STUDIES ON SOME GRAPH

OPERATORS AND RELATED TOPICS

Thesis submitted to the
Cochin University of Science and Technology
for the award of the degree of

DOCTOR OF PHILOSOPHY

under the Faculty of Science

By

MANJU K. MENON
Department of Mathematics

Cochin University of Science and Technology

$$
\text { Cochin - } 682022
$$

Certificate

This is to certify that the thesis entitled 'Studies on some graph operators and related topics' submitted to the Cochin University of Science and Technology by Ms. Manju K. Menon for the award of the degree of Doctor of Philosophy under the Faculty of Science is a bonafide record of studies carried out by her under my supervision in the Department of Mathematics, Cochin University of Science and Technology. This report has not been submitted previously for considering the award of any degree, fellowship or similar titles elsewhere.

Dr. A. Vijayakumar
(Supervisor)
Reader
Department of Mathematics
Cochin University of Science and Technology
Cochin- 682022, Kerala.

Cochin-22
12/03/09.

Declaration

I, Manju K. Menon hereby declare that this thesis entitled 'Studies on some graph operators and related topics' contains no material which had been accepted for any other Degree, Diploma or similar titles in any University or institution and that to the best of my knowledge and belief, it contains no material previously published by any person except where due references are made in the text of the thesis.

Research Scholar
Registration No. 2488
Department of Mathematics
Cochin University of Science and Technology
Cochin-682022, Kerala.

Cochin-22
12/03/09.

Acknowledgement

'Gurur Brahma Gurur Vishnu Gurur Devo Maheswara

Gurur saakshat parahbrahma Thasmai sree gurave Namah' with this prayer in my mind, let me express my gratitude to the God Almighty for the completion of my thesis.

I would like to thank very sincerely all those who have helped me in many different ways to complete my research work. It gives me immense pleasure to thank all my teachers, relatives and friends who directly or indirectly helped me in my research work.

The greatest thanks I owe is to my supervisor and guide Dr. A. Vijayakumar, Reader, Department of Mathematics, Cochin University of Science and Technology for keeping my spirits up and my hamstrings in working order. He is such a guide one could hope for. I am indebted to the bright ideas and sharp eyes of him. His timely help, keen guidance and criticism with love and affection helped me a lot to complete my research work.

I am also grateful to Dr. R. S. Chakravarti, Head, Department of Mathematics, Cochin University of Science and Technology for his helps during my research work. I also thank teachers, office staff, librarian and former librarian of the Department of Mathematics for their helps of various kinds. My gratitude also goes to the authorities of Cochin University of Science and Technology for the facilities they provided and also to the National Board for Higher Mathematics for providing the research fellowship during the initial years of my research work.

I wish to express my sincere thanks to Prof. S. B. Rao, Director, C. R. Rao Advanced Institute of Mathematics, Hyderabad, India for spending his valuable time for the discussions with us. Also I express my feeling of gratitude to Dr. Daniela Ferrero, Department of Mathematics, Texas University, USA for introducing us the notion of the wide diameter and related topics and also for permitting to include our joint work in this thesis.

I acknowledge with gratitude Rev. Dr. Douglas Pinheiro,

Manager, Prof. P. J. Roy, Principal and Prof. K. V. N. Sarma, Head, Department of Mathematics of St. Paul's College, Kalamassery for their encouragement and support. I also remember with thanks our former manager Rev. Fr. Jose Chelangara, former principal Prof. V. X. Sebastian and former Head of the Department Prof. Titus Paul for their good wishes. I am also thankful to my colleagues in the Department of Mathematics of St. Paul's College, Kalamassery for their whole hearted support.

I express my feeling of gratitude to my Graph Theory friends Dr. G. Indulal, Dr. K. S. Parvathy, Dr. B. Radhakrishnan Nair, Ms. Aparna Lakshmanan, Ms. Nisha Mary Thomas, Ms. Seema Varghese, Mr. Pravas K. for their interest in my research work and they were always ready to share their bright ideas with me. I want to express my warmest thanks to my fellow research scholars Ms. Anu V., Ms. Chithra M. R., Dr. Babu S., Ms. Lalitha Haridas, Ms. Lexy Alexander, Mr. Manikandan R., Mr. Pramod P. K., Dr. Rajeswaridevi M. B., Mr. Ratheesh R., Mr. Santhosh Pandey, Mr. Sathian M. K., Mr. Shinoj K. M., Ms. Shiny Philip, Mr. Tonny K. B., Ms. Tresa Chacko and Ms. Viji M. for their inspiration on my work.

Some friends deserve special mention for their long term help in matters professional and personal. These good souls are Ms. Pramada Ramachandran and Ms. Savitha K. S.

My special thanks to Mrs. Prema Vijayakumar for her good loving words and encouragement.

I gratefully acknowledge my beloved father, Parents in-law, and my grand uncle Mr. C. N. U. Nair for their love, expectation, prayers and encouraging words. Also I would like to thank my brother, brother in law and sisters in law for giving me strength and encouragement through out my research. Finally but immensely I express my thanks to my husband Mr. Benoy P. and my son Master Mohith B. Nair for their love and support. But words are not enough to express my feelings towards them.

STUDIES ON SOME

GRAPH OPERATORS

AND RELATED TOPICS

Contents

1 Introduction 1
1.1 Basic definitions 7
1.2 Basic lemmas and theorems 24
1.3 New definitions 27
1.4 A survey of results 29
1.5 Summary of the thesis 34
1.6 List of publications 38
2 The P_{3} intersection graph of a graph 41
2.1 The P_{3} intersection graph of a graph 42
2.2 Forbidden subgraph characterizations 50
2.3 The chromatic number of $P_{3}(G)$ 53
2.4 Some other graph parameters of $P_{3}(G)$ 58
3 The edge C_{4} graph of a graph 69
3.1 The edge C_{4} graph of a graph 70
3.2 Diameter, Radius and Center 72
3.3 Some domination parameters in $E_{4}(G)$ 76
$3.4 E_{4}(G)$ and some graph classes 86
4 Dynamics of $P_{3}(G)$ and $E_{4}(G)$ 97
4.1 Dynamics of $P_{3}(G)$ 98
4.2 Dynamics of $E_{4}(G)$ 103
4.3 The touching number 105
5 The wide diameter and diameter variability 109
5.1 The w-wide diameter 110
5.2 The diarneter variability of some graph operators 115
5.3 The diameter variability of some graph operations 119
List of problems 125
List of Symbols 127
List of some special graphs 131
Bibliography 133
Index 143

Chapter 1

Introduction

Graph theory as a mathematical discipline was initiated by the renowned Swiss mathematician Leonhard Euler (1707-1783) in his famous discussion of the Königsberg Bridge problem entitled 'The solution of a problem relating to the geometry of position'. It was presented at the St.Petersberg Academy on 26th August, 1735. Unfortunately, this article of Euler, published in 1736, remained an isolated contribution for nearly a hundred years. However, in the middle of the nineteenth century, there was a resurgence of interest in the area of graph theory. The natural sciences exercised their influence through investigations of
electrical networks and models for crystals and molecular structure and theoretically, the development of formal logic led to the study of binary relations in the form of graphs.

Today, graph theory is a branch of mathematics which finds applications in many areas - anthropology, architecture, biology, chemistry, computer science, economics, physics, psychology, sociology and telecommunications, to name a few. The applications of graph theory in operations research, social science, psychology and physics are detailed in C. W. Marshall [61]. J. L. Gross and J. Yellen [34] discuss a variety of graph classes with numerous illuminating examples which are of topological relevance. The development of graph theory with its applications to electrical networks, flows and connectivity are included in [11] and [22]. Ramsey theory is an interesting branch of graph theory which relates to the number theory. In [22], R.Diestel covers all major developments in the subject. More recently, the exciting notion of 'Web graphs' [6] has been finding applications in very many different areas. Such graphs are examples of large, dynamic, distributed graphs and share many properties with several other complex graphs [64] found in a variety of
systems ranging from social organizations to biological systems. The best barometer to indicate the growth of interest in graph theory is the explosion in the number of pages that Section 05 : Combinatorics occupies in the Mathematical Reviews.

Volumes have been written on the rich theory and the very many applications of graphs. To name a few, [5], [9], [10], [32], [34], [35], [49], [71], [78]. This thesis entitled 'Studies on some graph operators and related topics' is a humble attempt at making a small addition to the vast ocean of results in graph theory.
'Graph operator' is a mapping $T: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ where \mathcal{G} and \mathcal{G}^{\prime} are families of graphs. Krausz [52] introduced the concept of the line graph and also that of 'graph operators'. He also gave a characterization of line graphs. Whitney [79] showed that every finite connected graph except C_{3} has at most one connected L-root.

The study of graph operators gained increasing importance
due to the study of its dynamics as detailed by E.Prisner [66]. The beginning of graph dynamics dates back to 1960 s, with the publication [36] by Harary and Norman, and also the three problems of great influence posed by Ore in his monograph [65], namely

1. Determine all graphs isomorphic to their interchange graph (line graph).
2. When the interchange graph is given, is the original graph uniquely determined?
3. Investigate the repeated interchange graphs.

In the graph dynamics terminology, the first problem deals with the 'fixedness' and the second and third will lead to the '1-periodicity' and 'convergence' or 'divergence'.

The 1960s were mainly devoted to the investigation of the line graph and the line digraph operators. Several solutions to Ore's problems for the line graph appeared in [8], [15], [72], [73]. The question of periodicity was considered only for the fixed graphs till 1970s. General periods were investigated by

Escalante [25] and it was studied for the line digraphs by Hemminger [42]. The transition number was first explicitly defined in [1].

While dealing with graph classes, a main source is the classical book by M. C. Golumbic [32]. Since then many interesting new graph classes have been studied as discussed in detail by A.Brandstädt, et.al. [13].

By applying graph operators also, we get some graph classes. The line graphs, Gallai and the anti-Gallai graphs, the cycle graphs and the edge graphs are some of the graph classes obtained by choosing appropriate graph operators. In fact, the intersection graphs form a sub collection of the graph classes obtained by using graph operators. The intersection graph is a very general notion in which objects are assigned to the vertices of a graph and two distinct vertices are adjacent if the corresponding objects have a non empty intersection. A variety of well studied graph classes such as the line graphs, the clique graphs and the block graphs are actually special types of inter-
section graphs. J. L. Szwarcfiter has made an excellent survey of the clique graphs [75]. The block graph [37], the square [38] and the complement [70] are some well studied graph operators.

Several graph operators and the dynamical behavior of these operators are extensively studied in [66].

It is interesting to study when the graph operators belong to some special graph classes. The inclusions between graph classes can be identified from their forbidden subgraph characterizations. The cographs, the split graphs, the threshold graphs and the line graphs are some of the interesting graph classes which admit finite forbidden subgraph characterizations and the perfect graphs, the distance hereditary graphs, the comparability graphs and the chordal graphs are some of the other interesting graph classes defined by forbidding an infinite collection of induced subgraphs.

While studying a graph operator, the study of its parameters such as clique number, independence number, chromatic num-
ber, domination number, diameter, radius, eccentricity, center etc are important. It is quite interesting to study the relationship between these parameters of G and those under graph operators.

This thesis is mainly concerned with the graph operators the ' P_{3} intersection graph' and the 'edge C_{4} graph'.

1.1 Basic definitions

The basic notations, terminology and definitions are from ([5], [14], [32], [66] and [78]) and the basic results are from ([13], [39], [45] and [77]).

Definition 1.1.1. A graph $G=(V, E)$ consists of a collection of points, V called its vertices and a set of unordered pairs of distinct vertices, E called its edges. If $|V|$ is finite, then G is a finite graph. The unordered pair of vertices $\{u, v\} \in E$ are called the end vertices of the edge $e=\{u, v\}$. When u and v
are end vertices of an edge, then u and v are adjacent. If the vertex v is an end vertex of an edge e, then e is incident on v. Two edges which are incident with a common vertex are said to be adjacent edges. The cardinality of V is called the order of G and the cardinality of E is called the size of G. A graph G of order n and size m is also denoted by $G=(n, m)$. A graph is the null graph, denoted by ϕ if it has no vertices and trivial if it has no edges.

Definition 1.1.2. The degree of a vertex v, denoted by $d(v)$ is the number of edges incident on v. A graph G is k-regular if $d(v)=k$ for every vertex $v \in V$. A vertex of degree zero is an isolated vertex and of degree one is a pendant vertex. The edge incident on a pendant vertex is a pendant edge. A vertex of degree $n-1$ is called a universal vertex. In a graph G, the maximum degree of vertices is denoted as $\Delta(G)$ and the minimum degree of vertices is denoted as $\delta(G)$.

Definition 1.1.3. A $v_{0}-v_{k}$ walk in a graph G is a finite list $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{k}, v_{k}$ of vertices and edges such that for $1 \leqslant$ $i \leqslant k$, the edge e_{i} has end vertices v_{i-1} and v_{i}. In the $v_{0}-v_{k}$ walk, v_{0} is the origin, v_{k} is the terminus and $v_{1}, v_{2}, \ldots, v_{k-1}$ are its internal vertices. If the vertices $v_{0}, v_{1}, \ldots, v_{k}$ of the above
walk are distinct, then it is called a path. A path from a vertex u to a vertex v is called a $\mathbf{u}-\mathbf{v}$ path. A path on n vertices is denoted by P_{n}. If the edges $e_{1}, e_{2}, \ldots, e_{k}$ of the walk are distinct, it is called a trail. A graph G is Eulerian if it has a closed trail containing all the edges. A nontrivial closed trail is called a cycle if its origin and internal vertices are distinct. A cycle with n vertices is denoted by C_{n}. The length of a walk, a path or a cycle is its number of edges. A graph containing exactly one cycle is called a unicyclic graph. A graph is acyclic if it does not contain cycles. The girth of $G, g(G)$ is the length of a shortest cycle in G. An acyclic graph has infinite girth. The circumference of $G, c(G)$ is the length of any longest cycle in G.

Definition 1.1.4. A graph $H=\left(V^{\prime}, E^{\prime}\right)$ is called a subgraph of G if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. A subgraph H is a spanning subgraph if $V^{\prime}=V$. The graph H is called an induced subgraph of G if E^{\prime} is the collection of all edges in G which has both its end vertices in $V^{\prime} .<V^{\prime}>$ denotes the induced subgraph with vertex set V^{\prime}. A spanning 1-regular graph is called a $\mathbf{1}$-factor or perfect matching. A graph G is \mathbf{H}-free if it does not contain H as an induced subgraph.

Definition 1.1.5. A graph G is connected if for every $u, v \in V$, there exists a $u-v$ path. If G is not connected then it is disconnected. The components of G are its maximal connected subgraphs. A connected acyclic graph is called a tree.

Definition 1.1.6. The distance between two vertices u and v of a connected graph G, denoted by $d(u, v)$ or $d_{G}(u, v)$ is the length of a shortest $u-v$ path in G. The eccentricity of a vertex $u, e(u)=$ maximum $\{d(u, v) / v \in V(G)\}$. The radius $\operatorname{rad}(G)$ and the diameter $\operatorname{diam}(G)$ are respectively the minimum and the maximum of the vertex eccentricities. The center of a graph $G, C(G)$ is the subgraph induced by the vertices of minimum eccentricity.

Definition 1.1.7. A chord of a cycle C is an edge not in C whose end points lie in C. A graph G is chordal if every cycle of length at least four in G has a chord.

Definition 1.1.8. A complete graph is a graph in which each pair of distinct vertices is joined by an edge. A complete graph on n vertices is denoted by K_{n}. The graph obtained by deleting any edge of K_{n} is denoted by $K_{n}-\{e\} . K_{3}$ is called a triangle and a paw is a triangle with a pendant edge. A clique is a
maximal complete subgraph. The size of the largest clique in G is the clique number $\omega(G)$. A clique of size k is called a k-clique.

Definition 1.1.9. A cycle C of G is a b-cycle of G if C is not contained in a complete subgraph of G. The bulge of $G, b(G)$ is the minimum length of a b-cycle in G if G contains a b-cycle and is ∞ otherwise.

Definition 1.1.10. The set of all vertices adjacent to a vertex v is called open neighborhood of v, denoted by $N(v)$. The closed neighborhood of $v, N[v]=N(v) \cup\{v\}$.

Definition 1.1.11. Assigning colors to the vertices of a graph is called a vertex coloring. If no two adjacent vertices receive the same color, then such a coloring is called a proper vertex coloring. The minimum number of colors required for a proper vertex coloring of a graph G is called its chromatic number, denoted by $\chi(G)$.

Definition 1.1.12. A property P of a graph G is vertex hereditary if every induced subgraph of G has the property P. A graph H is a forbidden subgraph for a property P, if any graph G which satisfies the property P cannot have H as an
induced subgraph.

Definition 1.1.13. A graph $G=(V, E)$ is isomorphic to a graph $H=\left(V^{\prime}, E^{\prime}\right)$ if there exists a bijection from V to V^{\prime} which preserves adjacency. If G is isomorphic to H, we write $G \cong H$.

Definition 1.1.14. Let G be a graph. The complement of G, denoted by G^{c} is the graph with vertex set same as that of V and any two vertices are adjacent in G^{c} if they are not adjacent in G. K_{n}^{c} is called totally disconnected. A graph G is self complementary if $G \cong G^{c}$.

Definition 1.1.15. A graph G is bipartite if the vertex set can be partitioned into two non-empty sets U and U^{\prime} such that every edge of G has one end vertex in U and the other in U^{\prime}. A bipartite graph in which each vertex of U is adjacent to every vertex of U^{\prime} is called a complete bipartite graph. If $|U|=$ m and $\left|U^{\prime}\right|=n$, then the complete bipartite graph is denoted by $K_{m, n}$. The complete bipartite graph $K_{1, n}$ is called a star. A graph G is complete multipartite if the vertices can be partitioned into sets so that $\{u, v\} \in E$ if and only if u and v belong to different sets of the partition. A complete k-partite
graph with partite sets of cardinalities $n_{1}, n_{2}, \ldots, n_{k}$ is denoted by $K_{n_{1}, n_{2}, \ldots, n_{k}}$.

Definition 1.1.16. A subset $I \subseteq V$ of vertices is independent if no two vertices of I are adjacent. The maximum cardinality of an independent set is called the independence number and is denoted by $\alpha(G)$. A subset $F \subseteq E$ of edges is said to be an independent set of edges or a matching if no two edges in F have a vertex in common. The maximum cardinality of a matching set of edges is the matching number and is denoted by $\beta(G)$.

Definition 1.1.17. A subset $K \subseteq V$ is called a vertex cover of G if every edge of G is incident with at least one vertex of K. The minimum cardinality of a vertex cover is the vertex covering number $\alpha_{0}(G)$.

Definition 1.1.18. For a graph G, a subset V^{\prime} of $V(G)$ is a k-vertex cut of G if the number of components in $G-V^{\prime}$ is greater than that of G and $\left|V^{\prime}\right|=k$. The vertex connectivity of $G, \kappa(G)$ is the smallest number of vertices in G whose deletion from G increases the number of components of G. A graph is n-connected if $\kappa(G) \geqslant n$. A vertex v of G is a cut vertex
of G if $\{v\}$ is a vertex cut of G. If G has no cut vertices, then G is a block. For $\{u, v\} \in V(G)$, the $u-v$ cut is a set $S \subseteq V(G)-\{u, v\}$ such that $G-S$ has no $u-v$ path. The edge connectivity of a graph $G, \kappa^{\prime}(G)$ is the least number of edges whose deletion increases the number of components of G.

Definition 1.1.19. A vertex x dominates a vertex y if $N(y)$ $\subseteq N[x]$. If x dominates y or y dominates x, then x and y are comparable. Otherwise, they are incomparable. The Dilworth number of a graph $G, \operatorname{dilw}(G)$ is the largest number of pairwise incomparable vertices of G.

As an example, $\operatorname{dilw}\left(C_{4}\right)=2$.

Definition 1.1.20. A subset $S \subseteq V$ of vertices is a dominating set if each vertex of G that is not in S is adjacent to at least one vertex of S. If S is a dominating set then $N[S]=V$. A dominating set of minimum cardinality in G is called a minimum dominating set, its cardinality is called the domination number of G and it is denoted by $\gamma(G)$.

Definition 1.1.21. A dominating set S is an independent dominating set if S is an independent set. The independent domination number of a graph $G, \gamma_{i}(G)$ is the minimum cardinality
of an independent dominating set in G. The minimum cardinality of a maximal independent set of vertices in G is also the same as $\gamma_{i}(G)$. A subset $S \subseteq V$ is a total (open) dominating set if $N(S)=V$. The total (open) domination number of a graph $G, \gamma_{t}(G)$ is the minimum cardinality of a total dominating set in G. A dominating set S is a connected dominating set if $\langle S\rangle$ is a connected subgraph of G and the corresponding domination number is the connected domination number $\gamma_{c}(G)$. A dominating set S is a paired dominating set if $\langle S\rangle$ has a perfect matching and the corresponding domination number is the paired domination number $\gamma_{p r}(G)$. The paired domination number exists for all graphs with out isolated vertices. A dominating set S is a clique dominating set if $\langle S\rangle$ is a complete graph. The minimum cardinality of a clique dominating set, if it exists is the clique domination number $\gamma_{c l}(G)$. A clique dominated graph is a graph that contains a dominating clique.

Definition 1.1.22. The subgraph weakly induced by a set S of vertices is the graph $<S>_{w}$ whose vertex set is $N[S]$ and whose edge set consists of those edges in $E(G)$ with at least one vertex, and possibly both, in S. A dominating set S is called a weakly connected dominating set if $\left\langle S>_{w}\right.$ is connected. The corre-
sponding domination number is weakly connected domination number, $\gamma_{w}(G)$. The cardinality of the weakly connected independent dominating set is the weakly connected independent domination number, denoted by $i_{w}(G)$.

