
L]
[pl—cx, )" +1=p)l-cx, )" 1" ’—po,ddjdczdc,, (3.128)
i Rt had hage]

o o oo |

I,(d,1x)=H, IIIIH(PI(udI(l CIX.,.Y"""+(l"p.)czdz(l—czx(,».)“’f”']

0 00 i7l

[p(l=cx, )" + (= p)=c,x, )" ———dpddde,de,,  (3.129)

¢c,dd,

and
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©0 0 0% 20

Hg(p| '5) - H5 J‘J‘J‘J‘[ILI(I)ICIdl(]_Cl'\‘iir)(d]_l) +(l_ pl )Czdz(l—czxul)(d:_”]

0c¢ 00 =t

, o1
[p(1—cx, )" + (- p)=c,x, )" 1" ———dddd,dc,dc,.  (3.130)

c¢c,dd,
where

00 00 00 00 |

B = ([T T(ped - e, + 0= ped, (e, ™)

v 000 =

I
[p(1—cx Y +(1—p)1-c,x )Y*1"" ———dpdd dd.dc.dc,, (3.131)
1 17°(r) | 27 | \ 2 2 1

212

20 Ly 00 00 |

Hz-l = J‘;“J‘.“Jr[n(plcldl(l —GX; U (1- pe,d, (1 _szm)(d:_hj

00000 i7

1
[p,(1—c,x,)" +(1—p)(1-c,x, )2 1" d—dp,dd,ddzdc,dQ . (3.132)

G,a,d,

00 o0 00 |

1 = [[[[TTreda-cr, ) +0-ped-cx, )" )

00Oy =

[p(1—cx, )" +(1—p)d-c,x, )" L dp,dd.dc,dc dd, , (3.133)

¢,c,d,
H, =]ﬁjj{ﬂ(p,cld,(1—c,x(,))“""‘ +(1- peyd, (1—cyx, ) 7
0

0¢ 00 il

o1
[p,(1-cx,, ¥+ (- pl-cx, YR ——— dp,dd dc,de,dd, , (3.134)

17°(r)
CIC'_’ |

and

] ooo w0 w

He' = [ [T TPed 0=, 07" + 0= pedy (- e, )

D0 00 1=

: i
[p,(1—c,x, )" +(1— p)(1—c,x, Y1 dd,dd,dc,dc,ap, . (3.135)
| 17740) ) tr) 1 i !
i cc,dd, T

Then Bayes estimates of the parameters. under squared error loss

function, are given as.
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o0 00 00 00 ]

o =H, [ ][ ITT(pedi=,) " + 0= pe.d,0-cx, V™)

D000 =l

1
[p,(I1=cx, )" +(1=p)U—c,x, Y* 1" ——dpdd,dd dc,dc,, (3.136)

a4,

1

¢, =H, _”II [H(p,cld,(l—c,x(,))(‘l‘_” +(1- pe,d, (= cyx,;,) 47" ]
00000 =
[1)1 (1- Xy )dl + (l - P W= sz[r))dz ]m_” ;l—dp]ddlddzd(']dcz ’ (3.1 37)
et hast!

00 00 00 0o |

d -_H IIIII{H([),Cd(I X m)wl ”+(]—-p,)czdz(]—(‘2,\““\)‘(/:_”]

00¢ 00 i=t

[pl(l—clx(r))d‘ +(I=p)I-c,x m)d Jr=n l dp,dd,dc,dc,dd, (3.138)

(',ch,
o]
00

[pl(l ] (”)d +(1_p])(1 C,, (”)d ]ln rh

oo oo

J- [H(P,C}d (- c\X “))(rh by +(1- pl)c d (l“‘(‘,\'(”)“l 1)]
00

<

1

—dpdddededd,,  (3.139)

IZI

and

] o0 50 00 00

H IIIIIP [H(P]Cd(] ¢,x “))“h—h+(l_pl)Czdz(l_C:xm)ulz—nl

00¢ 00 i=l
n—ri l
[p(d—cx, )" +(=-p)l-c,x, ) """ ———dd dd,dc,dcdp,.  (3.140)
o c,dd,
Remark 3.3

When r=n, the results obtained under type Il censoring becomes complete sample case.
3.8 Simulation study.

We have described four methods for estimation of parameters of the
mode} (3.1). Now. we illustrate these procedures using simulated data. We generate

observations from two beta densities with various combinations of parameters ¢,,¢,.d,.d,
and p,. The samples from the finite mixture of beta distributions are generated using
Bernoulli probability p,(0< p, <1). Then. the estimates of parameters for complete as

well as censored cases are computed. The estimates for one set of parameters are given in
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Tables 3.1 to 3.4. The variances of the estimates are presented in brackets. For Bayes
estimates, the posterior risks are eiven in brackets. We compared the estimates using risk
improvement factor as mentioned in Chapter 2. We use the software "Mathematica’ for
numernical calculations. The bias and vanances (posterior risks) of the estimates decreases
as sample size increases. Table 3.5 gives the risk improvement of the estimator by

Bayesian over the different estimators in the complete sample case.
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Table 3.1 Estimates of parameters under complete sample for

¢ =.1¢,=.6,d, =2,d,=3and p,=0.5
Maximum
Estimate MLE Bayes Method of product of
moments spacing
¢, =:098544 ¢, =102 &,=150339 é,=1012
(.0079187) (.0002i4) (.00017) (2.34E-05)
62 =.606886 C; =.600364 ¢.=619016] C,=.602212
(.0012954) (.00214) (.465196) (1.7E-05)
n=30 d, =193653 d, =1.96163 d, =2.34851 d, =1.829962
(.0053) (.005195) (075758) (.008508)
d,=2.987 d, =301 d,=3.001) d,=3.1201
(.00059) (.00054) (.03348) (4.98E-05)
P, =500693 Py =500816 B, =5071 P, =.5028
(.000409) (.00022) (.005623) (.000762)
EI =.089 C[x =.09949 El =.1764 C‘J] =091
(.000153) (.000237) (0005368) (1.887E-05)
¢,=600474 ¢, =6033154 ,=.554747 ¢,=.60214
(8.05E-05) (.00125) (04244 (3.8E-06)
(.000237) (.00508) (.04841) (.00252)
d,=3.0042 d, =3.001 d,=2.60939 d,=3.020872
(.0013) (.0023) (.00184) (5.72E-06)
P, =49894 Py =499592 P, =.50089 p,=50181
(5.17E-06) (8.65E-05) (.000171) (.000518)
¢,=.1034 ¢, =102 ¢,=1142 ¢,=.0915
(.0009316) (.0002136) (00027) (1.38E-05)
€, =600758 ¢, =601 ¢, =.5807978 ¢,=.60022
(.000197) (.00002) (.06039) (1.4E-06)
d, =1.989 d;” =2.0009 7= -
1=100 u r d,=19011 d,=1.967
(.0023) (.00041) (.03013) (.001636)
d,=3.0032 d. =3.00362 d,=2.89221 d,=3.022694
(.000098) (2.7E-05) (.03396) (2.6E-06)
b, =4996! P, =.50224 P, =49979 P, =50032
(00011) (.00016) (.000231) (.000227)
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Table 3.2 Estimates of parameters under type I censoring for
¢, =.1¢,=.6,d, =2,d,=3and p, =0.5 in which observations belonging to each

subpopulation are known.

Censoring Estimate n=30 n=50 n=100
€, =.10377 ¢,=.10289 ¢,=.1025556
(.000101) (.0002714) (1.254E-05)
¢,=.5765176 C,=.5815027 C,=.60581409
(.002683) (.00069) (.00001859)
MLE d, =2.089226 d, =2.083178 d, =1.988662
(.085652) (.011878) (.00814)
d,=2.954112 d,=3.030418 d, =3.00084
(.005939) (.002761) (8.28E-05)
P, =511808 P, =49159 P, =.501296
T=15 (.000628) (000182) (1.13E-05)
¢, =.103922 ¢, =.103746 ¢, =.1036792
(.000121) (.0001) (.0000134)
¢, =58208 ¢, =.59124005 ¢, =.595432
(.000445) (.0002638) (.0000938)
Bayes estimate d, =1.973064 d,” =2.026086 d,” =2.009246
(.051677) (.00608) (.005297)
d, =3.104115 d, =3.019295 | d, =3.003463
(.051996) (.048365) (.004104)
p, =.519985 p, =507185 p, =.5019385
(.000618) (.000546) (.000442)
¢,=.11822 ¢, =.1106404 ¢,=.107364
(.0032826) (0001595) (1.89E-05)
¢,=.5840347 C,=.5890734 C,=.59595}
(.002485) (.000215) (7.63E-05)
MLE d, =1.908292 d,=1.947618 | d,=1981732
(.032296) (.02298) (.000372)
d,=2.838636 d, =3.05251 d,=2971
(.026488) (.005917) (.004022)
P, =520284 p, =518547 P, =.50048
T=15 (000415) (000477) (000032)
¢, =.106812 ¢, =.10529 ¢, =.10464
(.0001538) (.000128) (.0001232)
c, =.5829069 C, =.5919147 €, =.595122
(000648) (.000818) (.000485)
Baves estimate | @ =1:970258 d, =1989864 | d, =2.0104686
i (.003023) (.001013) (.00042186)
d, =3.1078 d, =3.06085 d, =3.01443
(.05431) (.037744) (.0042331)
P, =.50048] p, =.499283 p, =499421
(.00028) (1.97E-05) (3.97E-06)
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Table 3.3 Estimates of parameters under type I censoring for
¢ =.1¢,=.6,d, =2,d,=3and p =0.5 in which observations belonging to each

subpopulation are unknown.

Censoring Estimate n=30 n=50 n=100
time
¢,=.120847 ¢,=.11535 ¢,=.105021
(8.84167E-6) (2.093E-7) (1.61564E-7)
¢,=.623705 ¢,=.58986 C,=.5899636
(3.7157E-7) (4.524E-8) (8.37E-9)
MLLE d, =1.6995 d,=205192 d,=2.04821
(.0389693) (.0216674) (0158107
d,=2.7917 d,=3.07168 d,=3.03136
(.387985) (.25694) (.14817)
P, =.50592 P, =4956 p, =.5009347
T=15 (5.55E-5) (1.0356E-6) (1L0IE7)
¢ =.098265 ¢, =.10593 ¢, =.09989
(.00002027) (5.485E-5) (4.387E-6)
c, =.660765 ¢, =610666 ¢, =.606123
(3.103E-4) (1.5481E-5) (3.7448E-8)
Bayes estimate d, =1.944494 d,’ =1.98061 d’=1.998
(.462066) (.240225) (.10416)
d,’ =2.88663 d, =3.011622 d,’ =3.05533
(.244156) (.1255) (.11254)
p, =502641 p, =.505561 p, =.50569
(8.34E-5) (2.087E-6) (4.501 17E-7)
¢,=0958657 ¢, =.0990615 C,=.1094232
(1.877E-6) (8.7407E-7) (9.8030E-8)
¢, =65287 ¢,=.5979633 C,=.60624
(1.37E-6) (1.574E-7) (2.8456E-9)
MLE d, =1.8689 d,=2.11241 d, =2.02673
(.297627) (.008808) (:000259)
d,=2.9735 d,=2.89674 d,=2.90433
(911787) (.232003) (.0013144)
p, =.502694 P, =501733 P, =.500493
T<19 (1.38E-6) (3.19135E-7) (4.98E-10)
¢ =.123137 ¢, =.1209 ¢, =.110868
(.00003422) (1.53073E-6) (2.67083E-7)
¢, =.6170304 ¢, =6103 ¢, =.60163
(.00001157) (3.225E-6) (5.76747E-8)
Bayes estimate d, =2.10241 d; =2.05645 d, =1.96753
(.374128) (0127) (.00564882)
d, =2.82344 d,’ =2.93161 d, =2.989
(.168282) (.034698) (.001055)
p, =501724 p, =503564 p, =.501262
(1.01612E-6) (2.5009E-7) (6.57077E-8)
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Table 3.4 Estimates of parameters under type Il censoring for
¢=.1c,=6,d =2,d,=3and p =05

n=30

n=50 n=100
Estimate
r=10 r=30 =30 r=50 =60 =100
¢,=09764 | C,=.098544 ¢,=.108 ¢, =089 ¢, =.09865 €,=.1034
(008179) | (0079187) | (.002353) (.000153) (003364) | (.0009316)
C,=60734 | C,=60688 | C,=600654 | C,=.600474 | (,=59328 | C,=60075
MLE (013239) | 0012954y | (000243) (8.05E-05) (.019827) (.000197)
d =19123 | d =193 | d,=29167 | d,=201248 | d,=203508 | d,=1.989
(014286) (.0053) (.028538) (.000237) (.009212) (.0023)
d,=294572 | d,=2987 | d,=308145 | d,=30042 | d,=298562 | d,=30032
(.004187) (.00059) (.009609) (0013) (.000534) (.000098)
p,=5092 | P, =500693 | P, =499 P =49804 | P =a8852 | P =49961
(000757) (.000409) (.000293) (5.17E-06) (000323) (.00011)
¢, =098246 | ¢ =102 ¢, =1066 ¢ =999 | ¢ =097432 | ¢ =102
(0006311) | (000214) (00247) (.000237) (001504) | (.0002136)
c, =39829 | ¢, =60036 | c, =606782 | C, =603315 | ¢, =59925 | ¢, =60
(.005643) (.00214) (009528) (.00125) (.000249) (.00002)
Bayes d, =19387 | d, =196168 | d"=2.04128 | d, =2.039314 | d=2.0601 | d,"=2.0009
estimate (.006492) (.005195) (.049616) (.00508) (0006274) (.00041)
d, =29607 | d, =301 | d,=305456 | d, =3.001 d,) =302 | d," =3.00362
(.002012) (:00054) (.014672) (.0023) (1.7E-04) (2.7E-05)
p=50324 | p=50081 | p =49978 | p =499592 | p =995 | p, =50224
(.000372) (.00022) (.000103) (8.65E-05) (.000451) (00016)
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Table 3.5 Risk improvement of the estimator by Bayesian over the different
estimators for the set of parameters ¢, =.1,¢, =.6.d,=2,d, =3 and p, =0.5 in the

complete sample set up.

Maximum
Estimate M.LEE. (%) Mecthed of product of
moments (%) spacing (%)
91 98 96
87 95 99
n=30 90 97 95
9t 94 94
92 95 93
90 97 94
91 96 95
n=50 92 95 96
89 98 93
87 96 92
91 99 95
n=100 89 o8 94
86 97 97
87 94 95
89 97 93

3.9 Data analysis

For the illustration of the role of finite mixture of beta distributions in
practical situations, we consider a daia on survival times of cancer patients with
advanced cancer of the bronchus or colon were treated with ascorbate (see Cameron
and Pauling, 1978). The data is given in Table 3.6. We estimate the parameters using
the method of M.L.E and Bayes technique. Table 3.7 provides the values of the
estimates by M.L.E and Bayes. We then used the Kolmogorov-Smimov statistic to

test the goodness of fit. The values of the test statistic D are given in Table 3.8. The

tablc value at 5 % significance level is 0.224. From the analysis. it concludes that the
model (3.1) is a plausible model for the data with parameters given in Table 3.7,
Table 3.9 gives the maximum likclihood estimate of the survival function at various

time points.
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Table 3.6 Survival times of cancer patients

Table 3.7 Estimates of parameters of survival times of cancer patients.

