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We propose to show in this paper, that the time series obtained from biological systems such as
human brain are invariably ‘nonstationary because of different time scales involved in the
dynamical process. This makes the invariant parameters time dependent. We made a global
analysis of the EEG duta obtained from the eight locations on the skull space and studied
simultancously the dynamical characteristics from various paris of the brain. We have proved that
the dynamical parameters are sensitive 10 the ssne scales and hence inthe study of brain one'must.
identify ull:relevant time scales involved in the process to get an insight in the working of brain.

Kevwords: EEG: chaotic dynamics:-entropy: time scale

1. INTRODUCTION ‘ .

During the last decade there has been a great interest in the characterization of
several physical and biological systems using the methods in nonlinear
dynamics and deterministic chaos (Ott 1993). The methods of characteriza-
tiondepend mmniy on the evaluation of ergodic measures such as dimensions.

entropies, Lyapunov exponents etc. These parameters are evaluated from a
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scalar time series obtained either from experiments or simulation of models
{Abarbanel er af., 1993). In general, there are two approaches, meétric and
topological to characterize complex systems. In metric approach, the
probability of finding a set of points within a hypersphere with a preassigned
radius in a phase space is a measure, whereas in topological approach, the
number of unstable periodic orbits are estimated to study the dynamics of a
system {Badii, 1994). Biological systemsare found to exhibit chaotic behavior.
However, the evaluation of invariant parameters from observed time series
have posed difficulties mainly due to the presence of noise, nonstationarity.
finite data length ezc. (Rapp. 1989).

Numerous authors (Jansen et al., 1993) have reported the evidence of
chaotic behavior in human brain, by evaluating some of the ergodic
parameters from EEG signals. However, the existence of low dimensional
chaos has recently questioned (Theiler and Rapp, 1996). Using the methods
of surrogate data analysis (Theiler er al., 1992), while the -existence of
monlinearity has been confirmed in EEG signals, the low dimensionality is
still in debate. The reliability of surrogate data analysis has recently been
réexamined and it has been found that this test alone may not be sufficient
to distinguish colored noise from low dimensional chaos (Pradhan and
Sadasivan, 1997). It should further %€ emphasized that the ergodic param-
eters afe indeed important, the ultimate goal should be an understanding
of the dynamics of the system. [t is therefore time that we should try to make
models that would generate these parameters and which has predictive
capabilities. We therefore propose to lgok at the problem ab initio from the
dynamical point of view. Hence our approach is not to discuss the existence
or otherwise of chaos in the human brain, but to discuss nonstationarity
and its effect on information capacity in an EEG time series analysis. It has
increasingly been realized that the real world data sets are nonstationary.
Nonstationary nature can mainly be due to two reasons: it could be due
to introduction of new time sgales by new dynamical process that could be
switched on during a process or it could be vartous distinctly different pro-
cesses, dynamical processes, that could exist in the system. If these time scales
are not widely separated, they could overlap in a nonlinear fashion thereby
making it complex.

It shouid be pointed out that if the#time series is nonstationary then the
different measures would also be time dependent unlike the case of station-
ary time series where these measures are independent of time. This is precisely
what we propose to discuss in this paper.

This paper is organized as follows: In Section 2 we derive a general time
scale by performing a dimensional a?'xalysi's of the various known parameters
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in neural systems. In Section 3 we give a brief discussion of data collection
and the methods of analysis. The next section gives an account of the results
and discussions. The final section gives the main conclusion as well as future
direction of work.

2, TIME SCALES

EEG is recordings of electric potentials generated in the cerebral cortex by
a large number of neurons, which are integrated at various stages of.its
propagation from the input to the central nervous system. These generate
collective modes, which on the cortex are recorded in EEG. It has been
pointed out that the amplitude of the action potential generated by the
individual neuron is constant while the firing frequency is a linear function,
as far as measurements go, of the applied stimulus strength. A simple addi-
tion of these amplitudes, however, cannot reproduce the observed charac-
teristics of EEG. Hence the integration process should be an involved
mechanism. Further, it has been found that the electrical characteristics of the
action potential is quite different from those of EEG. The characteristic time
scales of different waves of EEG is of tiig order of 0.1 second where as that of
the action potential is ~ 1 millisecond. A factor of hundred between two time
scales implies that the human brain has a wide range of time scales resulting in
being highly nonlinear on¢ and that it is thermodynamically open with
feedback and feed forward process. Hence the construction of general time
scale starts with identifying differeént characteristic parameters in neuron
dynamics,

