

Available online at www.sciencedirect.com

Catalysis Communications 8 (2007) 150-156

www.elsevier.com/locate/catcom

Vanadia supported on ceria: Characterization and activity in liquid-phase oxidation of ethylbenzene

T. Radhika, S. Sugunan *

Department of Applied Chemistry, Cochin University of Science and Technology, Cochin-22, Kerala 682022, India

Received 8 March 2006; received in revised form 8 May 2006; accepted 23 May 2006 Available online 3 June 2006

Abstract

Vanadia/ceria catalysts (2-10 wt% of V_2O_5) were prepared by wet impregnation of ammonium metavanadate in oxalic acid solution. Structural characterization was done with energy dispersive X-ray analysis (EDX), powder X-ray diffraction (XRD), BET surface area measurements. FT-IR spectroscopy and nuclear magnetic spectral analysis (⁵¹V MASNMR). XRD and ⁵¹V MASNMR results show highly dispersed vanadia species at lower loadings and the formation of CeVO₄ phase at higher V₂O₅ loading. The catalytic activity or atalysts was conducted in liquid phase oxidation of ethylbenzene with H₂O₂ as oxidant. The oxidation activity is increased with loading up to 8 wt% V₂O₅ and then decreased with further increase in V₂O₅ content to 10 wt%. Different vanadia species evidenced by various miques were found to be selective towards ethylbenzene oxidation. The CeVO₄ formation associated with increased concentration of vanadia on ceria results the production of acetophenone along with 2-hydroxyacetophenone.

*****06** Elsevier B.V. All rights reserved.

Kergords: Vanadia: Ceria; CeVO4: Ethylbenzenc oxidation; ⁵¹V MASNMR

<u>ر</u> ال

1. Introduction

Supported vanadium oxide catalysts have been exten-. Sy used for catalyzing several oxidation reactions [1-5]. The redox chemistry of ceria is a critical parameter in Efficiency of multifunctional components of three-way automotive catalysts and applications of these materials marious other catalytic processes such as oxygen permeation membrane systems, $deNO_x$ catalysis, oxidation of ... Chatics and catalytic wet oxidation are being extensively studied [6,7]. In recent years vanadia/ceria combination because of its wide range applications in catalysis and by the oxygen transfer from the liquid phase to the metal | fer to efficiently catalyze the reactions. The redox proper-

3

ties of ceria (Ce^{4+}/Ce^{3+}) and the high lability of its lattice oxygen are among the most important factors that contribute to the catalytic reactivity in oxidation reactions [10].

Side-chain oxidation of alkyl aromatics using cleaner peroxide oxidants catalyzed by heterogeneous catalysts has been much interesting [11]. Effective utilization of ethylbenzene, available in the xylene stream of the petrochemical industry to more value added products is a promising one in chemical industry. The oxidation products of ethylbenzene are widely employed as intermediates in organic, steroid and resin synthesis [12–14]. Zeolite encapsulated Co(II), Ni(II) and Cu(II) complexes gave acetophenone as the only partial oxidation product during ethylbenzene oxidation with H_2O_2 [15]. Titanosilicates mainly catalyze ring hydroxylation of arenes with H_2O_2 , whereas vanadium and chromium substituted zeolites and aluminophosphate molecular sieves have been known to favour side-chain oxidation selectively [16].

In the present work, we report the structural characterization of ceria supported vanadia catalysts for various loading of V_2O_5 observed using different physico-chemical

Spresponding author. Tel.: +91 484 2575804; fax: +91 484 2577595. *E-mail address: ssg@cusat.ac.in (S. Sugunan).*

^{1566-7367/}S - see front matter © 2006 Elsevier B.V. All rights reserved.

17

ļf

Je

techniques. Activity of the catalysts towards liquid phase oxidation of ethylbenzene is also investigated and correlated with different vanadia species on the supported catalysts. The observed effect of reaction parameters such as temperature, solvent, substrate and oxidant concentration, catalyst weight and time have also been described.