For example:-

Figure 1.1.1

Then, $\gamma(G)=5(\{a, b, d, f, g\}$ is a dominating set of minimum cardinality),
$\gamma_{i}(G)=7(\{h, i, b, d, f, p, q\}$ is an independent dominating set of minimum cardinality),
$\gamma_{t}(G)=6(\{a, b, d, e, f, g\}$ is a total dominating set of minimum cardinality),
$\gamma_{c}(G)=7(\{a, b, c, d, e, f, g\}$ is a connected dominating set of
minimum cardinality),
$\gamma_{p r}(G)=6(\{a, b, c, d, f, g\}$ is a paired dominating set of minimum cardinality),
$\gamma_{w}(G)=5(\{a, b, d, f, g\}$ is a weakly connected dominating set of minimum cardinality),
$i_{w}(G)=7(\{h, i, b, d, f, p, q\}$ is a dominating set of minimum cardinality).

The graph G is not a clique dominated graph.

Definition 1.1.23. A subset $S^{\prime} \subseteq E$ is an edge dominating set if every edge not in S^{\prime} is adjacent to some edge in S^{\prime}. The edge domination number $\gamma^{\prime}(G)$ of G is the minimum cardinality of all edge dominating sets of G. A subset $S^{\prime} \subset E$ is an efficient edge dominating set for G if each edge in E is dominated by exactly one edge in S^{\prime}. The efficient edge domination number of G is denoted by $\gamma_{e}^{\prime}(G)$.

Definition 1.1.24. The intersection graph is a graph whose vertex set is a collection of objects and any two vertices are adjacent if the corresponding objects intersect. The intersection graph of all the edges of G is the line graph of G denoted by $L(G)$. Thus, the line graph $L(G)$ of a graph G is a graph that
has a vertex for every edge of G, and two vertices of $L(G)$ are adjacent if and only if they correspond to two edges of G with a common end vertex.

Illustration:

Figure 1.1.2

Definition 1.1.25. The k-path graph corresponding to a graph G has the set of all paths of length k as vertices and two vertices in the k-path graph are adjacent whenever the intersection of the corresponding paths form a path of length $k-1$ in G and their union forms either a cycle or a path of length $k+1$ in G.

Definition 1.1.26. For any graph G, the $n^{\text {th }}$ iterated graph under the operator Φ is iteratively defined as $\Phi^{1}(G)=\Phi(G)$ and $\Phi^{n}(G)=\Phi\left(\Phi^{n-1}(G)\right)$ for $n>1$. A graph G is $\Phi^{n}-$ complete if $\Phi^{n}(G)$ is a complete graph. We say that G is convergent under Φ if $\left\{\Phi^{n}(G), n \in N\right\}$ is finite. If G is not convergent under Φ, then G is divergent under Φ. A graph G is periodic if there is some natural number n with $G=\Phi^{n}(G)$. The smallest such number n is called the period of G. A graph G is Φ - fixed if the period of G is one. The transition number $t(G)$ of a convergent graph G is zero if G is periodic and is the smallest number n such that $\Phi^{n}(G)$ is periodic otherwise. A graph G is mortal if for some $n \in N, \Phi^{n}(G)=\phi$, the null graph. A semibasin is any subset B of the class of graphs \mathcal{G} with $\Phi(B) \subseteq B$. A basin is a semibasin B if its compliment is also a semibasin.

Definition 1.1.27. The touching number of a cycle is the cardinality of the set of all edges having exactly one of its end vertices on the cycle. For every integer $n \geqslant 3$, the n-touching number $t_{n}(G)$ of a graph G is the supremum of all touching numbers of C_{n}, provided G contains some C_{n}. If G contains no C_{n} then $t_{n}(G)$ is undefined. The vertex touching number of an induced C_{k} is the cardinality of the set of all vertices which
are adjacent to exactly one vertex of the C_{k}. The vertex touching number of a graph $v t_{k}(G)$ is the supremum of all vertex touching numbers of induced C_{k}, provided G contains some induced C_{k}.

For example, for the graph G in Figure 1.1.3, $t_{5}(G)=7$, $t_{3}(G)=5, v t_{5}(G)=1, v t_{3}(G)=5$.

Figure 1.1.3

Definition 1.1.28. A graph G whose vertex set can be partitioned into an independent set and a clique is a split graph.

Definition 1.1.29. A graph G is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of G.

Definition 1.1.30. A graph G is a threshold graph if it can be obtained from K_{1} by recursively adding isolated vertices and universal vertices.

Definition 1.1.31. A connected graph is a block graph if every maximal 2 -connected subgraph (block) is complete. A graph is a geodetic graph if for every pair of vertices there is a unique path of minimum length between them and a graph is weakly geodetic if for every pair of vertices of distance two, there is a unique common neighbor.

Definition 1.1.32. A graph that can be reduced to the trivial graph by taking complements within components is called a cograph.

Definition 1.1.33. For every integer $w: 1 \leqslant w \leqslant \delta(G)$, a w container between any two distinct vertices u and v of G is a set of ' w ' internally vertex disjoint paths between them. Let $C_{w}(u, v)$ denote a w-container between u and v. In $C_{w}(u, v)$, the parameter w is the width of the container. The length of the container is the longest path in $C_{w}(u, v)$. The w-wide diameter of $G, D_{w}(G)$ is the minimum number l such that there is a $C_{w}(u, v)$ of length l between any pair of distinct vertices u and v.

Figure 1.1.4

For this graph $G, C_{3}(a, b)=\{a-b, a-c-b, a-e-b\}$. Length of this $C_{3}(a, b)=2 . \quad D_{3}(G)=3$.

Definition 1.1.34. For any k, the diameter variability arising from the change of edges of a graph G are as follows.
$D^{-k}(G)$: The least number of edges whose addition to G decreases the diameter by (at least) k.
$D^{+0}(G)$: The maximum number of edges whose deletion from G does not change the diameter.
$D^{+k}(G)$: The least number of edges whose deletion from G increases the diameter by (at least) k.

Definition 1.1.35. The graph obtained from G by subdividing
each edge of G exactly once is called the subdivision of G and is denoted by $S(G)$.

Definition 1.1.36. The union of two vertex disjoint graphs G and H denoted by $G \cup H$ is the graph with vertex set $V(G) \cup$ $V(H)$ and edge set $E(G) \cup E(H)$.

Definition 1.1.37. The join of two graphs G and H denoted by $G \vee H$ is the graph obtained from the union $G \cup H$ by adding the edges $\{u-v: u \in V(G)$ and $v \in V(H)\}$. The graph $K_{1} \vee 2 K_{2}$ is called a bow. The moth [58] graph is $K_{1} \vee\left\{P_{3} \cup 2 K_{1}\right\}$.

Definition 1.1.38. The corona of two graphs $G_{1}=\left(n_{1}, m_{1}\right)$ and $G_{2}=\left(n_{2}, m_{2}\right)$, denoted by $G_{1} \circ G_{2}$, is the graph obtained by taking one copy of G_{1} and n_{1} copies of G_{2}, and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition 1.1.39. The cartesian product of two graphs G and H denoted by $G \times H$ is the graph with $V(G \times H)=\{(u, v)$: $u \in V(G)$ and $v \in V(H)\}$ and any two vertices $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$ $\in G \times H$ are adjacent if one of the following holds.
(i) $u_{1}=u_{2}$ and $v_{1}-v_{2} \in E(H)$
(ii) $u_{1}-u_{2} \in E(G)$ and $v_{1}=v_{2}$.

1.2 Basic lemmas and theorems

Lemma 1.2.1. [8] The line graph $L(G)$ has nine forbidden subgraphs.

Figure 1.2.1 gives the nine forbidden subgraphs of $L(G)$.

Figure 1.2.1

Lemma 1.2.2. [19] G is a cograph if and only if G is P_{4}-free.

Lemma 1.2.3. [68] If G is a cograph, then the domination number of G is at most two.

Lemma 1.2.4. [29] If G is a graph without isolated vertices, then $\gamma(G) \leqslant \operatorname{dilw}(G)$.

Lemma 1.2.5. [16] A graph G is a threshold graph if and only if $\operatorname{dilw}(G)=1$.

Lemma 1.2.6. [16] A graph G is a threshold graph if and only if G contains no induced $\left\{2 K_{2}, C_{4}\right\}$ and no P_{4}.

Lemma 1.2.7. [44], [48] A graph G is a block graph if and only if $b(G)=\infty$.

Lemma 1.2.8. [44], [48] A graph G is weakly geodetic if and only if $b(G) \geqslant 5$

Lemma 1.2.9. [30] A graph G is a split graph if and only if G contains no induced $2 K_{2}, C_{4}$ and no C_{5}.

Lemma 1.2.10. [77] For a connected graph $G, D^{+i}(G) \leqslant \kappa^{\prime}(G)$.

Lemma 1.2.11. [26], [31] A connected graph G is Eulerian if and only if the degree of each vertex of G is even.

Theorem 1.2.12. [15] For any graph $G=(n, m), \gamma^{\prime}(G) \leqslant$ $\lfloor n / 2\rfloor$.

Theorem 1.2.13. [4] For any connected graph G of even order $n, \gamma^{\prime}(G)=n / 2$ if and only if G is isomorphic to K_{n} or $K_{n / 2, n / 2}$.

Theorem 1.2.14. [4] For any tree T of order $n \neq 2, \gamma^{\prime}(T) \leqslant$ ($n-1$)/2, equality holds if and only if T is isomorphic to the subdivision of a star.

Theorem 1.2.15. [4] Let $G=(n, m)$ be a connected unicyclic graph. Then $\gamma^{\prime}(G)=\lfloor n / 2\rfloor$ if and only if G is isomorphic to either $C_{4}, C_{5}, C_{7}, C_{3, k}$ or $C_{4, k}$ for some $k \geqslant 0$.

Theorem 1.2.16. [41] For a connected graph G, $\operatorname{diam}(G)-1 \leqslant$ $\gamma_{c}(G) \leqslant 2 \beta(G)$.

Theorem 1.2.17. [23] For a connected graph $G, \gamma_{c}(G) \leqslant 2 \alpha(G)-$ 1.

Theorem 1.2.18. (Whitney's theorem) [79] Let G be a simple graph with at least three vertices. Then G is 2 -connected if and only if for each pair of distinct vertices u and v of G there are two internally disjoint $u-v$ paths in G.

Theorem 1.2.19. (Menger's theorem) [62], [21] Let u and v be two non adjacent vertices of a graph G. Then the maximum number of internally disjoint $u-v$ paths in G is the minimum number of vertices in a $u-v$ separating set.

Theorem 1.2.20. (Generalized Whitney's theorem) [17] A simple graph G is n-connected if and only if, given any pair of distinct vertices u and v of G, there are at least n internally disjoint $u-v$ paths in G.

1.3 New definitions

Definition 1.3.1. [59] The P_{3} intersection graph of a graph $G, P_{3}(G)$ is the intersection graph of all induced 3-paths in G. That is, $P_{3}(G)$ has the induced paths on three vertices in G as its vertices and two distinct vertices in $P_{3}(G)$ are adjacent if the corresponding induced 3 -paths in G intersect. If $a_{1}-a_{2}-a_{3}$ is an induced 3-path in G then the corresponding vertex in $P_{3}(G)$ is denoted by $a_{1} a_{2} a_{3}$.

Definition 1.3.2. A graph G is a P_{3} intersection graph if there exists a graph H such that $G \cong P_{3}(H)$.

In Figure 1.3 .1 a graph G and its $P_{3}(G)$ are shown.

Figure 1.3.1

Definition 1.3.3. [57] The edge C_{4} graph of a graph, $E_{4}(G)$ is a graph whose vertices are the edges of G and two vertices in $E_{4}(G)$ are adjacent if the corresponding edges in G are either incident or are opposite edges of some C_{4} in G. This graph class is also known by the name edge graph in [66].

In $E_{4}(G)$ any two vertices are adjacent if the union of the corresponding edges in G induce any one of the graphs P_{3}, C_{3}, $C_{4}, K_{4}-\{e\}, K_{4}$. If $a_{1}-a_{2}$ is an edge in G, the corresponding vertex in $E_{4}(G)$ is denoted by $a_{1} a_{2}$.

Definition 1.3.4. A graph G is an edge C_{4} graph if there exists a graph H such that $G \cong E_{4}(H)$.

In Figure 1.3.2 a graph G and its $E_{4}(G)$ are shown.

E4(G)
1

Figure 1.3.2

1.4 A survey of results

This section is a survey of results related to that of ours.

The H - intersection graph $\operatorname{Int}_{H}(G)[66]$ is the intersection graph of all subgraphs of G that are isomorphic to H. If H is K_{2} then $\operatorname{Int}_{H}(G)$ is the line graph. Trotter [76] characterized the graphs for which $I n t_{K_{2}}(H)$ is perfect. The 3 -edge graph is the intersection graph of the set of all 3-edges of $G[67]$. The K_{3} intersection graph is the 3-edge graph provided every edge
lies in some triangle [66]. In [2], Akiyama and Chvátal have characterized the graphs for which $\operatorname{Int} P_{3}(G)$ is perfect.

In [27], Daniela derived some properties of the girth and connectivity of the path graphs. In [51], Knor and Niepel characterized the graphs isomorphic to their path graphs.

In [7], Bandelt and others proved that a bipartite graph is dismantlable if and only if its edge C_{4} graph is dismantlable and a bipartite graph is neighborhood-Helly if and only if its edge C_{4} graph is neighborhood-Helly. For any given graph G, the edge graph is a supergraph of $L(G)$. In [50] it has been shown that for any graph G without isolated vertices, there is a graph H such that $C(H)=G$ and $C(L(H))=L(G)$.

Many types of dominations and their characteristics are discussed in [24], [39], [40]. In [18], efficient algorithms are developed for finding a minimum cardinality of connected dominating set and a minimum cardinality Steiner tree in permutation graphs. In [20], forbidden subgraph conditions sufficient to im-
ply the existence of a dominating clique are given.

The concept of edge domination was introduced by Mitchell and Hedetniemi in [63]. The edge dominating sets and the bounds for the edge domination number γ^{\prime} are studied in [47]. In [15], an upper bound for $\gamma^{\prime}(G)$ is obtained. Again, these bounds are modified in [4] for a connected graph G of even order, tree and a connected unicyclic graph. In [23], [41] a bound for the connected domination number of a graph G with regard to the diameter of the graph, the vertex independence number and the matching number of a graph are obtained.

In [29], it is observed that for graphs G without isolated vertices, $\gamma(G) \leqslant \operatorname{dilw}(G)$. Threshold graphs were introduced by Chvátal.V and Hammer.P.L in [16], where different characterizations for such graphs are given. Block graphs, geodetic graphs and weakly geodetic graphs are studied in detail in [44], [48]. Stemple et.al [74] showed that a graph is geodetic if and only if each of its block is geodetic. It is known that block graphs \subseteq geodetic graphs \subseteq weakly geodetic graphs [13]. In
[19], eight characterizations of cographs which include the recursive characterization and the forbidden subgraph characterization are given. The median and the anti-median of cographs are discussed in [69]. The recent Ph.D thesis by Ms. Aparna Lakshmanan [3] contains results regarding cographs and other graph classes such as the Gallai and the anti- Gallai graphs, the clique irreducible graphs, the clique vertex irreducible graphs and the weakly clique irreducible graphs.

The concept of wide diameter has been discussed and used in distributed and parallel computer networks [45]. In [43], Hou and Wang defined generalized wide diameter and calculated it for any k - regular k-connected graph. A generalized p-cycle is a digraph whose set of vertices is partitioned into p parts that can be ordered in such a way that a vertex is adjacent only to the vertices in the next part. The bounds for the wide diameter of the generalized p-cycle is obtained in [28]. The wide diameter of butterfly networks is studied in [53]. Bolian Liu and Xiankun Zhang studied some problems on the relations between $D_{w}(G)$ and $\operatorname{diam}(G)$ in [54]. In this paper they characterized the graphs G for which $D_{w}(G)=\operatorname{diam}(G), w>1$.

The diameter of a graph is an important factor for communication as it determines the maximum communication delay between any pair of processors in a network. The diameter of a graph may be affected by the addition or deletion of edges. In [33], Graham and Harary studied this aspect in hypercubes and proved that $D^{-1}\left(Q_{n}\right)=2, D^{+1}\left(Q_{n}\right)=n-1$ and $D^{+0}\left(Q_{n}\right) \geqslant(n-3) 2^{n-1}+2$. Bouabdallah et.al [12] improved the lower bound of $D^{+0}\left(Q_{n}\right)$ and furthermore gave an upper bound, $(n-2) 2^{n-1}-{ }^{n} C_{\lfloor n / 2\rfloor}+2 \leqslant D^{+0}\left(Q_{n}\right) \leqslant(n-2) 2^{n-1}-\left\lceil 2^{n-1} / 2 n-\right.$ $17+1$.

The diameter variability arising from the addition or deletion of edges of a graph G is defined in [77] and in this paper, Wang et.al proved that $D^{-1}\left(C_{m}\right) \geqslant 2, D^{-1}\left(T_{m, n}\right) \geqslant 2, D^{-2}\left(T_{m, n}\right)=2$ for $m \geqslant 14$ and $m \neq 15$. Also they obtained the exact value of $D^{+1}\left(T_{m, n}\right)$.

1.5 Summary of the thesis

This thesis entitled 'Studies on some graph operators and related topics' is divided into five chapters including an introductory chapter. We shall now give a summary of each chapter.

The first chapter is an introduction and contains literature on graph operators. It also includes some basic definitions and terminology used in this thesis.

In the second chapter, the P_{3} intersection graph of a graph G which is the intersection graph of all induced 3-paths in G is studied in detail. The following are some of the results proved:

- For a connected graph $G, P_{3}(G)$ is bipartite if and only if G is $P_{3}, P_{4}, K_{4}-\{e\}$ or a paw.
- $K_{1,4}$ is a forbidden subgraph for a graph to be the P_{3} intersection graph.
- There exist only a finite family of forbidden subgraphs for the P_{3} intersection graphs to be H -free for any finite graph
H.
- For a connected graph G, $\chi\left(P_{3}(G)\right) \geqslant \chi(G)-1$. The equality holds if and only if G is either $K_{n}-\{e\}$ or a complete graph with a pendant vertex attached to it.
- The relationship between the chromatic number, clique number, connectivity, independence number, domination number, the radius and the diameter of a graph and its P_{3} intersection graph.

The third chapter is the study of another graph operator the edge C_{4} graph of a graph. If G does not contain C_{4} as a subgraph, then the edge C_{4} graph of a graph coincides with its line graph. So if G is an Eulerian graph which does not contain C_{4} as a subgraph, then $E_{4}(G)$ is Eulerian. Following are some of the results obtained:

- There exist infinitely many pairs of non isomorphic graphs whose edge C_{4} graphs are isomorphic.
- Characterizations for $E_{4}(G)$ being comnected, complete, bipartite etc.
- There is no forbidden subgraph characterization for $E_{4}(G)$.
- The relationships between the diameter, radius, center, domination number of G and those of $E_{4}(G)$.
- Relationships between different types of dominations of G and that of $E_{4}(G)$.
- For any connected graph $G, \operatorname{diam}(G)-2 \leqslant \gamma_{c}\left(E_{4}(G)\right) \leqslant$ $2 \beta(G)-1$.
- A bound for the domination number of $E_{4}(G)$ in terms of the order of G. Further for a graph G, which is a tree or a unicyclic graph, characterization is obtained for the strict bound of the domination number of $E_{4}(G)$.
- Conditions for the $E_{4}(G)$ being a clique dominated graph, threshold graph, cograph, geodetic graph, weakly geodetic graph and block graph.

The dynamics such as convergence, divergence, periodicity, fixedness etc of the P_{3} intersection graph and the edge C_{4} graph are included in chapter four. The following are some of the results proved:

- There are no P_{3}-periodic graphs.
- If a graph G is P_{3}-convergent, then it is $P_{3}^{n}(G)$-complete for some $n \geqslant 1$ and hence all the P_{3}-convergent graphs are P_{3}-mortal graphs.
- The relationship between the touching number of $P_{3}(G)$ and the vertex touching number of G.
- Characterization of the $E_{4^{-}}$convergent graphs.
- The relationship between the touching number of G and that of $E_{4}(G)$.

In chapter five of this thesis, the diameter variability and the w-wide diameter of the three graph operators - the P_{3} intersection graph, the edge C_{4} graph and the line graph and some graph operations such as join and corona are studied. Some of the results are listed below:

- Corresponding to a w-container in G, there cxists w-containers in $P_{3}(G)$ and $E_{4}(G)$.
- Strict bound for the w - wide diameter of $P_{3}(G), L(G)$ and $E_{4}(G)$.
- Strict bounds for D^{+i} of $P_{3}(G), E_{4}(G)$ and $L(G)$.
- The diameter variability of join and corona of two graphs.

All the graphs considered in this thesis are finite, undirected and simple. Some results of this thesis are included in [55] - [60]. We conclude the thesis with some suggestions for further study and a bibliography.

1.6 List of publications

Papers presented

(1) The P_{3} intersection graph, 20th Annual Conference of Ramanujan Mathematical Society, July 27 - 30, 2005, University of Calicut, Calicut, India.
(2) The edge C_{4} graph of a graph, International Conference on Discrete Mathematics, December 15 - 18, 2006, IISc, Bangalore, India.
(3) The Dynamics of the P_{3} intersection graph, National Seminar on Algebra and Discrete Mathematics, November 14 - 16, 2007, University of Kerala, Trivandrum, India.
(4) The edge C_{4} graph of some graph classes, International Conference on Discrete Mathematics, June 6-10, 2008, University of Mysore, Mysore, India.
(5) Some Domination parameters in E4(G), National Seminar on Discrete Mathematics and its Applications, August 7 9, 2008, St.Pauls College, Kalamassery, India.
(6) The wide diameter and diameter variability of some graphs, International Conference on Graph Theory and its Applications, December 11 13, 2008, Amritha Viswa Vidya Peetham, Coimbatore, India.

Papers published / communicated

(1) Manju K. Menon, A. Vijayakumar, The P_{3} intersection graph, Util. Math. 75 (2008), $35-50$.
(2) Manju K. Menon, A. Vijayakumar, The Edge C_{4} graph of a graph, Proceedings of the International Conference
on Discrete Mathematics, Ramanujan Math. Soc. Lect. Notes Ser. 7 (2008), 245-248.
(3) Manju K. Menon, A. Vijayakumar, Dynamics of the P_{3} intersection graph (communicated).
(4) Manju K. Menon, A. Vijayakumar, The Edge C_{4} graph of some graph classes (communicated).
(5) Manju K. Menon, A. Vijayakumar, Some domination parameters in $E_{4}(G)$ (communicated).
(6) Manju K. Menon, Daniclla Ferrero, A. Vijayakumar, The w-wide diameter and diameter variability of some graphs (in preparation).

