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We prepose to. show in this paper, that the time series o.btained from biological systems such as 
human brain ate invariably oonslatiooary beca~ of different time scales involved in the 
dynamical process. This- make.~ the invariant parameters time dependent. We made a global 
analysis of the EEG data obtained from the eight locations en the skull space and studied 
simriltan~OO$ly tlwdynamical cilaracleri$tic$from variou$<partSofthe brain. We have proved that 
the dynamiCal parameters are sensitive 10 the "*ne scales and hence in tlw study of brain one must 
identify all relevant time sc..ues invelved in the prOCCliS to $Cl an insight in the werking of brain. 

Ki·y ... ords: EEG: chaotic dynamics: entropy: time scale 

l. INTRODUCTION .. 

During the last decade there has been a gre~t interest in the characterization of 
several physical and bioJogicat systems using the methods in nonlinear 
dynamics and detenninistic chaos (Ott. 1993). The methods of characteriza­
tionde~nd mainly on theevaluation Of ergodic measures such as dimensions. 

""" entropies, Lyapunov exponents etc. These parameters are evaluated from H 
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scalar time series obtained either from experiments or simulation of models 
(Abarbanel et al., 1993). In general, there are two approaches, metric and 
topological to characterize complex systems. In metric approach, the 
probability of finding a set of points within a hypersphere with a preassigned 
radius in a phase space js a measure, whereas in topological approach. the 
number of unstable periodic orbits are estimated to study the dynamics of a 
system (Badii. 1994). Biological systems are found to exhibit chaotic behavior. 
However, the evaluation of invariant parameters from observed time series 
have posed difficulties mainly due to the presence of noise, nonstationarity. 
finite data length etc. (Rapp. 1989). 

Numerous authors (Jansen ~tal., 1993) have reported the evidence of 
chaotic behaviot in human brain, by evaluating some of the ergodic 
parameters from EEG signals. However, the existence of 10w dimensional 
chaosbas recently questioned (Tbeiler and Rapp, 1996). Using the methods 
of surrogate data analysis (Theiler et al., 1992), while the existence of 
nonlineanty has been confirmed in Ero signals, the low dimensionality is 
still in debate. The reliability oisurrogate data analysis has recently been 
reexamined and it has been found that this test alone may not be sufficient 
to distinguish colored noise from low dimensional chaos (Pradhan and 
Sadasivan, 1997). It should further ~ emphasized that the ergodic param­
eters are indeed important, the ultimate goal should be an understanding 
oftbe dynamics of the system. It is therefore time that we should try to make 
models that would generate these pammeters and which has predictive 
capabilities. We therefore propose to I~ok at the problem ab initio from the 
dynamical point of view. Hence our approach is not to discuss the existence 
or otherwise of chaos in the human brain, but to discuss nonstationarity 
and its effect on infonnation capacity in an EEG time series analysis. It has 
increasingly been re-.tiized that the real world data sets are nonstationary. 
Nonstationary nature can mainly be due to two reasons: it could be due 
to introduction of new time spiles by new aynamical process that could be 
switched on during a process or it could be various distinctly different pro­
cesses, dynamical processes, that could exist in the system. If these time scales 
are not widely separated. they could overlap in a nonlinear fashion thereby 
making it complex. 

It should be pointed out that jf the&ime series is nonstationary then the 
different measures would also be time dependent unlike the case of station­
ary time series where these measures are independent of time. This is precisely 
what we propose to discuss in this paper. 

This paper is organized as follows: In Section 2 we derive a general time 
scale by perfonning a dimensional abalysis of the various known parameters 
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in neural systems. In Section 3 we give a brief discussion of data collection 
and the methods of analysis. The next section gives an account of the results 
and discussions. The final section gives the main conclusion as well as future 
direction of work. 

