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PREFACE

Advancement of human knowledge finds expression in recent times through new vistas

of research that finely blend various disciplines to explore lesser known realities in

science and technology. A prime example of one such field is that of Neurotechnology

which is an amalgamation of neuroscience, physics, biomedical engineering and

computational methods. In this, the human brain, which is probably the most complex

system in nature, is explored by the application of ideas from physics and mathematics by

judicious use of algorithms. Progress in computational capability, wider scope of

applications of nonlinear dynamics and chaos in complex systems has enhanced the

growth ofNeurodynamics.

It is being increasingly realised that among all the various parts of the human

anatomy, the human brain is perhaps the least understood- constitutionally and

functionally. The most complex, sophisticated, and powerful information-processing

device known, the exploration of the brain functioning was earlier restricted to learning

the activation of single neurons and then extending it to include larger populations. This

line of research led to the charting of emotion centres and thereby establishing a localized

effect in the capacity to think, analyse problems and so on. But the idea of collective

effects in any cognitive process is now widely accepted and a complete understanding of

the mechanism of the brain functioning would be possible by bridging the gap between

the clinical studies and theoretical methods derived from other sciences. In the modern

era, the investigation of the human brain was mainly conducted with invasive techniques

such as surgery, sensing using internal probes/electrodes etc. However with the

advancement of imaging technology, methods such as C'f scan, Positron Emission

Tomography (PET) and Magnetic Resonance Imaging (MRl) have gained a lot of



importance In the detection and diagnosis of brain disorders at the structural and

functional levels. However these methods that detect the distribution of metabolic activity

associated with some suitably tagged molecules such as water, oxygen etc. in the case of

Positron Emission Tomography (PET) or the directional blood flow in the case of

Magnetic Resonance Imaging (MRI) have response time scales of the order of 30-40

seconds and hence any transient activity arising in a time scale shorter than these will go

undetected. The recording of brain electrical activity In the form of

Electroencephalogram introduced by Hans Berger in the late 1920s' has been in use for

sometime now as a first tool to detect abnormal patterns in the electric activity in human

brain. Yet in the last two decades of the past century, application of the principles of

nonlinear dynamics and chaos to this signal have proved beyond doubt the potential of

this signal as a carrier of information regarding the dynamics of the brain.

The EEG is a recording of the electric potential generated within the cortex by

the firings of neurons, which are integrated in a complex fashion and conducted to the

surface. It can be detected by placing electrodes on the scalp surface and the EEG signal

continuously recorded at regular time interval forms the time series signal that can be

analysed and studied. Application of time series analysis algorithms in conjunction with

surrogate data testing has proved the nonlinear nature of the EEG signal and on the basis

of this has been ushered in the new era of computational neuroscience / neuroinformatics

that aims at unravelling the complex structure-function relationships of the brain at all

levels from molecule to behaviour in an integrative effort of many scientific disciplines.

In this thesis we attempt a comprehensive study of the EEG signal by application

of these newly introduced methods of nonlinear dynamics and deterministic chaos to

characterize the dynamics of the brain state under a given condition. The main thrust of

the thesis is on computing parameters that throw light on the actual dynamics of this

highly complex, nonlinear and stochastic system in which feedback and feed forward



processes are operative. The brain is an open system in constant interaction with the

external world and moreover it has been proved by Gould et. al. (1999) that the neuronal

number is itself not conserved but that there is a constant generation of neurons in the

brain even as older ones decay. This is a relevant observation in the sense that a control

of such neurons will be useful in controlling the onset ofdegeneration of the brain. Hence

the system at hand is a nonequilibrium and non-Marcoffian one.

This work looks into the information content of the EEG signal and its relevance

in understanding the brain dynamics from the nonlinear dynamics point of view. The

EEG signal from the various electrode locations is considered as a time series and the

method of time delay embedding is made use of in most algorithms to compute certain

'invariant' parameters of the attractor in the pseudo phase space. The nonstationary nature

of the bio-signal is also taken into account and a theory that derives the relevant

timescales of the various significant processes that was earlier proposed is further

developed in this work with emphasis on understanding pathological conditions in

contrast to 'normal' healthy state. Thus the work is an attempt to develop these new

techniques to the level of a clinical tool that will find application in actual diagnosis and

treatment of brain disorders.



General Introduc

The motion of the whole is the sum of the motions of all parts; and
therefore in a body double in quantity. with equal velocity. the motion is
double; with twice the velocity, it is quadrupled.

--~ Sir Issac Newton. Principia Definition If.

n

'The whole is more than the sum ofits parts' in complex systems.

--- John H. Holland in Hidden Order.

Determinism is the philosophical belief that every event or action is the

inevitable result of preceding events or actions. Thus, in principle at least,

every event or action can be completely predicted in advance if we know the

previous states. Determinism became incorporated into modern science

around 1500 A.D. with tl'le establishment of the idea that cause-and-effect

rules completely govern all motion and structure on the material level.

According to the deterministic mode! of science, the universe unfolds in time

like the working of a perfect machine, without a shred of randomness or

deviation from the predetermined laws.
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The person most closely associated with the establishment of

determinism at the core of modern science is Sir Issac Newton whose three

laws of motion completely define determinism. This is because they imply that

anything that happens at any future time is completely determined by what

happens now, and that everything now was completely determined by what
•

happened at any time in the past. Newton's laws were so successful that for

several centuries after his discovery, the science of physics consisted largely

of demonstrating how his laws could account for the observed motion of

nearly any imaginable physical process. This chain of cause-effect resulted in

the development of linear dynamics and dynamics being described in linear

vector space.

Yet this success story was a mere shadow of the things to come. The

world of nature from weather to the prediction of earthquakes remained

outside the grasp of the linearized view inherent in classical dynamics. One of

the fundamental principles of experimental science is that no real

measurement is infinitely precise, but instead must necessarily include a

degree of uncertainty in the value. In dynamics, the presence of uncertainty

in any real measurement means that in studying any system, the initial

conditions cannot be specified to infinite accuracy. It is important to

remember that the uncertainty in the dynamical outcome does not arise from

any randomness in the equations of motlon-vsince they are completely

deterministic--but rather from the lack of accuracy in stating the initial

conditions. This imprecision in the specification of initial conditions gives rise

to inaccuracy in predicting the state of the system at a later stage. Further

the existence of dynamical instability indicated that the system is no longer

governed by linear dynamical equations but there exists the so-called

'nonlinear' effects, which are not specified by the linear evolution equations.
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This was explicitly stated around 1900, by physicist Henri Poincare. In his

seminal work, 'Les rnethodes nouvelles de la mecanique celeste' (1892),

Poincare gave his vision of what would be later known as classical nonlinear

dynamics. What puzzled Polncare in this study of the mathematical equations,

which described the motion of planets around the sun, was that certain

astronomical systems did not seem to obey the rule that shrinking the initial

conditions always shrank the final prediction in a corresponding way. These

peculiarities were first observed when he considered dynamics of systems

consisting of three or more bodies with interactions between all of them. For

these types of systems, Poincare showed that a very tiny imprecision in the

initial conditions would grow in time at an enormous rate. Poincare

mathematically proved that this "blowing up" of tiny uncertainties in the initial

conditions into enormous uncertainties in the final predictions remained even

if the initial uncertainties were shrunk by smallest imaginable size. The gist of

Poincare's mathematical analysis was a proof that for these 'complex

systems', the only way to obtain predictions with any degree of accuracy at

all would entail specifying the initial conditions to absolute precision as also

the equations for more than two bodies get nonlinearly coupled so much so

new mathematical techniques are necessary to develop dynamics with

predictive capability.

Without attempting a comprehensive review on the development of

nonlinear dynamics, we nevertheless present a peep into the history of the

theory highlighting the i work of only very few of the many illustrious

contributors who together made it the theory that covers all fields of

knowledge from the physical sciences, biology, social sciences to even arts

and humanities. The time of Poincare's findings [1878-1900] overlapped with

those of Lyapunov [1893] who gave the basis of the theory of motion
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stability. From the definitions of two classes of functions known as the

Lyapunov functions of the first and the second kind, he could solve the

stability problem in critical cases, those for which the linear approximation

does not permit a stability conclusion in any small neighbourhood of a steady

state (Mira, 1997).

The re-emergence of Poincare's work occurred with the phenomenal

discoveries made in 1963, by the meteorologist Edward Lorenz in his

mathematical model for weather prediction (Lorenz, 1963). Specifically Lorenz

studied a primitive model of how an air current would rise and fall while being

heated by the sun. The simple set of equations in his model gave rise to

varying dynamical scenarios as the parameters as well as the initial conditions

varied until at certain values, the output was apparently random Jooking

despite being governed by deterministic laws. This was probably the first

advocated phenomenon of chaotic evolution, which was earlier thought of as

a mathematical oddity. In the decades since then, physicists have come to

discover that irregular, complex behaviour chaotic or otherwise is much more

widespread, and may even be the norm in the universe. Lorenz's initial work

was followed up by many researchers and results started accumulating

leading to the establishment of a full-fledged field of Nonlinear Dynamics with

Chaos Theory as a subsidiary to it (Ruelle & Takens, 1971; Newhouse et. al.,

1978; Mandelbrot, 1985). The concept of nonlinear dynamics centered round

the idea of a phase space for a dynamical system in which the system

evolution in time was observed, monitored and studied. Most of the systems

in the real world being dissipative in nature, their evolution after some

transient period was found to be restricted on a geometrical object known as

the 'attractor' in phase space. The problem now got reduced to studying the

behaviour of trajectories on the attractor by various measures relating to
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their static and dynamic distributions. Following the work of Lorenz (1963L

Ruelle and Takens in 1971 introduced the abstract concept of a 'strange'

attractor in the context of onset of chaos in turbulent fluids, which was to

pioneer a new course in the understanding of complex systems. Several years

later, May found an example of chaos in the iterative map (logistic map) that

was used to study population dynamics in biology (May, 1976). Feigenbaum

(1978) discovered that there are certain universal routes, which systems will

take in transitioning from regular to irregular motion. This discovery provided

the link between chaos and its transitioning phase. All these theoretical

formulations were tested by experimental scientists in widely ranging fields

such as fluids, mechanical systems (D'Humieres et. al., 1982), chemical

reactions (Coffman et. al., 1986; Richetti et. al., 1987) and electronic circuits

(Matsumoto et. al., 1987a). By 1980, the widespread interest in chaos,

fractals, oscillators and their applications had taken a firm root for this

emerging field of dynamics. The resurgence in the study of nonlinear

dynamics over the past couple of decades or so may be primarily attributed to

a dramatic increase in the available computing power. Secondly, the

realization that seemingly simple physical systems whose dynamics is

governed by deceptively Simple systems of equations give rise to beautiful

and complex patterns and phenomena. Furthermore, the methodology

developed in the study of simple dynamical systems are common across a

broad range of scientific disciplines mostly in physics, chemistry and biology

and as it is now emergin~, even in social sciences and economics (Chaos and

Society, 1995; Guastello, 1995; Chaos Theory in the Social Sciences:

Foundations and Applications, 1995).
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1.1 Brain as a Complex System

For centuries, philosophers and scientists puzzled over the workings of the

brain. Even today although some of the mystery shrouding this wonder

machine has been lifted, there still remain questions regarding the complex

nature of its functioning. The questions of ho~ this organ accomplishes the

coordination of everything from the trifles of routine activity to the profound

thoughts, intelligence and creativity that are the hallmarks of human genius

are still being debated. Recent advances in technology providing instruments

such as the Cf scanner, Positron Emission Tomography (PET) and more

recently Magnetic Resonance Imaging (MRI) scanner have made it feasible to

create pictures of the brain during various mental functions as well as in the

pathologic conditions. The effort in understanding the brain functioning has at

its heart the idea of getting a grip on various spontaneous and little

understood mental maladies such as epilepsy, Alzheimer's disease/

schizophrenia, depression, derangement and so on.

Brain research has come a long way from the views of Descartes, the

seventeenth century French philosopher who was perhaps the pioneer in

unraveling the link between the brain and the mind. He concentrated on the

behaviour of circuits connecting sensory receptors of the nervous system to

the physical world or broadly with the phenomenon of reflex action. In

Descartes's view, physical processes were measurable and thus amenable to

scientific laws but the subjective processes were immaterial and not

measurable. The physical world was totally delineated from the mental world

and they interacted only weakly in one part of the world. The dawn of

scientific understanding of the nature of electrical activity in the brain may be

said to have occurred with the publication of the book Reflexes of the Brain by

the founder of the Russian school of Reflexology, I. M. Sechenov in 1863. In
t.
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this, he generalized from his many observations that all sensory input would

stimulate motor activity automatically unless prevented from doing so by the

central mental processes of the brain. The decades following the work of

Sechenov saw the realization of the brain as possessing a complex structure

made up of millions of discrete units called neurons that are interconnected to

each other by branches, which form channels of information transfer in the

brain. By the early 1900s understanding of the brain processes had

progressed to an extent that Charles Sherrington, a renowned British

physiologist proposed reflex activity as due to a very complicated neuronal

organization in the brain rather than the simpler principles of reflexes

accepted till then. In another 49 years time, in 1943 there appeared the book

The Organization of Behaviour: A Neuropsychological Theory by Donald. O.

Hebb (1964), which proved an exciting integration of mental and brain

processes. At the core of his theories was the concept of 'cell assemblies',

which still remains an integral idea in theories of the brain function. Hebb

thought that any frequently repeated stimulation would lead to the

development of a structure consisting of neurons capable of acting as a closed

system. The neurons in a cell assembly were able to act together because of

changes in the connections called synapses between them. During the

learning process, as cells develop into an assembly; these connections

become stronger so that even a weak signal from one neuron would suffice to

activate the next one and so on. As a result, the 'firing' of a single cell in the. .
assembly causes all the other cells to fire as well. Such a notion of a 'Hebbian

synapse' is central to much of modern neuroscience and the growth of the

science through the decades following Hebb saw the development of two

streams of research. One is concerned with the description of mental

processes in terms of component operations that can be precisely specified.
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For ego a visual image is not created as a whole, but rather is formed over

time by an orderly set of operations that includes, for instance, placing the

parts of images in their proper relation and scanning the content for specific

features. The measurement of these operations has been the task of cognitive

science for the past 30 years. The second branch called neuroscience is the

study combining many formerly disparate approaches to understanding the

basic principles that underlie the construction of the nervous system. These

two branches have been integrated by the technological development of

imaging and present research is on a holistic approach in understanding the

brain and mind. The crux of the problem lies in learning how mental images

are formed, how networks of nerve cells develop and how brain regions

interact in specified patterns for accomplishing various actions and finally

applying the results to understand what goes wrong with these networks in

cases of different mental illnesses (Posner & Raichle, 1994).

The brain is probably the most complex system known to us whose

mechanisms are the least understood. About 1011 neurons and their

interconnections ('" 103
) defy any form of analysis about its functions. It is

thus a complex system, stochastic in nature and with feedback-feedforward

processes operative. The dynamical complexities of cellular processes in the

brain ranging over timescales from 10-3 seconds to several days are of a

nature that when interwoven give continuity to conscious experience and

produce exquisite abilities unique to human brain such as thinking and

creativity (Kuffler et. al., 1984). Emboldened by the recent developments in

nontinear dynamics and physics of complex systems, neuroscience looks

towards this paradigm for understanding brain functions. It is generally felt

that the non linear approach may not only help to understand emergent

properties of brain such as perception, cognition and st?tes of consciousness
to
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but also provide solutions to some perplexing neuropsychiatric problems such

as epilepsy, schizophrenia, mental depression, response to therapies etc.

Applications of non linear dynamics till date in neuroscience have resulted in a

novel and qualitative change in the outlook on the investigations of the brain

and its functions.

1.2 Nonlinearity in the Neural System

The evidence for the existence of nonlinearity in the behaviour and evolution

of systems abound in the living world. With special reference to the nervous

system, a review of the experimental evidence of the non linear nature

embedded in the various levels of organization from the single cell level to the

large cell assemblies is summarized in this section.

A very simple structure in the living world that exhibits prominent

nonlinearity is the neuron. It has a prominent place in research since despite

not being governed by very complicated laws; neurons produce highly

complex patterns of behaviour. A neuron is a single cell consisting of a cell

body and a single axon. The cell receives signals from other cells through

dendrites, which are connected to the cell body but the output signal is

transmitted only through the single axon. One of the most investigated of

these structures is the giant axon of the squid Doryteuthis bleekeri, which is

known for the rapid transmission of action potentia Is in the form of neuronal

firings. In 1952, Hodqkfn and Huxley presented their well-known model

through four simultaneous, first order differential equations describing the

time course and voltage dependence of the membrane ionic currents flowing

through the giant axon of the squid. This model involves three voltage

dependent gating variables, the Sodium (Na) - Potassium (K) activation

variables and the sodium inactivation variable and a fourth variable involving



10 Chapter J

the membrane potential. The two noteworthy points in this pioneering study

are (i) the irregular behavior of the axon is not due to a noise component in

the membrane but results from a non linear, coupled deterministic system and

(H) for the giant axon of the squid, there exists a powerful model that is able

to generate all the types of oscillations known from experimental observations
(:

of the axon. Besides, the specific routes from regular to chaotic behavior

could be traced with this model. But it was argued that the oscillations were

induced experimentally on the biological specimen in a non-natural solution

and hence whether such irregular oscillations could exist in naturally occurring

physiological system. In 1987, Matsumoto and his eo-workers demonstrated

that chaotic oscillations can be generated by applying periodic trains of

current pulses to the silent axon immersed in normal seawater. On measuring

the correlation dimension, a typical dynamical invariant at two different points

along the axon (30-40 mm apart) they found that chaos is stably propagated

(D2 : 3.2-3.4). This observation suggested that chaos could be relevant in

neural information processing and established the occurrence of chaotic

behaviour in axons and neurons in general under normal conditions

(Matsumoto et. al., 1987b).

The first evidence for chaotic behaviour in cell membranes was

provided by Hayashi et al. (1982), who could induce irregular oscillations

using sinusoidal simulation to the neuronal membrane. Studies on the giant

neurons of the squid were conducted mainly on two categories (i) silent

neurons that need a medium to oscillate and (ii) pacemaker neurons which

spontaneously show periodic activity in artificial seawater. Both have been

shown to produce irregular activation depending on the stimulation provided.

In the second category, the pacemaker neuron of the mollusc o.
verruculatum immersed in artificial seawater exhibited spontaneous chaotic

t
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bursting activity both in the interspike interval as well as in membrane

potential when stimulated by a small direct current of about O.3nA (Hayashi &

Ishiyuka, 1987).

Yet another condition under which chaotic activity can be observed is

based on chemical induction. Neurons of the pond snail L. stagnalis exhibit

irregular, chaotic oscillations in the presence of cocaine. These examples

indicate that different types of cells under various electrical and chemical

stimulants, exhibit phase locking patterns as well as irregular, chaotic or

chaotic-like oscillations. The observations of spontaneous chaotic activity

clearly support the hypothesis that single cells are capable of exhibiting a

variety of behaviour due to their strong nonlinearity.

In the investigations on the presence of nonlinear dynamics in cell

assemblies, the work of Rapp and his eo-workers may be cited. Correlation

dimension analyses of the inter-spike intervals in the precentral and post

central gyri of anaesthetized squirrel monkeys gave low values varying from

2.2 to 7 (Rapp et. al., 1985). This report suggested the occurrence of low

dimensional chaos in the spontaneous activity of some simian cortical

neurons. Later work by Mpitsos and associates on the generation of motor

patterns in the mollusc Pleurobranchaea caJifornica threw up evidence for low

dimensional chaos such as quickly decreasing auto correlation function,

fractional dimension, positive Lyapunov exponent etc. (Mpitsoset. ai, 1988).

But, the limited data a9 well as brief temporal duration and variability of

biological actions made it difficult to justify strong claims on chaos. In the

following work on a simple neuronal network comprising of a single input and

output units and four hidden units, Mpitsos and eo-workers could demonstrate

the ability of the network to distinguish between various chaotic signals,

generated from Logistic map, Rossler equation etc. The answer to whether a
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chaotically coded message in one brain region was understood by other

regions was surmised from this result. The neural message is not composed

of a signal overlapped by noise but lies in the inherent irregularity itself.

The olfactory bulb is a model neuropil with the same cell types and

chemical neuromodulators as the neocortex. Due to its simplicity and

knowledge about the electro genesis in it, the study of nonlinear structure in

the physiological brain signal, the Electroencephalogram (EEG), is expected to

be easier to interpret by this model neuropil than the neocortex. Freeman and

his coworkers (1988) investigated the perceptive events in the olfactory

system of the conscious rabbit and on the basis of this, developed a

mathematical model of the bulb that uses nonlinear, coupled ordinary

differential equations. In order to associate these findings with the processes

in the neocortex itself, they studied the visual system of the monkey

(Freeman, 1986 & 1995; Freeman et. al., 1988). Based on this model, four

types of activity were analysed - the first of a silent system which occurs

under deep anesthesia, second during normal background activity in the

absence of a significant input, thirdly during the reaction of the system to a

learned odour and finally that during an epileptic seizure. From among the

various interesting findings in their study, some of the significant results are

noted here. The researchers concluded that the dynamical process in the

olfactory system of a motivated rabbit is characterized in the absence of any

significant odour by a spatially and temporally un-patterned chaotic state.

Learning of a new odour and its subsequent recognition are related to a

process involVing a change in the nonlinear dynamiCS of the system. The

study of specific cortical structures such as the auditory cortex, the

hippocampus etc. were conducted on cats using implanted electrodes.
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Dimension analysis indicated the presence of various attractors with fractional

correlation dimension (Roschke & Basar, 1988).

With such varied yet strongly supportive evidence of the presence of

nonlinearity and even low dimensional chaos at times, pouring In from various

biologicai systems, the human EEG signal also came to be viewed through the

iooking glass of nonlinear dynamics. While early studies were mainly

demonstrational in nature, in the long run, structured analysis of the signal

was carried out using qualitative as well as quantitative techniques. A detailed

survey of literature in the dynamical analysis of EEG signal by application of

different measures and methods is cited all along this thesis and hence is not

included at this stage. Rather we make an attempt to seek the need for such

an approach and the salient features inherent in such studies.

1.3 Analyzing Physiological Time Series

Earlier, whenever study of time series from biological systems was

undertaken, the statistical techniques usually made use of failed to detect

patterns embedded in the irregular looking data. It was suggested that this

was probably a result of examining the time series in terms of static rather

than dynamic behaviour i.e. the usual techniques do not take into account the

nonlinear behaviour. Traditional methods of signal processing used the

Fourier, wavelet or other techniques to decompose the signal into its

component frequencies; thus reflecting a limited amount of information. In

contrast the nonlinear dynamics approach postulates that a time series may

be seen to contain the effect of all other variables involved in the dynamics of

the system. The theoretical aspect of this formulation is based on a variety of

mathematical theorems of which the Taken's theorem is the most significant

one (Takens, 1981). According to this formulation, it is given that complex
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dynamical systems such as the human nervous system have an enormous

number of interrelated dependent variables that cannot be directly measured.

If any single variable can be measured with sufficient accuracy at a given rate

for a sufficient length of time, then it is possible to make quantitatively

meaningful inferences about the dynamic struct~re of the system from the

behaviour of that single variable. The advantage of the nonlinear dynamic

theory is the ability to project the dynamics of a system onto a static phase

space diagram. In physiology, since the system's variables are not all

identified, the phase space must be reconstructed from the observed time

series. This is followed by the possibility of looking for an attractor in the

reconstructed space and subsequently its characterization using various

topological as well as dynamical parameters.

A useful time series analysis requires idealized conditions of infinitely

long, noise free data sets. But data from living systems are irreproducible

even in a statistical sense. A living being can never be brought back to a

given state. Besides, changes in its being as well as environment cause

variations during measurements thus giving rise to nonstationarity. These

various factors affecting the time series impress their own time scale(s) on

the series. This could be an explanation for the occurrence of nonstationarity.

In addition to nonstationarity is the problem of noise contamination. Noise

can be introduced through the measurement device or through the

transmission of the signal from the source to the measurement device and

also due to the perturbations from the environment.

The advantage of nonlinear dynamical analysis lies in its supplying new

tools for studying dynamics and signal classification. Traditional methods for

data analysis, as mentioned above characterize a state by averaged

quantities like means, variances, autocorrelatlcns." and so on, which are
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successful in dominantly linear systems. On the other hand, nonlinear

analysis tries to get hold of properties of the underlying complex dynamics. In

most cases, the nonlinear methods which allow for a characterization of data

by a whole set of quantities such as divergence rates, predictability etc.

provide new insights not revealed by the usual linear techniques. Apart from

signal classification, a detailed dynamical analysis can help to detect

physiological mechanisms and to design, affirm or reject simplified or realistic

models for certain processes and disorders. However the application of

nonlinear methods to physiological data is yet not fully explored. It is known

that physiological systems contain complex structures and also that

nonlinearities and time delays in feedback loops abound in them and finally

that both the understanding and diagnostics of disorders is related to

dynamical properties of the system. These singular features make nonlinear

analysis of the geometry and dynamics of such systems worth a challenge.

1.4 Nonlinear Brain Analysis

The complex dynamic behaviour of the brain is reflected in the EEG, which is

a recording of a large number of neuronal membrane potentia Is over distant

regions of the brain. EEG is a phenomenon of integrated brain metabolic

process, containing signatures of activities in the underlying brain structures

particularly in the cerebral brain cortex. The success in the application of

principles of nonlinear dynamics to EEG analysis is apparent in the multitude

of research publications cited all through this thesis. Despite this, there is a

need to be cognizant of the pitfalls and drawbacks that are inherent in this

approach as well.

One of the difficulties lies in not being able to confirm whether the

experimental data in hand conforms to the assumptions made in applying the
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principles of analysis. A basic assumption usually made is regarding

stationarity of the signal, which is almost impossible to observe in signals

from biological and physiological systems for any considerable stretch of time.

The next question of debate is whether EEG is simply noise or in fact a

deterministic chaos. Such conflict remains unresolved to an extent even as
~ >

researchers ask better questions pertaining to the information gained.

Whether or not the EEG is low dimensional or chaotic is an interesting

question but, may not be ultimately as important as whether the tools of

nonlinear dynamical analysis are useful in the characterization of brain states

or the prediction of seizure onset. The focus has shifted away from proving

the existence or otherwise of chaos or low dimensionality of the system and

toward the characterization of dynamical difference between states as a tool

for better understanding of the underlying system.

1.5 Organization of the Thesis

The thesis covers the research work in 9 chapters. The first chapter

introduces the human brain as the potential non linear system under study.

The historical development of the science of nonlinear analysis is surveyed

and the validation of the brain as a complex, nonlinear system is carried out

by citing theoretical as well as experimental findings supporting this. The

salient features of the application of nonlinear methods to physiological data

analysis are presented. The chapter finally clarifies the relative merits as well

as drawbacks inherent in the adaptation of physical principles to understand

the dynamics of biological systems. The second chapter is the description of

the theory of nonlinear systems with special emphasis on the current research

in systems with nonlinear interactions. Chapter III deals with the actual time

series methods as applied to observed Irrequtar/chaqtlc data. This comprises
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of both linear as well as nonlinear methods of signal processing. Besides, the

chapter deals in detail with the attractor reconstruction and the theoretical

backing provided by the embedding theorems as well as the characterization

of the system attractor with invariant parameters such as generalized

dimensions, entropies and so on. The last part of chapter HI is devoted to

understanding the electroencephalogram signal, its recording paradigms,

characteristics and nonstationary nature and the literature review on the

nonlinear time series findings from the EEG signal.

Chapter IV is based on a dynamical study on coupled oscillators. This

part of work is carried out on the model Rossler system as a potential system

for modelling the characteristics of the system generating the complex EEG

signal. The behaviour of the system under two different coupling scenarios:

uni-directional and bi-directional is studied by analyzing the time varying

output of the composite system. The dynamical as well as co-ordination

effects induced by the coupling in the system are looked into and the

significant results are discussed. As an extension to the real world situation,

noisy coupling is considered next and the effect of coupling on the dynamics

of the system is investigated.

The following chapter heralds the beginning of the studies made on the

real time EEG data. In this chapter, the nonstationarity of the EEG is

discussed in detail with the derivation of a general time scale based on the

most important processes occurring in the neural system. The idea is

extended to look into the effect of time scales on the unfolding of neural

attractors. For this pilot study, the bioelectric signal from the brain, recorded

from normal subjects as well patients suffering from the pathological

condition of epilepsy are considered. The distinctness in the behaviour of the
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signal from the two groups is discussed in detail and its implications on the

dynamics are analyzed.

Chapter VI comprises the complexity studies conducted on the EEG

signal. In this case the base line state is the normal, eyes closed condition

and the complexity variations of the EEG signal with the change of state from

passive to a mental task state are monitored. In addition the cortical regions

that exhibit these changes as well as their relevance in the brain functioning

during the particular states are described. The studies are carried out by

computing the nonlinear statistic of Approximate Entropy and its variant,

Sample Entropy that characterise the sequential irregularity in the time trace

of a signal. The studies are validated using appropriate statistical tests carried

out on the computed parameters for a population of subjects. Yet another

direction undertaken is to look at the multiscale analysis of the complexity

measure and the results obtained give insight into the inherent randomness

of the underlying system.

The next chapter deals with the functional coordination existing in the

cortical domain. In order to study the coupling between brain regions, we

make use of a bi-variate measure based on the signals ensuing from two

brain locations. The measure is based on the instantaneous phase of the

signal and the strength of interaction is represented by an index of

synchronization computed from the relative phase difference. We make a

detailed study of the temporal variations in this index during passive

conditions of eyes closed and eyes open as also during the abnormal brain

experience of epileptic seizure. The interactive nature during mental task

conditions is also looked into and finally we apply the idea of directional

coupling. With this measure we probe the nature of cortical coupling as to

whether there is any coupling present and if so whet~er it is unidirectional
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one or whether the two regions interact mutually with each other during

specific task states.

Chapter VIII is an overview of the existing neural models and a

theoretical formulation to the idea of topological manifolds inferred from the

EEG signal. This theory has its foundation in the nonequilibrium statistical

mechanics and a general equation of motion for the system is proposed. An

inverse scattering technique is applied to evaluate a motion generating

potential and the map of the same in time gives rise to manifolds. The final

chapter will summarize the results in the thesis as well as present some

general conclusions regarding the dynamical aspects of the systems in the

light of the new findings. An outline of projects that can be undertaken in the

wake of the present work will also sketched.

Nonlinear analysis of the brain is still far from maturity and the uses of

nonlinear techniques discussed in this review should be considered

exploratory. These are however essential and must be pursued if eventually a

body of techniques is to evolve to study signals from the brain. Despite the

pitfalls encountered occasionally, non linear analysis of the EEG remains

largely successful. It holds promise in turning the EEG into a true "window on

the mind" as hoped by Hans Berger when he first observed electrical activity

in the brain seventy-five years ago.
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It may happen that small differences in the initial conditions produce very great ones in
the final phenomena. A small error in the former will produce an enormous error in the
latter. Prediction becomes impossible.

--- Henri Poincare

Nonlinear systems are the norm in nature. Yet study of natural systems was

carried out for a long time within the framework of linear or Newtonian

dynamics. This approach led to many results and generalizations on systems

that could not in any wa~ be matched with the real phenomenon. Nonlinearity

in a system simply means that state of a system depends in a complex

manner on the measured values at an earlier time or it becomes increasingly

difficult to predict the state of the system from that inferred from an earlier

occasion. Of late a need for a new approach to complex systems became

imperative and this resulted in the development of a new revolutionary

21
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pathway commonly known as chaotic dynamics. Chaotic dynamics is truly

dynamic (no pun intended) in the sense that it occurs in all fields of science­

Physics, Chemistry, Biology as well as in the fields of social sciences. In such

systems, while the evolution occurs in a deterministic way, the output from

the system is totally irregular and random thereby defying the predictive
I

capability. It was observed early in research that whenever deterministic

chaos occurs, it is accompanied by nonlinearity.

It was the French mathematician, Henri Poincare who was the pioneer

in the analysis of systems with in-built nonlinearity. Poincare's work on

periodic solutions of ordinary differential equations constitute the foundation

of the most part of the results obtained until now. Poincare's theory included

the idea of bifurcations as well as the qualitative study of solutions to

generalize to dissipative three-dimensional dynamical systems or

conservative four-dimensional systems ones, via a reduction to the map of a

surface onto itself. Poincare was also the first to put in evidence a kind of

analogy between fixed points of a 2-dimensional map and the equlllbrlurn

points of an autonomous differential equation of the same dimension. This

was done by defining behaviours of type node, focus and saddle points. The

introduction of the pathbreaking ideas of stability of fixed points, limit cycles

and Poincare sections formed a solid foundation for building the theory of

Nonlinear dynamics.

2.1 Nonlinear Systems- Terminology and Definitions

Any nonlinear system, which can be expressed by a set of mathematical

equations, includes two types of variables - dynamic and static. Dynamic

variables are the quantities, which change with time whereas the static

to
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variables often referred to as the control or system parameters, remain

constant until changed by an outside force. When studying a non linear

system, the control parameters are often changed to learn how the behaviour

of the system changes in response. The act of changing a control parameter

to change the system behaviour is known as perturbation.

A dynamical system may be defined as a deterministic mathematical

relation for the evolution of a system in time. State space or phase space,

is the space of the dynamic variables and might in some cases include their

derivatives. A point in the state space specifies the state of the system at a

given instant and hence is referred to as the system point. As the system

evolves with time, the state or the system point moves from point to point in

the state space, thus defining a trajectory. A trajectory therefore displays

the history of the states of the system. As in classical statistical mechanics, a

collection of several trajectories with different initial conditions is called a

phase portrait for the system, which is a graphical representation of the

global behaviour of the system. In nonlinear dynamical theory, the number of

degrees of freedom is usually defined as the number of dynamic variables

needed to specify the dynamical state of the system, or equivalently as the

number of independent initial conditions that are needed to specify the

system.

Dynamical systems may in general be divided into three types (Parker

& Chua, 1987). '1

(a) Autonomous dynamical system: An Nth order autonomous dynamical

system is defined by the state equation:
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(2.1)

The phase space in three­
dimensions with the trajectory.

This is a dynamical system since for any initial state of the system, x(O), the

equations can be solved to obtain the state x(t) at a later time, t>O. F = (F j ,

..., FN ) is a vector field in the state space, i.e. F, are functions of x'" and p(i)

are the corresponding vectors of control parameters (if any). The dynamical

relations are linear if F(x) is linear. For an autonomous system for which the

vector field does not depend on time, the initial time may be taken as to =0.

If for example, in the above

system, N=3; then figure 2.1

represents a path in the evolution

of the system. The space spanned

by (Xl, X2, X3) is the phase or state

space of the system. A point in this

space at a time t specifies the

system completely at that given

instant. The path traversed by such

a system point in state space as

the system evolves in time is

referred to as orbit or trajectory.
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(b) Non-autonomous dynamical system: In this case the system

definition is similar to the Eq.(2.1) except that now, F = F(x,t). The vector

field depends explicitly on time and unlike the autonomous case the initial

time cannot be arbitrarily set to O. If there exists a T>O such that

F(x,t) = F(x,t + T) for all x and all t, the system is said to be time-periodic

with period T, The smallest such T is called the minimal period, In general an

Nth order time periodic nonautonomous system can be converted to an

21lt
(N+ l)th order autonomous system by appending an extra state () =-.

T

(c) Discrete time dynamical systems: In this case the system values are

given at equal, discrete, integer valued time. An example of a dynamical

system is one that may be written in vector form as:

(2.2)

where n=Ot1,2, .., denotes the time variable. x, has N components,

( (I) (2) (N)) G' . ·t· i ditt t Iect f thXn = Xn 'Xn ,oo"Xn • rven an rm la con I IOn, xo, a rajec ory 0 e

discrete time system can be generated by applying an operatorF (...) to the

previous state, i.e.

i

2.2 Cauchy - Lipschitz Condition

In this context, some inherent mathematical concepts to the development of

differential equations theory may be reiterated. While Cauchy's theorem deals

with the existence and uniqueness of the solution of a differential equation,

the unique determination of solutions by the initial conditions is guaranteed
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by the Cauchy-Lipshitz condition. Accordingly, for a system of N first order

t ' . E (2 1) 'f ( (1) (2) (.v)) the m I f thequa Ions as In q. . ,I Xo ,xo "",xo are e qiven va ues 0 e

variables; then F(x(J),x(2), ... ,x(N)) is said to satisfy a Lipschitz condition if

there are positive numbers k and 0 such that the relation,

v

I ( (I}(O) (2)() (N)()) ((I) (2) (N))\ < 't' I '(o) i IF x ,x O, ... .x 0 - F x ,x " .. ,X _ k L.... x 0 - x (2.3)
i=1

holds provided Ixi(O)-Xil<J', i =1,2, ... , N. If the partial derivatives

( OF)OX(i) exist and are continuous, it can be shown that F satisfies the Lipschitz

condition. It is on the basis of this that the Cauchy-Lipschitz theorem is stated

for a system of N first order differential equations. Hence the application of

this theorem to a single differential equation of order N involves solving the

differential equation for the highest derivative, which is written as,

x N := d
N

X = I(t,x, dX, d
2

: , ••. , dN;l~J
dt dt dt dt -

This is equivalent to the system of N first order differential equations,

This is a special case covered by the Cauchy-Lipschitz theorem, which states

that the solutions of the above system of equations are uniquely determined

by the values prescribed for x and its first (N-l) derivatives at t=to provided

that the function f satisfies a Lipschitz condition. The Cauchy-Lipschitz

theorem applied to the autonomous system has a consequence that through

f.
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every point of the plane there passes one and only one trajectory. This is the

No-Intersection theorem as is commonly known in Nonlinear Dynamics

literature. The physical content of this theorem is a statement of

determinism. Two distinct state space trajectories cannot intersect in a finite

period of time. If they do, at the intersection point, the trajectory would have

the same values of the state variables and the same values of their time

derivatives and yet evolve in two different ways; thus violating the Cauchy­

Lipschitz theorem (Minorsky, 1969; Ott, 1993).

2.3 Conservative Vs. Dissipative Systems

From a physical point of view, dissipative systems are distinguished from

conservative systems by the action of their flow on volume elements in phase

space. In conservative systems, the volume of each element remains

constant in time while in the case of dissipative systems; it typically shrinks

at least in the mean over long time periods. For dissipative systems, the

effects of transients associated with initial conditions disappear in time. The

trajectory in state space will head for some final attracting region, or regions,

which might be a point, curve, area, and so on. Such an object is called the

attractor for the system, since a number of distinct trajectories will be

attracted to this set of points in the state space. The properties of the

attractor determine the long-term dynamical behaviour of the system. The set

of all initial conditions ~iving rise to trajectories that approach a given

attractor is called the basin of attraction for that attractor. If more than one

attractor exists for a system with a given set of control parameter values,

there will be some initial conditions that lie on the border between the two or

more basins of attraction.



28 Chap/er 2

2.4 Stability of Equilibrium Points

Linearization of the state space equation provides useful information about

the local stability of properties of an equilibrium state. In the context of an

autonomous nonlinear dynamical system with equilibrium state x, the

definitions of stability are as follows:

De! J: The equilibrium state x is said to be uniformly stable if for any given positive £,

there exists a positive 6 such that the condition

Ilx(0) - xII < s Ilx(t)- xlI < s forall t> O.

This definition states that a trajectory of the system can be made to stay

within a small neighbourhood of the equilibrium state x if the initial state

x(O) is close to x.

De! 2: The equilibrium state x is said to be convergent if there exists a positive 6 such

that the condition

Ilx(o)-xll < s t~oo.

The second definition means that if the initial state x(O)of a trajectory is close

enough to the equilibrium state x , then the trajectory described by the state

vector x(t) will approach x asymptotically.

De! 3: The equilibrium state x is said to be asymptotically stable if it is both stable and

convergent.
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,
De! 4: The equilibrium state X is said to be globally asymptotically stable if it is stable

and all trajectories ofthe system converge to i as time t approaches infinity.

This definition implies that the system cannot have other equilibrium states

and that it requires that every trajectory of the system remains bounded for

all time t>O. In other words, global asymptotic stability in a system causes it

to ultimately settle down in a stable state for any choice of initial conditions.

2.5 Linear Stability Analysis

Consider a system of N real first-order differential equations,

X= F(x) (2.4)

A few definitions are in order. Steady state behaviour refers to the

asymptotic behaviour as t--+oo and it should be bounded. The difference

between a solution and its steady state is called a transient. A point y is a

limit set of x, if for every neighbourhood U of y, the trajectory, say <h(X)

enters U as t--+oo. The set of all limit points of x is called the limit set L(x) of x.

Limit sets are closed and invariant under ~t A limit set L is attracting if there

exists an open neighbourhood U of L such that L(x)=L for all XEU. The basin

of attraction B(L) of an attracting set L is defined as the union of all such

neighbourhoods U. Every trajectory starting in B(L) tends toward L as t--+co. In

a stable linear system there is only one limit set. Hence the steady state
l

behaviour is independent of the initial condition. In a typical nonlinear

system, there can be several limit sets, each with a different basin of

attraction. The initial condition determines in which limit set the system finally

settles.
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Consider the system in Eq. (2.4). A steady state or fixed point for this

system is that point x = X oat which

(2.5)

A trajectory that gets to the fixed point stays the~. We are interested in

examining the behaviour of trajectories near x o' Hence we set,

x(t) = X o + 1/(t) where the increment 'l(t) is assumed to be small.

Substituting this into Eq. (2.4L we expand F(.,,) to first order in q(t) ,

(2.6)

Since X o is a steady state, F(xo) =0 and OF denotes the Jacobian matrix of

the partial derivatives of F.

of% OF% of%OX(I) OX(2) ox(N)

DF(x) =
OF(% OF(% OF(%

Hence, OX(I) OX(2) OX(N) (2.7)

OF(% OF(% OF(NX
OX(I) ox(2) OX(N)

The equation for the time dependence of the perturbation of x from the steady

state is given by,

(2.8)
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,
The linearized stability problem is obtained by neglecting the terms of order

1f2 in Eq. (2.8) and is of the general form,

dy =Ay
dt

(2.9)

where y is a real N-dimensional matrix and A is a real, time dependent NxN

matrix. If the determinant of the Jacobian matrix, det A, is unity at all points

the system is conservative. If the average of Idet A I < 1 then the system is

dissipative. If the average of Idet J I> 1 then volumes in state space expands

with time.