Bronchus Colon
81 248
461 377
20 189
450 1843
246 180
166 537
63 519
64 455
155 406
859 365
151 942
166 776
37 372
223 163
138 101
72 20
245 283

M.LEE

Bayes method

¢, =0.0001758 ¢, =0.000231
¢, =0.00164 ¢, =0.00172
d, =25.8821 d,’ =28.93

d, =12.2915 d, =14.537

p,=0.5

p, =05
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Table 3.8 Kolmogorov-Smirnov test statistic

Max D, (M.L.E) Max D, (Bayes)

0.063211 0.1067

Table 3.9 Maximum likelihood estimate ef survival probability at various time

points

X 20 100 500 1006

$(x) 847882 | 457781 |.05028 | .00402

3.10 Conclusion

The role of finite mixture of beta distributions in reliability analysis
was extensively studied. We derived some important reliability characteristics of the
model. Obviously, the component density of finite mixture of two beta distributions
possesses increasing failure rate pattern at all time points. However, the finite mixture
of beta distributions can possess decreasing failure rate behaviour, which will be
useful in many practical situations. We then proved that finite mixture of two beta
distributions is identifiable. The estimation of the parameters by different techniques
for the complete as well as censored samples was discussed. Stmulation studies were
carried out te assess the performance of the estimators. Both M.L.E and Bayes
estimates provide estimates with small bias and the variance of the estimates
decreases as n increases. The result developed under type 11 censoring can be
specialized to the complete sample situation by taking r=n. We illustrated the use of
finite mixture of beta distributions bused on a real data on survival times of cancer
patients. The part of the work in this chapter has appeared in Sankaran and Maya
(2004).



Chapter 4

BAYESIAN PREDICTIVE DISTRIBUTION

4.1 Introduction

Statistical prediction is the problem of inferring the values of
unknown future variables or functions of such variables from current available
informative observations. Whitmore (1986), Nelson (1982) and Dudewicz (1976)
have illustrated the application of prediction limits in government industry and quality
assurance. For example, the government may wish to predict the total revenue income
for the next fiscal year from a historical record of revenue accumulation to formulate
the taxation policy or allocation of resources for various projects. A wide range of
potential applications of statistical prediction includes density function estimation,
calibration, classification, regulation, model comparison and model criticism. For
more applications and references, see, Bernardo and Smith (1994), Johnson et.al.

(1995).

As in estimation, a predictor can be either a point or an interval
predictor. Parametric and nonparametric prediction has been considered in literature.
Frequentist and Bayesian approaches have been used to obtain predictors and study
their properties. Reviews on parametric point and interval predictors may be found in
Patel (1989), Kaminsky and Nelson (1998) and Al-Hussaini (2001).The problem of
prediction can be solved fully within the Bayes framework (Geisser, 1993). Several
rescarchers have studied Bayesian prediction based on homogeneous populations.
Among others are Dunsmore (1983), Lingappaiah (1989), How!ader and Hossain

(1995).

Recently, many authors have investigated the Bayesian prediction

based on heterogeneous populations. Al-Hussaini (1999) obtained Bayesian
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prediction for a mixture of two exponential distributions based on type 1 censored
sample. Bayesian prediction bounds based on type I censoring for a finite mixture of
Lomax components were obtained by Al-Hussaini et.al. (2001). Al-Hussaini (2001)
provided Bayesian predictive density of finite mixture models based on order
statistics. Recently, Jaheen (2003) obtained Bayesian prediction for a mixture of two-

component Gompertz lifetime modei.

in this chapter, we develop Bayesian predictive distribution for the
future observations based on type 1 censored samples from a finite mixture of Pareto
II as well as beta distributions. The rest of the chapter is organized as follows. We
give the definition of the Bayesian predictive distribution in Section 4.2. Section 4.3
discusses the reliability function of the Bayesian predictive distribution. The Bayesian
two sample predictive distribution when the underlying distribution is finite mixture
of Pareto 1 1s given in Section 4.4. Secticn 4.5 illustrates the procedure using the real
data given in Chapter 2. In Section 4.6, we discuss the Bayesian predictive
distribution when the underlying distribution is finite mixture of beta. In Section 4.7,

we give the conclusion of the chapter.

4.2 Definition

Suppose n units have been subjected to a life testing experiment. Let
the failure times t =(¢,.f,,...,1,) be a random sample from the distribution with
probability density function f(¢|6). Suppose m units of the same kind are to be put

into future use and let the future failure times y=(y,V,,....¥,) be the second

- M
independent sample from the same distribution. ln life testing and quality control
problems, it is often important to make prediction about some function of

y=(¥,¥....,¥,) on the basis of the available data  =(t,t,,...,1,). Then, the

Bayesian predictive distribution of a future observation Y is defined as the posterior

expectation of f(y18). and is given by

h(y1D)=C [f(x1O)T(@B11)d6, (4.1)
@

where C is the normalizing constant and FI(@11) is the posterior distribution of &

with ©1s the range space of 6.
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Then 1007% prediction interval (L,U) of a future observation Y is defined by

T=P[L<Y <U]
U

= Jay1 D)y
L

One can usually take
y l+7
J'h(.‘/ by =-—
L “

and

(4.2)

. .
et oy ===
by 2

Let {z,,.f5,,---1,,} be the ordered fatlure times of » components of
a system and let {y,,.¥,,,.... ¥,,,) be the ordered failure times of a future sample of
m similar components. Given {1, ,1,,....t,,}, we are interested in the predictive

distribution and the prediction interval of the k™ failure time Y, Let

(ky*
= (tyalayeenlyy)  and Y = (¥ Ygyr Yom) - Then, we have, the Bayesian

predictive distnbution of Y, as

by, (311 =C[f, (y1OT1B117)d0. 4.3)
[C]

Then, the 100 7% prediction limits (L.U) of Y, are solutions of

oo

” 1+7

Ji, (1=

1é0 ’)
) 2

and

iy * l_T
fm, (012 My === (4.4)
t
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4.3 Predictive distribution and reliability estimation
Let X be a random variable representing the life of an item or a
component with probability density function f(x18). The reliability function at any

time ¢ is defined by

SH)=P(X =21)

:Tﬂﬂomx

Under squared-error loss function Bayes estimate of S(7) is given by
S(=E, S x)

=E,|P(Y 211x]

=E, ﬁ‘f(_\' | @)dy | x}
= jﬂ(ﬁlg)ﬁf(yle)dy}w

={p@wnw9wbu
7L _l
From (4.1), we get
$(0= [y10dy. 4.5)

which is the reliability function of the predictive distribution.

Thus, under squared-error loss function, Bayes estimator of the reliability function of
a distribution 1s the reliability function of the predictive distribution.

4.4 Bayesian two sample prediction for finite mixture of Pareto II distributions

In this section, Bayesian prediction bounds for the k-th future
observation from a heterogenecus population represented by a finite mixture of two

component Pareto Il life time distribution under type I censoring are obtained.
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Suppose that n units from a population with probability density
function (2.2) are subjected to a life testing experiment and the test is terminated after
a predetermined time 7 . It is assumed thai an item can be attributed to the appropriate
subpopulation after it had faled. Suppose that r units have failed during the

interval (0.7) with 7 from the first and r, from the second subpopulation, such that
r=r,+r,. The remaining n—r units cannot be identified, which are still functioning.
Naturally, neither r, nor r, (and consequentlyr) is fixed, but they are rather

determined by knowing 7. Let 1, denote the failure time of the 7" unit that belongs

th

to the {" subpopulation and that 1, <7, j=L2,...r and i=12. Such scheme of

sampling was suggcsted by Mendenhall and Hader (1958).

4.4.1 The scale parameters a, and «, are known.

In this section, we compute Bayesian predictive density function of

finite mixture of Pareto Il components based on order statistics when the prior
distribution is Jeffrey’s invariant prior whenq, and a, are known. Al-Hussaini et.al.
(2001) obtained the Bayesian predictive density of finite mixture of Lomax
components based on order statistics using natural conjugate prior when a, and a, are

known.

Rewriting (2.70), the likelihood function is given by

n-r

by by py 1 1) 3 (I (1= p )t )y
=0

exp[-b, Z]og(l +at, Yexp(-b, Zlog(l +ayt, Y1+ aTy "0 (14 a, Ty ™" (4.6)
= I
where 17 =(1,.0,y,ly, Layolyyity, ), 1, denotes the failure time of the ;" unit

belonging to the i subpopulation, 1, <T, j=12..,r,i=12and n+r,=r.

Rearranging (4.6), we have

Lbby, py 11 )0 3 0P 50 (0~ p)= "
£=0

expl-b, {Z log(I+a, Y+ (n—r—j)log(l+ a‘T)} -b, {Zlog(] +aut, )+ j log(l+ a:T)}(.
=i

=1
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which can be written as

Libbyp 127 o 3 ()P (1= p)2 by expl A b — Ay, by . 4.7)
a=0
with

A, = ZIog(l+aitu) +[(n -~ r)(2—i)—(—l)“"’j[]log(l +aT), i=1,2.
j=l

Now, suppose that p,. b, and b, are independent such that p, follows U (0,1)and for

i=1,2, b follows Jeffrey’s invariant prior. Then the joint prior density is given by

g(b, by, p;) = LO<p <1, b >0. (4.8)

192

From (4.7) and (4.8), the joint posterior density function of p, .b, and b, is given by

[1Bbop 1 L) > P (A= p)> b b, exp| =A, b, - Ay b, |. (4.9)
h=0
where
G =n—r—-]j
and
O,=r+j .

A future sample of size m 1s assumed to be independent of the past
(informative) sample of size n and is obtained from the same population with
probability density function (2.2). Let Y, be the ordered lifetime of the k-th
components to fail in a future sample of size m, 1 £k <m. The k -th order statistic in
a sample of size m represents the life length of an (m—k +1) out of m system which
is an important technical structure in reliability theory. The density function of Y, is

then given by

Fr 1bby p) =[1= ST ISON™™ f ().
k=l "
=S DEOISMIT O, (4.10)
=0

where S(y) and f(y) are the rehability function and probability density function of

the finite mixture model (2.2). For the model (2.2), (4.10) becomes,
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= i M=K+ ja
Fr 31buby )= 2 D2 C [ pd+a ) + A= p)U+a, ™) ] 7 f()

=0

k=1 m—=k4 s>

Z Z ( l)j k:!)(n +/) m-k+f,— ,(l_pl)h

5=0 =0

exp[-b,(m~k+ j,—~ j)log(1+a,¥)—b, j;log(1+a,y))] £ ()

= C.p" (1= p)" exp[-b,(8, —Dlog( +a,y) — by jy log(A+a, )} f(3) . (4.11)
where

k-1 m- 1\+/ ] )
> = Z , G =EDEENGE) and Sy =m—k+ jy— gy 1

= j 0

The product of (4.9) and (4.11), then yields

Sy 1By by, pTL(B,, by py 1 7)o

> Cp > (= p)” exp[~b (8, - Dlog(1+a,y) b, j, log(1+a,y))]
,Z,(" STATIET S b 'b," " exp[ ~A, b~ Ay, b, |

[P (G +a,yy ™" + 0= pyab,(1+a,y) %]

o Z *(;]“r)cl{gl(.v)plb‘ﬁ&‘ (= p)>"" b6, exp(—17b, ~71:b, ]

(53+j1+|b n
I

""5‘2(.\’)171‘SI ot (I-p) _Ibzr: exp[_ﬂl b, _Uzzbz]} . (4.12)

where

n=r

Z=ZZ 51(.\')=(a,»(1+a,_\‘)"). i=
7=0

77' = Alj] +§3 lOg(l +a|y)¢

n,=A,, +jlogli+a,y).

T =4, + (8, —Dlog(t+e¢,v),

and
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My = Alil +(j, +Dlog(l +a,v).

Substituting (4.12) in (4.3), we have

oo oo |

by, (12 =C [[ £, (2166, pTIB, by p, ) £ )dp,dbydb, . (4.13)

000

On simplifying (4.13), we get the predictive distribution as

/’r.., (¥ | L*) = CZ *(;,_r}cl Ijj{gi()’)plqwl (I- P )(52“‘1 bir]bzr:_l exp[—nlbl _772}72]
00

0
+ 52(}")P|J' ot (1- P4 )6:+ nl b]r[ "!bzr: exp [_771 1b| - ’722[72 ]}dp]db]db2

I'(r+D I'(ry)
)" ()"

=CY."(CHE(YB, + 8, +1,8,+ j, +1)

I'(ny T(r,+1)
(77“){:‘,) (7722)(rz+l)

+82(}’)B(51+‘53v5z+j3+2) }
=CY"C o () + 0, ()], (4.14)

where C is the normahizing constant satisfying Ih,.m(_vlf)dy=l,
0

TL(r)T(S, + 8IS, + j, +1)
D6, +6,+0,+ j, +2)

¢ =C (;}")[
H(6, + ;)
D=E) T e
(¥) (\)(77])(,' )"
and

7':(63 + 5+
(77[])(/] '(’722 )(l';+l) *

2 (¥) = ()

Remark 4.1
Al-Hussain et.al. (2001) obtained the Bayesian predictive density of
finite mixture of Lomax components based on order statistics using natural conjugate

prior when a, and ¢, are known. They have considered the joint pricr density as
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g, by, p)o p (= p) b5 b, expl-yb —¥b,),  0<p,<l,b>0. (4.15)

From (4.7) and (4.15), the joint posterior density function of p, ,b, and b, is given by

[15by p 1 7)o D) (= P> 70, exp[-y b, - ¥,b, . (4.16)
jl-—O
where

O=n-r-ji+b-1, 6,=nr+j+d=-) andfori=12, W =r+f, y,=A, +7.
From (4.11) and (4.16), we have,

Fy 1bby, pO(, by, py 1 1) o

Z D,p," (1= p))" exp[-b,(8, —Hlog(1 + a,¥) ~ b, j, log(1 + a,y))]

n—r

Z G’ (= p) " b, exp[~y,b, —¥.b,]

W=0

(b (+a )™ " + (= pashy(1+a,y) ).

where

k-1 m—k+j,

Y= > L D=0 and S =m—k+ jy— ji ]

n=0 =0

After simplification, the above product becomes,

o« D " (IDLE () p, (U= p) R b b, exp[ b, — 1.b, )
+E& WP A= )= BB, exp -1, b — by ). (417

where
Y=, fori=12, g(y»=(a(+ay™),
=0

n =y, +dlog(l+qa,y).
N, =¥, + jylogl+a,y).
77” = W] + ((S; - I)lOg(] + al.\") ,

and
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My =¥, +(j,+Dlog(l+a,y).

Then, the predictive density is obtained as

e o ]

By, (V! )= CZ *(:’.-r)Dl _"I.[{el()’)Plt;'M‘(l - PI)J"H" b b, exp[-mb, —1,b,]

000
+€2(}')1’|6!+6“l(1 - pl)5:Jrjﬁ!brwrlbzaé exp[_nl Ibl _”zzbz}}dpldbldbz

Na +1) T(w,)
(”I)((qﬂ'l (772)((03)

=CZ‘(;:r)D1{€1(.V)B(5| +53+]’5:+j3+1)

No) Hw, +1)

+€,()‘)B((S +5;,(5~;+j +2) « @, +1)
U )™ ()

}
=CY. "D [N+ a(), (4.18)

where C is the normalizing constant satisfying j.hym(y [tHYdy=1,
0

D - D(",_,)(r(a),)r(wz)r(a, +53)l“(§:+j3+1)}
{ 1\ *

(5, +0,+6,+ j,+2)

@ (J, +9))
('7| )((4 Hl(llz)(ll)-_-] "

g (v)=£,(y)

and

@,(0, + j,+1)

7(_\')287()?) o) IOy
¢h ) (771»)' ' (7722)( 2y

44.2 Parameters a,,a,.b,.b, and p, are unknown

In this section. we compute Bayesian predictive density function of
finite mixture of Pareto II distributions based on order statistics when prior
distribution is Jeffrey’s invariant as well as natural conjugate prior when «,,a.,b,,b,
and p, are unknown.