Chapter 2

The P_{3} intersection graph of a graph

This chapter deals with the graph operator known as 'the P_{3} intersection graph'. We study the conditions for the $P_{3}(G)$ to be connected, bipartite, tree, geodetic, block etc. The existence of a finite family of forbidden subgraphs for the $P_{3}(G)$ to be H-free, H being a finite graph, is proved and the forbidden subgraph

Some results of this chapter are included in the following papers.

1. Manju K. Menon, A. Vijayakumar, The P_{3} intersection graph, Util. Math. 75 (2008), 35-50.
2. Manju K. Menon, A. Vijayakumar, Dynamics of the P_{3} intersection graph, (communicated).
characterizations of G for which the $P_{3}(G)$ are complete, chordal etc are discussed. The relationship between the clique number, chromatic number, connectivity, independence number, domination number, radius and diameter of a graph and its $P_{3}(G)$ are also studied in detail.

2.1 The P_{3} intersection graph of a graph

For any graph G which is the union of complete graphs, $P_{3}(G)$ is null graph. Hence in this chapter we do not consider such graphs. If G is a connected graph of order at most five then $P_{3}(G)$ is complete.

In general, the H-intersection graph of a connected graph need not be connected. But, in the case of $P_{3}(G)$, we have

Theorem 2.1.1. $P_{3}(G)$ is connected if and only if G has exactly one component containing an induced P_{3}.

Proof. Suppose that G contains more than one component containing an induced P_{3}. Let $a_{1}-a_{2}-a_{3}$ and $b_{1}-b_{2}-b_{3}$ be any
two induced 3-paths in G which lie in distinct components of G. Then by the definition of $P_{3}(G)$ the corresponding vertices $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ in $P_{3}(G)$ cannot be connected by a path and hence $P_{3}(G)$ is disconnected.

Let G have exactly one component containing an induced P_{3}. Suppose that $x=a_{1} a_{2} a_{3}$ and $y=b_{1} b_{2} b_{3}$ are any two nonadjacent vertices in $P_{3}(G)$. If $a_{i}, i=1,2,3$ and $b_{j}, j=1,2,3$ are adjacent then $a_{1} a_{2} a_{3}, a_{i} b_{j} b_{j+1}$ or $a_{i} b_{j} b_{j-1}, b_{1} b_{2} b_{3}$ is a path connecting x and y. If a_{i} and b_{j} are not adjacent then let the shortest path connecting $a_{i}, i=1,2,3$ and $b_{j}, j=1,2,3$ be $a_{i}, c_{1}, c_{2}, \ldots, c_{n}, b_{j}$. If $n=1$, then $a_{1} a_{2} a_{3}, a_{i} c_{1} b_{j}, b_{1} b_{2} b_{3}$ is a path connecting x and y. If $n \geqslant 2$, then $a_{1} a_{2} a_{3}, a_{i} c_{1} c_{2}, \ldots, c_{n-1} c_{n} b_{j}$, $b_{1} b_{2} b_{3}$ is a path connecting x and y in $P_{3}(G)$. Hence $P_{3}(G)$ is connected.

Theorem 2.1.2. If G is k-connected; $k \geqslant 2$, then $P_{3}(G)$ is $(k-1)$-connected. Further $\kappa\left(P_{3}(G)\right)=\kappa(G)-1$ if and only if G is $K_{n}-\{e\}$.

Proof. Let G be k-connected. Then by Theorem 1.2 .20 , for any two vertices u and v, there exists at least k internally disjoint
$u-v$ paths.
Let $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ be any two distinct vertices in $P_{3}(G)$. In G, if u_{i} and v_{j} are connected by a path which contain at least one vertex other than these six vertices, then correspondingly there exists at least one path in $P_{3}(G)$ joining $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$. So, it is enough to consider the paths in G involving one or more of these six vertices.

Case 1: Let u_{i} and v_{j} be non - adjacent for some $i, j \in\{1,2,3\}$. Then corresponding to any path in G joining u_{i} and v_{j}, there exists a path in $P_{3}(G)$ joining $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$. So $\kappa\left(P_{3}(G)\right)$ $\geqslant \kappa(G)$.

Case 2: Let u_{i} be adjacent to v_{j}.
Case 2a: All u_{i} s and v_{j} s are distinct.
Then in between any u_{i} and v_{j} in G, there exists at most five internally disjoint $u_{i}-v_{j}$ paths involving those six vertices only. But there exists six internally disjoint paths joining $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in $P_{3}(G)$ which are of the form $u_{1} u_{2} u_{3}, u_{1} v_{j} u_{3}, v_{1} v_{2} v_{3}$ and $u_{1} u_{2} u_{3}, v_{1} u_{j} v_{3}, v_{1} v_{2} v_{3}, j \in\{1,2,3\}$. Hence in this case also
$\kappa\left(P_{3}(G)\right) \geqslant \kappa(G)$.
Case 2b: u_{i} s and v_{j} s share a common vertex.
In this case there exists more paths between $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in $P_{3}(G)$ than the minimum number of paths between any u_{i} and v_{j} in G. Hence $\kappa\left(P_{3}(G)\right) \geqslant \kappa(G)$.

Case 2c: u_{i} s and v_{j} s share two common vertices.
In this case also, except when they form $K_{4}-\{e\}$, the number of internally disjoint paths between $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in $P_{3}(G)$ is greater than or equal to the minimum number of internally disjoint paths between any u_{i} and v_{j} in G. If there exists one more vertex, then $\kappa\left(P_{3}(G)\right)<\kappa(G)$ only when the newly adjoined vertex is adjacent to all the four vertices. If we adjoin more vertices to this graph also, $\kappa\left(P_{3}(G)\right)<\kappa(G)$ only when the adjoined vertices are adjacent to all the other existing vertices. Hence $\kappa\left(P_{3}(G)\right)<\kappa(G)$ only when G is $K_{n}-\{e\}$. For $K_{n}-\{e\}$, $\kappa\left(P_{3}(G)\right)=\kappa(G)-1$.

As to the question whether every graph is the P_{3} intersection graph of some graph, we have the following theorem:-

Theorem 2.1.3. The following graphs G cannot be the P_{3} intersection graph of any graph.

1. G is a connected graph having at least three vertices and a pendant vertex.
2. There exists a vertex v in G with $d(v)=2$ such that v is adjacent to any two non-adjacent vertices in G.
3. G is a connected triangle free graph having at least three vertices.

Proof. 1. Let G be a connected graph having at least three vertices. Let x be a pendant vertex of G and z be the unique vertex adjacent to x. If possible let there exist a graph H such that $P_{3}(H)=G$. Since there are at least three vertices, there exists a vertex adjacent to z and let it be y. Since x and y are two non-adjacent vertices in $G=P_{3}(H)$, we can assume that $x=a_{1} a_{2} a_{3}$ and $y=b_{1} b_{2} b_{3}$ where $a_{i} \mathrm{~s}$ and $b_{j} \mathrm{~s}$ are distinct vertices in H. Since z is adjacent to both x and y, z corresponds to a 3-path in H which must contain at least one a_{i} and b_{j}. So z must be of the form $a_{i} b_{j} c$ or $a_{i} c b_{j}$ or $c a_{i} b_{j}$.

Let $z=a_{i} b_{j} c$. If $i=1$, then $a_{2}-a_{1}-b_{j}$ is a 3-path. But if this is an induced path, then x cannot remain a pendant vertex. So $a_{2}-b_{j}$ is an edge in H. Then $a_{3}-a_{2}-b_{j}$ is
a 3-path. But if this is an induced path then x cannot remain a pendant vertex. So $a_{3}-b_{j}$ is an edge in H. Then $a_{1}-b_{j}-a_{3}$ is an induced 3-path. If the corresponding vertex $a_{1} b_{j} a_{3}$ is different from z, then it is adjacent to x, a contradiction to the fact that x is a pendant vertex. If $a_{1} b_{j} a_{3}=z$, then we can show that there exists an induced 3 -path with a_{1} and two $b_{l} \mathrm{~s}, l=1,2,3$ as its vertices. The corresponding vertex which is different from z is adjacent to x which will also lead to a contradiction. So G cannot be the P_{3}-graph of any graph. The case is similar when $i=2,3$ also. The proof is similar when $z=a_{i} c b_{j}$ or $z=c a_{i} b_{j}$.
2. Suppose now that G has a vertex v with $d(v)=2$ and let $G=P_{3}(H)$. Let v be adjacent to v_{1} and v_{2} where v_{1} and v_{2} are non-adjacent vertices. Let $v_{1}=a_{1} a_{2} a_{3}$ and $v_{2}=b_{1} b_{2} b_{3}$ where $a_{i} \mathrm{~s}$ and $b_{j} \mathrm{~s}$ are distinct vertices in H. Then v must be of the form $a_{i} b_{j} c$ or $a_{i} c b_{j}$ or $c a_{i} b_{j}$. So as in the proof given above, we can show that there exists a vertex adjacent to v which is different from both v_{1} and v_{2}, which is a contradiction to the fact that $d(v)=2$.
3. Finally, let G be a connected triangle free graph. If possible assume that $G=P_{3}(H)$. Since G has at least three vertices it contains a vertex z which is adjacent to two nonadjacent vertices x and y. Let $x=a_{1} a_{2} a_{3}$ and $y=b_{1} b_{2} b_{3}$, where $a_{i} \mathrm{~s}$ and $b_{j} \mathrm{~s}$ are distinct vertices in H. Then z must be of the form $a_{i} b_{j} c$ or $a_{i} c b_{j}$ or $c a_{i} b_{j}$. Using the similar arguments as in the above proofs, we can show that there exists a vertex which is adjacent to both x and z, which is a contradiction to the fact that G is triangle free.

Lemma 2.1.4. If G is a connected graph having at least five vertices, then $P_{3}(G)$ has at least three vertices.

Proof. Let G be a connected graph having at least five vertices. Let x and y be two non-adjacent vertices of G. Let the shortest path connecting x and y be $x, v_{1}, v_{2}, \ldots v_{n}, y$. If $n \geqslant 3$ then $P_{3}(G)$ clearly contains at least three vertices. If $n=2$ then since G is a connected graph having at least five vertices, the fifth vertex must be adjacent to at least one of x, v_{1}, v_{2}, y. Then there exists at least three induced 3 -paths in G and hence $P_{3}(G)$ contains at least three vertices. If $n=1$, there exists at least
two more vertices in G and they must be connected to x, v_{1}, y. In any case there exists at least three induced 3-paths in G and hence $P_{3}(G)$ contains at least 3 vertices.

Theorem 2.1.5. Let G be a connected graph. Then $P_{3}(G)$ is bipartite if and only if G is $P_{3}, P_{4}, K_{4}-\{e\}$ or paw.

Proof. Let $P_{3}(G)$ be bipartite. Then $P_{3}(G)$ cannot contain triangles. So by Theorem 2.1.3 (3), the only bipartite P_{3} intersection graphs are K_{1} and K_{2}. Again by Lemma 2.1.4, G can have at most four vertices. Since we are considering only connected graphs, the theorem follows.

Corollary 2.1.6. For a connected graph $G, P_{3}(G)$ is a tree if and only if G is $P_{3}, P_{4}, K_{4}-\{e\}$ or paw.

Theorem 2.1.7. For any connected graph $G, P_{3}(G)$ is a block.

Proof. Suppose that $w=x y z$ is a cut vertex in $P_{3}(G)$. Then there exists two non adjacent vertices $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ such that the only path joining them is $u_{1} u_{2} u_{3}, w, v_{1} v_{2} v_{3}$. Then $u_{i} \mathrm{~S}$ and $v_{j} \mathrm{~s}$ are distinct and some $u_{i}, v_{j}=x, y$ or z. Thus we can find at least one more path joining $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$, which is a contradiction to the fact that $x y z$ is a cut vertex.

Theorem 2.1.8. The only connected geodetic P_{3} intersection graphs are the complete graphs.

Proof. Let $P_{3}(G)$ be non-complete. Consider two non-adjacent vertices $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in $P_{3}(G)$. Since G is connected, we may choose $v_{1} v_{2} v_{3}$ such that u_{i} is adjacent to some v_{j} for i, j $\in\{1,2,3\}$. Then there exists at least two disjoint paths of length two connecting $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ and hence $P_{3}(G)$ cannot be a geodetic graph.

2.2 Forbidden subgraph characterizations

In this section we prove that the P_{3} intersection graphs have a forbidden subgraph characterization. Even though many well known classes of graphs have forbidden subgraph characterizations, the number of the forbidden subgraphs need not be finite. But, we prove that there exist only finitely many forbidden subgraphs for the P_{3} intersection graph to be H - free where H is any finite graph. We also obtain forbidden subgraph characteri-
zations for the P_{3} intersection graph to be chordal and complete.

Theorem 2.2.1. If G is a P_{3} intersection graph then $K_{1,4}$ is a forbidden subgraph for G.

Proof. Suppose that $G=P_{3}(H)$ contains $K_{1,4}$ as an induced subgraph. Let v be the central vertex of $K_{1,4}$ and $v_{1}, v_{2}, v_{3}, v_{4}$ be its neighbors in G. Then v corresponds to an induced 3 path in H which intersects with all the four distinct 3-paths corresponding to v_{1}, v_{2}, v_{3} and v_{4}, which is not possible. Hence $K_{1,4}$ is a forbidden subgraph for the P_{3} intersection graph.

Lemma 2.2.2. Let $\varphi=\left\{G: P_{3}(G)\right.$ is H-free $\}$ where H is any finite graph. Then the property $P, G \in \varphi$ is vertex hereditary.

Proof. Let $G \in \varphi$. Suppose that $G-\{v\} \notin \varphi$. So $P_{3}(G-\{v\})$ contains H as an induced subgraph. Then this H will be induced in $P_{3}(G)$ also, which is a contradiction to the fact that $G \in \varphi$.

Theorem 2.2.3. The collection φ has only a finite class of vertex minimal forbidden subgraphs.

Proof. The property $G \in \varphi$ is vertex hereditary. So φ must have
vertex minimal forbidden subgraphs. Let F be the collection of all such vertex minimal forbidden subgraphs. Let $G_{1} \in F$. Then $P_{3}\left(G_{1}\right)$ contains H as an induced subgraph. So, corresponding to a vertex in H there exists an induced 3-path in G_{1}. This implies that the number of vertices in G_{1} covered by these 3paths cannot exceed $3 n$ where n is the number of vertices in H. If G_{1} contains more than $3 n$ vertices, then there exists a vertex v in G_{1} such that any induced 3-path containing v does not determine a vertex of H in $P_{3}\left(G_{1}\right)$. Then $G_{1}-\{v\}$ is also forbidden for φ which is a contradiction to the vertex minimality of G_{1}. Hence the number of vertices of G_{1} is bounded by $3 n$ and hence φ has only a finite class of vertex minimal forbidden subgraphs.

Corollary 2.2.4. Let $\Im=\left\{G: P_{3}(G)\right.$ is chordal $\}$. The collection \Im has an infinite class of vertex minimal forbidden subgraphs.

Proof. Let $G \in \Im$. Then by Lemma 2.2.2, the property $P, G \in \Im$ is vertex hereditary. So \Im must have vertex minimal forbidden subgraphs. If G contains $C_{n}, n \geqslant 6$ as an induced subgraph, then $P_{3}(G)$ contains $C_{n}, n \geqslant 4$ and hence cannot be chordal.

Also $P_{3}\left(C_{n}-\{v\}\right), n \geqslant 6$ is chordal. So $C_{n}, n \geqslant 6$ are vertex minimal forbidden subgraphs for \Im. Thus there exists an infinite class of vertex minimal forbidden subgraphs for \Im.

Corollary 2.2.5. Let $\Psi=\left\{G: P_{3}(G)\right.$ is cornplete $\}$. Then any vertex minimal forbidden subgraph for Ψ has exactly six vertices.

Proof. Let $G \in \Psi$. Then G is induced P_{3}-free. So by Lemma 2.2.2, the property $G \in \Psi$ is vertex hereditary. So it has vertex minimal forbidden subgraphs. The $P_{3}(G)$ is complete for any graph having at most five vertices. So, a forbidden subgraph must have at least six vertices. Let G_{1} be any vertex minimal forbidden subgraph for Ψ. Since G_{1} is a forbidden subgraph for $P_{3}(G)$ being complete, it must have at least two disjoint 3-paths, $a_{1}-a_{2}-a_{3}$ and $b_{1}-b_{2}-b_{3}$. These six vertices are enough to induce a vertex minimal forbidden subgraph.

2.3 The chromatic number of $P_{3}(G)$

In this section we study the relationship between the chromatic number of G and that of $P_{3}(G)$.

Lemma 2.3.1. For a connected graph $G, \omega\left(P_{3}(G)\right) \geqslant \omega(G)-1$.

Proof. Let $\omega(G)=k$. Since G is non-complete and connected, there exists a vertex u adjacent to at least one vertex of the k-clique in G. If u is joined to t vertices of this k-clique then there are $t(k-t)$ induced 3-paths in G where u is common to all these induced 3-paths. So $\omega\left(P_{3}(G)\right) \geqslant t(k-t)$. Now, if $t(k-t)<k-1$ then $k<(t+1)$ which is a contradiction to the fact that $\omega(G)=k$. So $\omega\left(P_{3}(G)\right) \geqslant k-1$.

Theorem 2.3.2. For a connected graph $G, \chi\left(P_{3}(G)\right) \geqslant \chi(G)-$ 1. The equality holds if and only if G is either $K_{n}-\{e\}$ or a complete graph with a pendant vertex attached to it.

Proof. Let $\chi(G)=k$. Then there exists a vertex v in G with color k such that its neighbors $v_{1}, v_{2}, \ldots, v_{k-1}$ have distinct colors $1,2, \ldots, k-1$ respectively.

If these k vertices form a complete subgraph, then $\omega(G) \geqslant k$. So $\chi\left(P_{3}(G)\right) \geqslant \omega\left(P_{3}(G)\right) \geqslant k-1$, by Lemma 2.3.1.

If these k vertices do not form a complete subgraph, then let ' m ' be the size of maximal clique in the subgraph induced by these k vertices. Clearly v is a vertex in this m-clique. Then among the k vertices, there are $k-m$ vertices adjacent to v which are not in the m-clique. Let v_{i} be such a vertex. Then this v_{i} can be adjacent to at most $m-1$ vertices of the m-clique. In any case we can find at least k distinct induced 3 -paths having a common vertex. The corresponding k vertices in $P_{3}(G)$ will form a complete subgraph having k vertices and hence $\chi\left(P_{3}(G)\right)$ $\geqslant k$.

Hence the equality holds only when there is a k-clique in G. Since G is connected and non-complete, there exists a vertex u_{1} which is adjacent to some of the $v_{i} \mathrm{~s}$ in the k-clique. If u_{1} is adjacent to t vertices of the k-clique where $2 \leqslant t \leqslant k-2$, then there exists at least k distinct induced 3-paths having a common vertex. Hence, in this case $\chi\left(P_{3}(G)\right)>k-1$. So u_{1} can be adjacent with either 1 or $k-1$ vertices of the k clique. If there exists one more vertex in G other than these $k+1$ vertices, then also we can find at least k induced 3 -paths having a common vertex and hence $\chi\left(P_{3}(G)\right) \geqslant k$. So when
$\chi\left(\left(P_{3}(G)\right)\right)=\chi(G)-1$, there exists exactly $k+1$ vertices such that u_{1} is adjacent to 1 or $k-1$ vertices of the k-clique. If u_{1} is adjacent to only one vertex of the k-clique, then the graph is a complete graph with a pendant vertex attached to it and if u_{1} is adjacent to $k-1$ vertices of the k-clique, then the graph is $K_{k+1}-\{e\}$ and hence the result.

Theorem 2.3.3. Given any two positive numbers a and b where $a>1$ and $b \geqslant a-1$, there exists a graph G such that $\chi(G)=a$ and $\chi\left(P_{3}(G)\right)=b$.

Proof. Consider the following cases:
Case 1: $b=a-1$
The graph G is obtained by attaching a pendant vertex to any one vertex of K_{a}.

Illustration: When $a=4 ; b=3$,

Case 2: $b=a$
Consider the graph G in Case 1. Then attach a single vertex to the pendant vertex of G. This is the required graph.

Illustration: When $a=4 ; b=4$

Case 3: $b>a$
Subcase $3 a: b \leqslant 2 a-1$
Consider the graph G in case 1 . Any one vertex of K_{b-a+1} is joined to the pendant vertex of G. This is the required graph.

Illustration: When $a=4 ; b=6$

Subcase 3b: $b>2 a-1$
Let k be the maximum integer satisfying the equation ${ }^{k} C_{2}+$ $(a-1) k=b$. Join k pendant vertices to the same vertex of K_{a}. Replace any one of these pendant vertices by $K_{b-\left[{ }^{k} C_{2}+(a-1) k\right]}$.

Illustration: When $a=4 ; b=9$

In all the above cases, $P_{3}(G)=K_{b}$ and hence $\chi\left(P_{3}(G)\right)=b$. Since all possible cases have been covered, the result follows.

2.4 Some other graph parameters of $P_{3}(G)$

In this section we study the relationship between the parameters such as domination number γ, independence number α, radius
and diameter of G and those of $P_{3}(G)$.

Theorem 2.4.1. Given any two positive numbers a and b where $a>1$ there exists a graph G such that $\gamma(G)=a$ and $\gamma\left(P_{3}(G)\right)=$ b.

Proof. Consider the following cases.

Case 1: Suppose $a<b$.