If the solution of Eq. (2.9) is assumed to be of the form, y(t) = ue" , then Eq.

(2.9) becomes an eigen value equation,

A U=AU (2.10)

which has a nontrivial solution for values of A. satisfying the characteristic
equation

(2.11)

where I is an NxN identity matrix. The nature of the fixed points of the

system is determined by the roots of the characteristic equation at that fixed

point. Hence in general, if N=3, the characteristic equation is cubic giving rise

to three A. values. In this ,~ase therefore three cases may occur: (i) the three
l

characteristic values are real and equal, (H) the three values are real and

unequal and (iii) there is one real characteristic value and the other two are

complex conjugates (Ott, 1993; Hilborn, 1994; Minorsky, 1969).
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For state spaces with 3 or more dimensions, it is common to specify an

Index of the fixed point, which is the number of characteristic values of the

fixed point whose real parts are positive.

The four basic types of fixed points for a three dimensional space are:

1. Node: All AS are real and negative. This means all the trajectories in the
~~

neighbourhood of the node are attracted to it without any looping around it.

Is. Spiral Node: All the AS have negative real parts but two are complex

conjugates. The trajectories spiral around the node on a surface as they

approach the node.

Nature ofA Fixed Point Type

A.. Im(A.)

~+/
..... ... --.. +-
~ ~

)ft'Re(A.)

." Node

Al Im(A.) @))(

.... .........
R;{U)(

" Spiral Node

2. Repellor: All AS have positive real parts causing all the trajectories in the

neighbourhood of the fixed point to diverge from it.
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2s. Spiral Repellor: All "the A.S have positive real parts and two are complex

conjugates. The trajectories spiral around the node on a surface as they

diverge from the fixed point.

Nature of A. Fixed Point Type

..... Im(A) ,t/... ...... r" .- .---.
Re(A.)

~.~,.
Repellor

.4 .. Im(A) @))(... ...-..
R~A.)x

,,.
Spiral Repellor

3. Saddle point - index I: All the AS are real. One is positive while the other

two are negative. Trajectories approach the saddle point on a surface (the in­

set) and diverge along a curve.

3s. Spiral saddle point- Index I: The two characteristic values with negative
•

real parts form a complex conjugate pair. The trajectories spiral around the

saddle point as they approach on the in-set surface.
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Nature of2

Im(iI.)

Re(A)

Im(A)

Re(A)

Fixed Point Type

Saddle point -Index Jl

Chapter 2

4. Saddle point - index II: In this case, one A is real with negative real part

and the other two are also real but are positive. Trajectories approach the

saddle point on a curve (the in-set) and diverge from it on a surface.

4s. Spiral saddle point- Index II: The two AS with positive real parts form a

complex conjugate pair. Hence the trajectories spiral around the saddle point

on a surface (the out-set) as they diverge from the fixed point.

Suppose the Jacobian matrix at an equillbriurn point Xo has d

eigenvalues Ai, i=1,2, ..d; then table 2.1 summarizes the type of the

equilibrium point x o'
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Table 2.1: Conditions. on the types ofequilibrium points

35

Conditions on Conditions on Equilibrium Stability

Re[A] Im[A] point type

Re[Ai] < 0 'it i Im[Aj] = 0 'it i Node Stable

Re[Ai] < 0 'it i
Im[AJ ~ 0 for

Spiral node
Asymptotically

some i stable

Re[Aj] > 0 'it i Im[Atl =: 0 'it i Repeller Unstable

Re[Aj] > 0 'it i Im[AJ~ 0 for some Spiral repellor Asymptotically

i unstable

Re[Ai]>O &

Re[Aj]<O for Im[Ak] =: 0 'it k Saddle point Non-stable type 1

some i &j

Re[Ai]>O &
Im[Akl ~ 0 for

Re[Aj] <0 for Saddle point Non-stable type 2
some k

some i &j

2.5.1 Limit Cycles

Besides the fixed points discussed in the previous section, Poincare showed

that the differential equations representative of a dynamical system in two or

higher dimensions can admit special solutions that form closed curves in the .
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phase plane known as Limit Cycles. A limit cycle is a closed trajectory such

that no trajectory sufficiently near it is also closed. If all nearby trajectories

approach C as t~C() the limit cycle is said to be stable and if C is approached

as t~-C(); it is unstable. Limit cycles are fundamental in the theory of

oscillations of nonlinear, non-conservative systems. A stable limit cycle
J

represents a stable stationary oscillation of a pbvsical system in the same

way that a stable singular point represents a stable equilibrium. The presence

of limit cycles in two-dimensional phase space is a consequence of the

Poincare-Bendtxson theorem, which may be stated in the following manner.

Suppose the long term motion of a state point in a two dimensional state space is

limited to some finite size region and suppose that this region R is such that any

trajectory within R remains within it. Then a trajectory starting within R, can follow

any ofthe two possibilities.

(i) Approach a fixed point as t -;> OQ

{ii) Approach a limit cycle as t -;> Xl.

The means of studying the stability of the limit cycle is simplified by

making use of the Poincare section. Before proceeding with this discussion,

we shall briefly introduce the idea of Poincare maps.

2.6 Poincare Map

When studying a continuous nonlinear dynamic system, it is often desirable to

reduce it to a discrete time system. The Poincere map is a technique that

models a continuous time system as a discrete system. The idea is to choose

a specified submanifold of the state space, called the Poincere section in a

transverse direction to the flow. In practice, the Poincare section can be

l
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generated by choosing 'a Polncare plane and when a trajectory crosses that

plane, the crossing point is recorded. One of the easiest methods for choosing

the plane is to set one of the dynamic variables as a constant. The plane

should be chosen so that the trajectories cut the surface transversely so that

the trajectories do not run parallel to the surface as they pass through.

As the system evolves in time the trajectory repeatedly intersects the

Poincare section. Plotting the points of intersection X n creates a lower

dimensional portrait of the system behaviour. Successive crossing points are

determined by integrating the time evolution equations describing the

system. This determines a function F: X; -J-Xn+ ! . A detailed knowledge of the

function F can prove to be a useful tool in the study of the dynamic system.

In general, we write

(2.12)

Hence the analysis of the nature of the attractor reduces to the analysis of

the function F and its derivatives. This technique reduces an m-dimensional

problem to a (rn-Lj-dirnensional one and also states an iterative relation

rather than a differential one. The section simplifies the geometric description

of the dynamics by removing one of the state space dimensions. The point of

importance is that this simplified geometry contains much of the essential

information about system behaviour. The time interval between the two
»,

points is roughly the tirne to go around the attractor once, which is a

relatively big jump in time. As such, the location of successive iterates

generated by the trajectories on the section is generally unpredictable. Note

that finding such a function F is equivalent to solving the original set of

equations and that may be impossible in actual practice.
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The technique of Poincare section is applied to study the stability of

limit cycles. The limit cycle crosses the section at intervals approximately

equal to the time to go round the cycle once. If the point P on the cycle

satisfies P = F(P), then a fixed point in a surface of section say ~F , is a point

of a map F, where ~F = F(~F ). The nature of a fix~d point is determined by the

eigenvalues of Jacobian matrix at ~F. An eigenvalue of the Jacobian matrix at

a fixed point on the Poincare section is called a characteristic multiplier or a

Floquet multiplier, M. The stability type of a fixed point of a Poincare map

corresponds to the stability type of the underlying equilibrium point. In state

space of 3 or more dimensions M can be less than 0 and so the stability

criterion is formulated using the absolute value of the multiplier. Hence with 3

dimensions the Floquet matrix will be of order (2x2) giving two characteristic

values M1 and M2 . The nature of limit cycle is determined according as:

IMd < 1,1 Mzl < 1 => Node in Polncare section => Stable limit cycle.

IMd> i,1 M zl > 1 => Repellor in Poincare section => Unstable limit cycle.

IMd < 1,IM2 1 > 1 => Saddle in Poincare section => Saddle cycle.

It is possible that the characteristic multipliers are complex numbers. In

graphic terms, the successive Polncare intersection points associated with

complex valued multipliers rotate around the limit cycle intersection point as

they approach or diverge from that point.

2.7 Lyapunov's Theorems of Stability

The stability problem can be investigated by applying the direct method of

Lyapunov, which makes use of a continuous scalar function of the state vector

to
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called a Lyapunov function. Lyapunov's theorems on stability and asymptotic

stability of the state space describing an autonomous nonlinear dynamical

system with state vector x(t) and equilibrium state x may be stated as

follows.

Theorem I: The equilibrium state X is stable if in a small neighbourhood of x there

exists a positive definite function V(x) such that its derivative with respect to

time is negative semi-definite in that region.

Theorem 11: The equilibrium state X is asymptotically stable if in a small neighbourhood

of x there exists a positive definite function V(x) such that its derivative with

respect to time is negative definite in that region.

A scalar function V(x) that satisfies these requirements is called a

Lyapunov function for the equilibrium state X. The above theorems require

V(x) to be a positive definite function. The function V(x) is positive definite in

the state space S if, for all x in S, it satisfies the following requirements:

1. The function V(x) has continuous partial derivatives with respect to the

elements of state vector x.

2. V(x)=O

3. V(x) > 0 if x ~ x
y
l

Given that V(x) is a Lyapunov function, then according to Theorem I,

equilibrium state x is stable if

for XEU-X
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where U is a small neighbourhood around x. Furthermore, according to

Theorem I1, the equilibrium state x is asymptotically stable if

dV(x) < 0
dt

for XEU-X

The important point to note is that tvapunovs theorems can be applied

without having to solve the state space equation of the system. But the

theorems give no indication of how to find a Lyapunov function; it is often a

matter of ingenuity and trial and error in each case. The inability to find a

suitable Lyapunov function does not however prove instability of the system;

i.e. the existence of a Lyapunov function is sufficient but not necessary for

stability. The Lyapunov function provides the mathematical basis for the

global stability analysis of nonlinear systems. On the other hand, the analysis

(OF]based on the eigen values of the Jacobian matrix _I furnishes the basis
ox)

for the local stability analysis of the system. The global analysis is more

powerful than the local stability analysis; every globally stable system is also

locally stable but not vice-versa.

2.8 Chaotic Dynamics

The increased interest in nonlinear systems over the past few decades is also

due to the discovery of chaos. One of the basic tenets in science is that given

the initial conditions and the equations of motion describing a system,

deterministic systems are predictable. However chaotic systems belie this

idea by the random behaviour they exhibit despite being described by

deterministic equations. The application of chaos for understanding complex
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and unpredictable behaviour ranges across the spectrum of scientific

disciplines.

While there is no generally accepted definition of chaos, it is defined as

the behaviour, which is neither an equilibrium point, nor periodic nor

quasi periodic behaviour. Chaotic trajectories are bounded but they are not

periodic nor do they have a uniform distribution characteristic of quasi­

periodic solutions. A chaotic spectrum is not composed solely of discrete

frequencies but has a continuous broad band structure. The noise like

spectrum is a hallmark of chaotic systems. The limit set for chaotic behaviour

is not a simple geometrical object like a circle or torus, but is related to fractal

structures. Another property of chaotic systems is sensitive dependence on

initial conditions. Given two different initial conditions arbitrarily close to one

another, the trajectories emanating from these points diverge at a rate

characteristic of the system until, for all practical purposes they are

uncorrelated. Hence, no matter how precisely the initial condition is known

the long-term behaviour of a chaotic system can never be predicted. This

unpredictability is what is meant when chaotic systems are described as

'deterministic systems that exhibit random behaviour'.

The quantitative analysis of chaotic systems rests on the study of the

system attractors in the phase space of the system. Attractors may be

classified using the concept of dimension. For instance, an equilibrium point is

zero-dimensional; a limit) cycle is one-dimensional while a torus is two­

dimensional. However chaotic attractors are not generally such simple

structures but are quite complex and exhibit a fine structure and usually

termed 'strange'. They do not have integer dimensions and there are several

ways to generalize dimension to the fractional case of which the capacity,

information, correlation and Lyapunov dimensions are the most important. An
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elaborate description and comparison of these are provided in later chapter

on time series techniques to study complex behaviour in non linear systems

(Ott, 1993; Schuster, 1988).

2.9 Bifurcations in Dynamical Systems

The characteristic values associated with a singular or fixed point depend on

the various parameters used to describe the system. As the parameters

change, the nature of the characteristic values and hence the character of the

fixed point may change. The term 'bifurcation' refers to any sudden change in

the dynamics of the system. When a fixed point changes character with

change in the parameter values, the behaviour of trajectories in the

neighbourhood of that fixed point will change. The classification and

understanding of the various possible bifurcations is an important part of the

study of non linear dynamics.

Bifurcation theory attempts to provide a systematic classification of the

sudden changes in the qualitative behaviour of dynamical systems. This may

be divided into two parts. The first part of the theory focuses attention on

bifurcations that can be linked to the change in stability of either fixed points

or limit cycles. These bifurcations are called 'local' because they can be

analyzed in terms of the local behaviour of the system near the relevant fixed

point or limit cycle. The other part of the theory, deals with bifurcation events

that involve larger scale behaviour in state space and hence are called global

bifurcations. For both these types, though bifurcation theory attempts to

classify the kinds of bifurcations that can occur for dynamic systems as a

function of the dimensionality of the state space. This theory is also

concerned with the parameter dependence of the bifurcation. In particular,
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the number of parameters that must change to 'cause' a bifurcation is called

the eo-dimension of the bifurcation.

Local bifurcations are those in which fixed points or limit cycles

appear, disappear or change their stability. The change in stability is signaled

by a change in the real part of one or more of the characteristic exponents

associated with that fixed point. As the real part of the characteristic

exponents changes from negative to positive, for example, the motion

associated with that characteristic direction goes from being stable to being

unstable. For a Poincare map fixed point, this criterion is equivalent to having

the absolute value of the characteristic multiplier equal to unity. The central

manifold theorem tells that at a local bifurcation, attention need be paid just

to those degrees of freedom associated with the characteristic exponents

whose real parts are zero.

In order to classify the types of bifurcation, the dynamic equations are

usually reduced to a standard form, the normal form in which the bifurcation

event occurs when a parameter value /l reaches zero and a fixed point located

at x=O has a characteristic exponent with real part zero. Bifurcations are also

classified as subtle or supercritical and catastrophic or subcritical. In a subtle

bifurcation, the location of the (stable) fixed point changes smoothly with

parameter value near the bifurcation point. The Hopf bifurcation is an

example of a subtle bifurcation. For a catastrophic bifurcation, the (stable)

fixed point suddenly appears (as in a saddle-node bifurcation) or disappears

or jumps discontinuously to a new location.

Global bifurcations involve changes in basins of attraction, homoclinic

or heteroclinic orbits or other structures that extend over significant regions

of state space. With this brief introduction, we consider an example as applied
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to one or two-dimensional cases where bifurcation occurs when one control

parameter of the system is changed. Since in the general case, a system may

have for fixed parameter values, several attractors, in different parts of state

space the overall dynamical system is to be considered to understand what

happens to trajectories when a bifurcation occurs (Hilborn, 1994; Ott, 1993).
J

2.10 Dimension and Entropy Measures

A system attractor could be defined to be n-dimensional if in a neighborhood

of every point it looks like an open subset of 'Rn. This is how in differential

topology the dimension of a manifold is defined. For instance, a fixed point is

of 0 dimension, while a limit cycle while locally looks like an interval is one

dimensional and a torus is two dimensional. The neighbourhood of any point

of a strange attractor however has a fine structure and does not resemble any

Euclidean space. Hence strange attractors are not manifolds and do not have

integer dimension. There are several ways to generalize dimension to the

fractional case, some of which are listed below.

Capacity dimension: The simplest type of dimensional measure, which is

also referred to as Fractal dimension. To compute this measure, the attractor

in phase space is covered by a regular grid of volume elements (cubes,

spheres etc.) of diameter E. If the attractor is a D-dimensional manifold, the

number of volume elements needed to cover it for small E is given by,

N{c)= kB- D for some constant k. The definition of capacity dimension is

obtained from this by taking the s-limlt.

Do =lim InN(&)
0-+0 ( 1)In -

B

(2.13)
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For manifolds, Do is equal to the dimension of the manifold and is an integer

while for objects that are not manifolds it gives a nonintegral value.

Information dimension: While Do is a metric concept and does not utilize

the information on the time behaviour of the system, information dimension is

a probabilistic measure defined in terms of the relative frequency of visitation

of a trajectory. This dimension is defined as,

(2.14 )

Here, Pi is the relative frequency at which a typical trajectory enters the jth

volume element of the covering. (- ~)Pi In Pi) is the amount of information

needed to specify the state of the system to accuracy E if the state is known

to be on the attractor. Hence the name information dimension.

Correlation dimension: Yet another probabilistic measure is the

correlation dimension defined as

(2.15)

An easy way to estimate this dimension is by determination of the correlation

function for N points given by,

ck) = lim-\- { the number of pairs Xi such that Ilxi - Xj 11 < E: }
.....0 N

(2.16)
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Hence, D
2
~ lim InC(c)

0 ....0 In[;

Chapter 2

(2.17)

With these different measures defined, the natural question is to find out how

these are related to each other. Capacity dimension considers the attractor as

a static object completely ignoring that it is subject to a dynamical flow. In
J

practical experiments and stmulations the attractof is not directly seen, only

the trajectories over a finite period are observed. Hence the probabilistic

measures are of greater use in practical settings than the capacity dimension.

In general, D2 ::; DJ s Do since DJ and DJ being probabilistic in nature depend

on the relative frequency at which each volume element is visited and hence

will be equal to Do only when these frequencies are all equal.

The dynamical characteristics of the system are studied using the

measures of entropy. These measures, which help in understanding how the

trajectories evolve in time, are specific of dynamical systems while

dimensions can be defined for any fractal measure or point set. In introducing

this concept it will be useful to recall the information dimension measure

described above. Entropy estimates the average information gained by

observing a system's state to a precision c. In the case of a fixed point or

periodic orbit each orbit remains the same in time and thus no new

information is gained by observing additional orbits. Or in other words, the

uncertainty in the system is almost nil. Thus it becomes easy to predict the

outcome of the system under such an evolution. However for a chaotic

system, each new orbit contributes to information gain. Hence prediction of

the next orbit without observing it becomes very difficult. Such a system is

'creating' information and a suitable measure of the amount of information

produced or gained is required.
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The Kolmogorov Sinai entropy is such a measure that quantifies the

amount of information gained on an average by observing a portion of the

system's evolution. It measures the degree of 'chaoticness' of the system and

is a long time average rate of information gain of the system. It is inversely

proportional to the time interval over which the state of the system can be

predicted, given the initial conditions to a precision E as well as the evolution

equations. In order to define this measure, let us consider partitioning the

attractor as before into N(c) boxes 51,52, .• "SN with size E. If m measurements at

regular time intervals are made, these will yield a sequence of boxes visited

by the trajectory. Let Pts..s, ....SN) be the joint probability of finding the

trajectory at time 't in box 81, at time 21" in box 82 and so on. The KS entropy is

defined as,

(2.18)

If K approaches 0, or there is no change in information this means the system

is fully predictable. In contrast for a stochastic process, K approaches infinity

and it attains in between values depending on the irregular nature for chaotic

systems.

The entropies can be generalized to a set of order q Renyi entropies,

which are the dynamical counterparts of Renyi dimensions. These are defined

as,

(2.19)
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The K entropy in Eq. (2.18) for which q=2 in Eq. (2.19) is however the

easiest to compute among all the entropies.

2.11 Lyapunov Exponents

The exponential divergence of nearby trajectortes is calculated by the

Lyapunov exponent. It is a measure of the rate of attraction or repulsion. If

two nearby trajectories on a chaotic attractor start off with a separation do at

time t = 0, then the trajectories diverge so that their separation at time t,

denoted by d(t) satisfies the expression

(2.20)

where A. is called the Lyapunov exponent for the trajectories.

The Lyapunov exponents provide a coordinate-independent measure of

the asymptotic local stability of properties of a trajectory. In a geometric

representation, we can imagine a small infinitesimal ball of radius E(O)

centered on a point <1>(0) in state space. Under the action of the dynamics the

centre of the ball may move, and the ball become distorted. Since the ball is

infinitesimal, this distortion is governed by the linear part of the flow. The ball

thus remains an ellipsoid. Suppose the principal axes of the ellipsoid at time t

are of length e.(r). The spectrum of Lyapunov exponents for the trajectory

l1>(t) is defined as

A = lim lim
1 1~«J 8(0)-+«J

(2.21)

The Lyapunov exponents depend on the trajectory l1>(t). Their values

are the same for any state on the same trajectory, but may be different for

states on different trajectories. Lyapunov exponents are convenient for
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categorizing steady state behaviour. The trajectories of an n-dimensional

state space have n Lyapunov exponents. This is often called the Lyapunov

spectrum and it is conventional to order them according to size. The

qualitative features of the asymptotic local stability properties can be

summarized by the sign of each Lyapunov exponent; a positive Lyapunov

exponent indicating an unstable direction, and a negative exponent indicating

a stable direction. If the exponent is positive then the trajectories diverge and

the system is chaotic. However, for an attractor, contraction must outweigh

expansion and so,

(2.22)

The geometrical meaning of positive Lyapunov exponents is that there exist

directions in which the motion on average is unstable such that nearby

trajectories in these directions will diverge from the original orbit. Although

the orbit is unstable, its stable directions provide sufficient volume contraction

so that the orbit is confined to some bounded region in state space. At least

one Lyapunov exponent must be zero for any limit set other than an

equilibrium point. To produce a strange attractor the system must be

dissipative and hence must have at least one negative Lyapunov exponent.

Furthermore, at least one Lyapunov exponent must be zero for any limit set

other than an equilibrium point. Also for a chaotic system, at least one
~)

Lyapunov exponent must be positive. It follows that a strange attractor must

have at least three Lyapunov exponents. Hence, chaos can only occur in

third-order autonomous, second-order non-autonomous or higher order

continuous time systems.
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In four dimensional systems a new type of behaviour can occur known

as bvpercheos characterized by two positive Lyapunov exponents. There exist

relations between the Lyapunov exponents and the dimensional estimates.

The information dimension, a and the positive exponents are related by the

Kaplan -Yorke conjecture as,

(2.23)

where the Lyapunov exponents are assumed to be ordered as ApAz, ... ,AN and

j is the largest integer such that Al > )'z > A> Aj > O. The term dKy is

sometimes referred to as the Lyapunov Dimension. In terms of the metric

entropy on the other hand, Pesin's theorem states that under certain

preconditions the sum of the positive exponents is equal to the metric entropy

x,

2.12 Stochastic Resonance

Over the last two decades, the phenomenon of stochastic resonance (SR) has

continuously attracted considerable attention from the scientific community.

The term is given to a strange occurrence that is manifest in nonlinear

systems whereby generally feeble input information (such as a weak signal)

can be amplified and optimized by the assistance of noise. The phenomenon

occurs provided there are three key factors: (i) an energetic activation barrier

or, more generally, a form of threshold, (ii) a weak coherent input (such as a

periodic signal) and (Hi) a source of noise that is inherent in the system, or

that adds to the coherent input. It is observed that given these features, the

response of the system undergoes resonance-like pehavior as a function of
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the noise level; hence the name stochastic resonance. The underlying

mechanism is fairly simple and robust. As a consequence, stochastic

resonance has been observed in a large variety of systems, including bistable

ring lasers, semiconductor devices, chemical reactions, and mechanoreceptor

cells in the tail fan of a crayfish (Gammaitoni et. al., 1998). In many neural

systems, SR has been observed eg., in ion channels (Petracchi et. al., 1994),

in neurons (Lonqtin, et. al., 1991), in animal behavior (Russell et. al., 1999)

and eventually in human perception using electroencephalography (Mori &

Kai, 2002). Various applications of this phenomenon are being explored, in

particular the possibility that stochastic resonance might help enable

biological cells to respond to weak SO-60-Hz electromagnetic fields, far below

the thermal noise level.

Usually SR is characterized by the existence of a maximum in the

signal-to-noise ratio (SNR) vs. noise intensity relation. Another measure for

the SR, the amplification, is introduced as a ratio of the magnitudes of

ensemble averaged response and the input signal. An alternative is the

residence-time probability distribution introduced in yielding a bona-fide

resonance of the forced system. In nonlinear regimes, where the amplitude of

the signal is sufficiently strong, synchronization-like phenomena can be

observed. In such regimes the SNR possesses two maxima: the first

maximum corresponds to the strong synchronization between hopping events

and periodic force while the second one refers to a decrease of the noise

background.

Several recent studies have shown that the higher central nervous

system can actually utilize the noise enhanced sensory information; it

enhances the human tactile sensation, the human visual perception, or the

animal feeding behavior. Whether these functional improvements would be
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caused by the enhanced sensory afferents at the receptor level or by the

effects of noise in the central nervous system is, however, still unknown

(Hidaka et. al., 2000).

2.13 Conclusion

This chapter reviews only a few salient features of the theory of nonlinear

oscillations. The newly developed realm of chaotic dynamics, which is being

extensively investigated in various fields, has been given some prominence

over the other topics. The application of the theoretical aspects in studying

the real or simulated data however is a different story altogether, which

requires the modification and conversion of the ideas into algorithms that will

translate the idea to a computing machine on which the analysis is carried

out. The following chapter will present an in-depth view of the techniques that

are made use of in applying these theoretical precepts to the time series data

that contains all the information regarding the underlying system in a quest to

decipher its dynamics.
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The scientific method is nothing but the normal working ofthe human mind.

--- Thomas Huxley

The presence of complex data generated in many real life systems posed a

puzzling problem to scientists when all known linear methods failed to tame

these. The situation was all the more worse since this led to the erroneous

classification of such data as 'noisy' totally stochastic in nature without any

structure in phase space. However the theory of non linear dynamics was

applied successfully for t~e analysis of such random looking observed data.

The techniques developed and the algorithms with their relative merits and

disadvantages are reviewed here. The second section is concentrated on the

description of the EEG signal as a nonlinear scalar time series and the

relevant studies carried out which are of import to the aims of this thesis.

53
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Part I: Time Series Analysis of Complex Systems

3.1 Dynamical Systems and Signals

One of the earliest assumptions made in the analysis of signals from physical

systems is that a dynamical system in the form qf a differential equation or a

discrete time evolution rule is responsible for the observations. For continuous

time dynamics there is a set of ( differential equations for variables

u(t)=[Ul(t), U2(t), -r-r u,(t)L

du(t) = G(u(t))
dt

(3.1)

where the vector field G(u) is always taken to be continuous in its variables

and also taken to be differentiable as often as needed. When time is discrete,

which is the realistic situation when observations are only sampled everv e,

the evolution is given by a map from vectors in ~Hf to other vectors in 91 f:

u(n) = u(to+ntJ

u(n + J) = F(u(n)) (3.2)

(3.3)

The continuous and discrete time views of the dynamics can be connected by

approximating the time derivative as,

du(t) u(to + (n + l)tJ- u{to + n,J
--~--'--=-----'----'-"::"":"'--""':""='-_="":'"

dt ~

leading to, F(u(n)) = u{n)+ 'sG{u{n)) (3.4)

The vector field F(U) has parameters that reflect the external settings

of forces, frequencies, boundary conditions and physical properties of the

system. The dynamical system Eq. (3.2) is generally not volume preserving in

(-dimensional space. In evolving from a volume of points df(u(n» to the
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volume of points df
+
1(u(n» the volume changes by the determinant of the

Jacobian,

DF(u) =det[aF(u)]
au

(3.5)

When this Jacobian is unity, it is usually associated with Hamiltonian evolution

in a physical setting and the phase space volume remains constant under the

evolution of the system. Generally the Jacobian has a determinant less than

unity, which means the volumes in phase space shrink as the system evolves.

The physical origin of this volume contraction is dissipation in the system.

3.2 Linear Methods of Signal Analysis

Linear methods interpret all regular structure in a data set such as the

dominant frequency and so on. This implies that linear dynamics governs the

intrinsic evolution of the system in which small causes lead to small effects.

In such a domain, equations of motion can only lead to exponentially growing

or periodically oscillating solutions and hence any irregular behaviour of the

system is automatically attributed to some random external input to the

system. Hence, the simplest system that produces non-periodic signals is a

linear stochastic process. Hence, a measurement s; of the state made at a

time instant n may be considered to arise from an underlying probability

distribution for observing a sequence of values. linear statistical processing of

such a signal derives 'estimates' of meaningful values distinctive of the

system based on these measurements. For instance, the mean may be

A 1 N
estimated as (s) = -ISn where(.) is a time average and N the total

N n:j

number of measurements in the time series. Based on the underlying
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distribution, the mean is (s) n = Jds' s'p(s') where pes) is the probability

distribution. Similarly, the variance, the autocorrelation function that gives

information about the time ordering of elements etc. may be estimated from

the signal.
.,

Instead of describing the statistical properties of a signal in real space,

the signal can be represented in its Fourier space. The Fourier transform

establishes a one-to-one correspondence between the signals at certain times

(time domain) and how certain frequencies contribute to the signal and how

the phases of the oscillations are related to the phases of other oscillations

(frequency domain). Let sn, n= 1,2,3....N denote the discrete dataset

measured at times tn = nLlt where Llt is the sampling time and is assumed to

be uniform. The reciprocals of tn represent the frequencies and the Nyquist

critical frequency vc=1/2Llt plays a pivotal role. If the frequency content of the

signal set) is limited to frequencies below Vc , then a result known as the

sampling theorem guarantees that the entire information content of set) is

captured by the finite set of sampled valuesfs.},

The Fourier transform of a function set) is given by

I co .

:5{f) = ~ Js{t) e12:ifi dt and in case of a finite discrete time series by
'"2tr -co

- 1 f. i2llkn/N . k
Sk = r-;:; £..Jsn e . The frequencies are fk = -- where k= -N/2, ....,N/2

'"N n=\ N Llt

and Llt is the sampling interval. The inverse transformation amounts only to a

change in sign and an exchange of f (or respectively t) and t (or respectively

n). Both operations are then invertible and are linear. Another useful

representation in the frequency domain is using the '1ower spectrum, which is
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the squared modulus of the continuous Fourier transform. It is represented

The Weiner-Khinchin theorem is an important relation, which states

that the power spectrum and the auto correlation function are Fourier

transforms of each other. The power spectrum is particularly useful for

studying the oscillations in the system. There will be sharper or boarder peaks

at the dominant frequencies and at their harmonics. Purely periodic or quasi­

periodic signals show sharp spectral lines, measurement noise adds a

continuous floor to the spectrum. The signal and noise may thus be

differentiated. However, the confusion arises in the case of deterministic

chaotic signals, which may also have sharp spectral lines, but even in the

absence of noise, there will be a continuous part of the spectrum. This is an

immediate consequence of the exponentially decaying auto correlation

function and without additional information it is impossible to infer from the

spectrum whether the continuous part is due to noise superposed on a quasi­

periodic signal or to chaotlcitv. However, its discrete counterpart is not a very

suitable quantity for two reasons. Firstly, the finite frequency resolution of the

discrete Fourier transforms leads to leakage into adjacent frequency bins.

Secondly, its statistical fluctuations are of the same order as S(S)(f) itself.

These drawbacks can be remedied either by averaging over adjacent

frequency bins or more efficiently by averaging over running windows in the

time domain. The inadequacy of such a linear approach to the analysis of

observed data from natural systems as well as known chaotic systems

prompted the development and growth of alternative methods that came to

be grouped under the umbrella of nonlinear time series techniques based on

the principles of non linear dynamics and deterministic chaos (Kantz &

Schreiber, 1997).
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3.3 Nonlinear Time Series Analysis

Actual observations of irregular evolution that are observed in complex

systems are typically measurement of a single scalar observable at a fixed

spatial point. Let this be denoted by s(to + n is) = s(n) where to is some initial
•

time and 's is the sampling time of the instrument uSed in the experiment. n

is an integer and n zs is the instant at which the measurement is effected. In

some cases the full structure lies in the observation of a field of quantities

40 ,------~----,-----r--,-------~-~-~--

o 5 10 15 20

t

25 30 35 40

Figure 3.1. Chaotic time series x(t) simulatedfrom the Lorenz system (Lorenz, 1963) using
parameter r=45.92, b=4.0, a> 16.0

namely Sex, to + n is) where x = (x,y,z) are the spatial coordinates. Consider

for example the simulated data from the chaotic Lorenz attractor represented

as a time series as in figure 3.1. If this data were observed without

knowledge about the underlying system it would raerelv represent some
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variable recorded in equal intervals of time. Hence assuming a linear

structure as a first approximation, linear concepts will be applied and in case

of their failure; the nonlinear techniques will be resorted to, based on which

the system attractor will be reconstructed and characterized. The power

spectrum applied to the above data is shown in figure 3.2 and it is evident

that the broadband spectrum clearly states the inefficacy of linear methods in

analyzing such data.
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Figure 3.2. The power spectrum ofthe xtt) time series generated from the Lorenz
equations with the parameters as before.

As this discussion progresses the actual steps involved in nonlinear signal

processing will be introduced leading to better understanding of the analysis

of complex data. The tasks encountered in analysis of signals observed from
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linear or non linear systems are much the same; though the methods followed

are substantially different. These are briefly sketched in the sequel.

(a) Signal separation: The very first job is to identify the signal of interest

in an observation that is possibly contaminated by the environment, by
I

perturbations on the source or by properties-of the measuring instrument.

In order to carry out the processing, we must establish some difference

between the information bearing signal and the interference. In the case

of a narrow band signal in a broadband environment, the difference is

clear and the Fourier space is the right domain in which to perform the

separation. In the case of chaotic signals both the signal and the

background are typically broadband and Fourier analysis will not be of

much assistance in making the separation. The methods followed in such

cases rest on the idea that the signal of interest is chaotic in nature with

specific geometric structure in its phase space. In the nonlinear signal

separation, three cases may be distinguished:

.:. Known dynamics: The evolution equations u(n + 1) = F(u(n)) are

known and this knowledge can be used to extract the signal

satisfying the dynamics from the contaminating signals .

•:. Knowledge of the signal from the system: This occurs when some

signal has been measured from the system of interest at some

earlier time and is known to be representative of the system. The

earlier signal can be considered as a reference to establish the

statistics of evolution on the attractor and this can be

subsequently used for separating the signal from the

contaminant.
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.:. Nothing is' known: In this case only a single instance of

measuring a signal from the physical source is known. Then the

analyst is 'flying blind' and must make models of the signal to

establish what part of the observations are deterministic in low

dimensional phase space and what part a result of processes in

high dimensional state space and thus to be discarded. Though

this scenario is more problematic than the other two; it is more

often the realistic situation.

(b) Finding the space: Once the signal is found; the next step is to establish

the correct space in which to view the signal. If the source of the signal is

a linear physical process, then the natural space in which to view it is the

Fourier space. In the case of a nonlinear source, Fourier transformation of

the scalar measurements does not lead to any simplification since the

processes that give rise to chaotic behaviour are fundamentally

multivariate. So the phase space of the system is to be reconstructed as

well as possible using the information in s(n). The choice of the vectors of

say d-dimension that go into forming this space and how the dimension, d

is determined itself become central topics. The answer lies in a

combination of dynamical ideas about nonlinear systems and geometrical

ideas about how an attractor unfolds using coordinates established on the

basis of their information-theoretic content.

(c) Classification and identification: With a clean signal and proper phase

space in which to work, the next logical step is to understand the physical

source of the signal. In the case of linear systems, Fourier analysis leads

to characteristic frequencies usually called the resonant frequencies.
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These are invariants of the dynamics and can be used to classify the

physics. Nonlinear systems on the other hand, do not have useful spectral

content when operating in a chaotic regime but there are other invariants

that are specific in classifying and identifying these sources. These are

quantities that are unchanged under various operations on the dynamics

or the orbit as well as under small variations in the initial conditions.

Some of the invariants are unperturbed under the operation of the

dynamics x ~ F(x). This ensures that they are unperturbed by initial

conditions which is definitely untrue for individual orbits. Some of the

invariants are further unchanged under any smooth change of coordinates

used to describe the evolution and some, the topological invariants are

purely geometric properties of the vector field describing the dynamics.

Among these are the various fractal dimensions and the Lyapunov

exponents. These latter ones also establish the unpredictability of the

nonlinear source. The chaotic motion of a physical system is not

unpredictable even with all the instabilities encountered in traversing

phase space. The limited predictability of chaos is quantified by the local

and global Lyapunov exponents, which can be determined from the

measurements themselves. So in one sense chaotic systems allow

themselves to be classified and to have their intrinsic predictability

established at the same time. Topological invariants together with metric

invariants or the other fractal dimensions together provide sufficient

discrimination power to allow for the practical separation of observed

systems. System identification in nonlinear chaotic systems means

establishing a set of invariants and then comparing the observations to a

library of invariants of known systems. It may be pointed out that the
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invariants mentioned need not form a complete set. They may just be the

currently known ones.

(d) Modeling: When all the analysis of the source of measurements has been

done, the problem of building of models of physical processes acting at

the source may be addressed. Local and global models of how the system

evolves in the reconstructed space may be built by working within the

coordinate system established by analyzing the signal. In linear systems,

the task is relatively easy. The observations s(n) must somehow be

linearly related to observations at earlier times and to the driving forces at

earlier times. This leads to models of the form:

N L

s(n) = l>ks(n-k)+ 2:>,g(n-l) (3.6)
k=l 1=1

where {ak} and {bl } are to be determined by fits to the data typically

using least squares or information-theoretic criterion and g(n) are some

deterministic or stochastic forcing terms. Once the coefficients are

established, the model equation is used for prediction or as part of a

control scheme. From the point of view of dynamical systems, this kind of

model consists of simple linear dynamics - the terms involving {ak}- and

simple linear averaging over the forcing. The first part of the modeling,

which involves the dvnamics, is often called autoregressive (AR) and the
(

second the moving average (MA) and the combination is labeled ARMA

modeling. This kind of model will always have 0 or negative Lyapunov

exponent, zero Kolmogorov-Sinai entropy and will never be chaotic.

Nonlinear modeling of chaotic processes revolves around the idea of a

compact geometric attractor on which the observations evolve. Since the
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orbit is continually folded back on itself by the dissipative forces of the

non linear part of the dynamics, we expect to find in the neighbourhood of

any orbit point y(r)(n), r= 1, 2, ..., NB (r are the number of points) which

arrive in the neighbourhood of yen) at quite other times than n. Various

forms of interpolation function can then be built which account for whole

neighbourhoods of phase space and how thevjevolve from near yen) to

the whole set of points near y(n+l). The use of phase space

representation in the modeling of the temporal evolution of the physical

process is the key innovation in modeling chaotic processes. The

implementation of this idea is to build parametrized non linear functions

F(x,a) which take yen) into y(n+ 1) = F(y(n),a) and then use various

criteria to determine a. Further since one has the notion of local

neighbourhoods, one can build up the model of the process

neighbourhood by neighbourhood and by piecing together these local

models, produce a global nonlinear model that captures much of the

structure of the attractor itself. More on modeling relevant to the system

under study will be dealt within a later chapter.

(e) Signal synthesis: While the analysis of nonlinear signals is the central

theme of interest, another direction being followed is the synthesis of new

signals using chaotic models. This mainly concerns engineering problems

such as utilization of the signals for communication between distant

locations or synchronization of activities at these locations and so on

(Abarbanel et. al., 1993; Ott, 1993).
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Techniques in nonlinear time series analysis of signals
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We shall now describe in detail the techniques employed for handling each of

the tasks stated above in signal analysis. This will review the existing

methods, their relative merits, demerits and modifications that are

incorporated in an attempt to make sense of the information rich though

apparently random signal.

3.4 Reconstruction of Phase Space

The key theoretical tool used for quantifying chaos is the notion of a time

series of data for the system. As previously stated the actual observations,

s(n) are measurements of a single scalar variable at a fixed point. We may

denote the signal s(n) as s(to + n-cs ) where to is the initial time and "Cs the

sampling time of the measurements. s(n) could be for ego a voltage or current

in a non linear circuit or a density or velocity in a fluid dynamics experiment. It

is not obvious that such a set of sampled values of just one variable should be

sufficient to capture the features that are needed to describe regarding the

system. However it has been shown that if the sampling is carried out at

appropriate time intervals, then the phase space can be 'reconstructed' and

the essential features of the dynamics can be derived from the time series

data.

From the discussion of dynamical systems, it is seen that to establish
"

values for the time derivatives of the measured variable, s(n), we can

consider

(3.7)



66 Chapter 3-Part I

Since measurements are made only every .5, the approximation to this

derivative is,

s(n) ~ s(to+ (n + l)zJ- s(to+ nzJ
's

(3.8)

With finite .5, this is a crude high pass filter for the ~ata and we are producing

a poor representation of the time derivative. As we go on to higher order

derivatives even poorer representations will be made. However an

examination of the formula for the derivative, points out that at each step we

are adding to the information already contained in the measurement s(n) at

other times lagged by multiples of the observation time step 'ts. Around 1980,

two groups - one at the University of California, Packard et. al. (1980) and

David Ruelle (1989) - apparently simultaneously and independently

introduced the idea of using such time delay coordinates to reconstruct the

phase space of dynamical systems. This was a generalization of the process

first suggested by Poincare to obtain dynamics from observed data. The main

idea is that the derivatives are really not needed to form a coordinate system

to capture the structure of orbits in phase space but that lagged coordinates

of the form

s(n+T) == seta + (n+T)rsJ

where T is some integer are sufficient for reconstruction of phase space. Then

using various time lags to create a collection of vectors in d dimensions,

y(n) =[s (n ),5 (n + r),5 (n + 2T), ...,5 (n + (d -l)r)] (3.9)
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Figure J.J. The Lorenz attractor in (a) Original phase space (bJ reconstructed in time
de/ay coordinates

the required coordinates have been provided. These t ime lags are used to

transform the original t ime series into a set of vectors in a space of dimension

d, which is known as t he Embedding space. In a nonlinear system, s(n+jT)

are some (un known) nonlin ear combination of the actual physical variables

that comprise the source of measurements. While the relat ionship between

the physi cal variab les u ( '1) and th e s(n+jT) is not known , for purposes of

creating a phase space, it is not of much significance. This is because any

smooth nonlinear change of variables acts as a coord ina te basis for the

dynamics. The theorems that paved way for such phase space reconstruct ions

are wrutnev 's and Takens's embedding theorems which are described briefl y



68 Chapter 3-Part I

below. Figure 3.3 shows the original and reconstructed attractors of the

Lorenz system.