2. Experimental

2.1. Catalyst preparation

Ceria was prepared by precipitation of hydroxide from 0.05 M Ce(NO₃)₃ · 6H₂O (Indian Rare Earth Ltd., Udyogamandal, Kerala) with 1:1 ammonia solution at pH 10.3. Vanadia/ceria catalysts were prepared by wet impregnation. To impregnate vanadia with loadings of 2, 4, 6, 8 and 10 (wt% V₂O₅), the requisite quantity of NH₄VO₃ (CDH, LR) was dissolved (0.001 M) in aqueous oxalic acid solution (0.1 M) and to this dried ceria was added and mechanically stirred for 6 h. After keeping it overnight, the excess water was evaporated and the resulting material was oven dried at 383 K for 12 h and sieved to mesh size below 100 µm. All the catalysts were calcined at 773 K for 5 h in a closed muffle furnace in flowing air prior to use. Prepared catalysts are denoted as xVC, where x = 2, 4, 6, 8 and 10 wt% V₂O₅ and VC for V₂O₅/CeO₂.

2.2. Characterization

The chemical compositions of catalysts were obtained from Stereoscan 440 Cambridge, UK energy dispersive X-ray analyzer. XRD pattern was collected on Rigaku D-Max Ni filtered Cu K α radiation. BET surface area and total pore volume were obtained using N₂ adsorption method at 77 K on Micromeritics Flow Prep-060 Gemini 2360 instrument. Infrared spectra were recorded with KBr pellets on an ABB BOMEM (MB Series) FT-IR spectrometer model in the range 400–4000 cm⁻¹. Solid-state ⁵¹V MASNMR experiments of catalysts calcined at 773 K were carried out over a Bruker DSX-300 spectrometer with a standard 4 mm double bearing Bruker MAS probe (spinning frequency $v_P = 7.0$ kHz). Isotropic chemical shifts are reported relative to neat NH₄VO₃ (δ iso = -570.4 ppm) as the reference.

2.3. Oxidation of ethylbenzene

The liquid-phase oxidation of ethylbenzene was carried out in a 50 mL round bottom flask. The flask was immersed in an oil bath in order to make the working temperature constant, which was connected with a condenser. In a typical run, catalyst and substrate were added to the solvent. The oxidant, 30% H₂O₂ was added to the system after attaining the reaction temperature. The reaction mixture was stirred using a magnetic stirrer. Reaction products were analyzed on Chemito 1000 GC equipped with FID detector and a BP-1 capillary column. Analysis was done using a linear temperature programme $(333 \text{ K}-3 \text{ K})^{-1}$ 293 K/min-553 K) with injection and detection pot temperatures as 523 K. The products obtained were identified as comparison with standard ones. The catalytic activity was expressed as the percentage conversion (wt%) of etbenzene and the selectivity for a product is expressed as the amount of the particular product divided by total ame of products multiplied by 100.

3. Results and discussion

Table 1

3.1. Physico-chemical characterization

The elemental composition as atom % of catalysts is presented in Table 1. The results indicate that effective loaver of vanadium took place on ceria. The powder XRD pattern of VC catalysts along with that of CeO₂ and V₂O₅ collever after calcination at 773 K are presented in Fig. 1. The X-ray reflections of CeO₂ show a typical cubic crystructure of fluorite type [17]. The diffraction pattern of VC series of catalysts show lines due to ceria along we additional peaks at higher loadings. Lines of CeVO₄ are observed as the loading increases with absence of any cyacteristic lines due to V₂O₅ [18]. This indicates that vanadia is finely dispersed on the ceria surface for 2, 4 and 6 ve

Catalyst	Composition (atom %)		BET surface area (m ² g ⁻¹)	Pore volume $(cm^3 g^{-1})$	Crystanite size (nm)	
	Ce	v			**	
Ce	100.00		67	0.11	12	
2VC	93.23	6.77	64	0.10	9 7 9	
4VC	90.44	9.56	36	0.06	19 _	
6VC	89.60	10.40	46	0.11	13 🎀 .	
8VC	86.84	13.16	49	0.05	15	
10VC	83.47	16.53	44	0.03	10 .	
Intensity (a.u)						
10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30	40 50	('e 60	

