


























































































f(Q(O))=O and when <1 and A4 > 1 

and f(Q(I))=O when > 1 and A4 <1. 

A detailed study of density shape classification of MLF is given in Freimer et 

al. (1988). MLF contains unimodal or U-shaped 

and A4 lies in [1,2]). J-shaped (A., > 2 and A4 in [1,2]) and monotone (A., > 1 

and A4 < 1) pdfs. We have illustrated in Figure 3.2 the shapes of density 

functions for different values of the shape parameters. 

3.3.3 Characteristics of MLF 

Defining the quartiles Q by p( X < Q) S; and 

p(X> Q) S; i = 1,2,3. the Median of MLF is given by 

Me = Q, =;' I l [ -1 _ 05:: -1 ] (3.25) 

When = A4 , Me = A, . 

Inter quartile range is given by 

fOR = Q _ Q = _1 [0.75,13 - 0.25"'3 + 0.75"'4 - 0.25"'4] (3.26) 
- 3 1 A., A4 

The quartile deviation now becomes 
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given by 

Galton's measure of skewness defined in terms of quartiles is 

s = Q3 -2Q2 +Q 
Q3 -Q) 

,,14 [ 0.75~ - 2( 0.5A) ) + 0.25}'3 ] - ~ [ 0.75A~ - 2( 0.yl4 ) + 0.25/c4 ] 
=~~----~--------~~~--------~~-----= 

,,14 [ O. 75 A3 - 0.25,i) ] + ~ [ 0.75A~ - 0.25 A4 
] 

(3.28) 

Moor's kurtosis measure is 

where 0;, i = 1, ... ,7 
I 

are the octiles defined by p( X < 0; ) ~ '8 and 

For the MLF, 

(3.29) 

Clearly S = 0 when ~ = ,,14 and the distribution is symmetric. When ~ = 1, 

,,14 = 00 or ~ = 00, ,,14 = 1 , then also S = 0 but not symmetric. Now consider 

the figures 3.3 and 3.4. From the figures we can arrive at the following 

conclusions. 
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Case (i) ~ < 0 

S > 0 when ~ > A4 

S < 0 when ~ < A4 

S decreases monotonically with respect to A4 • 

Case (if) 0 < ~ < 1 

Here also S > 0 when ~ > A4 

S < 0 when ~ < A4 

But S decreases to a negative value and then slightly increases but attains a 

constant negative value itself. 

Case (iii) 1 < ~ :s; 2 

S == 0 for two values of A4 , one exactly at A4 == ~ and another point 

which is greater than ~,say Av. S > 0 when A4 < ~ and A4 > Ao and S < 0 

in the interval (~,Av). 

Case (iv) 2 < ~ < 3 

In this region, S ~ 0 for every value of A4 except for some values in 

2 < A4 < 3. 

Case (v) ~ ~ 3 

Here also S == 0 for two values of A4 , one at a point which is less 

than ~, say Ao and another at A4 = ~. Here also S > 0 when A4 < Aa and 

A4 > ~ and S < 0 in the interval (Ao'~). 

Similarly we can observe the variation of S with ~ by fixing the 

value of A4 • 
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Case (i) ,14 < 0 

S increases monotonically with ~. 

S < 0 for ~ < ,14 

S> 0 for ,13 > ,14 

Case (ii) 0 < ,14 < 1 

S > 0 for ,13 > ,14 

S < 0 for ~ < ,14 

But S monotonically increases to a positive value and then slightly decreases 

and attains a constant positive value. 

Case (tU) 1 < ,14 < 2 

S == 0 at two points, one at ~ == ,14 and another at a point greater 

than ,14' say Av . 

S < 0 when ~ < ,14 and ~ > ,10 

S > 0 in the interval (,14 ,Av). 

Case (iv) 2 < ,14 < 3 

S < 0 for all values of ~ except for some values in 2 < ~ < 3. 

Case (v) ,14> 3 

S = 0 at two points of ~, one at a point less than ,14' say Av and 

another at ~ == ,14' S < 0 when ~ < Av and ~ > ,14' S > 0 in the interval 

(,10,,14) . 

Now the three dimensional view of skewness by taking ~ along 

the X -axis and ,14 along the Y -axis is given in figure 3.5. 

Moor's kurtosis measure T == 1 when ~ == ,14 == 1 and ~ == ,14 == 2. 

The three dimensional view of kurtosis is given in figure 3.6. 
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Now the k III raw moment of MLF is 

1 

E(Xk)= [Q(p)J dp 
o 

I k 

= K a + bQ* (p) ] dp 
o 

k 1 

= Lak-rbr K Q* (p) J dp (3.30) 
r=O 0 

where 

and 

(3.31) 

Using this, Lakhany and Mauser (2000) derived expressions of mean, 

variance, third and fourth central moments of MLF. 

The L -moments defined in the previous section are obtained for 

MLF as follows. 

(3.32) 
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(3.33) 

(3.34) 

1( 1 6 10 5 1 6 10 5 J 
p 4 = ~ 1 + ~ - 2 + ~ + 3 + ~ - 4 + ~ + 1 + 14 - 2 + 14 + 3 + 14 - 4 + 14 

(3.35) 

Using these we get the L -coefficient of variation, skewness and kurtosis of 

MLF as P2 P3 and P4 respectively. 
PI P2 P2 

Now two special cases of probability weighted moments defined in 

(3.21), when t = 1, s = 0 and t = 1, r = 0 are obtained for MLF as follows. 

~ 1 1 [ 1 ] 
wr,o = r + 1 - ~ (r + 1)( ~ + r + 1) + ~14 r + 1 - P (r + 1,14 + 1) 

(3.36) 

and 

~ 1 1 ( 1 ) w =-+ +-- P +1 s+l --
o,s s + 1 ~ ( s + 1)( 14 + s + 1 ) ~~ ( ~ , ) s + 1 

(3.37) 

3.3.4 Modified lambda family as a model of income 

The primary objective of present study being modeling income 

using the quantile function approach in which the modified lambda family is 

the basic tool, it is necessary to examine how far that family is appropriate in 

such a context. Various properties of the family derived in the previous 

section serve as back ground materials for application, provided that there is 

sufficient justification for the lambda family to represent income data. We 

49 



have provided in Chapter 11 a review of probability distributions used in 

literature that could serve as models of income. These include the Pareto 

type I, Pareto type 11, exponential, lognormal, gamma, Weibull, Singh­

Maddala, Oagum type I, 11 and Ill, Fisk, generalized beta etc. with each model 

justified in terms of its appropriateness in particular situations, with no model 

enjoying universal acceptance over time and space. In the present section 

we study the modified lambda family vis-a-vis its relationship with the above 

distributions either as a particular case or as a limiting case or as an 

approximation. 