Consider an induced $v_{1}-v_{a}$ path. To each $v_{i}, i=1,2, \ldots, a-1$, join an induced 3-path $-w_{i 1}-w_{i 2}-w_{i 3}$. To v_{a} join $2(b-a+1)$ disjoint induced 3-paths. This is the required graph G. Clearly $\gamma(G)=a$. Consider the $a-1$ vertices in $P_{3}(G)$ which are of the form $w_{i 1} v_{i} v_{i+1}, i=1,2, \ldots, a-1$. In $P_{3}(G)$, these vertices will dominate all the vertices except the vertices corresponding to the $2(b-a+1)$ disjoint paths joined to v_{a}. These $2(b-a+1)$ vertices can be dominated exactly by $b-a+1$ vertices which are of the form $u_{i} v_{a} u_{j}$ where u_{i} and u_{j} are vertices in any two of the disjoint induced P_{3} s joined to v_{a}. The above described
collection of $a-1$ vertices together with these $b-a+1$ vertices will form a minimum dominating set for $P_{3}(G)$. Hence $\gamma\left(P_{3}(G)\right)=(b-a+1)+(a-1)=b$.

As an example, consider $a=5 ; b=6$. The corresponding graph G is,

Case 2: Suppose $a=b$.

Consider an induced $v_{1}-v_{a}$ path. To each $v_{i}, i=1,2, \ldots, a$ join an induced 3 -path, $w_{i 1} w_{i 2} w_{i 3}$. This is the required graph G. Clearly $\gamma(G)=a$. In $P_{3}(G)$, vertices of the form $w_{i 1} v_{i} w_{i 3}, i=$ $1,2, \ldots, a$ form a minimum dominating set. Hence $\gamma\left(P_{3}(G)\right)=$ $a=b$.

As an example, consider $a=5 ; b=5$. The corresponding graph G is,

Case 3: Suppose $a>b$.

Consider an induced $v_{1}-v_{b+1}$ path. To each $v_{i}, i=1,2, \ldots, b-$ 1 join an induced 3 -path, $w_{i 1} w_{i 2} w_{i 3}$. To v_{b+1}, attach $a-b+1$ disjoint K_{2} s. This is the required graph G. Clearly $\gamma(G)=$ $(b-1)+(a-b+1)=a . \operatorname{In} P_{3}(G)$ the $(b-1)$ vertices which are of the form $w_{i 1} v_{i} v_{i+1}, i=1,2, \ldots, b-1$ and $v_{b} c_{1} c_{2}$ where c_{1}, c_{2} are the vertices in any K_{2} attached to v_{b} will dominate all the vertices. Clearly this is the minimum number of vertices in any dominating set of $P_{3}(G)$. Hence $\gamma\left(P_{3}(G)\right)=b$.

As an example, consider $a=6 ; b=4$. The corresponding
graph G is,

Theorem 2.4.2. Given any two positive numbers a and b where $a>1$, there exists a graph G such that $\alpha(G)=a$ and $\alpha\left(P_{3}(G)\right)=$ b.

Proof. Consider the following cases:
Case 1: Suppose $a<b$.

Consider a $K_{3 b}$ whose vertices are labclled as $v_{1}, v_{2}, \ldots, v_{3 b}$. From this graph, edges of the form $v_{3 k-2}-v_{3 k}, k=1,2, \ldots, b$ and edges whose end vertices are both of the form $v_{3 k+1}, k=$ $0,1, \ldots, a-1$ are deleted. This is the required graph G. Clearly
$\alpha(G)=a$ where a maximum independent set is $\left\{v_{1}, v_{4}, \ldots v_{3 a-2}\right\}$. Also $\alpha\left(P_{3}(G)\right)=b$ where a maximum independent set is $\left\{v_{3 k-2}\right.$ $\left.v_{3 k-1} v_{3 k} ; k=1,2, \ldots, b\right\}$.

As an example, consider $a=2 ; b=3$. The corresponding graph G is,

Case 2: Suppose $a=b$.

Consider $G=\left(K_{a}\right)^{c} \vee P_{2 a}$. Clearly $\alpha(G)=a . \alpha\left(P_{3}(G)\right)=a$ where the maximum independent set is $\left\{v_{i} u_{i} v_{a+i} ; i=1,2, \ldots, a\right\}$
where v_{i} and v_{a+i} are vertices in $P_{2 a}$ and u_{i} is a vertex in $\left(K_{a}\right)^{c}$.

As an example, consider $a=2 ; b=2$. The corresponding graph G is,

Case 3: Suppose $a>b$.

Subcase 3a: Let $a \geqslant 2 b$.

Consider $G=K_{a, b}$ with the partition $\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{b}\right\}$. Clearly $\alpha(G)=a$. Since a maximum independent set in $P_{3}(G)$ is $\left\{u_{i} v_{i} u_{b+i} ; i=1,2, \ldots, b\right\}, \alpha\left(P_{3}(G)\right)=b$.

As an example, consider $a=6 ; b=2$. Then the graph G is $K_{6,2}$.

Subcase 3b: Let $a<2 b$.

Let $t=\lfloor a / 2\rfloor$. Let $G=K_{a, b} \vee P_{2(b-t)}$. Let the partition of $K_{a, b}$ be $\left\{u_{1}, u_{2}, \ldots, u_{a}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{b}\right\}$ and let the vertices in the path be $w_{1}, w_{2}, \ldots, w_{2(b-t)}$. Then $\alpha(G)=a$. Consider the following independent set of vertices in $P_{3}(G)$, $\left\{u_{i} v_{i} u_{t+i} ; i=1,2, \ldots, t, w_{j} v_{t+j} w_{b-t+j}, j=1,2, \ldots, b-k\right\}$. This is an independent set having maximum number of vertices in $P_{3}(G)$. Hence $\alpha\left(P_{3}(G)\right)=b$.

As an example, when $a=5 ; b=3$, the graph $G=K_{5,3} \vee P_{2}$.

Theorem 2.4.3. For a connected graph $G, \operatorname{rad}\left(P_{3}(G)\right) \leqslant \operatorname{rad}(G)+$

1. The equality holds only when $\operatorname{rad}(G)=1$. Further if $\operatorname{rad}(G) \geqslant$ 4 then $\operatorname{rad}\left(P_{3}(G)\right)<\operatorname{rad}(G)$.

Proof. Let u be a center of G. So $d(u, v) \leqslant \operatorname{rad}(G)$ for all $v \epsilon$ $V(G)$. Since G is not a complete graph, there exists an induced 3 -path having u as a vertex in it. Let the corresponding vertex in $P_{3}(G)$ be $a_{1} a_{2} a_{3}$ where u is some a_{i}. Let $b_{1} b_{2} b_{3}$ be any other vertex in $P_{3}(G)$. If $d\left(u, b_{j}\right)=1$, then $a_{1} a_{2} a_{3}, u b_{j} b_{j+1}$ or
$u b_{j} b_{j-1}, b_{1} b_{2} b_{3}$ is a path connecting $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ and hence $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leqslant 2=d\left(u, b_{j}\right)+1$. Now, if $d\left(u, b_{j}\right)=k>1$, let a shortest path connecting u and b_{j} be $u, c_{1}, c_{2}, \ldots, c_{k-1}, b_{j}$. Then $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ are connected by a path $a_{1} a_{2} a_{3}, u c_{1} c_{2}$, $\ldots, c_{k-2} c_{k-1} b_{j}, b_{1} b_{2} b_{3}$. So $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leqslant k=d\left(u, b_{j}\right)$.

This implies that $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leqslant d\left(u, b_{j}\right)+1 \leqslant \operatorname{rad}(G)+1$, since $d\left(u, b_{j}\right) \leqslant \operatorname{rad}(G)$. Hence $e\left(a_{1} a_{2} a_{3}\right) \leqslant \operatorname{rad}(G)+1$. Therefore $\operatorname{rad}\left(P_{3}(G)\right) \leqslant \operatorname{rad}(G)+1$.

Now, let $\operatorname{rad}\left(P_{3}(G)\right)=\operatorname{rad}(G)+1$. We have proved that if $d\left(u, b_{j}\right)>1$, then $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leqslant d\left(u, b_{j}\right) \leqslant \operatorname{rad}(G)$. So $e\left(a_{1} a_{2} a_{3}\right) \leqslant \operatorname{rad}(G)$ and hence $\operatorname{rad}\left(P_{3}(G)\right) \leqslant \operatorname{rad}(G)$. So the equality does not hold when $\operatorname{rad}(G)>1$.

Consider the case when $\operatorname{rad}(G) \geqslant 4$. Consider $a_{1} a_{2} a_{3}$ where u is some a_{i} and let $b_{1} b_{2} b_{3}$ be any other vertex in $P_{3}(G)$. Let $d\left(u, b_{j}\right)=k$ and $a_{i}, c_{1}, c_{2} \ldots, c_{k-1}, b_{j}$ be a shortest path connecting a_{i} and b_{j}. Then $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ are connected by a path $a_{1} a_{2} a_{3}, u c_{1} c_{2}, c_{2} c_{3} c_{4}, \ldots, c_{k-2} c_{k-1} b_{j}, b_{1} b_{2} b_{3}$. So if $k \leqslant 3$, then $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leqslant 3$ and if $k \geqslant 4$, then $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right)<k$.

So $e\left(a_{1} a_{2} a_{3}\right)<k \leqslant \operatorname{rad}(G)$. Hence $\operatorname{rad}\left(P_{3}(G)\right)<\operatorname{rad}(G)$.

Remark 2.4.1. The condition $\operatorname{rad}(G)=1$ is not sufficient for the equality $\operatorname{rad}\left(P_{3}(G)\right)=\operatorname{rad}(G)+1$. For eg:- if $G=K_{1, n}, n \geqslant$ 3 , then $\operatorname{rad}(G)=\operatorname{rad}\left(P_{3}(G)\right)=1$.

Theorem 2.4.4. For a connected graph G, $\operatorname{diam}\left(P_{3}(G)\right) \leqslant$ $\operatorname{diam}(G)$. Further, if $\operatorname{diam}(G) \geqslant 4$ then $\operatorname{diam}\left(P_{3}(G)\right)<\operatorname{diam}(G)$.

Proof. Since G is not a complete graph $\operatorname{diam}(G)>1$. By the arguments similar to those in the above proof, we can prove that for any two vertices $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ in $P_{3}(G), d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right) \leqslant$ $d\left(a_{i}, b_{j}\right) \leqslant \operatorname{diam}(G)$. So $\operatorname{diam}\left(P_{3}(G)\right) \leqslant \operatorname{diam}(G)$.

Let $\operatorname{diam}(G) \geqslant 4$. Let $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ be any two vertices in $P_{3}(G)$ such that $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right)=\operatorname{diam}\left(P_{3}(G)\right)$. Using the similar arguments as in the above proof, we can show that $d\left(a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}\right)<d\left(a_{i}, b_{j}\right) \leqslant \operatorname{diam}(G)$. Hence $\operatorname{diam}\left(P_{3}(G)\right)<$ $\operatorname{diam}(G)$.

Note: Let $G=K_{2} \vee 4 K_{1}$. Then $\operatorname{rad}(G)=1, \operatorname{rad}\left(P_{3}(G)\right)=2$, $\operatorname{diam}(G)=2, \operatorname{diam}\left(I_{3}(G)\right)=2$. Hence the bounds in Theorems

2.4 .3 and 2.4 .4 are strict.

Chapter 3

The edge C_{4} graph of a

graph

In this chapter, we study another graph operator - the edge C_{4} graph of a graph. This operator is also called the edge graph in [66], as mentioned earlier. We construct infinitely many pairs

[^0]of non isomorphic graphs G and H such that $E_{4}(G)=E_{4}(H)$. We also prove that $E_{4}(G)$ has no forbidden subgraph characterization. We include in this chapter, the relationship between different types of domination numbers in G and those in $E_{4}(G)$. We also study the conditions for $E_{4}(G)$ to be a special class of graphs such as the threshold graphs, cographs, block graphs, geodetic graphs, weakly geodetic graphs etc.

3.1 The edge C_{4} graph of a graph

For any graph $G, E_{4}(G)$ is a supergraph of $L(G)$. So $E_{4}(G)$ is connected if and only if exactly one component of G contains edges. It is well known [79] that the only pair of non-isomorphic graphs having the same line graph is $K_{1,3}$ and K_{3}. But we observe that in the case of the edge C_{4} graphs, there are infinitely many pairs of non-isomorphic graphs having isomorphic edge C_{4} graphs. However we are yet to obtain such pairs of same order.

Theorem 3.1.1. There exist infinitely many pairs of non isomorphic graphs whose edge C_{4} graphs are isomorphic.

Proof. Let $G=K_{1, n}$. If $n=2 k-1$, then take $H=K_{2} \vee(k-1) K_{1}$ and if $n=2 k$, then take $H=2 K_{1} \vee k K_{1}$. Clearly G and H are non isomorphic graphs. But $E_{4}(G)=E_{4}(H)=K_{n}$.

In [8], Beineke proved the existence of nine forbidden subgraphs for a graph to be a line graph. But, we prove that there is no forbidden subgraph characterization for $E_{4}(G)$.

Theorem 3.1.2. There is no forbidden subgraph characterization for $E_{4}(G)$.

Proof. We shall prove that given any graph G, we can find a graph H such that G is an induced subgraph of $E_{4}(H)$. For any graph G, let $H=G \times K_{2}$. Then in $E_{4}(H)$, all the vertices of the form $u u^{\prime}$ where u is a vertex in G and u^{\prime} is the corresponding vertex in the copy of G used in the construction of $G \times K_{2}$, will induce G. For, if u and v are any two adjacent vertices in G, $u u^{\prime}$ and $v v^{\prime}$ correspond to adjacent vertices in $E_{4}(H)$ as $u u^{\prime} v^{\prime} v$ forms a C_{4} in H. If u and v are any two non adjacent vertices in G then $u u^{\prime}$ and $v v^{\prime}$ are non adjacent vertices in $E_{4}(H)$.

Theorem 3.1.3. For a tree $T, E_{4}(T) \cong E_{4}\left(T^{c}\right)$ if and only if T is K_{1}, P_{4} or $K_{1,3}$.

Proof. Let $E_{4}(T) \cong E_{4}\left(T^{c}\right)$. If T is a tree having n vertices then T has $n-1$ edges. But T^{c} has $n(n-1) / 2-(n-1)$ edges. Since $E_{4}(T) \cong E_{4}\left(T^{c}\right)$, both T and T^{c} must have the same number of edges.

So $n(n-1) / 2-(n-1)=n-1$ and hence $n=1$ or 4 . If $n=1$, $T=K_{1}$ and if $n=4, T=K_{1,3}$ or P_{4}.

Converse is trivially true.

3.2 Diameter, Radius and Center

In this section, we study the relationships between the diameter and radius of G and those of $E_{4}(G)$. In [50], it has been shown that for any graph G without isolated vertices, there is a graph H such that $C(H)=G$ and $C(L(H))=L(G)$. We prove a similar result for $E_{4}(G)$ also.

Theorem 3.2.1. For a connected graph G, $\operatorname{diam}(G)-1 \leqslant$ $\left.\operatorname{diam}\left(E_{4}(G)\right) \leqslant \operatorname{diam}(G)\right)+1$.

Proof. We shall first prove the inequality on the right.
Let $\operatorname{diam}\left(E_{4}(G)\right)=k$. Suppose that $\operatorname{diam}(G)<k-1$. Then
for any two vertices v_{1} and v_{2} in $G, d_{G}\left(v_{1}, v_{2}\right)<k-1$. Consider any two edges $e_{1}=v_{1}-v_{1}^{\prime}$ and $e_{2}=v_{2}-v_{2}^{\prime}$ in G. But $d_{G}\left(v_{1}, v_{2}\right)<k-1$. Hence in $E_{4}(G), d_{E_{4}(G)}\left(e_{1}, e_{2}\right) \leqslant d_{G}\left(v_{1}, v_{2}\right)+1$ $<k$, which is a contradiction to the fact that $\operatorname{diam}\left(E_{4}(G)\right)=k$. Thus $\left.\operatorname{diam}\left(E_{4}(G)\right) \leqslant \operatorname{diam}(G)\right)+1$.

Next let $\operatorname{diam}(G)=k$. Suppose that $\operatorname{diam}\left(E_{4}(G)\right)<k-$ 1. Let u and v be any two vertices in G and let $u-u^{\prime}, v-$ v^{\prime} be any two edges incident with u and v respectively. But $d_{E_{4}(G)}\left(u u^{\prime}, v v^{\prime}\right)<k-1$. So $d_{G}(u, v) \leqslant d_{E_{4}(G)}\left(u u^{\prime}, v v^{\prime}\right)+1<k$, which is a contradiction to the fact that $\operatorname{diam}(G)=k$.

Theorem 3.2.2. For a connected graph G, $\operatorname{rad}(G)-1 \leqslant \operatorname{rad}$ $\left(E_{4}(G)\right) \leqslant \operatorname{rad}(G)+1$.

Proof. Let $\operatorname{rad}\left(E_{4}(G)\right)=k$. If possible, let $\operatorname{rad}(G)<k-1$. Then there exists a vertex ' a ' in G so that $d_{G}(a, b)<k-1$ for any vertex b in G. Consider an edge adjacent to a, say e_{a}. Let $e=v_{1}-v_{2}$ be any edge in G.
$d_{E_{4}(G)}\left(e_{a}, e\right) \leqslant \max \left\{d_{G}\left(a, v_{1}\right), d_{G}\left(a, v_{2}\right)\right\}+1$
$<k-1+1=k$ and hence $e\left(e_{a}\right)<k$. Thus $\operatorname{rad}\left(E_{4}(G)\right) \leqslant$ $\operatorname{rad}(G)+1$.

Finally let $\operatorname{rad}(G)=k$. Suppose that $\operatorname{rad}\left(E_{4}(G)\right)<k-1$. Then there exists a vertex $u u^{\prime}$ in $E_{4}(G)$ such that $e\left(u u^{\prime}\right)<k-1$. Consider the vertex u in G. Let v be any vertex in G. Let $v v^{\prime}$ be any edge incident with v. Then $d_{G}(u, v) \leqslant d_{E_{4}(G)}\left(u u^{\prime}, v v^{\prime}\right)+$ $1<k$, and hence $e(u)<k$, which is a contradiction to the fact that $\operatorname{rad}(G)=k$.

Note: The bounds in Theorems 3.2.1 and 3.2.2 are strict.
If G is a bow, then $\operatorname{diam}(G)=2, \operatorname{diam}\left(E_{4}(G)\right)=3, \operatorname{rad}(G)=1$ and $\operatorname{rad}\left(E_{4}(G)\right)=2$.

If G is C_{4}, then $\operatorname{diam}(G)=2, \operatorname{diam}\left(E_{4}(G)\right)=1$ and $\operatorname{rad}(G)=2$, $\operatorname{rad}\left(E_{4}(G)\right)=1$.

Theorem 3.2.3. For any graph G without isolated vertices, there exists a supergraph H such that $C(H)=G$ and $C\left(E_{4}(H)\right)=$ $E_{4}(G)$.

Proof. Consider $G \vee 2 K_{2}$. Let the $K_{2} \mathrm{~s}$ be $a-a^{\prime}$ and $b-b^{\prime}$. Attach $a^{\prime \prime}-a^{\prime \prime \prime}$ to $a-a^{\prime}$ such that a^{\prime} is adjacent to $a^{\prime \prime}$ and a is adjacent to $a^{\prime \prime \prime}$. Similarly attach $b^{\prime \prime}-b^{\prime \prime \prime}$ to $b-b^{\prime}$ such that b is
adjacent to $b^{\prime \prime}$ and b^{\prime} is adjacent to $b^{\prime \prime \prime}$. The graph so obtained is H.

We have,
$e(u)=2$, if $u \in V(G)$.
$=3$, if $u \in\left\{a, a^{\prime}, b, b^{\prime}\right\}$.
$=4$, if $u \in\left\{a^{\prime \prime}, a^{\prime \prime \prime}, b^{\prime \prime}, b^{\prime \prime \prime}\right\}$.
Hence $C(H)=G$.
Now, let $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices in G and x be any vertex in $E_{4}(H)$. Then,
$e(x)=2$, if $x \in\left\{u_{i} u_{j} / u_{i}\right.$ is adjacent to u_{j} in $G, i, j=1,2, \ldots, m, i \neq$
j.
$=3$, if $x \in\left\{a u_{i}, a^{\prime} u_{i}, b u_{i}, b^{\prime} u_{i}\right\}, i=1,2, \ldots, m$.
$=4$, if $x \in\left\{a^{\prime} a^{\prime \prime}, a a^{\prime \prime \prime}, b^{\prime} b^{\prime \prime}, b b^{\prime \prime \prime}, a^{\prime \prime} a^{\prime \prime \prime}, b^{\prime \prime} b^{\prime \prime \prime}\right\}$.
Hence $C\left(E_{4}(H)\right)=E_{4}(G)$.
Illustration: If $G=P_{3}$, then H is

3.3 Some domination parameters in

$E_{4}(G)$

In this section, we study the relationship between different types of dominations in G and those in $E_{4}(G)$.

Theorem 3.3.1. For any graph G with out isolated vertices, there exists a dominating set in G corresponding to any dominating set in $E_{4}(G)$. Further for such a graph $G, \gamma(G) \leqslant$ $2 \gamma\left(E_{4}(G)\right)$.

Proof. Let G be any graph having no isolated vertices. Then corresponding to any component in G, there exists a component in $E_{1}(G)$ and vice versa.

Let $\left\{e_{1}=v_{1} v_{1}^{\prime}, e_{2}=v_{2} v_{2}^{\prime}, \ldots, e_{b}=v_{b} v_{b}^{\prime}\right\}$ be a dominating set in $E_{4}(G)$. Consider $S=\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, \ldots, v_{b}, v_{b}^{\prime}\right\}$. Then $S \subseteq$ $V(G)$. Let w be any vertex in $V(G)$. Since G is a connected graph, w must be the end vertex of an edge $w-w^{\prime}$. But the vertex $w w^{\prime}$ in $E_{4}(G)$ is dominated and hence is adjacent to at least one of the b vertices. Let e_{i} be adjacent to $w w^{\prime}$ in $E_{4}(G)$.

Then in G, either e_{i} is incident with $w-w^{\prime}$ or e_{i} and $w-w^{\prime}$ are the opposite edges of some C_{4}. In both the cases, w is dominated by v_{i} or v_{i}^{\prime}. Thus S is a dominating set of G and hence $\gamma(G) \leqslant 2 \gamma\left(E_{4}(G)\right)$.