From (2.70), the likelihood function is given by,
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n-r

L(a, ’ az,b, ,b;,. P | Lk) o Z (3].,r)1)l;r—rl~j. (1 - p, )r:+j| alﬁazrzb]n bzr:

A=0
expl-bh, Z log(1+ ay, )]expl-b, Z log(1+ayt, YA +aT) """ (14 a,T) "
i= j=1

N

exp[—{z log{i+ap,,)+ Z log(1+a,t,, )]}. (4.19)
j=1 J=1

which leads to
L(a,,ay,b,b,. p 117) o

n-r

z (r;)—r )p|n—f3_./l (1- p, )r3+_i: al" azfzbl'lbzrl exp[—AUI bl - A2f| bZ:!CXp[*B| - 32 ] , 4.20)

a=0

where, for i=1.2, A, is givenin (4.7)and B = zlog(lﬂzitﬁ)].

=
Now, assume that p,, a,.a,,h, and b, are independent such that p, follows U(0,1)
and for i=1,2, a and b follows jeffrey’s invariant prior. Then, the joint prior

density is given by

gla,,a,,b.b,, p)e< O0<p <1, a >0, b>0. (4.21)

a,a,bb,
The posterior density function of p, ,a,,a,,5, and b, is given by
(a,.a,,b,b,, p, | t")x
S Cpd - p)® 6 e by exp[ <A by~ Ay, b, Jexpl-B, - B (4.22)
§=0

where 6, =n—r,— j, and 6, =r,+ j, .

The density function of k-th order statisticY,,,

is given in (4.11).

The product of (4.11) and (4.22) then yields
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fym(yIal,az,b,,bz,p])H(a],az,bI,bz,p‘ |£*)o<

> M, p> (1= p)" exp[-b,(8, - Diog(1+a,y) - b, j, logl + a, )]

n-r

Z ('}:r)P]d (1-p, ) a;r]_lazrj_]bl"—'bzrrl BXP[“Alj,bl A, b ]exP[_Bl -B,]

h=0

[pad (1+a,y) ™ + (1= pab,(1+a,v) "]

k-1 m—k+j,

D=3 M =D and S, =m—k+ jy - jy 1

=0 =0
o Z '('J',I" WM expl—B, - B,]

{8] (V)p|6l +0y (l _ p] )51+,/\ alr‘ azrz*lblﬁbzrz*l exp[_”lbl —T]sz]

*'tcfg(,.\')[’lt8 HsH(l_ P|)62““'a|r]4]az’:b|rﬁ]bzr2 exp[—r],lbl ~77::b2]} .

where

Y =53 em=aray . i=12
#7=0

m=A, +0dlog(l+ay),

772=A

2 T Jog(l+a,y),
=4, +(8,—Dlog(l+a,y),
and

Ty = Ay, +(J; +Dlog(l +d,¥).

Substituting (4.23) in (4.3), we have

0 00 00 o }

00000

(4.23)

{€, (}‘)P]J' o (- p, )dlﬂ; alr]azrﬂb]rlbzrr| Cxp[_”:bl - n:bz]

+&,(Vp T A= p)™ " a) a, b b, exp|-1,,b, — 1,5, \ldp,dbdb,dada, .
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=CY "M B, + 5, +1,6, + j, + DI + D7)

[

J'a."f.(y)ew[-—Bl Vi ‘]a:’ﬁ" exp[—B, ]
1

GO g e B+ 0.0, 4 J A DEIT R+

o0

'-a:’:gj(_\r)exp[—Bz] da ui[(ﬁ"_lgz(-y) exp[-B,]

: da, ]
6 (’722)(’:”’ -() ('711)(") I

ZCZ*MI*[Q(.\’)+¢2()’)], (4.24)

where C is the normalizing constant satisfying jh,l (vl tHdy=1,
0

M) = M.G,")r””)”rz)”‘sl +O)I, +Js+l)],

[(6+6,+0,+j,+2)

oo

ra, €, (yv)expl—B,] a,””" exp[-B,)
(¥)=7(8 +8,) [Hr By [ P
g(y)=r, ;5 (,[ (77,)(' ) 16[ (772)( N

da, ,

and

o (Ta g (expl=B,] , ta"'e,(y)expl-B|]
2(.\'):'.7(51 +j +l) 4 & —5 < a, | 2 - | da
’ B (')[ (77, _(')[ ()"

.
Now, we consider that p,q,,a,,b, and b, are independent random variables such that
p, follows beta(b.d), fori=1,2, g, follows gamma(y,v,) and for i=12, b,
follows gamma (S, 7,). Then the joint prior density is given by

gla,.a,,b,b,, p) =

p,b"'(l - )"_'a,'“'_‘a:'":_'b,”‘_'bz‘ﬁ:_l expl-v,a, —V.a, lexpl=yb, — 7.0, 1,
O<p <l,b>0,a>0. (4.25)

From (4.20) and (4.25), the joint posterior density tunction of a,.a,,b,,b, and p,

given 1 is given by
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n(alvaybvbz’/ﬂ IL*)"‘

Z COp" (= P e e b b, expl~A,, b — A, b, ]Jexpl-B, - B,]

i=0

P A= p) e a0, expl-v,a, —v,a, )expl-¥,b, — ¥,b, ]

n-r

o Z (',"I_r)lﬁ(si (-p, ) a|017|“za:_lb1(q _|b2mr] expl-¥.b, —¥.b,Jexpl-x, - 1,1

7#=0

where

S=n-r,—j+b-1,0,=r+j+d-1
andfor i=12, 0, =r+f, O =r+y, ¥,=A +% and ¥, =B +va,.
The product of (4.11) and (4.26) is given by

fym(ylal’az’bl’b’_”pl)n(al’aZ’bl’b‘_"pl FL

> 0,p2 (1= p)" exp[-h (8, - Dlog(I+a,y)—b, j, log(1+a,3))] £ ()

(4.26)

Z (;I—r)p]q (1= p )62 ala‘_lazaz_lblad_lbzwz_l exp{-¥,b, —¥,b, lexpl-X, — 1]
5=0

where
koY m—k+ja ) e

Y= DO =DEEHC) and S =m—k+ j,— ji+1.
Ai:=0 J1=0

o Z ‘(:‘._r O, expl—x, - lz”gl()r)])ﬁw‘ (- p|)62+j‘ alo‘a:a"_lblqbzwj_l CXP[_nlbl _nzb:}

0} + 5 +]

+g:(y)p.‘;’+‘$""(l -p) a”"'a,” b b, exp[—f},lb, ~11,.b, ]} -

where

n—r

Z* = ZZ g =0+av)", i=12,
i, =0
M= +0log(l+ay),

n, =, +jlog(+a,y).

(4.27)
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=y + (51 —Dlog(l+ay),
and

T =¥, +(J; +Dleg(l+a,y) .

By substituting (4.27) in (4.3), the predictive density function is given by

b, (v11)=CY (71O,

I

S e, 8

0

1
[expl=—z,— 21, (1) P2 (1= p)> 0,2, b5, exp[-1b, — 7,b,]

+&,(Np, 0 A= p)P I 0, b b, exp|-n,,b, — 1,0, |}dp,db,db,da,da,

=CY(TNQE(B(S, +6,+1,6, + j, + D@, + DI ()

oo

® g, R _ o,-1 .
4 EWEPIER),, [ Zlyy, 1 B8 46,8, + j, + DI(@)L(@, +1)

; (nl)((qﬂj ; (’7j )[(u:)

=

a™'e,(Vexpl-2]

a: :82("})(6:5%_12](1(12.[ Y
0 (7,0 0 ™

—CY 0 [+ A0].

where C is the normalizing constant satisfying Jhy‘_ (ylf)d_v=l,
]

0 = 0,()| HL@)NE + 50T, + jux D) |
| r((sl+52+53+h+2)

o

¢|(}') =, (5| + 5})]’@ €|((7.;";(f(3:+]?)[_l| }Ja, Jaz ) (ne))(([()i,_lzj 4.
0 | 0 :

and

az"fgz(_\')exp[—,zz]da

¢2(.V):w2(($2+j3+1) @+ 2 )
(!‘ (7722)( ! 0 (77”)44

’]-al"’_lé‘:(y)exp[—,{'] ]Ja

(4.28)
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4.5 Data analysis

In this section, we illustrate the procedure given in Section 4.4.2
using the data given in Chapter 2. We, here, estimate the rebability function using
predictive density function. We obtained the lower and upper prediction bounds for

and Y

(m)*

Yo the first and last failure times in a future sample of size m=10. The

failure times are assumed to follow finite mixture of Pareto 1I distribution with
dgensity function given in (2.2). Table 4.1 provides the Bayes estimate ot parameters

when the data is censored at the point T and » and r, are the number of
observations belonging to the respective subpopulations. Using our results in (4.4)
and (4.24) with £=0.95, the lower and upper 95% prediction bounds for Y, , the

first failure time, are 7 and 12 respectively. Whereas the 95% prediction bounds

forY, . the last failure times are given by 89 and 97 respectively. The reliability

S™(r) at £ =25 is obtained as 0.4231 by putting & =1 in (4.24) and using (4.5).

Table 4.1 Bayes estimates of parameters of survival times of leukaemia patients.

7 =80

*

(r=13.r, =16) | @ =:0336 a, =.0662 | b =.9743 | b =1.138 | p/=.4519
[T AT

4.6 Bayesian two sample prediction for finite mixture of beta distributions

In this section, we consider finite mixture of two-component beta

model and two-sample prediction using Bayesian technique is employed.

Suppose that » units from a population with probability density
function (3.1) are subjected to a life testing experiment and the test is terminated after
a predetermined ime 7T . It is assumed that an item can be attributed to the appropriate
subpopulation after it had failed. Suppose that » units have failed during the

interval (0.7) with r, from the first and r, from the second subpopulation, such that
r=1 +r,. The remaining n—r umts which cannot be identified as to subpopulation

are still functioning. Naturally, neither r, nor r, (and consequently r} is fixed, but
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they are rather determined by knowing7 . Let 1, denote the failure time of the i
unit that belongs to the i* subpopulation and that 6, <T,j=12..,1,i=12.

4.6.1 The scale parameters ¢, and ¢, are known

In this section, we compute Bayesian predictive distribution when the

prior distribution is Jeffrey’s invariant as well as natural conjugate prior when ¢, and

¢, are known.

Rewriting (3.74), the likelihood function is given by,

n—r

L(d,.dy, p)) Yo > () p/ " (1= p) d)d,”

=

expld, Z log(1-cyt, )lexpld, Z log(1—c,t, N1 - DY (1=, T (4.29)

j=I j=1
Rearranging (4.29), we have

n—r

L(dl’dﬁ’ pl | L*) & Z (’l']_, )pl”_rl_jl (l - pl)'z*.l] dI'lerl

i,=0

7=l

exp[—d, {—ilog(l —aty,)~(n=r—j)logl- C,T)lrd? {—ilog(l — ¢yt )— Jjy log(l- ('zT)}.

nor

L(dl,dz, P, IL‘) o Z (r;l—r)p]n—fz’fl (l _ p])r3+j| dlﬁdz': exp[_Alj, d] — ‘42.}.](1’:] (430)

.i| =0

with

1

A, == log(l—ct,) —[(n =n@-i)- (D" Jlog1 - T), i=1.2.

Ti
j=t
Now, assume that p,, d, and d, are independent such that p, follows U(0,1)and for
i=1,2, b follows Jeffrey’s invariant prior. Accordingly, the joint prior density is

given by

1
g(d,,dz,p,)ocﬁ,0<p,<l, d. > 0. (4.31)

2

The joint posterior density function of p,,d, and d, is given by
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T(d,,dy, p 1 7)< D () p (1= p)*d,"'dy" " expl-A,, d, — Ay, d,] {4.32)

Ji=t

where 6, =n—r,—j, and &,=r,+j,.

The density function of k -th order statistic Ym is given in (4.10),

where S(y) and f(y) are the reliability function and probability density function of

the finite mixture model (3.1). For the finite mixture of beta distributions (3.1), (4.10)
becomes,

k-1 . - m—=k+ j,y
fr. Gldydyp) = 3 DECE] p =" + 1= p)-e,™) ] £

j3:0

k=1 m—k+j,

<2, 2 EDEEHGT P E 1= )y

Ja=0 =0
exp[d,(m=k+ j,— j)log(1-c,y)+d, j, log(1—c, )] f(¥)
=Y Np2 (= p)”" expld, (8, —Dlog(l - ¢,y) +d, j,log(1— ¢, 1)) f (¥). (4.33)
where
k-1 m—k+ ), ) )
2=2 2 Me=EDREHGT ) and 8 =m—k+ j - jy+ 1.
=0 J2=0

The product of (4.32) and (4.33), then yields

fym()’ td,.d,. ppII(d,.d,, p, 1) e

D NP (1= p) expld (8, —Dlog(t—¢,¥) +d, jylog(t ¢, 3)]

H—F

Z (2_" )pldl (I=p )5: dlrlqd:r:_l CXPI_A1j1d| - Azj.dZ]

=0

[ped (1=, )" " + (1= peyd,(1—c,3) ],

< 2 GONAE )P (= p)™ 0 d) dy expl-1yd, ~11:d. ]

+EMP T A= p)* i d ) explmd, - ad, |} (4.34)



where
Z:ZZ E(N=(c(-c»™). i=12,
#=0

m=A; -9 logl-¢y),

7, =4, —Jslogll—c,y),

M =4, —(6,-Dlogl-¢y),
and

T :A’Zjl —(j; +Dlog(l—c¢,y).

Substituting (4.34) in (4.3), we have
oo oa |

by, Y1) =C [[[£, 1d, dy. p)TId,.d,, p, 1 £ )dp,dd,dd, . (4.35)

000

On simplifying (4.35), we get the predictive distribution as

w0 oa |

b, (1 =CYCON, [ [lep U= p)™ 7 d,'d,>" exp[-nd, ~1.d, ]

000
+53(_\’)P|ﬁ' - p;)tsﬁ)‘ﬁldlnildzrz exp[-77,d, - nzzdz]}dplddldd:

I'(r+D T'(k)
@) ()

=CY "(CIN{E(NBS, +8,+1.6,+ j, +1)

A

I't,) I't,+1
()" ()"

=C2 N [+ 8], (4.36)

+€,(¥)B(5,+ 6,6, + j, +2)

where C is the normalizing constant satisfying _‘-hyl (y|tHdy =1,
0

N*_Ncﬂjrmﬂwgn@+@nw@+h+n

I R 7 P e T |
mw=au%#%%g%;.
1 2

and
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K6, + j, +1)
0" ()

¢, (y)=&,(y)

Now, consider the Bayesian analysis when the prior distribution is

conjugate prior. Suppose that p,d, and d, are independent such that p, follows
beta(b,d) and for i =1,2, d, follows gamma (8,7%).

A joint prior density is then given by

g(d, d,, p)e< p (U= p)* ' d P d, expl-¥d, - 1, d,). 0< p, <1, d,>0. (437)

From (4.30) and (4.37), the joint posterior density of d,.d, and p, given ¢’ is given

by

@ dypy1 2’y 3 G p A= p)d7'd,* " expl-yid, —y.d, ]. (4.38)
#=0

where

O=n-n-j+b-1, 6=r+j+d-1 andfori=12, @=r+p, ¥, =A, +7,

The product of (4.33) and (4.38), we obtain,

Sr. (yld,.d,, p)IILd,. d,, p, | 17) e

DR (- p)" expld, (8, —Dlog(l—¢,y) +d, j, log{l— e, )] f (¥)

2 Gp A= p)”d ", exp[-yd, —p.d, ).

;=0

where

k-1 m—k+ i,

D=2 R=CEDEENCT) and S =m—k+ jy - j+1.

jr=0 =0

which can be reduced to

< 2. CORIEM P (U= p)™d a2 exp[-nd, ~m.d, ]
+E0Ip" T U= p)™ T " exp[ -1, dy — 1ds ] (4.39)

where
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Z* :nz_:‘z, for i=1,2, ()= (-,

;=0

n=y,—dlog(l-¢y),
=y, jlogl—¢,y),
M =¥, - (6, ~Dlog(l-cy),
My =V, —(J+Dlog(1-¢,¥).