(i) In the quanti!e function of MLF at (3.22) 

so that 

or 

Setting ~ = 0' , ~ = aO'-1 and A4 = _a-I, we get the Pareto type I 

distribution (2.1). Since p < 1, the convergence of p~ / A3 to zero in the 

above limit for a desired degree of accuracy is attained for a moderate value 

of ~ > 1 . Notice that in the above case, A4 < 0 and x p ~ ~ > 0 are 

necessary conditions for the MLF to fit a Pareto I data. In this case, the 

quantile estimates proposed by Quandt (1966) becomes useful. 
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(ii) As before taking limits as ~ ~ 00 

which shows that the MLF reduces to the Pareto type 1I distribution with 

1 a 
moderate ~ > 1, A4 = -- < 0 and ~ ::: -. Notice in this case that in (2.2 ) 

a (J" 

the parameter f.1 = ~ . 

(iii) The Weibull distribution (2.6) has the quantile function 

1 

Q(p)= p[ -log(l- p)} 

so that, it is not a member of the MLF but can be approximated through the 

relationship 

(iv) The Singh-Maddala (1976) model in equation (2.7) is governed by 

the equation 

which means that the transformed variable Y = ( ~J has MLF with 

1 
parameters A, =0, ~ =q, 14 =-- as A, ~oo. 

q 

(v)Arguing in the same way as above, the Oagum distribution provides 

( 
b \U 

Thus the transformation Y::: X) leads to MLF with ~ = 0, ~ = -c , 

1 
)"') = -- and A4 ~ 00. 

C 
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( vi) On similar lines the Fisk distribution (2.11 ) can be expressed as 

or 

(3.38) 

The right side of equation (3.38 ) represents the product of quantile functions 

that represent the power distribution F (x ) ~ ( ; J with scale parameter b 

and shape parameter a and the Pareto distribution F (x) = 1- x -a, X > 1 with 

shape parameter a. Both the component distributions are in MLF. 

In addition to the above as ~ ~ 0 or -14 ~ 0 we have the 

exponential model, as both ~ and -14 ~ 0 the logistic model and as ~, -14 

both tends to unity or two or when ~ ~ Cl) and -14 tends to unity or when ~ 

tends to unity and -14 tends to infinity the resulting distributions are uniform. 

Also when ~ = -14 = 0.1349 MLF describes the normal with a maximum error 

of 0.001. By equating the quantile measures of location, dispersion, 

skewness and kurtosis of the other distributions to those of the MLF we can 

get reasonably good approximations. For e.g. the Singh-Maddala distribution 

with a = 10, b = I, q == 0.5 is a close approximation to the MLF with 

,1,=1.09246, ~:::7.01713, ~=0.310545 and -14 =-0.36819 (see Fig. 3.7). 

Thus the MLF appears to be a flexible family that could accommodate many 

of the income models through a judicious choice of the parameter values in a 

practical situation. 
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3.5 Income Inequality Measures 

A detailed review of income inequality measures which are 

common in the analysis of income data has been done in Chapter 11. In the 

present Section we try to express those inequality measures in terms of 

quantile functions. Moreover the closed form expressions of those measures 

for MLF are obtained. The existence of income inequality measures in closed 

form is an attractive feature of MLF to be used as an income model. 

The definition of Lorenz curve which is already in the quantile form 

is given in (2.18). Tarsitano (2005) derived the Lorenz curve for Ramberg and 

Schmeiser model. Sarabia (1996) used this to define a hierarchy of Lorenz 

curves. 

For MLF the Lorenz curve is given by 

where 1 [1 1] Jl=E(X)::::~+- ---~ . 
~ A4 + 1 ~ + 1 

Also f-1 = Q(po) for some 0 < Po < 1. We can find Po by solving for p in the 

equation Jl = Q(p). 

Gini index can be expressed in terms of L (p) and is given in 

(2.19). For MLF it is given by 

G = Jl-1 ~ -I { 1 + 1 1 
(~+l)(~ +2) (A4 +1)(A4 +2)f 

(3.40) 

The absolute mean deviation (2.24) can be given in quantile form 

as 

54 



1 

71 = ]Q(u)-Q(Po)!du 
o 

and for MLF 7] is given by 

(3.41 ) 

The relative mean deviation and Pietra index are given respectively 

by 7 - ~ and P = ~ . Now the coefficient of variation (2.27) of MLF is 
2 - P 2p 

obtained as 

1 1 
~~+ -------

CV=-r====================1=+=A=4==1=+=~=================== 
1 

----_. -- ---

2 2 f3 (1 + ~, 1 + A4) 1 (1 1)2 
~ (1 + 2~ ) - - -- ~~4 + A/ ( 1 + 2A4) - ~( 1 + ~) - A4 (1 + A4) 

(3.42) 

The three measures proposed by Frigyes given in (2.30) can be 

translated into quantile forms as 

1 

PoQ(po) 
U = -----'--

Po ' 

J Q(p)dp 

f Q(p)dp 
v=~,,--,,-Po __ _ 

1 p Po 
- 0 J Q(p)dp 

o o 

and 

] 

fQ(p)dp 
w = --'-'Po'---__ _ 

(1- Po)Q(po)" 
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For MLF, 

(3.43) 

(3.44 ) 

(3.45) 

The quantile form of Atkinson measures given in (2.21) is 

I 

{j(Q(p)t' dp t' 
Ac=l-~~I ----~-

JQ(p)dp 
o 
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and that of generalized entropy measures (2.22) and (2.23) respectively are 

If Q(p) Q(p) If Q(po) 
T; = ( ) log ( ) dp and T2 = log () dp. 

o Q Po Q Po 0 Q p 

The quantile form of the entropy measure (2.29) suggested by Ord et al. 

(1981) is 

The expressions of the above four measures do not exist in closed form for 

MLF. 

Now generalized Gini index (2.35) and Zenga curve (2.36) are in 

quantile forms itself. 

For MLF, Generalized Gini index, 

Gn =1-n(n-l),u-I{A,tJ(2,n-1)+ / )tJ(n-l,~+2)- ~+l )tJ(2,n-l) 
~~ ~+1 ~~ ~+l 

_ 1 + ,,14 +1 tJ(2 n-l)} 
~,,14 (,,14 + 1)( n + ,,14) ~A.4 (,,14 + 1) , 

(2.36) is the same as 

For MLF, 

Z(p) = 1- Qp(p )Q(po) 

JQ(u )du 
o 

57 

(3.46) 

(3.47) 



4.1 Introduction 

CHAPTER IV 

ESTIMATION AND FITTING 

In the previous chapter we have introduced the modified lambda 

family with the objective of considering it as a plausible model of income 

distribution. Supplementing the theoretical justifications given earlier for using 

MLF as an income model due to its versatility it is essential to establish its 

empirical validity by showing that members of the family fits income data. 

Towards this endeavour in the present chapter our attempt is to devise 

procedures for estimating the parameters of the MLF, establish some 

theoretical results that supports the use of such estimators and finally show by 

goodness of fit procedures that the distribution describes the data adequately. 

Since our aim is to substantiate the relevance of MLF as an income model, a 

deeper analysis of the proposed estimation procedure vis-a-vis other 

competing methods is not attempted. However, a short review of the existing 

procedures for estimating the parameters of the MLF has been conducted in 

Section 2, for the sake of completion. The new estimation procedure based 

on comparing selected characteristics in the population and in the sample is 

presented in Section 3. In Section 4, MLF is fitted to a real income data along 

with the assessment of the goodness of fit through Chisquare criterion. 