Note: Corresponding to any dominating set in G, there need not be a dominating set in $E_{4}(G)$. As an example, consider the following graph:

Corresponding to the dominating set $\{a, b, c\}$ in this graph, we cannot find a dominating set in its $E_{1}(G)$.

Corollary 3.3.2. For any graph $G, \gamma_{p r}(G) \leqslant 2 \gamma\left(E_{\mathbf{4}}(G)\right)$

Proof. Let $\gamma\left(E_{4}(G)\right)=k$. Let a minimum dominating set of $E_{4}(G)$ be $\left\{e_{1}=v_{1} v_{1}^{\prime}, e_{2}=v_{2} v_{2}^{\prime}, \ldots, e_{k}=v_{k} v_{k}^{\prime}\right\}$. Let $\mathrm{S}=\left\{v_{1}, v_{1}^{\prime}\right.$, $\left.v_{2}, v_{2}^{\prime}, \ldots, v_{k}, v_{k}^{\prime}\right\}$. Then S is a dominating set in G by Theorem 3.3.1. Further, S allows a perfect matching and hence the result.

Corollary 3.3.3. For a connected graph $G, \gamma_{c}(G) \leqslant 2 \gamma_{c}\left(E_{4}(G)\right.$.

Proof. Let $S^{\prime}=\left\{e_{1}=v_{1} v_{1}^{\prime}, e_{2}=v_{2} v_{2}^{\prime}, \ldots, e_{k}=v_{k} v_{k}^{\prime}\right\}$ be a minimal connected dominating set in $E_{4}(G)$. Consider $S=$ $\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, \ldots, v_{k}, v_{k}^{\prime}\right\}$ in G, which is a dominating set in G by Theorem 3.3.1. By the definition of $E_{4}(G), S$ is connected and hence the result.

Corollary 3.3.4. For a connected graph $G, \gamma_{w}(G) \leqslant 2 i_{w}\left(E_{4}(G)\right)$.

Proof. Let $i_{w}\left(E_{4}(G)\right)=k$ and $S^{\prime}=\left\{e_{1}=v_{1} v_{1}^{\prime}, e_{2}=v_{2} v_{2}^{\prime}, \ldots, e_{k}=\right.$ $\left.v_{k} v_{k}^{\prime}\right\}$ be a minimal weakly connected independent dominating set in $E_{4}(G)$. Since S^{\prime} is independent, no two e_{i} s are adjacent. Further since $<S^{\prime}>_{w}$ is connected, for any e_{i} in $S^{\prime}, e\left(e_{i}\right) \leqslant 2$ in $\left\langle S^{\prime}\right\rangle_{w}$. So in $\left\langle S^{\prime}\right\rangle_{w}, e_{i}$ and e_{j} are either adjacent or there exists an $e_{i, j}$ which is adjacent to both e_{i} and e_{j}. Then in G, the edge $e_{i, j}$ is either incident with e_{i}, e_{j} or is opposite to e_{i}, e_{j} in
some C_{4}. Consider $S=\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, \ldots, v_{k}, v_{k}^{\prime}\right\}$. In both these cases, $\langle S\rangle_{w}$ is weakly connected. Also S^{\prime} is a dominating set by Theorem 3.3.1. Hence the result.

Corollary 3.3.5. For any connected graph $G, \gamma_{t}(G) \leqslant 2 \gamma_{t}\left(E_{4}(G)\right)$.

Proof. Let S be a minimal total dominating set in $E_{4}(G)$. Let S^{\prime} be the set of all end vertices of the corresponding edges in G. Then $N\left(S^{\prime}\right)=V$. For, consider any vertex $v \in S^{\prime}$. It is clearly dominated by the other vertex v^{\prime} in S^{\prime} such that $v v^{\prime} \in S$. Also by Theorem 3.3.1, S^{\prime} forms a dominating set for G. Thus $N\left(S^{\prime}\right)$ $=V(G)$ and hence the result.

Theorem 3.3.6. Given any two integers a and b, there exists a graph G such that $\gamma(G)=a$ and $\gamma\left(E_{4}(G)\right)=b$. Further, if $a \leqslant 2 b$, there exists a connected graph G such that $\gamma(G)=a$ and $\gamma\left(E_{4}(G)\right)=b$.

Proof. Case 1: $b \leqslant a \leqslant 2 b$.
Consider $P_{2 b}=\left\{v_{1}, v_{2} \ldots, v_{2 b}\right\}$. Attach a pendant vertex to each of $v_{2 i-1}, i=1,2, \ldots b$. Then to each $v_{2 i}, i=1,2, \ldots, a-b$, attach a pendant vertex. This is the required graph G. Then $\gamma(G)$ $=b+a-b=a$. Also, $\gamma\left(E_{4}(G)\right)=b$ since the set of vertices
$\left\{v_{2 i-1} v_{2 i} ; i=1,2, \ldots, b\right\}$ is a dominating set of minimum cardinality in $E_{4}(G)$.

For example, when $a=4 ; b=3, G$ is

Case 2: $a<b$.
Consider $K_{1, a}$. Replace a pendant vertex of $K_{1, a}$ by $K_{1} \vee(b-a+$ 1) K_{2}. To all other pendant vertices of $K_{1, a}$, attach a pendant vertex. Let u_{1} be the central vertex of $K_{1, a}$ and $\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ be the vertices attached to u_{1}. Suppose that $v_{2}^{\prime}, v_{3}^{\prime}, \ldots, v_{a}^{\prime}$ are respectively the pendant vertices attached to $v_{2}, v_{3}, \ldots, v_{a}$. Let $w_{1}-w_{1}^{\prime}, w_{2}-w_{2}^{\prime}, \ldots, w_{b-a+1}-w_{b-a+1}^{\prime}$ be the $b-a+1 K_{2} \mathrm{~S}$ joined to v_{1}. This is the required graph G. Then $\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ forms a minimum dominating set in G and hence $\gamma(G)=a$. In $E_{4}(G),\left\{w_{i} w_{i}^{\prime} ; i=1,2, \ldots, b-a, v_{1} w_{b-a+1}, v_{i} v_{i}^{\prime} ; i=2,3, \ldots, a\right\}$ is a dominating set of minimum cardinality and hence $\gamma\left(E_{4}(G)\right)=$ $b-a+1+a-1=b$.

For example, when $a=5 ; b=6, G$ is

Case 3: $a>2 b$.
G is $P_{2 b} \circ K_{1}$ together with $a-2 b$ isolated vertices.

For example, when $a=8 ; b=3, G$ is

Lemma 3.3.7. For any connected graph $G, \alpha\left(E_{1}(G)\right) \leqslant \beta(G)$.

Proof. Let $\alpha\left(E_{4}(G)\right)=k$ and $S=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be the maximum vertex independent set in $E_{4}(G)$. Consider the corresponding edges in G. Since e_{i} and e_{j} are not adjacent in S, the corresponding edges in G are also independent.

Theorem 3.3.8. For any connected graph G, diam $(G)-2 \leqslant$ $\gamma_{c}\left(E_{4}(G)\right) \leqslant 2 \beta(G)-1$.

Proof. By Theorem 1.2.16, $\operatorname{diam}\left(E_{4}(G)\right)-1 \leqslant \gamma_{c}\left(E_{4}(G)\right)$. Using Theorem 3.2.1, we get the left inequality. By Theorem 1.2.17, $\gamma_{c}\left(E_{4}(G)\right) \leqslant 2 \alpha\left(E_{4}(G)\right)-1$. Then by applying Lemma 3.3.7, we get the right inequality.

Note: In Theorem 3.3.8, the left bound is strict for P_{5} and the right bound is strict for $K_{1,3}$.

Theorem 3.3.9. For any connected graph $G, \gamma\left(E_{4}(G)\right) \leqslant \gamma^{\prime}(G)$. Further, equality holds if the edge domination of G is the efficient edge domination.

Proof. Let S form a minimal edge dominating set in G so that $\gamma^{\prime}(G)=|S|$. In $E_{4}(G)$, let S^{\prime} be the set of vertices corresponding to the edges in S. Clearly S^{\prime} dominates all the vertices in
$E_{4}(G)$. Hence $\gamma\left(E_{4}(G)\right) \leqslant \gamma^{\prime}(G)$.
Let $S=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be an efficient edge dominating set in G so that $\gamma_{e}^{\prime}(G)=|S|$. Let S^{\prime} be any dominating set in $E_{4}(G)$.

Claim: $\left|S^{\prime}\right| \geqslant|S|$.
Suppose that $e_{i} \in S^{\prime}$ dominates e_{l} and e_{m} in $E_{4}(G)$ where $l, m \in\{1,2, \ldots, k\}$. Since S is an efficient edge dominating set in G, both e_{l} and e_{m} cannot be adjacent with e_{i}. So the only possibility is that e_{l} and e_{m} are opposite to e_{i} in some $C_{4} \mathrm{~S}$ in G. But e_{i} in G must be dominated by an edge $e_{k} \in S$. Even then, S is not an efficient edge dominating set. Thus any dominating set in $E_{4}(G)$ must have $|S|$ elements. Hence the equality.

Note: Even if $\gamma\left(E_{\mathrm{i}}(G)\right)=\gamma^{\prime}(G)$, the edge domination need not be efficient. As an example, $G=K_{1, n}$.

Corollary 3.3.10. For any graph $G=(n, m), \gamma\left(E_{4}(G)\right)<n / 2$.

Proof. Using Theorem 1.2.12 and Theorem 3.3.9, we get $\gamma\left(E_{4}(G)\right)$ $\leqslant\lfloor n / 2\rfloor \leqslant n / 2$. But $\gamma^{\prime}(G)=n / 2$ is possible only when n is cven. But, by Theorem 1.2.13, for even $n, \gamma^{\prime}(G)=n / 2$ if and only if G $=K_{n}$ or $K_{n / 2, n / 2}$. When $G=K_{n}$ or $K_{n / 2, n / 2}, E_{4}(G)$ is complete and hence $\gamma\left(E_{4}(G)\right)=1$.

Notation 3.3.1. The graph $C_{3, k}$ denotes the graph obtained from a C_{3} and k copies of K_{2} by joining one end of each K_{2} with a fixed vertex of C_{3}. The graph obtained from C_{4} by joining a vertex of C_{4} with the center of $S\left(K_{1, k}\right)$ is denoted by $C_{4, k}$.

Corollary 3.3.11. If a connected graph $G=(n, m)$ is a tree or a unicyclic graph then $\gamma\left(E_{4}(G)\right)=\lfloor n / 2\rfloor$ if and only if G is one of the following.
(1) subdivision of a star, (2) C_{5}, (3) C_{7}, (4) $C_{3, k}$.

Proof. By Corollary 3.3.10, $\gamma\left(E_{4}(G)\right)<n / 2$. So $\gamma\left(E_{4}(G)\right)=$ $\lfloor n / 2\rfloor$ is possible only when n is odd. By Theorem 1.2 .14 for any tree of order $n \neq 2, \gamma^{\prime}(G)=(n-1) / 2$ if and only if G is isomorphic to the subdivision of a star. If G is $S\left(K_{1, k}\right), \gamma\left(E_{4}(G)\right)=k$. By Theorem 1.2.15, for a connected unicyclic graph $G=(n, m)$, $\gamma^{\prime}(G)=\lfloor n / 2\rfloor$ if and only if G is isomorphic to either C_{4}, C_{5}, C_{7}, $C_{3, k}$ or $C_{4, k}$. We have $\gamma\left(E_{4}\left(C_{4}\right)\right)=1, \gamma\left(E_{4}\left(C_{5}\right)\right)=2, \gamma\left(E_{4}\left(C_{7}\right)\right)$ $=3, \gamma\left(E_{4}\left(C_{3, k}\right)\right)=k+1, \gamma\left(E_{4}\left(C_{4, k}\right)\right)=k+1$. Thus the result follows.

Theorem 3.3.12. Let G be a clique dominated graph with a dominating clique S. If every vertex $v \notin S$ is adjacent to at least two vertices of S, then $E_{4}(G)$ is also a clique dominated
graph.

Proof. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a dominating clique of a clique dominated graph G. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be the set of all edges in the graph induced by S. Then the set of vertices $S^{\prime}=$ $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ in $E_{4}(G)$ induces a complete subgraph by the definition of $E_{4}(G)$. Also, S^{\prime} forms a dominating clique.

Let $e_{x}=v_{x} v_{x}^{\prime} \notin S^{\prime}$ be a vertex in $E_{4}(G)$. If x or $x^{\prime} \in\{1,2, \ldots, k\}$, then e_{x} in $E_{4}(G)$ is dominated by S^{\prime}. So let both v_{x} and $v_{x}^{\prime} \notin S$. But, both v_{x} and v_{x}^{\prime} are adjacent to at least two vertices in S. Let v_{x} be adjacent to v_{i} in S and let v_{x}^{\prime} be adjacent to $v_{j}, i \neq j$ in S. Then $v_{i}-v_{j}$ and $v_{x}-v_{x}^{\prime}$ are opposite edges of some C_{4} in G and hence the vertex e_{x} is dominated by S^{\prime}. So S^{\prime} is a dominating clique in $E_{4}(G)$ and hence it is a clique dominated graph.

Note: The converse of Theorem 3.3.12 need not be true, as in the case of $G=K_{n} \circ K_{1}$.

$3.4 \quad E_{4}(G)$ and some graph classes

Theorem 3.4.1. For a connected graph $G, E_{4}(G)$ is complete if and only if G is a complete multipartite graph.

Proof. Let G be a connected graph such that $E_{4}(G)$ is complete. We shall first show that G is a cograph and is paw-free. If G contains an induced P_{4} then the first and the third edges in P_{4} correspond to two non adjacent vertices in $E_{4}(G)$, and $E_{4}(G)$ is not complete. Further if G contains a paw as an induced subgraph then the pendant edge and the edge in the triangle of the paw to which the pendant edge is not adjacent correspond to non adjacent vertices in $E_{4}(G)$. Hence G is also paw-free. Thus G is a paw-free cograph.

Claim: G is a complete multipartite graph.

If not, \bar{G} is not a union of complete graphs. Then \bar{G} contains an induced P_{3}. But, \bar{G} is disconnected as G is a connected graph. Hence \bar{G} is a disconnected graph containing an induced P_{3} and so G has a paw, giving a contradiction. This proves the claim.

Conversely suppose that G is a complete multipartite graph. Let e_{1} and e_{2} be any two edges in G. If they are not adjacent, they are opposite edges of some C_{4} in G since G is a complete multipartite graph. Hence $E_{4}(G)$ is a complete graph.

Theorem 3.4.2. For a connected graph $G, E_{4}(G)$ is bipartite if and only if G is either an even cycle of length greater than five or a path.

Proof. If G is either a path or an even cycle of length greater than five, then $E_{4}(G)$ is bipartite.

Let $E_{4}(G)$ be a bipartite graph. Then it cannot contain odd cycles. But if G contains a $K_{1,3}$ or a K_{3} then $E_{4}(G)$ contains a $K_{3} . E_{4}\left(C_{4}\right)$ is K_{4} which is not bipartite. Since $E_{4}(G)$ is fixed for $C_{n} ; n \neq 4, G$ cannot contain odd cycles. Hence $E_{4}(G)$ is bipartite only for the even cycles of length greater than five or paths.

Corollary 3.4.3. For a connected graph $G, E_{4}(G)$ is a tree if and only if G is a path.

Theorem 3.4.4. Let G be a connected graph such that $E_{4}(G)$ is a threshold graph. Then $\gamma(G) \leqslant 2$.

Proof. We know by Lemma 1.2.5 that $E_{4}(G)$ is a threshold graph if and only if $\operatorname{dilw}\left(E_{4}(G)\right)=1$. Also $\operatorname{dilw}\left(E_{4}(G)\right) \geqslant \gamma\left(E_{4}(G)\right)$ by Lemma 1.2.4. Then the theorem follows from Theorem 3.3.1.

Notation 3.4.1. The graph obtained from K_{4} by attaching two pendant vertices to the same vertex of K_{4} is denoted by H in the following Theorem.

Theorem 3.4.5. If G is a threshold graph then $E_{4}(G)$ is a threshold graph if and only if G is $\{$ moth, $H\}$-free.

Proof. Let G be a threshold graph. If G contains a moth graph or H as an induced subgraph, then $E_{4}(G)$ contains a $2 K_{2}$ and hence cannot be threshold.

Conversely, suppose that G is a $\{$ moth, H$\}$-free threshold graph. Since G is threshold, $\operatorname{dilw}(G)=1$ and hence $\gamma(G)=1$. So G must have a universal vertex u.

If at most two vertices in $N(u)$ are of degree greater than one, then $E_{4}(G)$ cannot contain an induced $2 K_{2}, C_{4}$ or P_{4}.

Now, let $k \geqslant 3$ vertices in $N(u)$ be of degree greater than one. Claim: There exist three vertices $u_{1}, u_{2}, u_{3} \in N(u)$ such that the vertex u_{2} is adjacent to u_{1} and u_{3}.

If $k=3$, this claim holds true. If $k>3$, let u_{1}, u_{2}, u_{3} and u_{4} be four vertices of degree greater than one in $N(u)$ such that u_{1} is adjacent to u_{2} and u_{3} is adjacent to u_{4}. Since G is threshold, it cannot contain an induced $2 K_{2}$ and hence u_{3} or u_{4} must be adjacent to u_{1} or u_{2}. Let u_{3} be adjacent to u_{1}. Then $u_{2}, u_{1}, u_{3}, u_{4}$ forms an induced P_{4} which is not possible since G is threshold. In this case, if u_{4} is adjacent to u_{2}, then G contains an induced C_{4} which is again not possible. Hence the claim.

Further, if u_{1} and u_{3} are adjacent, the vertex u can have at most one more neighbor since G is H-free. In this case also $E_{4}(G)$ is threshold since it is $\left\{2 K_{2}, C_{4}, P_{4}\right\}$-free. On the other hand if u_{1} and u_{3} are not adjacent, then since G is moth-free, the vertex u can have at most one more neighbor. In this case also $E_{4}(G)$ is threshold.

Note: If G is a connected graph such that $E_{4}(G)$ is a cograph,
then $\gamma(G) \leqslant 4$. This follows from Lemma 1.3.3 and Theorem 3.3.1.

Theorem 3.4.6. Let G be a connected graph. Then $E_{4}(G)$ is a weakly geodetic graph if and only if G is $\{$ paw, 4 -pan $\}$-free.

Proof. If G contains a paw in which $C_{3}=u_{1}, u_{2}, u_{3}$ and a is a pendant vertex attached to u_{1}, then in $E_{4}(G), d\left(a u_{1}, u_{2} u_{3}\right)=2$, but they have two common neighbors $u_{1} u_{2}$ and $u_{1} u_{3}$. Similarly if G contains a 4 -pan in which $C_{4}=u_{1}, u_{2}, u_{3}, u_{4}$ and a is a pendant vertex attached to u_{1}, then in $E_{4}(G), d\left(a u_{1}, u_{3} u_{4}\right)=2$, but they have two neighbors $u_{1} u_{2}$ and $u_{1} u_{4}$.

Conversely, suppose that G is a \{paw, 4 -pan\} free graph. If G is an acyclic graph, there exists a unique shortest path joining any two vertices in $E_{4}(G)$. Thus $E_{4}(G)$ is weakly geodetic.

Next, suppose that G contains cycles.
If $g(G)=3$ then G contains a C_{3} with vertices u_{1}, u_{2}, u_{3}.
Claim: G is a cograph.
Suppose that G contains an induced $P_{4}=v_{1}, v_{2}, v_{3}, v_{4}$. Let $u_{1} \neq$ v_{1}. Consider a shortest path $u_{1}, a_{1}, a_{2}, \ldots, a_{k}, v_{1}$ joining u_{1} and
v_{1}. Since G is paw free, a_{1} must be adjacent to at least one more $u_{i}, i=2,3$. Proceeding like this, v_{1} and then v_{2} must be adjacent to at least two $u_{i} \mathrm{~s}$. This implies that v_{1} and v_{2} must have a common neighbor among the $u_{i} \mathrm{~s}$. Let it be u_{1}. Then v_{1}, u_{1}, v_{2} form a C_{3}. Since G is paw-free, v_{3} must be adjacent to at least one of v_{1} and u_{1}. But, since $v_{1}, v_{2}, v_{3}, v_{4}$ is an induced P_{4}, v_{3} must be adjacent to u_{1}. Then v_{1}, u_{1}, v_{3} will form a C_{3} in G. Again, since G is paw-free, v_{4} must be adjacent to u_{1}. Now, consider v_{1}, u_{1}, v_{2} with the edge $u_{1}-v_{4}$. Since G is paw-free, v_{4} must be adjacent to v_{1} or v_{2}, which is a contradiction. Thus G is a paw-free cograph. Thus by Theorem 3.4.1, $E_{4}(G)$ is complete and hence is weakly geodetic.

If $g(G)=4$, then G contains a $C_{4}=u_{1}, u_{2}, u_{3}, u_{4}$. If $G=C_{4}$, then $E_{4}(G)=K_{4}$. If there exists a vertex v_{1} in G which is adjacent to u_{1}, v_{1} must be adjacent to u_{3} also since G is 4 -panfree. Similarly if there exists a vertex v_{2} which is adjacent to u_{2}, v_{2} must be adjacent to u_{4}. If there exists a vertex v_{1}^{\prime} which is adjacent to v_{1}, it must be adjacent to both u_{2} and u_{4}. Hence G is a complete bipartite graph. Since $g(G)=4, G$ is paw-free. Again by Theorem 3.4.1, $E_{4}(G)$ is complete, and hence weakly geodetic.