1

V₂ $>_5$ loading. For loading above 6 wt%, in addition to sharp ceria lines, new lines with less intensity can be seen ar $\partial/\circ = 24.0$ and 32.5, respectively. These are attributed to the formation of the mixed phase CeVO₄ [19]. The intensn > of these lines increased steadily with increasing the amount of supported vanadia content. It is possible that $C_4 O_2$ and V_2O_5 could react together in the solid state in the temperature range 773-1073 K to form CeVO₄ [\ge 21]. During the formation of CeVO₄, cerium is reduced from Ce⁴⁺ to Ce³⁺, whereas the vanadium reactant remains in the 5+ oxidation state. The reduction of Ce⁴⁺ in preference to V⁵⁺ is occurred by the fact that cerium frequently e_7 (bits a valence of 3+ [22].

The specific surface area and pore volumes of catalysts a presented in Table 1. A substantial decrease in BET surface area can be observed after impregnation of the with V_2O_5 . The observed decrease is mainly due to penetration of the dispersed vanadia into the pores of the Sort. Additionally, solid-state reactions between the dispersed vanadia and ceria may also contribute to un Dobserved decrease due to the formation of orthovanadate crystals, which block the pores of the support [22]. 1 formation of CeVO₄ at relatively low temperature could be probably favoured by the preparation method, \therefore e V₂O₅ was impregnated on the support in the present study. Above a particular concentration, V₂O₅ can interact ... the support material and form compounds or multilayer species [23,24]. The TGA/DTA of catalysts exhibit therms and exotherms associated with the removal of physisorbed water and decomposition of oxalate species (figure not shown) [25].

(JT-IR spectra of representative catalysts are shown in Fig. 2. In the infrared region the absorption bands at 465 → 1384 cm⁻¹ are characteristics of ceria [26]. For VC catalysts the absorption bands are visible in the range 795-805 → 1000-1100 cm⁻¹ in addition to those observed for ceria. The band at 1022 cm⁻¹ was reported to the V=O stretching "Auton, while that at 818 cm⁻¹ was attributed to the cou-

pled vibrations between V=O and V-O-V [27,28]. A band observed at 1024 cm⁻¹ for 2VC is corresponding to surface V=O stretching mode and at 801 cm⁻¹ due to coupled vibration [29]. The intensity of the V=O absorption is decreased and more intense band at 799 cm⁻¹ is observed with increasing vanadia to 10VC which arises from the VO₄³⁻ species of orthovanadate structure [30].

The solid-state ⁵¹V MASNMR spectra of catalysts recorded are shown in Fig. 3. Different types of signals are observed in the spectra with varying intensities depending

Fig. 3. ⁵¹V MASNMR spectra of VC catalysts.

′ 15<u>!</u>

on the vanadia content. For 2VC, the peaks observed present a species characterized by isotropic component and several associated spinning bands. The broad line pattern associated with this species could be correlated with an absence of regular ordering of these vanadia sites. The peak at \sim 260 ppm is assigned to the surface vanadium-oxygen structures surrounded by a distorted octahedron of oxygen atoms [31]. The band at \sim 360 ppm can be assigned to pseudo-octahedrally coordinated V⁵⁺ species as a consequence of the interaction of tetrahedral sites. The resonances at ~459 and ~495 ppm can be attributed to distorted isolated tetrahedral V^{5+} sites. The peaks at \sim 545 and \sim 750 ppm are attributed to the tetrahedral vanadium-oxygen structures. Hence, in this low vanadia loaded catalysts, the species are consistent with surface V=O and polymeric species V-O-V, highly dispersed on the ceria surface [32]. For samples with higher vanadia loading (6VC, 8VC, 10VC) a highly symmetric signal centered at -432 ppm has been obtained. It has been reported that the signal with -432 ppm corresponds to the tetragonal structure of CeVO₄, in which vanadium atoms are located at the center of isolated tetrahedral [33]. The only peak of 10VC observed at -432 ppm due to the CeVO₄ implies that most of the V₂O₅on the surface of ceria were consumed to form the CcVO₄ compound. These observations are in good agreement with the results of XRD and Fran analysis.