Finally in Section 5, the accuracy of the estimates a'rrived at by the proposed 

procedure is compared with those of the method of moments and percentiles 

through a simulation study. 

4.2 Review of estimation techniques 

Due to the mathematical form of the quantile function and the 

extent of the parameter space induced by the four parameters, the likely 

correlation between the estimates and time consuming operational problems 

renders the question of obtaining appropriate parameters for the MLF often a 

challenging task. There are many general methods of estimations prescribed 
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for the Ramberg and Schmeiser (1974) generalized lambda distribution 

mentioned in equation (2.38), but the formulas therein do not apply 

themselves to MLF. Hence our discussion of the present section confine only 

to those specifically confined to the MLF. 

King and Mac Gillivray (1999) proposed the starship method which 

consists in 

(a) transforming the data on X to F(X) 

(b) calculating the value of the Kolmogorov distance or Anderson­

Darling distance for the values of F (x) and the uniform distribution 

over (0,1) 

(c) choosing A - values that minimizes the distance. In a discussion of 

the method, the authors point out that it is of 'numerically intensive 

nature' requiring computer power to fit the data and analytical results 

are not available for the expected value and standard errors of the 

estimates. 

Tarsitano (2005) considered the quantile function 

which contains five parameters, A, for location, ~ and A, representing scale 

and ,,1,4 and As describing the shape. The model according to the author 

contains MLF and therefore his general conclusions about the estimates 

remain valid for the latter. Various methods of estimation discussed are 

percentile method that matches five selected sample percentiles with 

corresponding theoretical percentiles, method of moments, matching 

probability weighted moments E[Q(Pi)]' i = 0,1,2,3,4 with the sample 

counterparts 

1 n n} i 

to =-LC}, ti = L C}I1(j-r)/I1(n-r). i=1,2,3,4 
n }=l }=i+l r=! 1'=0 

where et s midpoints of class intervals, minimum distance method using 

Cramer - Von Mises statistic, that minimizes 
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where F is the estimated p value that would generate the observation Xi' 

maximum likelihood estimates obtained by minimizing the negative log­

likelihood 

k 

L = - I ni ( F (Xi) - F ( X H ) ) 

i=1 

and the Pseudo least square approach based on 

The simulation study for comparing the different methods for 36 configurations 

revealed that the minimum distance and probability weighted moments 

approaches gave the 'worst' results. Further, the method of maximum 

likelihood had given results 'slightly better than these obtained by minimum 

distance, but not by an amount of any practical importance besides both being 

computationally demanding. The percentile, moment and Pseudo least 

squares were reported to give desirable results. 

King and Mac Gillivray (2006) introduced the notion of spread 

functions 

in defining shape functionals 

and 

by which estimates that minimize the distance between sample and 

population values of the functionals were proposed. For the MLF short tails 

were found to be problematic in the estimation procedure. Due to the various 

limitations pointed out in starship method, maximum likelihood, minimum 

distance and shape functionals, consideration will be given in the present 

study to computationally simple and reasonably accurate methods using 
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percentiles and moments. First we present a new procedure for estimation by 

matching selected characteristics in the population and in the sample. 

4.3 New Estimation Procedure 

The method proposed in the present section resembles that of the 

classical methods of selected points, with the difference that the points 

chosen here is derived by matching the basic characteristics of the distribution 

viz. location, dispersion, skewness and kurtosis with those in the sample. The 

choice of the characteristics ensures that the parameter values determined 

there from corresponds to the true values that provide the same location, 

scale and shapes with a reasonable degree of accuracy. The accuracy 

results empirically from the criterion for optimization and theoretically from the 

asymptotic properties established in the sequel. The measures of location, 

dispersion, skewness and kurtosis involved in the new estimation procedure 

are the quantile based measures viz. Median, Quartile deviation, Galton's 

coefficient of skewness and Moor's kurtosis measure respectively. The 

expressions relating to these measures were obtained in equations 

(3.25),(3.27),(3.28) and (3.29) in the previous chapter. Hence the method of 

estimation of the parameters Ai' i = 1,2,3,4 in the model (3.22) is by solving 

for the Ai's from the equations obtained by setting (3.25), (3.27), (3,28) and 

(3.29) respectively equal to the corresponding measures in the sample. To 

accomplish this, we define the pth quantile corresponding to a random 

sample (X1,X2 , ••• ,XJ of observations on X as the pth quantile ~p of the 

sample distribution function F;I (x) = .!. ! 1 (Xi ~ x) where 1 (.) is the 
n i=1 

indicator function. Denoting the sample median, quartile deviation, measures 

of skewness and kurtosis by m,r,s and t based on ~p the problem is to 

solve the simultaneous equations 

1 [0.5,{J -1 0.5'''4 -ll A,+- - =m 
~ ~ ,,1,4 

(4.1 ) 
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1 [°.75'1.1 
- 0.25)') 0.75'" - 0.25"· ] 

-- + =r 
2~ ~ ~. 

(4.2) 

A4 [0.75)") - 2 x 0.5~ + 0.25''-) ] - --s [ 0.75)'4 - 2 X OS'4 + O.25A4 ] 
--~----~~--------~--~--------~~-----==S 

A4 [0.75 A
) - 0.25~ ] + A3 [0.75'" - 0.25'" ] 

(4.3) 

A.4 [ 0.87 5)~ - 0.625'" + 0.3752
, - 0.1252

, J + ;t, [ 0.87 Y" - 0.62Y<' + 0.3752
, - 0.125-<' ] 

A.
4

[0.7Y" -0.25).']+;t,[0.7yi4 -0.25 ,14 J =t 

(4.4) 

It may be noted that the above equations are non-linear and therefore, ends 

up with more than one quadruple of (~,~,~,A4) values that satisfy them. 

The solutions being unrestricted, some set of solutions may not be within the 

range prescribed for the A'S in Chapter 3, so that a proper probability 

distribution will not result. Secondly when more than one set arise as solution 

with admissible range, there is the question of some criterion that 

distinguishes the best solution. A solution to the first problem is to discard A 

values that do not fall within the parameter space. Answering how a choice 

be made when multiple admissible solutions occur can be made with the aid 

of an optimality criterion. One simple way of devising such a criterion is to 

ensure that the difference between the estimated values and the sample 

values of the measures of location, dispersion , skewness and kurtosis are 

within a preassigned small value. Since there are four such differences the 

criterion is prescribed as 

e = max(IM - ml,IR - rj,IS - sl,lr - tl) < £ 

for some positive £ , sufficiently small. 

The computation of the solutions are carried using the command 

'FindRoot' in Mathematica, which requires a set of initial values for the A'S to 

initiate the solution. While different initial values in some cases, may give 

different solutions, the e criterion is invoked to find the best among them. 

Thus empirically the method proposed leads to a unique solution within the 
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parameter space that nearly reproduces population characteristics that 

matches these found in the sample. 