Then, the predictive density is obtained as

oo |

by, (V12 =CY N, [ [ fremp o 1= p)* 4 dd,* " exp[-md, - m,d,]

000

+€,(¥) /7|Jl - P )62 T d* _ldzm: exXp ["77| dy = 1pd, ]}dplddnddz

Nw +1) I'w,)
(nl)(qm (”2)(10_,)

=CD . (FINAE(VB(S, +6,+ 1,8, + j +1)

Na) T(w, +1)
a1, (17,,) "

=CY 'N'[a(n+a (0], (4.40)

+&(WB(6,+6,.0,+ j,+2)

}

where C is the normalizing constant satisfying J‘hy” (vt )dy=1,
0

L@@ (S, + SIS, + ji + 1) |

N =N(") —
% ['(6,+6,+6,+j,+2)
w (0, +0,)
(-\‘):6(-\‘) :( HI) J(m >
4 S ) ()

and
@, (6, + j,+1)
(””)l(q)(,hz)tqﬂl '

P, (v)=£&,(y)
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4.6.2 The parameters c,,c,,d,,d, and p, are unknown

In this section, we obtain Bayesian predictive distribution function
when the prior distribution 1s Jeffrey’s invariant as well as natural conjugate prior
when c¢,c,.d,,d, and p, are unknown.

From (3.74), the likelihood function is given by,

n-r

L(cpczvd\sdzs P| I L*) *x Z (r;l_,)p|"_r:_j| (1 - pl )f:+.f1 Cl'i(’.‘z’zdlrxd:’:

;=0

expld, Y log(1 - ¢,t, Nexpld, Y log(i ety V1= TV (1=, 7Y
=1

j=l

cxp[—{z log(1-ct, )+ Zlog(l ~Cyly, )]}‘ 4.41)
=1 =1 v

Rearranging (4.41), we have
L(Cl’cz’dl’dZ’pl |£*) o<

Z o WP (= p) e e, d exp[—A,jI d,— A, d, ]exp[—B, - BE] , (4.42)

W=0
where, for 1 =1, 2, A,le is givenin (4.30) and B, = Z]og(l—c,r,j)],
j=1
Now, consider thatp,, ¢,,c,,d, and d, are independent such that p, follows
U(0,1)and for i =1,2, ¢, and d, follows jeffrey’s invariant prior.

A joint prior density is then given by

g(c,,c,,d,.d., p) O<p <l d >0. (4.43)

Gy

The joint posterior density function of p,,¢,.c,,d, and d, is given by

H(c,.c,.d,.d,, p, IL*)0<
Z ('/'»l_r)l)lﬁl (l — pl )5; C]’| Cz’: d"‘ (izr3 exp[_A”l dl - AZjle :Iexp[—B, - B: ] . (4.44)
i1=0

where 6, =n—-r,—j, and &, =r,+j,.
The density function of & -th order statistic ¥, is given in (4.33).

[

The product of (4.33) and (4.44) gives
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fr, O leyep.dy dy, pIl(ey .dy L dy. py 1£7) e

2 Kip " (1= p,)" expld, (S, - Dlog(1 - ¢,y) +d, js log(t =, f (v)
Z(n (= p) "¢ 'e,d)d," exP[_Au,dl - Azjldz]exP[—Bp - B,]

where

k-1 m—k+j,

Y= D Ki=EDEEHG ) and S =m—k+ j,— ji+1.

j2=0 =0
o Z ’ (7K, expl-B, - B,]

(€, (})plém‘( p])§2+h(‘l " ]drld’ lexp[ nd,—1n.d ]

+E,(3)p T 1= p) N e dy expl-n, - 11ds )
where
Z‘ =ZZ’ 6,’(_\’):(1_(7"\‘)4)’ 1=
H=0

n=A, —9dlog(l-cy),

= A, ~jlog(l—¢,y),

7, = A, — (& -Dlog(l-¢),
and

Ty = A, —(j; +Dlog(l-c,y).

Substituting (4.45) in (4.3), we have

o0 (4 2 ca )

by, (1) =CY K, [ [ [ [ fexpl=8,- 8.1

00000

{gl()')plﬁlw" (I=p, )= Clnczrz_ldlndzr3 ! exp[_ﬂldl _772(12]

+&(N)p, T (M= p) MG e ) L exp[ -7y~ Tud, |Ydp,dd dd.dc,dc, .

(4.45)
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=C> (KBS, + 8, +1.6, + j, + DI(; + DI(r,)

o -l _ LI s _
[~ e"{’,[)lej" 8'(-’)?:‘3} By de, + B3 +6,.8,+ j, + DL(IL(r, +1)

5 ) 5 M)

(! +1)

Icz 7£,(y)expi— BJJ- " £(>)eXP[ Bl, de,]
0 (7777 0 (7711

=CY K [a(»m)+ .0, (4.46)

where C is the normalizing constant satisfying Jhm (vt )dy
0

) I’(r,)I“(rz)F((Sl +53)F(52 +j,+1)
U I8 +8,+8+ j,+2) ’

o0 =t v [ B e,
] 2 ] t

and

¢2()y):rz(5:+13+1)rq £, (»)P;}E[) BJJ e, (\)e(>r<p ]dc,dcz.
0 (7] 0 (77” v

Consider the situation of conjugate prior. Now, assume that
p,,¢,»¢,.d, and d, are independent such that p, follows beta(b,d), for i=1,2, ¢
follows gamma (4,,v,) and for i =1,2, d, follows gamma (£, ,).

A joint prior density is then given by

gle,.c,udy dy, pyo pl (A= p) e e AP AP T expl-vie, —vae, lexpl—yd, - 1hd,

O<p<l,d >0,¢>0
(4.47)

From (4.42) and (4.47), the joint posterior density function of c¢,c,.d,.d, and p,

given 1 is given by
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M(c,,c,,d,ds, p 1) o

< n—r n—r.— j Y h 4] f r- 1
Z()‘. W A= p))t "‘c]‘cz-d,‘dz-exp[—AU;d, —AQJ‘JZJexp[~Bl—BZ]
;=0

plb—] (I-p, )d_lClﬂlﬁlczﬂl_ldim_ldzﬁ:_l expl-v,c, =V, ¢, lexpl-¥d, — 7,d,]

& Z (’}:r)pﬁ (1- p|)53 Cld'_lczcz_ldim_ldzah‘l exp[—l//,d, - l//zdz]exp[*;(; _2’2] . (448)

=0
where

S =n-r—j+b-1,06,=r+j +d-1

andfor i=12, @ =r+pB, o =r+4,. w,=A, +7 and ¥, =B +va,.

From (4.33) and (4.48), we get,

fr, e, e.dydy, pOl(ey ey d, . dy, by lt7) e

Z prlﬁlul (- pl)j‘ exp[d, (& —Dlog(l—¢,y)+d, j,log(l “(72.\.))] f

Z (;;r)pl&l (] - P )h‘: Clal_lczaz—.'dt@qdz%_] exp[*l/ﬁdl - ‘/’gdz]eXPFL _13]

A=v
where
A1 m=k+j, \ N
Z=Z Z . L =(—])'I:(_;';])(;:_A+':) and &, =m—k+ j,— j,+1.
£=0 j=0

o Z *(IJI’._r W expl—x, - 1. ){& (.")Pnli’+51 (- p, ) e, d, " d, eXp[_ﬂldl _”zdz]

+ 5:()‘).’71(2“;}_'(1 - /’1)ﬁ:+‘,’:+,"lm_l€:d} dlq_ldzwr eXP["?; A _7721‘12]} . (4.49)

where

ZZEZ EM=>0-¢w". i=12,

5=0
n=¥, _63 log(1—¢,¥),
=, = jylogl = ¢ )).

M =¥, —(8=Dlog-q,y),



130

and
M. =¥, —(j;+Dlog(l—c,¥).

Substituting (4.49) in (4.3) , we have the predictive distribution as

(119 =CY (L,

> oo

-y w00 |
Ijjjjexp[_xl X 1E (\)Px(SHF (1- pl)&lﬂl ¢%¢,"7'd " d,"* " exp[~md, ~1d, ]
00000

8+, - l( I)(5+] +1

+&(¥)p, ¢, '¢,2d,*'d,* exp[-n, d, -1, |}dp,dd,dd,dc dc,

=CY LI (NBE, +6,+1.8,+ j,+ DI (@ + DI (@,)

a}'ga: expl— L]J o’ & (y)expl-x)

(@) r(q +1) Jcldc’l + B((SI + 5375’_’ + ]1 + 2)F(a)|)r(a)z + l)
0 (772) 1] (77.

J~ 6(\)exr>[—,%lj’ e, (y)expl-2]
; (,’” (@ +1) (77“ lq1

=CY L [ () +a.(0} (4.50)

dcldc2 .

where C is the normalizing constant satisfying J.hy“(ylg_*)d_v: ,
0

[(@)T(@,)T(8, + 8,)T(5, + j3+1)}

L=hy )[ (8 +8,+8,+j,+2)

o 0yl .0 \ _
6(3) = a8 +§3)JC2 exgﬂ AN J‘ E,())i:j?)[ Z']dc,dcz,
Y ( ) 0 (771)

and

¢, (y)expl- 12]‘]c-,“"'ez()’)eXP[—z.J
((u.+ll

(77-2) J )\

$.(0)= 0,8, + j,+ 1) [2 de,de,.
[\l
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4.7 Data analysis

For the illustration of the role of finite mixture of beta distributions
for predicting future observations, we consider a data given in Chapter 3, on survival
times of cancer patients with advanced cancer of the bronchus or colon were treated
with ascorbate. We, here, estimate the rehability function using predictive density

function. We obtained the lower and upper prediction bounds for ¥, and Y, the

( (m
first and Jast failure times in a future sample of size m=15. The failure times are
assumed to follow finite mixture of beta distribution with density function given in
(3.1). Table 4.2 provides the Baves estimate of parameters when the data is censored
at the point 7 and 7, and r, are the number of observations belonging to the
respective subpopulations. Using our results in (4.4) and (4.46) with 7=0.95, the

lower and upper 95% prediction bounds for Y, , the first failure time, are 21 and 26
respectively. Whereas the 95% prediction bounds forY,  , the last failure times are

given by 542 and 551 respectively. The reliability S"(t) at t=250 is obtained as
00147 by putting & =1 in (4.46) and using (4.5).

Table 4.2 Bayes estimate of parameters of survival times of cancer patients.

7 =800

¢ =.00017 | ¢, =.0012 | 4/ =1577 | 4,/=145 | p =.5516

(=}

(r,=16,r, =15)

4.8 Conclusion.

In this chapter, the role of finite mixture of Pareto II and finite
mixture of beta distributions on prediction of future cbservations are explored using
Bayesian approach. The role of finite mixture of Pareto II distributions is illustrated
using a real life data on time to death of two groups of leukaemia patients. We, also
here, i1llustrated the use of tinite mixture of beta distributions based on a real data on

survival times of cancer patients




Chapter 5

ESTIMATION OF RELIABILITY UNDER STRESS-STRENGTH MODEL

5.1 Introduction

In reliability theory, stress- strength models describe the life of a
component, which is having a random strength X that is subjected to a random stress
Y. The component fails at the instant the stress applied to it exceeds the strength.

Thus R = P(Y < X) measures the component reliability. It has many applications

especially in engineering concepts such as structures, deterioration of rocket motors,
static fatigue of ceramic components, fatigue failure of aircraft structures, and the
ageing of concrete pressure vessels. Accordingly, in practical applications, the

estimation of R = P(Y < X) is important. The estimation of reliability R when the

distribution of X and Y have exponential, Weibull, lognormal etc. has already been

done in the literature.

However, the estimation of R when the distributions of X and Y
have mixture form is not seen widely discusscd in literature. The estimation of
reliability based on finite mixture of inverse Gaussian distributions was studied by
Akman et.al. (1999). Al-Hussaini et.al. (1997) considered finite mixture of lognormal

components for the estimation of R = P(Y < X}. As mentioned in Chapter 1, censored

data are commonly encountered in reiiability analysis. So it is worthwhile to estimate
the reliability R for type I and type 1l censored data. Accordingly in the present
chapter, we consider the estimation problem of R when the distribution of X is finite

mixture of Pareto 1. We consider different distributions for ¥ such as exponential,
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Pareto 11 and a finite mixture of Pareto II. We develop the maximum likelihood

estimation of the system reliability for complete as well as censored samples.
y y p Y

The rest of the chapter is organized as follows. The definition of
stress-strength reliability is given in Section 5.2. Ian Section 5.3, we derive the
reliability, when the strength X follows finite mixture of Pareto 11, and the stress Y
takes different distributions such as exponential, Pareto II or finite mixture of Pareto
II. The maximum likelihood estimation of parameters for the different models under
type I and type II censoring is discussed in Section 5.4. In Section 5.5, we develop the
maximum likelihood estimate of reliability in various situations. A simulation study is
conducted to assess the performance of the estimator in Section 5.6. We apply the
method to a real data in Section 5.7. In Sections 5.8, 5.9 and 5.10, we discuss the
estimation of reliability, when the strength X follows fimite mixture of beta, and the
stress Y takes different distributions such as exponential, beta and finite mixture of
beta. Section 5.11 provides the simulation studies to assess the performance of the

estimates. Finally, Section 5.12 gives the conclusion of the chapter.

5.2 Definition

Let X and Y be two non-negative random variables having

absolutely continuous distribution functions F(x) and G(y). Let f(x) and g(y)

respectively denote the probability density functions of X and Y. If X andY are

independent, then the stress-strength reliability R is given by

R=P(Y < X)

= [[e()f wydydx,
¢o
which is already mentioned in Chapter 1.