Finally, Let $g(G)=k, k>4$. Let $u_{1}, u_{2}, u_{3} \ldots, u_{k}$ be a C_{k} in G. Then $E_{4}(G)$ also contains a C_{k}. This C_{k} is not a part of any complete subgraph in $E_{4}(G)$ and hence $b\left(E_{4}(G)\right) \leqslant k$. Since G does not contain any C_{4}, two vertices in $E_{4}(G)$ are adjacent if and only if the corresponding edges in G are adjacent. Thus $E_{4}(G)$ cannot contain a b-cycle of length less than k and so $b\left(E_{4}(G)\right)=k$ where $k>4$. By Lemma $1.2 .8, G$ is weakly geodetic if and only if $b(G) \geqslant 5$. Thus $E_{4}(G)$ is a weakly geodetic graph.

Theorem 3.4.7. For a connected graph $G, E_{4}(G)$ is a geodetic graph if and only if G is $\left\{C_{2 n}, n>2\right.$, 4 -pan, (2n-1)-pan; $\left.n>1\right\}$ free.

Proof. Let G be a geodetic graph. If G contains a 4-pan, there exists more than one shortest path joining two vertices in $E_{4}(G)$ as proved earlier. If G contains a $C_{2 n}=u_{1}, u_{2} \ldots, u_{2 n}$, then $u_{1} u_{2}$ and $u_{n+1} u_{n+2}$ in $E_{4}(G)$ are connected by more than one shortest paths and hence $E_{4}(G)$ is not geodetic. If G contains a (2n-1)pan in which $C_{2 n-1}=u_{1}, u_{2} \ldots, u_{2 n-1}$ and a is a pendant vertex attached to u_{1}, then $a u_{1}$ and $u_{n} u_{n+1}$ in $E_{4}(G)$ are connected by more than one shortest path and hence $E_{4}(G)$ is not geodetic.

Conversely, assume that G is $\left\{4\right.$-pan, $C_{2 n},(2 n-1)$-pan $\}$ free. If G is an acyclic graph there exists a unique shortest path joining any two vertices in $E_{4}(G)$ and hence is geodetic. So consider the graphs G containing cycles.

Let $g(G)=3$. Since G is paw-free, $E_{4}(G)$ is complete and hence is geodetic. If $g(G)=4, E_{4}(G)$ is complete since G is 4-pan-free and thus geodetic. If $g(G)=2 n-1, n>2$, then G contains a $C_{2 n-1}=u_{1}, u_{2} \ldots, u_{2 n-1}$. If $G=C_{2 n-1}$, then $E_{4}(G)=C_{2 n-1}$ and hence geodetic. If a is a vertex attached to u_{1}, since G is ($2 n-1$)-pan-free, a must be adjacent to at least one more u_{i}. But this is impossible since $g(G)=2 n-1$. Since G is $C_{2 n}$-free, $g(G) \neq 2 n, n>2$. Hence in all the cases, it follows that G is geodetic.

Theorem 3.4.8. If G is a connected graph, then $E_{4}(G)$ is a block graph if and only if G is $\left\{\right.$ paw, 4-pan, $\left.C_{n} ; n \geqslant 5\right\}$-free.

Proof. Let G be a block graph. If G contains a paw in which $C_{3}=u_{1}, u_{2}, u_{3}$ and a is the pendant vertex adjacent to u_{1}, then $E_{4}(G)$ contains a $C_{4}=a u_{1}, u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{1}$ which is not a part of any complete subgraph. Thus $b\left(E_{4}(G)\right) \leqslant 4$. Similarly if
G contains a 4-pan, in which $C_{4}=u_{1}, u_{2}, u_{3}, u_{4}$ and a is a pendant vertex adjacent to u_{1}, then $E_{4}(G)$ contains a $C_{4}=$ $a u_{1}, u_{1} u_{2}, u_{3} u_{4}, u_{4} u_{1}$ which is not a part of any complete subgraph and hence $b\left(E_{4}(G)\right) \leqslant 4$. If G contains a $C_{n}, n>4$, then $E_{4}(G)$ also contains a $C_{n}, n>4$. This C_{n} forms a b-cycle and hence $b\left(E_{4}(G)\right) \leqslant n$ and hence $E_{4}(G)$ is not a block graph.

Conversely, suppose that G is \{paw, 4-pan, $\left.C_{n} ; n>4\right\}$-free. If G is an acyclic graph, then $E_{4}(G)$ cannot contain a b-cycle and hence is a block graph. Now, consider the graphs G containing cycles. Since G is $C_{n}, n \geqslant 5$-free, $g(G)=3$ or 4 . But since G is \{paw, 4-pan\}-free, $E_{4}(G)$ is complete as proved earlier and thus is a block graph.

Figure 3.4.1

Theorem 3.4.9. If G is a connected split graph, then $E_{4}(G)$ is a split graph if and only if G does not contain any of the graphs shown in Figure 3.4.1 as induced subyraphs.

Proof. Let both G and $E_{4}(G)$ be split graphs. Then by Lemma 1.2.9, both G and $E_{4}(G)$ cannot contain induced $\left\{2 K_{2}, C_{4}\right\}$ and no C_{5}. If G contains any one of the graphs shown in Figure 3.4.1, then $E_{4}(G)$ contains a $2 K_{2}$ which is a contradiction to the fact that $E_{4}(G)$ is a split graph.

Conversely, suppose that G is a split graph which does not contain any of the graphs shown in Figure 3.4.1 as induced sub-
graphs.
Let G be a tree. Since G is a split graph, G cannot contain $P_{n}, n \geqslant 5$ as an induced subgraph (Since $2 K_{2} \subset$ induced P_{5}). If $G \cong P_{n}, n<5$, then $E_{4}(G)$ is a split graph. If G is a tree other than P_{4}, and if there are more vertices in G, then the additional vertices can be attached only to the mid vertices of P_{4}. If vertices are attached only to a mid vertex of P_{4}, then $E_{4}(G)$ is a split graph. Since G is G_{1}-free, vertices cannot be attached to both the mid vertices of P_{4}. If a split graph G is any tree other than G_{1} in Figure 3.4.1, then $E_{4}(G)$ is a split graph. Let G be not a tree. Since G is a split graph, G is $\left\{C_{4}, C_{5}\right\}$ -free. Further, since G is $2 K_{2}$ - free, G is $C_{n}, n>6$ - free. Hence $g(G)=3$ and $c(G)=3$. Let $u_{1} u_{2} u_{3}$ be any C_{3} in G. If $G \cong C_{3}$, then $E_{4}(G) \cong C_{3}$ and hence is a split graph. So G contains more than these three vertices. If more vertices are attached to a unique vertex of the C_{3}, then $E_{4}(G)$ is a split graph. If a vertex each is attached to any two vertices of the C_{3}, then also $E_{4}(G)$ is a split graph. Since G is $\left\{G_{2}, G_{3}, G_{4}\right\}$ - free, the only case remaining is attaching a single vertex to each of the $u_{i} \mathrm{~s}$. Then also $E_{4}(G)$ is a split graph. Hence the proof.

Chapter 4

Dynamics of $P_{3}(G)$ and $E_{4}(G)$

Graph dynamics deals with the study of convergence, divergence, fixedness, periodicity etc of graph operators [66]. The dynamics of both $P_{3}(G)$ and $E_{4}(G)$ are discussed in this chapter. We have also included some results on their touching numbers.

Some results of this chapter are included in the following papers.

1. Manju K. Menon, A. Vijayakumar, Dynamics of the P_{3} intersection graph, (communicated).
2. Manju K. Menon, A. Vijayakumar, The edge C_{4} graph of a graph, Proceedings of the International Conference on Discrete Mathematics, Ramanujan Math. Soc. Lect. Notes Ser. 7 (2008), 245-248.

4.1 Dynamics of $P_{3}(G)$

If G is the union of complete graphs, then $P_{3}(G)=\phi$, the null graph. So we do not consider such graphs in this section.

Lemma 4.1.1. Let G be a connected graph. If $P_{3}(G)$ is not complete, then $\omega\left(P_{3}(G)\right) \geqslant \omega(G)$. Equality holds if and only if G is one of the following.

1. G is a complete graph with two pendant vertices attached to any two of its distinct vertices.
2. The graph G is as in figure $2(a)$ or 2(b):

Figure: 2(a)

Figure : 2(b)

Proof. Let $\omega(G)=k$. So consider a $K_{k} \subseteq G$. Let the vertices of the K_{k} be $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Since G is not complete, $K_{k} \subset G$. Let $v \in V(G)-V(K)$ be a vertex which is adjacent to t vertices $u_{1}, u_{2}, \ldots, u_{t}$ of K_{k}. Then the vertices of the form $v u_{i} u_{j}$, $1 \leqslant i \leqslant t, t+1 \leqslant j \leqslant k$ form a $K_{t(k-t)}$ in $P_{3}(G)$. But $t(k-t)$
$\geqslant k-1$ as proved in Lemma 2.3.1. If $t(k-t)=k-1$, then $t=$ 1 or $k-1$.

Case1: $t=k-1$.
Let v be adjacent to $u_{1}, u_{2}, \ldots, u_{k-1}$. Since $P_{3}(G)$ is not complete, there must exist more vertices in G. Consider the case when there exists a vertex w adjacent to some $u_{i}, i=1,2, \ldots, k-1$, but not adjacent to u_{k}. If w is not adjacent to v, then $v u_{i} u_{k}$; $i=1,2, \ldots, k-1, w u_{i} v$ and $w u_{i} u_{k}$ will form a K_{k+1} in $P_{3}(G)$. If w is adjacent to v, then since v is adjacent to $k-1$ vertices of K_{k}, w can be adjacent to at most $k-2$ vertices of K_{k}. If w is not adjacent to u_{k-1}, then $v u_{i} u_{k} ; i=1,2, \ldots, k-1$, $w v u_{k-1}$ and $w u_{i} u_{k}, i=1,2 \ldots k-2$ will form at least a K_{k+1} in $P_{3}(G)$. Similarly if w is adjacent to u_{k}, we can find at least a K_{k+1} in $P_{3}(G)$.

Therefore consider the case when such a w does not exist. Since $P_{3}(G)$ is not complete, the vertex v must have a neighbor x having an induced P_{3} which is independent of the $u_{i} \mathrm{~s}$ and v. Then $v u_{i} u_{k} ; i=1,2, \ldots k-1$ and $x v u_{i} ; i=1,2 \ldots k-1$ will form at least a K_{k+1} in $P_{3}(G)$. Thus in this case, $\omega\left(P_{3}(G)\right) \geqslant \omega(G)+1$.

Let v be adjacent to u_{1} alone. Since $P_{3}(G)$ is not complete, there must exist an induced P_{3} which is independent of u_{1} and v. Let there exist w adjacent to some $u_{i} \mathrm{~s}$. If w is also adjacent to u_{1}, then there exists at least a K_{k+1} in $P_{3}(G)$. If w is adjacent to more than one vertex of K_{k}, then also at least a K_{k+1} is contained in $P_{3}(G)$. If w is adjacent to exactly one $u_{i}, i \neq 1$, then $\omega\left(P_{3}(G)\right)=k$ except when $k=3$ [But when $k=3, P_{3}(G)$ is complete]. This is the graph mentioned in 1 of the statement. Now, if v or w has a neighbor, then $\omega\left(P_{3}(G)\right)>k$. If more than two vertices are adjacent to the $u_{i} \mathrm{~s}$, then also $\omega\left(P_{3}(G)\right)>k$.

So consider the case when u_{i} s have no neighbor other than v. Since $P_{3}(G)$ is not complete, v must have a neighbor x having an induced P_{3} consisting of x but none of v or the u_{i}. In this case also we can find at least a. K_{k+1} in $P_{3}(G)$.

If $t(k-t)=k$, then we get $k=4$ and $t=2$. So let v be adjacent to u_{1} and u_{2}. Since $P_{3}(G)$ is not complete, it must contain more vertices. If there exists a vertex w which is adjacent to v and if w is not adjacent to u_{1} or u_{2}, then $\omega\left(P_{3}(G)\right)>4$. So consider the case when w is adjacent with v, u_{1}, u_{2} (w can
be adjacent only to these two vertices of $\left.K_{4}\right)$]. Then the graph is the graph shown in Figure : 2(a) of the Lemma.

For the graph G in Figure : 2(a), $\omega\left(P_{3}(G)\right)=\omega(G)=4$. If we join one more vertex to this graph, then $\omega\left(P_{3}(G)\right)>\omega(G)$. Next consider the case when w is not adjacent to v. Then $\omega\left(P_{3}(G)\right)$ $>\omega(G)$ except when w is adjacent to both u_{3} and u_{4}. Then the graph is the graph shown in Figure: 2(b) of the Lemma.

For the graph G in Figure : 2(b), $\omega\left(P_{3}(G)\right)=\omega(G)$. As in the above case, if this graph contains more vertices, then $\omega\left(P_{3}(G)\right)>\omega(G)$. Hence the lemma is proved.

Theorem 4.1.2. There are no P_{3}-periodic graphs.

Proof. If a graph G is P_{3}-fixed, then $\omega\left(P_{3}(G)\right)=\omega(G)$. From Lemma 4.1.1, $\omega\left(P_{3}(G)\right)=\omega(G)$ only for the above three types of graphs. But, none of them are fixed under P_{3}. Thus there does not exist any graph with period one. Again, from Lemma 4.1.1, $\omega\left(P_{3}^{2}(G)\right)>\omega(G)$. Hence $P_{3}^{n}(G) \neq P_{3}(G)$ for any $n>1$.

Remark 4.1.1. Since 1 - periodic graphs are fixed, it follows
that there does not exist any P_{3} - fixed graphs.

Theorem 4.1.3. If a graph G is P_{3}-convergent, then it is $P_{3}^{n}(G)$-complete for some $n \geqslant 1$.

Proof. Let G be a P_{3}-convergent graph. If G is none of the three graphs mentioned in Lernma 4.1.1, then $\omega\left(P_{3}(G)\right)>\omega(G)$. Thus the clique size of the iterated graphs goes on increasing. So if G converges, it converges to some complete graph.

If G is one among the three graphs mentioned in Lemma 4.1.1, then by Theorem 4.1.2 $P_{3}(G) \neq G$ and $\omega\left(P_{3}^{2}(G)\right)>\omega(G)$. This indicates that in both the cases, the clique size goes on increasing. Also we know that if $P_{3}^{k}(G)$ is a complete graph, then $P_{3}^{k+1}(G)=\phi$. Hence if G converges, it converges to some complete graph.

Note: By the Theorem 4.1.3, it follows that all the P_{3}-convergent graphs are P_{3}-mortal graphs .

The following seems to be an interesting open problem.

Problem: Are there any P_{3}-divergent graphs?

4.2 Dynamics of $E_{4}(G)$

In this section we study the dynamical properties of the edge C_{4} graph of a graph.

Theorem 4.2.1. A connected graph G is E_{4}-convergent if and only if G is $P_{n}, K_{1,3}$ or $C_{n}(n \neq 4)$.

Proof. The paths P_{n} converge to ϕ since $E_{4}^{n}\left(P_{n}\right)=\phi$. For $K_{1,3}$, $E_{4}\left(K_{1,3}\right)=K_{3}, E_{4}^{n}\left(K_{1,3}\right)=K_{3}$, for $n>1$ and hence $K_{1,3}$ converges to K_{3}. All cycles except C_{4} are E_{4}-fixed.

If G contains a vertex of degree >3, then $E_{4}(G)$ contains K_{4}. Then $K_{6} \subseteq E_{4}^{2}(G), K_{15} \subseteq E_{4}^{3}(G), K_{105} \subseteq E_{4}^{4}(G)$ and so on. Thus in the subsequent iterations the clique size goes on increasing and hence G diverges. So if G is E_{4}-convergent, then $\Delta(G) \leqslant 3$.

If G is a tree which is neither P_{n} nor $K_{1,3}$, then K_{4} is contained in at least the third iterated graph and hence G cannot converge. Next, consider the graphs which are not trees. If G is not a cycle, then G contains a cycle with a pendant edge as a subgraph (nced not be induced). Then K_{4} is a subgraph at least in the second
iteration and hence in the subsequent iterations the clique size will go on increasing and hence cannot converge. Also, C_{4} is not convergent since $E_{4}\left(C_{4}\right)=K_{4}$ and in the subsequent iterations, the clique size goes on increasing.

Corollary 4.2.2. A connected graph G is E_{4}-periodic if and only if $G \cong C_{n}, n \neq 4$. The cycles $C_{n}, n \neq 4$ have period one.

Proof. A graph G is convergent if and only if G is either periodic or there is some positive integer n with $E_{4}{ }^{n}(G)$ periodic. But from Theorem 4.2.1, the only E_{4} - convergent graphs are $P_{n}, K_{1,3}, C_{n} ; n \neq 4$. But P_{n} converges to the null graph and $K_{1,3}$ converges to K_{3}. So it is easy to verify that the only periodic graphs are the cycles $C_{n}, n \neq 4$ and they have period one.

Corollary 4.2.3. The transition number $t\left(P_{n}\right)=n, t\left(K_{1,3}\right)=$ 1 and for $n \neq 4, t\left(C_{n}\right)=0$.

Proof. The transition with respect to E_{4} of a graph G is zero if G is periodic and the smallest number n such that $E_{4}^{n}(G)$ is periodic. $E_{4}\left(P_{n}\right)=P_{n-1}, E_{4}^{n}\left(P_{n}\right)=\Phi$ and hence $t\left(P_{n}\right)=n$. $E_{4}\left(K_{1,3}\right)=K_{3}, E_{4}^{2}\left(K_{1,3}\right)=E_{4}\left(K_{3}\right)=K_{3}$. Thus $t\left(K_{1,3}\right)=1$. Since $C_{n}, n \neq 4$ are periodic, for $n \neq 4, t\left(C_{n}\right)=0$.

Corollary 4.2.4. For a connected graph $G, E_{4}(G)$ is a mortal graph if and only if G is a path.

Theorem 4.2.5. If G is a tree then for $E_{4}(G)$, the only semibasins are the paths and the only basins are $P_{n}, n \leqslant 4$.

Proof. Let G be a tree. If G contains a $K_{1,3}$, then $E_{4}(G)$ contains a K_{3} and hence $E_{4}(G) \nsubseteq G$. Also for any $P_{n}, E_{4}\left(P_{n}\right)=P_{n-1}$. Hence, among the trees the only semi basins are the paths.

If $G \cong P_{n}, n \geqslant 5$, then $\Delta\left(G^{c}\right)=n-2$. If $P_{n}=v_{1}, v_{2}, \ldots, v_{n}$, then in $E_{4}\left(P_{n}^{c}\right), d\left(v_{1} v_{n}\right)$ is at least $(n-3)+(n-3)=2 n-3$. For $n \geqslant 5,2 n-6>n-2$. So $E_{4}\left(P_{n}^{c}\right) \nsubseteq P_{n}^{c}$. If $G \cong P_{n} ; n<5$, then $E_{4}\left(P_{n}^{c}\right) \subseteq P_{n}^{c}$.

4.3 The touching number

In this section, we consider those graphs G for which the touching number is defined.

Theorem 4.3.1. For any graph $G, t_{k}\left(P_{3}(G)\right) \geqslant 8 v t_{k}(G), k \geqslant 4$ and $t_{3}\left(P_{3}(G)\right) \geqslant 9 v t_{k}(G)$ for any $k>3$.

Proof. Let $x_{1}, x_{2}, \ldots, x_{k}, x_{1}$ be an induced C_{k} in G. Let y be a touching vertex of this cycle which is adjacent to x_{i} alone. Then $x_{1} x_{2} x_{3}, x_{2} x_{3} x_{4}, \ldots, x_{k-1} x_{k} x_{1}, x_{k} x_{1}, x_{2}$ forms a C_{k} in $P_{3}(G)$. Also $y x_{i} x_{i+1}$ and $y x_{i} x_{i-1}$ are two vertices in $P_{3}(G)$ such that $y x_{i} x_{i+1}$ is adjacent to $x_{i} x_{i+1} x_{i+2}, x_{i-1} x_{i} x_{i+1}, x_{i-2} x_{i-1} x_{i}, x_{i+1} x_{i+2} x_{i+3}$ and $y x_{i} x_{i-1}$ are all adjacent to $x_{i} x_{i+1} x_{i+2}, x_{i-1} x_{i} x_{i+1}, x_{i-2} x_{i-1} x_{i}$ and $x_{i-3} x_{i-2} x_{i-1}$. All these eight edges are touching edges to the C_{k} in $P_{3}(G)$. Hence $t_{k}\left(P_{3}(G)\right) \geqslant 8 v t_{k}(G), k \geqslant 4$.

Again, let $C_{k}=x_{1}, x_{2}, \ldots, x_{k}, x_{1}$ be an induced C_{k} in G. If y is a touching vertex of the cycle which touches x_{i} alone, then $y x_{i} x_{i+1}, x_{i-1} x_{i} x_{i+1}$ and $y x_{i} x_{i-1}$ induce a C_{3} in $P_{3}(G)$. Then $x_{i} x_{i+1} x_{i+2}, x_{i-2} x_{i-1} x_{i}$ and $x_{i+1} x_{i+2} x_{i+3}$ are all adjacent to all the three vertices of the C_{3} and hence the result.

Note: The bounds in the above theorem are strict. If G is 4 - pan, then, $P_{3}(G)=K_{6}$. But, $v t_{4}(G)=1 ; t_{4}\left(P_{3}(G)\right)$ $=8 ; t_{3}\left(P_{3}(G)\right)=9$.

Theorem 4.3.2. For any graph $G, t_{n}\left(E_{4}(G)\right) \geqslant 2 t_{n}(G)$. Further if G contains C_{4} as a subgraph where either an edge or two
consecutive edges of C_{4} are the edges of the C_{n} which determines the touching number, then $t_{n}\left(E_{4}(G)>2 t_{n}(G)\right.$.

Proof. Let a C_{n} in G be $x_{1}, x_{2}, \ldots, x_{n}, x_{1}$. Then $x_{1} x_{2}, x_{2} x_{3}, \ldots$, $x_{n} x_{1}$ is a C_{n} in $E_{4}(G)$. If $y x_{i}$ is a touching edge in G , then $E_{4}(G)$ contains two touching edges say $y x_{i}-x_{i} x_{i+1}$ and $y x_{i}-x_{i-1} x_{i}$. Thus $t_{n}\left(E_{4}(G)\right) \geqslant 2 t_{n}(G)$.