2. TIME SCALES 

EEG is recordings of electric potentials generated in the cerebral cortex by 
a large number of neurons, which are integrated at various stages oLits 
propagation from the input to the central nervous system. These generate 
collective modes. which on the cortex are recorded in EEG. It has been 
pointed out that the amplitude of the action potential generated by the 
individual neuron is constant while the firing frequency is a linear function, 
as far as measurements go, of the applied stimulus strength. A simple addi­
tion of these amplitudes, however, cannot reproduce the observed charac­
teristics of EEG. Hence the integration process should be an involved 
mechanism. Further, it has been found that the electrical characteristics of the 
action potential is quite different from those of EEG. The characteristic time 
scales of different waves of EEG is oft~ order of 0.1 second where as that of 
the action potential is'" 1 millisecond. A factor ofbundred between two time 
scales implies that the human brain has a wide range of time scales resulting in 
being highly nonlinear one and that it is thermodynamically open with 
feedback and feed forward process. \Ience the construction of general time 
scale starts with identifying different characteristic parameterS in neuron 
dynamics. 

The human brain consists of about 1010 neurons of which about 1 to 2% 
are active and they are connected in a certain pattern. These connections 
change with the input signals. Hence, to study the collective effects in the 
cortex we have to take into account the dynal1Jics of the individual neuron, 
which contribute towards collective effects. The most significant feature in 
the neuron dynamics is the firing potential,c/> which is about 100 millivolts 
above the resting potential, and is constant for all neurons. The next is the 
firing frequency, which is the inverse of the refractory time. It is usually 
about 1000 Hz and is linearly dependent on the stimulus strength. Since the 
firing potential is electrical in nature, they are generated by the various ions 
such as sodium, potassium. calcium etc .• and these are characterized by the 
electrical charge (e) and ion mass (m) as well as the number density (n). 
Furthermore, the chemical process also play a significant role in the signal 
transmission by changing the conductfvity. We shall include this by a 
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nondimensional parameter. Go representing the conductivity. Theseparam­
eters along with the numerical values ate given in Table 1. 

Using these parameters, we perform a dimensional analysis following 
BalcsCll (1975). We find a non diinensional parameter (details are given in 
Appendix I). 

(1) 

And a general time scale T as 

(2) 

In (2) 

u. ratio of electric frequency to firing frequency, 
h. ratio of mechanical frequency to firing frequency, 
c. ratio of plasma frequency to firing-frequency. 

The x, y and z are natural numbers. It could be real or complex, rational 
or irrational or integers. If they are complex, the process could have an 
amplitude and phase. 1f they are ra)ionaI. the frequencies are compatible 
while if the frequencies are irratioooi, they are incommensurate. Again we 
can write (c:'" f.?' njnll}) as (eow;/V2) with wp as plasma frequency. From (I) 
it is very clear there exists three fold infinite time scalesi" the system. This 
point is very iinportant in the analysis of EEG signals. By proper choice of 
variables x, y and z some of the know~relevant time scales can be obtained. 
Some of the relevant time scales are derived below. 

(1) Sodium Potassium pump. The sodium potassium pump depends on the 
threshold potential and hence on tf>. Since it is a chemical process 
depending on the number of sodium ions going in and potilSsiumions 
coming out during depolarization pha$Cs, the time scale should depend .. 

TABLE I Different parameters used in the construction of general time scale 

Name Symbol Dimqn.siofl Order (if fflQgnilude 

Action potential ~ (MLr2)1i2 10" volts 
PrQpagation speed V J l'r- 1 lOOm/seconds 
Firing frequellt)' v T- 1 toooHz 
Ionic' charge q (MUT'2)'I~ L6 x 10-' 19 Coulomb 
IoniC mass In M IO-Z7 kg 
Ionic density 11 V~ 

Medium effect ;'to 
..,.-2 Ion plasma rrequency ,l IO:i 7 11- " .. ~ n l ":1 rad/sec ""p • 

square f' 
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on mass and number density, b~tnot on the firing frequency. To get 
relevant time scale correspondillg to this prQCess, Qne must choose 
y = z = o and x = -1/2. Thus relevant time sca1e. for this process is 

with <p '" mil\ivolts and n'" 1 00 
(2) Synaptir:: transduction. In the synaptic transduction. the process depen.ds 

on the dielectric characteristics of the synaptic cleft as also on the speed 
at which the signal arrive at the presynapse as well as the threshold 