The structural characterization of vanadia/ceria $c_{\rm m}$ lysts by various technique such as XRD, FT-IR, TGA DTA and ⁵¹V MASNMR show the presence of highly persed vanadia on lower loading of V₂O₅ and formation of CeVO₄ as the loading increases to 10 wt% V₂O₅. Level loading consists vanadia as tetrahedral V=O species while higher loading leads to the formation of Ce-O-V species on the ceria support surface.

3.2. Oxidation of ethylbenzene

The influence of different reaction parameters was analyzed in order to maximize the product yield and selection. Effect of reaction conditions for ethylbenzene oxidation with H_2O_2 was initially assayed in non-optimized corrections with 6VC as the catalyst.

The effect of temperature on the rate and selectivity ethylbenzene oxidation is shown in Fig. 4(a). Oxidation of ethylbenzene using H_2O_2 in acetonitrile produced acetor enone as the major product. Benzaldehyde and 2-hydroxyacetophenone are also formed as oxidation products. For temperatures have been tested and found that as the temperature rises, there is an increase in the oxidation

Fig. 4. Effect of reaction parameters on ethylbenzene oxidation: (a) reaction conditions: 6VC = 100 mg, ethylbenzene - 8 mmol, acetonitrile - 95 mmol, $H_2O_2 - 26$ mmol and time - 3 h; (b) reaction conditions: 6VC = 100 mg, ethylbenzene - 8 mmol, solvent - 95 mmol, $H_2O_2 - 26$ mmol, temperature - 333 K and time - 3 h; (c) reaction conditions: catalyst = 6VC, ethylbenzene - 8 mmol, acetonitrile - 95 mmol, $H_2O_2 - 26$ mmol, temperature - 333 K and time - 3 h; (d) reaction conditions: 6VC - 100 mg, ethylbenzene - 8 mmol, acetonitrile - 95 mmol, $H_2O_2 - 26$ mmol, temperature - 333 K and time - 3 h; (d) reaction conditions: 6VC - 100 mg, ethylbenzene - 8 mmol, acetonitrile - 191 mmol, temperature - 333 K and $H_2O_2 - 191$ mmol.

333 K while further increase caused decrease in rate. Lower conversion rate at 353 K might be attributed to decomposi-3 ion of H₂O₂ [34]. The selectivity to acetophenone increases as the temperature rises from 303 to 333 K and decreased at 353 K. This can result by further oxidation of acetophenone to hydroxy products. The influence of various solvents on Socidation is shown in Fig. 4(b). Generally, the role of solvent on the liquid-phase reaction is very complex, especially In the product distribution. Reaction conducted without any solvent and with dichloromethane did not produce Iny oxidized products. When acetonitrile and dichloromethane were used in 1:1 mole ratio, conversion and selec-Divity increased. Acetonitrile as solvent gave acetophenone selectively in high conversion rate. Acetonitrile being an Iprotic solvent initiate side-chain oxidation at the interface with high conversion rate is known to activate H_2O_2 by **J**orming a perhydroxyl anion, which in turn produces a good oxygen transfer intermediate [35,36]. Even though **Sonversion** is more in acetone, the acetophenone selectivity was very small. This can arise from side reactions between **C**idic solvent and H_2O_2 yielding peroxy or hydroperoxy products, causing a lower concentration of free H₂O₂ at **I**r near the active sites [37]. The effect of catalyst amount on oxidation is presented in Fig. 4(c). The oxidation reac-Dion was not observed in the absence of any catalyst indicating that H₂O₂ alone is unable to oxidize the substrate to a Significant extent and reaction can occur only when a catalyst is present. It can be seen from the figure that the ethylmenzene conversion rate improves as the catalyst amount is increased reaches a maximum at 150 mg. Further increase 200 mg decreases the conversion rate. High metal concentration can inhibit the autooxidation reactions [38]. Sowever, acetophenone selectivity displays a different pattern. With 50 mg 6VC catalyst, acetophenone was produced the main product while selectivity drops greatly as the catalyst amount increases to 200 mg. At lower catalyst con-Intration acetophenone was obtained as major product while at higher catalyst amount selectivity decreases at the *** st of hydroxyacetophenone [39]. The effect of time on ethylbenzene oxidation is illustrated in Fig. 4(d). Acetophene was the main product with lesser concentration of benzaldehyde and 2-hydroxyacetophenone. Conversion te and selective formation of acetophenone increase with time up to 6 h. After 7 h of reaction conversion rate remains gore or less constant while acetophenone selectivity decreases indicating further oxidation to form hydroxyl **_**oduct under the reaction conditions. The polar oxidation and transformation products formed during reaction cover surface of the solid oxide, can also lead to catalyst inac-tivation [40].