Let $C_{4}=a_{1} a_{2} a_{3} a_{4}$ be a subgraph of G. Further, suppose that the edge $a_{3} a_{4}$ is a touching edge in G. Then $a_{1} a_{4}, a_{2} a_{3}, a_{1} a_{2}$ are touching edges in $E_{4}(G)$. Hence $t_{n}\left(E_{4}(G)\right)>2 t_{n}(G)$. The proof is similar for the case when any two consecutive edges of C_{4} are the edges of the C_{n} mentioned above.

Note: The bound in the above theorem is strict.
For example, if G is k - pan, $k \neq 4$. Then $t_{k}(G)=1$ and $t_{k}\left(E_{4}(G)\right)=2$.

Chapter 5

The wide diameter and

diameter variability

An interconnection network connects the processors of a parallel and distributed system. This can always be represented by a graph, where each vertex represents a processor and each edge represents a vertex to vertex communication link. For routing problems in interconnection networks it is important to find short containers between any two vertices, since the w-wide di-

[^1]
110 Chapter 5. The wide diameter and diameter variability

ameter tells us the maximum communication delay when there are up to $w-1$ faulty nodes in a network modelled by a graph G. This is a consequence of Menger's Theorem. In fact, the maximum integer w such that there exists a non empty container of width w between every pair of distinct vertices is the vertex connectivity $\kappa(G)$. Indeed it is only interesting to study $1 \leqslant w \leqslant \kappa(G)$. In networks, communication is the critical issue and the diameter of the graph is a measure of the transmission. In fact the diameter of a graph can be affected by adding or deleting edges. In [33], Graham and Harary studied whether the diameter of hypercubes changed or not on increasing or decreasing the number of edges. The diameter variability arising from the change of edges of a graph G is defined in [77].

5.1 The w-wide diameter

In this section we study the w-wide diameter of some graph operators such as $P_{3}(G), E_{4}(G)$ and $L(G)$. We also include results on the w-wide diameter of the join of two graphs.

Lemma 5.1.1. If there exists a container of width w between
any two vertices in G, then there exists a container of width w between any two vertices in $P_{3}(G)$.

Proof. Let there exists a container of width w between any two vertices in G. Let $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ be any two vertices in $P_{3}(G)$. Then in G, between any u_{i} and $v_{j}, i, j \in\{1,2,3\}$, there exists w internally vertex disjoint paths.

Consider u_{i} and $v_{j}, i, j \in\{1,2,3\}$ where u_{i} and v_{j} are non adjacent vertices in G.

Claim: Corresponding to the vertex disjoint paths in $C_{w}\left(u_{i}, v_{j}\right)$, there exist vertex disjoint paths connecting $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in $P_{3}(G)$.

For, if $u_{i}-v_{j+1}-v_{j} \in C_{w}\left(u_{i}, v_{j}\right)$, then $u_{1} u_{2} u_{3}-u_{i} v_{j+1} v_{j}-v_{1} v_{2} v_{3}$ is a path joining $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in $P_{3}(G)$. If $u_{i}-u_{i+1}-v_{j} \in$ $C_{w}\left(u_{i}, v_{j}\right)$, then $u_{1} u_{2} u_{3}-u_{i} u_{i+1} v_{j}-v_{1} v_{2} v_{3}$ is a path joining $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in $P_{3}(G)$. Let $P=u_{i}-a_{1}-a_{2}-a_{3}-$ $\ldots-a_{k-1}-v_{j} \in C_{w}\left(u_{i}, v_{j}\right)$. If P is an induced path then $u_{1} u_{2} u_{3}-u_{i} a_{1} a_{2}-\ldots-a_{k-2} a_{k-1} v_{j}-v_{1} v_{2} v_{3}$ is a path joining $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in $P_{3}(G)$. If P is not an induced path, then consider the induced path $u_{i}, b_{1}, b_{2}, \ldots, b_{m}, v_{j}$ joining u_{i} and v_{j} where $b_{1}, b_{2}, \ldots, b_{m} \in\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}$. Then $u_{1} u_{2} u_{3}, u_{i} b_{1} b_{2}$,
$b_{1} b_{2} b_{3}, \ldots, b_{m-1} b_{m} v_{j}, v_{1} v_{2} v_{3} \in C_{w}\left(u_{1} u_{2} u_{3}, v_{1} v_{2} v_{3}\right)$. Since we are considering internally vertex disjoint paths between u_{i} and v_{j} in $C_{w}\left(u_{i}, v_{j}\right)$, all the corresponding paths joining $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in $P_{3}(G)$ are internally vertex disjoint.

Now, consider the case when each u_{i} is adjacent to each v_{j}. Then as in the above argument, we can find vertex disjoint paths joining $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ in $P_{3}(G)$ corresponding to the vertex disjoint paths in $C_{w}\left(u_{i}, v_{j}\right)$.

Theorem 5.1.2. For a connected graph G with $w>1$, $D_{w}\left(P_{3}(G)\right) \leqslant\left\lceil\left(D_{w}(G)+1\right) / 2\right\rceil$ if $D_{w}(G)$ is even, and $D_{w}\left(P_{3}(G)\right) \leqslant\left\lceil D_{w}(G) / 2\right\rceil+1$ if $D_{w}(G)$ is odd.

Proof. Let $D_{w}(G)=l$. Then there exists a container of width w between any two vertices u and v in G which is of length l. Let $u_{1} u_{2} u_{3}$ and $v_{1} v_{2} v_{3}$ be any two vertices in $P_{3}(G)$. Then by Lemma 5.1.1, corresponding to any $C_{w}\left(u_{i}, v_{j}\right) ; i, j \in\{1,2,3\}$ there exists a $C_{w}\left(u_{1} u_{2} u_{3}, v_{1} v_{2} v_{3}\right)$. Consider the $C_{w}\left(u_{i}, v_{j}\right)$ of length l. Let $u_{i}, a_{1}, a_{2}, \ldots, a_{l-1}, v_{j}$ be a path of length l in $C_{w}\left(u_{i}, v_{j}\right)$. This corresponds to a path of maximum length in $C_{w}\left(u_{1} u_{2} u_{3}, v_{1} v_{2} v_{3}\right)$. Clearly the maximum length occurs when $u_{i}, a_{1}, a_{2}, \ldots, a_{l-1}, v_{j}$ in $C_{w}\left(u_{i}, v_{j}\right)$ is an induced path. Then $u_{1} u_{2} u_{3}, u_{i} a_{1} a_{2}, a_{2} a_{3} a_{4}$,
$a_{4} a_{5} a_{6}, \ldots, a_{k-2} a_{k-1} v_{j}, v_{1} v_{2} v_{3}$ in $C_{w}\left(u_{1} u_{2} u_{3}, v_{1} v_{2} v_{3}\right)$ is of length $\lceil(l+1) / 2\rceil$ if l is even and $\lceil l / 2\rceil+1$ if l is odd. Hence the result.

Lemma 5.1.3. If there exists a container of width w between any two vertices in G, then there exists a container of width w between any two vertices in $E_{4}(G)$.

Proof. Let there exists a container of width w between any two vertices in G. Let $e_{1}=u_{1} v_{1}$ and $e_{2}=u_{2} v_{2}$ be any two vertices in $E_{4}(G)$ and let $u_{1} \neq u_{2}$. Since u_{1} and u_{2} are any two vertices in G, there exists a container of width w between them. Consider that container $C_{w}\left(u_{1}, u_{2}\right)$. If $u_{1}-u_{2}$ is a member of that container, then $e_{1}, u_{1} u_{2}, e_{2}$ is a path joining e_{1} and e_{2} in $E_{4}(G)$. If $u_{1}-v_{1}-u_{2} \in C_{w}\left(u_{1}, u_{2}\right)$, then $e_{1}, v_{1} u_{2}, e_{2}$ is a path joining e_{1} and e_{2} in $E_{4}(G)$. If $u_{1}-a_{1}-a_{2}-\ldots-a_{k}-v_{2} \in$ $C_{w}\left(u_{1}, u_{2}\right)$, then $e_{1}, u_{1} a_{1}, a_{1} a_{2}, \ldots, a_{k} v_{2}, e_{2}$ is a path joining e_{1} and e_{2} in $E_{4}(G)$. Thus corresponding to the w internally disjoint paths in $C_{w}\left(u_{1}, u_{2}\right)$, there exist at least w internally vertex disjoint paths between e_{1} and e_{2}. Hence the result.

Theorem 5.1.4. For a connected graph G with $w>1, D_{w}\left(E_{4}(G)\right)$ $\leqslant D_{w}(G)+1$.

Proof. Let $D_{w}(G)=k$. Then there exists a $C_{w}(u, v)$ of length k between any two vertices $u, v \in V(G)$. Let $e_{1}=u_{1} v_{1}$ and $e_{2}=u_{2} v_{2}$ be any two vertices in $E_{4}(G)$ and let $u_{1} \neq u_{2}$. Then by the Lemma 5.1.3, corresponding to the container $C_{w}\left(u_{1}, u_{2}\right)$ in G, there exists $C_{w}\left(e_{1}, e_{2}\right)$ in $E_{4}(G)$. Consider the path of length k in $C_{w}\left(u_{1}, u_{2}\right)$. Let it be $u_{1}-a_{1}-a_{2}-\ldots-a_{k-1}-u_{2}$. Then correspondingly there exists $e_{1}, u_{1} a_{1}, a_{1} a_{2}, \ldots, a_{k-1} u_{2}, e_{2}$ in $C_{w}\left(e_{1}, e_{2}\right)$ which is a path of length $k+1$.

Corollary 5.1.5. For a connected graph G with $w>1, D_{w}(L(G)$ $\leqslant D_{w}(G)+1$.

Theorem 5.1.6. If $G_{1}=\left(n_{1}, m_{1}\right)$ and $G_{2}=\left(n_{2}, m_{2}\right)$ are any two connected graphs having containers of width w_{1} and w_{2} respectively between any two of its vertices, then there exists containers of width $1 \leqslant w \leqslant \operatorname{Minimum}\left\{w_{1}+n_{2}, w_{2}+n_{1}, \delta\left(G_{1}\right)+\right.$ $\delta\left(G_{2}\right)$ \} between any two vertices of $G_{1} \vee G_{2}$.

Proof. Let u and v be any two vertices in G_{1}. Then the container of width w_{1} between u and v in G_{1} together with the $u-v$ paths of the form $u-w_{i}-v$, where $w_{i} \in G_{2}$ give $w_{1}+n_{2}$ internally disjoint paths between u and v in $G_{1} \vee G_{2}$. Similarly, if u and v are any two vertices in G_{2} then there exists $w_{2}+n_{1}$ internally
disjoint paths between u and v in $G_{1} \vee G_{2}$. Now let $u \in G_{1}$ and $v \in G_{2}$. Then in $G_{1} \vee G_{2}$, there exist paths of the form $u-u^{\prime}-v$, where u^{\prime} is a neighbor of u in G_{1} and $u-v^{\prime}-v$, where v^{\prime} is a neighbor of v in G_{2}. Thus in this case there exists at least $\delta\left(G_{1}\right)+\delta\left(G_{2}\right)$ paths between u and v. Hence the proof.

Remark 5.1.1. For any two connected graphs G_{1} and G_{2} with at least two vertices, $D_{2}\left(G_{1} \vee G_{2}\right)=2$.

5.2 The diameter variability of some graph operators

In this section, the diameter variability of $P_{3}(G), E_{4}(G)$ and $L(G)$ are studied.

Theorem 5.2.1. For a connected graph $G, \delta\left(P_{3}(G)\right) \geqslant \delta(G)$. The equality is attained if and only if G is $K_{k}-\{$ two independent edyes\} for some $k>3$.

Proof. Let $u_{1} u_{2} u_{3}$ be any vertex in $P_{3}(G)$. Then $u_{1} u_{2} u_{3}$ will have the minimum degree when all the three u_{i} 's in G have minimum
degree $\delta(G)$ and further more the neighbors of u_{1} and u_{3} are exactly the same and all the neighbors of u_{2} are from the neighbors of u_{1} and u_{3}. Let the neighbors of u_{1} and u_{3} be $w_{1}, w_{2}, \ldots, w_{\delta(G)-1}$ and let the neighbors of u_{2} be $w_{1}, w_{2}, \ldots, w_{\delta(G)-2}$. Further the induced 3-paths in G will be the minimum if and only if w_{1}, w_{2}, \ldots, $w_{\delta(G)-1}$ form a complete graph. Then, in $P_{3}(G)$, the only vertices adjacent to $u_{1} u_{2} u_{3}$ are $w_{\delta(G)-1} u_{1} u_{2}, w_{\delta(G)-1} u_{3} u_{2}, w_{\delta(G)-1} w_{i} u_{2} ; i=$ $1,2, \ldots, \delta(G)-2$. Thus $\delta\left(P_{3}(G)\right) \geqslant \delta(G)$.
Further $\delta\left(P_{3}(G)\right)=\delta(G)$ only if the vertices of the graph are u_{1}, $u_{2}, u_{3}, w_{1}, w_{2}, \ldots, w_{\delta(G)-1}$ as explained earlier. Then the graph is clearly K_{k} - \{two independent edges $\}$ for some $k>3$.

Lemma 5.2.2. For any connected graph $G, \kappa^{\prime}\left(P_{3}(G)\right) \leqslant \delta\left(P_{3}(G)\right)$ $\leqslant \Delta\left(P_{3}(G)\right) \leqslant 3 \Delta^{2}(G)-7 \Delta(G)+4+3(\Delta(G)-1)!-(\Delta(G)-2)!$.

Proof. Both the inequalities on the left are obvious.
Let $u_{1} u_{2} u_{3}$ be a vertex in $P_{3}(G)$. Then $u_{1} u_{2} u_{3}$ has the maximum degree in $P_{3}(G)$ when u_{1}, u_{2}, u_{3} and all their neighbors in G have degree $\Delta(G)$. Then $d\left(u_{1} u_{2} u_{3}\right) \leqslant(\Delta(G)-1)(\Delta(G)-1)+(\Delta(G)-$ $1)!+(\Delta(G)-2)(\Delta(G)-2)!+(\Delta(G)-2)(\Delta(G)-1)+(\Delta(G)-$ 1) $(\Delta(G)-1)+(\Delta(G)-1)$!
$\leqslant 2(\Delta(G)-1)^{2}+2(\Delta(G)-1)!+(\Delta(G)-2)(\Delta(G)-2)!+(\Delta(G)-$
2) $(\Delta(G)-1)$
$\leqslant 3 \Delta^{2}(G)-7 \Delta(G)+4+3(\Delta(G)-1)!-(\Delta(G)-2)!$.

Note: If $G=C_{7}$, the bounds in the above lemma are strict and the common value is four.

Theorem 5.2.3. For any connected graph $G, D^{+i}\left(P_{3}(G)\right) \leqslant$ $3 \Delta^{2}(G)-7 \Delta(G)+4+3(\Delta(G)-1)!-(\Delta(G)-2)!$, for any i.

Proof. The proof follows from Lemmas 1.2.10 and 5.2.2.
Lemma 5.2.4. For any graph $G, 2 \delta(G)-2 \leqslant \delta\left(E_{4}(G)\right) \leqslant$ $\Delta\left(E_{4}(G)\right) \leqslant \Delta^{2}(G)-1$.

Proof. A vertex $e=u v$ in $E_{4}(G)$ has minimum degree when both u and v in G have minimum degree $\delta(G)$. Then, the $\delta(G)-1$ edges incident on u and the $\delta(G)-1$ edges incident on v form $2 \delta(G)-2$ neighbors of e in $E_{4}(G)$, and hence the left inequality holds.

Now, the maximum degree of a vertex $e=u v$ in $E_{4}(G)$ occurs when both u and v in G have the maximum degree $\Delta(G)$ and
any edge incident on u and any edge incident on v are opposite edges of some C_{4} in G. The $\Delta(G)-1$ edges incident on u among the $\Delta(G)$ neighbors, $u-v$ is omitted] and the $\Delta(G)-1$ edges incident on v forms $2 \Delta(G)-2$ neighbors of e in $E_{4}(G)$. Now, the maximum number of edges opposite to e in some C_{4} of G is $(\Delta(G)-1)^{2}$. Thus $\Delta\left(E_{4}(G)\right) \leqslant 2 \Delta(G)-2+(\Delta(G)-1)^{2}=$ $\Delta^{2}(G)-1$.

Theorem 5.2.5. For any connected graph $G, D^{+i}\left(E_{4}(G)\right) \leqslant$ $\Delta^{2}(G)-1$ for any i.

Proof. For any connected graph $G, D^{+i}(G) \leqslant \kappa^{\prime}(G) \leqslant \Delta(G)$. Hence the proof follows from Lemmas 1.2.10 and 5.2.3.

Theorem 5.2.6. For any connected graph $G, D^{+i}(L(G)) \leqslant$ $2(\Delta(G)-1)$.

Proof. For a connected graph $G, \Delta(L(G)) \leqslant 2(\Delta(G)-1)$. Hence the proof follows from Lemma 1.2.10.

5.3 The diameter variability of some graph operations

In this section, the diameter variability of the graph operations, 'join' and 'corona' of two graphs are studied.

Theorem 5.3.1. Let $G_{1}=\left(n_{1}, m_{1}\right)$ and $G_{2}=\left(n_{2}, m_{2}\right)$ be two connected graphs such that at least one of them is not a complete graph. Then $D^{-1}\left(G_{1} \vee G_{2}\right)=n_{1}\left(n_{1}-1\right) / 2-m_{1}+n_{2}\left(n_{2}-1\right) / 2-$ m_{2}.

Proof. If at least one of G_{1}, G_{2} is not complete, then diam $\left(G_{1} \vee\right.$ $\left.G_{2}\right)=2$. So to decrease $\operatorname{diam}\left(G_{1} \vee G_{2}\right)$ by one, we have to add edges till both G_{1} and G_{2} become complete graphs. So to make G_{1} a complete graph, we have to add $n_{1}\left(n_{1}-1\right) / 2-m_{1}$ edges and to make G_{2} a complete graph, we have to add $n_{2}\left(n_{2}-1\right) / 2-m_{2}$ edges.

Theorem 5.3.2. If at least one of the two connected graphs $G_{1}=\left(n_{1}, m_{1}\right)$ and $G_{2}=\left(n_{2}, m_{2}\right)$ is not a complete graph, $D^{+0}\left(G_{1} \vee G_{2}\right) \geqslant m_{1}+m_{2}$.

Proof. If at least one of G_{1} and G_{2} is not a complete graph, then
$\operatorname{diam}\left(G_{1} \vee G_{2}\right)=2$. Even if we delete all the edges of G_{1} and G_{2} in $G_{1} \vee G_{2}$, the diameter of $G_{1} \vee G_{2}$ remain unchanged and thus the result.

Theorem 5.3.3. If both $G_{1}=\left(n_{1}, m_{1}\right)$ and $G_{2}=\left(n_{2}, m_{2}\right)$ are graphs having diameter more than two, then $D^{+1}\left(G_{1} \vee G_{2}\right) \leqslant$ minimum $\left\{n_{1}, n_{2}\right\}$. If $\operatorname{diam}\left(G_{1}\right) \leqslant 2$ and $\operatorname{diam}\left(G_{2}\right) \geqslant 2$, then $D^{+1}\left(G_{1} \vee G_{2}\right) \leqslant n_{1}$. If diam $\left(G_{1}\right) \leqslant 2$ and $\operatorname{diam}\left(G_{2}\right)=2$, then $D^{+1}\left(G_{1} \vee G_{2}\right) \leqslant n_{1}\left(\Delta\left(G_{2}\right)+1\right)$. Finally if both G_{1} and G_{2} are complete graphs, then $D^{+1}\left(G_{1} \vee G_{2}\right)=1$.

Proof. If both G_{1} and G_{2} are not complete graphs, then $\operatorname{diam}\left(G_{1} \vee\right.$ $\left.G_{2}\right)=2$.

Let both $G_{1}=\left(n_{1}, m_{1}\right)$ and $G_{2}=\left(n_{2}, m_{2}\right)$ have diameter greater than two. Let minimum $\left\{n_{1}, n_{2}\right\}=n_{1}$. Consider a vertex u in G_{2} such that there exists a vertex v in G_{2} with $d_{G_{2}}(u, v)>2 . \operatorname{In} G_{1} \vee G_{2}$, if we delete all the edges of the form $u-u^{\prime}, u^{\prime} \in V\left(G_{1}\right)$ then $d_{G_{1} \vee G_{2}}(u, v)$ is three and hence the diameter of $G_{1} \vee G_{2}$ is increased by at least one.

Now let $\operatorname{diam}\left(G_{1}\right) \leqslant 2$ and $\operatorname{diam}\left(G_{2}\right) \geqslant 2$. Consider the vertices u and v in G_{2} such that $d_{G_{2}}(u, v)>2$. In $G_{1} \vee G_{2}$, if we delete all the n_{1} edges of the form $u-u^{\prime}$ where $u^{\prime} \in V\left(G_{1}\right)$, then $d_{G_{1} \vee G_{2}}(u, v)=3$ and hence the diameter of $G_{1} \vee G_{2}$ will be increased by at least one.

Let $\operatorname{diam}\left(G_{1}\right) \leqslant 2$ and $\operatorname{diam}\left(G_{2}\right)=2$. Choose a vertex u in G_{2} having the minimum degree and with $e(u)=2$. Let v be the vertex in G_{2} with $d_{G_{2}}(u, v)=2$. Let the neighbors of u in G_{2} be $w_{1}, w_{2}, \ldots, w_{k}$. In $G_{1} \vee G_{2}$ delete all the edges of the form $x-w_{i}$ and $x-u$ where $x \in G_{1}$. Then $d_{G_{1} \vee G_{2}}(u, x)=3$ and hence the diameter of $G_{1} \vee G_{2}$ will be increased by at least one. Since the degree of u is at most $\Delta\left(G_{2}\right)$, the result follows.

Finally assume that both G_{1} and G_{2} are complete graphs. Then $\operatorname{diam}\left(G_{1} \vee G_{2}\right)=1$. So if we delete any one edge in $G_{1} \vee G_{2}$, the diameter will be increased by one and hence the result.