3.4.1 Embedding Theorems

A scalar measurement is a projection of the unobserved internal variables of

the system onto a real axis. Such a projected, highly distorted data is

sufficient to reconstruct a new space of integer dImension in which one can

obtain an equivalent projection of the original attractor. This means that the

time evolution of a trajectory on the reconstructed space should depend on its

current position in the new space and nothing else. Also the Lyapunov

exponents, dimensions etc. are invariant only under smooth, nonsingular

transformations. Hence to guarantee that the quantities computed for the

reconstructed attractor are identical to those in the original state space, we

require that the structure of the tangent space Le. the Iinearisation of the

dynamics at any point in state space is preserved by the reconstruction

process. Thus an embedding of a compact smooth manifold )I into ~d is

defined to be a map F which is one-to one immersion on )I Le. a one-to-one

Cl map with a Jacobian DF(x) which has full rank everywhere. The crucial

point is to show under what conditions the projections due to the scalar

measurements and the subsequent reconstruction by delay vectors form an

embedding.

The problem with the embedding of scalar data in some ~m has two

aspects. First if the state of a system is uniquely characterized only if 0

variables are simultaneously specified, then d independent variables (d ~ D)

are to be constructed from the scalar time series data. Once the variables are

known it is also known that the dynamics lives in some D-dimensional

manifold. Very often than not, D need not be an integer thereby giving the

class of attractors called Strange attractors. Attractors with integral Dare
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known as regular attractors, Unfortunately this manifold will most probably be

curved. The second problem is that since a global representation is needed,

one has to find an embedding space for a curved manifold in a Cartesian

framework.

The second part of this problem was solved by Whitney in 1936

(Whitney, 1936). He proved that every D- dimensional smooth manifold could

be embedded in 91 2D
+l and that the set of maps forming an embedding is a

dense and open set in the space of Cl maps. This theory was stated simply

based on the idea of a description of a manifold in some local coordinates and

the theorem showed that one could embed it globally in 91 20 + 1
. A generic

embedding of a D-dimensional curved manifold in a D-dimensional space will

overlap itself in on a set of non-zero measure. If the embedding is done in a

space of dimension (D+ 1) the self-intersection will lie in a subspace of

dimension (D-1) and so on such that finally it will be point like in 20

dimensions and in (20+1) dimensions it will disappear. However since

Whitney's theorem is proved only for integer 0, it is not of much practical

use.

Since the attractor x is a subset of the state space of the system; this

guarantees that the mapping F of the state vector at a certain time to its

position at the next instant a sampling interval later is unique. This is of

considerable importance in time delay embedding. Since the dynamics can be

interpreted as a unique mapping from )I to )I, a time delay embedding is again
t

a time independent map from )l to 91d where d is the dimension in which

embedding is carried out. Let x, be the state vector at time n, s the

measurement function and F the map representing the dynamics,

Xn+l =F(xn)
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A delay vector is then (s(xn ) , s(F(xn)) , s(F(F(xn ) ) ) , ... ). Hence it is clear that

knowledge of S(xn, ) at successive n, is equivalent to knowing a set of different

coordinates at a single moment if the map F couples the different degrees of

freedom such that the components of the delay vectors are mutually

independent. ~
-,

Hence the delay reconstruction of only one variable is a peculiar map

frorn x to 9ld • Since it mixes dynamics and geometry, the words 'almost every

Cl map' in the generalized Whitney's theorem do not say that every delay

map is an embedding. Takens could prove in the time delay embedding

theorem (1981) that it is a generic property that a delay map of dimension

d=2D+l is an embedding of a compact manifold if the measurement function

s: ;1 ~ 9lm is C2 and if either the dynamics or the measurement function is

generic in the sense that it couples all degrees of freedom. Sauer et. al.

(1991) generalized the theorem calling it the Fractal Delay Embedding

Prevalence theorem. Again let DF be the fractal dimension of the attractor.

Then for almost every smooth measurement functions and sampling time, r,

>0 the delay map into ~d with d>2DF is an embedding if there are no periodic

orbits of the systems with period 'ts or 2'ts and only a finite number of periodic

orbits with period P'ts I p>2.

Thus the main result of the embedding theorems is that it is not the

dimension D of the underlying state space that is important for the minimal

dimension but the fractal dimension DF of the invariant measure generated by

the dynamics in the true state space.

3.5 Choice of Embedding Dimension
The goal of the reconstruction theorem is to provide a Euclidean space 9ld

large enough so that the set of points on the attractor can be unfolded
t
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without ambiguity, If two points of the set lie close to each other in some

dimension d they should do so because it is a property of the set of points

and not of the small value of d in which the set is viewed. When all the

ambiguities in the unfolding of the attractor are resolved, the space 9td

provides an embedding of the attractor. While the embedding dimension

provides a sufficient condition from geometrical considerations alone for

choosing a dimension large enough Le. dE > 2dA where dA is the dimension of

the attractor; it is not always necessary. For instance in the case of the

Lorenz attractor, dA = 2.06 and from the embedding theorem, dE tv5. But it is

known that the Lorenz attractor is well reconstructed in a space of dimension

3. Hence while working in a dimension that is sufficient to unfold the attractor

but greater than necessary; two problems may arise. Firstly, the

computational cost while extracting information about the data from 9td

increases exponentially with d. Also, in the presence of 'noise' or other high­

dimensional contamination of the observations, the 'extra' dimensions are not

populated by dynamics already captured by a smaller dimension but entirely

by the contaminating signal. These realizations have motivated the search for

analysis that will identify a 'necessary' embedding dimension from the data

itself. Some of these methods are described briefly here.

(a) Singular value analysis: If the measurements y(n) are composed of

the signal from the system under study as well as some contamination from
t

other systems, then in the absence of specific information about the

contamination, it may be assumed to be rather high dimensional and that it

fills more or less uniformly any few dimensional space chosen for

consideration. Let the necessary dimension required to unfold the dynamics

be denoted as dN • If we choose dE>dN, then in a heuristic sense (dE - dN)
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dimensions of space are populated by the contamination alone. This, however

is possible if the contamination and signal are additive and this nature is

retained for the entire duration. The nonlinearity in the system may interact

with noise and result in strange phenomena such as stochastic resonance in

which case the additive nature completely breaks down. Under the
J

assumption of the signal and contamination beIng additive, the sample

covariance matrix of the observations yen) given by

cov =~±[y(n)- y] T[y{n)_ y]
N n=l

(3.10)

will again in a heuristic sense have dN eigenvalues arising from the variation

of the real signal about its mean and (dE - dN) eigenvalues which represent

the 'noise'. If the contamination is high enough, the extra dimensions may be

thought of as being filled uniformly by noise and so the (dE - dN) eigenvalues

representing the power in these extra dimensions will be nearly equal. Hence

by examining the singular values of the covariance matrix a 'noise floor' at

which the eigenvalue spectrum turns over and becomes flat (Broomhead &

King, 1986) can be identified. From the dE eigenvalues the one at which the

floor is reached may be chosen as dN• This method though easy to implement

is sometimes hard to interpret. It gives a hint as to the active number of

degrees of freedom but it can be misleading because it does not distinguish

two processes with nearly the same Fourier spectrum (Fraser & Swinney,

1989) or sometimes different noise floors are reached at different numerical

levels by computers.

(b) Saturation of system invariants: In the case of an attractor

properly unfolded by choosing a large enough dE, any property depending on

the distances between points in the phase space becomes independent of the

value of the embedding dimension. Thus in pripciple, the appropriate
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necessary embedding dimension dN can be established by computing such a

property for dE =1,2, ... until no variation with dE occurs. One of the quantities

made use of in such cases is the generalized correlation sum, Cq(R). This

quantity will be discussed in detail in a later section. Cq(R) is evaluated as a

function of the embedding dimension dE and determine when the slope of its

logarithm as a function of log (R) where R is a length scale becomes

independent of dE. While this is a popular method, it does not give any new

information regarding the pertinent question posed by the embedding

theorem, which is: when is the attractor unfolded by the chosen set of time

delay coordinates?

(c) Method of false nearest neighbours: This method attempts to

determine directly from the data at which embedding dimension one has

eliminated the crossings of an orbit with itself which had risen by virtue of

having projected the attractor into a too low dimensional space. For this, we

determine when points in dimension d are neighbours of each other. This

aspect is examined by increasing the value of d from 1,2 ... till no false

neighbours exist and hence from geometrical considerations alone we can

arrive at a value dE = dN, the optimal value for the embedding dimension of

the system at hand. The implementation of this technique follows a report by

Kennel et. al. (1992) and is briefly portrayed here.

In dimension d, each vector represented as
t

y (n) = [s(n ),s (n + T),s(n + 2T), ....s(n + (d -l)T)] (3.11)

has a nearest neighbour yNN (n) with nearness in the sense of the Euclidean

distance, Rd(n/ in dimension d. In the next higher dimension, (d+1) the

distance between the nearest neighbours is changed due to the (d+1)st

coordinates to
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If Rd+dn) is large, it can be presumed by going from d to (d+ 1), the two

points have been 'projected' away from each other. A threshold size RT is

chosen to decide whether the neighbours are false. the closest neighbours at

time instant n = to +n 1"s are regarded to be false if

holds. Usually in the range 10 s Rr ~ 50, the number of false neighbours

identified by this criterion is a constant. In the case of a limited data set in

which all points have near neighbours that do not move apart as the

dimension is increased, a second criterion is considered. As it happens, the

fact that points are nearest neighbours does not mean they are close on a

distance scale set by the approximate size RA of the attractor. If the nearest

neighbour to yen) is not close, so that Rd{k) "'RA, then Rd+1(k) "'2RA • This

means that distant but near neighbours will be stretched to the extremities of

the attractor when unfolded from each other. Hence the second criterion is

that if

Rd+1(n) 2: 2

RA

then yen) and its nearest neighbour are regarded false. As a measure of RA

one may use the rms value of the observations. Application of this method to

the Lorenz model yields a sufficient embedding dimension of dE=3 and this is

indicated in figure 3.4.
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Figure 3.4 Thefalse nearest neighbour (FNN) method applied to the Lorenz model data to
determine a suitable embedding dimension, ds

This criterion is also useful in finding a suitable embedding dimension for a

signal corrupted by noise. This method is robust against contamination from

signals from other high or low dimensional dynamical systems. In either case,

when the percentage of false neighbours falls to below 1%, that embedding

dimension can be chosen as dN•

(d) True Vector fields: Another geometrical approach to determining the

embedding dimension for the observed time series data is to examine the

uniqueness of the vector field responsible for the dynamics (Kaplan & Glass,

1992). If the dynamics is given by the autonomous rule x =F(x) and if F(x)

is smooth i.e. differentiable to any order then the tangents to the evolution of
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the system are smooth and uniquely given throughout the space. If the

dimension chosen, dE is too Jow the vector fields in any location will often not

be unique as they overlap one another due to projection from a larger

embedding space. As one increases the dE the frequency of overlap will fall to

o and the vector field will have been unfolded. If the dynamics is very high

dimensional then the vector field will not be unfolded until this high dimension

is reached. In order to test the deviation of the vector field from what would

be expected from a random noise, the statistic

is considered. The vectors Vj are average directions of the line segments from

entry to exit of the trajectory as it passes through box number j. R: is the
J

known average displacement per step for a random walk in dimension d after

nj steps. This quantity will be averaged over all boxes.

If the data set is drawn from a random walk the statistic will be 0 and

if it is effectively random by being a high dimensional, deterministic system

viewed in too Iowa dimension, it will be small. For a low dimensional system

viewed in a large enough dimension this will be near unity. The test works

well even with contaminated data. This method is quite similar to that of false

neighbours. Both are geometric and attempt to unfold a property of attractors

from its overlap on the observation axis to its unambiguous state in an

appropriately high dimensional state space.

3.6 Selection of Optimal Time Lag

In the time delay embedding of the single variable s of the system, the

vectors of the m dimensional reconstructed state space are as in Eq. 3.9. In
~
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this, T the time delay between successive elements in the delay vectors is not

a subject of embedding theorem. Hence from a mathematical point of view,

the choice of T is arbitrary since the data are assumed to have infinite

precision. However in specific applications the choice of T is important. If the

choice of T is too small, then the coordinates s(n+jT) and s(n+(j+l)T) are so

close to each other in numerical value that it is not possible to distinguish

them from each other. All the points then accumulate around the bisectrix of

the embedding space. This is called redundancy by Casdagli et. al. (1991) and

Gibson et. al. (1992). If T is very large on the other hand, the different

coordinates may be almost uncorrelated so that the projection of an orbit on

the attractor is onto two totally unrelated directions. Thus even if the

underlying 'true' attractor is simple; the reconstructed attractor may become

very complicated. Since the time lag has no relevance in the mathematical

framework, there exists no rigorous way of determining its optimal value.

Many methods have been suggested in the literature to yield optimal

results. But the different methods yield optimal results for only selected

systems and perform just as average for others. In a particular application

therefore one should try to optimize the performance by a variation of T. One

of the criteria for the choice of time lag applies a geometrical argument. The

attractor should be unfolded t.e. the extension of the attractor in all space

dimensions should be roughly the same. Statistics such as the fill factor

(Buzug & Pfister, 1992) ~r displacement from diagonal (Rosenstein et. al.,

1994) are employed to evaluate this argument quantitatively.

A more popular method of choice uses the autocorrelation function

(acf) of the signal. It is useful since it hints about stationarity and typical time

scales in the system. Secondly it is related to the shape of the attractor in the

reconstructed state. In order to approximate the data by a hyperspace in
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higher dimensions, in principle the acf should be 0 at all lags equal to higher

than T. The acf of a signal s(n) is given by

~±(s(n + r)-s)-(s(n)-s)
C (T)= _N---'CIl---'.=I _

L 1 N

- L(s(n)-s)~
N n=1

where s =_1 ±s(n) is the mean over N points.
N n=1

(3.14)

(3.15)

Here we look for that value of T at which CL (T) first passes through O.

However it tells of the independence of the coordinates only in a linear

fashion. Also fulfilling the condition that acf be 0 at lag times equal to or

greater than T, may drive to the limit of totally uncorrelated elements; which

is undesirable. Hence a reasonable thumb rule is to choose the time where

the act decays to (lie) of the maximum value as the lag in the delay

reconstruction.

A reasonable objection to this procedure is that it is based on linear

statistics without taking into account nonlinear dynamical correlations. From

the context of information theory, the amount of information learnt about a

measurement at one time from a measurement taken at another time can be

identified. In a general case, let us consider two systems A and B with

possible outcomes in making their measurements on them e. and bk . The

mutual information of two measurements say, e, and b, is the amount learned

about b, by measuring e. and vice-versa. This is defined as,

( ) [
PA,S(ai,bk ) ]

lA,S ai,bk = 1082 () ( )PA ai r, b,



Current Techniques in Time Series AllaZvsis- An Overview 79
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where the probability of observing a out of the set of outcomes for A is PAra)

and the corresponding quantity for b from B is PB(b) and the joint probability

of the measurement of a and b is PA,B (e,b). The mutual information is

symmetric in how much one learns about b, by measuring ai. The average

mutual information is the average over all possible measurements of

IA,B(a" b.),

iA,s(T)= LPA,B(ai,bk)IA,B(ai,bk)
ai. b•

(3.16)

Fraser and Swinney (1986) suggested that one look for the first

minimum of the time delayed mutual information. This is the information we

already possess about the value of the signal s(i+.) if we know s(i).

Generalizing Eq.3.15, the average mutual information for time delay 1: is,

-()" () [Pi k Cr)]1 r =LJ Pik r In ----"--
i,k Pi Pk

=LPi,k(r)lnpi,k(r)-2LPi InPi
i,k i

(3.17)

where Pi is the probability that the signal assumes a value in the it h bin of the

probability distribution histogram and Pi,k is the probability that set) is in bin i

and s(t+.) is in bin k. In the special case .=0 the joint probabilities Pi,k=Pi Oi,k

and Eq. 3.17 yields the Shannon entropy of the data distribution. When. is

large enough, the two measurements set) and s(t+.) are independent and

Pi,k=Pi Pk and the mutual information becomes O. The average mutual

information curve for the x variable simulated from the Lorenz set of

equations is plotted in figure 3.5.
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Time lag, T

The average mutual information curve plottedfor varying time lagfor the
Lorenz data.

The prescription of Fraser and Swinney for the choice of time lag is to choose

that T,« where the first minimum of l(T) occurs. The first minimum is the time

lag where s(t+1') adds maximal information to the knowledge we have from

set) or where redundancy is the least. In the case where a first minimum does

I(T) 1
not occur in the leT) curve, Tm is chosen such that _(m) ::::: -

I To 5
However in

cases where there is a large difference between the minimum from the

mutual information curve and the (lie) decay of the acf, it is worth optimizing

T within that interval. Liebert and Schuster (1989) have examined the first

minimum criterion by adding another criterion involving the correlation
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integral and concluded that the Tm of the first minimum is also that at which

the correlation integral is numerically well established.

3.7 Invariant Parameters of Dynamics

In classifying a physical system from observations, identification of quantities

that are unchanged when initial conditions on an orbit are altered or a

perturbation is encountered is essential. The relevance of such quantities

rests on their invariance under smooth transformations of phase space,

Irrespective of the details of their measurement process and reconstruction

they will always assume the same values. Although this is strictly true only

for ideal, noise-free infinitely long time series, which is not too easily

encountered, in practical cases, robust algorithms exist that yield quite

reliable results when applied to an approximately noise-free and sufficiently

long data sets.

Most quantities are more conveniently defined as averages over the

natural measure in phase space. This is because of particular interest in

invariants, which assume the same value for almost any choice of initial

conditions or are ergodic. Once the ergodic nature of the natural measure has

been established, the averages automatically share this property. A thorough

study on the ergodic nature of attractors is given by Eckmann and Ruelle

(1985). Since the aim is to look for ergodic invariants, the first requirement is

invariance under the action of dynamical equations. Hence in the case of
(

experimental observations from dissipative systems of main interest are

stable attractors on which trajectories from a typical initial condition will

eventually settle. A possible candidate for the natural measure or invariant

distribution that appears to be stable under the influence of errors or noise is

the natural density of points in phase space that tells where the orbit has
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been and whose integral over a volume of state space counts the number of

points in that volume. Its definition in a phase space of dimension d is given

by

1 N
p(x)=- IL5'd(X- y(k)) (3.18)

N k=1

It can be demonstrated that any function, say g(x) when integrated with this

density gives <g> which is invariant under the dynamics x --+ F(x); thus

qualifying the density of points as a suitable invariant measure on the

attractor. The quantities such as <g> can be used to identify the system that

produces the observations. These are statistical quantities for a deterministic

system and are the only quantities that will be the same over any long

observation of the same system. Since the orbits will essentially differ

everywhere in phase space the issue is to choose a g(x) that will contain

some physical meaning regarding the system. Some such invariant quantities

that are frequently used in the analysis of complex data are reviewed in this

section.

3.7.1 Density Estimation

Before proceeding with the definition of the invariant quantities, some

practical issues in the computation of the invariant distribution may be

discussed. The invariant measure was defined as the sum of delta functions

and is quite convenient in defining other invariant parameters. Any

measurement of a tangible variable necessarily imposes a partitioning of

phase space. The number of distinct, discrete states observable by any

apparatus can be no larger than the inverse of the measurement resolution.

In such a discretized space the probability of an element i of the partition is
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(3.19)

where n(x j ) is the number of counts in partition element i. The partition­

based estimator is a multidimensional histogram and does not provide smooth

distributions and suffers from boundary effects. One way of improving upon

traditional histograms is to use Kernel density estimators in place of delta

functions. Tight Gaussians are a popular choice for the kernel but other

functions have also been suggested on the grounds of optimality criteria. The

kernel estimators are an alternative to fixed volume techniques for estimating

the probabilities. Instead of partitioning the phase space by a uniform grid

and counting the number of points within each element, fixed mass methods

base the estimates on the localized properties of the data set around each

individual point. A virtual partitioning is carried out with overlapping elements

centered on every point in the data set. The radius of each element rNB (x) is

increased until each encloses a pre-specified number of neighbouring points.

In this manner a large number of overlapping elements with the same

number of points with differing spatial sizes is obtained. The local density or

probability is then estimated as a function of the inverse of the bin radius,

(3.20)

where dE is the embedding dlrnensicn of the reconstructed space.

3.7.2 Generalized Dimensions

Dissipative dynamical systems possess an asymptotic behaviour, which

causes their dynamics to relax onto a small, invariant subset of the full state

space called the attractor. The generalized dimensions describe the structure
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of such invariant subsets. The attractor dimensions are the most widely

studied invariant quantities in the case of complex dynamical systems mainly

because chaotic systems particularly were proved to have attractors whose

dimensions were fractional as against the integral values of attractors of

regular, integrable systems. The geometrically related concept of dimension is,
how (hyper) volumes scale as a function of a characteristic length

parameter, Vex:: LD
• In real world space, experience tells that planar areas

scale quadratically with length Le. A o: L2 while volumes scale as cube of the

length scale, Vex:: L3
• Hence in a loose sense we may 'define' the dimension

10gV
as D =--. The simplest technique involved in estimating the dimension

logL

involves partitioning of the dE dimensional state space with a grid of size c.

The number of elements with atleast one point enclosed is counted and this is

taken as an estimate of the dimension at resolution E. The limit as E ~ 0

describes the space filling properties of the point set being analyzed. Such a

box counting algorithm gives a maximum value D as the embedding

dimension de. As the minimum-embedding dimension required for unfolding

the attractor is achieved, the calculated fractal dimension also saturates at

the proper value.

Consider a procedure similar to that used for the box counting method

described above. Suppose there are N trajectory points on an attractor. The

attractor region is then divided into cells of size I;; labeled, i= 1,2... N( 6). In

general, N:;It N(c). The number of trajectory points in the ith cell is denoted by

N, and the probability Pi is the relative number of trajectory points in the cell

N.
given by Pi =_I • The generalized dimensions, Dq are then defined as,

N
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D =lim
q .1'-+0 q-l

N(c)
In LP/

i=!

ln z
(3.21)

The definition of Dq can be extended to apply to any real value of q. The

factor (q-l) in the denominator is included in the denominator so that for

q=O,

Do = -Tim InNk)
6-+0 In £

(3.22)

which is the same as the box-counting or Capacity dimension.

As q ~ co I the largest probability value, Pmax will dominate the sum

and we have, D<r} =lim In Pmax
• At the other extreme as q ~ -00 I the

6-+0 ln s

smallest probability value Pmin will dominate and so, D_~ = !im In Pmin . Hence
&-+0 ln z

DJ:] is associated with the most densely occupied region of the attractor

while D -<r} is associated with the most rarefied region. It is also observed that

o.; ~ o; and in general Dq 2 Dq, for q s q' .

For q= 11 the Information dimension is defined as

LPi In Pi
DJ = lim i . This can be derived from Eq.3.22, by setting the limit

&-+0 ln s
t

q~1 followed by application of L'Hospital's rule to the result to obtain the final

form of the D1 as given above. This is a measure of how quickly the

information required for the specification of the state to precision € grows with

decreasing E. The presence of (p fnp) in the definition of this measure is

suggestive of the Shannon information term. While the measure Do is based
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on the bulk of how many partition elements are non-empty; 0 1 is calculated

from a bulk in which each partition contributes proportional to the number of

points it encloses. So bulk in Do is simply volume while in the case of 0 1 bulk

is equivalent to mass. The next one is the popular Correlation dimension,

-log:Lp-p -
defined as D2 = lim I } • The nurneratortconstltutes a two-point

l"~O log E

correlation function that gives the probability of finding two random points

within a given partition element.

An alternative derivation for the generalized dimensions from a time

series follows the generalized sum defined as

where 0 is the Heaviside function given as,

(3.23)

Setting q=2 in the above equation leads to the more popular form of O2 as

D
2

= lim InC2(r) (3.24)
r-)O Inr

Hence the generalized dimensions in terms of the generalized sum is:

. 1 InCq (r)
D = lim - (3.25)

q r-)O q-I ln r

In practice, almost all calculations of Oq from experimental data use the

generalized correlation sum rather than the crude box-counting method.

Usually, _1_ InCq{r) is plotted as a function of In r and a scaling region is
q -1

sought whose slope is taken as the estimate of the generalized dimension, Dq •
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of the point i is given by,

3.7.3 The Grassberger-Procaccia (G-P) algorithm for Estimation of O2

The popularity of the correlation dimension as the quantity most estimated

from complex data generated in experimental conditions from fields ranging

from fluid dynamics to physiology to meteorology was after Grassberger and

Procaccia introduced their famous algorithm (1983a,b) for its computation.

The application of box counting algorithm to real data for evaluation of the

capacity dimension is fraught with difficulties. The number of computations

required for the box-counting procedure increases exponentially with the

state space dimension. Moreover this scheme requires the partitioning of

state space with boxes and locating the trajectory points within the boxes

which is a time consuming process.

In order to circumvent all these drawbacks and define a useful

measure characterizing the attractor, Grassberger and Procaccia introduced

the Correlation Dimension, D2• Though introduced in the previous section, we

shall go through the steps of the G-P algorithm and arrive at the definition of

this dimensional measure. This algorithm has the added advantage that it

uses trajectory points directly without going for a partitioning of the state

space.

We let the trajectory evolve for a long time and collect N points on it.

For each point i on the trajectory the number of neighbours lying within a

distance r of the point is determined after excluding the point i itself. Let this

number be Nlr). Then the( relative number of points lying within a distance r

P j (r ) = 2_ f e (r - Ix i - x j I).
N 1 j=l

i* j
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The correlation sum is given by

Chapter 3-Part I

(3.26)

The sum in the above equation counts the pairs (xi' X j) whose distance is

smaller than r in the limit of infinite data Le. N 4. a: and for small r, C(r)

scales like a power law, C(r) ex: r D2 . Hence the correlation dimension is

defined as

D I· I' logC(r)
2 = III III

r-"O N -ecc log r
(3.27)

Although the G-P algorithm does provide a quantifier for the self­

similar geometry of the distribution underlying the data, its direct

implementation to experimental data has many pitfalls. The algorithm

assumes the presence of an infinitely long noise free stationary data set in the

computation (Theiler, 1986), which is practically impossible to achieve. The

number of data points sets an upper limit on the computed O2 value. O2

evaluation is also affected by the presence of noise- either 'real' noise in the

experimental data or round-off error in numerical calculation and the choice

of scaling region in the log C(r) - log r plot (Theiler, 1990). It is hence

important to test any computational scheme with standard data sets of known

properties (Rapp, 1990). Noise tends to make the slope of the log-log plot

larger for small values of r while the finite number of data points tends to

make it smaller (Theiler 1986, 1991). Osborne and Provenzale (1989)

reported certain controversial results that affected the place of honour

enjoyed by correlation dimension as a robust marker of chaotic systems. In

the last mentioned paper, time series generated by coloured stochastic

processes also exhibited finite values of correlation dimension just like low
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dimensional chaotic systems. This contradicted the fact that stochastic data

are of infinite dimensions. This effect was later attributed to temporal

correlations in the data that caused pairs of points measured within a short

time span to be close in phase space as well and thus introduced a bias in the

correlation sum estimation. It was generally accepted after this that the

correlation dimension just as other methods in science is applicable only when

certain conditions are fulfilled and should be made use of judiciously. This is

closely related to the possibility of the signal being nonstationary in nature

and since this is the case with most experimentally observed data as in the

case of biological systems; methods other than the original G-P algorithm

were devised to lead to more meaningful estimates of the correlation integral

in 'real' data. Before proceeding to the modified algorithms, a brief description

of the nonstationary phenomenon in data may be in order.

3.7.4 Nonstationarity in Real-life Signals

Most of the non linear analysis tools require the time series under study to be

dynamically stationary. This is because for any measurement to be useful in

describing some property of the system under study, it should be

reproducible. This is possible provided the system satisfies anyone of the two

generally known definitions of stationarity. The weak form of stationarity

requires that all parameters of the studied system remain fixed and constant

during the measurement period. However in most cases, direct access to the
t

system producing the signal is not available and hence the constancy of the

parameters cannot be established. A second concept of stationarity may thus

be formulated based on the data itself. A signal is called stationary if all

transition probabilities from one state to another are independent of time

within the observation period i.e. when calculated from data. This includes the
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constancy of the relevant parameters and also requires that phenomena

belonging to the dynamics be contained in the time series sufficiently

frequently so that probabilities and other rules can be inferred properly.

In practical situations, nonstationary time series are very common, the

origins of which may be steeped either in the slow drift of the system's

parameters during the measurement period artsrnq' due to the presence of

multiple or overlapping time scales in the underlying dynamics or the

changeable influence of the environment. Most of the methods developed to

detect nonstationarity have at the core an indirect measurement of the

dependence of statistics on time. The first step is the estimation of a certain

parameter using different parts of a sequence. If the observed variations are

found to be significant, i.e. outside the expected statistical fluctuations; the

time series is regarded as nonstationary. The temporal correlations in the

measured data, giving rise to spurious scaling of the correlation sum err) with

r may be thought of as a kind of nonstationarity of the measurement. The

largely successful technique adopted in dealing with such data is the space­

time separation plots of Provenzale et. al. (1992). This method is useful in not

only detecting temporal correlations but also arriving at an optimal correlation

time. A plot of the number of pairs of points as a function of the spatial

distance as well as the time elapsed between measurements will saturate

after a certain time point in the case of low dimensional complex systems. In

the case of infinite dimensional systems, the saturation feature is absent

indicating the futility of correlation dimension determination of such a data

set. A modified formula for the correlation sum proposed by Theiler (1987)

taking into account the temporal effects by excluding the pairs of vectors

before saturation sets in gives
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(3.28)

t .
where nmin = --!!l!!!.. and tmin is the time point at which saturation of pairs of

t,

vectors occurs in the space-time separation plot and T, is the sampling time

of the signal.

An early method to test for stationarity is provided by the method of

recurrence plots due to Eckmann, Kamphorst & Ruelle (1987). A different

approach to detect nonstationarity is based on the similarity between parts of

the time series themselves rather than the similarity of the parameters

derived from the time series by local averages. In particular, the (nonlinear)

cross prediction error Le. the predictability of one segment using another as a

database is evaluated. This concept is useful if the nonstationarity is given by

changes of the shape of the attractor while dynamical invariants remain

effectively unchanged (Scrieber, 1997). A test for stationarity of a time series

that combines a test for the time independence of the probability distribution

and a test based on the time independence of the power spectra was

proposed by Witt, Kurths and Pikovsky (1998). An alternative, successful

procedure based on the time distribution information deduced from

geometrical structure of the reconstructed attractor in phase space was

introduced by Yu et. al. (1999). Their work introduced a cross-time index and

its distribution between different data segments and computed distributions of

auto and cross time index using all near neighbours for a specified

neighbourhood size say, E in phase space. This nearest neighbour approach

also smoothes out statistical fluctuations and reduces the probability to falsely

reject the null hypothesis of the series being nonstationarity.
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3.7.5 Modifications to the G-P Algorithm

Chapter 3-Part /

Two important alternative measures suggested in place of the traditional D2

computation are the Pointwise dimension, D2i (PWD2) and point correlation

dimension, PD2. The pointwise dimension takes into consideration only one

reference point instead of all i=l,2... on the attractor (Farmer, Ott & Yorke,

1983). Based on the correlation sum itself, this is a measure of how fast the

number of neighbouring points around the reference points increases as the

distance r is increased. In the case of point sets where the pointwise

dimension is independent of the reference point i, the correlation dimension

D2 will be the same as the computed D2i • It has also been cited that with an

adequate data length in the case of a model system the D2i smoothly

converges to the correlation dimension (Mitra & Skinner, 1993). The

convergence occurs because the estimated dimension based on several orbits

around the attractor i.e. D2i, must be approximately the same as that based

on data cqntaining many more orbits as in the D2 evaluation.

Point D2 correlation dimension (PD2) was introduced by Skinner and

associates (1990) as a variant of the PWD2 and unlike the G-P algorithm does

not make use of all the vector difference lengths. Neither does it use all

vector differences relative to a fixed reference vector as in the Farmer

algorithm (Farmer, Ott & Yorke, 1983) for PWD2. This algorithm finds

stationary epochs within the data of the same type as the one in which the

reference vector is located, then tests and rejects those for which linear

scaling and convergence are not satisfied. This is a marked improvement

over accepting every reference vector as valid which leads to erroneous

conclusion of certain vector differences for which the scaling relationship that

defines dimension does not hold. The model for PDz is C(n,r,n*ref)~ r
D2
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where n *ref is an acceptable reference vector showing scaling within its own

subspecies i.e. (i) linear in the log C(n,r,n *reI) versus log r plot and (ii)

convergent in the slope versus embedding dimension plot. Because each

n *ref has a new coordinate that could be of any value, the PD2 values are

independent of each other and this justifies using the mean PD2 values over a

stationary sub epoch as the best estimate of correlation dimension.

The uncertainty in the correlation dimension estimate due to

nonstationarity may be eliminated by using small data sets covering small

time segments. The Havstad and Ehlers algorithm (1989) proposes the

division of the observed time series into windows that may be overlapping or

nonoverlapping. The next step is the estimation of D2 in each of these by a

method differing slightly from the original GPA. This allows the dimension

estimate as a function of time.

As described in an earlier section the scalar time series, s(i) is

embedded in a phase space by the method of delays according as Y ={s(i),

s(i+T), s(i+2T), ..., s(i+(d-1)T)} where T is the time delay and d the chosen

embedding dimension. The data set for dimension estimation consists of N

vectors and M reference vectors (M<N). In this case though, instead of

calculating the number of pairs of vectors within a radius r, the radius is

predetermined and the distance from a reference vector to each of N vectors

within r are noted. From this number of vectors j within a predetermined r,

the correlation dimension is calculated as

D (d) = In j
C (In r)

(3.29)

where ( ) denotes the average. Euclidean norm is used to calculate the

distance between the vectors. To avoid prominent distortion of slope in In U)
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and (In r) a certain minimum number of vectors are skipped on either side of

the reference vector. Thus a reliable estimation of dimension is obtained by

careful choice of intervals between vectors and between reference and

neighbouring vectors so that the vectors are adequately independent, by

proper choice of time lag and by averaging In (r).

The algorithms discussed so far attempt "to minimize the errors in

dimension estimation due to nonstationarity but do not incorporate the notion

of nonstationary process as such. The proponents of PD2 claim that their

algorithm is superior to others, yet; there is no definition of a nonstationary

process included. Some of the vectors in the correlation integral estimation,

which do not give similar scaling as the surrounding vectors of reference

vector, are rejected. Whether this rejection is valid when the process involves

a large class of overlapping time scales is not mentioned. The method

proposed by Havstad and Ehlers has been employed in this work as it

considers the dynamics within a window and considers at least in some sense

the time scales involved in the dynamics within that window. Further, it has

been found that it gives more reliable estimation of 02 especially for high

dimension signals like those of EEG.

3.7.6 Generalized Entropies

The measures of dimension specify the static qualities of the attractor without

regard for the temporal evolution. The dynamical characteristics i.e. the

evolution of the system studies the nature of evolution of the trajectories in

phase space. This information is contained in the generalized entropies and

the spectrum of Lyapunov exponents that study the manner of temporal

evolution of the system trajectories. Entropy is actually a measure of the

average information gained on observing the stete of the system with a
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certain precision. This interpretation follows from Information theory

developed in the 1940s mainly by Shannon, Renyi and Kolmogorov. In the

case of a fixed point or periodic cycle of a dynamical system for instance,

each orbit remains the same and hence no new information is created and

this implies that no uncertainty exists in the evolution of such a system. The

predictive capability is enhanced even before an observation of the next orbit

is made. On the other hand, for irregular chaotic systems, each orbit is

entirely new to the observer making the prediction before an observation

entirely difficult. Such a system may be thought of as creating information as

it evolves in time. In order to quantify the amount of such information

created the entropies are resorted to.

The trajectories of nonlinear chaotic systems emerging from nearby,

indistinguishable initial conditions diverge exponentially and evolve into

distinquishable states after a finite time. This sensitivity to initial conditions

causes such systems to continuously generate new information making any

long-term prediction impossible. Consider the attractor in the phase space of

the system partitioned into N(E:} elements labeled 51, Sz/ ... , SN with size s: If n

successive measurements at regularly spaced time intervals r are taken for a

given trajectory then it will yield a sequence of elements (s., Sz, ... , SN) as

visited by this trajectory. Let P(Sl/ 52, ... , SN) be the joint probability of finding

the trajectory in Sl at time r, in S2 at time Zr and so. In correspondence with

the case of dimensions/ entropy can also be generalized to a set of order q

Renvi entropies defined as,

K = -lim lim limx [_I _I_In L pq (SI ,...,sJ] (3.30)
q .-+0 t:~O n~aJ n r I - q

S\ ... Sd

The easiest to calculate is the q=2, Kz entropy while the famous Kolmogorov­

Sinai entropy is the K1 entropy (Grassberger & Procaccia, 1983c). The
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correlation sum that was introduced earlier is related to the joint probability

as,

Cq(r) = I pq(sp ...,sJ
SJ ...Sn

(3.31)

(3.32)

The advantages of computing the entropy values numerically are many. It

gives a time scale over which prediction is relevant in the system and

secondly how the dynamics unfolds. But the difficulty in computation is in the

requirement of data set much longer than those required in the case of

dimensional or Lyapunov exponent. Hence in the general case, we get,

C (d) o, -dZKq(d)
q r, o: r e

where d is the embedding dimension. As in the case of the dimension

computation since the finite length of data set as well as noise in the

measurements make the imposition of the limit r ~O slightly rneaninqless, a

scaling range is determined in which the results are independent of r. Such a

scale independence is evident if a plateau is seen in the plot of the scaling

exponents, Dq(drr). For values of r in the plateau regions, in the dimension

plots, the factor r D
q is almost constant. Hence the exponent Kq can be

defined as

( ) 1 { Cq(d,r) }K d,r =-In
q T Cq(d+l,r)

(3.33)

For sufficiently large values of d, the value converges to a constant Kq . In

practice, the K2 entropy is the easiest to compute just as the D2 is, since the

correlation sum at q=2, is the mean over the number of neighbours and

hence yields a meaningful result in any case.

Hence for the K2 entropy we have,
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which is an estimate of,

Kz == lim Kz(r)
d---)occ
r---)oO
(---)00

(Kantz & Scheiber, 1997)

3.7.7 Lyapunov Exponents

97

(3.34)

(3.35)

Dimension estimation, despite being successful is frustrating in the meager

quantity of useful information gained for the amount of computational cost

expended. The dimensions describe how the sample of points along a system

orbit tends to be distributed spatially but there is no information about the

dynamic, temporally evolving structure of the system. The Lyapunov

exponents on the other hand examine the structure of time ordered points

making up the trajectory. The significance of the spectrum of Lyapunov

exponents can be understood by considering the effects of the dynamics in a

small, fiducial hypervolume in phase space. Arbitrarily complicated dynamics

exhibited by chaotic systems can cause the fiducial element to evolve to

extremely complex shapes. However for small length scales and short enough

time scales, the initial effect of the dynamics is to distort the evolving

spheroid into an ellipsoidal shape with some directions being stretched while

others are contracted. The primary, major axis of this ellipsoid will correspond

to the most unstable direction of the flow and the asymptotic rate of

expansion of this axis is what is measured as the largest Lyapunov exponent.

If the infinitesimal radius of the initial fiducial volume is reO) and the length of
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the ith principal axis at time is I;{t) then the jth Lyapunov exponent is defined

as:

A = lim ~ log li(t)
I Hoo t 1'(0) (3.36)

By convention, the Lyapunov exponents are ordered so that

A) > A2 > ~ ... Equivalently the Lyapunov exponent can be seen to measure

the rate of growth of fiducial subspaces in the phase space. AI measures how

quickly linear distances grow. The two largest principal axes define an area

element and the sum (AI + A2 ) determines the rate at which two-dimensional

areas grow. In general the behaviour of d-dimensional subspaces is described

d

by the sum of the first d exponents, I Aj .

)=0

Estimation of Lyapunov exponents from time series data was first

implemented by Wolf and eo-workers (Wolf et. al., 1985). In that algorithm

the exponential divergence exhibited by data is already assumed. This yields

a finite exponent for stochastic data also where the true exponent is infinite.

While Wolf's algorithm only uses a delay reconstruction of phase space,

another class of algorithms exist which involves the approximation of the

underlying deterministic dynamics. This method as in Sano and Sawada

(1985) and Eckmann et. al. (1986) is efficient if the data allows for a good

approximation of the dynamics. The better one among all these appears to be

the one proposed independently by Rosenstein et. al. (1993) and Kantz

(1994) that tests for the exponential divergence of nearby trajectories. This

allows a decision on the part of the analyst whether it really makes sense to

compute a Lyapunov exponent for a given data set.
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In what appeared to be a total deviation from the expected, Osborne and

Provenzale (1989) reported finite D2 estimates for linear stochastic systems

('coloured noises'). These initial and later instances clarified that the presence

of a fractal dimension alone is not sufficient to indicate the presence of a

strange attractor and, in fact, may be produced by a filtered stochastic

process. Theiler demonstrated the increase of error in dimensional estimation

with decrease in sample size and pointed out the necessity of discriminating

low dimensional chaotic data from filtered high dimensional noise that if

properly filtered exhibits low dimensional characteristics. Hence while for

many systems the assumption of nonlinearity leading to apparently random

looking behaviour may be correct in principle, it should be shown explicitly

that employing nonlinear tools and models is justified and useful from an

information point of view.