. : A"!$<-:i.,A 

potentiaL However, there is no explicit dependence on the number 
density. since there is a randomness in the injection ofneurotransmitlcrs 
in the deft due to the discharge of vesicles. We construct such a time 
scale by a proper choice of x, )', z viz., x = - y = z = - 1/2. Thus the 
time scale is obtained as 

• 
2 " I/~ Ts = (mV vie,,</> :.Jp) .- (4) 

(3) Collective modes. At various stages in a neural system. there are 
integration processes operative. :[he threshold potential is a conse­
quence of the integnltion process. ln a single neuron or in the case of 
synaptic transduction the process is always collective in nature. Also in 
the case of EEGsignais,the process is indeed a collective one which does 
not exhibit all the apparent regularities seen in a single neuron firing 
sequences or the signal transllifssion from a presynapse to a post" 
~ynapse. If we consider this asa self-consistent process, which.is ingen­
eralresponsible for the collective mooes., then the relevant time scale 
is the interaction time scale, 

Ti;= (~"w;)-1!2 (5) .. 
and this is obtained by setting x= y = 0 and = = - 1/2. Thus different time 
scales for different mechanism could be derived from the general time scale. 
There may be other relevant parameters, however, we have considered only 
some of the known ones. 

Various algorithms developed till now in the evaluation of ergodic 
parameters are suitable only for stationary data set (Grassberger and 
Procaccia, 1983). However for nonstationary data set. these parameters are 
slowly varying functions of time (Pradhan and Dutt, 1993). Hence. in 
choosing the data length. the number tir data points must be sufficiently 
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large in comparison with natural time sCaJe in the system. This requires the 
identification of different time scales involved in the dY1l8mical process. 

Many authors in studying the dynamics of human brain have ignored the 
role of time scales. Parikh and Pratap (1983) developed an evolutionary 
equation in the framework of nonequilibrium statistical mechanics develop­
ed by Prigogine and his Brussel School in which the significance of time 
scales has been stressed. Further, Pratap (1999) formulated a theory of sensory 
transduction considering the interaction time se-ale. Our purpose is to study 
the relevance of time scales in the dynamics of brain observed in EEG signal, 
especially on nonstationarity and Kolmogorov enfropy. 

3. MATERIAI..8 AND METHODS 

3.1. Data Collection 

Five subjects who were known epileptics with uncontrolled seizures in the age 
group of 20-25 years were recruited for this study. Despite anticonvulsant 
medication the subjects showed seizure discharges in EEGs. The eight 
channels of EEG data are collected psing IntemationallO-20 system with 
an EEG machine coupled to a PC "'ing Analog to Digital Converter (DT -
2841) and an array processor (DT-7020). The eight scalp loci are Fp!, Fp2. 
F7. F8. T3. T4. 01 and 02. The sampling is done at the rate of256 samples/si 
channel. The data are filtered using a bandpass (0.25 - 32Hz) fourth order 
Butterworth filter twice cascaded. The tlata were visually screened to remove 
artifacts as well as to identify epochs containing epileptic discharges. This 
was done by two experts who differed in their scoring by less than 5%

• The 
differences were resolved by discussion and a consensus rating was assigned 
to the discrepantly rated epochs. The data from five normal volunteers 
without any history of neuropsychiatric illness or intake of any psychotropic 
drugs who were in the age gtbup of20-2! years were also collected. 

3.2. Correlation Dimension and KolmogOTO? Entropy 

The scalar time series obtained is reconstructed in a phase space using tbe 
famous time delay embedding (Abarbfinel. 1993). Thus a multivariate vector 
X(i) = {X(l), x(i+ Ta), x(i+2Td), ................... x(i+{d -1)Td)), in a 
d dimensional pbase space. where i = 1.2 •... , N - d, is fonned. The time Jag 

T" = nT." n is an integer and Ts is the sampling time, is arbitrary' but is fixed 
either using the autocorrelation fu~ction (ACF) to decay to lit? or the nrst 
minimum in the average mutual' information {AMJ) curve The basic 
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procedure for the evaluation of the correlation dimension. D2 and 
Kolmogorov entropy, K2 is by using Grassberger Proccasia algorithm 
(GPA) (Grassberger and Procaccia, 1983). 