The studies on various reaction parameters show that oxidation rate and product selectivity in the liquid-phase idation of ethylbenzene is greatly dependent on a cooperative effect of the substrate, solvent, oxidant, time and imperature. The ethylbenzene oxidation reaction was carried out with all the catalysts prepared under the optimized traction conditions and the results are shown in Table 2.

Table 2
Performance of catalysts in ethylbenzene oxidation

Catalyst	Conversion (wt ¹ %)	Selectivity (%)			
		Acetophenone	2-Hydroxy- acetophenone	Benzaldehyde	
Ce	4,4	13.2		86.8	
2VC	4.8	69.3	-	30.6	
4VC	9.9	73.8		26.2	
6VC	16.8	75.6	16.2	11.7	
8VC	18.7	78.9	13.2	7.7	
10VC	20.5	72.2	21.1	6.7	

Reaction conditions: catalyst -100 mg, ethylbenzene 8 mmol, acetonitrile 191 mmol, temperature 333 K, $H_2O_2 - 26$ mmol and time 6 h.

The oxidation reaction carried out over ceria has exhibited only negligible conversion with benzaldehyde as the major product. Supported vanadia catalysts were found to be active in the ethylbenzene oxidation with acetophenone as the major product. Benzaldehyde and 2-hydroxyacetophenone are also detected in minor quantities indicating that C-H bond activation takes place only at benzylic position. For a series of vanadia/ceria catalysts, activity increases with increase in loading up to $10 V_2O_5 wt\%$ at which it gave a conversion of 20.5%. However, acetophenone selectivity decreases for 10VC with more amount of 2-hydroxyacetophenone.

Several mechanisms have been proposed for oxidation of ethylbenzene over redox catalysts. According to Singh et al. [41], the ethylbenzene oxidation over MeAPO-11 using TBHP involves an intermolecular mechanism, where the redox metal sites are catalytically active sites, which change its oxidation states after the reaction. They also observed that among the framework substituted MeAPO-11s, VAPO-11 has maximum redox behaviour and is the most active with higher acetophenone selectivity. With vanadium silicates (VS-1 and VS-2) Ramaswamy et al. [42] proposed a peroxo radical intermediate capable of the side-chain oxidation in aromatic substrates. Ethylbenzene oxidation with Sn-Sil-1 is also reported through a peroxo radical ion intermediate giving acetophenone in major amount [43]. The studies of Reddy et al. [2] indicated that oxygen vacancies are the active sites and these vacancies are greatly influenced by geometric and electronic factors and are responsible for the formation of different products. Acetophenone and benzaldehyde are produced on terminal oxygen vacancy (M=O) sites while bridged oxygen vacancy sites are responsible for the formation of more oxygenated products. The side-chain oxidation of alkylbenzenes by cerium (1V) ammonium nitrate with bromate salt in acctic acid involves via an electron-transfer mechanism leading to the formation of radical cations as reaction intermediates. In the presence of cerium (IV) ammonium nitrate, where the Ce (IV) and bromate salts acts as efficient oxidants, the bromate salts act as a reoxidant for the Ce(III) ion. This reports that the Ce (IV) salts are catalysts for selective oxidation of alkylbenzenes [44]. The catalytic redox cycle on ceria supported vanadia may be due to the redox cycle of cerium near vanadium; unlike the most supported vanadia catalysts, which work on the redox cycle of vanadium sites in accordance with a report for ceria supported chromia catalysts [45].