5.3 Finite mixture of Pareto II distributions

In this section, we assume that the strength X follows finite mixture
of Parcto 11 distribution with p.d.f (2.2). Lindley and Singpurwalla (1986) pointed out
that if the distribution of life times measured in a laboratory emvironment is
exponential, then the distribution of life lengths in a different environment is Pareto

I1. Accordingly in this Section. we consider various distributions such as exponential
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and Pareto I for the stresses. We also consider the situations, where the siress has

finite mixture of Pareto II distribution.
5.3.1 Thestress Y follows exponential distribution

When the stress Y follows exponental with p.d.f
g(n=%y y>0,1>0. (5.1)

and if X and Y are independent we obtain the reliability R as

R= _[_[(/k‘l"")[plalbl (I+ax)™ "+ (1= p)ab, (1 +a,x)""" |dydx
00

= I(l_e‘i«r)[plalbl(] +alx)—fh,+l) +(] . P, )azb2 (1+a2x)—ll)3fl)kix

0

=1-pab, Ie”" (+a,x)""*"dx—(1- p)a,b, J.e"t"' (14 a,x) ™" Vdx
0 0

n (A AL i b Fa AL i,
=]_pla[b|[(/l) € F(_bp'—)al IJ—(l_p1)agbg[(A) e’ F(-bz,;‘)az “]
! 2
-—1 X« hl )(Aul) — i . —_ /1 1’2 (,1(") — i
=1 p.b.%g e " Th = p.)bz%g e "TCh ). (5.2)
A . . . X
where I'(-b,,—), i =1,2 is the incomplete gamma function.
a
5.3.2 The stress Y follows Pareto Il distribution
Suppose that the stress Y follows Pareto IT with p.d.f.
gy =ab(l+avy""; a>0b>0. (5.3)

When X and Y are independent, the reliability R is obtained as

R= [ [ab(t+ay) "™ pap(+ax) " + (1= p)ab(i+a,0)™" " ldvdx

00
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= j[l —(1+ax) " pab,(t+a,x) " + (1= p,)ab,(1+a,x) " dx

0

=1-pab, _[(1 +ax) " (I+ax) ™" dx — (1 - p)a,b, I(l +ax)"(I1+a,x) """ dx
4]

Q)

{
Cb b Hy2F[1.b,1-b, a;]
=1-pb, —Jl’csc[/fb,J——( | 1) a,'b‘[l—ij‘““ b+ G
rel'(1+b) a, b,
a
rb b Hyzﬂllvbal—bga_]
_(l_ pl )b2 _”CSC[”bZJ ( 2 + ) a —bzll_i]—(b_wblab: + a, ’

Tbr(1+b,) ° a, b,

(5.4)

where Hy2F, [l,b,l -h,i
a

i

], (1 =1,2) is the hypergeometric function and csc[7b] is
the cosecant of b
5.3.3 The stress Y follows finite mixture of Pareto II distributions

When the stress Y follows finite mixture of Pareto Il with p.d.f

g = pab,(+ay) ™" +(1-pXl+a,y)™"; a,a,b, and b,>0 (5.5)

4>

and if X and Y are independent, we obtain the reliability R as

R= Ij[p303b3(1+azy)‘(hjﬂ) +(]_p3)(1+a4y)—(b4+l)]

00

[pya,b, (1+ a, )™ + (1= pab,(1+ a,x) " Vdydx

= =P+ a0y ™ == p(t+ a0 ™ M pab(+a 0™ + (1= pab, (1 +a,0) > Wy
0
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=1- ;[pa(l +a,0) " pab (1+ax) " + (1= p)ayb, (1+a,x)"™*" )dx

—;[(1 - p)A+a,0) ™ pab(+ax)™ " +(1- pHa,b,(1+a,x)" """ dx

=1- p,pab :j(l +a,x) "1+ ax) ™" dx ~ p,(1- p)a,b, :j(l +ax) " (14 ax) =" dx

(1= py)pab, °](l +a,x) " (L+ax) " dx-(1-p,)(1-p, )azbl:;[(l +a,x) (I +a,x) =" dx

0

Hy2F[L1+b,2-b, 5
a,

(b, +
=l_ p}]))albl ”Csc[ﬂ.bl] (bl bl) I-I+b, [I_E]‘]—(IJ,+IJ,)ax—Ir3 +
“Tb(1+b,) a, ; ay(—1+b,)
a,
Cb. + b Hy2FE[LI+bh,,2-b,,—
2 + ~1+5 3 -iha+h, -b. - ’
_p;(l_pl)a‘»bz JZ'CSC[ﬂ'b‘]—-—('—}—)—a, : I‘“‘i‘] b "‘a, b + 9
' : YIbT(+b,) a, ' a,(=1+b,)

Hy2F[L1+b,2-b,, %)

T'(b +b
-(1- p)pad, 7Z'CSC[7Z'b4]—————( L *+6,) l_“"‘[l—g'—]“"”b"a{"‘+ %
’ Ib,I'l+b) a, a,(-1+5,)
a,
ot . Hy2E (146,25, %]
(1= p )1 - p)ash, d wesclah, |2t 28 e Gayibien g oy s
=PIl piabaescble ppy @ Uma) a,(-1+b,)
J
(5.6)

5.4 Estimation of parameters

In this section, we estimate the parameters of the models by the

method of maximum likelihood, for the complete as well as censored samples.
5.4.1 Exponential distribution

Suppose the stress Y 1s a non-negative random variable which

follows an exponential distribution with probability density function (5.1).
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(a) Estimation of parameter based on type I censored samples.

In this section, we develop maximum likelihood estimators of
parameters under type [ censoring. Suppose there is a random sample of n units with

lifetimes Y,,Y,,..., Y, having distribution (5.1). We observe Y, only if Y, <T , where T
is a fixed censoring time. The observed data therefore consists of pairs (¥,,9,),
i=1,2,...,n where y,=min(¥,,7) and
o =1ifY<T
=01ty >T.
The general form of the likelihood function for tvpe I censored
sample is given by (2.89) and for the exponential model (5.1), (2.89) becomes

L(Aly)= I"](/le““' )% e (5.7)
=]

where ¥ =(¥,¥;...., J,).

Maximization of log-likelihood function with respect to the parameter yields the

estimate of A as

r

A= :
3[5.6,+T(-6)]
i=)

(5.8)

n
where r = 25, is the observed number of lifetimes.

i=1
(b) Estimation of parameter based on type II censored samples.

Suppose that only the first »  smallest observations

Yo, £ ¥y S..2 Y, are available in a total sample of size n. From (2.108), the

likelihood function for type 11 censored sample is given by

! " . ! .
L(X, | l‘) _ (nll.r)![H(/?'e—A_\”.]e—,l_\,,,(n r (59)
) =l
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By maximizing the log-likelihood function with respect to the parameter, the

maximum likelihood estimate of A can be obtained as

r

j=- |
Z-\'1(1]4_(’1 ) fr;
i=1

(5.10)

Remark 5.1

When r=n, the results obtained under type II censoring becomes

complete sample case.
54.2 Pareto Il distribution

The stress Y follows Pareto II distribution with probability density

function given in (5.3).

(a) Estimation of parameters based on type I censored samples.

For the wmodel (5.3). the likelihood function (2.89) based on a sample

(¥, ¥s,... ¥,) becomes

L(a,b)y) = [{{(ab+ay) ") (1 +aTy "'} (5.11)
i=1
Maximization of Jog-likelihood function with respect to the model parameters yields

the following likelihood equations,

s x0-8)T

V. ‘
—=(b+]1 +p . )
b+ )121(1+a\ ) (I1+aT) (5.12)

~—25100(l+m )+Z(l—5)100(l+aT) (5.13)

b =1

where 7= &, is the observed number of lifetimes.
i=1

Solving the equations (5.12) and (5.13) numerically, we obtain M.L.E. s of a and »
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(b) Estimation of parameters based on type Il censored samples.

Based on a sample of size n, we observe only rsmallest lifetimes

Yoy € Yoy £-.£ ¥, then, for the model (5.3), the likelihood function (2.108)

r?*

becomes

n!

- R =(h+) N —b(n-r)
(n- r)![l;[ ab(l+ay;,) A +ay,,) (5.14)

L(a,blz‘):

Maximization of log-likelihood function with respect to the model parameters yields

the following likelihood equations,

r )‘.I bn'—r Vr
Loy =7 (5.15)
a =t (May,)  l+ay,,
== Tlog(l+ay,)+ (n=r)log(i+ay,,). (5.16)

The estimates of ¢ and b can be obtained by solving the equations (5.15) and (5.16)

by Newton- Raphson iterative method.
Remark 5.2

When r=n, the results obtained under type Il censoring becomes

complete sample case.

5.4.3 Finite mixture of Pareto Il distribution

Estimation of parameters of finite mixture of Parcto II is already

discussed in Chapter 2.
5.5 Estimation of stress-strength reliability

When the strength X follows finite mixture of Pareto II with

parameters a,,a..0,,b,and p, and the stress Y follows exponential distribution with

parameter A, then the maximum likelihood estimate of R is given as

3]

e A
R=l—p|l)l(/1u)['e( ',r(—b],T)—(]—pl)bz(/i/ )bze( ’,F(——bz,A— .
q a, /4

a,



140
Then from appendix B of Lawless (2003), the asymptotic variance of R is given by

2
—I—{) Var(p,)

Var(ﬁ) (B_R} Var(&l)+(§&] Var(a,)+ +(
a aa, (2
+a—R§£Cm(a a, )+§—R§EC0l(0.,b)+ --+a—R§‘CO"(5;’PI)
G .

da 0
where variances and covariances are directly obtained from the inverse of the matrix

!

{(a,,a,,b,,b,, p,) with
_d’logR  Jd’logR d’logR _d'logR _ d’logR
da,’ daoda, Jaoh,  daob, da,dp,
I(a,,a,,b,b,, p)=
_d'logR  Jd'logR d’logR d’logR  d’logR
dp,da, dpda, dpodb, ~ dpdb, dp,

When the strength X follows finite mixture of Pareto II with

parameters a,,a,,b,b,and p, and the stress Y follows Pareto II distribution with

parameters ¢ and b, then the maximum likelihood estimate of R is obtained as

MG 25 Hy2E(Lb1-b, 91
k=l—ﬁ15 ——71'(‘:5(, ”b]_(_:}'_) —’1[1 J-(bwb)&lﬁ + _ a,
Tbr(1+b,) a, b,
a
) HY2F|1,b,1-b,, - 1
T(b +b) _[> [l— fl J—(h +I7)(All) + _ aZ
a, b,

—l—‘[; - er
4=n) escl JFbF(l+b)

When the strength X follows finite mixture of Pareto II with
p, and the stress Y follows finite mixture of Pareto I

parameters «,,a,,b,.b,and
and p,. then the maximum likelihood

distribution with parametersa,,a,.b,.b

estimate of R is given as
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b +b A Hy2FE(fl1, I+b 2 b;“_]
R =1- f)xl},&,bl ﬂCSC[ﬂ'b J_(__ﬂ)__ ~ -l+b\[ _(f_|]—(b.+bx)&1-b] v ]
k I'b.I'(1+b) a, \ a,(-1+b))

J

A -~ 4 ’
(b, +b, A Hy217,[1,1+b2,2_b3“_2]l

-p,(1-p)a, Az qwescf 7[5 ]_(___)_ A, _Cj Ry _b‘ s A 2
Fb F(]+b ) % &3(_1+b3) J

{ Hy2F[1, ]+b 2- [;4’ L]

)

4

S Nhah A + A 14, +ho 5
—(1— p,)p,ab, § wcsclab, ]_@_b.)_ a’ Ba]— ‘1:] (by+h,) h4 N i
; I'b,I'(1+ a, a,(-1+b,)

HY2F[1,1+b,,2— 54,—1

5 s p ~ I'(b,+b, m Gy fori)
=(1-p)1- p)a,b, ﬂcsc[ﬂb]_(b_-—) [b[l ]m b,) b1+ _

a,

4

b I(1+b,) ~ a, a,(~1+b,)

5.6 Simulation Study

In this section, we carry out simulation studies to observe the finite

sample properties of the estimates and their robustness.
(a) Exponential distribution

We generate observations from exponential distribution with
parameter A =0.7. Table 5.1 and 5.2 provides maximum likelihood estimates of
parameters under complete as well as censored situations with various combinations
of n(sample size), T (censoring time) and r (number of failures). The variances of

the estimates are given in brackets.

(b) Pareto Il distribution

We generate samples from Pareto Il distribution with parameters a=1,6=4 The

estimates under complete as well as type I and type Il censoring sct up are given in

Tables 5.3 and 5.4 for various combinations of n.7 and r
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(¢) Finite mixture of Pareto Il distribution

For the type I censoring, in which observations belonging to each
subpopulation are known, we generate two sets of samples, one from a Pareto Il

distnibution with parameters g, and b, and the second from a Pareto II distribution

with parameters a,and b,.

For the type I censoring (in which observations bclonging to each
subpopulation are unknown) and type II censoring, first we generate two sets of

samples, one from a Pareto 1l distribution with parameters @,and b and the second
from a Pareto II distribution with parametersa,andb, and then, we obtained finite

mixture of Pareto II distributions using Bernoulli probability p,(0< p, <1).

The estimates of parameters by the method of maximum likelihood
under type I censoring and type Il censoring for the set of parameters
a,=.03,a,=3,b=1,b,=2 and p =0.5 with various combinations of n(sample
size) and T (censoring time) are given in Chapter 2. The result obtained under type Il

censoring is extended to the complete sample by taking r=n.

Tables 5.5 to 5.7 give the maximum likelihood estimates for another

set of parameters a, =.005,a, =2,b,=3,b, =5 and p, =0.6 under complete as well
as censoring for same combinations of n,T" and r, where p, is the mixing Bernoulli

probability (0 < p, <1).

Stress strength reliability when strength 1s finite mixture of Pareto II
and stress is exponential i1s given in Table 5.8. Table 5.9 provides the Stress strength
reliability when strength is finite mixture of Pareto II and stress is Pareto Il. When
stress and strength are finite mixture of Pareto 11, the reliability is given in Table 5.10.

The vanances of the estimates are given in brackets.

We use the software ‘Mathematica® to evaluate the integrals

numerically.



Table 5.1 Maximum likelihood estimates of parameters under type I censoring

for 4 =0.7 (exponential)
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Censoring n=30 n=50 n=100
ume
A=0.670027 | A=0.6827 A=0.70022
T=30
(0.001320) | (0.000271) | (0.000050)
A=0.71027 | A=0.6987 A=0.70001
T=100
(0.000871) | (0.000154) | (0.000011)

Table 5.2 Maximum likelihood estimates of parameters under type II censoring

for A=0.7 (exponential)

n=30

n=50

n=100

r=10

=30

r=30

r=50

=60

r=100

A=0.68175
(0.002764)

A=0.68886

(0.001159)

A=0.68892
(0.001042)

A=0.7019
(0.000987)

A=0.68899
(0.000125)

A=7012

(.0000654)




Table 5.3 Maximum likelihood estimates of parameters under type I censoring

for a =1,b =4 (Pareto II)
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Censoring n=30 n=50 n=100

iime
G=1.13372 | G=1.05943 4 =1.00058
(2.7E-2) (1.08E-4) (1.01E-6)

T=30 b=378796 | b=3.87436 b=4.01902
(.00821) (.000275) (2.7E-7)
d=1.1164 | G=1.02179 a4 =1.00012
(1.2E-2) (1.01E-4) (1.01E-7)

T=100 b=3.864 b=3.9019 bh=4.0017
(3.4E-3) (2.9E-5) (1.3E-7)

Table 5.4 Maximum likelihood estimates of parameters under type Il censoring

for a=1,6=4 (Pareto II)

n=30 n=50 n=100
r=10 r=30 r=30 r=50 r=60 =100
4=09764 | 4=09889 | 4=0.9899 | 4=1.015 | 4G=1011 | 4=1.007
(000453) | (0.000124) | (2.6E-4) | (2.56E-5) | (1.2E-5) | (1.1E-6)
b=3.8643 | b=39117 | 6=3.9547 | h=4.0743 | b=3.998 | b=4.0012
(0001975) | (000124) | (1.8E-4) | (1.01E-5) | (1.1E-5) | (1.02E-6)
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Table 5.5 Maximum likelihood estimates of parameters under type I censoring for
a, =.005,a,=2,b,=3,h,=5and p, =0.6 in which observations belonging to each
subpopulation are known.

Censoring n=30 n=50 1=100
fime
4,=.0051004 | 4,=00491342 | 4,=.00497522
(9.08E-05) (5.53E-05) | (1.13E-05)
a,=2.1098 4,=2.02653 | a,=2.02132
(9.44E-05) (6.81E-05) | (1.49E-05)
b,=2.829962 | b,=2.918252 | b,=3.029122
T=30
(.000386) (.000124) (L.1E-4)
b,=5.0976 b,=4.9973 | b,=4.99843
(.0437) (.00631) (.000289)
p,=608161 | p,=.6008275 | p,=.6001367
(5.9E-11) (9.7E-12) (4.97E-12)
4,=.0051106 | &,=.0051058 | G,=.0050117
(2.37E-05) (1.892E-05) | (1.882E-05)
a,=19124 a,=1975 a,=2.0232
(8.83E-06) (5.72B-06) | (4.98E-06)
b,=3.10% b,=3.0864 | b,=3.00031
T=100
(.040889) (.040573) (.007085)
b,=5.1087 b,=5.0965 b,=5.0132
(.00963) (.00149) (.000397)
p,=.59998 P,=.59999 p,=.6002
(5.18E-11) (857E-12) | (3.18E-12)
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Table 5.6 Maximum likelihood estimates of parameters under type I censoring for
a, =.005,a,=2,b,=3,b,=5and p, =0.6 in which observations belonging to each
subpopulation are unknown.