The method of surrogate data testing (Theiler et. al., 1992; Prichard &

Theiler, 1994) introduced to test the nonlinearity in a dynamical system is

based on a null hypothesis against which both the data as well as

discriminating statistic are tested. While the null hypothesis is to be proved to

be inadequate for explaining the data, the discriminating statistic is a number

that quantifies some aspect of the time series. Once the null hypothesis is

stated, the next step involves generation of the surrogate data from the given

time series by using the process assumed in the null hypothesis. This

ensemble shares certain properties of the generating system such as the

mean, variance and Fourier spectrum but is otherwise random as required by

the null hypothesis. The chosen discriminating statistic is calculated for both

the original and surrogate data sets and in case of significant difference

between the two sets, the null hypothesis is rejected. The hypotheses that
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are usually proposed for nonlinear testing may be classified into three: those

equivalent to the assumption that the data are (i) identically independently

distributed noise (Type 0), (ii) linearly filtered noise (Type I) and (iii) a

monotonic nonlinear transformation (Type II). The surrogates to test the type

II hypothesis are generated by the Amplitude Adj~sted Fourier Transform

(AAFT) procedure. It is actually a combination of the unwindowed Fourier

transform (FT) and windowed FT (WFT) methods followed in the Type 0 and I

surrogates resp. (Theiler et.al., 1992). AAFT may be summarized in a few

steps:

• Create a Gaussian time series yet) which is rank ordered according to

the original data set denoted by x(t), say.

• A surrogate, y'(t) of the new time series Yet) is formed by shuffling the

phases in the Fourier transform of y.

• The final step involves the rank ordering of the original data x(t) so

that it follows y'(t). This time re-ordered series provides a surrogate of

the original time series that matches its amplitude distribution.

The note worthy point here is that the series underlying the surrogate data

yet) and y'(t) are Gaussian and have the same Fourier power spectrum.

Another more general null hypothesis that allows for nonlinear rescalings as

well of a Gaussian linear process was later introduced by Schrieber & Schmitz

(1996). In order to implement this scheme, apart from generating data that

represent typical realizations of a model of a system, the surrogate data

should also represent a process yielding identical estimates of the parameters

of the process when compared to those obtained from the original data. The

choice of the distinguishing statistic is based on the context but mostly either

the correlation dimension, Lyapunov exponent or forecasting error is made

use of. Others include the correlation integral, moments and cross-moments,
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the skewed difference statistic and the Takens's best estimator for correlation

dimension (Prichard & Theiler, 1994). The significance of the test is

determined based on the computed statistic for the original and surrogate

data sets. If QD is the statistic computed for the original time series and

QH. for the it h surrogate generated under the null hypothesis; the measure of
I

significance is given by, S = I QD - JiH I where in JiH and O"H denote the
O"H

sample mean and standard deviation of the distribution of QH' Even though

it is strictly non-dimensional, the units of S are called 'sigmas'. This method

could successfully distinguish the non linearity in several known chaotic time

series like that from Mackey-Glass equations and at the same time failed to

find nonlinear structure in a linear stochastic system (as required).

Another test based on Local Linear Nonlinear Autoregressive models

(LLNAR) could test nonlinearity as well as directedness of interactions

between neural groups when applied to local field potentiaIs (LFPs) recorded

in the macaque monkey (Freiwald et. al., 1999). A novel measure for

non linearity in time series from continuous dynamical systems that may be

safely assumed to underlie complex real life systems has been proposed that

combines discrete parametric modeling with a subsampling approach. This

provides more specific information on the time series and reduces the

detrimental effects of various well known problems and weak points of

surrogate data testing (Galka & Ozaki, 2001). Despite the many pitfalls the

method of surrogate data remains a favourite among scientists working in

complex systems due to its simplicity as well as impiementational ease. Some

of the findings in the nonlinearity of the signal of interest, EEG will be

presented in section n.
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Part 11: Electroencephalogram - A Time Varying Nonlinear Signal

3.9 The Electroencephalogram (EEG)

The electroencephalogram (EEG) is a time-varying electrical signal recorded

from electrodes attached to the scalp of a subject. Electric activity in the brain

produces changes of electric potential on the surface of the scalp. These

changes are measured using electrodes pasted on the scalp. The electric

activity in the brain is a result of the working of Glia cells and neurons. Glia

cells produce slow changes in their resting membrane potentia Is, while

neurons display action potentials and synaptic potentia Is. All of these

contribute to the EEG signal. This composite signal that ensues at the scalp is

complex, since it is generated as a superposition of different simultaneously

acting dynamical systems. In addition to brain activity, the EEG also reflects

activation of the head musculature, eye movements, interference from nearby

electric devices, and changing conductivity in the electrodes due to the

movements of the subject or physiochemical reactions at the electrode sites.

All of these activities that are not directly related to the current cognitive

processing of the subject are collectively referred to as background ectivitv

below.

Since the first electric potentia Is were recorded by Hans Berger in the

late 1920s', the EEG has been employed in many clinical settings for decades

to find patterns that correlate to disorders like epilepsy, sleep disorders,

tumours, and more recently, schizophrenia. Prior to the implementation of

digitized recordings and stochastic analysis based around the fast-fourier

transform (FFT) in the 1960's, the EEG was observed on a simple ink-based

time-scale. The oscillatory activity of neuronal pools reflected in characteristic

EEG rhythms constitutes a mechanism by which the brain can regulate
~
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changes of state in selected neuronal networks to cause a qualitative

transition between modes of information processing. The gross frequency

characteristics were determined by visual inspection of the EEG patterns and

were often correlated with conscious and unconscious states, such as sleep.

Following this line of study, EEG has also been made use of to suggest or

validate models of cognitive behavior and the dynamics of the brain.

The greatest advantage of EEG over other high technology imaging

methods such as PET and MRI is its speed-it can record complex patterns of

neural activity occurring within fractions of a second after a stimulus has been

administered. Some other merits are also evident: EEG is rather simple in

use, cheap and almost does not disturb a subject. The EEG can be recorded

near the patient's bed and can be used for long-term monitoring of sleep

stages or epilepsy. EEG also is a convenient tool for psychophysiological

research when the subject has to perform some behavioral tasks or is out of

laboratory. But there is one more, not so evident, but very valuable

advantage of EEG studies. In fact, PET and fMRI are based on the

measurement of secondary metabolic changes in brain tissue, but not of

primary electrically active state of neural system, which transports the signal

in the afferent and efferent paths. Further more the time scale of EEG

recordings are three or four orders smaller as compared to other imaging

methods such as CAT and PET and hence will record features, which are

smeared out in the conventional methods. EEG can thus reveal one of main

parameters of the neural activity - its non linear property, which reflects the

essence of neural excitation. Therefore while recording electrical (as well as

magnetic) field patterns, the physiologist has access to the actual

mechanisms of the brain information processing.
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In the present section, after a brief note on the other popular tools of

brain imaging such as the CAT, PET and MRI, the analysis of EEG carried out

by physicists and mathematicians as a potential tool for studying the brain

dynamics will be dealt with. This will include the past as well as current trends

in EEG processing that have led to a deeper understanding of the mechanism

underlying it.

3.10 Neuroimaging Techniques

Several non- or minimally-invasive neuromonitoring techniques for examining

functional brain activity are currently available to the psychiatric researcher

and clinician. These methods are often categorized in terms of whether they

provide direct or indirect information about brain function.

Electroencephalography (EEG) was the first to appear on the scene, followed

by other technologies including computed axial tomography (CAT), positron

emission tomography (PET), single-positron emission computed tomography

(SPECT), magnetoencephalography (MEG) and recently functional magnetic

resonance imaging (fMRI). Of these MEG, EEG, and event-triggered EEG (also

called event related potentials; ERPs), each of which monitors a direct

consequence of brain electromagnetic activity belong to the direct category.

In particular, EEG and ERP record the electrical fields generated by neuronal

activity, while MEG records the magnetic fields induced by such activity. PET,

SPECT and fMRI, on the other hand, are indirect methods in that they

generally monitor haemodynamic changes consequent to brain electrical

activity. PET and SPECT brain imaging operate by monitoring the decay of

blood-borne radioactive isotopes as they pass through the brain. FMRI, in

contrast, detects changes in the local concentration of deoxyhaemoglobin via

its effect on imposed magnetic fields. While each of these techniques has its
;
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own distinct advantages, at present the direct methods tend to have limited

spatial resolution, whereas the indirect methods can only detect neuronal

activity after it has been filtered by a complex and poorly understood

neurovascular coupling function. The latest in this genre is the noninvasive

near IR imaging technique that depends on diffuse optical effects and is an

upcoming technique for neuroimaging. A brief review of the salient features of

some of these techniques is added below.

(a) X-ray Computed Tomography (X-ray CT)

The early 1970s' saw the introduction of a remarkable imaging technique

known as the x-rav CT. This technique takes advantage of the fact that when

a highly focussed beam of x-rays is passed through the body, the beam is

affected in a predictable manner by the relative density of the tissue through

which it passes. Because the organs within the body, including the brain differ

in density, it is possible to visualize the body's organs in their living state.

Unlike conventional x-rays, which produce pictures of the "shadows" cast by

body structures of different density, CT scanning uses x-rays in a much

different way. In CT of the head, numerous x-rav beams are passed through

the skull and brain at different angles, and special sensors measure the

amount of radiation absorbed by different tissues (and lesions such as a

tumor). The scanner revolves around the patient, who is lying still, emitting

and recording x-ray beams from as many as a thousand points on the circle.

A special computer program then uses the differences in x-ray absorption to

form cross-sectional images, or 'slices', of the head and brain. These slices

are called tomograms, hence the name 'computed tomography'. What was

really unique in the development of X-ray CT was the employment of clever

computing and mathematical techniques to process the vast amount of
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information necessary to create actual images. The impact of X-ray CT was

incredible in the way it eliminated the need for various radiological

examinations that were often unpleasant and hazardous for the subjects and

that were frequently difficult for physicians to interpret. In addition, it

provoked the research into new ways of imaging the body using the same

basic mathematical and computer strategies of image reconstruction.

CT of the head is now widely available and is performed in a relatively

short time and at a reasonable cost - especially when compared to other

sophisticated methods such as the magnetic resonance imaging (MRI).

Compared to MR imaging, the precise details of soft tissue (including some

deep parts of the brain) are less visible on CT scans.

(b) Positron Emission Tomography (PET) and Single-Positron

Emission Computed Tomography (SPECT)

PET has become a tool for medical diagnosis especially for dynamic studies of

human metabolism and for brain activation. Widespread interest and

acceleration in PET technology was due to the development of reconstruction

algorithms associated with x-ray CT and improvements in nuclear detector

technologies. PET has a million- fold sensitivity advantage over other

techniques used to study regional metabolism and neuro-receptor activity in

the brain and other body tissues. In contrast, magnetic resonance has

exquisite resolution for anatomic studies and for flow or angiographic studies.

Also, magnetic resonance spectroscopy has the unique attribute of evaluating

chemical composition of tissue but in the millimolar range rather than the

nanomolar range. Since the nanomolar range is the concentration range of
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most receptor proteins in the body, positron emission tomography is ideal for

this type of imaging.

PET imaging begins with the injection of a metabolicaJly active tracer­

a biological molecule that carries with it a positron-emitting isotope (for

example, llC, 13N, 150 , or 18F). Within minutes, the isotope accumulates in an

area of the body for which the molecule has an affinity. The radioactive nuclei

then decay by positron emission. The emitted positron collides with a free

electron usually within less than 1 mm from the point of emission. The

interaction of the two subatomic particles results in a conversion of matter to

energy in the form of two gamma rays. These high-energy gamma rays

emerge from the collision point in opposite directions, and are detected by an

array of detectors, which surround the patient. When the two photons are

recorded simultaneously by a pair of detectors, the collision that gave rise to

them must have occurred somewhere along the line connecting the detectors.

After 500,000 or more annihilation events are detected, the distribution of the

positron-emitting tracer is calculated by tomographic reconstruction

procedures. PET then reconstructs a two-dimensional image. Three­

dimensional reconstructions can also be done using 2D projections from

multiple angles.

Generally, SPECT tracers are more limited than PET tracers in the

kinds of brain activity they can monitor. SPECT tracers also deteriorate more

slowly than many PET tracers, which means that SPECT studies require longer

test and retest periods than PET studies do. However, because SPECT tracers

are longer tasting, they do not require an onsite cyclotron to produce them.

While PET is more versatile than SPECT and produces more detailed images

with a higher degree of resolution, particularly of deeper brain structures,
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SPECT is much less expensive than PET and can address many of the same

research questions that PET can.
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Figure 3.6. A schematic ofthe PET imaging technique

The major clinical applications of PET have been in cancer detection of

the brain, breast, heart, lung and colorectal turners. Another application is the

evaluation of coronary artery disease by imaging the metabolism of heart

muscle. Applications to the study of epilepsy, brain tumors, stroke and

Alzheimer's disease have occupied the interest of neurologists for nearly 20

years. A major attribute of PET is its ability to show activity of neuroreceptors

such as the dopamine, serotonin and noradrenergic receptor systems. The

concentrations of neurochemical sites in the body are generally too low (eg.

I-lM) for MRI and MRS studies. In drug abuse research, PET scans are being

used to identify the brain sites where drugs and naturally occurring

neurotransmitters act, to show how quickly drugs reach and activate a neural

receptor, and to determine how long drugs occupy these receptors and how
t
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long they take to leave the brain. PET is also being used to show brain

changes following chronic drug abuse, during withdrawal from drugs, and

while the research volunteer is experiencing drug craving.

(c) Magnetic Resonance Imaging (MRI) and Functional MRI (fMRI)

Another imaging method, magnetic resonance imaging (MRI), was developed

in the 19805. Most elements have at least one reasonably abundant isotope

whose nucleus is magnetic. In biological materials, the magnetic nuclei of IH,

13e, 23Na, etc. are all abundant. The hydrogen nucleus (a single proton) is

abundant in the body due to the high water content of non-bony tissues.

When the body is immersed in a static magnetic field protons become aligned

with the magnetic field than against the static field. A rapidly alternating

magnetic field at an appropriate resonant frequency in the radio frequency

(RF) range, applied by a coil near the subject or specimen in the static

magnetic field, changes the orientation of the nuclear spins relative to the

direction of the static field. These changes are accompanied by the absorbtion

of energy by nuclei which undergo the transition from a lower energy state to

a higher one. When the alternating field is turned off, the nuclei return to the

equlibrium state, emitting energy at the same frequency as was prevtously

absorbed. Because the amount of oxygen found in blood affects its magnetic

properties, MRI detects regions with changes in levels of blood oxygenation

due to activitv-related changes in blood flow. MRI can provide both

anatomical and functional information helping researchers accurately

determine which brain regions are active in each task. Functional MRI (fMRI)

relies on the magnetic properties of blood to enable scientists to see images

of blood flow in the brain as it is occurring.
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An fMRI scan can produce images of brain activity as fast as every

second. Scientists can also determine with greater precision when brain

regions become active and how long they remain active. An fMRI scan can

also produce high-quality images that can pinpoint exactly which areas of the

brain are being activated. In summary, fMRI provides superior image clarity

of activity deep in the brain with high spatial resolution. It is relatively slow

since it is based on the blood-flow response, which takes about 450

milliseconds. To date, however, PET retains the significant advantage of

being able to identify which brain receptors are being activated by

neurotransmitters, abused drugs, and potential treatment compounds.

(d) Noninvasive near IR Imaging
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technique goes variously by the

names of near-infrared spectroscopy

(NIRS), diffuse optical tomography

(or topography; DOT) and/or near­

infrared imaging (NIRI). All the

techniques are based on the general

concept of detecting light scattered

by the scalp and analyzing the

absorption spectra of light absorbing

molecules (chromophores) present in

tissue to interpret the detected light (Strangman et. al., 2002). A comparison
~

of the spatial and temporal sensitivity of the various brain imaging techniques

The discovery that useful information could be obtained from thick tissue

samples, including brain-using light applied to and detected from the scalp

(Jobsis 1977) spurred the development of diffuse optics as a technique for

human brain monitoring. The
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is reproduced in the above figure 3.7 adapted from the above mentioned

reference. It is evident that while MEG and ERPs exhibit stronger temporal

sensitivity these are relatively weak in terms of spatial sensitivity. In contrast,

fMRI, PET and SPECT are stronger in spatial sensitivity but possess weaker

temporal resolution. Diffuse optical techniques in comparison provide

excellent temporal sensitivity as well as reasonable spatial sensitivity. When

multiple colours of light are used, moreover, spectroscopic information about

the sampled tissue also becomes available, thereby affording the promise of

quantifying the concentrations of the various haemoglobin species­

oxyhaemoglobin, deoxy-haemoglobin, and the sum of these (total

haemoglobin, which is proportional to blood volume). Thus, diffuse optical

techniques simultaneously combine both indirect and direct methods of

neuronal activity monitoring which are complementary sources of information

about brain function.

Besides the advantages obvious in the above figure, the optical

approach has various other merits. In particular, the instrumentation-which

is completely non invasive can be made portable, unobtrusive, low-cost, low

power and robust to motion artifacts. One of the first clinical applications of

diffuse optical techniques for functional brain monitoring was the investigation

of fetal, neonatal and infant cerebral oxygenation and functional activation.

This population was of interest because other neuroimaging methods were

(and are) not feasible gi\(en the high activity level of such subjects. Relatively

few psychiatric applications of diffuse optical techniques have thus far been

reported. Hock and colleagues have examined Alzheimer's patients during

verbal fluency and other cognitive tasks, (Hock et. al., 1997). In addition to

cognitive studies, evaluations of the haemodynamic response have also been

completed during deep brain stimulation in Parkinson's patients (Sakatani et.
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al., 1999), during induced seizures in patients with intractable epilepsy

(Watanabe et. al., 2000) and during magnetic brain stimulation for the

treatment of depression (Eschweiler et. al., 2000).

3.11 Classification of Brain Waves

~Alpha

EEG in general exhibits a broadband structure but a common classification of

waves based on frequency is popular

in neuroscience among clinicians,

technicians as well as scientists.

~heta
~Delta

t-----II 1 secI
A pictorial representation of
the major types on EEG waves
classified according to
frequency range.

Figure 3.8.

Reading an EEG involves interpreting

the wave forms on the basis of

frequency to a large extent and

depending on the morphology to a

lesser extent. According to the

frequency classification, EEG waves

are mainly of four types as in figure

3.8. A brief description of these 4 classes is given below:

Delta waves: Frequency range - Less than 4 Hz. These are large

amplitude waves, which occur in deep sleep and are associated with

some abnormal processes and are said to reflect the unconscious

mind. Delta waves are found in infants upto about one year of age and

are present in stages 3 and 4 of sleep. These waves produce immobile,

lethargic and less attentive states. Delta activity is usually most

prominent frontally in adults and posteriorly in children.

Theta waves: Frequency range- 4 Hz to 8Hz. Theta is also classed in

the 'slow' category and occurs in connection with creativity, emotions,
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intuition and is associated with the subconscious mind. While theta

waves are abnormal in awake adults, they are perfectly normal in

children upto 13 years of age and in sleep. It is usually regional in

spread, may involve many lobes, and can be lateralized or diffuse.

Alpha waves: Frequency range - 7.5 Hz to 13 Hz. With amplitude of

about 50 IJV, Alpha is a common state for the brain and occurs

whenever a person is alert (it is a marker for alertness and sleep), but

not actively processing information. Alpha has been linked to

extroversion (introverts show less), creativity (creative subjects show

alpha when listening and coming to a solution for creative problems),

and mental work. They are strongest over the occipital (back of the

head) cortex and also over frontal cortex.

Beta waves: Frequency range - above 12 Hz. These are low

amplitude or 'fast' waves and are found during the waking state as

well as when the brain is working as in some calculation or thinking

process. It reflects desynchronized active brain tissue. It is usually

seen on both sides of the cortex in symmetrical distribution and is

most evident frontally. It may be absent or reduced in areas of cortical

damage. Low Beta activity (12-15 Hz) is localized by side and by lobe

and represents a relaxed yet alert state; midrange Beta (15-18 Hz) is

localized over several areas often associated with thinking and finally,

high Beta (abov~ 18 Hz) corresponds to a strongly localized activity

leading to agitated mental activity such as planning, math calculation

etc.

Gamma waves: Frequency range- 36 Hz-44 Hz. This is the only

frequency group distributed over every part of the brain. It is

hypothesized and in some cases validated that the 40 Hz activity in the



114 Chapter 3- Part If

brain consolidates the required areas for simultaneous processing

whenever the brains needs to access information from multiple

regions. A good memory is associated with well-regulated and efficient

40Hz activity, whereas a 40Hz deficiency creates learning disabilities.

The next major classification of the observed waves in the EEG is

based on morphology. Certain waves have typical forms irrespective of

frequency and are readily identified by their shape; in other instances pairs or

groups of wave have characteristic forms. Single waves that are specially

formed include spikes or sharp waves. Their peculiarity is that they rise

rapidly to a point and then fall off qulcklv to a base that is narrower when

compared to the amplitude. Spikes are narrow with high amplitudes giving

them a narrow and high form and a sharp top. A sharp wave on the other

hand is broader than a spike but has the same significance. It is a hallmark of

seizure activity and implies multiple synchronous firing or activity (of

dendrites). Sharp waves are thought to represent the discharge as seen from

some distance away while spikes are recorded from close to the focus.

Among the waveforms some have specificity due to morphology. The

most important among these is the Spike -Wave pattern that consists of a

spike, which is probable generated in the cortex, and a large amplitude slow

wave (usually delta), thought to originate from thalamic structures, occurring

recurrently. These occur synchronously and symmetrically in the generalized

epilepsies or focally in the partial ones. In the generalized types of spike and

wave, true absence (petit mal) is characterized by 3 Hz spike-wave, while

slow spike-wave occurs more usually with brain injurv and the Lennox­

Gastaut syndrome. Other wave groups include polyspike and wave of greater

than 3 Hz in which each slow wave is accompanied by two or more spikes and
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is often associated with myoclonic seizures; periodic lateralised epileptiform

discharges (PLEDS); triphasic waves; burst suppression etc. a discussion on

EEG waves will be incomplete if the normal variants are left unmentioned.

These are several waves or patterns of waves, which are unusual in

appearance, yet are not significant for abnormality or disease. Amongst the

more common ones are mu rhythm, psychomotor variant, lambda waves,

POSTS, spindles, vertex waves and K Complexes amongst others.

3.12 Data Collection and Preprocessing

3.12.1 Recording the EEG
Any recording system for the EEG requires the following components:

• Electrodes -- Attached to the scalp of the subject.

• Amplifiers -- The amplitude of the input signals from the

electrodes is usually in the range lO-lOOIlV and high input

impedance differential amplifiers are used to boost this level.

• Filters -- The EEG signal is often filtered before

recording. High-pass, low-pass and notch filters are all used in

this context. However the filtering aimed at removing the

contaminants in the data could take out some of the nonlinear

component in the data. Hence the filter settings should be

chosen carefully.

• Recording unit -- Used to keep a permanent record of

the EEG signal. Originally the EEG was recorded on paper but

digital recording is becoming more usual.

The recorded signals making up the EEG are the potential differences

between pairs of electrodes. There are two recording approaches used:

~ Referential -- The potential difference is measured between an active

scalp electrode and an inactive reference electrode elsewhere on the
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subject. The reference electrode is often placed on the ear. This

location picks up some temporal brain activity so cannot be

considered truly inactive; however other sites, e.g., chin or nose,

suffer from electrocardiogram (ECG) contamination.

> Bipolar -- The potential difference is measured between two active

electrodes. The exact pairing (including polarity) used must be

recorded, often by a system of arrows on a diagram of the electrode

placements.

Unfortunately the recording of brain activity is easily disturbed. Any signal

activity that does not arise from the brain is considered to be a recording

artifact. There are many possible causes of artifact including muscle activity

(e.g., scalp muscles or eye motion), mains electricity interference and

electrode movement (Spehlmann, 1986).

3.12.2 Electrode Placement Configurations

In order to perform consistent testing for electroencephaJographic (EEG)

recordings, a system was developed which would describe the locations for

electrodes on the human skull. A great deal of research was conducted in the

creation of the system. Important features that needed to be considered in

the development include:

<> A standard format for measured sites

<> The use of common terminology

<> Anatomically correct locations

As a result of the joint effort of neurological societies worldwide, a

standardised electrode placement scheme known as the 'International 10-20

system' was established, allowing the comparison of different EEG data

derived from different subjects. This universal arrangement of electrodes
,.
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known as the international ten twenty system, assures reproducible electrode

sites with sufficient coverage of all parts of the head as depicted in figure 3.9.

The different electrode positions are derived from measurements taken

between standard landmarks on the skull. These measurements allow the

calculation of a network of lines, which are superimposed across the head.

Electrodes are placed where the lines of this mesh intersect. This results in

inter-electrode distances of ten and twenty percent of a line's total length.

In this convention, each electrode site has a letter identifying its sub­

cranial lobe l.e. 'Fp'-Frontopolar or prefrontal lobe, 'F'-Frontal lobe, 'T'­

Temporal lobe, 'C'-Central lobe, 'P/-Parietal lobe, 'O/-Occipital lobe. In addition

there is a number or another letter identifying its hemispherical location. The

subscript 'Z' (denoting line zero) ensuing any lobe abbreviation refers to an

electrode placed along the cerebrum's midline. The use of an even number (2,

4, 6 or 8) represents the right hemisphere, and odd numbers (1, 3/ 5 or 7)

referring to the left hemisphere. The numbers rise with increasing distance

from the midline of the head. The distances are calculated as percentages of

typical lengths such as the head circumference etc. Percentages are made use

of because the skull varies from SUbject to subject. An adolescent's may be

smaller than an adult's as also traumatic accidents to the skull may have

occurred in the subject's history' creating an out of proportion condition. The

percentage relationship remains the same for the location of the internal brain

lobes. Skull dimensions, are measured accordingly in centimeters and then

site distances or spacings are converted with the 10 and 20% factors. Fifty

percent (50%) is used frequently, but is a composite of 10, 20 and 20%.

Supplementary electrodes to those typically employed in the 10-20 system

have been devised to improve electroencephalographic spatial resolution. This

more extensive placement scheme using modified combinatorial
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nomenclature (MCN) was developed by the American Clinical Neurophysiology

Society and it broadens the 10-20 system by subdividing the existing inter­

electrode distances as in the figure 3.10. More detailed explanations on the

identification of electrode sites on the scalp are available either in books on

biomedical instrumentation or resources on the World WJde Web.
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Figure 3.9. A projection ofthe head on which the standard electrode sites ofthe international
10-20 system are illustrated. Note that AI and Az represent sites located on the
lobules ofeach ear.
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Figure 3.10. An extension of the ten twenty electrode placement scheme using modified
combinational nomenclature. Note that four of the standard placement sites,
namely' T/, 'T/, . T5 ' and' T/. have been renamed' T/, . Ta', . P7' and' P8 '

respectively.

In recent times, the limited spatial resolution of the conventional EEG

technology has been tackled by introducing high resolution EEG (HR- EEG)

(Babiloni et. al., 1997; Edlinger et. al., 1998). A pre-requisite for such

methods is adequate sampling of the potential distribution on the scalp

surface. The point-spread function of conduction of potential from brain

surface to the scalp averages about 2.5 cm (Gevins, 1990). Thus to
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adequately cover the surface of the scalp with electrodes having inter­

electrode distance in this range, EEG equipment supporting atleast 128­

channels is required (Srinivasan et. al., 1998). In accordance with this need,

the state-of-the-art technology in EEG recording uses machines with up to

256 electrode positions. The schematic of a i28-electrode Electrical

Geodesic" system marketed by Electrical Geodesics, Inc. is illustrated in

figure 3.11.
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Figure 3.1J. Schematic ofthe 128 electrode Geodesic sensor net ofthe Electrical
Geodesic™ system.

3.13 Is the Brain Chaotic?
Nonlinear dynamics is a fundamentally different approach to the analysis of

~

signals such as the EEG that have been studied since the early quarter of the
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past century. This development followed the appearance of abundant

evidence that at all levels, the nervous system is rich with complex, nonlinear

behaviour. Examples of such behaviour exhibited at the single neuron level,

neural ensembles in sensory and motor functions and spatio-temporal modes

of activity in large neural assemblies have been cited in an earlier chapter.

Deterministic mathematical models of neural system give rise to complex

dynamics in the absence of stochastic fluctuations in the variables of the

brain, potential to the system. Such dynamics occurs in nonlinear feedback

systems possessing time delays and is expected in recurrent inhibition and

periodic forcing of neural oscillators. In the recent past, the analysis of the

electrophysiological signals such as the EEG and MEG recorded on the scalp

as a time series by application of the principles of nonJinear dynamics and

deterministic chaos has become a powerful, non-invasive tool in the ongoing

exploration into the mysteries of the human brain mechanism.

Babloyantz and eo-workers were the pioneers who published results on

the dimensionaJity of human EEG (Babloyantz et. al., 1985). The initial spate

of work, which followed in this direction, was mostly demonstrational in

nature with data from a few subjects with EEGs' taken from a few isolated

sites. Since the early 90's though, research has been on a greater number of

subjects and the tasks under study have also grown in number and

complexity (Pritchard & Duke, 1992; Lutzenberger et. al., 1992; Birbaumer

et. al., 1996). Over the years, sleep data has been extensively studied

(R6schke & Aldenhoff, 1992; Ferri et. al., 1998) with particular attention paid

to specific sleep stages (Pereda et. al., 1998). Mental task studies are another

area of interest with tasks varying from mental arithmetic (Stam et. al.,

1996; Micheloyannis et. al., 1998) to verbal processing (Bizas et, al., '1999;

Molle et. al., 1999). In most of these studies the global variation of
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dimensional complexity over the cortex compared to a passive rest state such

as eyes closed condition has been monitored. Of greater clinical advantage

are studies on rnultichannel data recorded on subjects with neuropsychiatric

ailments such as epilepsy (Lehnertz & Eiger, 1998), schizophrenia (Koukkou

et. al., 1993), Alzheimer's disease (Jeong et. al., 1998 1 2001; Pritchard et.

al., 1994) and Parkinson's disorder (Stam et. al., 1994). All the drawbacks

related to dimension estimation such as finite data length, noise

contamination, nonstationarity etc. discussed in the previous sections hold in

the case of EEG signal processing as well. Nevertheless information regarding

the underlying brain state is made available by judicious examination of data

by making variance estimations as also inferential statistical comparisons

(Rapp, 1993). In one report, the running attractor dimension was evaluated

for whole sleep EEG records and the values were found to significantly differ

over the sleep stages (Pradhan et. al., 1995). It was also observed that the

dimensional value depended critically on the window length. The analysis

proved the superiority and implementational ease of such methods over

conventional visual scoring of long EEG records. In a study following this, the

same group analyzed the behaviour of the dominant Lyapunov exponent

during sleep which again characterized transitions indicating the occurrence of

different degrees of chaoticity in the states that may be related to various

sleep stages (Pradhan & Sadasivan, 1996).

In computing the Kolmogorov entropy and largest Lyapunov

exponents, the dynamical evolution of the system is probed. An early study

on K2 entropy during mental arithmetic task undertaken in this group (Lataja

et. al., 1987) could establish the rate of loss of information associated with a

merital task carried out several times over. Other studies conducted in

pathological cases (Lerner, 1996) have shown the lovyering of information
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rate associated with a malfunctioning of the neural system in comparison with

its normal state. The entropy quantification of spatlo-ternporal dynamics

during mental tasks has also been demonstrated (Pezard et. al., 1996). The

Lyapunov exponent, which also characterizes the chaotic nature of the data,

has been computed for EEG recorded under various conditions (Roschke et.

al., 1993) to be positive. While this is an evidence in support of the

supposedly chaotic nature of the system generating the signal, counter

examples are also prevalent (Palus, 1996, 1999) that throw doubt on the low

dimensional chaotic nature of the complex signal.

The chaos conjecture of EEG is based on a finite correlation dimension

and positive Lyapunov exponent (Gallez & Babloyantz, 1991;Albano & Rapp,

1992). The question of whether finite correlation dimension estimates of EEG

signals arise from the chaotic nature of the system or are a reflection of its

behaviour as linearly correlated noise is still open. Surrogate data testing

described in part I of this chapter, was proposed as one way to detect the

presence of nonlinearity and low dimensional chaos in experimental time

series from physiological systems such as the ECG (electrocardiogram), EEG

etc. (Glass, Kaplan & Lewis, 1992; Pritchard, Duke & Krieble, 1995). The

details of the surrogate testing with numerical data has been described in

Theiler et. al. (1992). It was observed in that report that one set of EEG did

not exhibit non linear behaviour; while another did. However invasive studies

of electrographic recordinqs from depth and subdural electrodes in patients

with seizures of mesial, temporal origin exhibited statistically significant

nonlinearities in prominent cortical areas (Casdagli et. al., 1997). The

advocacy of surrogate data testing to distinguish coloured noises from chaotic

processes met with a setback in the results reported by Pradhan and

Sadasivan (1997). In this paper, they conducted surrogate data testing for



124 Chapter 3- Part If

chaotic time series, mixed sine waves, white Gaussian noises, coloured

Gaussian noises and EEG with regard to correlation dimension O2 • Their

results clearly indicated that this test alone might not be a sufficient one for

distinguishing coloured noises from low dimensional chaos. The test failed for

coloured noises of low frequency contents and m)xed sine waves- signals,

which also have low correlation dimensions. The authors observed that in the

case of mixed sine waves, the surrogate testing turned up ambiguous results

not differentiating it from chaotic systems and thus in the absence of other

measures the test could interpret it as chaotic. Hence they concluded that a

limiting or saturating O2 value with embedding dimension may be considered

a prerequisite for identification of chaotic systems. Despite this, the surrogate

method is widely applied to establish the nonlinearity in complex signals and

in the case of EEG has been used to support its non linear nature on various

fronts (Kowalik & Elbert, 1995; Rambouts, Keunen & Stam, 1995).

3.14 On the Threshold of the Big Step

The literature reviewed over the past decade and a half abounds with

instances of application of methods developed within the framework of

nonlinear dynamics to the EEG signal in an attempt to decipher the underlying

process in the brain. While the argument relating to the presence of chaos or

not in human brain dynamics continues to rage, we attempt a nonlinear

analysis of the recorded signal. The nonlinearity present in the microscopic

level of the brain Le. the neurons, gets integrated in a complex manner in its

propagation through the system and is evident as nonlinear traces in the EEG.

Emboldened by such a finding, we embark on a quest to seek signatures of

higher dynamical functions in this complex, stochastic signal using the arsenal

of non linear dynamics and deterministic chaos.
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Time present and time past

Are both perhaps present in time future,

And time future in time past.

Ifall time is eternally present

All time is unredeemable.

--- T.S. Eliot in Burnt Norton.

The knowledge that simple nonlinear systems can have complicated

behaviour has prompted the growth of alternative methods of analysis applied

to the output of such systems within the framework of non linear dynamics

(Parker & Chua, 1987). This development occurred due to the breakdown of

traditional linear techniques~of Fourier transforms, power spectrum analysis

and parametric linear modeling in understanding the structures of such

systems. At times these methods have even led to erroneous interpretation of

the observed behaviour as noise. Against such a backdrop was developed the

toolbox of nonlinear time series analysis to suit the physicists or

mathematicians in studying the apparently random looking data that exhibits

125
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algorithms for the evaluation of the system invariants as also the significance

of each in providing meaningful insights into the dynamics of the system were

elaborated in the previous two chapters. Following that discussion, we

understand that two of the most widely studied topological parameters are

the Correlation Dimension D2 and the K2 entropy. The static geometric
;

parameter D2 refers to the degrees of freedom associated with the system

while the entropy provides an intuitive measure of the information that is lost

during evolution of the system at a given instant and is hence a dynamic

quantity (Ott, 1993). Of late, besides the topological parameters, another set

of parameters characterizing the synchronization phenomenon has been

found to be of importance [Osipov et. al., 1997; Pikovsky, 1984; Rosenblum,

1996] in the case of coupled systems. Synchronization phenomenon will be

dealt with in a later chapter in greater detail. Nevertheless a brief overview is

included here. Synchronization may in general be divided into a number of

classes. The one in which even while the dynamics in time as represented by

the amplitude of the measured signal remains chaotic, the states of the sub­

systems of the complex system coincide due to interaction. This is termed as

'complete synchronization' of the chaotic oscillators (Pikovsky, 1984). Another

approach is based on the overlap of power spectra of the signals from the

interacting systems (Anischenko et. al., 1992); an alternate recent method is

the 'phase synchronization' of chaotic systems which studies the correlation

between the phases of individual systems and an eventual phase locking that

leads to synchronization between them (Rosenblum, Pikovsky & Kurths,

1996). The complex systems in nature most often exhibit uncorrelated

activity in their amplitudes while their phases may be entrained over brief

periods of time. For this reason, the phase synchronization is emphasized in

this analysis, which applies the technique of nonlinear time series analysts to
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a pair of coupled Rossler oscillators in the chaotic regime to study the

dynamical behaviour inherent in such a system.

The analysis is carried out in a systematic manner beginning with (a) a

unidirectional coupling between the nonlinear units and subsequently moving

on to (b) a mutual or bi-directional scenario. The coupled system in the case

of uni-directional coupling contains a coupling parameter, g while there is a

pair of couplinq factors g1 and g2 in the mutually coupled closed scenario. The

parameter g1, which forms the feed forward coupling, may be assumed to be

an internal parameter of the system while 92 the feedback-coupling factor is

considered as the control parameter. This scheme is depicted in figure 4.1 (e

& b).

RI f-4I RH ~

(a)

... RI
g1 ....

RH ~....

g2

(b)

Figure 4.1. Schematic of the coupling modes of the model system considered in the
dynamical analysis. In (a) the unidirectional case, the output of the drive is fed
at a certain fraction to the response while the bi-directional case (b) has each of
the units coupling their output to the other at a specified rate.

In the parameter space of coupling factors the system dynamics is studied by

evaluating the correlation dimension, D2 and K2 entropy. The synchronization

existing between the subsystems may be interpreted as the measure of the

coordination present in the system. The phase synchronization phenomenon
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exhibited by the system is studied in detail and the empirical relation that

may hold between the parameters that characterize the dynamical and

interactive behaviour of the coupled system with respect to the coupling

parameters is inferred.

Noise is an inevitable reality in natural systems. It can be inherently
,

present in the dynamics or appear extraneously as a result of the measuring

process or even due to the external environment (Kantz & Schrieber, 1997).

Hence we incorporate the effect of noise in this case by adding it to the

coupling factor as an additive term thus making the coupling fuzzy in nature

rather than rigid as represented by a constant factor. Noise of various types

at varying levels is added in the couplings and as a final objective; the effect

of noise in the coupled system with regard to the synchronization

phenomenon is investigated.

4.2 Method of Analysis

The Rtissler model (Rossler, 1976) is based on abstract chemical kinetics. The

dynamics of chemical reactions can display the same kind of periodic and

chaotic behaviour that appears in other sciences but the transition from order

to chaos is easier to study as the conditions of the experiments can be readily

controlled. The system under consideration is the coupled Rossler system

(Parlitz et. al., 1996a) described by the flow equations
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a Yi = -Xi - (j)i Zi

a ii = (j)iYi + b Zi + g) (z J - Zi)

where

i, j = 1,2;i '" j

(j)i=1,i=1

(j)j=1.1,i=2

a = O.013,a = O.2,b = OA12;j1 = 5.7
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(4.1)

The Rossler model follows the period doubling route to chaos and the above

stated nonlinear set of equations exhibit chaotic behaviour for the choice of

parameters made in this study. The coupled Rossler systems exist as

independent systems in the chaotic regime in the uncoupled state. The

system attractor in the 3-dimensional phase space spanned by (x,Y,z) is

represented in figure 4.2 for completeness sake.

The coupled systems are simulated numerically and the invariants are

reliably computed by application of algorithms developed and standardized on

model data sets. In the initial case of unidirectional coupling, only the feed

forward coupling is present and the systems form a drive-response set and

hence we have g2=0 and gl=g as the sole coupling factor. While considering

bi-directional coupling, both the coupling parameters come into play. The

equations are integrated by the fourth order Runge-Kutta method with a step

of 0.0005. The variables Yi and Y2 are generated as time series from the first

and second systems for varying values of coupling parameters gj. It is well

known that any single parameter in a coupled (nonlinear) set of equations

u= 1 or i=2) as in Eq. 4.1, would represent the entire characteristics of the

whole system (Abarbanet et. al., 1993). The choice of Yi and Y2 for the two

distinctly different oscillations is made on the basis of this fundamental result.
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Figure 4.2. The Rossler oscillator anra ctor in its phase space spanned by the j variables
x.y.z ,

For convenience, we use the parlance of unidirectionally coupled systems and

name system I as the dri ve and system 1I as the response bearing in mind

tha t in the study of the bi-d irectional case, t he two systems are mu tu ally

coup led and each acts as a response to the drive from the oth er . The coupling

between the systems int roduces nonstationarity in the dynamics and this is

reflected in the vari at ion of the typical t ime scales esti mated fro m the time

series of the outputs. The generated time series after removal of transients

are subj ected to a time delay embedding (Abarbanel et. ar., 1993) and the

02, Kz parameters of the systems are determined by adopt ing the

Grassberger - Procaccia algorithm (Grassberger & Procassia, 1983a,b ) The

coordin ative effect between the individual units due to coupling is Investigated
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by quantifying the synchronization existing between them. The details of this

will be described in a later chapter with special emphasis on experimental

data as obtained from the brain in particular. Nevertheless to maintain

lucidity of narration the essentials of the theory are mentioned here.

Phase synchronization in the system may be defined as the

appearance of phase locking of interacting units even in the absence of

apparent amplitude entrainment (Roseblum, Pikovsky & Kurths, 1996). The

definition of the phase of a chaotic system remains an ambiguous concept to

date and many definitions exist which are followed in accordance with the

context. As is common with complex observed data (Roseblum, Pikovsky &

Kurths, 1996), an analytic signal concept is made use of in this case and the

composite signal is taken as,

Ij/ (t)~ s (t) + i s (t) (4.2)

where s(t} is the actual signal and s(t) is the Hilbert transform of set) given

as,

~ 1 OOf S( r)
s(t) = P. V. - dr

J[of-r

Based on this, the phase is defined as

~ ( t) = arctan ( :tn

(4.3)

(4.4)

A pair of chaotic systems (i/j) are said to be phase locked in the ratio n:m if

at any instant,

(4.5)
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E being a small arbitrary constant. The simplest 1: 1 case of phase

synchronization is investigated by considering the relative phase distribution

of a pair of corresponding variables of the system. The phase synchronization

index is defined as

where

S _ Smax - S
p -

Smax

Nb
S ~ - LPi In Pi

i=!