The human brain consists of about 10'® neurons of which about 1 to 2%
are active and they are connected in a certain pattern. These connections
change with the input signals. Hence, to study the collective effects in the
cortex we have to take into account the dynargics of the individual neuron,
which contribute towards collective effects. The most significant feature in
the neuron dynamics is the firing potential, ¢ which is about 100 millivolts
above the resting potential, and is constant for all neurons. The next is the
firing frequency, which is the inverse of the refractory time. It is usually
about 1000 Hz and is linearly dependént on the stimulus strength. Since the
firing poténtial is electrical in nature, they are generated by the various ions
such as sodium, potassium, calcium ese., and these are characterized by the
electrical charge (¢) and ion mass (m) as well as the number density (n).
Furthermore, the chemical process also play a significant role in the signal
transmission by changing the conductivity. We shall include this by a

Ll
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nondimensional parameter, ¢, representing the conductivity. These param-
eters along with the numerical values are given in Table 1.

Using these parameters, we perform a dimensional analysis following
Balescu (1975). We find a non dimensional parameter (details are-given in
Appendix ). '

D= (&n’/s/mv 2)“‘( Vn”"/v)”(so ezn/muz’): m

And a general time scale T as

T=Tv" =a'b’ (say) (2)
In (2)

a. ratio of electric {requency to firing frequency,
b. ratio of mechanical frequency to firing frequency,
¢. ratio of plasma frequency to firing%requency.

The v, y and z are natural numbers. It could be real or complex, rational
or irrational or integers. If they are complex, the process could have an
amplitude and phase. If they are ra}ionah the frequencies are compatible
while if the frequencies are irrational, they are incommensurate. Again we
can write (e, ¢° njmi’) as (€, w}/v?) with w, as plasma frequency. From (1)
it is very clear there exists three fold infinite time scales in the system. This
point is very important in the analysis of EEG signals. By proper choice of
variables x, ¥ and 2z some of the knowns relevant time scales can be obtained.
Some of the relevant time scales are derived below.

() Sodium Potassium pump, The sodium potassium pump depends on the
threshold potential and hence on ¢. Since it is a chemical process
depending on the number of sodium ions going in and potassium jons
coming out during depoLarization phases, the time scale should depend

TABLE | Different parameters used in the construction of general time scale

Name Symbol . Dimension Order of mugnitude
Action potentini I {(MLT?? 107 volts
Propagation speed v 3 LTt 100 m/seconds
Fiting fréquency v T! 1000 Hz
tonic charge q ML T3 1.6 x 10~ Caulomb
Jonic mass m M 107 kg

Tonic degsity n L -

Medium effect e - . L

Ion plasma frequency w} T2 10%7 1 ¥ 0! radisec

square t
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on mass and number density, but not on the firing frequency. To get
relevant time scale corresponding to this process, one must choose
y=z=0.and x = —~ 1/2. Thus relevant time scale.for this process is

Tp = (mjg*n'?) ~ 10"

with ¢ ~ millivolts and n~ 100

(2} Synaptic transduction. In the synaptic transduction, the process depends
on the dielectric characteristics of the synaptic cleft as also on the speed
at which the signal arrive at the presynapse as well as the thrcsgg}d
potential. However, there is no explicit dependence on the number
density, sincé there is a randomness in the injection of neurotransmitiers
in the cleft due to the discharge of vesicles, We construyct such a time
scale by a proper choice of x, ¥, zviz., x = —y =z = — 1/2, Thus the
time scale is obtained as

E ]

Ts = (mV vfe,otwi)'? (4)

(3) Collective modes. At various stages in .a neural system, there are
integration ‘processes operative. The threshold potential is a conse-
quence of the integration process. In a single neuron or in the case of
synaptic transduction the process is always collective in nature. Also in
the case.of EEG signals, the process is indeed a collective one which does
not exhibit all the apparent regularities seen in a single neuron firing
sequences or the signal transnfssion from a presynapse to a post-
synapse. If we consider this as a self-consistent process, which is in gen-
eral responsible for the collective modes, then the relevant time scale
i the interaction time scale,

, F~172
Ti = (e,w})” (5)
F
and this is obtained by setting x-= y = 0 and z = — 1/2. Thus different time
scales for different mechanism could be derived from the general time scale.
There may be other relevant parameters, however, we have considered only

some of the known ones. .