Our next step is to show that the procedure can also be justified 

from a theoretical stand point. Consider a sample of size n from a one-

dimensional distribution of the continuous type with distribution function F (x) 

and density function [(x). Let C;p denote the pth quantile, 0 < p < 1 and 

suppose that in some neighbourhood of C;p' [(x) is continuous and has a 

continuous derivative ['(x). Then it is known that (Serfling, R. J. (1980)) the 

pth sample quantile z p is asymptotically normal (';p, J (~p ) ~ :q l Further 

as a special case the median of the sample m is a strongly 

consistent estimator of the population median M = ;1 and 
"2 

further m = Z l is asymptotically normal N ( M, ~ n [l' ( M) J'). Then rn 

belongs to the class of CAN estimators. In the same manner, 

1 
r = - (z - 7 ) is also a CAN estimator with 2 0.75 ~O.25 

distribution 

large values of n. The results in Serfling (1980) concerning the functions of 

quantiles can be adapted suitably to the result that (s, t) is consistent for 

(S,T) and .[;,(s-S,t-T)" has asymptotic bivariate normal distribution with 

mean (0,0 rand dispersion matrix ~' ( c ) A [~' (c) J where 

~(c)=(S,T)" 

and * denotes the transpose. The expected values of m - M, r - R, s - S 

and t - T being zero for large samples, our estimating equations m = M , 

r = R, s = Sand t = T provide A values that agrees with the above 
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expected values with small variations implied by the consistency of the 

estimators. 

4.4 Fitting MLF to income data 

Having set the background material for inference, the next 

important stage in model building is to test the model against the observations 

for adequacy. For the purpose, we consider the income data from Arnold 

(1983); referred to as 'Texas counties data' consisting of 157 observations. 

Each observation represents the total personal income accruing to the 

population of one of the 254 counties in Texas in 1969. The 157 included in 

the present data set represent all the Texas counties in which total personal 

income exceeds $20,000,000. 

From the observations, the sample characteristics required for our 

estimation procedure are computed as 

m=46.3, r=37.25, s=O.5651, (=2.4362 

Substitution in equations (4.1) through (4.4) and following the e criteria in the 

computational process gave the following admissible solutions (using 

Mathematica) 
,.. " ..... A 

~=27.3207, ~=0.0441223, ~=3.86057, A,4=-1.19399 

Of the various possible values of the A' s for different initial values above 

estimates are optimum according the e criteria that gave the maximum error 

of e = 0.0282 . In order to assess the appropriateness of the MLF with the 

above parameter values for the given observations, a frequency distribution 

was formed by classifying the data into 10 intervals (the class interval was 

taken unequal for larger incomes to accommodate a reasonable frequency) 

and the corresponding expected frequencies using the above estimates of the 

parameters are exhibited in Table 4.1. 
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Since our expressions for the sample statistics are non-linear in the 

parameters analytic derivations of the standard errors of the A' s are difficult 

to obtain. Hence a quick assessment of the sampling variations in the 

estimates for the given data is not possible. Therefore we have conducted a 

simulation study to assess the standard errors of the estimates for 

comparison with other methods. These are presented in the next Section. 

4.5 Comparison with the Methods of Moments and Percentiles 

The most popular approach for estimating parameters in various 

forms of the lambda distribution is based on matching the first four moments 

of the empirical data with those of the population. In our approach, measures 

(M,R,S,r) provide alternatives to the moment induced quantities 

(p,a 2
, /31 ' /32 )' We have preferred the former set in view of the following. 

(i) The method of moments is restricted to distributions possessing 

fairly light tails because they must have finite moments. Heavy tails 

usually observed in empirical distribution does not support such a 

premise. Moreover, the sample moments are sensitive to extreme 

observations or other contaminants in the data and sampling 

variability in higher moments can be large. In income data usually 

the interval lengths are taken unequal then the estimated moments 

cannot be subjected to corrections for grouping, resulting in highly 

biased estimates. 

(ii) Existence of moments requires restrictions on the parameter space 

that are not always satisfied by the solution. This is not a necessary 

condition for using M,R,S and T. 

(iii) The quantities M,R,S and T can be found graphically and further 

has the advantage of being operative without the necessity of knowing 

every measurement. 

(iv) Sand T are invariant under location and scale and R is location 

invariant. 
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(v) The numerical values (s,r) show the same pattern of behaviour 

as (P1' P2)' except for the difference in size of the numerical values. 

Thus from a theoretical stand point the method proposed in the 

present study has several advantages over the method of 

moments. 

The percentile method to fit MLF to a given data consists in 

equating four suitably sample quantiles to their MLF counterparts and solving 

the resulting equations for A" ~, ~ and ,,1,4. The four sample statistics are 

defined by 

PI = Q(0.5) 

P2 = Q(0.9)-Q(0.1) 

A Q(0.5)-Q(0.1) 
P3= Q(0.9)-Q(0.5) 

A Q(0.75)-Q(0.25) 
P4 = A 

P2 

These sample statistics have the following interpretations. PI is the sample 

median; P2 is the inter-decile range, i.e. , the range between the 10th 

percentile and 90th percentile; P3 is the left-right tail-weight ratio, a measure of 

relative tail weights of the left tail to the right tail (distance from median to the 

10th percentile in the numerator and distance from 90th percentile to the 

median in the denominator); and P4 is the tail weight factor or the ratio of the 

inter-quartile range to the inter-decile range, which is ~ 1 and measures how 

great tail weight is (values close to 1.00 indicate the distribution is not spread 

out greatly in its tails, while values close to 0 indicate the distribution has long 

tails). 

For MLF, these measures are obtained as 
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_ 1 [0.5,13 -1 OS'" -1] 
PI - ~ + ~ ~ - ,,14 

= _1 [0.9)"3 -O.e"l + 0.9A
• -0.1..14

] 

P2 ~ ~ ,,14 

,,14 [O.5~ - O.e] ] + ~ [0.9A
, - 0.5 A

, ] 

P3 
= ,,14 [ 0.9~ - 0.5~ ] + ~ [ 0.5 i

'4 
- 0. e 4 

] 

,,14 [ 0. 75 A3 
- 0.25)'4 ] + ~ [ 0. 75 A4 

- 0.25 A
, ] 

P =--~~------~--~--------~~ 
4 A4[ 0.9 A

) -0.1~ J+~[0.9)4 _0.144 
] 

~ ~ A A 

mathematica we get the estimates ~, ~, ~ and ,,14' The computational 

aspects discussed for the new method are valid for the percentile method as 

the four equations are nonlinear. 

To assess the performance of the above three competing methods 

we have conducted a simulation study by generating samples of size 33 (to 

accommodate the quantiles) from MLF with parameters ~ = 13.7, ~ = 0.2, 

~ = 0.4 and A4 = 0.01. The parameters were then estimated using the three 

methods. The same procedure was repeated for samples of size 66. The 

bias and S.E are presented in Table 4.2. 

Based on the simulation studies carried over several samples have 

revealed the following features associated with the various methods. 