However, the accuracy of invariant parameters depends on the number 
of data points, time lag and several other factors. EEG time series are 
nonstationary, hence, it is not possible to consider a large number of data 
points. Further, because of high dimension .nature of the signal and limited 
data set it is difficult to obtain a proper scaling region using GP A. So we 
applied a modified algorithm (Havstadand Ehlers, 1989). In this method 
instead of finding the number of data points less than a preassigned radius r, 
the number of data points are fixed and the radius r is varied to evaluate 
correlation integral. 

This algorithm has been checked using the time series generated from 
Henon map and logistic equation with standard values . 

.. 
3.3. Selection of Time Lag 

As mentioned earlier, the time lag Td can be fixed either using the criteria of 
ACF to decay to l/e or the fi~tminimum in the AMI. The latter criterion is 
preferred, as it is a kind of genel".lliiat~ to the nonlinear world whereas the 
fonner is a correlation in the linear world (Abarbanel et a/., 1993). Using 
infonnation theory, the average mutual information between the observa· 
tions at 11 and 11 + T is found for different values of T. 

/( T) ::: "L P (:1.'(11), X(11 + T» log{ P (x(n) , x(n + T))/P (X(II))P (X(II + T))} 

(6) 

where P(x{k}) is the probability of measuring x(k) and P(x(k), x(k + T ) is 
the joint probability of measuring x(k) and x(k + T ). 

From (6) the first minimum of J(T) is used as time lag T.,t for phase space 
reconstruction. It should. bowevOr.; berealized.that this way of selecting the 
time lag.c.ould introduce 11. discrepancy since a finite time lag would imply an 
averaging process in time during the interval 0 - Tt! and any scale in the 
range of 0 < T < Td will not be taken into account. This point is very 
important in the evaluation of dynamical parameters . .. 
3.4. Embedding Dimension 

For a high dimensional system, evaluation of invariant parameters by 
increasing dimension of the phase space from I to a max value is tedious and 
time consuming. So embedding dimensi~n dE is found using the method of 
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false nearest neighbors (Abarbanel tit al .• 1993). In this method Euc1idean 
distance between a point and its nearest neighbors as the point moves from d 
dimensional space to d + I dimension is found and if the distance in high 
dimensional space is larger than a threshold R", false neighbors aTC identi­
tied. Since data set is limited, a second threshold criterion A, hased on the size 
of'the attracror is also found. 

The embedding dimension dE is the dimension at which percentage of 
false nearest neighbor become zero. It has been found that for nonnal eyes 
closed data dE is around 9 and for epileptic data d f ; is around 7. 

3.5. Analysis Procedure 

The data set selected from each channel simultaneously consists of 12000 
points and they are grouped into different nonovedapping window of length 
1000 points. Thus each window number corresponds to 1000 data points. 
The invariant parameters D2 and Ki"are evaluated for different values or 
time lag for a single window cor.responding to norma! eyes closed as \\I'ell 
as for epileptic condition. This is done to study the variation of these 
parameters with respect to time lag, Then we determined the time lag using 
average mutual information criteria.and the embedding dimension with the 
threshold R,.fixcd at 10 and AI at 2 for each nonovertapping sliding 
window. Tbecorrelation ;ntegral' is evaluated for a few values of dimension 
greater than the embedding dimension. D2 is then evaluated with Ta from 
AMI whereas K2 is evaluated with T .. as well as with Ts. 