Various algorithms developed till now in the evaluation of ergodic
parameters are suitable only for stationary data set (Grassberger and
Procaccia, 1983). However for nonstationary data set, these parameters are
slowly varying functions of time (Pradhan and Dutt, 1993). Hence, in
choosing the data length, the number &f data points must be sufficiently
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large in comparison with natural timic scale in the system. This requires the
identification of different time scales involved in the dynamical process.
Many authors in studying the dynamics of human brain have ignored the
role of time scales, Parikh and Pratap (1983) developed an evolutionary
equation in the framework of nonequilibrium statistical mechanics develop-
ed by Prigogine and his Brussel School in which the significance of time
scales has been stressed. Further, Pratap (1999) formulated a theory of sensory
transduction considering the interaction time scale. Our purpose is to study
the relevance of time scales in the dynamics of brain observed in EEG signal,
especially on nonstationarity and Kolmogorov entropy.

3. MATERIALS AND METHODS

3.1. Data Collection

Five subjects who were known epileptics with uncontrolled seizures in the age
group of 2025 years were recruited for this study. Despite anticonvulsant
medication the subjects showed seizure discharges in EEGs. The eight
channels of EEG data are collected using International 10-20 system with
an EEG machine coupled to a PC using Analog to Digital Converter (DT -
2841) and an array processor (DT-7020). The eight scalp loci are Fpl, Fp2.
F7, F8, T3, T4. O and O2. The sampling is done at the rate of 256 samples/s/
channel. The data are filtered using a bandpass (0.25~-32Hz) fourth order
Butterworth filter twice cascaded. The 8ata were visually screened to remove
artifacts as well as to identify epochs containing epileptic discharges. This
was done by two experts who differed in their scoring by less than 5%, The
differences were resolved by discussion and a consensus rating was assigned
to the discrepantly rated epochs. The data from five normal volunteers
without any history of neuropsychiatric illness or intake of any psychotropic
drugs who were in the age gfoup of 20-23 years were also collected.

3.2. Correlation Dimension and Kolmogorov Entropy

The scalar time series obtained is reconstructed in a phase space using the
famous time delay embedding (Abarbfinel, 1993). Thus a multivariate vector
Xy = {x(D), xU+Tg), xG+2T) .o oveenen... e XEH{d - DTHL ina
d dimensional phase space, where i = 1.2,... N —d, is formed. The time lag
T4 = nT, nis an integer and T is the sampling time, is arhitrary but is fixed
gither using the autocorrelation fugction (ACF) to decay o 1/2 or the first
minimum in the average mutual information {AMJJ curve. The basic
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procedure for the evaluation of the correlation dimension, D2 and
Kolmogorov: entropy, K2 is by using Grassberger Proccasia algorithm
(GPA) (Grassberger and Procaccid, 1983).

However, the accuracy of invariant parameters depends on the number.
of data points, time lag and several other factors. EEG time series are
nonstationary, hence, it is not possible to consider a large number of data
points. Further, because of high dimension nature of the signal and limited
data set it is difficult to obtain a proper scaling region using: GPA. So we
applied a modified algorithm (Havstad and Ebhlers, 1989). In this method
instead of finding the numberof data poi’nts less than a preassigned radius r,
the number of data points are fixed and the radius r is varied to evaluate
correlation integral.

This algorithm has been checked using the time series generated from
Henon map and logistic equation with standard values.

3.3, Selection of Time Lag

As mentioned earlier, the time lag T; can be fixed either using the criteria of
ACF to decay to l/e or the first minimum in the AMI. The latter criterion is
preferred, as it is a kind of generalizatihp to the nonlinear world whereas the
former is & correlation in the linear world (Abarbanel ez al., 1993). Using
information. theory, the average mutual information between the observa-
tions at n and n + T is found for different values of 7'

I(T) = £ P (x(n), x{n + T)) log{P {x(n). x{n + T))/P (x(n))P (x(n + )}
(6)
where P{x{k)} is the probability of measuring x(k).and P(x(k), x(k+ T )) is
the joint probability of measuring x(k) and x{(k+ T ).