(4.6)

(4.7)

N·
in which Pi = _I is the probability of occupancy of the ith bin with Ni as the

N

number of points in it, N the total number of points and N; is the total

number of bins. Hence we may write, Smax = In Nb as the normalizing

factor (Tass et. al., 1998).

4.3 The Uni-directionally Coupled System

Two independent Rossler oscillators are coupled so that there is a drive

provided from the first to the second system through a coupling as described

in Eq.(4.1). The strength of coupling is represented by the coupling constant

g, which is scanned through a range of values and the corresponding system

behaviour in terms of the invariant parameters, D2, K2 and Sp is studied. In

determining the parameters as mentioned in the previous section, a time

delay embedding technique is adopted and used in the Grassberger- Procaccia

algorithm. In the time delay embedding undertaken here the singular value

decomposition (SVD) method is followed and the cosrespondlnq eigen value
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spectrum IS as shown in figure 4.3. The average mutual information criterion

(Fraser & Swinney, 1986), a non linear counterpart of the autocorrelation

function is used in the choice of the appropriate time delay and is found to

hold in each case of coupling. A modified version of the Grassberger ­

Procaccia algorithm modified to suit small data sets (Havstad & Ehlers, 1989)

0.9 r----r-----"'T"""----"T"""----"T"""------,
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III
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Figure 4.3. The eigen value spectrum evaluated using SVD in the time series from one ofthe
units in the coupled case to choose an optimal embedding dimension.

is employed for the determination of D2 and K2 for the systems. The

synchronization aspect of the coupled system is investigated and is quantified

by a phase synchronization index, Sp as defined in Eq. 4.6.
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The correlation dimension for the independent Rossler system is

determined to be 1.93 by the use of the algorithm mentioned. This is in

general agreement with the value determined earlier (Schmid & Ounki, 1996)

as 1.89 and the small discrepancy in the estimated and reported values of O2

arise from the finite length of the data set used in the evaluation of O2 , Figure

4.4 gives the variations in correlation dimension, K2 entropy and phase

synchronization factor for the different coupling values.

The O2 for the drive system remains at a fixed value while that for the

response varies as a consequence of the coupling between the two systems.

For values of low feedback, g < 0.5, O2 for the response system varies almost

randomly but beyond a critical feedback value O2 for the drive and response

systems appear to coincide. A close look at the plot of Sp vs. g reveals that

this phenomenon occurs at the value of g where the subsystems begin to

synchronize. Thus O2, K2 and Sp for the response system coincide with those

of the drive asymptotically with respect to g. It is also interesting to observe

that the asymptotic coincidence of these parameters for the drive and

response occur more or less at the same g value of "'0.5. This establishes the

underlying fact that synchronization between the systems translated into

attractor space, is a convergence between the individual attractors of the

subsystems with regard to these invariants.

The entropy, K2 exhibits a random variation in the response system

initially but beyond a certain coupling it becomes identical with the K2 value of

the drive system. This phenomenon seems to suggest that flow of information

from the coupled systems occurs in an identical manner. The asymptotic

behaviour of the static and dynamic parameters implies the system

parameters take on finite and definite character as the coupling parameters

increase. Such a case usually does not occur in biological systems and thus
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simulating biological systems using nonlinear oscillators is beset with such

limitations.
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Figure 4.4. The variations in D2, K2 and Sp with the coupling factor g for a unidirectionally
coupled Rossler system. J refers to the drive system and 2 to the response.

4.4 The Si-directional Coupling Scenario

In the system dynamics of a pair of bi-directionally coupled oscillators as in

figure 4.1 (b), the coupling parameter 91 is kept fixed while the feedback

factor 92 is scanned through a range of values corresponding to very weak
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feedback from the response to the drive to that giving complete feedback i.e.

gz'" 0.1% -100%. The whole procedure is repeated after raising gl to the next

higher order of magnitude. The system behaviour in the parameter space of

(gl, gz) with g1 varying from 0.0001 to 1 is studied by analyzing the

variations in Dz, Kz and Sp of the subsystems. The two systems are embedded

in their respective phase spaces and the topological parameters

corresponding to each of the systems are determined in these spaces. In

general, once the systems are synchronized, anyone of these spaces

effectively acts as the phase space for the coupled system (Abarbanel, 1996).

However, in this case, we are focusing on studying the evolution of the

subsystems in an independent manner, under the effect of coupling. Hence,

with an embedding dimension of 5, each of the subsystems is embedded in

the space of lagged coordinates and D2and K2are evaluated.

Figures 4.5(a-e) depict the variations in Dz, Kz of the constituent

systems as well as changes in Sp of the composite system as gz is varied

from 0 to 1 for fixed values of g1- In 4.5(aL(b), .. (e); the g1 value increases

steadily form 0.0001 to 1. However, there is great deal of parallelism in the

behaviour beyond a threshold g2 value of 0.5. The phase synchronization

index, Sp becomes saturated to a value around 0.9 and the saturation starts

for g2"'0.5. This implies that the systems get synchronized almost perfectly

beyond g2 "'0.5. Further, it may be noticed that as the value of forward

coupling gl is steadily increased to higher orders of magnitude, the

parallelism between the constituent systems sets in at earlier values of

threshold feedback coupling. This effect is noticeable when compared with the

unidirectional case as well in which synchronization is decided by a single

coupling factor. This is the cause for the delay in the onset of synchronization
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Fig 4.5(e)
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Figure 4.5 The plots exhibiting variations in D], K] and Sp with the feedback fraction. gl
for a mutually coupled system with gradually increasing feed forward coupling.
g,. In (a) gl'=O.OOOJ. (b) g,=O.OOJ, (e) g,=O.OI. (d) g/=O.J and (e) g,=l.

in the unidirectional case. Moreover, once synchronization is achieved the

information loss seems to be identical for both systems. Hence, the crucial

factor in a mutually coupled set of Rossler oscillators, the synchronization, is

the feed forward coupling percentage and the onset of the synchronization

phenomenon occurs at an earlier feedback coupling as the feed forward

parameter is increased. The individuality of the attractors is increasingly lost

as this parameter is steadily increased. The lower values of D2 imply that the

coupling in effect brings down the number of independent variables required

to modulate the dynamics of the system. In the attractor space, the variation

in D2 may be pictured as an 'expansion' or 'shrinkage' of the original attractor

as the control parameters vary. In general, weak cwpling tends to lower the
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dimensionality of the system. The point of interest is that for the case with

g1"'0.001, the value of Sp '" 0.6-0000.7 sets in when g2 is in the interval 0.3

s g2 ~ 0.4. The parallelism in D2 and K2values of the drive and response sets

in only about g2 ~ 0.6. This also corresponds to the region of strong phase

synchronization as indicated by high Sp value >- 0.8-0.9. At a higher gl= 0.1,

Sp '" 0.8 at g2 =0.4 beyond which the variations in the correlation dimension

and entropy for the two systems follow identical variations. Thus the

coincidence of the topological parameters for the coupled oscillators as well as

strong phase entrainment between them sets in simultaneously at critical

values of the coupling parameters. While phase synchronization by itself does

not imply coincidence of topological parameters at sufficient values of

coupling, strong phase synchronization is followed by an identical behaviour

of the D2 and K2 parameters of the coupled subsystems.

4.5 Noise in the Coupled System: Effect on Synchronization

The study to this stage has been concentrated on deriving the dynamical

aspects of a coupled Rossler system in its characteristic coupling parameter

space depending on whether it is a uni directionally or mutually coupled

system. Taking into account the fuzzy nature of coupling factors, we

incorporate noise at specified levels into the coupling. The effects on the

behaviour caused by the randomness due to the presence of noise in the

system are analyzed. In this study, noise at a pre-determined level,

represented by k is introduced into the system in the form of an additive term

to the coupling factor g in the unidirectional case. The effective coupling in

such a situation is (g+krn) wherein rn is the noise added to the system at a

percentage level k. An identical noise factor is added to the feedback

coupling, g2 for the mutually coupled system. The analysis is extended to
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include three t ypes of no ise- (a)normally dist ributed noise (N ml. ), (b)

uniformly dist ributed noise of mean 0 (Unif. 0.) and as a special case, (c)

unifo rmly distributed noise of fini te me an (Uni f .) . The system respon se in

each case as contained in th e synchronizat ion is studied .

The normally dist ributed noise with zero mean and un it variance when

introduced into the coupled system is found not to affect the behaviour to any

great extent . A com parison between the noise free syste m and that with no ise

int roduced, can be achieved by arbit rarily choosing a thre shold of pha se

synchronization at Sp=O.S. With this cri terion, we may say phase

synchronization sets in at the coupling factor 9 at wh ich Sp tends to 0.5 in the

unidirectional case. Tran slating to th e bi· direct iona l scenar io, synchronization
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Figure 4.6. The distribution of the relative phase difference in the weakly coupled sys tem
with g /""O.OOOI and gr - 0.001. The additi ve noise offinite mean is added to a
level of(a) 1% and (b) 30%
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is stated to occur at that value of feedback coupling g2 for a specified gl at

which Sp reaches a value of 0.5. Moreover, in the evaluation of phase

synchronization, we have taken into account the random phase slips that may

be introduced by the strong noise added to the system. We determine the

distribution of the relative phase as in (Shafer et. al., 1999, Rosenblum et.

al., 1998) and find that in cases where there is no phase entrainment

between the systems the distribution is flat while phase entrainment gives

rise to a unimodal distribution. Figure 4.6 exhibits plots of the relative phase

distribution in the bi-directionally coupled system at a noise level of 1% that

produces no apparent phase entrainment at low coupling parameters as

compared to that at a high noise level of 30% that gives rise to significant

phase entrainment even when the systems are very weakly coupled.

With a noise level of k = 70%, normally distributed noise causes the

uni-directionally coupled systems to synchronize around g=0.25 which is the

g value at which the noise free system synchronizes as well. At lower values

of coupling, the noise does not cause any significant change in the system

behaviour. Identical behaviour is observed in the presence of uniformly

distributed noise with zero mean. Figure 4.7 gives the plot of Sp vs. g for the

uni-directional system with the three different types of noise mentioned

above added at the constant level of k = 70%. The plot reveals the interesting

phenomenon of synchronization at low coupling values in the system induced

when uniformly distributed noise of finite mean is added to it. It is observed

that Sp"'0.65 occurs between the drive and response systems even when the

coupling between them is as low as 0.001. However, once the systems

synchronize, Le. Sp beyond 0.5, the noise seems to play no significant part in

the system dynamics. The behaviour exhibited by the system in the absence

and presence of noise beyond the onset of synchronization is almost identical.
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Figure 4.7. The synchronization index, Sp versus coupling. g for the uni directionally
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additive uniform noise offinite mean, Unif.O. to additive uniform noise ofzero
mean and Nml. to Normally distributed noise present in the system.

The plot in figure 4.8 gives the synchronization values against the

coupling for the mutually coupled system for a typical case with feed forward

coupling gl = 0.1. In this case, too, the uniform noise of finite mean causes

the systems to synchronize even at weak coupling levels. A probable reason

for this is that at high enough noise levels k, the coupling g gets added to the

mean noise level to form a higher coupling in general, at which the systems

are in synchrony in the noise free state. This is substantiated in figure 4.10,

which shows the behaviour of the system in the presence of uniform noise of

finite mean at different noise levels. It is c1earl't seen that the system
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synchronizes sooner at higher noise levels as the coupling parameters are

raised. Moreover if in the noise free case, the system was synchronizing

faster (Le. at lower couplings) then in the noisy state for the same coupling

strengths, the noise level required to produce synchronization is lower.
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Figure 4.8. The effect of different types of noise at level k =70% in a mutually coupled
Rossler system on the synchronization as a function ofthe feedback coupling, g;
for a typical case offorward coupling, gJ=O.l.

Nevertheless/ the presence of phase synchronization by itself does not ensure

that the dynamical parameters of the subsystems are coincident. This is still

critically dependent on the coupling as evidenced in figure 4.9. Finally the

effect of varying noise levels on the synchronization between systems with

different feed forward coupling factors 91 is shown. Figure 4.10(a) plots the
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Figure 4.9. The variations in the parameters Dz> Kz and Splor the coupled system with g/=
0.0001 and gz =0.001 with additive noise at k=70%. The noise added is uniform
with finite mean, Unif The Dz, Kz coincidence occurs only beyond critical
values offeedback coupling even though the synchonization is high at very weak
coupling.

variation of synchronization for very weak forward coupling, to a moderately

stronger coupling gl = 0.01. It is clear that in the latter case, since

synchronization occurs sooner in the noise free state, a noise level of 30% is

sufficient to induce synchronization in it as compared to the case with lower

feed forward coupling.
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The dependence of phase synchronization on the coupling factor g2 in the
presence ofvarious noise levels. k in the case ofuniformly distributed noise with
finite mean for the mutually coupled systems at two feed forward coupling
values. (a) gj=O.OOOl and (b) g/= 0.01.



148 Chapter 4

On the whole, the coupled Rossler system appears to be unaffected by

noisy fluctuations in coupling. The normal and uniform noise with zero mean

seem to produce no ill effects in the system with respect to the

synchronization. Besides, uniformly distributed noise with finite mean

apparently aids the system to synchronize at weak coupling.

4.6 Conclusion of the Model System Analysis

In this study, the effects of coupling on attractor dimension and coordination

of a pair of coupled Rossler oscillators have been considered. Coupling two

independent systems produces a variety of phenomena that throw light on

the underlying dynamics of the system. The coupled systems are termed the

drive and response and the connection between these is established through

suitable factors. The correlation dimension (D2) estimation reveals the

variation of the corresponding parameter for the two systems in a random

manner about the individual system D2 value. Weak coupling in general

lowers the computed correlation dimension, D2 of the response and drive

systems in a bi-directionally coupled scenario; thus minimizing the number of

degrees of freedom required in specifying it. In the case of the neural system,

millions of neurons interact in a complex manner at any instant to generate

an output. In spite of there being innumerable variables in the system, a

dimensional analysis reveals the dimensionality of the brain to be around 8­

12 (Lutzenberger et. al., 1992; Lerner, 1996). This agrees with the result

obtained in the present case of the coupled nonlinear oscillator that shows a

lower dimensionality. This observation points to a possibility of modeling

complex systems like the neural system as a network of coupled nonlinear

oscillators.
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The main interest is in the synchronization effect produced by the

coupling. For a particular range of coupling parameters, we have identified a

regime wherein the phases are entrained strongly. The strengths of coupling

decide the point at which the systems lose their independent nature and

synchronize. The onset of strong synchronization between the coupled units is

translated into a coincidence of the invariant parameter D2 of the individual

systems. Once the systems synchronize, we may infer an overlap of the

individual attractors with respect to the D2 and K2 parameters. The existence

of a mathematical relation between the topological invariant D2 of the

subsystems and the phase synchronization index, Sp that represents the

coordination of the global systems suggests the underlying interdependence

of these seemingly different aspects of the coupled systems. The system

behaviour in the presence of noise suggests that the system is robust against

the randomness that may be produced by most types of noise with a flat

spectrum. However the system responds favourably to uniform noise with a

finite mean in the sense that the noise induces the coupled systems to

synchronize even with weak coupling. This does not mean a total coincidence

of the topological parameters of the individual systems at very weak coupling.

The coupled sub-systems essentially act as two independent systems albeit

with a phase entrainment.

The time series data is only a manifestation of a multitude of

interdependent factors giving rise to it. It has been proposed that interaction

in the human brain generates a large number of attractors specified by

various characteristic parameter such as embedding dimension ci' attractor

basin B j , generalized metric dimension D iq , generalized entropy Kiq and

Lyapunov constant Aiq / Lyapunov function where i is the attractor index and

q the generalization index. This is a pointer to the fact that the
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interconnections between the neurons may be likened to a set of coupled

nonlinear oscillators and the behaviour may be modeled based on these. The

modeling of the neuronal function by using coupled Hodgkin-Huxley equations

(Yoshinaga et. al., 1999) is a prime example of this idea in practice. Other

attempts have been in simulating the observed characteristics of human EEG

using neural network models in which the interacting units are nonlinear in

nature with time delayed interactions built into the system (Bondarenko,

1994). Considerable success has also been achieved by the Freeman group

(Kay et. al., 1995) in their modeling of the rat olfactory cortex using coupled

oscillators. The present system has the advantage of being continuous in

nature thus being capable of mapping characteristics of a real system.

Moreover the presence of many parameters for fine tuning and incorporating

multiple couplings makes it flexible for use in modeling complex systems in

which innumerable variables may be operative at a given time making it high

dimensional in nature.

The present model analysis was undertaken as an exercise in which

tools of nonlinear time series may be applied to explore the dynamics of a

coupled system. It throws up many interesting and significant results

concerning the system attractor as well as coordination induced by coupling in

noisy as well as noise-free cases. These can be used in suitably designing

models for complex dynamical systems. This analysis also exhibits the

emergence of collective behaviour when we consider two or more oscillators

coupled together with feedback-feed forward mechanisms operative. The

lowering of the coupling factor, g2 for synchronization to occur in the closed

case at higher feed forward factors may be thought of as a threshold lowering

for the synchronization phenomenon. This fact has a far-reaching implication

in designing artificial neural networks (ANN). Feed back in the design makes
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the ANN a recurrent one. The ANN can be trained starting with low feedback

coupling strengths and as the number of layers in the network is increased

the observation will help in optimizing the connection strength.

The possibility of noise-induced coherence in complex systems has

already been discovered in some systems. Work presented in this chapter

also reveals such a possibility of noise-induced patterns in coupled nonlinear

systems. One has to look into this for more details to check the possibility of

occurrence of stochastic resonance in such a complex system.
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Time is one of the principal forms of the Supreme, Immortal, Unembodied Brahman. He
who worships Time as Brahman. from him Time withdraws afar.

--- Maitrayani Upanishad IV, 6

The human brain is a nonllnear, non-equtltbriurn, stochastic and

thermodynamically open system in which feedback - feed forward processes

are operative. This conclusion was arrived at after a lot of meticulous

research in this field. Hence to understand the collective dynamics of such a

system, it is essential to know the timescales involved at the various stages

of the multifold complicated process. The understanding of the brain

dynamics has been of interest over the past several years by application of

tools from the linear as well as non linear dynamics. But often enough the

analysis has glossed over the time scales concept characteristic of each sub

process activated in the generation of the composite complex process.

Prigogine (1962) was probably the pioneer in introducing the concept of time

153
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scales in the dynamics of a system in developing a theory of non-equilibrium

statistical mechanics, which was given a stronger mathematical formulation

by Balescu (1975). Pratap (1999) has carried out such a formulation for the

synaptic transduction process by taking into consideration the relevant time

scales of the system. The brain being a nonlinear thermodynamically open

system, a meaningful theoretical analysis of its dynamics can be carried out

only in the framework of non-equilibrium statistical mechanics.

5.1 Time Scales in the Neural System

The objective of the thesis is the investigation of bran dynamics during

various mental states by analyzing the time varying electroencephalogram

(EEG) signals using tools adopted from nonlinear dynamics and deterministic

chaos paradigm. It is however imperative to have an understanding of the

processes that go into the generation of electrical signals within the cerebral

cortex by the action of a large number of neurons. The action potentials

generated by the neurons are integrated at various stages of propagation

from the sensory unit to the central nervous system (eNS) and back to the

action muscle. These generate collective modes that get recorded as EEG on

the scalp. A simple addition of the individual amplitudes of neuronal firings

cannot reproduce the observed characteristics of EEG. Hence the integration

process should be an involved mechanism. Further it has been found that the

electrical characteristics of the action potential are quite different from those

of EEG. While the characteristic time scale of the EEG is of the order of 0.1

sec., that of the action potential is '" 1 msec. The difference of a factor of 100

between the two time scales implies the presence of a wide range of time

scales in the dynamics. Hence the construction of a general time scale starts

with identifying different characteristic parameters in neuron dynamics. A way
:
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to derive the time scales based on the relevant parameters involved in the

dynamics (Indic et. al., 1999) is portrayed below.

The collective effects in the cortex are studied by considering the

dynamics of the individual neuron. The most significant feature in the neuron

dynamics is the firing potential ~, which is the basic unit of information

transmitted along the nerve fibre. In the neural firings a potential change is

generated due to variations in Sodium and Potassium ion permeabilities of the

membrane of an axon. It is known that there exists a resting potential of -80

mV and a threshold potential -50 mV. If the stimulus induces a potential

difference across the membrane less than the threshold, there is no firing.

Once the stimulus strength is sufficient to exceed the threshold, an action

potential of about 40 mV is generated. The peculiarity of such a firing is that

the amplitude of the potential remains constant while the firing frequency (u)

varies depending on the strength of the stimulus. The fact that the signal is

not attenuated as it travels from one point to another both spatial and

temporal indicates the non linear, non-equilibrium nature of the process

generating it. Also there are two distinctly different classes of neurons namely

inhibitory and excitatory ones. While the former class inhibits the firing

process, the latter ones are those that result in excitatory mechanisms. Thus

the process is distinctly different from the usual electrical conduction in a

cable. The firing in myelinated axons takes place at the various nodes of

Ranvier in a sequential manner. The velocity of propagation (V) forms another

important parameter in the neuron dynamics. The electrical signals

propagated along the length of the axon has a finite measurable speed and is

about 100 m/sec. Further the system has feedback feed forward processes

operative adding to its complexity.
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The firing frequency is yet another important parameter and is the

inverse of the refractory period of the neuron, which is the interval between

two consecutive firings. It is usually about 1000 Hz and is inversely

dependent on the stimulus strength. If two successive stimuli separated by a

certain time interval are applied to the nerve flber, the behaviour of the fiber

will depend on the refractory time. Immediately after a nerve impulse has

been initiated, the given part of the fiber is in the absolute refractory state,

i.e. it cannot be excited again. This is followed by a relative refractory state in

which the threshold potential is somewhat increased. The same neuron can

have different refractory times at different instants, but they all have a

greatest lower bound. The duration of the entire refractory time varies from

one to a few milliseconds.

The action potential is generated by the action of electrical species

such as ions of sodium, potassium, calcium etc., and these are characterized

by an electrical charge (e) and ion mass (m). A signal received by one nerve

or a group of nerves will be communicated to a large number of nerves by a

cascading process through the axonal tree, the branches of which end in

synapses connecting them with other cell bodies and dendrites. This cascade

process will however not connect all neurons in the systems but will end up

with the distribution of regular tubes and stripes. Hence one can define a

number density (n) that represents the number of neurons per unit volume.

This can also be defined as the fraction of affected neurons to total neurons in

a unit volume. The chemical processes play a significant role in signal

transmission by changing the electrical conductivity of the medium. This is

represented by a non-dimensional parameter, EO, representing the

conductivity. It may however be realized that this by no means completes the

set of parameters that constitute the dynamics in the brain. There could still
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Power of M=>

be many more processes unknown at this point of time, due to interplay of

various parameters. Hence the above set may be considered an incomplete

set, which is currently known. The above parameters along with the numerical

values that go into the construction of a general time scale are given in Table

5.1.

Using these parameters, a dimensional analysis following Balescu

(1975) can be performed to obtain the general time scale of the process in

the following manner.

T=~ivjqkvPmrns

=(MLT-2 ) il2 (LT-l ) j (ML3 T-2 ) k/2 (T -p )(M r )( C3s ) (5.1)

Equating powers of M, Land T on both sides we have

i k
-+- + r =0
2 2

Power of L =>

Power of T =>

i . 3 k 3 0-+ j +- - s::
2 2

-i-j-k-p::l

(5.2)

There are only three equations with six unknowns. So expressing p, rand 5 in terms of

i, j and k, we get,

p = -i - j -k-1

i k
r=----

2 2
3. 1. 1 k

S=--l+-j+-
2 3 2

(5.3)
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Table 5.1: The relevant parameters in the neural system with typical numerical values for each.

Name Symbol Dimension Order of magnitude

<\l (MLT -2 )1/ 2 10-1 volts
Action potential

V LT -1 100 m/seconds
Propagation speed

v T -1 1000 Hz
Firing frequency

q (ML3T -2) 1/2 1.6 x 10 -19 Coulomb
Ionic charge

m M 10 -27 Kg
Ionic mass

n L -3 2mM
Ionic density

60 - -
Medium effect

Ion plasma frequency
Cl) 2 r 2

103 z 1l- 1/ 2 n 1/2 rad
p

tsecsquare

Substituting Eqs. (5.3) in Eq. (5.1) a general time scale is obtained as

T=lv-1 (5.4)

where r is a dimensionless quantity defined as

(5.5)

Expressing i/2 = x, j = y and k/2 = Z, Eq. (5.5) takes the form,
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(5.6)

In Eq. (5.6), x, y, z can take real or complex values. There could exist

complex frequencies since the system is nonlinear. But for linear systems, x,

y and z are real, rational numbers.

A general time scale T can be constructed as

T = rv:' = a X bYC
Z v-I (say) (5.7)

The dimension less quantity, r consists of three parts, the first one

depends on the electrodynamic variable $ besides the dynamic variable firing

frequency. This is the resistance per unit length per unit time. The second

term consists of only mechanical variables and is the ratio of the distance

traveJed by the signal during a refractory period to a characteristic length

defined by n~. This signifies the transport process in the nerve fibres that

carry the Signal from one portion to another. In the third term however one

can write (&OQ2i v') as (&0(1);,(,) with % as the ion plasma frequency.

The third term is the ratio of the square of the plasma frequency to the firing

frequency and this characterizes the collective behaviour. Since n represents

the neuronal density, this is the collective activity in which a large number of

neurons participate.

Thus Eq. (5.7) consists of three parts:

a: ratio of electric frequency to firing frequency.

b: ratio of mechanical frequency to firing frequency.

c: ratio of plasma frequency to firing frequency.
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(5.8)

The indices x, y and z are natural numbers. They can be real or

complex, rational, irrational or integral. If they are complex, the process can

have time dependent amplitude and phase. If they are rational, the

frequencies are compatible while if the frequencies are irrational, they are

incommensurate. From Eq.(S.7) it is very clear that there exist three fold

infinite time scales in the system. This point is very important in the analysis of

EEG signals. Further, this clearly shows that the electrical, mechanical and

plasma frequencies can be independent. However they can also get coupled

by the choice of x, y and z. By proper choice of variables x, y and z the

relevant time scales corresponding to the three different known processes can

be retrieved and they are derived below.

1. Sodium Potassium pump: The Sodium Potassium pump depends on the

threshold potential and hence on $. Since it is a chemical process depending

on the number of sodium ions going in and potassium ions coming out during

the depolarization phases, the time scale should depend on mass and number

density, as well but not on the firing frequency. To get the relevant time scale

corresponding to this process, one must choose y = z :;;;; 0 and x = -1/2. Thus

relevant time scale for this process is with $ rv millivolts and n rv 100

( )

YJ

Tp = ~2nJj

2. Synaptic transduction: The synaptic transduction process depends on

the dielectric characteristics of the synaptic cleft as also on the speed at

which the signal arrives at the pre synapse as well as the threshold potential.

However, there is no explicit dependence on the number density, since there
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is randomness in the injection of neurotransmitters in the cleft due to the

discharge of vesicles. A time scale is constructed by a proper choice of x, y, z

viz. X= -y = z = -1/2. Thus the time scale is obtained as

(5.9)

3. Collective modes: At various stages in a neural system, there are

integration processes operative. The threshold potential is a consequence of

the integration process. In a single neuron or in the case of synaptic

transduction the process is always collective in nature. Also in the case of EEG

signals, the process is indeed a collective one, which does not exhibit all the

apparent regularities seen in single neuron firing sequence or the signal

transmission from a pre synapse to a post synapse. If we consider this as a

self-consistent process, which is in general responsible for the collective

modes, then the relevant time scale is the interaction time scale,

1'; =(.~·oaJ~th (5.10)

and this is obtained by setting x = y = 0 and z = -1/2.

Thus different time scales suitable for different mechanisms can be

derived from the general time scale. There may be other relevant parameters.

However, in this formulation only some of the known ones are considered. In

the absence of an under,standing of neuronal activities one cannot stipulate

the domain of x, y and z. Hence, by substituting values of x, y and z

arbitrarily a few more time scales are derived and are presented in Table 5.2.

It is evident from the table that there exists a large class of time scales with a

wide range of magnitude. The different values of ionic density would give
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different values of x, y and z. However, in this construction the ionic density

is taken as 106 rrr'.

Many authors in studying the dynamics of human brain have ignored

the role of time scales. Parikh and Pratap (1984) developed an evolutionary

equation in the framework of nonequilibrium statistical mechanics developed

by Prigogine and his Brussels School in which the significance of time scales

has been stressed. Further Pratap (1999) formulated a theory of sensory

transduction considering the interaction time scale.

Table 5.2: Some typical time scales in the system for specific values ofx, y, Z.

Order of
Name x y z Time scale

magnitude

Mechanical 0 -1 0 (vnYot 10-4

Refractory 0 0 0 v-1 10-3

Electromecha-
~ 10 71/4 -1/2 -1/4

[hqvn%]nical

Electromag-
1/2 0 -1/2 (hvnY,]

10 19

netic
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(5.9)

is randomness in the injection of neurotransmitters in the cleft due to the

discharge of vesicles. A time scale is constructed by a proper choice of x, y, z

viz. X= -y = z = -1/2. Thus the time scale is obtained as

li
T, =(m~ol@/)'
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the integration process. In a single neuron or in the case of synaptic

transduction the process is always collective in nature. Also in the case of EEG

signals, the process is indeed a collective one, which does not exhibit all the
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transmission from a pre synapse to a post synapse. If we consider this as a

self-consistent process, which is in general responsible for the collective

modes, then the relevant time scale is the interaction time scale,

t; = (coaJ;th (5.10)

and this is obtained by setting x = y = 0 and z = -1/2.

Thus different time scales suitable for different mechanisms can be

derived from the general time scale. There may be other relevant parameters.

However, in this formulation only some of the known ones are considered. In

the absence of an understanding of neuronal activities one cannot stipulate

the domain of x, y and z. Hence, by substituting values of x, y and z

arbitrarily a few more time scales are derived and are presented in Table 5.2.

It is evident from the table that there exists a large class of time scales with a

wide range of magnitude. The different values of ionic density would give
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different values of x, y and z. However, in this construction the ionic density

is taken as 106 rn",

Many authors in studying the dynamics of human brain have ignored

the role of time scales. Parikh and Pratap (1984) developed an evolutionary

equation in the framework of nonequilibrium statistical mechanics developed

by Prigogine and his Brussels School in which the significance of time scales

has been stressed. Further Pratap (1999) formulated a theory of sensory

transduction considering the interaction time scale.

Table 5.2: Some typical time scales in the system for specific values ofx, y, Z.
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The concept of time scales is crucial to the development of the theory

nonequilibriurn statistical mechanics of brain. Practically, a direct consequence

of the presence of such innumerable time scales in human brain dynamics is

the nonstationarity of the signal, which affects the computation of invariant

parameters characterizing the attractor of the dissipative nonlinear system

under study.

5.2 Unfolding of Neural Attractors - A Time Scales Viewpoint

Knowledge that the brain dynamics is complex, combining various sub­

processes depending on the various time scales, makes imperative the

identification of relevant time scales as well as understanding the effect of
,"

different time scales on the estimation of various parameters representing the

system (Indic et. al., 1999). The presence of different time scales and the

major role they play on the information content of EEG analyses has been

stressed in a recent communication (Indic, 1999). It was shown that the

presence of multiple time scales in the dynamics is probably the reason for

the computed parameters such as Oz and Kz being slowly varying functions of

time. Hence/ the study of these parameters must always be conducted by

keeping in mind the idea of numerous, probably overlapping time scales in

the dynamics of the brain.

In non linear time series analysis, the correlation dimension, Oz which

is one of the ergodic parameters commonly used to characterize a brain state

is found to saturate to a stable value at high enough embedding dimensions.

The evaluation of a stable value for this parameter is beset with a large

number of practical problems such as finite data size, noise etc. (Rapp 1993,

Abarbanel et. al., 1993) and these have been discussed in some detail in an

earlier chapter. Not withstanding this, the efficacy of the parameter as a
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characterizing one for EEG segments from various mental states is more or

less established and widely accepted. The most popular time series method

for O2 evaluation follows the Grassberger-Procaccia (G-P) algorithm or a

variant of it. This is based on the Taken's delay embedding method and

depends crucially on the embedding dimension as well as the time lag chosen

in constructing the vectors of the pseudo phase space of the system.

A short coming of the G-P approach of evaluating O2 lies in using the

information for sufficiently large embedding dimension m while discarding any

information for low m. Schmid and Ounkii (1996) introduced the concept of

the unfolding dimension by considering bl-pararnetrtzation of the curve of O2

as a function of the embedding dimension, m. In their study, the bi­

parametric analysis displayed results in support of the idea that it is possible

to relate human EEG to the individual from whom it is obtained and this

relation remains stable over time. Also this analysis exhibited a difference

between different functional states of the brain. The parameters satisfied the

pre-requisites of intra-individual stability as diagnostic markers on a per

individual basis.

In the present case, we make use of the fact that the unfolding of the

system attractor at each embedding dimension leading to saturation in O2

depends crucially on the time scale chosen in the delay embedding. The study

undertaken here looks into the effect of varying time lags in the embedding

on the unfolding behaviour of the neural attractors in different mental states.

The time lag in the delay embedding is an estimate of the time scale of the

signal arising from the complex interactions taking place within the system.

Thus such an analysis is actually a design to investigate the variations in the

unfolding nature of the neural attractors resulting from the different dynamics

followlnq each mental state.
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5.2.1 Method of Analysis
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The correlation dimension provides information about the degrees of freedom

of the attractor in the phase space of the complex system and for

neurosclenttsts it is a measure of potential clinical importance. In the pseudo

phase space of the system, the EEG signal is subjected to time delay

embedding (Abarbanel et. al., 1993). If v(t) is the EEG signal sampled

regularly at the rate 's, we can reconstruct an m-dimensional space as

V(t) = [v(t), v(t + id)' v(t + 2id ) , " ' , v(t + (m -l)rd)] (5.11)

wherein 'd is the chosen time delay. N is the total number of data points

used for the embedding and m is called the embedding dimension. In order to

evaluate the correlation dimension in this m-dimensional space, the

Grassberger-Procaccia (G-P) algorithm (Grassberger & Procassia, 1983)

modified for finite length of the data set (Havstad & Ehlers, 1989) is

employed.

Evaluation of correlation dimension, O2

One of the . popular methods for choosing an appropriate embedding

dimension, m is that of false nearest neighbours (Abarbanel, et. al., 1993).

Such methods are increasingly used in this line of work to avoid the tedious

computation involved in repeatedly estimating D2 at successively increasing

embedding dimensions. For sufficiently large values of m, D2(m) saturates.

The value of m at which the saturation sets-in is the embedding dimension of

the system and the saturated value give the correct estimate of D2• However,

the estimation depends also on the time lag t'd involved in the reconstruction.
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The method to arrive at the correct value of time lag is to repeatedly

estimate the measure at successively higher fags and choose the optimum

value at which the value of the parameter saturates. However the method

based on the linear technique of auto correlation function (ACF) and its

nonlinear counterpart, average mutual information (AMI) (Fraser & Swinney,

1986, Martinerie, et. al., 1992) have been used to decide on a suitable time

lag. In the case of ACF, the time at which the function e-folds to its initial

value or the first zero crossing point is chosen as the time lag. On the other

hand, for mutual information, the criterion of choice is the time point of the

first minimum of the function. If such a choice (Z"d) is made; the time scales

lying in the interval (0- Z"d) are not taken into account and this may affect the

evaluation of dynamical parameters.

The unfolding dimension parameter

The correlation dimension evaluated at successively increasing embedding

dimension at a certain time delay gives a curve D2(m) and a bi-pararnetric fit

has been proposed for this curve (Schmid & Dunkii, 1996). This fit is given as,

(5.12)

where m* is a parameter known as the unfolding dimension and bo is the

asymptotic value of D2(m) . The unfolding dimension is a measure of the rate

at which an attractor unfolds with increasing m. In usual practice, m* is

evaluated by fitting the curve of D2(m) against increasing embedding

dimension at some optimal value of the time Jag (Dunkii & Schmid, 1998).

The question of how the numerous timescales existing in the brain contribute
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to the attractor unfolding is yet to be addressed. As a case study we

determine the correlation dimension D2(m) of the EEG data for progressively

increasing embedding dimensions as also for varying values of time delay 'd.

In each case, a bi-pararnetric fit is made to D2(m) and the unfolding

dimension parameter m* is determined. The analysis leads to an insight into

the behaviour of the unfolding dimension, m* as a function of time. The study

also throws light on the effect of active time scales in the system on the

dynamics of the brain characterized by the correlation dimension.

5.2.2 Data Specifications

In this study we have analyzed the EEG data collected from (a) normal

persons in eyes closed condition (EC) and (b) an epileptic patient during a

period of non-epileptic discharge (NED) as well as during an epileptic

discharge (seizure) (DED). In each case, 5 patients are studied and the

results presented are representative of the whole group. During the

recording, the EEG machine was coupled to a PC using an analog to digital

converter (DT- 2841) and an array processor (DT-7020). The acquired data is

sampled at a rate of 512 samplesjsjchannel and filtered using a FIR digital

filter of order'150 with a bandwidth of 0.1-32 Hz. Visual screening of data is

carried out to identify artifacts.

The EEG data under epileptic condition were collected from subjects

who volunteered who were known epileptics with uncontrolled seizures in the

age group of 20-25 years. Despite anticonvulsant medication, the subjects

showed seizure discharges in their EEGs. The raw EEG signals were filtered

through a band pass (0.05-32 Hz) fourth order Butter worth filter twice

cascaded. The filtered data was found to be suitable for visual analysis by the

neurologist. The records were scored as definite epileptic discharge (DED),
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probable (PED) and non-epileptic discharge (NED) independently by two

experts who differed in their scorings by less than 5%. The differences were

resolved by discussion and a consensus rating was assigned to the

discrepantly rated epochs.

5.3 Analysis of the Time Scale Effect

The EEG data is subjected to time delay embedding by choosing a low value

of the embedding dimension m. The time delay, 'd is initially chosen at a low

value. The correlation dimension is determined at each choice of 'd increasing

m from 2 to 16. In each case the bi-parametric fit leads to a value of the

unfolding dimension, m*. The value of 'd is then varied to a slightly higher

value and the process repeated. The behaviour of m* with time lag is studied.

5.3.1 Normal Eyes Closed Condition

It is observed that for the eyes closed condition; the unfolding rate increases

with increasing time delay and finally reaching saturation. The analysis is

carried out for the EEG data obtained from the left frontal (Fp1) region. For a

sample data set of 1024 points, the ACF evaluation gives the time

corresponding to (l/eyth of the initial value is found to be t' (ac) = 10 while

characteristic time scale calculated from AMI is t:(am) = 14. This particular state

is characterized by a D2 = 6.018 evaluated at the AMI time lag and

embedding dimension 15. The correlation dimension D2(m) is evaluated for t'd

varying 1 to 30, chosen randomly and in each case, m* and bo are evaluated

from the exponential fit to D2(m). Figure 1 shows a few D2(m) curves

corresponding to certain typical time delays.
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Figure 5.1 A set of curves of the correlation dimension, D2(m) as a function of the
embedding dimension, m for various values of the tag time evaluated for Fp1
region under eyes closed condition.

The bi-parametric fit is made to each of the curves for varying values

of time lag and the fit parameters bo and m* are tabulated in table 5.3. It is

seen that as time rag increases beyond 30, the vectors get projected onto

totally uncorrelated directions giving very high and slightly erratic values of

D2 . For this reason, the highest chosen time lag is about 30. Also the

maximum embedding dimension is restricted to about 18.
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Table 5.3: A typical set offit parameters hOand III * obtainedfor the various time lags for region

FpJ.

Time Iag 'Id ba m*

1 2.37283 2.545

3 3.6993 4.186

7 5.46546 5.28

10 5.93792 4.982

11 6.00821 4.85

14 6.22736 4.974

16 6.89269 5.725

20 7.35259 6.56

30 6.71074 6.22

The nature of unfolding with increasing time fag can be studied from

figure 5.2 which depicts the variation of m * with the varying time scale. It is

obvious from the curve for the varying Td, that while there exists a tendency

for saturation of D2 at 'd = 10, this is lost at 'd = 7 as also at Td = 14. There

seems to be a critical value of Td where a perfect saturation is achieved and

this may be chosen as the lag time for the evaluation of parameters like D2

and K2 • A fine scan of the curve for a closer grid of Td between 'd = 7 and Td =

14 would probably give this critical value of 'd. This region is also indicated in
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figure 5.2, corresponding to region C3 between 'd = 7 and 14. We observe a

plateau in C3 and a slightly different region in Fp1. This implies that different

attractors exist at different points on the skull space and hence in the whole

skull space one could expect a distribution of attractors. The unfolding

dimension remains within certain bounds and beyond a critical time scale

shows no further rise.
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Figure 5.2. A plot showing the behaviour of the unfolding dimension parameter, m* with
varying time scale for the two brain regions FpI and C3 in eyes closed state.
The time lags corresponding to AMI and ACFfor each region are also indicated

While it is indeed true that the time scale determined from ACF or AMI

is adequate for reconstruction purposes, those cases are not rare in which the

attractor has not unfolded fully. This becomes all the more crucial if we look
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into the time scales involved in pathological cases. It has been pointed out

earlier that during pathological conditions, the different time scales in the

system may be interacting with each other, thus affecting the estimation of

the system parameters in a complex fashion.

5.3.2 Pathological Condition of Epilepsy

Epilepsy is a common pathological brain disorder resulting from seizures that

temporarily impair brain function afflicting about 50 million people worldwide

in some form. Research on this malady continues at a vigorous pace, with

investigations ranging from how microscopic particles in the cell trigger

seizures, to the development of new antiepileptic drugs as well as in epileptic

seizure prediction. On an extracellular level, epilepsy phenomenon is

characterized by the abnormal hyper synchronous activity of neuronal

networks. These and the paroxysmally bursting units cause the steep high

amplitude field potentia Is observed during epileptic condition.