Censoring 1=30 n=50 1=100
a,=.00512 ,=.005098 | &,=.005087
(3.7E-03) (2.4E-03) (1.5E-03)
4,=2.0912 4,=1.92786 | a,=2.01764
(2.4E-03) (1.9E-03) (1.8E-03)
b,=3.101 b,=3.107 b,=3.028
T=30
(2.7E-03) (2.1E-03) (1.5E-03)
b,=5.0875 b,=5.07121 b,=5.019
(5.4E-03) (3.7E-03) (2.2E-03)
P, =.6009 P,=.59989 Py=.6002
(4.2E-12) (3.7E-12) (1.8E-12)
d,=.00509 4,=005054 | @,=.00508
(3.2E-03) (1.98E-03) | (1.32E-03)
a,=1.9469 a,=1.98 a,=2.0031
(2.6E-03) {1.7E-03) (1.3E-03)
b,=3.0942 b,=3.023 b,=2.9976
T=100
(2.1E-03) (1.1E-03) (2.7E-04)
b,=5.1087 b,=5.0965 b,=4.9832
(4.1E-03) (2.1E-03) (1.08E-03)
p,=.59917 p,=60034 | p,=.60001
(7.6E-14) (3.9E-14) (2.2E-14)
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Table 5.7 Maximum likelihood estimates of parameters under type I censoring
for a,=.005,a,=2,b,=3,b,=5 and p,=0.6

n=30 n=50 n=100

=10 |r=30 r=30 r=50 r=60 r=100

G,=.00511 | 4,=.00504 | 4,=.00494 | 4,=.00498 | 4,=.00508 | 4,=.00502
(2.9E-4) | (1.22E-5) | (1.7E-5) | (1.01E-5) | (24E-6) | (1.98E-6)
4,=19527| 4,=2.087 | a,=1.987 | 4,=1.995 | &,=2.05 | &,=1.999
(0711 | (0532) | (0532) | (02187) | (00721) | (.00210)
b,=310 | b,=3.0987 | b,=2.9897 | b,=3.0043 | b,=3.014 | b,=3.001
(0057) | (0032) | (00654) | (00191) | (0007) | (.00012)
b,=5.075 | b,=5.045 | b,=4.9855 | b,=4.997 | b,=4.998 | b,=5.001
(100D | (0978) | (0325) | (00951) | (007821) | (.00019)
P,=6103 | p,=5987 | p,=5988 | p,=.5999 | p,=.6002 | p,=.6001
(6.7E-12) | (1.09E-13) | (3.1E-15) | (1L.IE-15) | (7.2E-18) | (2.0E-19)

Table 5.8 Stress-strength reliability when strength is finite mixture of Pareto II

and stress is exponential

Sample size

n=30

n=50

n=100

Stress-strength

reliability R

0.553244

0.555229

0.559292

Table 5.9 Stress-strength reliability when strength is finite mixture of Pareto I

and stress is Pareto 11

Sample size

n=30

n=50

n=100

Stress-strength

reliabihity R

0.79128

0.7991

0.80127
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Table 5.10 Stress-strength reliability when strength is finite mixture of Pareto 11

and stress is finite mixture of Pareto 11

Sample size n=30 n=50 n=100

Stress-strength 0.6759 0.69131 0.71297
reliability R

5.7 Data analysis.

For the illustration of the method, we consider a stress-strength data
which is given in Table 5.11. (see Rao (1992)). The stresses induced in power
transmitting shafts and the experimental values of the strength of the shaft material
are given as stress and strength values. The values are given in k(lb/in2). We then
estimate the parameters using the method of maximum likelihood. We used the

Kolmogorov Smirnov statistic to test the goodness of fit. From the analysis, it

concludes that model (2.2) with g, =0.59,a, =3.35x10".b, =b, =b=.05and
p, =0.5 is a good model for strength data and the model (5.1) with 2=.87 is a

plausible model for stress data. Then we estimate the reliability of the shafts as 0.213

Table 5.11 Stress-strength data

strength | 31.8 |1 25.2 {283 [29.6 |30.1 |327 |265 |[28.9 |30.8 |335

stress 23.4 | 28.6 |239 |25.

9]
[Re]

255 12677 (203 (277 (192 [228

strength | 27.4 | 29.3 |30.7 1322 1299 306 {317 {313 |339 |343

stress 23.1 (246 {259 [268 1275 [21.7 |24.1 {249 |248 |[226

5.8 Finite mixture of beta distribution

In this section, we consider the strength X as finite mixture of beta
distribution with p.d.f (3.1). As in the previous case. we consider three different

distributions for the stress Y.
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5.8.1 The stress Y follows exponential distribution

The stress Y follows exponential with probability density function given in (5.1) and

assumes that X and Y are independent. Then the reliability R is obtained as,

1
R= j j(ze"*-“)[p,c,dl(l—cl_x)“’l‘”+(1—p,)czdz(l—czx)“’r‘”]dydx

0o

v

|

= _[(l—e_/l“)[p,c,d,(l~c,x)“"‘” +(1- peyd, (- c,x) " Jdx
0

I L

"1 St
=1-pcd, Ie-ix(l—c]x)u,-.n +(-p))e,d, IG—J"(l—CQX)(‘I“_')dx
0

0

A .
=1-- Plc;d; {(_1)‘1’1 e /(-./1—{1; (I“dl —F(d,,‘%l )Jq—ndl}
~(1- P )Czd:, l:(—l)_d: e ,/(":/1“1_» (Fd2 _ r(d:”—% )ch l+d2:|

[ e A(F‘"r("_%m (5.17)

*(]—p])dzi(—l)_d'e o ¢

L \
5.8.2 The stress Y follows beta distribution

The stress Y follows beta with probability density function

f)=cd(l—c)™ 35¢>0,d>0,0< v< 1 (5.18)
c

If X and Y are independent, the reliability R is given by

R= j 'j(cd(l o) Ipied (1=, ) + (1= peyd,(1- 0"V Jdydx

0 0
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!/

= == U pied, (=0 + (1= p)esd, (1-¢,0) % "l
0

=1-ped, [ Q-0 (1-e0) " de-(1- peds [(1-cr)’ (-0 " dx
] 0

r : r .
=1-p, [Hyzﬂ[l,—d,l +d,,(fﬂ—(l - p,)[Hy2FlLl,—d.l+d2,“f—ﬂ (5.19)

G ¢

5.8.3 The stress Y follows finite mixture of beta distribution

The stress Y follows finite mixture of beta with probability density function

F)=ped, (1=, )" " + (1= ped, (1-¢, )",

1
¢.¢,d,,d, >0,0< p, <1, 0<y<— . (5.20)

G,

When X and Y are independent, the reliability is given by
I/

R=

0

j[/’;;%d}(l ~C3,")((l-‘_') +(1- py)e,d, (1 "C4)’)(d’_”]
0

[p,c,d, (1=c,x) " + (1= p,)eyd,(1—c,x)' ™" |dydx
|l el i 1 22 2

A
- j[l = pl=c0)" = (L= p)(l =, )™ ped,(1=c.0)" " + (1= p)eyd, (11— c,0) " dx
0
!

=1- J‘ p,(1— (,'3x)d-‘[plc,d| (- c‘ix)'d"” +(1- p)c,d, (1 —-czx)("f_”]dx

0
i

- I (1-p)(1- .0 [ped (1—c,x) "™ + (1= p)e,d,(1- czx)“lf_” Kx
0
i ’

=1-p,p,cd, j(l —c0) (=)' Vdx— p, (1= p)e.d. I(l — e, ) (1= ¢,x)“dx
0 0
L |

]

-(1- popcd, f(l —c, )" (=cx) " "dx— (1~ p, )1 - p,)e.d, J—(] —c, )" (1=, 0) " W
{

0
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—

=1- p,pd, [Fd,H_yZFlR{],—dJ,] +d,,51ﬂ— p(1- p)d, [FdzHyQFlR[l,—d},l+d2,&
C i C,

~(1- p,)pd, [rd,Hysz{l,—dhl+d,,"—4ﬂ—(1— p (1= p)d, {ngH_\'2FlR[l,~d4,l+d:,£“—
c
d

(5.21)

c, |
where H)‘2F1R{l.—dj,l+d,.,~iJ, i=L2 and j=3,4 1is the regularized
¢

1

hypergeometric function.

5.9 Estimation of parameters

In this section, we discuss the estimation of parameters of the
different models by the method of maximum likelihood for the complete as well as

censored situations.
5.9.1 Exponential distribution

Estimation of parameters in this case is mentioned in Section 5.4.1.

5.9.2 Beta distribution

The stress Y follows beta distribution with probability density

function given in (5.18).

(a) Estimation of parameters based on type I censored samples.

In this section. we develop maximum likelihood estimators of
parameters under type 1 censoring. Suppose there is a random sample of n units with

lifetimes Y,,Y,,....Y from the model (5.18) and associated with each unit, a fixed
censoring time 7. We observe Y, only if ¥, <7 and the data therefore consists of

pairs (¥,,6,). i=L2,...n and ¥, =min(¥,,T)
where & =1if Y <T and & =0ifY >T.

The general form of the likelihood function for type | censored

sample is given by (2.89) and for the beta model (5.18). (2.89) becomes

|

¢

|

|
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Lic.dlyy=TT{cd1=ci )"y =)} (5.22)
il

where y=(y,, ¥.... ¥,)

Maximization of log likelihood function with respect to the model parameters yields

the following differential equations,

H

RN )

r .
LS [N p R ) JiC. 5.23
e TR -2
5:%5,.log(l—c'_\*’.)+i(l—5i)log(l-cT) : (5.24)
i=] i=]

where r = Z @ is the observed number of lifetimes.

i=1

Solving the equations (5.23) and (5.24) using Newton-Raphson
method. we obtain M.L.E.s of ¢ andd .

(b) Estimation of parameters based on type II censored samples.

In type I censoring, the number of observations r is decided before

the data are collected. The data consists of the r smallest lifetimes y,, < y,, <...< v,

out of a random sample of # lifetimes. From (2.108). the likelihood function is

given by

L(c,d Ij)=

1 r
‘ .r) ’ [H cd(1-cy, ) " 1A=cy,, ). (5.25)
T =l

(n

Maximization of log likelihood function with respect to the parameters yields the

following equations,

d(n— r .
£=M+(d_1)2_h_ (5.26)
c I-cy,, =t (I-cy;)

ﬁz(n—r) log(l—cym)+§llog(l—cym) (5.27)

Solving the equations (5.26) and (5.27) using Newton-Raphson method, we obtain

maximum likelihood estimates of ¢ and d .
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5.9.3 Finite mixture of beta distribution

Estimation of parameters of finite mixture of beta is discussed in Chapter 3.

5.10 Estimation of stress-strength reliability

When the strength X follows finite mixture of Beta with parameters

¢,,¢,,d,,d, and p and the stress Y follows exponential distribution with
parameter A4, then the maximum likelihood estimate ¢f R is given as

R —24 ~ /‘;l R R ~
kermi| O (04 (rar(a20)
; R AN o )
=)

When the strength X follows finite mixture of Beta with parameters

¢,.C,,d,,d, and p, and the stress Y tollows Beta distribution with parameter ¢ and

I

When the strength X follows finite mixture of Beta with parameters

d , then the maximum likelthood estimate of R is obtained as

Mﬁ) | (%)

R=1-p, HyZFl{l,—(},l+c§|,§ﬂ~—(l—f),){H}’ZFl{l,—ci,l +d,,
Cl

¢,»Cy,d,.d, and p, and the stress Y follows finite mixture of Beta distribution with

then the maximum likelihood estimate of R 1s

parameters c,,c,,d,,d, and p,

provided as

)

I

4 }}- i)](l - f)l )(22 \:FdAzHyzFlR[l,—‘?;al+d’~2'%}}
¢,

[}

ﬁ =1- ﬁ’sf’udl

>

] {FQIH_VZFIR[I,—&},IH?,.

>

|

(933

S|

~(- p)pd, {F{?,HﬂFlR[l, —&,H&,,%H—(l - p(1- p)d, {F&H\QHR{],—LL,HJZ,
1

[P
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5.11 Simulation Study

In this section. we carry out simulation studies to assess the performance of

the estimators and we obtained stress strength reliability for simulated datum.
(a) Exponential distribution

We generate observations from exponential distribution with
parameter A =.8. Table 5.12 and 5.13 provide maximum likelihood estimate of
parameter under complete as well as censored situations with various combinations of

n (sample size), T (censoring time) and » (number of failures).

(b) Beta distribution

We generate samples from beta distribution with parametersc =1,d =5.

The estimates under complete as well as type | and type Il censoring set up are given

in Tables 5.14 and 5.15 for various combinations of n.7T and r

(¢) Finite mixture of beta distributions

For the type 1 censoring, in which observations belonging to each
subpopulation are known, we generate two sets of samples, one from a beta

distribution with parameters ¢, and d, and the second from a beta distribution with

parameters ¢, and d,.

For the type I censoring (in which observations belonging to each
subpopulation are unknown) and type Il censoring, first we generate two sets of
samples, one from a beta distribution with parameters c,and d,and the second from a

beta distribution with parameters c,and d, and then, we obtained finite mixture of beta

distributions using Bernoulli probability p,(0 < p, <1).

The estimates of parameters by the method of maximum likelihood

under type I censoring, in which observations belonging to each subpopulation are
known, for ¢, =.1,¢,=.9,d,=3,d,=1 and p,=0.7 with various combinations of

n (sample size) and T (censoring time) are given in Table 5.16. The vartances of the

estimates are given in brackets.
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Stress strength reliability when strength is finite mixture of beta and
stress 1s exponential is given in Table 5.17. Table 5.18 provides the stress strength
reliability when strength is finite mixture of beta and stress is beta. When stress and
strength are finite mixture of beta, the rehiability is given in Tablie 5.19. We use the

software ‘Mathematica’ to evaluate the integrals numerically.

Table 5.12 Maximum likeclihood estimates of parameters under type I censoring

for 1=0.8 (exponential)

Censoring n=30 n=50 n=100
time

A=0.794166 | A=0.794354 | A=0.805804

T=30
(0.0297) (0.00581) (0.00185)

A=0.819436 | A=0.8171227 | A=0.805074
T=100

(0.0476) (0.00328) (0.00012)

Table 5.13 Maximum likelihood estimates of parameters under type II censoring

for A =0.8 (exponential)

n=30 n=50 n=100

=10 r=30 r=30 =50 =60 =100

~

A=0.821529 | A=0.794501 | A=0789441 | A=0.80875 | 4=0.79951 | A=.80035

(0.0115) (0.00276) (0.00173) (0.000111) | (0.0001) (.00001)
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Table 5.14 Maximum likelihood estimates of parameters for beta

¢=1,d =5under type I censoring

Censoring time n=30 n=50 n=100
¢=.98976 ¢=1.1023 £=1.003
(2.5E-2) (2.1E-4) (1.1E-5)

T=30 d =4.965 d=5.118 d =4.99]
(1.7E-3) (1.4E-3) (2.7E-5)
¢=1.1098 ¢=1.1003 ¢=0.9989
(3.3E-3) (2.01E-4) (2.1E-5)

T=100 d =4.985 d =5.076 d =5.0021
(3.8E-4) (L9E-5) (2.4E-6)

Table 5.15 Maximum likelihood estimates of parameters for beta c=1,d =5

under type II censoring

n=30 n=50 n=100

r=10 r=30 =30 r=50 r=60 =100
£=1.1002 | é=1.0085 | ¢=0.9965 | é=1.0032 | &=0.9998 | ¢=1.00012
©.00467) | (6.00013) | (4.1E-4) - | (3.8E-5) (2.54E-5) | (2.1E-6)
i=4973 | d=50064 | d=50012 | d=5.0027 | d=4.9987 | d=5.001
(0.00041) | (0.000032) | (2.1E-5) (1.9E-5) (1.6E-5) (1LO1E-6)
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Table 5.16 Maximum likelihood estimates of parameters under type I censoring for
¢, =0.1¢,=09,d,=3,d,=1and p, =0.7 in which observations belonging to each

subpopulation are known.