From (6) the first minimum of X{T") is used as time lag T, for phase space
reconstruction. It should, however; be realizedsthat this way of selecting the
time lag could introduce a discrepancy since 4 finite time lag would imply an
averaging process in time during the interval 0 — 7, and any scale in the
range of 0 < T < T, will not be taken into account. This point is very
important in the evaluation of dynatﬁical parameters,

34, Embedding Dimension

For a high dimensional system, evaluation of invariant parameters by
increasing dimension of the phase space i;):om 1 to a max value is tedious and
time consuming. So embedding dimension d is found using the method of

&%
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false nearest neighbors (Abarbanel ¢f al., 1993). In this method Euclidean
distance between a point and its nearest neighbors as the point moves from d
dimensional space to d-+ 1 dimension is found and if the distance in high
dimensional space is larger than a threshold R,., false neighbors are identi-
fied. Since data set 1s Jimited, a second threshold criterion 4, based on the size
of the attractor is also found,

The embedding dimension dg is the dimension at which percentage of
false nearest neighbor become zero. It has been found that for normal eves
closed data dp is around 9 and for epileptic data oy is around 7.

3.5. Analysis Procedure

The data set selected from each channel simultaneously consists of 12000
points and they are grouped into different nonoverlapping window of length
1000 points. Thus each window number corresponds to 1000 data points.
The invariant parameters D2 and KZ*are evaluated for different values of
time lag for a single window corresponding to normal eyes closed as well
as for epileptic condition. This is done to study the variation of these
parameters with respect to time lag. Then we determined the time lag: using
average mutual information criteriasind the embedding dimension with the
threshold R, fixed at 10 and A, at 2 for each nonoverlapping sliding
window, The correlation integral is evaluated for a few values of dimension
greater than the embedding dimension. D2 is then evaluated with 7; from
AMI whereas K2 is evaluated with Taas well as with T,

4. RESULTS AND DISCUSSIONS

Any nonlinear dynamical system can be characterized only if all its invariant
parameters are determined. This requires the identification of different time
scales involved in the dynamical process. Since it has been theoretically
established previously that human brain dynamics consist of a large number
of time scules, a proper characterization is possible only if all its relevant time
‘scales are identified. By calculating T, from AMI, it has been found that the
values of T, are distinctly different f& different windows. us shown in Fig-
ure 1, as well as for different chaiinels, Since this time lag is a4 measyre of time
scale in the system, the variation of this proves the existence of different time
scales in the dynamics. To further emphasize this aspect. using AMI, we
calculated the average value of time ldg, Tav for five adjacent windows as well
as evaluated time lag, Tgr. groupmg ‘the samie five windows together {5000
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3 : — —
1 3 5 7 9 11

window number

FIGURE 1 Variation of n {7,/ T, with respect to window numbers at Fpl for normal eyes
closed data, -

TABLE N Comparison of Tav and Tgr during normal eyes closed an epileptic conditions

Channet No, {(Normal eves closed) (Epiteptic discharge)
Tay Te Tar Tyr
1 7.0 70 134 20
? 71 84 0 e
3 70 70 13 s
4 1.7 8.0 13 R
5 8.0 R0 1.6 23
6 8.9 80 1.6 20
7 68 1.0 154 2
H 70 8.0 17.2 20

data points). for epileptic as well as for normal eyes closed case. For the
epileptic condition these windows are selected as one with predominant
epileptic discharge and two on either side. In thg case of normal subjects with
eyes closed, Tavand Tgr are very close and very often coincides for most of
the channels-whereas for cpileptic data the values are quite apart in many of
the channels as given in Table I1. Even though the variation of time lag is an
indication of time scale in the system, the difference in Tgr and Tav, especially
when Tgr greater than Tav indicates #hat during the epileptic condition the
time scales involved in the dynamics dre more compared to normal eyes
closed condition. Further it has been found that for those windows with
epileptic discharge, the value of T, is comparatively larger than that of other
windows. This is because during epileptic discharge many relevant time scales
are introduced in the dynamics which af reflected in T, As time scales are

&7
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very much related 10 nonstationary nature of EEG, a proper study of human
brain dynamics is possible only if all the relevant time scales are identified and
incorporated in the analysis.

In spite of these limitations several attempts are made to study the
dynamics of human brain from the nonlinear standpoint, But the fact that
many evaluate the invariant parameters D2 and K2 at the same value of
time lag (Popivanov er al.. 1998). The evaiuation of invariant parameters.
especially dynamical parameters, for pathological conditions need caution
as they involve interaction of different time scales. It has been found that for
normal eyes closed condition K2 with T, as well as K2 with 7, shows a
certain degree of "parallelism’ in variation with respect to windows as shown
in Figure 2. However K2 with 7, and K2 with 7, bears no resemblance
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window number

FIGURE 2 K2 for resting state {eves c't%scdl against window numbers at Fpl. Curve {3)
corresponds 1o T Curve (b} corresponds 15 7,
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whatsoever for epileptic condition as has shown in Figure 3. The variation
of K2 with respect to different values of time lag for the case of epileptic as
well as for normal eyes closed condition are identical as shown in Figure 4.