In the present analysis, we consider the EEG of a subject during a

definitive epileptic discharge (DEO) and also during a non-epileptic discharge

(NEO) state. For the data from the Fp1 region, the autocorrelation, ACF

criterion yields a time scale of '(ac)= 16 and average mutual information, AMI

gives a time scale of «am);;;;;25 during DEO and for NED, '(ac)= 8 and '(am)::;;;;

13. The OEO state at m= 15 and 'd = r (am) gives a O2 = 4.804 while for the

same parameters, NEO state has O2 = 6.889. The unfolding analysis during

OED yields an unfolding dimension m* that increases with 'd. Even beyond the

r (am), m* continues to increase implying an unfolding at a higher rate at

higher time lags. Figure 5.3 shows the m* behaviour with increasing time lags

during DEO and NED for Fpl region. Interestingly, in spite of the low time

scales as in '(ac) and «am)estimates of NED, the unfolding dimension shows a
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growth with increasing time lags. Despite the NED state having a relatively

higher value of O2 as compared to DED, m* behaves in a similar manner for

both.

The time scales are thus found to influence the rate of unfolding of the

attractor in the DED as well as NED state and play a major role in deciding

the course of the system evolution. This non-saturation of m* in the NED case

seems to point to the presence of higher time scales hidden in the dynamics,

which are not directly visible from a linear (ACF) or nonlinear (AMI) viewpoint

which are quite low as compared to the state of DED. This could be taken to

mean that the time scales in the epileptic state are latently present in the

system and that they affect the attractor unfolding and consequently the

system dynamics as contained in the evolution of the parameters describing

the system. The underlying time scales may not be fundamental in nature but

arise as a result of interactions between different time scales during a

complex brain experience such as epilepsy.

The same analysis carried out for region T4 gives slightly different

results. In this region, the DEO state is characterized by a 7: (ac) = 7: (am) = 19

and a D2 value of 4.41 and NED is characterized by '(ac) = 10 and ream) = 13

with O2 = 8.145. The DED signal shows a behaviour of growth in unfolding

dimension with increasing time tag which points to higher time scales

underlying the dynamics. In contrast, the unfolding dimension in the NED

case, seems to grow with time, reach a maximum and then saturate. This

suggests a region in the brain that seems not too affected by the underlying

epileptic discharge since it seems to have recovered the normal activity as

evidenced by the lowering of time scales. The analysis of unfolding of

attractors as a function of the time scales provides an insight into the

behaviour of different brain regions to the same conditions of DED and NED.
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This result seems to promise a great deal of clinical application when

considering the regions that are apparently strongly affected by an epileptic

discharge in contrast to weakly affected ones.

The behaviour ofthe unfolding parameter. m * with time fagfor the DED and
NED portions ofepileptic EEG recordedfrom the Fp I region.
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5.4 Conclusion

The human brain consists of a multitude of processes for which some of the

relevant parameters are yet to be identified. This causes a wide spread in the

time scales of the interacting processes from which the complex dynamics
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emerge. An attempt is made to construct a general time scale for the

dynamics by taking into account the many variables of the system. Some of

the important processes such as Na-K pump, synaptic transduction etc. are

characterized by particular choices of the indices in the general time scale

relation. This also points to the probable existence of three fold infinite time

scales in the system (Indic et. al., 1999) some of which may be overlapping

as well. An optimization procedure to estimate the bounds on the x,y,z seems

to be a quite interesting possibility and this in turn can provide relative

contributions of the three processes towards the production of the existing

complex state. The parametric domain of x,y,z can however be expanded by

taking more variables than those in Eq. 5.1 and this in turn would reveal

more significant processes that we can look for in brain dynamics.

In the study undertaken here, a nonlinear time series analysis is

applied to the EEG signal recorded under normal relaxed state and during a

pathological state to deduce the effect time scales may have on the unfolding

of neural attractors. This has been done by analyzing the variation of the

correlation dimension as a function of both the embedding dimension as well

as the time delay. A bi-parametric fit is applied to this function which yields a

parameter known as the unfolding dimension that is a measure of the

unfolding rate of the system attractor at a given time scale. The behaviour of

this unfolding rate with time is monitored in the case of normal subjects in

eyes closed condition as well as for the pathological case of epilepsy when the

subject is undergoing a seizure as well as during a non-epileptic discharge

period. This method is proposed to be extended for the study of less

understood conditions such as mental depression and slight mental

derangement.
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A few interesting observations are explained here. The ability of the

unfolding dimension as a distinguishing parameter of different brain

conditions makes it a good functional marker as discussed by Schmid & Dunk;

(1996). A direct O2 evaluation fails to throw light on all the time scales

inherent in the system. It has also been already proved that the evaluation of

the information capacity, contained in the Kolmogorov entropy is affected by

the choice of time delay (Indic, 1999). However, we have observed that the

lag time controls the saturation feature in the determination of O2 / Kz as in

the G-P algorithm. This further brings out the arbitrariness of the currently

used methods of AMI or ACF. The close connection between the unfolding

parameter variation features with the plot of O2 against lag time has shown

that an unfolding parameter analysis is more robust and reliable to choose

the fag time. The possibility of determining the various overlapping time

parameters in the complex system is also revealed.

In the case of normal eyes closed condition, a saturation of the

unfolding dimension sets in at moderately low time lags. This seems to point

to the presence of a critical time Jag at which the system attractor unfolds

completely. In contrast to the normal eyes closed state, for a definite epileptic

seizure no saturation of m* sets in suggesting a completing unfolding of the

neural attractors only at higher time scales. Also, the distinct behaviour

shown by the non-epileptic EEG segments of different brain regions is also of

significant importance. It seems to suggest that the effects of the seizure

activity may be concentrated in certain brain regions and as such, this is

probably of high clinical importance. The present analysis also reveals the fact

that there is distinctness in the behaviour of attractors at different brain

regions. Thus considering the skull space as a geometric one, it contains a

large variety of attractors of varying parameters and hence a study of the
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system as constituted by a collection of attractors is more realistic. On the

basis of this a nonequilibrium statistical dynamics for the brain was recently

developed (Pratap, 2000).

Time scale analysis thus seems to be an important factor in the

evaluation of parameters used to characterize the brain. Some work in this

direction has been carried out in the study of signal transduction (Pratap,

1999) in which a nonlinear process was formulated for the phenomenon by

taking into consideration the relevant time scales of the system. While the

evaluation of invariant parameters is indeed important when studying a

complex system as the brain, of more significance is the development of a

comprehensive model that considers the brain as a dynamical system and

leads to the estimation of the various characterizing measures and possesses

predictive capability as well. Quite a few efforts have been made in this

direction (Amit, 1989; McCulloch & Pitts, 1993; Parikh & Pratap, 1984) but as

yet, since all the factors that underlie the dynamics have not been fully

identified, a realistic model is still the researcher's dream.



EEG Complexity as a Tool to Probe
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Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is
not smooth, nor does lightning travel in a straight line.

--- Benoit Mandelbrot

In recent times, the application of nonlinear methods to the analysis of data

obtained as output from complex systems in nature has been of interest to

the scientific world. As discussed in previous chapters, in cases where the

governing equations of motion or even the number of dynamical variables

involved are unknown, the tools of nonlinear time series analysis have gained

greater importance. The study of the Electroencephalogram (EEG) signal

generated by the human brain is one of those complex signals, which is being

strongly pursued with the techniques based on non linear dynamics and

deterministic chaos (Elbert, Ray et. al., 1994). This line of approach includes

the computation of invariant parameters such as generalized dimensions,

entropies, Lyapunov exponents etc. from the EEG signal by considering it as a

179
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time series to characterize the dynamics of particular brain states (Pezard et.

al., 1996; Pritchard & Duke, 1992).

The studies based on the above mentioned characterizing parameters

have been applied in many cases to distinguish normal subjects from those

suffering from pathological conditions such as epilepsy (Martinerie et. al.,

1998; Lehnertz & Eiger, 1995). Of the generalized dimensions, the correlation

dimension that estimates the active degrees of freedom and among entropies,

the Kolmogorov-Sinai (K-S) entropy that gives information regarding the

dynamics; have been the subjects of much research (Pezard et. al., 1996).

However, the computation of these based on the Grassberger-Procaccia

algorithm (Grassberger & Procaccia, 1983a,b) and its variants make the

assumption of infinite length, stationary and noise-free data. But many

authors have proved the nonstationarity of EEG signals arising probably from

the presence of a number of time scales in the underlying dynamics. A direct

consequence of such nonstatlonaritv is the slow variation of the computed

'invariants' with time (Indic, 1999). Yet another parameter, the Lyapunov

exponent, which estimates the long-term average rate of exponential growth

of small perturbations to initial conditions, is very sensitive to noise (Wolf et.

al., 1985; Kantz & Schreiber, 1997). Also the numerical computation of the

Lyapunov spectrum is tedious and cumbersome.

Nevertheless, the computational studies have practical use in

distinguishing between various functional as well as pathological brain states

and have even been found to be suitable functional markers with intra­

indiVidual stability (Schmid & DOnki, 1996). The application of these methods

in the prediction of the onset of epileptic seizures (Le Van Queyan et. al.,

1999; Martinerie et. al., 1998) and in gaining insight into the co-ordination of

cortical regions under different conditions cannot be undermined (Varela et.
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al., 2001). Hence, while the utmost care has to be exercised in accepting the

quantitative results of the time series analysis of the EEG signal; the validity

of such parameters with statistical significance as comparative measures

across varying mental states has been more or less widely established.

Complexity measures are another class of statistics characterizing a

time series that have arrived recently on the scene. Measures characterizing

the relative 'randomness' in data sets have been thought of as useful markers

discriminating between the conditions generating them in each case. Though

other measures of complexity exist (Wackerbauer et. al., 1994;

Radhakrishnan & Gangadhar, 1998), the use of entropy measures that

quantify the rate of information generation in the system has been observed

to be more widely useful in practical applications. The Approximate Entropy

(ApEn) introduced by Pincus (1991) is one such measure that explores the

time ordering of data points in a finite set by measuring the logarithmic

likelihood that runs of patterns that are close remain close on next

incremental comparisons. This statistic can compute a complexity measure for

systems ranging from the purely deterministic to totally random realms and

was applied to many clinically relevant studies in biological systems. Lately, a

new and related measure, the Sample Entropy (SampEn) was devised by

Richman and Moorman (2000) as a measure that rectifies some of the in-built

drawbacks of the ApEn such as bias and inconsistency in results. This novel

measure has been demonstrated to be useful in the discriminatory study of

cardio-vascular data (Richman & Moorman, 2000), which is typical of short,

noisy data occurring in biological systems. As mentioned above, the

discrimination between various mental states using invariants characterizing

the EEG signal is now largely accepted. The computation of complexity

measures such as SampEn scores above the more popular O2 estimation etc.
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due to the fact that these are algorithmically simpler to implement and hence

easier to compute. Also the effect of nonstationarity of the time series, as in

the EEG is also dealt with effectively since they are designed to suit short

data segments. These and other attractive features have made these

measures popular in physiological data analysis.

6.1 Complexity Measures for Time Series Data

The categorization of many complexity measures for dynamical systems is

built upon the antinomies of structural versus dynamical properties of point

sets and of homogeneous versus generating partitions. The two types of

support usually considered are phase space and position space.

1. Homogeneous Partitions (pH) are partitions into cells of identical

volume with respect to the Lebesgue measure. This kind of partition

corresponds to a homogeneous concept of space making it easier to

handle. Moreover, this implies universality since each measure derived

within a corresponding partition is independent of any specific

properties of the system concerned.

2. Generating Partitions (pG) are partitions into cells whose boundaries

are generated by the properties pf the system under investigation. The

most important feature of this type of partition is that boundaries

between cells are always mapped onto them selves during the

evolution of the system.

3. Structural measures (SM) of a system are measures of properties of

the system, which do not explicitly contain information about its

dynamics. The formal basis of a measure for such properties is the

probabilities Pi to find a point in a given cell (state) of the chosen
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partition. The mathematical 'measure' of a point set i.e. a probability

distribution is a prototype of such a structural measure.

4. Dynamical measures (DM
) on the other hand are measures of

properties, which contain information regarding the dynamics. Their

basis is given by the transition probability Pi-.j between cells for

successive time steps. They consider the dynamical behaviour of a

system in terms of its temporal evolution.

Combining these four separate criteria, four different classes of complexity

can be obtained. These are the structural measures based on a homogeneous

partition (SMpH), structural measures based on generating partitions (SMpG),

dynamical measures based on homogeneous partition (DMpH) and dynamical

measures based on generating partitions (DMpG).

We consider a one-dimensional system in discrete time given by the

map F from a closed interval A onto itself.

F : A -7 A, x -7 FAx) (6.1)

X E A is called a state of the system, the range r e R represents the

parameter space of the system. From a temporally dtscrete, spatially

continuous map, a symbolic dynamical system can be generated by an

additional discretization of the state space A. If the state space A of the

dynamical system is divided into N cells Ai that are non-empty then the

collection of all cells is called a partitton, P == {Ai}~l if the Ai are mutually

N
disjoint and the union of Ai produces the state space: U Ai == A.

i~l

By labeling each element of the partition P with a symbol ai, the time

evolution of the dynamical system can be expressed by a symbol sequence
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S=SOSIS2 .... This sequence is constructed such that after each step i the state of

the system X; is assigned to the corresponding symbol s.. This symbol is

determined by the cell Ai that is met by the trajectory at time i. The set of all

symbols Si E {ao.aJ,a2., .. ,aN-J} is called an alphabet of cardinality N. The

resulting symbolic dynamical system is defined as:

1\

LF~L.F' S~O'F(S)=S' (6.2)

such that each symbol in the sequence S satisfies the condition,

Si+I'=S/'=O'F(SJ. LF is the space of all admissible symbol sequences.

Admissible sequences are those that are induced by the dynamics of the

system F for all initial states Xo E A at time step i=O. The operator O'F is

called shift operator on IF and it describes the dynamics generated by F in

the space IF of symbol dynamics. The length L of a symbol sequence S is

defined by S = {Si }f~(/ . In principle, the theory of symbolic dynamical systems

deals with sequences of infinite length (L=cx:». The symbolic dynamical system

is constructed in a way that leaves it topologically equivalent to the original

definition in Eq. (6.1). This implies a well-defined assignment of trajectories

to symbol sequences that represent topological properties of the underlying

dynamical system faithfully.

Based on the framework of the formalism of symbolic dynamical

systems a number of measures may be described that characterize the

complexttv of the system in terms of its structural properties. The Algorithmic

complexity is defined as the number of bits of the shortest algorithm, which is

capable of reproducing a given symbol sequence. This is a concept aimed

specifically at the problem of distinguishing between the random and the

nonrandom. The problem lies in determining a computable measure of
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complexity. No absolute measure is possible because minimal programs by

definition correspond to random numbers and it is not possible to define a

measure of complexity. A practical realization of this theoretical approach was

proposed by Ziv and Lempel popularly known as the LZ complexity, which

measures the number of distinct patterns that must be copied to reproduce a

given string. Briefly described, a string S=aoal ....aN-l is scanned from left to

right and a complexity counter c(S) is increased every time a new substring

of consecutive digits in encountered in the scanning process. The resultant

number c(S) is the complexity measure of the string S. Clearly any procedure

such as this will overestimate complexity of strings; nevertheless the

comparisons will be meaningful. For a random string of length N, the LZ

complexity is given by,

b(N) = hN
log K (N)

(6.3)

where K denotes the number of elements in the alphabet and h, the

normalized source entropy. This is the information obtained when each state

is equally probable.

i.e.

N

- LP)npi
h = i=J

inN

The procedure for comparing the LZ complexity of a given string to that of

random strings of the same length is as outlined below. The normalized

entropy h is evaluated by determining the probability Pi for each state. This

probability is obtained by counting the occurrences of each symbol in the

alphabet and then dividlnq by the total number of symbols in the string. A

common occurrence is that each state or symbol from the alphabet is equally

probable in which case, Pi = tiN and h= 1. Comparing with the complexity for
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a random number string, lim[ C((S))] is evaluated for a non-random string
N-4OO b N

with N elements. If this ratio is less than 1, then we can conclude that this is

due to a pattern formation in the string S. (Wackerbauer et. al., 1994;

Rasband, 1997)

6.2 Approximate Entropy as a Complexity Measure

A highly informative statistic of the genre of nonlinear measures of complexity

is the Approximate Entropy (ApEn) introduced by Pincus in the early nineties

(Pincus, 1991). Based on a mathematical approach to calibrate an ensemble

extent of sequential interrelationships, the ApEn family of parameters

provides a quantification of 'regularity' of the data under study.

Algorithmically easy to implement and hence computationally viable, ApEn is

well suited for the analysis of typically short, noisy time series like the EEG.

The K-S entropy, which is usually used to quantify time series 'randomness',

suffers from the drawback of being affected by the presence of low magnitude

noise in the data. Hence, to ensure convergence of this measure, very long

data sets that tend to make the computation tedious and time consuming will

be required. The ApEn measures were suggested as an alternative applicable

to short, noisy experimental data especially from in-vivo biological

experiments.

A measure of the regularity of a time series will be informative about

the underlying complexities in the processes giving rise to it. The

Approximate entropy measure gives such an estimate depending on the

ordering of elements in a time series of data, which is quite effective in the

classification of complex systems from the realm of deterministic chaotic as

well as stochastic processes. The capability of ApEn algorithm to quantify the
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regularity aspect with a limited amount of data makes it a powerful measure

for use in myriad situations (Pincus, 1991). This entropy measure assigns a

nonnegative number to a time series with larger values corresponding to

greater apparent randomness of the process giving rise to the data while

smaller values point to regular features in the data.

In order to evaluate the ApEn for a given time series of N points, the

following method is adopted. Suppose the time series is represented by

{x(i)}where i = 1,2... N; then for a fixed window length tn, vector sequences

of the form

y(i) =[x(i),x(i + 1), ....,x(i + (m -1))] (6.4 )

are created. On the basis of this embedding in the~ m space, we define the

separation between two vectors y(i) and y(j) as

d[y(i ),y(j)] =max(1 x(i +k -1 )- x(j + k -1)1)

where k =1,2...m and for each i, I:S; i :s; N - m + 1.

We define,

(6.5)

c;m(r) = 1 (Numbero/isuchthatd[y(i),y(j)]::s:r) (6.6)
N-m+l

where r is a small fixed parameter. Usually, r is set to be 15% or 20% of the

standard deviation of the data. The Cj

m (r) 's measure within a tolerance level

r, the regularity of patterns in the data similar to a given pattern of window

length m.

Next we define,

1 N-m+1

<t>m (r) = LInc;(r)
N -m + I i=l

and the Approximate Entropy is given for a data set of N points as

(6.7)
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ApEn (rn, r, N) =<D m (r)- cD m
+

1(r)
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(6.8)

The ApEn (m.r.N) is a 'family' of statistics in the sense that for a given

application, comparison of the measure between different systems holds only

for fixed values of m and r. The window length m specifies the length over

which the regularity in data patterns is evaluated and r, the filer level that

sets the tolerance in the C;' (r) calculation. The ApEn measure is a sensitive

parameter that detects changes in underlying episodic behaviour that may

not be reflected in amplitudes (Pincus & Keefe, 1992). Since ApEn usually

varies in direct correlation with changing background noise characteristics, it

is suited for comparison of data sets from a common experimental protocol.

This makes it a useful tool in the analysis of multichannel EEG recordings

pertaining to different mental states.

The choice of N, m and r usually depends on the specific application of

the measure. Since the length of the data set, N is limited by the

experimental paradigm, for appropriate comparisons between data sets, the

same number of points is preferred. It has been reported that for numerous

applications to distinguish the data on the basis of regularity for both

deterministic and random processes, with m==l and m=2 for N varying from

50 to 5000 points, values of r between 10% to 25% of the standard deviation

(5.0) of the data x(i) are seen to produce good statistical validity of ApEn

(Pincus, 1991 and references therein). For the analysis of most physiological

signals, a normalized version of ApEn is adopted with m == 1 or m = 2 and r ==

20% of S.D of the time series. Table 6.1 is a comparison of the evaluated

ApEn parameter with the reported values for model data sets for differing

values of filter factor r and number of data points, N.
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6.3 Gender Difference Reflected in EEG Complexity Analysis
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The study of gender differences that surface in mental, psychological and

social reasoning has been a fascinating area of research for some time now.

Various reports of the differences in the size, shape and connectivity of the

male and female brains have poured in from different quarters (Gur et. al.,

1999; Alien & Gorski, 1991) in neuroanatomy as also survey studies from the

social sciences that point to the distinct ways in which the brain works

depending on the gender (Meyers-Levy & Maheswaran, 1991; Meyers-Levy

and Sternthal, 1991). The importance of such studies lies in the fact that once

the fundamental differences are established, neurophysicians as also

psychologists can make treatment of maladies more gender specific and

hence more effective. Moreover the differences may also be useful in learning

about the variations in the evolution of the male and female neural systems.

The major cognitive gender differences have been declining including

the traditional ones of stronger verbal abilities of women and efficient

mathematical skill of men (Linn and Petersen, 1985; Caplan et. al., 1985).

One reason for this has been attributed to the theory that children are no

longer segregated on the basis of gender based activities and that

behavioural development interacts with hormones and the development of

cognitive skills and brain structures might help develop better spatial abilities

in women (Geary, 1989). While a lot of conflicting and contradictory literature

exists on the gender based differences (Corsi-Cabrera et. al., 1989; Byne

et.al., 1988) there has also been evidence showing male brains are more

lateralized than females at structural (Kulynych et. al., 1994) as well as

functional levels (Wood et. al., 1991; Shaywitz et. al., 1995; Sadato et. al.,

2000). The actual state of affairs is probably somewhere in between and a

way to delve into the subtle differences may be beneficial in understanding
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the underlying reason for the gender differences in decision making and other

social behaviour.

In this maze of conflicting cp.ruons regarding the existence of the

difference in gender in the brain as well as its actions, an attempt is made

here to look into the complexity nature of the EEG signal from a dense array

recording. The aim is to detect changes in the neuronal signal from male and

female subjects taking part in the study. The signal complexity is

characterized with global linear measures (Wackermann, 1999) and the

nonlinear family of complexity statistic, the Approximate Entropy (ApEn)

(Pincus, 1991).

6.3.1 Experimental Details

In recent times, the limited spatial resolution of the conventional EEG

technology has been tackled by introducing high resolution EEG (HR- EEG)

(Babiloni et.al, 1997; Wang & He, 1998; Edlinger et. al., 1998). A pre­

requisite for such methods is adequate sampling of the potential distribution

on the scalp surface. The point-spread function of conduction of potential

from brain surface to the scalp averages about 2.5 cm (Gevins, 1990). Thus

to adequately cover the surface of the scalp with electrodes having inter­

electrode distance in this range, EEG equipment supporting at least 128­

channels is required (Sreenivasan et.al., 1998). Hence in this study, we resort

to the use of data recorded using a 128-channel Electrical Geodesic" system,

with a sampling frequency of 200Hz referenced to a vertex electrode. The

electrode configuration of the recording system is shown in figure 6.1. The

schematic also gives an arbitrary classification of electrodes into groups I-IV

representative of the major cortical regions - the prefrontal, frontal-temporal,

parietal and occipital. An on line band pass filter from 0.1 to 70 Hz was used
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and impedances were kept below 25kn. Vertical and horizontal eye

movements were monitored with a subset of 128 electrodes.

Figure 6.1. The schematic illustrating the electrode placement in the l28-channel dense
electrode array. The electrodes are divided into 4 sets representative of the
major cortical regions such as frontal, temporal, central and occipital. The
dotted line indicates the direction across which the electrodes are to be
considered as symmetricallyplaced.
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The EEG was recorded from 10 female (mean age=28.7) and 10 male

subjects (mean age=28.8). The complexity variations under two different

conditions are studied: (a) passive, eyes closed (no task) (b) passive, eyes

open and (c) mental task state of serial subtraction in the eyes closed

condition. In the mental arithmetic task, subjects were instructed to subtract

7's from 1000 continuously with eyes closed for a period of 2 minutes. The

resultant EEG records were transferred from the Net Station acquisition

system for further off-line analysis on a personal computer.

6.3.2 Complexity Analysis

The EEG signal is a serial recording of electric potential generated on the

cortical scalp and measured at regular intervals at a specific number of

electrodes. A measure of the regularity of a time series will be informative

about the underlying complexities in the processes giving rise to it. The study

of the EEG signal from the perspective of complexity is hence useful in

gaining knowledge regarding the processes that may be operating within the

brain in a cooperative manner to produce it. The 128-channel recording used

here has the added advantage over the conventional International 10-20

electrode configuration system in that it provides a much better spatial

resolution of the cortical surface to reveal characteristics that had remained

unseen due to the limited number of recording channels. A schematic of the

dense array electrode configuration is given in figure 6.1 with an arbitrary

classification of electrodes into groups representative of the major cortical

regions - the prefrontal, frontal-temporal, parietal and occipital.

In this study, two slightly different techniques- one based on linear

measures and the other on the nonlinear statistic of Approximate Entropy-are

employed to analyze the measure of hidden regularity in the apparently
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random EEG signal to infer the difference if any in the measured signal due to

a gender difference. The various measures are computed on equal length

segments of EEG data divided into sliding windows to account for the

nonstationary behaviour of the neural signal (Indic et. al., 1999). Moreover

equal data sets facilitate the easy comparison of the computed measures

from the different techniques adopted.

(i) Linear complexity measures to quantify complexity

The first method adopted is that of the family of linear global complexities

that are found to be robust markers of brain functional states during sleep as

well as sensory and motor processes and even in the study of various

pharmacological effects (Wackermann, 1999 and references therein). The

instantaneous time EEG signal is considered as a vector representing the

system state in a space whose maximal dimension is given by the number of

electrodes in a global representation of the spatially distributed system. The

linear characterization is carried out using three measures (a) r: measure of

the global field strength (IlV), (b) <1>: measure of global frequency of field

changes (Hz) and (c) Q: measure of spatial complexity. While Land <1> are

related to the Hjorth complexities originally proposed for single channel EEGs,

Q follows from the analysis of the covariance matrix formed from the global

data recorded at each instant. On the basis of such a global description of the

measured signal, each brain 'macro' state can be represented by a point in

the three dimensional state spanned by the L, <1> and Q axes. The three

descriptors may be defined in the followinq manner.

The recorded signal from K electrodes (K= 128 in our case) is stacked

column wise ({Xl (t)}, {X2 (t), .... {XK(t)}) to form an EEG data matrix of

dimension (N x K) where N is the data length (Wackermann 1996). Each

vector Un = (x, (t), X2 (t), ... , XK (t) represents the system trajectory at a given
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instant in the global description of the system. The data is assumed to be

centered to zero mean value in all channels (In u, = 0) and also transformed

to the average reference (In u', = 0). From this data matrix, the three

measures are evaluated as,

NK
(6.9)

and

~~(U. -U"_;{,)11'

I:II Ull ll 2
II

(6.10)

where LIt is the sampling time of the recording.

The covariance matrix of the EEG data matrix is given by

(6.11)

1..1, 1..2 ....•• , AK the eigen values of this matrix are estimated and normalized as:

J..; =J..{L;J1i .The spatial complexity n is then computed as,

K

logn ::: -L 1: log J..:
i=!

(6.12)

(I, <Il, n) represent a set of three quantities representing the global spatio­

temporal dynamics of the electrical field of the brain in the instantaneous

state. Wackermann (1999) adopts a representation in two different
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dimensions; I and E defined by a transformation of the logarithmized L and cD

coordinates as

10gE = 10gL + log o
logI == logL - log <P

(6.13)

In this work, we look at the representations of the quantifiers in the (log E,

log Q) and (log E, log I) planes to study if the complexity variations due to

gender differences during particular mental states are reflected in these.

The global representation of the 'functional state' of the brain is

adopted which assesses the entire topographies of the measured electric

fields by collapsing the dynamics into the three linear complexity quantifiers

(L, cD, n). Following equation (6.9) - (6.12), the three measures are

computed and an analysis of variance (ANOVA) is performed to compare the

statistical outcome of the complexity measures of each gender group in each

of the three brain conditions of eyes closed, eyes open and mental arithmetic.

The probability of P<0.05 is chosen as the significant level. Table 6.2 depicts

these statistical results for the linear quantifiers in the three menta! states.

While the first two measures do not significantly reflect differences in

gender under the passive states, the global complexity measure n varies

between the two sets (P <0.05). From this initial evaluation, we may infer a

subtle difference in the dynamics during the passive state of no-task, eyes

closed. This effect is not evident during the eyes open case though. However,

once the subjects are made to do the identical mental task of serial

subtraction the subsequent dynamics follows the same complexity pattern

between genders. Figure 6.2 (a.b) are plots of the linear complexity measures

represented in the planes (log E, log Q) and (log I, log E) planes as in
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equation (6.13). A concise view of the nature of linear complexity variations

between different gender groups may be obtained from these plots. It is

observed that there is no distinctive region in the planes occupied by each

gender group for any of the three conditions. One reason for this could be the

limited number of subjects in this study. Nevertheless, the complexity values

of the two genders overlap finely indicating that no much difference is to be

expected even in larger samples.

Table 6.2. A descriptive table of the P values for the linear complexity measures
corresponding to the three cases- passive eyes closed, eyes open and performing
mental arithmetic.

Linear P value for the P value for the
P value for the

complexity eyes closed state eyes open state
mental task state

measures (E.C.) (E.O.)
(M. A.)

L 0.789 0.896 0.997

<D 0.685 0.543 0.981

o 0.032 0.058 0.078
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Figure 6. 2(a)
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Only in the case of male subjects does there appear to be a rise in 0­

complexity during eyes open case as compared during the eyes closed state.

This effect seems to be absent in the case of the female volunteers. The lack

of distinctive behaviour during mental arithmetic between genders seems to

concur with the presently accepted idea of no gender predominance in cortical

activity of mental or cognitive tasks (Geary, 1989).
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Figure 6.2(b) • F • M I
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Figure 6.2. The representation of linear complexity measures for individual
subjects from the two gender groups during the three conditions oj
eyes closed (E.C), eyes open (£.0) and mental arithmetic (M.A.) in
the (a) log E-Iog flplane and (b) log I-log E plane.

(ii) Approximate Entropy (ApEn) measure to quantify complexity

The analysis based on the nonlinear complexity statistic is carried out

according to the procedure discussed in section 6.2. In the passive relaxed

eyes closed case, the ApEn measure was computed for the individual subjects

in both the gender groups and the results were compared. The standard

statistical tests were carried out using the SPSS Ver. 10 software package.
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The Kolmogorov -Smtrn ov test confirmed appl ication of normalit y of the

distributio ns of the computed statist ic. The Wilcoxon rank sum test was

conducted at a significance level, P "" 0 .001. Figure 6 .3 is a plot of the

complexity statistic for the two gender categories dunnq the eyes closed
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Figure 6.3. TheApEnstatisticfor each of the twogenders- males (M) andf emales
(F) - in the eyes closed (E.C.) state.

state . It is apparent that the ApEn measure is higher for most of the channels

of th e female group in comparison to the male category. The significan t

difference in the regularity statistic confi rms the subtle differences in the way

in which fem ale and male brains process inform ation. For a closer inspect ion

of the complexities manifested through the ApEn values, the den se array EEG
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channels were grouped into 4 categories representative of the four major

brain regions viz. the prefrontal, frontal-temporal, central-parietal and

occipital. Most of the prefrontal, frontal-temporal and centra-parietal

electrodes have higher ApEn values for the female group than for the males.

The advantage of the nonlinear statistic over the global complexity measures

is in the fact that ApEn is computed for the signal ensuing from each

electrode site on the scalp rather than averaging over the whole dynamics.

This is useful in detecting localized effects that may be grossed over in the

global approach.

In the case of the subjects in the eyes open state; the ApEn measure

gave significant changes between the two gender groups in the Wilcoxon test

with P<O.OOl. The nonlinear statistic thus appears to detect the complexity

difference between genders during the eyes open case as well, which was

absent in the computed global complexity measures. This seems to support

the idea of a complexity difference existing between males and females

during no-task states rather than during a mental arithmetic task with specific

functional processes such as perception I association, memory, retrieval etc.,

which are coordinated in a complex manner to perform the task. The higher

ApEn measure maybe taken to imply more independent, parallel processes

active in females as compared to their male counterparts during no task

conditions. The apparent change in the two no-task conditions is an increase

in the complexity statistic over most of the central, temporal, occipital

regions. On the other hand, during the mental arithmetic case, the ApEn

again provides non-significant variation between the complexities of the two

gender groups. Figures 6.4 and 5.5 correspond to the ApEn variations in the

eyes open and mental arithmetic conditions for the two gender groups.
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In this study the subjects who take part in the three experiments are

kept the same so that spurious variations do not result consequent to the

within subject effect in each test group. Hence even though the subject

number in each group is limited, the similarity in the complexity exhibited by

the two groups during the mental task may therefore be taken as a genuinely

embedded phenomenon in the electric field variations.
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Figure 6.4. The ApEn statistic plotted for each ofthe two genders- males (M) and females
(F) -for the eyes open case (E. 0.)
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Figure 6.5. The ApEn statistic plottedfor each ofthe two genders- males (MJ and females
(F) -for the mental arithmetic (M. A.) task condition.

6.3.3 Discussion on the Observations of the Gender-based Study

The work presented here attempts a characterization of the difference in male

and female brain processing by studying the complexity aspect of the

nonstationary EEG signal by application of principles of global linear as well as

nonlinear time series analysis. While it is observed that the global linear

quantifiers may work well as a first option in inspection of complex

physiological signals, complexity information is supplemented by analyzing

the variation in the nonlinear ApEn statistic analysis of EEG time series

emanating from individual electrodes. This statistic has been recently applied
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to distinguish variation in complexity of EEG recorded from a control group

and groups suffering from epilepsy and mania (Bhattacharya, 2000;

Radhakrishnan & Gangadhar, 1998). In the work undertaken here, even from

a limited set of subjects, both the methods detect complexity differences in

the EEG from the two gender groups during passive eyes closed state.

Moreover this analysis is based on a dense array recording that provides

much better spatial resolution of the analyzed signal. Approximate entropy

appears to be an efficient statistic in that it not only reveals complexity

variations if any, but since it is based on single time series, also presents a

detailed picture of the complexity spread on the cortical surface. Accordingly

in this study while only one of the global complexity measures 0, shows

significant variation between males and females during eyes closed state the

ApEn statistic detects subtle differences in complexity levels of spontaneous

EEG from the male and female groups during the passive no-task states of

both eyes closed and eyes open conditions. It also implies that the presence

of visual stimulus alone is not sufficient to bring the complexity levels into

coincidence between the two sexes. Rather, such a coincidence occurs only in

the case of a task dominated mental state, which requires a number of

functions such as perception, association, memorization etc. to take place in a

systematic manner to effect its performance.

This analysis can be taken as a first step towards more such detailed

experiments with measures looking into subtle gender based differences in

neuronal dynamics. A bigger sample of subjects belonging to distinct age

groups may be analyzed. It has been pointed out recently that the process of

neuronal aging and changes in sex-hormone levels during aging seem to be

instrumental in a number of structural gender differences (Swaab et. al.,

2001). Age based gender differences in Alzheimer's disease related
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neocortical pathology that has been reported, is a strong pointer to the need

for inclusion of subjects in various age groups for such studies.

6.4 Complexity Analysis of Various Brain States

In contrast to the relatively simple method used to infer the gender difference

reflected in the complexity analysis of EEG signal during some brain states,

the study undertaken now is an in-depth and systematic attempt to study the

variations in the complexity as the brain state varies. This analysis applies a

new and related statistic to the ApEn measure, known as the sample entropy

(SampEn) statistic, to human EEG data for a complexity characterization of

three different states (a) passive, eyes closed state (E.C.), (b) a mental task

state (M. A.) and (c) epileptic spike condition (Ep. Sp.). The EEG recording of

the first two cases is from normal subjects who are at first in a relaxed eyes

closed state and then made to do a mental arithmetic task. The epileptic

spike data is acquired from subjects who are known epileptics under

medication as part of treatment. The motivation in undertaking this analysis

lies in assessing the variations in complexity exhibited by the scalp- recorded

EEG due to the underlying neuronal dynamics in these totally distinct

conditions. A recent study reports the use of ApEn statistic in distinguishing

between different levels of human consciousness ranging from the relaxed

eyes closed to the deep sleep stage (Gu, Meng & Shen, 2003). We go a step

further in attempting to detect complexity changes in similar looking EEG

records pertaining to relaxed, eyes closed state and a task state of mental

arithmetic.

The next interest lies in the complexity analysis of the spike condition

exhibited by epileptic subjects. Epilepsy is a pathological condition

characterized by spiky pattern in continuous EEG and seizure at times. A
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complexity analysis of EEG of such a spike condition is carried out and

compared against the normal/ eyes closed state. As expected, the SampEn

analysis shows more regular structure in the spike data than in the normal

state (Radhakrishnan & Ganqadhar, 1998) as reported earlier in other

measures such as O2 etc. (Lehnertz & Eiger, 1995). Yet the clinical interest

that this statistic may hold as a computationally simpler tool as compared to

other quantities cannot be undermined. Moreover its ability to distinguish the

pathological epileptic state even from data recorded in the absence of a

seizure in clinical terms makes it a potential tool in automated diagnosis. The

question of temporal fluctuations in complexity of normal series in comparison

with pathological cases is addressed in the subsequent section. This analysis

draws on the idea of rnultiscale entropy analysis (Costa et. al., 2002) that

looks into the effect of computation of the measure at multiple scales than at

a single scale of the time series. The single scale computation may mask the

structure due to the long-range correlations in the data that may be revealed

by a multiscaling process. The time scales of a process however are not the

same as those referred to as the scale factors in the multiscale analysis.

Indic et. al. (1999) have evaluated the typical time scales of the neuronal

processes such as the Na-K pump, synaptic transduction etc. by considering

the relevant parameters involved in these mechanisms. It has been found

that the time scales range over various orders of magnitude pointing to the

presence of innumerable probably overlapping time scales in the human brain

dynamics. The scaling adopted in this study points to the coarse-graining

level at which the time-correlations in the original data are revealed and are

not directly related to the time scales in the underlying dynamics. The coarse

graining at various levels followed by entropy evaluation facilitates the

investigation of the possibility of variation of SampEn with the scaling as was
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observed in the case of heart rate data by Costa et. al. (2002). A multiscale

analysis along similar lines is attempted here for the normal EEG in contrast

to the pathological time series.

6.4.1 Sample Entropy: Quantification of Regularity of Experimental
Data

A measure of the regularity of a time series will be informative about the

underlying complexities in the processes giving rise to it. However the

problem encountered in developing such a meaningful quantity in

experimental situations is the short and noisy data generated in complex

systems especially in biology. Pincus (1991) developed a regularity measure

related to the Kolmogorov entropy known as the Approximate Entropy

(ApEn), which was found to be effective in the classification of complex

systems from the deterministic chaotic as well as stochastic realms. The

measure found widespread application in model systems as well as actual

data from experimental situations especially from biology (Pincus & Viscarello,

1992; Ryan et. al., 1994). This entropy measure assigns a nonnegative

number to a time series with larger values corresponding to greater apparent

randomness of the process underlying the data while smaller values point to

regular features in the data. Despite the many features that make it a popular

complexity measure, the ApEn suffers from the drawback of being a biased

statistic. This leads to the measure being heavily dependent on the length of

the data set under consideration as well as failing to produce consistent

results (Richman & Moorman, 2000). This and other discrepancies are

rectified in the newly developed Sample entropy algorithm, which is related to

the ApEn measure. A detailed description of the drawbacks in the ApEn

algorithm and the better results accorded by the sample entropy statistic in
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the case of model data as well as clinical data is available in Richman and

Moorman (2000).

In order to evaluate the SampEn statistic for a given time series of N

points, the following method is adopted (Richman and Moorman 2000).

Suppose the time series is represented by {x(i)}where i = 1,2 ... N; then for a

fixed window length m, vector sequences of the form

Ym (i) = [x(i),x(i + I),....,x(i + (m -I))] (6.14)

are created. On the basis of this embedding in the 91"' space, we define the

separation between two vectors Ym(i) and Ym(j) as

(6.15)

(6.16a)

where k =1,2...m and for each i, 1~ i ~ N - m +I.

Let Bl
m (r) be (N - m-If1 times the number of vectors Ym (i) within r of

Ym(J) with j ranging from 1 to (N-m) and i j:. j. The latter condition is in

keeping with the idea of eliminating self-matches between templates Ym(i)

and Ym (j) whenever i = j / which were the main sources of bias in the ApEn

statistic.

Define the function,

N-m

LB;' (r)
B" (r) = --'-.i=--,-I__

N-m

In a like manner, A;' (r) is defined as (N - m_1)-1 times the number of

vectors Ym+ ] (i) are within r of Ym+l (j); again with j ranging from 1 to (N-m)

and i j:. j and the function Am (r) as,
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N-m

L At(r)
Am(r)=--,-i=---'.l__

N-m

Chapter 6

(6.16b)

Hence while B" (r )gives the probability that the two sequences match for m

points; Am(r) is the probability that the match is for m +1 points. The Sample

entropy is defined as,

SampEn (m,r) = lim[-ln(~)]
N~OC) Bm

which is estimated by the statistic SampEn (m, r, N) defined as,

SampEn (m,r,N) =[-In( ~:)] (6.18)

(6.17)

The SampEn (m.r.N) is a 'family' of statistics in the sense that for a

given application, comparison of the measure between different systems

holds only for fixed values of m and r. Since SampEn varies in direct

correlation with changing background noise characteristics, it is suited for

comparison of data sets from a common experimental protocol. This makes it

a useful tool in the analysis of multichannel EEG recordings pertaining to

different mental states. The choice of N, m and r usually depends on the

specific application of the measure just as in the ApEn case. It has been

reported that for numerous applications to distinguish the data on the basis of

regularity for m=l and m=2 for N varying from 50 to 5000 points, values of r

between 10% to 25% of the standard deviation (S.D) of the data xci) are seen

to produce good statistical validity of ApEn (Pincus, 1991 and references

therein). All these conditions appear to hold good for SampEn as well, which

is a measure related to ApEn. Figure 6.6 is a comparison of the complexity
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values given by the ApEn and SampEn measures for a random signal of mean

o and standard deviation 1 at various filter levels as well as number of points,

N. It can be observed at higher values of r and also at high N, the measures

agree. But at lower values of the parameters, the self-biasing nature of ApEn

leads to lower estimates of complexity.