Censoring 1=30 n=50 n=100
¢,=.0893 ¢,=.0953976 | &=.107286
(.0000221) (5.25E-7) (3.062E-7)
¢,=.86014 ¢,=.91216 ¢,=.90179
(.000017) (9.85E-8) (1.22E-9)
d,=3.1105 d, =2.8069 d, =2.98003

T=19
(.842805) (.100405) (.0833)
d,=1.0268 d,=1.0197 | d,=1.00527
(.265423) (.19532) (.000135)
p,=7211 p,=.70653 p,=.70423
(5.56E-6) (1.15E-6) (2.06E-7)

Table 5.17 Stress-strength reliability when strength is finite mixture of beta and

stress is exponential

Sample size n=30 n=350 n=100
Stress-strength 0.6591 0.6927 0.69816

reliability R

Table 5.18 Stress-strength reliability when strength is finite mixture of beta and

stress is beta

Saniple size

n=30

n=50

n=100

Stress-strength
relability R

0.8127

0.84316

0.84417
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Table 5.19 Stress-strength reliability when strength is finite mixture of beta and

stress is finite mixture of beta

Sample size n=30 n=50 n=100

Stress-strength 0.7128 0.7517 0.7556
reliability R

5.12 Conclusion

In this chapter, the role of finite mixture of Pareto Il distributions and
finite mixture of beta distributions as stress-strength models is examined. To study the
finite sample properties of the estimates we carried out a simulation work. The use of
finite mixture of Pareto Il distributions is illustrated using a real life data. As n

increases, the bias and variance of the estimate decreases.




Chapter 6

ESTIMATION OF THE LLORENZ CURVE

6.1 Introduction

As mentioned earlier in Chapter I, the Lorenz curve is an important
tool for the measurement of income inequality. Lorenz curve can be interpreted as the
cumulative proportion of income to the cumulative proportion of population, after
ordering the population according to the increasing level of income. Most of the
popular parametric models have been employed in different sitvations of income
analysis. For more details on this, one could refer to Kleiber and Kotz (2003). When
population of income of individuals can be divided into population of income from
different sources or any set of income data with earners in different categones, it is
usual to modet the data using finite mixture of distributions. However, the finite mixture
of Pareto II and finite mixture of beta have not been explored much in literature in the

context of income analysis.

Censored data are commonly encountered in practical applications to
income and weaith distributions, for several reasons. Some high-income observations
may have been removed from the sample because of concern for confidentiality-if it
were not so, a skilful data-detective would have no difficulty, in identifying the
individuals or households corresponding to individual observations in the sparse
upper tail. In certain other instances, low- income observations may have been
removed or modified for reasons of convenience. As pointed out in Fichtenbaum and
Shahidi (1988), type I censoring is commonly used in such situations. So it is

worthwhile to estimate Lorenz curve for type 1 censored data.

Motivated by these facts, in this chapter, we study the properties and
applications of both finite mixture of Pareto II and finite mixture of beta distributions
in the context of income analysis. The definition of the Lorenz curve is given in

Section 6.2. Sections 6.3 and 6.4 give the maximum likelihood estimation of Lorenz
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curve for the finite mixture of Pareto Il distributions. Simulation studies are carried
out in Section 6.5. We, then, tllustrate the method using a real data on household
expenditure of men and women in Section 6.6. We obtain the estimate of the Lorenz
curve for the finite mixture of beta distributions in Sections 6.7 and 6.8. Simulation
studies are carried out to asses the performance of the estimators in Section 6.9.

Finally in Section 6.10, we give the conclusion of the chapter.

6.2 Definition

The Lorenz curve, one of the important measures of income
inequality, plays a significant role in analyzing income data. For a non-negative
random variable X with distribution function F(x) and finite mean #, the Lorenz

curve L(F(x))is defined by
1 ,
Lipy== [if @, (6.1)
Hy

where f(¢) is the probability density function of X and p= F(x) which is already
defined in equations (1.24) and (1.25).

6.3 Finite mixture of Parcto II distribution

Any set of income data with earners in different categories will be
well described by a finite mixture of distrsbutions. For example, if we have income
data for families in Kerala, we would expect that families of different sizes and /or
different makeup in terms of the gender distribution of the adults in the families
would have incomes that would follow different Pareto or other skewed distributions.

Then the data will be considered as a mixture of such distributions.

Assume that the density function of the income distribution in the
whole population is a finite mixture of Pareto denstties, defined in (2.2). Then, the

Lorenz curve L(F{x)) is obtained as

pa, (b, —D1—A+ax)™" (1 +abx)]+ (1~ p)a,(b =D - (4 +a,x) ™ (1 +a,h,x)]
17272 [t | 2 272 .

L(F(x)=
e [pa,(b, =)+ 1= p)a,(b, -1}

(6.2)
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6.4 Estimation of Lorenz curve

In Chapter 2, we have discussed different estimation procedures and
estimated the parameters of finite mixture of Pareto II for complete as well as

censored samples. Then the M.L.E of L(F(x)) 1s given by

p.a, (b, D= (1+ax) (1+a,b,0]+(1- p,)a, (b, — D11 - (1+d, %)™ (1 +4,b,x)]

L(F(x))= X 1
(F o) [f)léZ (bz -D+1- 131 )&l(bl -Dj

(6.3)
Then from appendix B of Lawless (2003), the asymptotic variance of L is given by

Var(L)z(g—IiJ Var(&,)+(§£} Var(&2)+...+[§£J Var(p,)

q a, P

+§TI;§(%C0V(&.,&) +%§£COV(&.,&) tot %%Cov(&,f),).

(6.4)

where vanances and covariances are directly obtained from the inverse of the matrix

I(a,,a,,b.b,, p)) with

_d’logL d’logL d'logL Jd’logl  d’logl
da;’ dada, 0adb, ~ daob, da,dp,

I(a,a,.b,b,p)=

_d'logL d’logL d’logL Jd'logL  d'logL
opda,  opda, dpob  Ipob, op/’

6.5 Simulation study

In this section, we carry out simulation studies to find out the
maximum likelihood estimates of the Lorenz curve under complete as well as

censored samples.
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For type 1 censoring. in which observations belonging to each
subpopulation are known, we generate two sets of samples, one from a Pareto

distribuiion with parameters a,and b and the second from a Pareto distribution with

parameters a,and b, .

For type 1 censoring, in which observations belonging to each
subpopulation are unknown, we obtained finite mixture of Pareto distributions using a

Bernoulli distribution with probability of success p,(0< p, <1).

The estimates of parameters by the method of maximum likelihood
under complete as well as type 1 censoring, for the set of parameters
a, =.004,a,=.09,h =7,b,=3and p, =0.5 with various combinations of n(sample
size) and N (censoring income) are given in Tables 6.1 to 6.3. Tables 6.4 to 6.6

provide the estimates for another set of parameters @, =2,a,=3,b =5,b,=7 and
p, =0.5 under complete as well as type 1 censoring with various combinations of »

and N . The values in brackets provide the variance of the estimates. Simulation
studies reported here shows that M.L.E provide estimates with small bias and less
variance. The variance of the estimates decreases as n increases. Graphs of the actual and

estimated Lorenz curve are given in Figures 6.1 to 6.3.

Table 6.1 Maximum likelihood estimates of parameters under complete sample for
a, =.004,a, =.09,b,=7,b,=3and p, =0.5

n=30 n=50 n=100
4,=.00411472 4,=.00423549 4,=.00410912
(3.38321E-8) (2.46863E-8) (2.4321E-8)
d,=.0983347 a,=.0986351 4,=.100476
(.0000321937) (00001894) (3.85598E-6)
b, =6.89626 b,=6.93539 b,=6.87722
(.0739452) (.0661982) (.00993038)
b,=2.86146 b,=2.8976 b,=2.91442
(.0139852) (.0124295) (00361627)
p,=.500057 B, =.500052 p,=.500046
(3.2202E-9) (2.70565E-9) (2.09203E-9)
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Table 6.2 Maximum likelihood estimates of parameters under type I censoring for
a, =.004,a,=.09,b, =7,b, =3and p, =0.5 in which observations belonging to each
subpopulation are known.

Censoring 0=30 1=50 1=100

4,=.0044872 | 4,=.00438394 | G,=.004984
(8.421E-7) (4.669E-7) (1.19918E-8)
a,=.0963709 | 4,=.0980649 | 4,=.094886
(.0008286) (1.8715E-6) (1.8042E-6)

N=30 b,=6.85789 b,=6.88304 b,=6.9353
(.151983) (.0848708) (.001556)
b,=2.92781 b,=2.94408 b,=2.96472
(.0500188) (.000855) (.0006696)
b, =.500443 p,=.500446 p,=.501203
(7.826E-7) (2.007E-7) (1.98099E-7)
4,=.00380753 | 4,=.00375961 | & =.0044017
(1.183E-6) (1.492E-7) (2.5361E-8)
4,=.0988792 | a,=.100693 a,=.0981161
(.0000328) (6.25E-7) (4.62E-7)

N=50 b, =7.00632 b,=7.10751 b,=7.04669
(.0308752) (.006559) (.0006628)
b,=2.94612 b,=2.97302 b,=2.97256
(.0149049) (.0002166) (:00021)
p,=.499885 p,=.49968 p,=.500298
(3.643E-8) (2.265E-8) (2.1404E-8)
4,=.00420753 | 4,=.00407865 | &,=.004077
(1.0903E-7) (1.024E-7) (2.1194E-8)
4,=.098026 4,=.09778 4,=.0984021
(6.6085E-6) {1.78E-6) (1.6642E-6)

N=100 b, =6.94212 b,=7.0007 b, =6.984
(.006307) (.000314) (.00004)
b,=2.96212 b,=2.9459 b,=2.96334
(.001755) (.00148) (.0002764)
p, =.50006 p,=.500086 p,=.500153
(8.6623E-8) (3.726E-9) (3.35E-9)
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Table 6.3 Maximum iikelihood estimates of parameters under type I censoring for
a, =.004,a, =.09,b, =7,b, =3and p, =0.5 in which observations belonging to each

subpopulation are unknown.

Censoring n=30 1=50 n=100

4,=.0043864 | 4,=.004298 d,=.00418
(7.53E-8) (1.6192E-8) (2.022E-9)
a,=.0973671 | 4,=.09767 d,=.098766
(00001113) (1.799E-6) (4.506E-7)

N=30 b, =6.80949 b, =6.83318 b,=6.94737
(.141223) (0527144) (.034792)
b,=2.87988 b,=2.94875 b,=2.95472
(.00386) (.001495) (.0004162)
p, =.500074 p,=.500101 p,=.500116
(4.8236E-8) (3.8091E-8) (4.945E-11)
4,=.00417876 | 4,=.0042373 | 4,=.004172
(6.18E-9) (1.60344E-9) | (1.548E-9)
4,=.097445 4,=.0986273 | a,=.09959
(.0000237) (.00001751) (.0000111)

N=50 b, =6.88576 b,=6.91828 b=6.92217
(0126) (.002838) (.0003794)
b,=2.88065 b,=2.92881 b,=2.93605
(.0101) (0011) (.000867)
p,=.50062 B, =.500009 p,=.50005
(8.5511E-9) (2.1141E-9) (1.07E-9)
4,=.00412299 | 4,=.004205 a,=.0041796
(3.414E-9) (1.57E-9) (1.044E-9)
4,=.096988 4,=.098146 4,=.09915
(.0000231) (0000169) (.0000108)

N=100 b, =6.86767 b,=6.91419 b,=6.9157
(.00716) (.00287) (.0004095)
b,=2.89201 b,=2.94047 b,=2.94684
(.010018) (.001141) (.0008588)
P, =.500097 b, =.500047 p, =.500084
(9.6565E-9) (1.4751E-9) (6.7675E-10)
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Table 6.4 Maximum likelihood estimates of parameters under complete sample for
a,=2,a,=3,b=5b,=7and p =0.5

n=30 n=50 n=100
4,=2.1796 4,=1.90602 4,=2.02431
(.015002) (0071) (001621)
4,=2.77746 4,=3.13001 4,=2.99554
(.090189) (.063607) (.014771)
b =4.61384 b,=5.24161 b,=4.94152
(.044781) (.033323) (01437)
b,=7.56975 b,=6.80461 b,=7.16267
(.46587) (.325679) (.1713) |
p,=5 p,=5 p,=.5
(2.7E-11) (2.1E-11) (1.7E-12)

Table 6.5 Maximum likelihood estimates of parameters under type I censoring for
a,=2,a,=3,b,=5b,=7and p, =0.5 in which observations belonging to each

subpopulation are known.

Censoring n=30 n=50 n=100
4,=2.18731 4,=1.945499 | 4=2.04146
(.014204) (.0097261) (.005322)
4,=2.81789 4,=3.08213 | &,=3.03947
(.092232) (.0610755) (.020721)
N=0.05 b, =4.60094 b,=5.15087 | b=491116
(.042512) (.032336) (.0299144)
b,=7.46988 b,=6.89746 | b,=7.07043
(45217) (.294549) (.174879)
p,=499975 p,=.500033 | p,=.499973
(3.5198E-11) | (1.8122E-11) | (1.2789E-11)
4,=2.1819 a,=1.90403 | 4,=2.02279
(.0113455) (.006345) (001711)
4,=2.77861 4,=3.13203 | 4,=2.99652
(.090253) (.0637089) (.015009)
NOL] b, =4.60695 b,=5.24602 | b =4.94477
(.046137) (.044466) (0141144)
b,=7.56688 b,=6.8007 b,=7.1607
(.465398) (.325851) (.27219)
p,=465398 p,=4999 p,=5
(7.14726E-13) | (2.4857E-14) | (1.3237E-14)
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Table 6.6 Maximum likelihood estimates of parameters under type I censoring for
a,=2,a,=3,b=5b,=T7and p,=0.5 in which observations belonging to each
subpopulation are unknown.