4. RESULTS AND DISCUSSIONS 

Any nonlincar dynamical system can be characterized only if aU its invariant 
~ranteters are determined. lhlsrequires tfle identification of different time 
sC-ales involved in the dynamical process. Since it has been theoretically 
established previously that human brain dynamics consist of a large number 
of time scales. a proper characterization is possible only if all its relevant time 
scales are identified. By calculating Td from AMI. jt has been found that the 
values of T" are distinctly different fOir different windows. as shown in Fig­
ure I. as well as for different channels. Since this time lag is a measure of time 
scale in the system, the variation of this proves the existence of different time 
scales in the dynamics. To further empha:llze thisaspecL lIsing AMI .. we 
i;alculated the average value oftime lag, Tav for five adjacent windows as well 
as evaluated time lag, T gr. groupi~g till! same five windows together (5000 
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10 

c 

3+1------~------~------~----~------~ 
1 3 5 7 9 11 

window number 

FIGURE I Variation (}f 11 (1'".:1',) with respect to window numbers at Fpl for normal eyes 
dosed data. .. 

TABLE 11 Comparison of T:1v and Tgr during nonnal eyes clo~d an epileptic e.mdilions 

('It(jJ/IW/ No. 

3 
4 
5 
(i 

7 
8 

(NilTn/{I/ eyes c/o.\'t'd) 
Tar T1( ., 
7.0 7.0 
7.1 s~n 
7.0 7.0 
7.1 8.0 
8.0 Itn 
S.O a,O 
(1.8 7.0 
7.0 8.0 

(El'ilt'plit' ,1i.,~·IUlrge) 
Tal' 7~r 

13.4 
20 
IS 
13 
n.6 
11.6 
15,4 
17.2 

20 
18 
15 
13 
~3. 
20 
22 
20 

data points) for epileptic as well us for normal eyes closed case. For the 
epileptic condition these windows are selected as one with predominant 
epileptic discharge and two o,n either side. In thE case of normul subjects with 
eyes closed. Tavand Tgr ate very close and very often coincides for most of 
the channels whereas for epileptic data the values are quite apart in many of 
the channels as given in Table n .. Even though the. variation of time lag is an 
indication of time scale in thdystem. the difference in Tgr and Tav. especially 
when Tgr greater than Tav indicates ~at during the epileptic condition the 
lime sc'clles involved in the dynamics are more compared to normal eyes 
closed condition. Further it has been found that for those windows with 
epileptic discharge. the vaJueo(T" is comparatively larger than that of other 
windows. This is because during epileptic discharge many relevant time scales 
are introduced in the dynamics which a~ reflected in Tt!. As time scales are 
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very much related to nonslationary nature of EEG, a proper study of human 
brain dynamics is possible only if all the relevant time scales are identified and 
incorporated in the analysis. 

In spite of these limitations several attempts are made to study the 
dynamics of human brain from the nonlinear standpoint. But the fact that 
many evaluate the invariant parameters D2 and K2 at the same value of 
time lag (Popivanov el al .. 1998). The evaiuation of invariant parameters. 
especially dynamical parameters, for pathological conditions need caution 
as they involve interaction of different time scales. It has been found that for 
normal eyes closed condition K2 with T" as well as K2 with Ts shows a 
certain degree of 'parallelism' in variation with respect to windows as shown 
in Figure 2. However K2 with Td and K2 with Ts bears no resemh/allce 

70 

60 

50 

40 

~ 
30 

20 

10 

0 -, 

1 3 5 7 9 11 13 IS 

window number 
FIGURE 2 K2 for .resting state {eyes cl~1 against window numbers at FpL Curve (al 
corrcspml<h to T" Curve ,b) CQrrespofld~ 1,1 1:1, 
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whatsoever for epileptic condition as has shown in Figure 3. The variation 
of K2 with respect to different values of time tag for the case of epileptic as 
well as for normal eyes closed condition are identical as shown in Figure 4. 