The absolute bias in the new method tend to decrease with 

increasing sample size for the estimates of all the four parameters, though the 

reduction in bias is not considerable. The estimates are thus more or less 

stable. This is confirmed by almost the same type of behaviour seen in the 

case of the mean square error as well. 
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Table 4.2: 

Bias and Mean Square Error 

Estimation Method Parameters Sample Absolute Bias Mean Square 

Size Error 

~ n =33 0.0407 0.163 

New Method n =66 0.03942 0.0927 

A2 n = 33 0.00088 0.000697 

n= 66 0.00084 0.000682 

~ n =33 0.0608 0.0116 

n = 66 0.0564 0.01365 

A4 n = 33 0.0612 0.0346 

n = 66 0.0563 0.0322 

~ n = 33 0.0459 0.1522 

Method of Percentiles n = 66 0.0622 0.1543 

A2 n =33 0.0007 0.0008 

n =66 0.0099 0.00377 

~ n = 33 0.0571 0.0169 

n= 66 0.01499 0.0184 

A4 n =33 0.0622 0.0397 

n = 66 0.0165 0.03796 

~ n =33 0.23695 0.1894 

Method of Moments n =66 0.1854 0.1451 

~ n =33 0.0314 0.0063 

n= 66 0.0296 0.0044 

~ n =33 0.2422 0.1459 

n = 66 0.2074 0.1088 

A4 n =33 0.1234 0.062 

n = 66 0.1186 0.0597 
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The percentile method shows larger bias for ~ , fluctuating bias for 

~ and decreasing bias for ~ and A4 • Generally the numerical value of the 

bias is seen larger than that of the new method. The mean square errors are 

lower for the new method, showing that there is more concentration of the 

estimates about the location measure .. 

Of the three methods, the method of moments fares the worst 

having produced considerably larger bias and mean square errors than the 

other two methods. Over all the impression gathered from the simulation 

study is that our method compares favourably and at times better than the 

method of percentiles and moments. 
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CHAPTER V 

IDENTIFICATION OF MODELS BY INCOME CHARACTERISTICS 

5.1 Introduction 

The present study so far focussed attention on the approach to 

modeling income data by using the quantile functions as an alternative to the 

distribution function traditionally employed in most of the situations. A 

particular quantile function proposed in Chapt~r III capable of generating the 

flexible family of distributions named as the modified lambda family, was seen 

to represent a potential income model in the sense of rendering a good fit to 

income data. A serious limitation to this approach was the lack of a stochastic 

mechanism that account for the distribution. Alternatively in the absence of 

stochastic arguments, one may also think of inherent characteristics of 

income data that may give rise to a unique distribution so that the data 

generating mechanism can be spelt out through the concerned characteristic. 

In other words the model appropriate to a given population of incomes can be 

based on a characterization satisfying the particular nature of an income 

characteristic suitable to that population. The objective of this chapter is to 

build up a theoretical frame work for this purpose. This needs well accepted 

choice of income characteristics that can distinguish various distributions and 

amenable to analytic treatment. We have selected the concept of income gap 

ratio and the truncated f()rm of Gini index for characterizing income 

distributions. Results are obtained for both distribution functions and quantile 

functions, by starting with the former and then making deductions to the latter 

case. The rest of the chapter consists of five more sections. In Section 2 we 

introduce the definitions of the Income Gap Ratio and Truncated Gini Index. 

We show in Section 3 that a(t) uniquely determines the distribution F(x) 

and that the power distribution is the only continuous distribution for which 

a (t) and G (t) are independent of the truncation point t. Further it is proved 

that (1 + G(t )).u(t) can characterize the income distribution. Similar results 
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concerning the affluent are proved in Section 4. The monotonic behaviour of 

the income gap ratio can be used as a criterion to classify income distributions 

that help the choice of the distribution as model of income. In Section 5 some 

results in this connection are presented. In the last Section almost all the 

results in the above sections are converted into the context of quantile 

functions and the income gap ratio and truncated gini index of the MLF have 

been evaluated. 

5.2 Income gap ratio and truncated Gini index 

Most of the indexes of poverty or affluence associated with income 

data are generally based on the proportion of people belonging to that 

category along with their income distribution through the income gap ratio and 

some measure of income inequality like the Gini index truncated at the 

appropriate level of income. Sen (1976), Takayama (1979) and Sen (1986, 

1988) deal with such indexes and their properties. Since the income gap ratio 

and truncated Gini coefficient have a vital role in the definition of an index, it is 

important to investigate their relationships with the basic income distribution. 

In situations where these quantities are estimated from the observations 

without knowing the form of the distribution of incomes, (e.g. non-parametric 

estimation of income gap ratio and Gini coefficient) one basic question is 

whether the values of these functions at different levels of income enable the 

determination of the income distribution of the population. Theoretically the 

problem looks at the derivation of the distribution function of incomes based 

on the functional form of the income gap ratio and the truncated Gini 

coefficient. The present chapter focuses attention on this problem and some 

related issues like classification of income distributions on the basis of the 

behaviour of income gap ratio. Analogous results for quantile function of 

incomes have also been discussed in this chapter. We first present the basic 

definitions of the income gap ratio and truncated Gini index using the 

distribution function approach. 

Let X be a non-negative random variable representing the income 

of a community of individuals with absolutely continuous distribution function 
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F(x), survival function F(x)=I-F(x) and density functionf(x). 

Assuming the poverty line X = t, the proportion of poor people is F (t ) and 

their income distribution becomes that of the random variable (XiX:::; t) viz. 

F(x) 
tF(x)= F(t) 

=1 

x:::; t 

x> t. 

The income gap ratio of the poor people is defined as 

a(f)=l-E( ~IX~f) 
I 

fyf(Y)dY 
=1--"-°----,----,-

tF(t) 

(5.1 ) 

(5.2) 

Using the standard definition of the Gini coefficient in (2.33) the truncated 

version relating to those below the poverty line is 

-I t 

G(t) = 1- 2[,u(t)] Jy [F(y Lf(y )dy 
o 

=1-2[,u(t)]-1 fY(1- F(Y))f(Y) dy (5.3) 
o F(t) F(t) 

where 

1 t -

,u(t) = -( ) Jyf(Y)dY = E(XIX:::; t) 
F t 0 

(5.4 ) 

is the average income below the poverty line. 

Analogously with reference to an affluence line X = t* the 

incomes for the affluent {X Ix > t*} has distribution specified by 
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_ F(x)-F(t*) 
I-F(t*) 

The income gap ratio of the affluent is then 

* *(*) 1 t a t = - -E-:---( x-I X-~-t-----:-* ) 

t* F(t) 
= 1 - -Cf:;;--'----"--

fyf(Y)dY 
t* 

* x> t 

and the corresponding truncated Gini coefficient becomes, 

(5.5) 

(5.6) 

*( *) [ *( *)J-I Cf:;;f F{y) f{y) (5.7) 
G t = 1 - 2 f-1 t Y - ( *) (* ) dy 

t* F t F t 

where 

(5.8) 

These definitions will be employed in the next section to develop 

characterization of F in terms of a(t), a* (t*), G(t) and G* (t*). 