Censoring n=30 n=50 n=100
4,=1.96906 4,=2.05246 | & =2.14809
(.04259) (.010876) (.004623)
4,=2.94507 G,=3.23991 | 4,=3.0688
(.178502) (.11828) (.0296502)
N=0.05 b,=5.15519 b,=4.8908 b,=4.75426
(.217949) (.09505) (.026343)
b,=7.17026 b,=6.67554 | b,=6.97098
(.84553) (.807092) (.79998)
p, =.500052 p,=.4999 p,=.500011
(6.2789E-9) (3.295E-9) | (3.0716E-9)
4,=1.98499 4,=2.02314 | 4,=2.1451
(.029985) (.016288) (.0092313)
a,=3.02692 ,=3.23613 | 4,=3.07318
(.072712) (01157) (.002619)
N0l b,=5.10479 b=4.92734 | b =4.76164
(.134448) (0945907) | (.0441035)
b,=6.96226 b,=6.69581 | b,=6.94939
(.252676) (.090537) (.0768141)
p,=.49999 p,=.4999 p, =.4999
(1.3833E-12) | (4.778E-13) | (1.0539E-14)
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Fig. 6.1 Graph of actual (a, =.004,a, =.09,b, =7,b, =3 and p, =.5) and estimated
Lorenz curve (4, =.0041,4, =.1,b, = 6.88,b, =2.91 and p, =.5) for the complete

sample case.
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Fig. 6.2 Graph of actual (a, =.004,a, =.09,5, =7,b, =3 and p, =.5) and estimated
Lorenz curve (a, =.0044,a, = .0963,5, =6.86, 52 =2.93 and p, =.5) for the censored

sample case.
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Fig. 6.3 Graph of actual (a,=2,a,=3,b,=5,b,=7 and p, =.5) and estimated
Lorenz curve (& =1.96,d, =2.94,b,=5.2,b,=7.2 and p, =.5) for the censored

sample case.
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6.6 Data analysis

For the illustration of the method, we consider a data on household
expenditures for four commodity groups of 20 men and 20 women (see Aitchison,
1986). The expenditures are given in Hong Kong dollars, and the commodity groups are
Housing, Foodstuffs, Other items and Services. The data is given in Table 6.7. To
understand the behaviour of Lorenz curve in the censored situation, we censored the
data with different censoring incomes, since incomes for different groups are varying.
The estimates of parameters using the method of maximum likelihood under complete
as well as censored set up are given in Table 6.8 to Table 6.11. We then used the
Kolmogorov smirnov statistic to test the goodness of fit. The values of the test statistic

D for different commodities are given in Table 6.12. The table value at 5 %

significance level is 0.215036. From the analysis, it concludes that finite mixture of
Pareto distribution with common shape parameter is a plausible model for the data. We
then estimate the Lorenz curve for different groups which are represented by Figures
6.4106.8.

The data come from a survey of household expenditure and give the
expenditure of 20 single men (M) and 20 single women (W) on four comm'odity
groups. The units of expenditure are Hong Kong dollars, and the commodity groups

are as follows.
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1 Houstng, including fuel and light

=W N

Table 6.7 Household expenditure data

Foodstuffs, including alcohol and tobacco

Services, including transport and vehicles

Other goods, including clothing, footwear and durable goods

household commodity group household commodity group

i 1 2 3 s ™ 1 2 3 4
Mi 497 | 591 153 1291 | Wl 820 | 114 | 183 154
M2 839 1942 302 (365 | W2 184 |74 6 20
M3 798 1308 | 668 584 | W3 921 |66 1686 | 455
M4 892 | 842 1287 (395 | W4 488 | 80 103 115
M5 1585 | 781 | 2476 | 1740 | W5 721 83 176 104
M6 755 | 764 | 428 438 | W6 614 |55 441 193
M7 388 1655 153 (233 | W7 801 |56 357 | 214
M8 6t7 1879 | 757 {719 | W8 396 |59 61 80
M9 248 | 438 |22 65 W9 864 |65 1618 | 352
MI0 1641 | 440 | 6471 | 2063 | WIO 845 | 64 1935 | 414
M1] 1180 {1243 1768 |813 | WI1l] 404 | 97 33 47
MI2 619 1684 |99 204 | WI2 781 |47 1906 | 452
MI3 253 422 15 48 W13 457 103 136 108
Ml14 661 739 171 188 | Wi4 1029 | 71 244 189
M15 1981 | 869 1489 | 1032 | WIS 1047 | 90 653 | 298
M16 1746 | 746 | 2662 | 1594 | W16 552 |91 185 158
M17 1865 [ 915 | 5184 | 1767 | W17 718 | 104 583 | 304
MiS 238 1522 |29 75 W18 495 114 |65 74
MI19 1199 | 1095 | 261 |[344 [ WI9 382 77 230 | 147
M?20 1524 | 964 1739 | 1410 | W20 1090 | 59 313 177




Table 6.8 Maximum likelihood estimates of parameters of housing expenses of
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men and women under complete as well as censoring.

Censoring income(in dollars) ]
Item
N=2000 N=1500 N=1000
a,=0.00007 a,=0.00009 a,=0.000125
a,=0.0001 a,=0.000085 a,=0.000112
Housing
expenses b =b,=b b=b=b b=b=b
h=14.17 b=1145 b =8.86776
p,=0.5 p,=0.408 p,=0.4047

Table 6.9 Maximum likelihood estimates of parameters of food expenses of men

and women under complete as well as censoring.

Censoring income(in dollars)
Item

N=1400 N=1000 N=800
a,=0.00007 a,=0.0000719 a,=0.000082
a,=0.0007 a,=0.00081369 ! a,=0.001328

Food

Expenses b =b,=b b=b,=b b =b,=b
b=17.42 b=15.6138 b =9.56
p,=0.5 p,=0.5002 p,=0.499616
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Table 6.10 Maximum likelihood estimates of parameters of other expenses of

men and women under complete as well as censoring.

Censoring income(in dollars)
Item

N=6500 N=5000 N=1000
a,=0.0011 a,=0.00232 @,=0.002918
a,=0.0019 a,=0.002815 a,=0.00343

Other

Expenses b =b=b b=b,=b b=b,=b
h=1.625 b=1.4675 b =1.409215
p,=0.5 p,=0.4763 p,=0.476815

Table 6.11 Maximum likelihood estimates of parameters of service expenses of

men and women under complete as well as censoring.

Censoring income(in dollars)
Item

N=2100 N=1500 N=1000
4,=0.00011 4,=0.0001158 | 4 =0.0001598
&,=0.0004 3,=0.00044 | 4,=0.000514

Service

Expenses | b =b, =b b =b,=b by=b,=b
b=12.45 b=11.2505 b =9.06372
p,=0.5 5,=0.498103 | p, =0.487185

Table 6.12 Calculated values of the test statistic for different expenses.

Different Max D,
commodities (M.L.E)
Housing 0.200094
Expenses

Food Expenses 0.133804

Other Expenses 0.0430059

Service Expenses | 0.089086
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Fig. 6.4 Graph of maximum likelihood estimate of Lorenz curve of housing expenses

of men and women

—_
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Fig. 6.5 Graph of maximum likelihood estimate of Lorenz curve of service expenses

of men and women

1.2
1
08
X os
']
04
02
0
0 02 04 0.6 08 1 1.2
i{x)
—e— Lorenz curve - complete sample
—a— Lorenzcurve - Censored atN = 1500
—»— Lorenz curve - Censored at N = 1006
Remark 6.1

Lorenz curves for complete as well as censored samples are almost identical for housing

expenses and service expenses of men and women.
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Fig. 6.6 Graph of maximum likelihood estimate of Lorenz curve of food expenses

of men and women
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Fig. 6.7 Graph of maximum likelihood estimate of Lorenz curve of other expenses

of men and women
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Remark 6.2

However, Lorenz curve in the censored set up provide more disparity for food expenses

and other expenses of men and women.
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Fig. 6.8 Graph of maximum likelihood estimate of Lorenz curve of different

expenses of men and women

lorenz curve (complete sample case)

1.2

——lorenz curve of housing
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lorenz curve of senices
—line

Remark 6.3

In the complete sample set up, Lorenz curve gives more disparity for other expenses

than housing, foodstuffs and service expenses of men and women.
6.7 Finite mixture of beta distribution

In this section, we study the role of finite mixture of beta distribution
(3.1) in the context of income analysis. For the model (3.1), the Lorenz curve

L(F(x)) is obtained as
L(F(x))=

pic,(d, +D[1=(1=c,x)" (1+¢,d,x)]+ (1= p,)c,(d, +D[1=(1=c,x)" (1+c,d,x)]

(6.5)
[pc,(d, +D+ (- p))c,(d, +1)]

6.8 Estimation of Lorenz curve

For estimating the Lorenz curve, we need the estimate of parameters of

the model (3.1). The estimation of parameters of the model is discussed in Chapter 3.

Thus M.L.E of L(F(x)) as
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d, +D{1=(1- 04 1+8,d,0]+ (1= p)E(d, + D1~ (1-&,x)" (1 + &.d, )]
2 1 ] 2 2

L(F(x)) = hié, h L
[p,c.(d, +D+ (= p)c(d, +1D)]

(6.6)

6.9 Simulation study

In this section, we carry out a simulation study to assess the

performance of the estimator.

For type | censoring, in which observations belonging to each
subpopulation are known, we generated two sets of samples, one from a beta

distribution with parameters ¢, and d, and the second from a beta distribution with

parameters ¢, and d,.

For type 1 censoring, in which observations belonging to each
subpopulation are unknown, we obtained finite mixture of beta distributions using a

Bernoulli distribution with probability of success p,(0< p, <1).

The estimates of parameters by the method of maximum likelihood
under complete and type | censoring, for the set of parameters
¢, =.1c,=.2,d =5,d,=10 and p, =0.5 with various combinations of » and N are
given in Table 6.13 to 6.15. The values in brackets provide the variance of the
estimates. Simulation study reported here shows that M.L.E provides estimates with
small bias. The variance of the estimates decreases as n increases. Graphs of the actual

and estimated Lorenz curve are given in Fig 6.9 and 6.10.
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Table 6.13 Maximum likelihood estimates of parameters under complete sample
for ¢, =.1,c,=.2,d,=5,d,=10and p, =0.5

n=30 n=50 n=100
¢,=.1098236 ¢,=.109352 ¢,=.0916796
(8.322E-6) (2.74217E-8) (1.31172E-9)
&,=.188062 ¢,= 1789255 ¢,=.179949
(1.23116E-7) (3.2446E-6) (1.26327E-6)
d,=4.92574 d, =5.07017 d, =5.02106
(.04452) (.0151182) (.00848767)
d,=10.3343 d,=10.4858 d,=10.4986
(.08585) (.01558) (.00303049)
p, =5 p,=5 p=5
(3.9E-8) (2.7E-9) (1.2E-11)

Table 6.14 Maximum likelihood estimates of parameters under type I censoring for

¢, =.1c,=.2,d,=5,d,=10and p, =0.5 in which observations belonging to each
subpopulation are known.

Censoring n=30 1=50 n=100
,=.1220745 | ¢,=.0904950 | ¢ =.0903679
(1.40616E-9) | (1.03046E-9) | (2.76269E-11)
¢,=.20328749 | ¢,=.280551 &,=.24784
(1.32434E-8) | (1.06227E-8) | (1.80183E-9)
NelS d, =4.83494 d =5.0323 d,=5.06633
(.52921) (.266372) (.00135048)
d,=10.1772 | d,=10.078881 | d,=10.0850
(17411) (.038415) (.0007159)
p, =.586043 p,=.50153 p,=.50697
(.0158459) (.008962) (.00099)
¢ =.128464 &=170163 | ¢=.132481
(7.33582E-7) | (4.38079E-7) | (I.194E-8)
¢,=.1742113 ¢,=.20692 ¢,=.199065
(2.597E-8) | (9.55987E-9) | (2.61837E-9)
N=10 d =5.2529 d,=4.96169 | d =4.76143
(.0036046) (.0199362) (.002968)
d,=9.75696 | d,=10.12323 | d,=10.40191
(.000887) (.0005169) (.000348)
p, =.482237 p,=439791 | p =532104
(.000853) (.0001795) (.000021 1)




177

Table 6.15 Maximum likelihood estimates of parameters under type I censoring for
¢, =.1,c,=2,d,=5d,=10and p, =0.5 in which observations belonging to each

subpopulation are unknown.

Cfﬂ?;g:g Estimate n=30 n=50 n=100
¢,=.103728 ¢,=.103320 ¢,=.10266
(.000666) (.000466) (.00001924)
¢,=.25195 ¢,=.20506 ¢,=.205053
(.000535) (2.36588E-6) | (1.6508E-6)
NelS MLLE d, =5.9867 d,=52926 | d =503388
(.02679) (.00149) (.000904)
4,=10.32588 | d,=10.0336 | d,=10.0319
(4479) (.00312) (.002064)
p,=.51162 p,=.50804 | p,=507314
(09115) (.000272) (.0000748)
6,=.1129162 | ¢=.1168359 | ¢=.102233
(.0000126) (2.9314E-6) | (8.36481E-7)
¢,=.199692 ¢,=.20114 ¢,=.188321
(1.4724E-6) (3.6192E-7) | (6.433E-8)
Nel MLE d, =5.90832 d,=50816 | d,=505114
(.704024) (.004299) (.0010644)
d,=10.94874 | d,=10.96933 | d,=10.08138
(.611743) (.013504) (.0013461)
p,=.43484 p,=447885 | p =.514562
(.0000388) (.0000204) | (2.1671E-7)

Fig. 6.9 Graph of actual (¢, =.1,c,=.2,d,=5,d,=10 and p, =.5) and estimated

Lorenz curve (&, =.112,¢,=.199,d, =5.91,d, =10.95 and p, =.5) for the censored

sample case.

Lorenz curve

0.5 1
Kx)

——Line
e ACtUA]

Estimated

15




Chapter 7

CONCLUSION

7.1 Introduction

The remarkable fact about mixture distributions is that there are lots of
real life situations where the concept of mixture distributions can be applied. For
example, in life testing experiments, the systems will be failed due to different
causes and the times to failure due to different reasons are likely to follow
different distributions. A knowledge of these distributions is essential to eliminate

cause of failures and thereby to improve the reliability.

In the foregone chapters, we have examined the role of finite mixture
of Pareto and finite mixture of beta distributions in the context of reliability and
income analysis. We have proved that finite mixture of Pareto and finite mixture
of beta distributions are identifiable. The estimation of parameters has been done
using various techniques for complete as well as censored samples. Maximum
likelihood and Bayes methods provide estimates with small bias and less vanance (in
the case of Bayes, we calculated posterior risk) and the variance of the estimates
decreases as n increases. As expected, the method of moments was shown to be
inferior to maximum likelihood estimation, Bayes method and maximum product of
spacing. We have cmployed finite mixture models for prediction of future
observations and for this purpose Bayesian approach has been used. It should be
remarked that the results obtained in Bayesian prediction seems to be quite good.
Maximum likelihood estimation of stress-strength reliability and Lorenz curve

using finite mixture models has also been carried out.
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Finite mixture of Pareto always possesses decreasing hazard rate
function. However, finite mixture of beta possesses decreasing hazard rate,
increasing hazard rate, constant hazard rate and bathtub patiern depending upon the
values of the parameters. We have employed the finite mixture of Pareto and finite
mixture of beta distributions in modelling four different decreasing hazard rate
situations. Since decreasing hazard rate is most commonly encountered in many
real life situations, finite mixture of Pareto and finite mixture of beta can be an ideal
choice for modelling a wide range of such situations when parametric methods are

resorted to.

7.2 Future works

Estimation of the number of components is a special kind of model
choice problem in the analysis of mixture model, for which there is a number of
possible solutions. There is no universal method, and the implementation of the
previous methods is often very difficult. Hence there exists a wide scope for
attempting to find tractable solutions for the number of components in a mixture
model, either by refining the existing ones or by trying some new approach.

Progressive censoring and hybrid censoring occur frequently in many
real life situations and therefore analysis using mixtures in this context is an area for
future study. .

Bayesian estimation of stress-strength reliability using finite mixture
models under complete as well as censored cases may also be attempted.

So far we have considered the maximum likelihood estimation of the
Lorenz curve for measuring income inequality; another important area which would
require attention is the Bayesian estimation of Lorenz curve and other income
inequality measures using finite mixture models.

The analysis of finite mixture of discrete distributions is an area of

research work that remains to be explored.
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In this study, we have attempted parametric approach using finite
mixture of Pareto and finite mixture of beta models in the umivariate set up.
However, a systematic study on finite mixture of multivariate distribuiions is not
yet carried out. Accordingly, analysis of multivariate mixture models is also an area

worth exploring.
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