In the present study, vanadia/ceria catalysts were found active towards oxidation of ethylbenzene in liquid-phase. The observation shows that as the vanadia loading increases to 10 wt% V₂O₅, catalytic activity increases while acetophenone selectivity decreases. Benzaldehyde was also produced over these catalysts. When vanadia loading is higher above $6 \text{ wt}\% \text{ V}_2\text{O}_5$ it could oxidize the acetophenone formed to 2-hydroxyacetophenone as observed by the product analysis. Oxidation activity of vanadia/ceria catalysts could be correlated to the amount of the vanadia loaded and the structure of the species. The structural characterization of supported catalysts by XRD and FT-IR show the presence of highly dispersed vanadia on lower loading and formation of CeVO₄ as the vanadia loading increases to 10 wt% V2O5. Lower loading consists vanadia as tetrahedral V=O species while higher loading can lead to formation of Ce-O-V species on the support surface. ⁵¹V MASNMR studies suggest the formation of CeVO₄ even with 6 wt% V2O5 on ceria and it increases with vanadia loading to 10 wt% V₂O₅. Aromatic ring hydroxylation was not observed when the reactions were carried using the prepared catalysts at the set conditions. Abstraction of alcoholic OH hydrogen and the CH hydrogen by the active oxygen yields acetophenone while similar abstraction of OH hydrogen of 1-phenylethanol by the active oxygen forms benzaldehyde. The oxidation activity associated with lower loaded VC catalysts attributed to the presence of highly dispersed tetrahedral V=O species on the support surface. Production of benzaldehyde is related to the presence of Ce-O-Ce and the V-O-V structure is related to the formation of acetophenone for these VC catalysts. The CeVO₄ formation observed with higher vanadia loading causes the oxidation of acetophenone to 2hydroxyacetophenone.

4. Conclusions

The various supported vanadia catalysts exhibit efficient catalytic activity in the selective oxidation of ethylbenzene using H_2O_2 . The oxidation with ceria supported vanadia catalysts afforded acetophenone as the main product. The VC series of catalysts exhibit enhanced activity and selectivity in the oxidation reaction. A direct relationship between the structural characteristics and oxidation behaviour is observed. Highly dispersed tetrahedral vanadia species evidenced by various spectroscopic techniques are selective for acetophenone production and Ce–O–V structure is related to the formation of 2-hydroxyacetophenone. The type of the active centers formed on the support catalysts determines the activity and product selectivity for the so prepared VC catalysts.