····.····ApEn ....•.... SampEn

4
(a) (b)

5- r = 0.2•
•- 4 :
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~ :
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Figure 6.6 The comparison between the ApEn and SampEn measures for a random data
set at varying parameter values (a) filter level (r) at fixed number ofdata points,
N=::IOOO and (b) N atfixed value ofr=O.2.
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This single scale complexity analysis that is usually adopted may result

in a masking of the effects of long range order in the physiological time series

from healthy subjects as reported in a recent study of Costa et. al. (2002).

They study the effects of coarse graining the heart inter-beat interval data at

various scaling levels and carry out the sample entropy analysis on each of

the coarse grained sets to reveal the effects of temporal fluctuations in the

data. In a similar vein, we evaluate the multiscale entropy measure for the

normal subject data as well as the spike data from pathological subjects. The

analysis is carried out according to the following sequence. A coarse graining

of the one dimensional time series that forms the data set is effected at a

particular scale factor to generate a different time series and the complexity

measure is evaluated for this newly formed time series. In the present case,

the EEG time trace emanating from each electrode location is SUbjected to the

scaling and subsequently, the SampEn measure is evaluated for this modified

time sequence each time. From a one-dimensional discrete time series, {Xi};

i =1, 2 ...N, we construct the time series ~,} scaled by a factor t: The new

series is constructed as,

t: 1 j,
Yj =- LXi, 15:j-::;lfI:. (6.19)

t: i=(j-l),+l

When t > I, the new data set y is same as the original time series x. In the

single scale case, we divide the data set into windows of fixed length and

estimate the statistic by averaging over a number of such windows. In the

multiscale case, SampEn is evaluated on the new sets run over the whole

data length with a scaling r and the behaviour of the complexity measure with

the scaling factor is studied.
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6.4.2 Classification of Data
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The main thrust in this work is the analysis of the complexity variation in the

human cortical space in from the EEGs recorded from two different groups:

(1) normal subjects and (II) subjects suffering from the pathological ailment

of epilepsy. The normal group was studied to bring out the differences among

a passive state as against a task state of mental arithmetic. From the former

group, recording was carried out from 12 subjects with mean age 29 under

two conditions (a) Passive relaxed eyes closed (E.C.) (2) mental arithmetic

with eyes closed (M.A.), where subjects were instructed to silently serially

subtract 7's from 1000 for 2 minutes.

The importance of the study of the pathological cases especially of

epilepsy has been stressed at various occasions in this work. In this particular

case, the epileptic spike activity (Ep. Sp.) was recorded under eyes closed

state from a group of 5 subjects (mean age = 14) suffering from the

pathological condition of epilepsy. These records were studied and compared

with the similar eyes closed state of normal subjects.

The data recording system and the details of electrode classification

are as explained in section 6.3.2.

6.4.3 Complexity Analysis using SampEn

The objective underlying this analysis is to look at the variations in the

complexity exhibited by a global EEG recording as a result of the varying

dynamics of the system with the change in brain state. The complexity of the

EEG time trace emerging from each of the recording channels is quantified by

the statistic of Sample Entropy (SampEn). EEG signals have been revealed to

be nonstationary in nature leading to a drift of the system invariants with

time. A prescription to handle such data is the division of time series into
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short time windows (Pradhan & Dutt, 1993) and in keep ing with this principle,

the data is divided into non-overlapping windows of 1000 data points and the

SampEn measure evaluated for each of these.
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Figure 6.7. The plots fo r the SampEn stannic in the case of the normal EEG (only E. C.
state presented here: though similar results were obtained for M. A. as well) and
the pa thological case represented by the spike candttion {Ep. Sp) and jive ofthe
surrogate data sets generated in each case.
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Prior to the complexity analysis, surrogate data testing is carried out

to check the validity of application of nonlinear measures on the recorded EEG

data. The detailed procedure for the generation as well as testing of the null

hypothesis of surrogate data testing was elaborated in chapter Ill.

Accordingly, ten surrogate data sets were generated by the Fourier shuffling

method and SampEn statistic evaluated for each of these in the three cases of

E. C, M. A. and Ep. so, The computed statistics in each of the original and

surrogate sets were compared by applying the Mann-Whitney U test followtno

Theiler et. al. (1992). Significant difference of the P-value, P<O.OOS in all the

three cases gave reasonable ground for assuming the presence of nonlinearity

in the data and this is also obvious in the plots in figure 6.7 that present the

variation of SampEn for the surrogate data sets along with the original EEG

data. The surrogate sets lead to complexity values that form a cluster and as

expected, the stronger randomness inherent in these data is reflected in the

higher values of sample entropy in comparison with that for the EEG data.

(i) Normal case: Passive, relaxed state Vs. Mental task state

The SampEn measure evaluated for the passive state of eyes closed condition

when compared with task state of mental arithmetic shows that the

complexity was lowered in the mental task state. Figure 6.8 shows the plot

for the evaluated complexity measure for the two conditions for the 128

channel data. Since on visual inspection most of the channels exhibit almost

similar complexity values, the channels are grouped into 4 major regions,

named I - IV covering the channels pertaining to the prefrontal, frontal­

temporal, central-parietal and occipital regions and these are more closely

examined. The classification of the dense array electrodes into these 4 groups

is depicted in figure 6.1.
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Figure 6.8. Variation in the Sample Entropy (SampEn) for the normal eyes closed state
(E.C.) and during a mental calculation (M. A.) task for the J28 channel data

set.

The statistical analysis of the computed measures is determined in the

following manner. After confirming the validity of equal variances for the test

populations, two-way repeated measures analysis of variance (ANOVA) is

carried out for examining the effect of mental arithmetic on the mental state

as characterized by the complexity statistic. Two-within subject factors were

used: state (2 levels- eyes closed and mental arithmetic state) and electrode

(n levels). The analysis was carried out individually over the set of electrodes

based on the classification mentioned earlier. In each of these groups Le.
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regions I to IV as in figure 6.1, there are about 30 electrodes and the number

of electrodes in each of the regions is the number of levels (n) in the

electrode factor specified in the repeated measures analysis. It was observed

that the main effects due to state (all four regions) and electrode (in regions

I, II and Ill) were significant for the sample entropy (SampEn) measure. The

electrode effect is non-significant in the region IV comprising most of the

channels over the occipita-parietal region. The variation in SampEn with state

at the electrodes is characterized by the (state*locus interaction) which is

Table 6.2. A brief description of the two- way repeated analysis ANOV A used for the
statistical analysis of the complexity variation as the mental state changes from a passive
state (E.c.) to a mental task state (M. A.)

Region I Region II Region III Region IV
Effect F P F P F P F P

value value value value value value value value

State 37.044 <0.001 36.245 <0.001 35.102 <0.001 30.587 <0.001

Electr-
2.673 <0.001 2.744 <0.001 3.27 <0.001 0.659 0.908

odes

State *
electro

-de 1.033 0.423 1.36 0.085 1.061 0.385 1.746 <0.05
interac
-tion

found to be insignificant in regions I, Il and Ill. However, region IV shows a

significant interaction between the state and electrodes. Hence we may infer

that apart from the electrodes in the occipita-parietal regions the effect on
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SampEn statistic d.ue to mental arithmetic is almost the same at the other

sites. A brief description of the statistical analysis is depicted in Table 6.2.

A major advantage of using a dense array recording is the better

spatial resolution provided when compared to the conventional recording

making use of the limited 16 to 19 channels. The statistical analysis outlined

above was conducted again by considering only 19 channels in approximate

correspondence with the 19 electrode sites in the International 10-20

convention. The chosen electrodes were 23, 9, 11, 28, 123, 39, 121, 42, 104,

49, 114, 60, 86, 62, 64, 96, 73, 71 and 84. A comparison of these sites with

the schematic shows that these are broadly representative of the major

cortical regions of the brain. Two-way, repeated measures ANOVA carried out

for the complexity statistic with the factors - state (2 levels) and electrodes

(19 levels) led to the following results. The main effects of state and electrode

were significant at P<O.OOl with F-values 36.883 and 4.159 respectively but

the state*electrode interaction in this case was non-significant with F­

value=O.685 and P = 0.823. However, the analysis of region IV as explained

above, had prompted us to believe otherwise and hence it is seen that

detailed structure may be lost due to the limited number of channels that are

conventionally used. The gross analysis failed to reveal the significant

difference in the effect caused by the mental arithmetic state on the electrode

sites in the occipito-parietal regions. This result also brings to the fore the

better information carrying capacity of dense array recording.

Figure 6.9 plots the SampEn measures over these four major brain

regions where the complexity drop during mental arithmetic as compared to

the eyes closed state is seen in regions I and IV. Over the rest of the brain,

there is not much complexity difference in the two states. The reduction in

SampEn for the prefrontal region may be looked upon as the reduced
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neuronal complexity of this region during mental arithmetic as compared with

the others. While small yet statistically insignificant rise in Kolmogorov

entropy, K2 during arithmetic task over rest state has been reported

(Micheloyannis et. al., 1998), SampEn clearly illustrates the decrease in

complexity for the frontal regions. Moreover the decrease in complexity in the

parieto-occipital regions points to the involvement of this region in the

subtraction task. Mental arithmetic is a complex task that requires integration

of multiple processes carried out by a large-scale network of distributed yet

interconnected local networks (McCloskey, 1992). The complexity analysis

supports this idea and is also in accordance with imaging evidence that

suggests the participation of parietal areas in addition to the prefrontal areas

in mental calculation (Kazui, Kitagaki & Mori, 2000). The lowered complexity

in the occipito-parietal channels suggests the activation of visuo-verbal

regions while the frontal activation has always been linked with working

memory and attention (Harmony et. al., 1999). The task here being serial

subtraction, the processes can be comprehended as the sequential procedure

of recognizing the numerals, forming a mental picture of the operations

before the actual processing, storage of the current data in the working

memory before going on to the next subtraction. The ease with which the

areas participating in the task can be identified is a point in favour of the use

of this complexity measure as a marker of activity of brain regions under

specific conditions.

The temporal variation in complexity of some channels belonging to

the right and left hemispheres is shown in figure 6.10. It is indicative of

stronger sequential regularity in the EEG signal from the prefrontal regions

during eyes closed than during mental arithmetic task.
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Figure 6.9. A detailed comparison ofSampEn measure/or the mental arithmetic (MA.)
state with that ofeyes closed (E.C.) case for each ofthe four groups numbered I
to IV.

No significant inter-lobe complexity differences are discernible between

symmetrically placed electrodes indicating homogeneity in the system

complexity over the scalp. The electrodes have been chosen on the basis of

their relative positions across the dotted line in figure 6.1 which may be

thought of passing through the midline of the brain. The bilateral activation
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suggested in the fMRI study of mental arithmetic (Rickard et. at., 2000) also

supports such a finding. The advantage of non-invasive techniques like the

EEG, in comparison with relatively expensive imaging methods as the first

tool in studying the human brain under myriad conditions is brought to the

fore by such studies.
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(ii) Healthy condition Vs. Pathological condition

The data recorded from epileptic subjects in the eyes closed case was found

to exhibit spiky character, which is often found in epileptics. This data when

analyzed showed much lowered complexity when compared with the eyes

closed state of a normal healthy person. Figure 6.11 shows that the SampEn

measure during the epileptic spike is smaller than the corresponding values

over all the channels distributed over the cortex. Bhattacharya (2000)

recently reported that there is indeed a lowering of ApEn measure for a 16­

channel data set for epileptic subjects.
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Figure 6.11. The complexity analysis/or the epileptic spike data (Ep. Sp.) in comparison with
the relaxed eyes closed (E.c.) case is presented.

However, we can say that the dense array EEG gives a closer view of the

generalized statement made in that paper. This complexity reduction is also in
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accordance with the lower values of various nonlinear parameters such as the

correlation dimension, Taken's estimator and so on during an epileptic

discharge (Lehnertz & Eiger, 1995; Lerner, 1996; Radhakrishnan &

Gangadhar, 1998). From a mechanistic point of view, the strong reduction in

the SampEn measure points to the greater component or subsystem

autonomy. Thus for normal subjects in comparison with the subjects suffering

from a pathological illness, there are more independent, parallel, functional

processes active.

In the multiscale (MS) analysis undertaken to observe the effects due

to long range correlations that are usually present in normal physiological

time series, the method introduced by Costa et. al. (2002) is adopted.

Figure 6.12(a)

2.4-r------------------------.

.' •..
..• •• .. ..

•
• •• •-••••

•

. .
•.....,..... .-

...

....
•

......•

.......•.
•

.. ,

.... •... or =1 .....•.... or =2 .. A····· t =3

...•... or =4··· •... 't =5 .... +.... t =6

·····x 't =7

.....x+... x .x
~" 'j( ·.x~:: :+:::::~:: ~::+'." .

/:". + + +../': ~ :.:..~ :.:.~.''......•~..••.• :.: •. ...•• •...•
~·.~·:> ... ···:·... i;;.·::·~; ~ : : ~ .A·A. A~'& & .. &. . .

....A··~ .'

1.0-

1.2-

2.2-

2.0-

1.8e
W
e,

1.6-E
caen

1.4-

I I , , " '" I •

23 9 11 2812339121421044911460866264967371 84

Electrode Index



222 Chapter 6

A data set of length N =7370 is chosen for the spike as well as normal eyes

closed data and accordingly, new data sets are made to evaluate the MS

SampEn with scaling factor t from 1 to 7. In this case the maximum scaling

factor is set to 7 so that the resultant data set will be '" 1000 data points

suitable for the SampEn algorithm. Figures 6.12(a) and (b) plot the SampEn

measure over the various scaled data sets corresponding to the healthy and

the epileptic groups for the particular set of 19 channels of the electrode

Figure 6.12(b)
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Figure 6.12. The sample entropy for some selected channels from the dense array EEG of
the normal eyes closed condition, E C. (a) and the spike data. Ep. Sp. (h) in the
multiscale analysis at varying levels of scaling, r is plotted. The 19 channels
represented here roughly correspond to the 19 channels ofthe Intemational l G­
20 system.
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array, indicated in a preceding section that approximately correspond with the

channels in the International 10-20 convention.

In the case of the eyes closed state, as the scaling increases the

SampEn also increases for most channels and as r ~ 7, the entropy value

tends to saturate. Hence even for longer data sets, we may conclude that the

saturation nature will set in around r ::;; 6 or 7. The behaviour of the entropy

measure for the pathologic group is the same as the normal state data set

with an increase of the measure with scale factor, 'to However, saturation in

the evaluated SampEn values does not occur even at r value of 7.
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Figure 6.13. The Samplin in multiscale analysis is plotted for some symmetrical channels
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(Ep.Sp.) conditionsfor varying t:
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Despite the fact that higher values of r could not be analyzed due to the

limited length of the available spike data; we may infer that the nature of

time fluctuations in the pathological data set does not lead to a saturation in

the complexity of the data set at any scale. Figure 6.13 is a comparison of the

multiscale entropy measure for the two subject groups - normal and

pathological- for a random selection of channels with increasing scale factor 'to

6.5 Conclusions of the Complexity Approach to EEG Analysis

In this final section we take stock of the various observations made regarding

the varying neuronal dynamics from the perspective of complexity measures.

While the initial effort was concentrated on establishing the technique as a

useful tool for evaluation, the subsequent work established the viability and

feasibility of the use of this measure to gain insight into the dynamics of the

brain as the condition changes.

The Approximate Entropy measure was chosen as a non linear

complexity probe and compared against the class of linear measures in

delving into the changes in complexity if any that are exhibited by the

genders in undergoing simultaneous actions. It was established that in

comparison with the linear quantifiers; ApEn is sensitive to changes in

complexity and the genders do vary in complexity in some passive states

such as eyes closed and eyes open when no tasks are carried out. Such

studies are relevant in the context of learning more about the organization of

behaviour in males and females according to which their mental, emotional

and social character is built. Moreover such studies are constructive in

devising alternative therapy measures in case of psychiatric illnesses in the

different sexes.
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In the section 6.4, the complexity aspect of EEG data recorded during the

three conditions of (a) normal eyes closed, (b) mental arithmetic and (c)

epileptic spike activity was analyzed. The dense array configuration provides

simultaneous records of the EEG signal from a large number of channels that

is useful to gain a more complete picture of the activity distributed over the

cortex. The normal eyes closed state is considered as a base line state and

the complexity during the other two states are compared with this. It is found

that even during a cognitive task such as mental arithmetic that consists of a

series of processes such as perception of information, processing of

arithmetical signs, retrieval and memorization mechanisms; the complexity in

most of the brain regions remains the same as that during the relaxed,

passive state. The prefrontal region and some parts of the occipito-parietal

region exhibit lowered complexity during serial subtraction task in comparison

with the corresponding regions during the passive eyes closed condition.

Moreover, the dynamical complexity pattern of symmetrical regions over time

also remains largely identical indicating both the brain lobes exhibit

synchronous behaviour in complexity variations.

The sharp reduction in the SampEn measure for the epileptic spike

data over the whole skull space is in agreement with the finding that epileptic

behaviour in general, is reflected in the lowering of various parameters such

as correlation dimension. The multiscale entropy is evaluated for the data

from the eyes closed (normal) as well as the spike data to explore the effect

of coarse graining the data at various scaling levels, r. The scaling factor r

may be thought of as a sampling time step and the multiscale analysis is

carried out on such sampled data sets. t effectively acts as a filter and as t

increases, the lower frequency components in the data dominate. There is a

systematic rise in SampEn values with r for all the channels; until saturation
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sets in at the higher scaling for the normal eyes closed state. On the other

hand, for the spike data, complexity variations between brain regions exist

even at higher! or correspondingly lower frequency components. We may

summarize that the saturation nature of MS SampEn holds for the healthy

case at reasonable values of scaling factor while in the pathological case

saturation fails to occur at the scaling factors considered in this study. This

implies a slow saturation effect setting in at probably higher values of the

scaling. Though confined by the limited data length available in this case, it

may nevertheless be surmised that spike data from pathological subjects

significantly manifests different saturation effects in multiscale analysis in

comparison with data from normal subjects. An analysis with longer data is

imperative to validate these observations, which are presented here as a

preliminary result.

The complexity analysis can be considered as a first tool to classify

mental processes especially with regard to abnormal conditions such as

schizophrenia, mental depression and so on. In such cases, the effect of the

multiple time scales on the dynamical complexity will be more crucial and

hence a multiscale entropy analysis in such contexts will be more appropriate

and useful for diagnostic as well as research purposes.
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When all at once I saw a crowd,

A host, ofgolden daffodils;

Ten thousand saw I at a glance,

Tossing their heads in sprightly dance.

--- William Wordsworth in The Daffodils

The functional and anatomical specializations of the brain that are brought to

the fore by physiological, neurophysiological and neuroimaging studies pose a

unique problem. How does the brain orchestrate the many emotions,

perceptions, thoughts and actions that are brought into play effortlessly from

neural processes that are distributed across the brain? Secondly what are the

neural mechanisms that select and coordinate this distributed brain actlvitv to

produce a flow of adapted and unified cognitive moments? The answers to

these fundamental problems are provided by the large-scale integration

phenomenon existlnq in the brain.

227
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It is the neural assemblies that provide a framework for the integration

of the distributed neural activity. Neural assemblies may be defined as

distributed local networks of neurons transiently linked by dynamic

connections. In the brain, the emergence of a specific neuronal assembly by

selective interaction of a given group with others is thought to underlie every

cognitive act. The linking is mediated via direct or indirect connections that

are typically reciprocal. Also two types of connectivity may exist: one within

the same cortical area or between regions at the same level of network and

the second between different levels of network in different brain regions

(Varela et. al., 2001). Connections of the latter type have been traditionally

described as feedback-feedforward. In this context, 'local' and 'large' scale

integration may be distinguished between. White local integration refers to a

common resonance mode exhibited on a spatial scale less than 2mm; large

scale integration concerns neural assemblies which are farther apart in the

brain typically > lcm and with transmission delays over 8-10 ms. This could

mean that assemblies between occipital and frontal lobes or across

hemispheres are separated by dozens of milliseconds in transmission time. It

may however be noted that synchrony may also exist between regions whose

separation falls in an intermediate range. While local field potentia Is (LFP) and

synchrony between single units can be checked in the case of the local spatial

integration studies, large scale coordination analyses rely on intracortical

electroencephalography (iEEG) or surface electroencephalography (EEG) or

magnetoencephalography (MEG) itself.

Any mechanism for neural coordination must involve interactions

between the participating local networks but the specific nature of such

interactions is still being debated. It is widely accepted though that networks

of reciprocal interactions mediated through phase synchrony are the key for
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integration. The study of integration through synchronization can be achieved

by focusing on the temporal dynamics of the neural networks in the

millisecond range. Direct evidence in support of phase synchrony has been

provided by extensive studies on visual binding (Roelfsema et. al., 1997;

Munk et. al., 2000). It has also been recently reported that intracranial EEGs

from human rhinal cortex and hippocampus tend to demonstrate greater

synchrony in subjects learning words and later remembered than words later

forgotten. The brain behaviour correlation suggests that these interactions

may contribute to effective memory formation (Wagner, 2001).

The means that have been employed to look at the coordination were

traditionally linear ones of which the cross power spectrum, coherence

(Makeig & Inlow, 1993), the mutual dimension (Stam et. al., 1996) etc. are

the most popular. Power spectrum is able to show the energy distribution

among the harmonical components of the signal; cross-spectrum and

coherence reveal and quantify the linear relationship between processes

recorded on different channels of the recording. The time evolution of these

analyses illustrates the time-frequency dynamics of the biological signal. The

application of the cross correlation measures takes place mostly for the

analysis of Local Field Potentials (LFP) like in the case of Baker et. al. (2001),

who studied long spike trains (mean about 33,000 spikes) simultaneously

from multiple single neurons in the primary motor cortex (M1) of two

conscious macaque monkeys performing a precision grip task. When applied

to non-invasively obtained signals, the measures that depend on the

amplitudes are restricted in application and hence the methods that deal

directly with the phase of signals are resorted to. The data obtained from

physiological systems are nonstationary as has been stressed at various

points throughout this report. This is the main cause for the limitations
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inherent in the application of the linear techniques. In this context was

introduced the phase method which is based on the premise that the time

series data are the outputs of two coupled oscillators and their phase

difference may be measured to quantify the strength of interaction between

them.

Recently many attempts to study the coupling between brain regions

have been carried out in contexts related to the performance of cognitive

tasks by utilizing the noninvasively obtained electrophysiological signals from

the brain (Mormann et. al., 2000; Bhattacharya et. al, 2001; Bhattacharya &

Petsche, 2001; Jausovec & Jausovec, 2000; Lachaux et. al., 1999). Most of

these tasks have been on mathematical (Zago & Tzourto-Nazover, 2002) and

verbal activities (Schack et. al., 2000). Some others are also concentrated on

the brain state during neurophysiological disorders (Tononi & Edelman,

2000). These studies are mainly based on the EEG and MEG signals in one

form or the other. These and many others have established the prominence of

phase synchrony studies in learning about hemispheric dominance, long

distance coupling and other effects during performance of complex cognitive

tasks. Other than behavioural effects studies have also been carried out in

understanding the neural mechanisms underlying specific brain tasks.

The techniques that were developed theoretically in studying the

dynamical behaviour of coupled oscillators have been successfully adapted to

look for coupling based on an analysis of time series data from physical,

chemical and biological systems as well. Most extensive in the case of bio­

signals has been the application of the phase synchronization ideas to

systems like the cardia-respiratory process (scharer et. all 1999)1 human

postural control data (Rosenblum et. all 1998) and to the signals from the

brain. Since the data at hand is from a complex system for which the
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equations of motion or for that matter even the full set of variables are not

identified, the usefulness of such methods are remarkable and the results

there from are far reaching. Before proceeding with the analysis of the EEG

signals undertaken as part of this work, the theoretical development of the

ideas of phase synchronization as applied to bio-signals may be reviewed.

7.1 Theoretical Background on Synchronization

The history of synchronization goes back to the 17th century when the

famous Dutch scientist, Christian Huygens (1673) reported on the observation

of synchronization of two pendulum clocks. The systematic study of this

phenomenon both theoretically and experimentally were initiated amongst

others by Sir Edward Appleton (1922) and Balthasar van der Pal (1927). They

showed that the frequency of a triode generator could be entrained or

synchronized by a weak, external signal with slightly different frequency.

These studies were of high practical importance because such generators

became basic elements of radio communication systems. The mathematical

theory of synchronization was developed later on and the review of this with

regard to classical periodic oscillators under external forcing and in the

general case of noisy and lastly chaotic oscillators is considered in the sequel.

7.1.1 Entrainment of a Periodic Oscillator

Stable periodic self-sustained oscillations of an autonomous dissipative

dynamical system are represented by a stable limit cycle in its phase space. If

the oscillator is forced externally, this simple dynamics is destroyed. The first

step towards the description of the system dynamics is by perturbing the

system by applying a small force and the analysis is carried out by

introducing new variables such as phase and amplitude to the unperturbed
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system. The phase is a variable that corresponds to the motion along the limit

cycle, i.e. along the direction where neither contraction nor expansion of the

phase volume occurs. Hence this direction in phase space and thereby the

phase of oscillations corresponds to zero Lyapunov exponent.

A natural way to define phase is to take it proportional to time and

increase by 21t during one period of oscillation To, the unperturbed period.

Then the dynamics of the phase on the cycle can be described as,

drj;
- = {j)o
dt

(7.1)

2Jr
where (j)o =- . Amplitudes are the other variables of the dynamical system

To

that are locally transversal to the cycle; they correspond to the negative

Lyapunov exponents.

The description in terms of Lyapunov exponents clearly explains why

the phase is an exceptional variable of a dynamical system. Since it

corresponds to the sole neutrally stable direction, the phase in contrast to the

amplitudes can be controlled by a weak external action. A weakly perturbed

amplitude will relax to its stable value, whereas a small perturbation of the

phase neither grows nor decays. Thus even very small phase perturbations

can be easily accumulated. So far the phase is defined on the limit cycle and

not in its vicinity. One way to extend this definition is to demand that Eq.(7.1)

is valid not only on the cycle but also in its neighbourhood as well; this phase

is also denoted by rP. Such a definition implies that the transversal

hypersurfaces of constant phase are the isochrones, i.e. they are invariant if

the dynamics is observed stroboscopically with the period of oscillations To.

Because hypersurfaces form a foliation of a neighbourhood of the cycle, the

correct phase rjJ can be obtained from any other cyclic (phase-like) variable e
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via some transformation, (J =(J (e, A), where A denotes the amplitude

variables. Sometimes to characterize the synchronization of a particular

system, it is advantageous to use El: this variable can be estimated from data

and the mean observed frequencies of forced or coupled oscillators obtained

by means of ~ or e coincide:

Q=(~)=(iJ)

The difference in the relaxation time scales of perturbations of the amplitudes

and phase allows one to describe the effect of small periodic external force

with a single phase equation. Making a perturbation expansion, it can be seen

that owing to the stability property, deviations of the amplitudes are small

while deviations of the phase can be large (albeit slow). Hence the phase

equation can be derived as (Kuramoto, 1984)

(7.2)

where E is a small parameter proportional to the amplitude of the force, rp its

2lt
phase obeying ip=- and Q is 21t periodic in (J and rp functions. Eq.(7.2)

T

describes dynamics on a torus os ~ .s; 2lt, O.s; rp .s; 2lt .

Taking the Poincare map at rp = 0, Eq. (2) can be reduced to a circle

map as:

(7.3)

with a 21t periodic function F. The dynamics of this map can be characterized

by the rotation number (Ott, 1993)

~ - rAp = lim N 0
N--+<Xl 2lt N
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This number is the ratio between the observed frequency of oscillations nand

the frequency of the external force co ;

p = Q where 0. =(~)
ea

If p is rational, the observed frequency is in rational relation with the

frequency of the external force

m
Q=-(()

n

and this regime is called m:n synchronization.

Consider a detailed understanding of the above definition by taking for

simplicity the case of 1: 1 synchronization. Usually this phenomenon is

understood as the appearance of a certain relation between phases or as

phase locking. In literature, this notion is used in differing senses. In the most

restrictive sense, phase locking is said to exist if the phases of two or more

oscillators coincide exactly. In this case, it would mean tJ = rp. This is a special

case of the phases having a constant shift, t/J = rp + constant. Both these

mean that the phase of the oscillator rotates uniformly with the frequency of

the external force. From Eq. (7.2), however it follows that we cannot expect

these properties to be valid even for small forcing. Indeed, Eq.(7.2) admits

the solution dr/J = ea only in a particular case when the coupling function Q
dt

depends on the phase difference only, Le. Q(r/J, qJ) = Q(r/J - 9J). Let us introduce

the phase difference <1> = r/J- rp and rewrite Eq. (7.2) as

(7.4)

in the synchronous state, this equation should have (at least one) stable

point. This happens if the frequency mismatch (detuning) is small enough, Le.
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s Qmon < (tU -tUo)< s Qmax and this condition determines the synchronization

(phase-locking, mode-locking) region on the (w, 5) plane. Within this regions,

the phase difference remains constant, cD::::: 5, and the value of this constant

depends on the detuning, 5 ::::: Q-I((tU- WoX).
But in the general case, the coupling function Q(~~) cannot be

reduced to a function of the phase difference c. Then even in a synchronous

regime <I> is not constant but fluctuates, although these fluctuations are

bounded. Thus, we can define phase locking according to relation,

I~ - qJ - 0" I< const.

from which the condition of frequency locking,

(7.5)

naturally follows. This definition is made use of in periodic regimes when the

forced oscillations are not close to the original limit cycle. A detailed

description of the synchronization transition in a periodically forced weakly

nonlinear oscillator with the amplitude of the external force is given in

Pikovsky et. al. (2000).

7.1.2 Noisy Oscillators

Let us now consider the effect of noise on phase synchronization

(Stratonovich, 1963). The simplest way to model a noisy environment is to

add a noise to Eq. (7.2), or for the simplest possible solution add to Eq. (7.4).

dcD =Wo -tU + s Q(cD)+ ~ (t) (7.6)
dt

The dynamics of the phase can be treated as the dynamics of an overdamped

particle in a potential.
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V(y6) = (m - mo)y6 - £ JQ{X)ax

Chapter 7

The average slope of the potential is determined by the mismatch of

frequencies of the autonomous oscillator and external force; the depth of the

minima (if they exist) is determined by the amplitude of the forcing. Consider

the case of a particle representative of phase as depicted in Figure 7.1.

Without noise, the particle would either rest in a minimum or slide downwards

along the potential, if there are no local minima; this corresponds to

synchronous and nonsynchronous states resp.

Suppose the noise is small and bounded then its influence

results in fluctuations of the particle around a stable equilibrium, i.e. in

fluctuations of the phase difference around some constant value. Contrary to

this if the noise is unbounded, there is always a probability for the particle to

overcome a potential barrier ;).V and hop to a neighbouring minimum of the

potential. The time series looks

Figure 7.1. The phase represented as a particle in an inclined potential within and
outside the synchronization regime.
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like a sequence of these phase slips and retatton (7 .S) does not hold.

Nevertheless for small noise, the phase locking is detectable although it is not

perfec t . We can observe epochs of phase entrainment between the phase

slips. Averaged locally over such an epoch, the frequency of the oscill ato r

coincides with that of the externa l force. The observed freq uency that is

computed via averaging over a long period of time differs from that of the

extemel force thought th is difference is small if the slips are ra re.
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Phase locking in noisy systems can be also understood in a statist ical sense,

as the existence of a preferred value of the phase difference 't' mod Zn.

Indeed the particle spends most of th e time around a st able equilibrium then

rather quickly jumps to a neighbouring equil ibrium where the phase

difference differs by a multip le of 2:::. This can be reflected by the distribution

of '¥ mod Zn.
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Figure 7.2. The re/alive phase distribution in a coupled pair of Rassler oscillators. There is
1'1 0 phase locking in the weak coupling of£=0.01 (aj while at higher values of
coupling £=0./. phase locking sets in as indicted by 'he peak in the histogram
(b).
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A nonsynchronous state would have a broad distribution whereas

synchronization would correspond to a unimodal distribution. Figure (7.2) is a

graphical representation of this in the case of two chaotic oscillators with no

coupling as compared to the coupled case.

7.1.3 Chaotic Oscillators

Any autonomous continuous-time dynamical system with chaotic behaviour

possesses one zero Lyapunov exponent that corresponds to the shifts along

the flow. So phase can be introduced for this case as well. There are many

ways in which the phase for a system may be defined. Three approaches may

in general be followed for the phase (Pikovsky et. al., 1997).

(a) Suppose we define a Poincare secant surface for a chaotic system.

Then for each piece of a trajectory between two cross sections with this

surface, the phase can be defined as a linear function of time, so that the

phase increment is 21t at each rotation:

(7.7)

Here tn is the time of the nth crossing of the secant surface. This definition is

ambiguous because it depends on the choice of the Poincare surface.

Nevertheless defined in this manner the phase has an important property: its

perturbations neither grow nor decay in time, so it corresponds to the

direction with the zero Lyapunov exponent in the phase space.

(b) The phase can also be introduced as an angle between the projection

of the phase point on the Poincare plane and a given direction in the plane
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(7.8)

The two phases rPM and rPP defined above do not coincide over time scales

less than the average period of oscillation, however, they have equal average

growth rates. In other words, the mean frequency defined as the average of

(drP~) over large periods of time coincides with the usual definition of the

mean frequency via the average number of crossings of a Polncare surface

per unit time.

(c) An alternative definition of phase is known as the analytic signal

concept prevalent in the signal processing. This general approach based on

the Hilbert transform and introduced by Gabor back in the late '405 (Gabor,

1946). The analytic signal is a complex function of time defined as

where s{t) is the Hilbert transform of s{t)

-() {:xlI s(z-)s t =-PY. -(-)dz-
Jr t - t:

-00

(7.9)

(7.10)

where P.V. is the Cauchy principal value of the integral. The instantaneous

amplitude A(t) and phase rPH of the signal are thus uniquely defined.

The Hilbert transform can be considered as the convolution of the

functions s{t) and (l/ltt). Hence the Fourier transform S(aJ)of s(t) is the

product of Fourier transforms of s{t )and (l/1tt). For physically relevant

positive frequencies, S(aJ) = -is(aJ) i.e. ideally s(t)can be obtained
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from s{t) by the filter whose amplitude response is unity and whose phase

response has a constant (rr/2) lag at all frequencies.

Although the analytic signal approach provides a unique definition of

phase of a signal, ambiguity still exists for the phase definition of a dynamical

system as the result depends on the choice of the variable. But the advantage

of the analytic signal is that the phase can be easily obtained from

experimentally measured time series or in some other situation in which

Poincare section construction is difficult.

In contrast to the case of periodic oscillators, the growth of the phase

of a chaotic system is in general non-uniform. The Poincare return times,

which may be considered as instantaneous periods themselves depend on the

coordinates of the intersection with the Poincare surface, Le. on the irregular

amplitude. This dependence may be taken as arising due to some effective

'noise' although in this case the irregularity has a purely 'deterministic' origin.

Thus the synchronization phenomena for a chaotic system are similar to those

in noisy periodic oscillators (Rosenblum et. al., 1996; Pikovsky et. al., 1997).

7.2 Towards Data Analysis: Quantifying Strength of
Synchonization

In this section we see how the concept of phase synchronization can be used

in order to reveal the presence of interaction between systems from

experimental data. We have already summarized that synchronization of

weakly coupled oscillators appears as some relation between their phases and

frequencies. In the context of data analysis we exploit this fact to tackle the

inverse problem i.e., inference of the presence of synchronization from data.

To this end, we have to estimate from the signals the phases and frequencies

and look for relations between them.
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The problem being assessed may be put in the following manner:

Suppose we observe a system with a complex structure that is not known

exactly, and measure two time series at its outputs. The goal is not only to

find out whether these signals have dependence or not, which can be done

using the traditional statistical techniques, but to extract additional

information on the interaction of some subsystems within the system.

However, some additional knowledge is needed regarding the observed

objects to conclude that they are self-sustained oscillators having their own

rhythms, which may be adjusted due to interaction. The advantage of the

phase synchronization method is that it enables the study of rather weak

interactions between the two oscillatory systems as well. The notion of phase

synchronization implies only some interdependence of the phases, whereas

the irregular amplitudes may remain uncorrelated. The irregularity of

amplitudes can mask the phase locking but the signals may be less sensitive

in the detection of the systems' interrelation.

Indeed the coherence technique, which has been used extensively to

study interdependence of signals, in the case of EEG signals too, is a measure

of the linear covariance of between two spectra. These spectra can be

estimated from finite data sets by first subdividing the whole data set into

segments and then computing using the discrete Fourier transform (DFT) the

approximate spectra and finally averaging these sub spectra over all the

segments. Segments here refer to successive time intervals defined by a

window sliding in time over the whole recording. Hence a single measure of

coherence typically depends on several seconds of data, which limits the

temporal resolution of the method. But the method also requires that each

data segment correspond to the same process with the same spectral

properties. Since this assumption of stationarity can rarely be validated either
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in time or across trials, a measure that does not require stationarity is much

preferred. Besides this, coherence also varies with amplitude covariance and

since phase locking is sufficient to conclude that two subsystems (such as in

the brain) interact, methods for sole detection of phase coherence gain

significance. Moreover, the classic statistical analysis of coherence is based on

a comparison with independent white noise signals (Lachaux et. al., 1999).

We follow the phase synchronization techniques therefore to delve into

the nature of regional coupling in the brain during various tasks in this study.

Of the three phase determination methods listed in an earlier section, the

method of Gabor's analytic signal lends itself as most suited in cases wherein

neither the full set of variables nor the determining equations of the system

underlying the signal are known. The phase synchrony method is based on

the well established fact that weak coupling first affects the phases of

oscillators while their amplitudes remain largely uncorrelated in time

(Rosenblum et. al., 1996). Reiterating some of the aforementioned points, the

key to detecting the synchronization between two systems is in the relation

between their phases. Consider two signals with phases If/, and If/j at any

instant evaluated by application of Eq. (7.9) - Eq. (7.10). A phase locking of

m: n between the two signals is defined (Tass et. al., 1998) as,

(7.11)

where z is an arbitrarily small constant. Since real data has characteristics of

noisy oscillators the relative phase which performs a random-walk-like motion

has a well-expressed peak in the distribution of the relative phase (fl/m,n mod

21t) if the two systems weakly interact.

In order to characterize the strength of the synchronization the actual

deviation of the actual distribution of the relative phase from the uniform one
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has to be determined. Tass et. al. (1998) introduced an index based on the

Shannon entropy defined as

pJSmax -S)/
/Smax

(7.12)

where S is the Shannon entropy as obtained from information theory given

as,

N

S = -IPi lnpi
i:1

(7.13)

Here Pi is the relative probability of occurrence and Sma.rt the normalizing

constant is InN where N is the number of bins. Normalized in this manner,

o~ p ~ 1, where p =0 corresponds to a uniform distribution or no

synchronization while p =1 corresponds to a Dirac delta function-like

distribution or perfect synchronization.

7.3 Application of Phase Synchronization to Normal and
Pathological EEG Signals

7.3.1 No-task Passive States

The present study is an application of the method of phase synchronization to

look into the interactions between cortical areas during no-task conditions,

which are the eyes closed and eyes open. An attempt is also made to study

the temporal variation of the synchronization that may exist between brain

regions. The temporal analysis is relevant in the context of the nonstationary

nature of the EEG signals consequent to the existence of a number of time

scales in human brain dynamics, which is known to affect the computation of

the invariant parameters as discussed in an earlier section. A novel technique

has been introduced to arrive at a mean synchronization index for each
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channel under study representing the strength of coordination of that channel

with respect to all other channels involved in the study.

The data analyzed in this study is collected from normal subjects with

electrodes arranged on the scalp in the International 10-20 system with an

EEG machine coupled to a PC using an analog to digital converter (DT- 2841)

and an array processor (DT-7020). For the eyes closed and eyes open

conditions, the electrode locations are Fpl, Fp2, F3, F4, F7, F8, C3, C4, T3,

T4, P3, P4, T5, T6, 01 and 02. This schematic is illustrated in chapter 3. The

acquired data is sampled at a rate of 512 sarnptes/s/channet and filtered

using a FIR digital filter of order 150 with a bandwidth of 0.1-32 Hz.

The Weighted Averaging Technique: The phase synchronization analysis is

extended over each of the 16 channels taken two at a time. When studying

the coordination between any two cortical regions, the EEG signal from each

location forms the signal !f/j so that the phase synchronization index between

these can be evaluated by using Eq.(7.11) - Eq.(7.13) for non-overlapping

sliding windows of fixed time duration. This enables the analysis of temporal

variation in phase synchronization as contained in the index p. In order to

study the variation in p for each of the cortical regions in time, we carry out

the aforementioned analysis and then subject the indices to a method of

weighted average to obtain the mean phase synchronization over a certain

time period.

If we consider a particular cortical region or location say, Fp1 the

phase synchronization relative to this channel is evaluated for all the other

locations. If we have a 16 channel input data, there will be 15 phase

synchronization indices since the self-synchronization index is 1 and is trivial.

In order to determine a mean synchronization for the channel Fp1 an
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averaging is to be carried out in such a way that the synchronization index

contributions are weighted according to their relative separation from the

channel. This method is resorted to because the interactions between

neighbouring regions will obviously be stronger, generating a higher p value

as compared to regions farther away. Hence when an average over all the

channels is carried out, the stronger contributions of the neighbouring regions

will dominate and mask the effect of weaker yet significant contributions from

farther regions of the brain. To circumvent this undesired effect, a modified

averaging method is adopted in this study. We start with a set of p values for

the given channel with respect to all other channels for a continuous time

period of say T seconds divided into n windows of fixed time duration. Hence

for a location i, for each window the set of synchronization indices is denoted

by {Pij} with j varying from 1 to 16 and j"* i. For each of these time windows,

a histogram of the p values is determined. Since with respect to each channel

there are more number of farther lying regions than neighbouring regions, the

frequency will be higher for lower values of p. The maximum frequency of

occurrence, Pmax is noted and the deviation of a given synchronization index

value from the minimum phase synchronization index, (Pij)min is determined.