5.3 Characterization of income distributions 

First we establish a one-to-one correspondence between income 

gap ratio and the base line income distribution. 

Theorem 5.1: 

If X has an absolutely continuous distribution function over (0,00) 

with finite mean and income gap ratio a (t) which is differentiable, then 

[ 
Cf:;;fl- a(y) - ya'(y) ] 

F (t ) = exp - dy ,t > O. 
t ya(y) 

(5.9) 

Proof: From the definition (5.2), 
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t 

(1- a(t ))tF(t) = fyj(y)(ZV 
o 

Differentiating with respect to t and re-arranging terms 

j(t) _ l-a(t) _ a'(t) 
F(t) - ta(t) a(t) 

Integrating from t to 00, 

[ ( )Joc _ ""f1- a(y)- ya'(Y) 
InF t - () dy 

I I ya Y 

which leads to (5.9). 

This theorem shows that using the functional form of a (t) one can 

determine the income distribution. Usually income gap ratios computed at 

several pOints of income are available directly from the income data without 

making assumptions about the income distribution. Empirically it is possible 

to draw conclusion about the form of the income gap ratio by plotting a(t) 

against t. We now establish some sample functional forms of a(t) that 

characterize income distributions. 

Theorem 5.2: 

The only continuous distribution for which the income gap ratio is a 

constant is the power distribution 

F(x) =(~ r ,0 < x < c,c,a > O. (5.10) 

Proof: Suppose X follows the power distribution (5.10). Then from 

definition (5.2), 

a (t) = _1_ , which is a constant. 
a+l 

Conversely, let a(t) = k , a constant less than unity. Then from (5.9), 

l-k 

F(X)=m
T 
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which is the power distribution with 

Remark: 

l-k 
a::::-->O. 

k 

The above result can be used to ascertain the changes in the 

income distribution (e.g. number of individuals whose income has to be raised 

to the next level) inorder to have a designated reduction in the income gap 

ratio. 

An analogous result for the power distribution exists regarding the 

truncated Gini coefficient relating to the poor. 

Theorem 5.3: 

If X has absolutely continuous distribution function F (x) 

satisfying E( XF (X») < C(l, then the truncated Gini coefficient G (t) is 

independent of t if and only if X has power distribution (5.10). 

Proof: From (5.3) and (5.4), 

G (t) = 1 - 2 [ (t)J-l [IJ f (Y ) d _ fJYF (y ) f (y) d ] 
f.1 oY F(t) Y 0 F2 (t) Y 

= 1- 2 + 2[ (t)J-l fJYF(Y )f(y) d 
f.1 0 F2 (t) Y 

which gives 

~f.1(t)[l+G(t)J::: IJYF(Y)f(Y) dy 
2 D F 2 (t) 

(5.11 ) 

When X follows power distribution (5.10), from (5.11) 

at 
=--

2a+ 1 
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and further 

a ,u(t)--­
- (a+l)t 

so that G(t) == 1 , a constant. This proves the if part. 
2a+l 

To see that the only if part holds we assume G(t)=k and write 

(5.11) as 

1 t t 

-F(t)(1+G(t)) J)'f(y}iy= J),F(y)J(Y)dY 
200 

Differentiating the last equation twice 

1 (1 + k )if(t) + -(1 + k )F(t) = if( t) + F (t) 
2 

or 

J(t) _ (I-k) 
F(t) - 2kt 

Integrating from t to c, 

[ Jc cJ1- k 
In F (t) I = t 2ky dy 

or 

J-k 

F(t)=Gt 
(I -k) 

which is the power distribution (5.10) with a = . 
2k 

The problem of obtaining a general inversion formula for finding 

F(t) in terms of G(t) was found to be difficult in view of the presence of 

,u(t) in (5.11). However, if one sets g(t)=,u(t)[l+G(t)J. we can express 

F(t) in terms of g(t). 
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From (5.11) 

1 I 

-[ F(t)J g(t) = fYF(Y )f(y )dy 
2 0 

Differentiating with respect to t , we obtain 

1 f(t )g(t) + 2 F(t )g' (t) = tf(t) 

or 

f(t) _ g'(t) 
F(t) - 2[t-g(t)] 

Integrating from t to 00, 

[ )]
OC! OC!f g'(y) 

In F (t = [ () ] dy 
I t 2 y- g y 

or 

F(t)=exp[-~ J g'{(\dY], t>O. 
2 I y- g Y 

(5.12) 

The practical utility of (5.12) is the identification of F (x) through the 

functional form of g(x). Expressions of g(x) for some income distributions 

are evaluated below, to indicate its usefulness in a practical situation. 

(i) Pareto distribution: 

f() a -a-J 0 0 . X = aCT x , x > CT > , a > 

g(x) = [1 + G(x )].U(x) 

=:::. 2"fyF(y)f(y)dy 

(7 F2 (x) 
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2acy 

( X )-(1+1 ( X )-2a+l 
1-, - 1- -

\. CY CY =---
a-I 2a-l 

(u) Exponential: 

(w) Power: 

F(x) = 1- e-,ix, x> 0, A> 0 

x Y[I- e-,iy ] Ae- 2y 

g(x) = 2 f 2 dy 
o [l_e- Xt

] 

F(X)~(;J 

g(x) ~ [(; )"J H~ J c-"ay"-Idy 

2ax 
=--

(2a + 1) 

(iv) Dagum: 

F(X)~[l+(~)T' x> 0 

g(x)~ [l+(h'r f++(~ J r apb'y-'-' [1 +(~ Jr' dy 

~2ap[I+(~Jr A:r[l+(~rr-' dy 
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x 

where Bx(p,q)= Jt P-
1(1+tf(p+q}dt. 

o 

5.4 Measures of affluence 

The income gap ratio and Gini coefficient for the affluent hold 

analogous properties as for the poor. 

Theorem 5.4: 

If X has absolutely continuous distribution function over (0,00) 

with finite mean and income gap ratio a * (t*), then 

(5.13) 

Proof: From (5.6), 

et) 

[l-a*(t*)] fYI(Y)dy=t*F(t*) 
t* 

Differentiating with respect to t* and simplifying 

( *) * ( *) * *' ( *) It _l-a t +ta t 
F(t) - a*(t*)(l-a*(t))t 

Integrating from 0 to r*, we get (5.13). 

Remarks: 

1. The only continuous distribution over the set of positive reals for 

which a * (t) is a constant is the Pareto distribution. This is easily 
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verified by noting that, a*(t*)=~ (in the form given above) and 
a 

substituting in (5.13) gives the desired form for F (x) . 

2. The generalized Pareto family with 

- (b J~+] F(x)= ,x>O,b>O,a>-l 
ax+b 

is characterized by an income gap ratio in the bilinear form 

* ( *) at* + b 
a t ==(a+l)r*+b 

(5.14) 

Note that (5.14) contains the exponential distribution as a ~ 0, the 

Pareto 11 distribution of the form 

F(x)=aC(x+afc, x,a>O 

] -] 
with a:::(c-lf, b=a(c-l) when O<a<l in (5.14) 

and the beta 

d 

P(x)+-;) ,O<x<R,d>O, 

a=-(d+lfl, b=R(d+lf] when -l<a<O in (5.14). 