References

- [1] X. Gao, I.E. Wachs, J. Catal. 192 (2000) 18.
- [2] E.P. Reddy, R.S. Varma, J. Catal. 221 (2004) 93.
- [3] S. Sugunan, N.K. Renuka, Bull. Chem. Soc. Jpn. 75 (2002) 463.
- [4] V.P. Vislovskiy, J.S. Chang, M.S. Park, S.E. Park, Catal. Commun. 3 (2002) 227.
- [5] K.V.R. Chary, G. Kishan, C.P. Kumar, G.V. Sagar, Appl. Catal. A 246 (2003) 335.
- [6] H. Chen, A. Aleksandrov, Y. Chen, S. Zha, M. Liu, T.M. Orlando, J. Phys. Chem. B 109 (2005) 11257.
- [7] S. Shylesh, T. Radhika, K. Sreejarani, S. Sugunan, J. Mol. Catal. A 236 (2005) 253.
- [8] T. Radhika, S. Sugunan, J. Mol. Catal. A 250 (2006) 169.
- [9] J.M. Vohs, T. Feng, G.S. Wong, Catal. Today 85 (2003) 303.
- [10] M.M. Mohamed, S.M.A. Katib, Appl. Catal. A 287 (2005) 236.
- [11] S.E. Dapurkar, A. Sakthivel, P. Selvam, New J. Chem. 27 (2003) 1184.
- [12] G.L. Tembe, P.A. Ganeshpure, S. Satish, J. Mol. Catal. A 121 (1997) 17
- [13] R. Alcantara, L. Canoira, P.G. Joao, J.M. Santos, I. Vazquez, Appl. Catal. A 203 (2000) 259.
- [14] N.K. Mal, V. Ramaswamy, S. Ganapathy, A.V. Ramaswamy, Appl. Catal. A 125 (1995) 233.
- [15] K.O. Xavier, J. Chako, K.K.M. Yusuff, Appl. Catal. A 258 (2004) 251.
- [16] P. Kumar, R. Kumar, B. Pandey, Synlett (1995) 289.
- [17] F. Zhang, S.W. Chan, J.E. Spanier, E. Apak, Q. Jin, Appl. Phys. Lett. 80 (2002) 127.
- [18] J.C. Badot, A. Mantoux, N. Baffier, O. Dubrunfaut, D. Lincot, J. Mater. Chem. 14 (2004) 3411.
- [19] B.M. Reddy, P. Lakshmanan, A. Khan, J. Phys. Chem. 108 (4) (2004) 16855.
- [20] G.S. Wong, J.M. Vohs, Surf. Sci. 498 (2002) 266.
- [21] G.S. Wong, M.R. Concepcion, J.M. Vohs, J. Phys. Chem. B 106 (2002) 6451.
- [22] J. Matta, D. Courcot, E. Abi-Aad, A. Aboukais, Chem. Mater. (2002) 4118.
- [23] G.C. Bond, S.F. Tahir, Appl. Catal. 71 (1991) 1.
- [24] M.V.M. Huerta, J.M. Coronado, M.F. García, A.I. Juez, G. Deo, J.L.G. Fierro, M.A. Banares, J. Catal. A 225 (2004) 240.
- [25] J. Matta, D. Courcot, E. Abi-Aad, A. Aboukais, J. Therm. Ana. Calorim. 66 (2001) 717.
- [26] N.C. Wu, E.W. Shi, Y.Q. Zheng, W.J. Li, J. Am. Ceram. Soc. (2002) 2462.
- [27] K. Mori, A. Miyamoto, Y. Murakami, J. Chem. Soc., Faraday Tra 1 (83) (1987) 3303.
- [28] J.R. Sohn, I.J. Doh, Y.I. Pac, Langmuir 18 (2002) 6280.
- [29] M. Kantcheva, Phys. Chem. Chem. Phys. 2 (2000) 3043.
- [30] H.E. Rast, H.H. Caspers, S.A. Miller, Phys. Rev. 169 (1968) 705.
- [31] E.H. Park, M.H. Lee, J.R. Sohn, Bull. Korean Chem. Soc. 21 (2000).
- [32] B. Olthof, A. Khodakov, A.T. Bell, E. Inglesia, J. Phys. Chem. B 104 (2000) 1516.
- [33] R. Cousin, D. Courcot, E. Abi-Aad, S. Capelle, J.P. Amoureux, M. Dourdin, A. Aboukais, Colloid Surf. A 158 (1999) 43.
- [34] R. Yu, F. Xiao, D. Wang, T. Sun, Y. Liu, G. Pang, S. Feng, S. Qui, R. Xu, C. Fang, Catal. Today 51 (1999) 39.
- [35] U.R. Pillai, E.S. Demessie, J. Mol. Catal. A 191 (2003) 93.
- [36] S. Shylesh, A.P. Singh, J. Catal. 228 (2004) 333.
- [37] U. Wilkenhoner, G. Langhendries, F. van Laar, G.V. Baron, D Gammon, P.A. Jacobs, E. van Steen, J. Catal. 203 (2001) 201.
- [38] L.C.W. Baker, V.W. Simons, J. Am. Chem. Soc. 81 (1959) 4744.
- [39] J.M. Thomas, R. Raja, Chem. Commun. (2001) 675.
- [40] O.T. Kasaikina, V.D. Kortenska, Z.S. Kartasheva, G.M. Kuznetsova, T.V. Maximova, T.V. Sirota, N.V. Yanishlieva, Colloid Sur - Physicochem. Eng. Aspects 149 (1999) 29.

- [11] P.S. Singh, K. Kosuge, V. Ramaswamy, B.S. Rao, Appl. Catal. A 177 (1999) 149.
- 42] P.R.H.P. Rao, A.V. Ramaswamy, J. Chem. Soc., Chem. Commun. * (1992) 1245.
- [43] N.K. Mal, A.V. Ramaswamy, Appl. Catal. A 143 (1996) 75.
- [44] E. Ganin, I. Amer, J. Mol. Catal. A 116 (1997) 323.
- [45] J.E. Remias, T.A. Pavlosky, A. Sen, J. Mol. Catal. A 203 (2003) 179.

^{1.}