However, K2 with Ts has larger value and variation compared to K2 with 
Td• This is because during, epileptic condition the time scales involved in the 
process are more, which is turn show a larger value of Td in AMI criteria. As 
time Jag increases in the phase space reconstruction, many interactions are 
lost which in turn masks the dynamics corresponding to time scales within 
the time Jag Ta. This effects the evaluation of entropy. Hence K2 with T.t 
shows more variation compared to K2 with Td in the case of epileptic 'data. 
This indicates that the criteria of selecting time 1ag for the evalua.tion of 
invariant parameters from average mutual information or any of the similar 
criteria should be used only for D2 not for K2. K2 being a dynamic 

60~--------------------------------~ 

50 

40 

~ 30 

20 

10 

1 4 7 10 13 

window number 
FIGURE:3 K2 for epileptic condition against wifdow numbers at Fp I. Curve (a) corresponds 
to T •. Curve (b) corresponds to T d-
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75 
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25 
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o 2 4 .. 6 
n 

8 10 12 

FIGURE 4 Variation of' K2 agllinst different values of titnela$ Ta'" liT .. Curve (a)corre­
sponds tn normal eyes closed condition. Curve (b) dUring epileptic discharge. 

sf 

parameter should be evaluated with time lags as small as possible to 
incorporate as many time scales as possible. 

5. CONCLUSIONS 

This paper has two signif1cant results. In the first place we have shown the 
real importance of time scales as they are indeed crucial in the study of brain 
functioning. We have shown how to obtain a relevant time scale pertaining 
to a particular state of the briin. Since we have performed a global analysis 
by taking an eight channel output, we haVe shown that fhese characteristics 
time scales vary with the different locations and during. an experience) a 
large number of attractors are present in the brain and they obviously must 
be inleractingarnongst each other. These time scales are either a single scale 
or as a group of scales can be a se~of synergic time scales and are not 
fundamental ones. Hence each time scale is a consequence of combination of 
various fundamental scales which combine in a nonlillear manner. It is 
indeed difficult or rather impossible to break down this synergic time scale 
into fundamental components. One method is to formulate a nonlinear theory 
for the process and evaluate a sy~rgic frequency as was done by Pratap 

~ 
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(1999) for the case ofsynaptic transduction. Thus we have an "attractor gas" 
in the brain some or many of them being strange ones with fractal dimension. 
It may also be realized that these attractors change their characteristic 
parameters, resulting in non stationary nature in the time series. Hence. one 
has a system of grand canonical ensemble of strange attrut:lnrs with its 
characteristics including its number ever changing. It is also true that the 
system is thermodynamically open. We shall be working out the thermo­
dynamics of this attractor·- strange attractor gas in near future. 

The second result is of clinical importance. It has been shown that the 
information capacity K2, which is a dynamical parameter. is signifieJlftdy 
sensitive to the choice of time scale. In determining D2 and K2. the same 
time lag detemlined from AMI is generally used. While this time lag indeed 
gives a good measure of DZ. any time scale shorter than this is being 
averaged out which in turn affects thecvaluation of information capacity. 
Thus in the study of various dynamical conditions of brain one must choose 
time lag as small as possible to inco1f,orate many time scales involved in the 
dynamical process. Nevertheless, this prescription is more useful to get a 
qualitative insight in the functioning of such a co~plex; nonlinear. nonequi. 
librium system such a,s human brain. 
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I. APPENDIX 

From Table I, using the parameters we construct a dimensionless C9Q.$tant 
as 

r = c/iVjl'uPmqn' 

= (MLT-2)1/2(LT-I)j(MLJT-2t/2(T~P)(M")(L -3,). (1) 

Equating powers of M, Land T on ~th sides we ha~e. 

i!2 + k/2 + q == 0 (2) 

i/2 + j + 3/2k - 3r = 0 (3) 

If 
-i-j-k-p=O (4) 

We have only three equations with six unknowns, so expressingp, q and rin 
terms of i, j and k. we get 

p= -I -j-k 

q= -i12 -k12 

r = ,::3/2i + 1[3j + 1/2k 

Substituting (5), (6) and (7) in (1) we obtain. 

r::::: (qin lJ3jm,})i/2( Vn1/3/u)j(£o en/m,}-}k/2 

:= (ifJ2nI/3/m,}Yf( Vnl"'u),(eo t?n/m,})Z 

(5) 

(6) 

(7) 

The variables x, y and z are natural numbers and can take different values 
depending on the dynamics. 
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