3. Ord et. al (1983) have used the gamma entropy measure 

(5.15) 

as a measure of inequality and shows that (5.15) is truncation invariant 

(independent of t) if and only if X has exponential distribution. We now 

discuss the relationship of the measure ey (t) with the income gap ratio. 

Defining the random variable Y. =[ fY(X) !X>t*] it is easy to 
t *Y-Y(*) t F t 

see that 
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Now the geometric mean of ~* is G (t) , where 

00 

log G(t*) = Elog ~* = F&*) }(IOgf(X )-log P(t )-logt* )f(x )dx 

00 

= (,) Jf(x )logf(x)dx - rlog F(t')- r logt' (5.16) 
F t t* 

Again definingZ * = ( ~(7))iX > t') , Z * has geometric mean p(t) with 
1 t F x 1 

00 

= _(1 *) J(f(x)logf(x)-f(x)logF(x)- f(x)logt)d.\ 
F t 1* 

00 

= _(1 *) ff(x)logf(x)d\-logF(t)-logt +1 (5.17) 
F t 1* 

Comparing with (5.16) 

logp(t*) = 1 + ~ log G(t) 
r 

or 

1 

P ( t * ) = eG r (t ) 

Finally Zt* has harmonic mean H(t*) where 

• 00 

= (') JF(x)dx 
F t t* 

=1' [F(t)}Yf(Y)dY-t' l 
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* t * l * J =t 1-a*(t*)-t 

or 

( *) l-a*(t) H t = -----'--~ 
*2 * ( *) tat 

Since p(t*)~H(t*). from (5.18) 

G * > (l-a'(t*)r 
(I ) - ,}/Y (a'(t')f 

Further E ( ~* ) ~ G (t*) gives 

(5.19) 

which on simplification provides the following lower bound to the income gap 

ratio in terms of the entropy measure 

(5.20) 

The Gini coefficient for the affluent is defined in equations (5.7) and 

(5.8). Ord et. al (1983) have shown that this coefficient is constant among the 

class of absolutely continuous distributions with positive density almost 

everywhere in (k, 00), if and only if the distribution is Pareto. This result 

corresponds to Theorem 5.3. Writing 

g * (x) = (1- G* (x)) J1 * (x) 

one could see that 

Proceeding as in the earlier theorems we have the following result. 
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Theorem 5.5: 

If X has absolutely continuous distribution function with 

E( xi (X)) < co with Gini coefficient G* (t) and average income ,ll* (/*) 

above the affluence line X = t , then 

(5.21 ) 

where g * (y) = (1- G* (y ) ) JL * (y) . 

Remarks: 

1. The generalized Pareto family (5.14) is characterized by 

JL* (t)(I- G* (/*)) = 2at + 2t + b = At + B 
a+2 

(5.22) 

which is a unification of the result in Sathar, Rajesh and Nair (2003) 

separately proved for the exponential, Pareto 11 and beta distributions. 

They have also proved that the income gap ratio is in constant 

proportion with the G* (/*) for the above three distributions, the 

proportionality being ! for exponential, >! for Pareto 11 and <! for 
222 

*(*) l+a *(*) . the beta. From (5.22) the property G 1 = -- a t charactenzes 
2+a 

the generalized Pareto family. 

2. g * (y) = cy, where c is a constant greater than unity characterizes 

the Pareto distribution. 

5.5 Classes of Income Distributions 

Based on the monotonic behaviour of the income gap ratio a * (I *) 
it is possible to classify income distributions. These results are helpful in 
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modeling incomes where the empirical evaluation of the income gap ratios at 

different values of r* will give us an idea about the class of distributions from 

which the appropriate model should be chosen. 

Definition: A distribution function F (x) is increasing in income gap ratio for 

the rich IIR(r) (decreasing in income gap ratio - DIR(r» if a*(x*) is non-

decreasing (non-increasing) in x * . 

Belzunce et al. (1998) defines the class of decreasing mean left 

proportional residual income (DMLPRI) if 

(
X J 1 OCJ E -IX> t = ---=--( ) Jxf(x)dx 
t tF t t 

is decreasing in t. Since this criterion is equivalent to DIR(r) all results 

proved there are true for DIR(r) also, and accordingly we establish some new 

implications of the DIR(r) class which can supplement the existing results on 

DMLPRI. 

1. The classes of income distributions based on monotonicity of a*(t*) 
are well defined, as the exponential model is DIR(r), the beta discussed 

in Section 5.4 is IIR(r) while the Pareto distribution is both DIR(r) and 

IIR(r) with a * (t*), a constant. 

2. A sufficient condition for F (x) to be DIR(r) is that either of the 

following conditions hold. 

(a) f(x) is log-concave (b) F(x) has increasing failure rate. 

Proof: If g (x) is a monotonic (increasing or decreasing) function on ( a, b) 

with either g(a)=O or g(b)=O, then if g'(x) is log-concave then g(x) is 

also log-concave on (a,b). We use this result repeatedly for different 

functions in the proof. 
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To prove (a)Assume that f (x) is log-concave. Then by definition 

f'(x) 
of log-concavity f ( x ) 

. . . f' ( x ) F" ( x ) 
IS decreasmg, and since f ( x) = F' ( x) , 

DO 

F"(x) 
F'(x) 

and hence 
F'(x) 
F(x) 

are decreasing. Defining H (x) = JF (t )dt , 
x 

H"(x) H'( ) 
H'(x)=-F(x) and H"(x)=-p'(x). Thus H'(x) and hence H(;) are 

decreasing functions. Thus we find that 

is increasing and this implies a * (t*) is decreasing or F (x) is DIR(r). 

To prove (b) we note that whenever the failure rate 

h (x) = ~ ((x )) ~ -F' t? is increasing F' { x? is decreasing. The rest of the 
Fx Fx Fx 

proof follows from that of part (a). 

Remarks: 

1. Part (a) gives a simple criterion to distinguish income distributions 

with decreasing income gap ratio. For ITR(r) models the words 

increasing and log-concave in (a) and (b) are to be replaced by 

decreasing and log-convex. A classification of some distributions used 

to model incomes according to the above criteria is given below. 

Note: log-concavity properties are preserved under linear 

transformations so that scale and location parameters can be 

introduced without affecting their classifications. Also, the 

classifications hold for truncated versions of the above distributions. 

2. Belzunce et. al (1998) defines the class of increasing proportional 

failure rate (JPFR) distributions in which xh (x) is an increasing function 

and shows that IPFR => DMLPRI. When the class has increasing 
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failure rate xh (x) is also increasing so that IFR ~ IPFR, but the 

converse need not be as seen from the case of the distribution 

Therefore resulting from (b) above we can write the implications 

IFR ~ IPFR ~ DMLPRl <=> DIR(r). 