However, K2 with T, has larger vatue and variation compared to K2 with
T, This is because during, epileptic condition the time scales involved in the
process are more, which is turn show a larger vatue of T;in AMI criteria. As
time lag increases in the phase space reconstruction, many interactions are
lost which in turn masks the dynamics corresponding to time scales within
the time lag T, This effects the evaluation of entropy. Hence K2 with 7%
shows more variation compared to K2 with T, in the case of epileptic data.
This indicates that the criteria of selecting time lag for the evaluation of
invariant parameters from average mutual information or any of the similar
criteria should be used only for D2 not for K2. K2 being a dynamic

60 -

window number

FIGURE3 K2 forepileptic conditionagainst wigdow niumbers at Fpl. Curve (a) corresponds
to0. T, Curve (b) corresponds to Ty
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FIGURE 4 Variafion of K2 against different values of time lag 7, = #T,. Cuirve (a} corre-
sponds to normal eyes:closed condition. Curve (b) during epileptic discharge.
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parameter should be evaluated with time lags as small as possible to
incorporate as many time scales as possible.

5. CONCLUSIONS

This paper has two significant results. In the first place we have shown the
real importance of time scales as they are indeed crucial in the study of brain
functioning. We have shown how to obtain a relevant time scale pertaining
to a particular state of the brgin. Since we have performed a global analysis
by taking an eight channel output, we have shown that these characteristics
time scales vary with the different locations and during an experience, a
Jarge number of attractors are present in the brain and they obviously must
be interacting amongst each other. These time scales are either a single scale
or as a group of scales can be a sefof synergic time scales and are not
fundamental ones. Hence each time scale is a consequence of combination of
various fundamental scales which combine in a nonlinear manner. It is
indeed difficult or rather impossible to break down this synergic time scale
into fundamental components. One method is to formulate a nonlinear theory
for the process and evaluate a synergic frequency as was done by Pratap
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(1999) for the case of synaptic transduction. Thus we have an “attractor gas”™
in the brain some or many of them being strange ones with fractal dimension.
It may also be realized that these atiractors change their characteristic
parameters, resulting in nonstationary nature in the time series. Hence, one
has a system of grand canonical ensemble of strange attractors with its
characteristics including its number ever changing. It is also true that the
system is thermodynamically open. We shall be working out the thermo-
dynamics of this attractor - strange attractor gas in near future,

The sécond result is of c¢linical importance. It has been shown that the
information capacity K2, which is a dynamical parameter, is significiitly
sensitive to the choice of time scale. In determining D2 and K2, the same
time lag determined from AMTI is generally used. While this time lag indeed
gives a good measure of D2, any time scale shorter than this is being
averaged out which in turn affects the evaluation of information capacity.
Thus in the study of various dynamical conditions of brain one must choose
time lag as small as possible to.incorporate many time scales involved in the:
dynamical process. Nevertheless, this prescription is more useful to get a
qualitative insight in the functioning of such a complex, nonlinear, nonequi-
librium system such as human brain.
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I. APPENDIX

From Table I, using the parameters we construct a dimensionless copstant
as

I'= ¢V Pmin’
= (MLT 32 (LT- Y (MU T-2MHT-2)(M7)(L™™). Q)]

Equating powers of M, L and T on b%th sides we have,

i24k/24+q=0 (2)

if24j43/2%k~3r=0 ’ (3)
&

~i—j—k-p=0 )

We have only three equations with six-unknowns, so expressing p, g and 7 in
terms of /, j and k, we get

E ]
p=—i—j—k (3)
= —i/2—k[2 (6
r=g3/2i+1/3 % 1/2k (7

Substituting (5), (6) and (7) in (1) we obtain,

[ = (¢*n" 3/r’rn/z)'.’{‘ﬂ‘( Vn‘ﬁ/u') Jlgs ezn/mzz’“)k'[ 2
= (' n YA Y (V') e, Enfm)

The varidbles x, y and z are natural numbers and can take different values-
depending on the dynamics.