Theorem 5.3.4. For any two connected graphs $G_{1}=\left(n_{1}, m_{1}\right)$ and $G_{2}=\left(n_{2}, m_{2}\right)$ with $n_{1}, n_{2}>1$, 1. $D^{-1}\left(G_{1} \circ G_{2}\right) \leqslant n_{1} n_{2}\left(n_{1} n_{2}-1\right) / 2-n_{1} m_{2}$
2. $D^{+0}\left(G_{1} \circ G_{2}\right) \geqslant n_{1} m_{2}$.
3. $D^{+1}\left(G_{1} \circ G_{2}\right)=1$.

Proof. For any two graph $G_{1}=\left(n_{1}, m_{1}\right)$ and $G_{2}=\left(n_{2}, m_{2}\right)$, $G_{1} \circ G_{2}=\operatorname{diam}\left(G_{1}\right)+2$.

1. In $G_{1} \circ G_{2}$, if we make all the copies of G_{2} a complete graph then the diameter of $G_{1} \circ G_{2}$ will decrease by one. For that we have to add $n_{1} n_{2}\left(n_{1} n_{2}-1\right) / 2-n_{1} m_{2}$ edges.
2. In $G_{1} \circ G_{2}$, even if we delete all the edges in all the n_{1} copies of G_{2}, the diameter of $G_{1} \circ G_{2}$ remains unchanged and hence the result.
3. Let u_{i} and u_{j} be the $i^{t h}$ and $j^{t h}$ vertices of G_{1} with $\operatorname{diam}\left(G_{1}\right)=$ $d\left(u_{i}, u_{j}\right)$. Suppose that $u_{i 1}$ and $u_{j 1}$ are two vertices in the $i^{\text {th }}$ and $j^{t h}$ copies of G_{2} respectively. In $G_{1} \circ G_{2}$, if we delete an edge $u_{i}-u_{i 1}$ then $d\left(u_{i 1}, u_{j 1}\right)=\operatorname{diam}\left(G_{1}\right)+3$ and hence the result.

5.3. The diameter variability of some graph operations

Theorem 5.3.5. If both G_{1} and G_{2} are complete graphs then $D^{-2}\left(G_{1} \circ G_{2}\right)=\left(n_{1}+n_{1} n_{2}\right)\left(n_{1}+n_{1} n_{2}-1\right) / 2-m_{1}-n_{1} m_{2}-n_{1} n_{2}$.

Proof. If both G_{1} and G_{2} are complete graphs then $\operatorname{diam}\left(G_{1} \circ\right.$ $\left.G_{2}\right)=3$.

So to decrease diameter by at least two, any two vertices in $G_{1} \circ G_{2}$ must be adjacent. There are $n_{1}+n_{1} n_{2}$ vertices in $G_{1} \circ G_{2}$ and there are $m_{1}+n_{1} m_{2}+n_{1} n_{2}$ edges in $G_{1} \circ G_{2}$. Thus the theorem.

List of problems

1. Characterize P_{3} intersection graphs.
2. Characterize non-isomorphic graphs having isomorphic P_{3} intersection graphs.
3. If G is a P_{3} intersection graph, explain a method to find H so that $P_{3}(H)=G$.
4. Characterize all self complementary P_{3} intersection graphs.
5. Characterize graphs for which the P_{3} intersection graph belongs to some special classes of graphs such as planar graphs, perfect graphs, distance hereditary graphs, ptolemaic graphs, split graphs, cographs etc.
6. Characterize P_{3} convergent graphs.
7. Are there any P_{3} divergent graphs?
8. Characterize $E_{4}(G)$.
9. Characterize nou-isomorphic graphs having isomorphic edge C_{1} graphs.
10. Find non isomorphic graphs of the same order having isomorphic edge C_{4} graphs.
11. Characterize the graphs G for which $\operatorname{diam}\left(E_{4}(G)\right)=\operatorname{diam}$ $(G)-1, \operatorname{diam}\left(E_{4}(G)\right)=\operatorname{diam}(G)$ and $\operatorname{diam}\left(E_{4}(G)\right)=$ $\operatorname{diam}(G)+1$. Alsठ characterize the graphs G for which $\operatorname{rad}\left(E_{4}(G)\right)=\operatorname{rad}(G)-1, \operatorname{rad}\left(E_{4}(G)\right)=\operatorname{rad}(G)$, and $\operatorname{rad}\left(E_{4}(G)\right)=\operatorname{rad}(G)+1$.
12. For any graph G, find a super graph H such that $C(H)=$ G and $C\left(E_{4}^{i}(H)\right)=E_{4}^{i}(G), i \geqslant 2$.
13. Relationships between the k-path graph and the P_{3} intersection graph.
14. The w - wide diameter and the diameter variability of other graph operators and graph operations.
15. The wide diameter $D_{w}\left(P_{3}(G)\right)$ for $\kappa(G)<w \leqslant \kappa\left(P_{3}(G)\right)$.

List of symbols

$\lceil x\rceil$ - Smallest integer $\geqslant x$

- Greatest integer $\leqslant x$
$b(G)$
$c(G)$
$C(G)$
C_{n}
- Cycle of length n
$C_{w}(u, v) \quad-\quad$ Container of width w between u and v
$d(v) \quad-\quad$ Degree of v
$\operatorname{diam}(G) \quad-\quad$ Diameter of G
dilw $(G) \quad-\quad$ Dilworth number of G
$d(u, v)$ or $d_{G}(u, v)$ - Distance between u and v in G
$D_{w}(G) \quad-\quad w$-wide diameter of G
$D^{-k}(G) \quad-\quad$ The least number of edges
whose addition to G decreases the diameter by (at least) k
$D^{+0}(G) \quad$ - The maximum number of edges whose deletion from G does not change the diameter

$D^{+k}(G)$	- The least number of edges whose deletion from G increases the diameter by (at least) k
E or $E(G)$	- Edge set of G
$e(u)$	- Eccentricity of u
$g(G)$	Girth of G
G^{c}	Complement of G
$G \cong H$	- G is isomorphic to H
$G \times H$	- Cartesian product of G and H
$G \vee H$	- Join of G and H
$G \cup H$	- Union of G and H
$G \circ H$	- Corona of G and H
$i_{w}(G)$	- Weakly connected independent domination number
$K_{m, n}$	- Complete bipartite graph where m and n are the cardinalities of the partitions
$K_{n_{1}, n_{2}, \ldots, n_{k}}$	- Complete multipartite graph with partite sets of cardinalities $n_{1}, n_{2}, \ldots, n_{k}$
K_{n}	- Complete graph on n vertices
$L(G)$	- Line graph of G
m or $m(G)$	- Number of edges of G

$N[v]$ - Closed neighborhood of v
$N(v) \quad$ - Open neighborhood of v
$n G \quad-n$ disjoint copies of G
n or $n(G)$ - Number of vertices of G
$P_{n} \quad-\quad$ Path on n vertices
$\operatorname{rad}(G) \quad-\quad$ Radius of G
$t(G) \quad-\quad$ Transition number of G
$t_{n}(G) \quad-\quad$ Touching number of G
V or $V(G)$ - Vertex set of G
$\langle V\rangle \quad-\quad$ Graph induced by V
$v t_{k}(G) \quad$ - Vertex touching number of G
$\alpha(G) \quad$ - Independence number of G
$\alpha_{0}(G) \quad$ - Vertex covering number of G
$\beta(G) \quad-\quad$ Matching number of G
$\gamma(G) \quad$ - Domination number of G
$\gamma_{i}(G) \quad$ - Independence domination number of G
$\gamma_{t}(G) \quad$ - Total domination number of G
$\gamma_{c}(G) \quad-\quad$ Connected domination number of G
$\gamma_{p r}(G) \quad$ - Paired domination number of G
$\gamma_{c l}(G) \quad$ - Clique domination number of G
$\gamma_{w}(G)$ - Weakly connected domination number of G
$\gamma^{\prime}(G) \quad$ - Edge domination number of G
$\gamma_{e}^{\prime}(G) \quad-\quad$ Efficient edge domination number of G
$\delta(G) \quad$ - Minimum degree of vertices in G
$\Delta(G)$ - Maximum degree of vertices in G
$\kappa(G) \quad$ - Vertex connectivity of G
$\kappa^{\prime}(G) \quad$ Edge connectivity of G
$\chi(G) \quad$ - Chromatic number of G
$\omega(G) \quad$ - Clique number of G
$\Phi^{n}(G)-n^{t / h}$ iterated graph of G under Φ

List of Graphs

Paw or 3- pan

Bibliography

[1] B. D. Acharya, M. N. Vartak, A notion of convergence in graph theory, Graph Theory Newletter 4 (5) (1975).
[2] J. Akiyama, V. Chvátal, Packing paths perfectly, Discrete Math., 85 (1990), 247-256.
[3] Aparna Lakshmanan S., Studies on some graph classes, Ph.D Thesis, Cochin University of Science and Technology, India (2008).
[4] S. Arumugam, S. Velammal, Edge domination in graphs, Taiwanese J. Math., Vol 2 (1998), 173-179.
[5] R. Balakrishnan, K. Ranganathan, A text book of graph theory, Springer (1999).
[6] P. Baldi, P. Frasconi, P. Smyth, Modeling the internet and the web, John Wiley (2003).
[7] H. J. Bandelt, M. Farber, P. Hell, Absolute reflexive retracts and absolute bipartite retracts, Discrete Appl. Math. 44 (1993), 9-20.
[8] L. W. Beineke, On derived graphs and digraphs, in Beiträge zur Graphentheorie (1968), 17-23.
[9] C. Berge, The theory of graphs, Methuen (1962).
[10] N. L. Biggs, E. K. Lloyd, R. J. Wilson, Graph theory 1736 - 1936, Oxford University Press (1976).
[11] B. Bollobás, Modern graph theory, Springer (1991).
[12] A. Bouabdallah, C. Delorme, S. Djelloul, Edge deletion preserving the diameter of the hyper cube, Discrete Appl. Math. 63 (1995), $91-95$.
[13] A. Brandstädt, V. B. Le, J. P. Spinrad, Graph classes, SIAM (1999).
[14] F. Buckley, F. Harary, Distance in graphs, Addison- Wesley (1990).
[15] G. Chartrand, S. Schuster, On the independence number of complementary graphs, Trans. New York Acad. Sci., Series II 36 (3) (1974), 247-251.
[16] V. Chvátal, P. L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math., 1(1997), 145 162.
[17] J. Clark, D. A. Holton, A first look at graph theory, Allied Publishers Limited (1991).
[18] C. J. Colbourn, L. K. Stewart, Permutation graphs: connected domination and Steiner trees, Discrete Math. 86 (1990), 179-189.
[19] D. G. Corneil, Y. Perl, I. K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput., 14 (1985), 926 934.
[20] M. B. Cozzens, L. L. Kelleher, Dominating cliques in graphs, Discrete Math. 86 (1990), 101-116.
[21] G. B. Dantzig; D. R. Fulkerson, On the max-flow, min-cut theorem of networks in linear inequalities and related systems, Ann. of Math. Stud. 38, Princeton University Press (1956)
[22] R. Diestel, Graph theory, Springer (1991).
[23] P. Duchet, H. Meyniel, On Hadwiger's number and stability number, Ann. Discrete Math., 13 (1982), $71-74$.
[24] E. Dunbar, J. W. Grossman, J. H. Hattingh, S. T. Hedetniemi, A. A. McRae, On weakly connected domination in graphs, Discrete Math. 167/168 (1997), 261-269.
[25] F. Escalante, ber iterierte Cliquen - Graphen, Abh. Math. Sem. Univ. Hamburg 39 (1973), 58-68.
[26] L. Euler, Solutio problematis ad geometriam situs pertinentis, Comment. Academiae. Sci. I. Petropolitanae, 8 (1736), 128-140
[27] D. Ferrero, Connectivity of path graphs, Acta. Math. Univ. Comenianae LXXII, 1 (2003), 59-66.
[28] D. Ferrero, C. Padro, Disjoint paths of bounded length in large generalized cycles, Discrete Math. 197/198 (1999), 285 - 298.
[29] S. Földes, P. L. Hammer, The Dilworth number of a graph, Ann. Discrete Math., 2 (1978), 211-219.
[30] S. Földes, P. L. Hammer, Split graphs, Congres. Numer. 19 (1977), $311-315$.
[31] P. A. Fowler, The Königsberg bridges - 250 years later, Amer. Math. Monthly, 95 (1988), 42 - 43.
[32] M. C. Golumbic, Algorithmic graph theory and perfect graphs, Acadamic Press, New York (1980).
[33] N. Graham, F. Harary, Changing and unchanging the diameter of a hypercube, Discrete Appl. Math. 37/38 (1992), 265-274
[34] J. L. Gross, J. Yellen, Graph theory and its applications, CRC Press (1998).
[35] F. Harary, Graph theory, Narosa (2000).
[36] F. Harary, R. Z. Norman, Some propereties of line digraphs, Rend. Circ. Mat. Palermo 9 (1960), 161-168.
[37] F. Harary, A characterization of block graphs, Canad. Math. Bull. 6 (1963), 1-6.
[38] F. Harary, I. C. Ross, The square of a tree, Bell System Tech J. 39 (1960), 641-647.
[39] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc. (1998).
[40] T. W. Haynes, P. J. Slater, Paired domination and paired domatic number, Congr. Numer. 109 (1995), $67-72$.
[41] S. T. Hedetniemi, R. C. Laskar, Connected domination in graphs, Graph theory and Combinatorics, Academic Press, London, 209-218.
[42] R. L. Hemminger, Digraphs with periodic line digraphs, Stud. Sci. Math. Hung. 9 (1974), $27-31$.
[43] X. Hou, T. Wang, On generalized wide diameter of graphs, Taiwanese J. Math., Vol.7, No. 2 (2003), 339-345.
[44] E. Howorka, On metric properties of certain clique graphs, J. Combin. Theory Ser., 27 (1979), 67-74.
[45] D. F. Hsu, On container width and length in graphs, groups, and networks, IEICE Trans. Fund. Electron. Commun. Comput. Sci. E77-A (1994), 668-680.
[46] L. H. Hsu, C. K. Lin, Graph theory and interconnection networks, CRC Press (2009).
[47] S. R. Jayaram, Line domination in graphs, Graphs Combin., 3 (1987), 357-363.
[48] D. C. Kay, G. Chartrand, A characterization of certain Ptolemaic graphs, Canad. J. Math, 17 (1965), 342-346.
[49] D. König, Theorie der Endlichen und Unendlichen Graphen, Leipzig (1936).
[50] M. Knor, L. Niepel, L. Soltes, Centers in line graphs, Math. Slovaca, 43 (1993), 11 - 20.
[51] M. Knor, L. Niepel, Graphs isomorphic to their path graphs, Math. Bohem. 127 (2002), 473-480.
[52] J. Krausz, Démonstration nouvelle d'un théorème de Whitncy sur lesréseaux, Mat. Fiz. Lapok 50 (1943), 75 - 85.
[53] S. C. Liaw, G. J. Chang, Wide diameter of butterfly networks, Taiwanese J. Math., Vol.3, No. 1 (1999), 83-88.
[54] B. Liu, X. Zhang, Wide diameter and diameter of networks, Ars Combin. 89 (2008).
[55] Manju K. Menon, A. Vijayakumar, Dynamics of the P_{3} intersection graph, (commumicated).
[56] Manju K. Menon, A. Vijayakumar, Some domination parameters in $E_{4}(G)$, (communicated).
[57] Manju K. Menon, A. Vijayakumar, The edge C_{4} graph of a graph, International Conference on Discrete Mathematics Proceedings (ICDM 2006), Ramanujan Math. Soc. Lect. Notes Ser. 7 (2008), 245-248.
[58] Manju K. Menon, A.Vijayakumar, The edge C_{4} graph of some graph classes, (communicated).
[59] Manju K. Menon, A. Vijayakumar, The P_{3} intersection graph, Util. Math. 75 (2008), 35-50.
[60] Manju K. Menon, Daniella Ferrero, A. Vijayakumar, The wide diameter and diameter variability of some graphs, (in preparation).
[61] C. W. Marshall, Applied graph theory, Wiley (1971).
[62] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927), 95-115
[63] S. Mitchell, S. T. Hedetniemi, Edge domination in trees, Congr. Numer. 19 (1977), 489-509.
[64] M. E. J. Newman, The structure and function of complex networks, SIAM Rev 45 (2003), 167-256.
[65] O. Ore, Theory of graphs, Amer. Math. Soc. Coll. Publ. 38, Providence (R.I.)(1962).
[66] E. Prisner, Graph dynamics, Longman (1995).
[67] E. Prisner, A common generalization of line graphs and clique graphs, J.Graph Theory 18 (1994), 301-313.
[68] S. B. Rao, Aparna Lakshmanan S., A. Vijayakumar, Cographic and global cographic domination number of a graph, Ars Combin., (to appear)
[69] S. B. Rao, A. Vijayakumar, On the median and the antimedian of a cograph, Int. J. Pure Appl. Math., 46, 5 (2008), 703-710.
[70] R. C. Read, On the number of self complimentary graphs and digraphs, J. London Math. Soc. 38 (1963), $99-104$.
[71] F. S. Roberts, Discrete mathematical models with applications to social, biological and environmental problems, Prentice - Hall (1976).
[72] A. C. M. van Rooji, H. S. Wilf, The interchange graph of a finite graph, Acta. Math. Acad. Sci. Hungar 16 (1965), 263 - 269.
[73] B. L. Schwartz, Infinite self interchange graphs, Pac. J. Math. 31 (1969), 497-504.
[74] J. G. Stemple, M.E.Watkins, On planar geodetic graphs, J. Combin. Theory 4 (1968), 101-117.
[75] J. L. Szwarcfiter, A survey on clique graphs, Recent Advances in Algorithms and Combinatorics (2003), 109-136.
[76] L. E. Trotter. Jr., Line perfect graphs, Math.Program. 12 (1977), 255-259.
[77] J. J. Wang, T. Y. Ho, D. Ferrero, T. Y. Sung, Diameter variability of cycles and tori, Information Sciences 178 (2008), 2960-2967.
[78] D. B. West, Introduction to Graph Theory, Prentice - Hall (1999).
[79] H. Whitncy, Congruent graphs and connectivity of graphs, Amer. J. Math. 54 (1932), 150-168.

Index

acyclic, 9
adjacent
edges, 8
vertices, 8
b-cycle, 11, 92, 94
basin, 19
bipartite graph, 12,87
block, 14, 49
graph, 21, 25, 93
bow, 23
bulge, 11
cartesian product, 23
center, 10, 74
chord, 10
chordal, 10, 52
chromatic number, 11,53
circumference, 9
clique, 10
dominated graph, 15, 84
domination number, 15
number, 11
closed neighborhood, 11
cograph, 21, 24, 25, 89
comparable, 14
complement, 12
complete
bipartite graph, 12
graph, 10, 53, 86
multipartite graph, 12, 86
component, 10
connected, 10
domination number, 15
container, 110,113
convergent, 19
corona, 23, 119
cut vertex, 14
cycle, 9
degree, 8
diameter, 10, 59, 72
variability, 22,115
Dilworth number, 14
disconnected, 10
distance, 10
distance hereditary graph, 6
divergent, 19
dominating set, 14, 76
domination number, 14,58
E_{4}
convergent, 103
periodic, 104
eccentricity, 10
edge
domination number, 17,82
edge C_{4} graph, 28, 70
edge connectivity, 14
efficient
edge domination number, 17,
83
end vertex, 7
Eulerian, 9, 25, 35

1-factor, 9
finite graph, 7
fixed, 19
fixed graph, 101
forbidden subgraph, 11, 50, 71
geodetic
graph, 21, 50, 92
girth, 9
graph, 7
H - intersection graph, 29
H-free, $9,51,88$
incident, 8
incomparable, 14
independence number, 13,58 moth, 23,88
independent, 13
domination number, 14
induced subgraph, 9
internal vertex, 8
intersection graph, 17
isolated vertex, 8
isomorphic, 12, 70
iterated graph, 19
join, 23, 119
k-clique, 11
k-vertex cut, 13
k-regular, 8
length, 9
length of the container, 21
line graph, 17, 24
matching number, 13

Menger's theorem, 110
mortal, 19, 105
n-connected, 13, 27
null graph, 8
open neighborhood, 11
order, 8
origin, 8
P_{3} intersection graph, 27, 42, 111
P_{3}
convergent, 102
divergent, 102
mortal, 102
periodic, 101
k - path graph, 18
paired
domination number, 15
path, 9
paw, 10
pendant edge, 8
pendant vertex, 8
perfect
graph, 6, 20
matching, 9
period, 19
periodic, 19
proper vertex coloring, 11
radius, $10,58,72$
self complementary, 12
semibasin, 19, 105
size, 8
spanning subgraph, 9
split graph, 20, 25
star, 12
subdivision, 23
subgraph, 9
terminus, 8
threshold graph, 20, 25, 88
total domination number, 15 ,
totally discomnected, 12
touching number, 19, 105
trail, 9
transition number, 19, 104
tree, $10,49,87$
triangle, 10
trivial, 8
$u-v$ cut, 14
u - v path, 9
unicyclic, $9,26,84$
union, 23
universal vertex, 8
vertex
coloring, 11
connectivity, 13, 110
cover, 13
covering number, 13
hereditary, 11, 51
touching number, 19
w-container, 21
walk, 8

weakly

connected domination num-
ber, 16
connected independent dom-
ination number, 16
geodetic, 21, 25, 90
wide diameter, 21,110
width, 21, 110, 113

[^0]: Some results of this chapter are included in the following papers.

 1. Manju K. Menon, A. Vijayakumar, The edge C_{4} graph of a graph, Proceedings of the International Conference on Discrete Mathematics, Ramanujan Math. Soc. Lect. Notes Ser. 7 (2008), 245-248.
 2. Manju K. Menon, A.Vijayakumar, The edge C_{4} graph of some graph classes (communicated).
 3. Manju K. Menon, A. Vijayakumar, Some domination parameters in $E_{4}(G)$ (communicated).
[^1]: Some results of this chapter are included in the following paper. Manju K. Menon, Daniella Ferrero, A. Vijayakumar, The wide diameter and diameter variability of some graphs (in preparation).