3. A necessary and sufficient condition that F(x) is DIR{r) (IIR{r)) is 

that a' (t'}«» , ( ') . 
t h t 

Proof: From the definition in equation (5.6) 

et) 

( 1 - a * ( t * )) f yf (y ) dy = t * F ( t * ) 
t* 

Differentiating with respect to t* and simplifying, 

or 

For IIR{r) distribution, a*' > 0 and hence 

the poor. 

* ( *) 1 
at> * (*)' t h t 

An analogous discussion holds in the case of income gap ratio for 

Definition: A distribution function F (x) is increasing in income gap ratio for 

the poor- IIR{p) (decreasing -DIR(p)) if a{x) is non-decreasing (non-

increasing) in x. This class is the same as that discussed by Belzunce et al. 
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(1998) in the name of decreasing mean right proportional residual income 

(DMRPRJ). They provide an exhaustive discussion of the properties of this 

class. We observe further that 

(i) a necessary and sufficient condition for P (x) to be llR (p) is that 

a < (I + tArt) t, where A(t) = ~~: ~, the reversed failure rate of X. 

I 

(ii) a (t) is increasing or F( x) is IIR(p) if and only if fF(t )dt is log­
o 

concave. 

5.6 Quantile Forms of Income Gap Ratio and Truncated Gini Coefficient 

Since the major theme in the present work is the mode ling of 

income data using the lambda distribution, the transformation of the 

expressions of inequality measures discussed in the previous sections of this 

chapter into quantile forms is relevant. 

Let p be the proportion of the poor people of a population. Then 

by the transformation u=p(x), O<u<l or x=Q(u) where Q(U)=p-l(U) 

in the equation (5.2) we get the income gap ratio of poor in terms of quantile 

functions and is given by 

p 

fQ(u )du 
a(p)=l-~o~~ 

pQ(p) 

Similarly, the income gap ratio of the rich is given by 

a*(p*)= 1- (1~ P*)Q(P*) 

f Q(u )du 
p. 

where (1- p *) is the proportion of rich people of the population. 
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Now the truncated Gini coefficient for poor and rich are given 

respectively by 

(5.25) 

where 
1 p 

,l1(p)=- JQ(U)dll 
Po 

and 

2[ '( ')T' , 
G'(p*)=I- f.1 P 2 J(l-u)Q(u)du (5.26) 

(I-p") p' 

, 
where J/(p*)=_l_, JQ(u)du. 

1- p . 
p 

Theorem 5.6: 

The quantile function Q(p) can be uniquely determined by the 

income gap ratio of the poor, a (p) as 

f.1 {I 1 } 
Q(p)= p[l_a(p)]exp - !U[I_a(u)]dU (5.27) 

Proof: From definition (5.23) 

p 

[l-a(p)JpQ(p)= JQ(u)du 
o 

Q(p) -
-----=-----= J Q ( u ) du - P [ 1 - a (p ) ] 

o 

Integrating from p to 1, 

[ ]

1 
p '1 

In JQ(u)du = J [ ()ldu 
o u I-a U J 

p p 
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P 1 1 
In ,u - In J Q ( u ) du = J [ () ] du 

o pU I-a u 

P 

JQ(u )du ! I 

In 0,u = - I U [ I - a ( u ) ] du 

p {I I } 
JQ(u)du = ,uexp - f [ ()Jdu 
o pU I-a u 

Now differentiating with respect to p, we get 5.27. 

Theorem 5.7: 

The quantile function can be uniquely determined by the income 

gap ratio of the rich, a"(p*) as 

Q* (p * ) = ,u * exp - f dll [
I-a*(p')J {p'I-a*(u) } 

I-p ol-u 

Proof: From definition 5.24, 

1 

[ I - a' (p * ) ] J Q ( u ) du = ( I - p.) Q ( p " ) 
p 

-Q(p") _ a"(p")-I 
IQ(u)du - I-p" 

P 

Integrating from 0 to p', 
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(5.28) 



I {P·1 a* (u) } 
}Q(U)dU=,ueXp - f -l-u du 

Now differentiating with respect to p * , we get 5.28. 

Now (5.25) can be written as 

2 P 

[1+G(p)],u(p)=-2 fUQ(u)du 
p 0 

Let g(p) = [1 + G(p) ].u(p) 

Thus from (5.29), 

P 

p2g(p)= 2 JUQ(u)du 
o 

Differentiating with respect to p, 

Dividing by 2p , 

2pg(p)+ p2g'(p) = 2pQ(p) 

Q(p)=g(p)+ pg'(p) 
2 

(5.29) 

(5.30) 

Thus it is possible to determine the quantile function from g (p ) . 

As an illustration we have found below the expression of g(p) that 

characterizes Q(p) for some important distributions. 

(i) Pareto: 

I 

Q(p)=a(l- pr;; 

2 p 

g(P)=-2 fUQ(u)dU 
p 0 

2 p Ya 
= 2 Ju.a(l-ll r a du 

p 0 
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1 

2aa {( rl+2} 2aa(I-pr-;;+1 
= p2(a-l)(2a-I) a- 1- p a - p(a-I) 

(ii) Exponential: 

1 Q(p) = --In(l- p) 
A 

g(p) = -2 fu --In(I-u) du 2 p ( 1 ) 
P 0 A 

1 [1 1 In(P-l)] =- -+--In(l-p)+ 2 
A p 2 p 

(iii) Power: 

(iv) Oagum: 

2 p 1 

g(p) = -2 fucu-;;du 
p 0 

I 

2cap a 
=--

2a+l 

1 

Q(P)~b[P-~ -f 
2 P [ I ] g(p)= p2 IU.b u-P -1 du 

I 

pP I ') I 
2bP f -+~P-l ( )--=- va I-v a dv 

2 ' 
P 0 

I 

when v = u P 

Similarly Q(P*) can be uniquely determined by the function 

g* (p*) = [1- G* (p*) J~* (p*) 

which can be proved as follows. 
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From (5.26) 

Differentiating with respect to p' , we obtain 

Q ( p' ) = g' ( p' ) _ (1 - p' ) g" (p' ) 
2 

(5.31 ) 

The characterization results obtained in the previous sections can 

also be proved using quantile function approach. 

Now for MLF, 
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In conclusion, we have shown that the modified lambda family has the 

potential to be used as a model of income, because of its flexibility to assume 

different distributional shapes. In view of the quantile functions involved in the 

distribution, it is easier to generate random numbers than many of the 

competing parametric models. Since analysis of income data usually involves 

a large number of observations, the asymptotic properties seem to apply with 

a good amount of accuracy. Further there is closed form expressions for 

many of the measures of income inequality, making them easier to compute. 

We have also presented a few theoretical results that help the identification 

of the distribution of income given the income gap ratio or the truncated Gini 

coefficient at different values of the poverty or affluence limit. The poverty 

and affluence measures being directly expressed in terms of the a's and 

G's, the results established here have relevance in that context also. 

In the present study MLF is fitted to one income data remarkably 

well. It is essential to verify the goodness of fit of the family to the income 

datas of various countries in different time periods. This model can also be 

used to project the income distributions of future period. These problems are 

expected to be presented in a subsequent work. 
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