If it is found to be lesser than a threshold value - chosen here to be a quarter

of the range l.e. the difference between the maximum and minimum of the p

values - the contribution from that synchronization index is scaled by an

index (Pmax /3). The values to be scaled are chosen according as,

( o.. - ( ~ ..) ) < Rhv-'lJ v-'lj min t

and the scaling is carried out as

(7.14 )

(7.15)
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The average synchronization index of that particular window for the

channel i is a mean of these scaled set of p values i.e. {P~} and the net

average phase synchronization index for the particular channel the average of

the mean p value in each window. The reason for the particular threshold, R1h

and weight value w is that the choice of these ensures a smooth scaling of the

Pij without changing the distribution that existed before the scaling. The

advantage of such a weighted averaging technique is that it retains the effect

of higher synchronization between regions arising from their neighbourliness

as well as contains the effect of lesser but significant synchronization that

may exist between farther regions. In figure 7.3, a plot of the actual as well

as scaled phase synchronization index values for frontal region Fp1 relative to

all the other channels for the eyes closed state in a particular time segment is

given. It can be seen that only those values that are much lower than the

highest values get scaled and the others remain unaffected.

Hence the net phase synchronization index for a given channel

averaged over sliding windows of a fixed time duration is,

1NI (1 n , ]p=-I -LPij
NI k=l n j=l

f#-i k

(7.16)

where N, is the total number of time windows over which the time average of

p is considered and n the number of channels to which the coordination of

each channel is considered. n will be one less than the number of channels in

the study. Based on this index, the temporal variation is considered over the

passive states.
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The set of phase synchronization index. p values corresponding to a typical
window for the Fp! region relative to all the other channels in the E.c. case.
The actual values as well as those after carrying out the scaling are indicated,
The dotted lines are merelyfor guiding the eye.

In this study, the EEG signal from the no-task eyes closed and eyes

open conditions is divided into non-overlapping windows of duration 2

seconds each. The phase synchronization index for each of the 16 channels is

determined with respect to the other 15 channels for continuous windows for

a time of 140 seconds. The scaling for the indices between neighbouring

regions is provided by employing the technique weighted averaging described

above, and the scaled set of indices are averaged for each of the windows. A

further averaging is carried out over intervals of 10 seconds, 20 seconds, 28

seconds and 70 seconds to get a general picture of the behaviour of the
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synchronization phenomenon exhibited by the cortical regions under the two

different conditions.

One of the initial observations is that synchronization is observed to be

stronger for the eyes closed (E.C) condition as compared with the eyes open

(E.O) state. The evaluated synchronization indices are relatively higher all

over the cortex in the E.C case against the values computed during the E.O

condition. Figure 4 is a plot of the synchronization index p evaluated using the

weighted scaling method as in Eq. (7.14). - Eq. (7.16) for each channel for

both these conditions. Each p value comprises the effect of the net

coordination of that channel with the rest of the brain during the time under

consideration.
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A comparison ofthe net synchronization index, p for the various cortical
regions during the eyes closed (E.c.) and eyes open conditions (E.0.)
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This observation could be interpreted as the dependence of the

synchronization index with the organization in the brain. In the E.C. state, the

ocular inputs are absent and hence to that extent the degree of randomness

is widespread. Hence the synchronization present in the system dominates

over the background.

Yet another striking observation seems to be the stronger level of

interaction of the left hemisphere as compared to the right one in the E.C

case. In the E.O case on the other hand, the symmetrical regions of the brain

show almost similar tendencies of interaction with the rest of the brain. Apart

from the frontal regions, for the E.C condition the regions such as (C3, C4)

and (P3, P4) which are situated on and near the midline of the brain, are in

higher states of synchronization. This points towards a higher amount of

information transfer between the brain lobes during the eyes closed condition.

In contrast to the temporal-parietal regions, the occipital-temporal regions

are in higher state of synchrony. In general, the brain regions interact

strongly within themselves leading to higher coherence of the brain state

during the eyes closed condition as compared to the visually stimulated E.O

case.

The temporal variation of the phase synchronization index reflecting

the strength of interaction was studied by evaluating it for sliding windows of

25 duration. The synchronization index was first averaged over 10 second

intervals (5 windows) each to look for a variation over the 14 such intervals

that occur for the total 140seconds record of the no-task state. Then the

averaging is considered over 20seconds (10 windows) intervals, 28seconds

(14 windows) intervals and finally 70seconds (35 windows) intervals. These

particular time slots were chosen for the averaging process since these being

factors of the total time (1V140seconds); give equal averaging intervals. In
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the colour coded illustrations 7.S(a)-(c) for eyes closed case, synchronization

index for the channels averaged over each of lOs, 20s 1 28s and finally in

figure Sed) the average p value over 70s is given. It is clearly seen that for

short time intervals, it is quite difficult to perceive strong changes, if anv, in

the coordination exhibited by cortical regions. This is because in the passive

state no sudden changes take place to get reflected in the synchronization

index. However, a general trend can be observed for the channels that for the

frontal regions Fpl, Fp2 and occipital regions 01 and 02, the net

synchronization index p is almost uniformly distributed in the whole time span

though with a decrease towards the final intervals as compared to the initial

and central time slots. This decrease In synchrony with time effect is more

pronounced for regions surrounding the central- parietal-temporal regions (C3

&. C4), (T3 & T4), P4 and T6 and more clearly observable in figure S(c) for the

28s interval. In the final plot for 70s interval, the general synchronization

trend exhibited by the cortical regions when the whole of the observation time

is divided exactly into two halves is shown. From here we observe that there

is an enhanced coordination for most of the frontal regions especially in the

left hemisphere during the second half of the observation period. Had the

synchrony been decreasing steadily with time, such a behaviour would not

have occurred. This could only mean an increase in synchrony some time

after the beginning of the recording towards the central time slot. In the

smaller time interval averaging with 105 and 20s (Figures 7.S(a-b» the initial

slots had exhibited higher synchrony than the final ones. In figure 7.S(c)

where time sections of 28s were averaged, there was evidence in atleast six

to seven channels of higher synchrony in the central slots than in the ones

just preceding these. This implies that while initially there is high

synchronicity in the brain; as time progresses there is a lowering of the
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interactions between various brain regions.

A similar line of analysis adopted for the E.O case, gives results shown

in figures 7.6(a)-(c). In this case, under the effect of visual stimulus, all

cortical areas are in a state of lowered synchronization since the processes

involved in visual information processing lead to a higher dynamical

complexity spread over the cortex. Hence we consider here the overall

temporal effect on the synchronization effect of the brain regions for longer

time slots of 20s, 28s and 70s. It is observed that most of the cortical regions

have almost equal yet lowered (In comparison to E.C) strength of coordination

over all the time intervals starting from the beginning to the end of the

recording period. We may deduce that this means a sustained complexity in

the dynamics of the visually stimulated state causes a loss in coordination

between the individual cortical regions.

In the temporal analysis thus a mean strength of synchronization for

each channel is evaluated from the set of p values for the specified channel by

suitablv scaling using a newly introduced method. This scaling method takes

into account the masking of lower yet significant values of p by the higher p

values existing between neighbouring regions. Hence the averaging of the

scaled indices between a channel and the rest of the brain regions may be

looked upon as a veritable measure of the strength of coordination of that

cortical region with the other cortical areas.

The study reveals apart from the known fact of lowered

complexity for the eyes closed state, the time dependence of cooperative

behaviour of the brain regions. While there is a reduction in the strength of

synchronization as time passes for the eyes closed condition, the lowered
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Figure 7.6. Temporal variation. ill the phase synchrony index. p during the eyes ope n stale
over time intervals of T- /Os (a), 18s(b) and 70s(,).

coordination during visual information processing persists for the whole time

interval in which the eyes are open.

7. 3 .2 Epile ptic Condition

An epileptic seizure is defined as a paroxysmal, self-limited change In

behaviour associated with excessive electrical discharge from the central

nervous system . The term seizure actually refers to a trans ient alteration of

behavior due to abnormal synchronized and repet it ive bursts of firing of



Svnchronization Phenomenon in Cognitive Processes 257

neurons in the central nervous system. Epilepsy is a syndrome of episodic

brain dysfunction characterized by recurrent unpredictable spontaneous

seizures. The diagnosis of epilepsy is not a simple one. Currently there are

more than twenty documented types of seizures, and no two people who have

the same disorder are affected in precisely the same manner. For instance,

Partial seizures begin in a localized brain region, whereas Generalized

seizures show widespread involvement of both hemispheres. Examples of

generalized seizures are absences (petit mal), myoclonic, or tonic-clonic

(grand mal) seizures. A complex partial seizure is associated with impairment

of consciousness while a simple partial seizure is not. Most complex partial

seizures originate from the temporal lobe and are also called temporal lobe

seizures. Epileptics frequently have more than one type of seizure. When

simple partial seizure precedes a complex partial seizure, it is referred to as

an aura. More recent classifications of epileptic syndromes incorporate such

features as etiology, age of onset, and the different combinations of seizures

that an epileptic has. Other commonly used terms include ictal (of seizure

itself) and interictal (between seizures). Convulsion implies ictal behavior with

vigorous motor activities. Status epilepticus denotes a very prolonged seizure

or series of seizures occurring so frequently that full recovery of brain

function does not occur interictally. Electroencephalographic (EEG)

investigation remains the most important aspect of the presurgical evaluation

of this abnormal condition. Analysis of unselected EEG activltv between

events (interictal) or of specific activity during events (ictal) can provide

evidence of focal electrical dysfunction. The research in epilepsy is a full­

fledged branch in the Neurosciences since the key to prevent the onset of

spontaneous neuronal firing etc. is not yet clearly known.
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The phase synchrony analysis when extended to study the interactions

in the brain during epilepsy throws light on the marked variations in the brain

interaction state during the non-epileptic periods and epileptic discharge. The
...

synchronization index was evaluated for each channel of the 8-channel data

set with respect to each of the other channels for sliding windows of 2second

duration each. The mean synchronization index over each such 2s period was

then determined to learn about the variations in the cooperative behaviour of

each brain region.
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The study reveals that as shown in figure 7.7, the synchronization is largely

the same ""0.02 over regions distributed in skull space from windows 1 to 7.

But immediately afterwards the synchronization strength is enhanced to much

higher values ""0.12, implying some major change in the brain state. It is

found that these windows 8-11 correspond to the definite epileptic discharge

(DED) period and the time preceding the seizure i.e. windows 1-7 to the non­

epileptic discharge (NED) period. Another noteworthy point is that not all

regions exhibit the same amount of increase in the synchronization index. For

instance, while regions Fp!, Fp2, F7 and T4 show considerable increase of

interaction, 01 and 02 appear to be only partially affected while F8 and T3 do

not seem to be affected at all. Lehnertz and Eiger (1995) showed that during

an epileptic seizure the neuronal complexity is lowered and hence the

interactions are probably enhanced. The significant fact brought out by this

line of investigation is that the synchronization is indeed higher during

intervals of strong discharge as compared to that of non-epileptic discharge.

There is evidence that the onset of an epileptic discharge causes a

decrease in the degrees of freedom as contained in the correlation dimension

D2 (Lehnertz & Eiger, 1995) of the attractors. This compactness could also be

a further cause for the stronger interactions amongst the attractors thus

resulting in a higher synchronization index. Hence there is an apparent cross

correlation existing between D2 and p. Figure 7.8 gives the synchronization

index, p with respect to location F7 for typical windows corresponding to DED

and NED. This region was undertaken for the study because it was the one

that showed a marked difference in D2 during the DED and NED periods.

Hence it is to be assumed that this region is strongly affected by the seizure

episode. Further while the strong interaction between neighbouring regions

such as (F7-Fp!) is to be expected for both the NED and DED conditions, the
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high amount of synchronization between regions farther away in the lobe

opposite to F7 such as Fp2 and T4 show that there is a functional

cooperativity between distant regions under a complex brain experience such

as epilepsy. In the work on the unfolding of the neural attractors, it was

shown that the rate at which the attractors unfold depends critically on time

scales. In the case of epileptic seizures the presence of high time scales in the

dynamics was detected not only during DED period but also in the NED

windows. The present study corroborates the finding in that analysis that the

seizure activity is probably confined to certain brain regions - those that have

a marked rise in neural co-operativity - signified by the large p values

(Pravitha et. al., 2001). Moreover this analysis sharply brings to focus the

distant connectivity between neural regions that accompany abnormal brain

conditions like epilepsy.

The study reveals in the case of the pathological condition of epilepsy,

there is selective increase of phase synchronization index between certain

brain regions during the seizure period and the regions involved may be lying

far apart and even in opposite brain lobes. The study reveals the sharp

increase in coordination and loss of complexity in the cortical areas of the

normally functioning brain disrupted by an abnormal seizure state.

The present analysis has produced some corroborative results to those

already known regarding no task conditions. However the new parameter

comprising all the interactions of a given cortical region with the rest of the

brain may be applied to the study of other mental activities such as word

processing and mental arithmetic as well as to pathological conditions such as

Alzheimer's disease etc. to gain better understanding of the mechanism of the

neural cooperativity. As the next step, we apply techniques to arrive at the
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direct ion of the actu al coupling that may be taking place between the neural

oscillators.
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7.4 Phase synchrony to Study Effect of Fatigue on Mental Tasks

Having looked into the cases of no-task conditions as well as a pathological

state the idea of extending the phase synchrony to delve the directionality of

the coupling between cortical regions during a specific mental task state is

undertaken in this section. The phase coherent nature of brain dynamics with

reference to a certain cognitive state involving many processes such as

association and memory is studied and the effect that a fatigue causing

exercise may have on the synchronous nature is examined. The mental task

state is that of arithmetic carried out mentally and there exist reports that the

performance of arithmetic is obviously a complex task, involving several

subcomponents (Ashcraft, 1992; McCloskey et et., 1985) such as separate

mechanisms for the retrieval of arithmetic facts and the performance of

calculation procedures which may be controlled by a distributed network.

Imaging studies have confirmed the role of posterior parietal cortex in

arithmetic calculation and implicate other regions, including prefrontal cortex

(Rueckert et. al., 1996) during this task while noninvasive methods such as

the phase synchrony techniques have not exactly delved into this problem. In

this study, we deal not directly with the mental calculation task but explore

the effect that exertion may have on the synchrony pattern in the brain with

reference to a specific mental task carried out before and after the onset of

fatigue.

Perception of exertion during exercise is a topic of great interest to

sport physicians and sportsmen worldwide. The idea of effort during exercise

and its relationship to fatigue is still not well understood (Hampson et. al.,

2001). Moreover, the effect of fatigue on the brain state during performance

of mental tasks is yet to be addressed. Once the relationship among fatigue,

intensity of effort and pacing strategies during exercise get established; this
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knowledge will benefit groups engaged in activities requiring exertion in daily

life such as sprinters, athletes, weightlifters and so on. Three models of

fatigue consequent to exertion have been proposed. The first is the peripheral

model in which muscle metabolic factors control or dictate the onset of fatigue

and the reduction or termination of exercise. In the central teleoanticipatory

model, subconscious brain centres or functional activities set predetermined

exercise activity whereas in the cognitive discussion model, the sensation of

fatigue itself controls exercise intensity, using prior experience as a

comparator or regulator of exercise intensity (Hampson et. al., 2001). The

second and third models point to the presence of brain activity in the

perception and regulation of fatigue consequent to physical exercise. Hence

an analysis of how fatigue changes the neural connectivity during specific

tasks will enable an understanding of the effect of fatigue on the co-operate

nature of the sub cortical networks.

In this pilot study, we use the mental calculation task which has been

suggested as a complex task integrating multiple processes sub served by a

large network of widely separated and interconnected local networks

(McCarthy & Warrington, 1990; McCloskey, 1992). The effect of fatigue

inducing exercise is studied on a mental arithmetic task by analyzing the

synchronization behaviour of cortical regions before and after the onset of

fatigue. Further, the nature of coupling between various regions is looked into

by making use of the directionality index that has been successfully applied to

probe the synchrony behaviour of heart rate and respiration cycles in infants

(Rosenblum et. at., 2002).
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7.4.1. Detecting the Directionality of Coupling from Phase

Chapter 7

In identifying the interdependencies between coupled (sub) systems from

multivariate data two problems can be formulated. The first is to reveal

whether the systems under investigation are coupled and to quantify the

intensity of interaction while the second is to characterize the causal or

driver-response relationships. The first is solved by the introduction of a

phase synchronization index based on the phase derived from the data and

the second by introducing an index which will contain information on the

directionality of coupling (Rosenblum et. al., 2002).

The main idea involved in detecting the coupling direction is that weak

coupling affects the phases of interacting oscillators, whereas amplitudes

remain largely unperturbed. Hence the dynamics could be reduced to those of

phases rfJ1,2 and the equation of temporal evolution can be written as,

~ 1,2= ea 1,2+ e 1,2 f 1,2 (~2,1'~ 1,2)+ q 1,2 (t)

Here q 1,2 are random terms describing noisy perturbations that are always

present in real world systems; small parameters 51,2 < < ffil,2 characterize the

strength of coupling. The regular component of the phase dynamics being

two-dimensional, the detection of the asymmetry in interaction becomes

simplified. If the coupling is bi-directional, f1 and f2, which are 21t periodic in

both arguments depend on both ifJl and rh. In case of unidirectional coupling,

say from system 1 to system 2, f1= fd ifJl) where as '2= f2( ifJlt rh) is the

function of both arguments.

As discussed in an earlier section, the phase may be evaluated and a

synchronization index determined from the EEG signal by followinq the Eq.

(7.11) -(7.13). Once the synchrony patterns are established, the question of

directionality in the coupling can be addressed. This is important in revealing
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whether the interaction is bi- or uni- directional and also to quantify the

degree of asymmetry in the coupling (Rosenblum & Pikovsky, 2001). From

the time series of the phases, for each time point increments of the form

(7.17)

are computed wherein t can be some fixed constant. These increments can be

considered as generated by some unknown two-dimensional noisy map,

~1,2(k) = :51,2 (Y'1,2 (k ),Y'2.1 (k))+ 771,2(k) (7.18)

(7.19)

The dependencies of Ll on rPt and rP2 are fit using a finite Fourier series as the

probe function in the following manner,

F. =" ~ eimrA+ilrh
1,2 ~ mI

mI

with III s 3,1 m Is 3 and Im I:::; Ill:::; I. From this the cross-dependencies of phase

dynamics are quantified by means of coefficients cl.2 defined as,

The directionality index is finally calculated as,

d(,,2) :::; c2 - Cl

c2 +c1

(7.20)

(7.21)

This normalized index varies from 1 in the case of unidirectional

coupling (1~2) to -1 in the opposite case (2~1). Vanishing index

diU) :::; 0 corresponds to symmetric bi-directional coupling. This method has

been successfully applied to analyze the nature of coupling in oscillator

systems (Rosenblum & Pikovsky, 2001) as also in the case of cardio

respiratory interaction (Rosenblum et. al., 2002). The application of this
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concept to the phase interaction derived from the EEG data leads to insights

regarding how the cortical regions interact during specific mental states. In

this case, the effect of fatigue inducing exercise on the arithmetic task is

investigated to study how variations in neuronal network coupling occur.

7.4.2 Data Acquisition and Classification

In recent times, the limited spatial resolution of the conventional EEG

technology has been tackled by introducing high resolution EEG (HR- EEG)

(Babiloni et. al., 1997; Edlinger et. al., 1998). A pre-requisite for such

methods is adequate sampling of the potential distribution on the scalp

surface. The point-spread function of conduction of potential from brain

surface to the scalp averages to about 2.5 cm (Gevins, 1990). Thus to

adequately cover the surface of the scalp with electrodes having inter­

electrode distance in this range, EEG equipment supporting at least 128

channels is required (Srinivasan et. al., 1998). Hence in this study, we resort

to the use of data recorded using a 128 channel Electrical Geodesk" system,

with a sampling frequency of 200Hz referenced to a vertex electrode. The

electrode configuration of the recording system is shown in figure 7.9. An

online band pass filter from 0.1 to 70 Hz was used and impedances were kept

below 25kn. Vertical and horizontal eye movements were monitored with a

subset of 128 electrodes.

Fifteen healthy subjects participated in the study of which 9 were

males and 6 females. Their mean age was 27.6 for males and 28.2 for

females and they were under no medication for neuro- psychotic illnesses.

EEGs were recorded under two different conditions. At first, the subjects were

made to do a mental arithmetic task with their eyes closed. This was serial
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Figure 7. 9. The schematic of the dense array electrode placement scheme for EEG
recording along with the classification of the channels into 4 groups based on
their cortical locations.

subtraction in which the subjects serially subtracted 7s' from 2000 for a

duration of 2 minutes. Subsequent to this, each subject underwent a fatigue

test. This test required the subject to perform an isometric leg extension at

20% of their maximum voluntary contraction (MVC) until the subject became

fatigued and could no longer achieve the desired level of power output. At the

end of this, subjects repeated the same mental arithmetic task during which
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EEG was again recorded. The resultant data records were transferred from

the Net Station acquisition system for further offline analysis.

7.4.3 Phase Synchrony and Directional Coupling Analysis

The analysis of the phase synchrony is carried out by classifying the

electrodes on the basis of their relative positions on the cortex so that there is

almost equal number of electrodes representative of each brain region in each

subgroup. This is depicted in flqure 7.9 along with the schematic for the

electrode placement in the dense array system. The mean value of the phase

synchronization index, p evaluated as in equations (7.11)-{7.13). Figure 7.10

is a comparative look at this index for the two states mental arithmetic before

(M.A.) and after the fatigue inducing exercise (M.A.F.). It is obvious that in all

the 4 brain regions, there is a rise in phase synchrony for most of the

channels following the physical exercise. This could mean that there is greater

coupling induced among the brain regions following fatigue in the system.

While it has been proved that mental arithmetic by itself leads to de­

synchronization in various brain regions (Inouye et. al., 1993), following the

fatigue there is a rise in synchrony during the same process and this seems to

be quite a global effect since there are only a few electrodes that seem to be

at lower synchrony as compared to the state before the onset of fatigue.

In order to look at the temporal variation in the synchrony effect or

whether there is a change in the synchrony pattern with time after fatigue in

comparison to the same task state prior to the fatigue onset the following

path is chosen. The analysis of synchronization is done over non-overlapping

windows of Ss each, satisfying the nonstationary condition and in each

window the synchronization index is evaluated. Then in the mental task state

prior to the exertion, the number of connections for each channel with
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moderately high values of p is determined. The limiting values of synchrony

index that limit the moderately high synchrony regime are chosen as 0.3 and

0.7. Hence those pair-wise connections with p < 0.3 or p >0.7 which exhibit

very low synchrony between virtually uncoupled regions in the former case
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Figure 7.1 O. The computed phase synchrony index p for the two cases ofM.A. and M. A. F.
for the four representative cortical regions I to IV

and very high synchrony arising due to near neighbourliness of electrodes in

the latter are neglected. We take into account the moderately strong
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couplings between farther lying regions that point to task related coupling

between neuronal sub cortical networks. The same is determined for the

corresponding time segments in the case of the mental task performed after

the fatigue inducing exercise.

It is observed from figure 7.11 that on an average over time as well,

the number of connections for each channel with moderately strong coupling

rises after the exercise. The number of strong connections emanating from

each channel is more in the mental arithmetic state after fatigue onset for a

time of 50 s (10 windows) after starting the calculation task. This could mean

that fatigue causes not only a rise in the magnitude of synchrony in the

system but the various regions exhibit greater number of couplings during an

identical task done after the onset of fatigue. The overall coherence effect of

the system may thus be said to have risen following the fatigue inducing

exercise. This is yet another evidence in favour of the taleoanticipatory model

that supposes a change in the brain activity following exercise and the

possibility of the brain playing a central part in the perception and regulation

of fatigue induced by physical exertion. However it may be noted in figure

7.10 that the variations in the synchrony indices during both states are

almost similar for most of the electrodes since the control task is the same

and hence the same complex functional subtasks such as perception of

numbers and mathematical operators, calculation of the difference operation

and memorization take place during the mental arithmetic task. The plausible

reason for the rise in synchrony in M.A.F. can be explained in the following

manner. During an exercise, the brain in general is more organized due to

concentration and this state persists into the next state, which in this case is

the mental arithmetic task. The higher synchrony during fatigue state takes

up a longer time to relax to the normal state. Yet another conjecture is that
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the exercise having caused fatigue, the subject has to concentrate more

strongly in an effort to conduct the assigned mental arithmetic task. This is

manifested as a stronger synchronization between the brain regions.

Addressing the question of the nature of coupling, the directional

indices are computed for the various channels relative to each other by

applying Eq. (7.17) - (7.21). d(l,2) '" 0 implies bi-directional coupling provided

the corresponding p (1,2) is moderately strong ensuring that the two channels

are indeed phase coupled. The low d(1,2) (almost 0) arises due to bi­

directionality and not because of the absence of phase synchrony between the

two regions. From the computed directionality factors, those connections are

determined that are uni-directionallv coupled in one direction with positive

d(1,2) with connection from 1~2 as also those with high negative values

implying unidirectional coupling from 2~1.

We have illustrated in figure 7.12 the electrodes in the two states of

mental arithmetic prior and after onset of fatigue which are mutually coupled

(d(l,2) "'=0) and also those with coupling existing in one direction. Since

clear cut cases of unidirectional coupling do not exist, we have chosen those

electrodes with d (1,2) within 75% of the maximum (positive) computed value

as having forward coupling alone and the channels with d (1,2) within 75% of

the minimum (negative) computed index are marked as exhibiting coupling in

the reverse direction only. In the case of mental arithmetic carried out before

the exercise, most of the mutual connections exist in the prefrontal cortex

and a few among the occipital sites. The role of the prefrontal cortex in

calculation has been stressed in many previous reports (Stam et. al., 1996;

Inouye et. al., 1993) and the presence of fatigue leads to a breakdown
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Figure 7. / 1. The difference in number 0/couplings (N) of p bet 0.3 an d 0.7 fo r the two states
MA and MAF. Ifat a given electrode the number ofcouplings is >0. it implies
more connections of that electrode relative to all othe r channels in the MAF
state than in MA

of some of the se symmetrical connecti ons with new ones forming in the right

temporo-panetal elect rodes as well th e occipital regions . There are also

unidirectio nal long-d istance connection s established in th e fatigued state (M.

A. F.) that were absent in the state prio r to physical exertion. However some

connect ions bet ween the right ternocrc-pa rteta ! regions ( 11 in right

hemisphere) and the left temporal region (11 in left hemisphere) that recur in
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both states point to the possibility of these regions interacting with each other

specific to the task at hand, i.e. mental arithmetic. But the symmetrical

connections in both states exist only between close lying electrodes though

there are more in the M.A.F. state in which there is an enhancement in the

global synchrony pattern as well compared to the M.A. state in the absence of

fatigue. This scheme of connectivity appears to be associated with the task of

mental arithmetic though this has to be established with more supportive .

evidence.
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--. Uni. (1~2)

- ... Uni. (2~1)
.. Bi-dirnl.

Figure 7.12.

Figure 7.12 (b)

The directional connections between electrodes during MA. (a) and MA.F. (b).
The enhancement in symmetrical connections after onset offatigue is clearly
visible

Thus fatigue seems to raise the coherence level in the system and this

is reflected not only in the higher synchrony indices but also in the number of

stronger couplings exhibited by each channel. Moreover the response of the

system to the fatigue seems to be an enhancement in the number of long
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distance connections and a shift of the symmetrical couplings to regions in the

parietal-occipital regions of the right lobe.

It has been observed in many cases that there is long distance

synchrony among cortical regions in the performance of cognitive tasks. This

pilot study aimed at studying the coherence nature of sub cortical neuronal

networks during the task of serial arithmetic subtraction and the effect of

fatigue on the cognitive task reveals that the phase synchrony in the system

is enhanced following the onset of fatigue during performance of the task

than in the normal unfatigued state. Moreover, the number of such strong

connections with respect to the individual electrodes also increases on the

average in the fatigued state. This could mean that the system as a whole

moves toward a more coherent state following the fatigue inducing exercise.

Mental arithmetic was chosen as the specific task since being a complex

functional task it has been revealed to activate particular brain regions as well

as the coupling between widely separated regions such as the prefrontal and

motor areas. The advantage of such non-invasive phase synchrony methods

lies in the ability to gain knowledge regarding brain function in the presence

of lesser known phenomena such as perceived exhaustion related to a

particular task, in this case, mental arithmetic.

It has been recently reported (Nybo & Nielsen, 2001) that cerebral

electrical activity rather than muscle activity is altered significantly by

exertion following prolonged exercise and studies such as ours gain relevance

in understanding how fatigue affects brain activity during performance of

specific tasks. Moreover we also observe variations in the nature of coupling

between the cortical regions in the fatigued state. While in the state prior to

the exercise, there were more symmetrically connected electrodes in the

prefrontal-frontal regions, the fatigue state is marked by lesser number of
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such bi-directional couplings and a shift of such connections towards the

parietc-occipital regions. The long distance connectivity between the

temporo-parietal regions with some electrodes in the prefrontal cortex seems

to be a signature of the induced fatigue. On the whole the fatigue in the

system induces more connectivity and moves the system towards higher

coherence.

7.5 Concluding Remarks

Cooperative behaviour of chaotic dynamical systems and in particular,

synchronization phenomena have received much attention lately. The theory

of synchronization is a rapidly growing branch of non linear science and occurs

in areas such as laser dynamics (Roy & Thornburg, 1994), secure

communications (Parlitz et. al., 1996) and biological systems (Blasius &

Stone, 2000; Nonlinear Analysis of Physiological Data, 1998). Synchronization

is a very general term that encompasses a number of definitions such as

generalized, partial, practical, lag etc. (Rulkov et. al., 1995; Rosenblum et.

al., 1997) phase synchronization is found to occur in many complex

interacting systems in which despite the amplitudes being uncorrelated, the

phases show entrainment. The Hilbert transform method is one of the popular

methods to derive the phase from observed signals. It has recently been

established that an alternative technique to arrive at a phase locking statistic

using wavelets exhibits only minor differences with the Hilbert method and

that too the differences manifest only for small windows of observation. This

implies that all such techniques offer a common framework for use in the

detection go synchronization at different spatial levels from the single cell

level to the level of EEG recordings (Le Van Queyan et. al., 2001).
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The work described in the above sections encompasses the application

of the ideas of phase synchrony to the EEG signal recorded during different

brain conditions and the discussion of the relevant results. The temporal

variation in the phase synchrony of normal relaxed states is conducted that

shows the reduced synchrony state of the brain in the presence of visual

stimulus in the eyes open state. Of greater clinical interest is the detection of

enhanced synchrony during the pathological condition of epileptic seizure

discharge. This analysis can also bring to light the synchronization between

distant cortical regions during the seizure state. In the subsequent section,

the effect that fatigue induced by physical exercise on the performance of

mental arithmetic task is analyzed in detail. It is observed that as compared

to the task performance before exercise, that after fatigue has set in, is

characterized by a marked increase of synchrony. Moreover the directional

coupling is determined pointing to a rise in the long distance couplings as well

as symmetric interactions mainly in the occipita-parietal regions.

Phase synchrony studies have reached a stage where the variations in

coupling patterns in the brain may be directly related to the changes in

behaviour. Moreover research is now concentrated to the parallel phase

synchrony over different frequency bands. Such studies may be integral to

the precipitation of a characteristic spectrum of frequencies that are

instrumental in carrying information regarding various stages of integration

occurring during specific conditions. At the heart of these analyses lies the

need to understand the collective nature of mechanisms and regions in the

brain and identify the abnormal patterns of neuronal integration that are

causative of different abnormalities in brain functioning and on the basis of

this knowledge, seek remedial measures.
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However, if we do discover a complete theory, it should in time be understandable in
broad principle by everyone, not just a few scientists. Then we shall all, philosophers,
scientists. and just ordinary people, be able to take part in the discussion ofthe question
ofwhy it is that we and the universe exist.

--- Stephen Hawking

The human brain that consists of over 1011 neurons in the cortex domain has

taken a billion years to evolve into a highly organized structure in the known

universe. It not only controls and monitors all bodily functions but is also the

seat of knowledge, emotions and thought and in the typical lifetime of a

person carries out innumerable functions and tasks that are beyond

description. A scientific theory of the brain would be able to explain the

known facts about the brain starting from a few fundamental principles. From

this perspective, there has not yet been a theory for the brain and its

functions.

Currently, there are numerous experimental observations on the brain

structure and behaviour as also a few theories and models that pertain to

certain specific aspects of the brain function such as vision or motor eo-

279
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ordination. The search that began around fifty years ago with the modeling of

the cellular structure in the brain led to the development of the interesting

computational structure known as Artificial Neural Network that has been

found to be useful in modeling many real life-complex data. This chapter

briefly reviews the main concerns in the development and partial answers

provided by the existing neural models. The final sections explain a

preliminary attempt to arrive at a map for the brain based on the EEG output.

8.1 Modeling the Brain

The neuron is the basic unit of information processing in the brain. Identified

by Cajal in 1908 as the cellular constituents of the brain specialized for rapid

inter communication, the main property of nerve cells is supra threshold

excitability. It was discovered that application of a strong enough stimulus

caused these to effect current pulses that came to be known as 'Action

Potentials'. The neural circuitry was recognized as highly complex by Cajal

and his associates and studies in neuroanatomy point to an interconnectivity

that far surpasses all imagination. For instance the Purkinje cells are

estimated to possess about 2xlOs synapses and there are about 250

morphological types of neurons in a small single patch of brain cortex. In

addition to dendrites, each neuron has an axon whose specific property is to

carry action potential. At the end of each axon are usually dendritic arbors so

that each neuron can transmit its pulse to neurons of the order of up to

several hundreds. The resulting neural net is hence very complex. Besides

these are the various types of neurotransmitters. Depending upon the type of

receptor proteins embedded in the neural membrane, neurotransmitters and

currents either depolarize the membrane so that the neuron is excited or

hyperpolarise it so that the neuron is inhibited. Other molecules that affect
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the neurons include monoamines, which modify the excitability thresholds. All

these tempt one to the idea of modeling the brain as a random net of neurons

swimming in a bio-chemical soup. Yet this is far from true and there is high

degree of specificity in the pattern of inter-neural connectivity.

In developing a model for the brain, there are various levels of neural

organization to be addressed from individual neurons through local neural

circuits to large aggregates of neurons acting collectively. Hodgkin and Huxley

proposed a model to study the generation of action potentiaIs in single

neurons (Hodgkin & Huxley, 1952). Based on experiments in the giant axons

of the squid, the set of equations, though complicated, provided a fairly

accurate representation of generation and propagation of action potential. By

the mid 50s' the action potentials and synaptic transmission were understood

in at least phenomenological terms. The presence of nonlinear dynamics

following the nonlinearity in behaviour of cellular structures also has more or

less been established. The behaviour of the irregular pulsations of a

synaptically isolated lateral pyloric (LP) neuron in the epyloric central pattern

generator (CPG) of the lobster is an example of this. This time recorded series

was found to possess a positive Lyapunov exponent exhibiting chaotic nature

(Abarbanel et. al., 1996a). A three dimensional model proposed by

Hindmarcsh and Rose (1994) and later modified and analyzed thoroughly

reproduced the behaviour exhibited by single neurons. A review of the role of

chaos in neural systems holds the view that chaotic dynamics is made

inevitable by nature in neural assemblies. Due to this, neurons possess

adaptability, reliability as well as the ability for rapid response to changing

external stimuli required for efficient information processing and response.

Moreover the instability in the phase space is made use of to rapidly achieve a

selected target state.
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In general, noise may also be considered a candidate in neuronal

complexity. But the temporal information coding by the time intervals

between action potentials needs a stable mechanism such as chaos to be

implemented. Also since the incoming signals through synapses and dendrites

being highly irregular, the neurons are able to recognize the message using

synchronization, which is impossible to achieve with inputs from truly noisy

neurons. Only chaotic neurons are capable of generating such large-scale

synchronization and desynchronization. Hence chaos in neural assemblies at

the cortical level appears to be inherent rather than a befitting mechanism to

the manifested phenomena (Rabinovich & Abarbanel, 1998).

8.2 Artificial Neural Networks and Models of Neocortex

Even before the Hodgkin-Huxley equation was formulated, McCulloch and

Pitts (1943) proposed a network that could perform all processes described by

a finite number of symbolic expressions such as simple arithmetic, classifying,

storing and retrieving data, recursive application of logic rules etc. The neural

model consists of a set of binary elements, which are neurons that are either

on or off representing the threshold in the neural firing and the output of each

neuron depends upon the input in which weights are fixed. These were the

first examples of model neural nets designed to perform specific tasks. The

question of what would happen if such a net malfunctions prompted von

Neumann, the leading mathematician who is a pioneer in the development of

the digital computer, to introduce the idea of redundancy into the net with

which more reliability was found to be achieved by the McCulloch-Pitts (M-P)

neuron. Subsequent work by Winograd & Cowan (1963) constructed a

redundant neural network in which they utilized a distributed representation
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of information. This provides an insight into the functioning of neural

networks in the brain even if some of the units are damaged.

The idea of distributed representation of information is supported by

Hebb's theory (1964), which proposed that as an organism learns different

tasks, its brain connectivity continually changes so that these create cell

assemblies. Hebb postulated that repeated activation of one neuron by

another, across a particular synapse, increased its conductance to that group

of weakly connected cells, if synchronously activated. Hebb's ideas gave rise

to Neurodynamics as the study of the generation and propagation of

synchronized neural activity. Rashevsky and eo-workers (1938) began work

on the activation and propagation by applying principles of calculus rather

than logic and this was followed up by Wiener. Cragg and Temperly in 1954

pointed out the remarkable similarity between the properties of neurons in a

densely connected net and those of spinning atoms in a lattice, which were

later supported by the work of Little in the mid-seventies. The first detailed

analysis of the triggering and propagation of large-scale brain activity was by

Beurle in 1956 who focused on the proportion of neurons becoming activated

per unit time in a given volume element of a slice of model brain tissue

consisting of randomly connected neurons (Cowan & Sharp, 1988).

The svnaptic modification proposed by Hebb paved way for the

development of adaptive nets which could learn to perform specific tasks.

Pattern recognition and classification were taken as specific problems in this

direction. The Perceptron model introduced by Rosenblatt (1958) was a

definite improvement over the McCulloch Pitts neural model and could be

trained to classify certain sets of patterns as similar or distinct. The

perceptron consists of sensory units interconnected to the motor units by

modifiable weights. These weights are adjusted depending on the response
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and it is found that these weights converge only for a finite number of

representations of stimulus-response patterns. The Adaline structure is a

variant of the perceptron models differing only in the training procedure.

Despite their many advantageous features, perceptrons failed to classify

some simple patterns such as T and C. This was attributed mainly to the

nature of the M-P neurons which made even the implementation of the simple

NOT operation require several units. This limitation is overcome with the

introduction of modified architecture with 'hidden units'. Though Perceptron or

Adaline models with only single layer units are not computationally universal,

the problem of assigning credits to the hidden units in multilayer perceptron

models is unsolvable. The limitation of single Perceptrons and Adaline models

can be overcome with a more complex architecture incorporating hidden units

with modifiable connections.

The most notable feature of the perceptron is that its memory of the

learnt task is distributed over the modified connections and hence it is less

likely to be disrupted by damage. Yet the associative nature of human

memory remains unaddressed. The study of neural nets with associative

memories began on an extensive scale around 30 years ago (Taylor, 1964).

The net similar in structure to the perceptron has no hidden units nor does it

rely on M-P neurons. Applying the Hebbian principle, the net learns to

associate differing sensory patterns to motor responses by repeated

presentation of pairs of patterns. This and later models proposed by Taylor

contained the association areas of the cerebral cortex and cerebellum. About

the same time, Steinbuch introduced a planar net of switches interposed

between arrays of sensory receptors and motor effectors known as the

Learning Matrix which also had associative memory incorporated in it. These

attempts were followed by theories of Marr put forth in the early seventies for
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the functioning of the cerebellum, the hippocampus and in a more elaborate

sense of the neocortex. These theories have not been fully tested; yet there

have been some observations consistent with theory.

Of the many models of memory, the Anderson and Cooper (1978)

model holds a place of prominence. While the functions of individual neurons

in many parts of the brain have been fairly well understood, the collective

process in which large bodies of interconnected neurons give rise to specific

mental activity is much less known. This is the case when the activity of

single cells is considered in a higher cortical function or in the localization of a

region in the nervous system in which storage of memory takes place. The

fundamental problem arising in understanding the organization of memory in

a biological system is the involvement of the vast information storage and

retrieval mechanism of a system composed of vulnerable and relatively

unreliable elements. The neural models introduced by Anderson and Cooper

account for the acquisition and storage of distributed memories that display

features such as recognition, association, generalization and some of the

features of mental behaviour associated with animal memory. It has been

suggested that much of the learning and resulting organization of the central

nervous system occurs through some kind of modification of the efficacy or

strength of at least some of the synapses, thus altering the relation between

presynaptic and post synaptic potentials. Distributed memories result from a

small but coherent modification of a large number of synaptic junctions. The

neurons of the primary sensory areas display various forms of stimulus

selectlvitv, l.e. they may respond preferentially to a tone of a given

frequency, a light spot of a given calor, a light bar of certain orientations etc.

Thus, stimulus selectivity is considered as the general property of sensory

neurons and it is conjectured that development of such selectivity obeys some
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general rule. Distributed memory considers the simultaneous or near

simultaneous activities of many different neurons. A large spatially distributed

pattern of neuron discharges, each of which might not be very far from

spontaneous activity, could remain important even if this is hard to detect.

The model of Anderson and Cooper consists of N neurons 1,2,..... ,N

each of which has some spontaneous firing rate rj
o. Then a vector is defined

whose components are the difference between the actual firing rate r j of the

fh neuron and the spontaneous firing rate r}. Hence, we may write,

(8.1)

Two groups of neurons are connected to one another by replacing the

multiplicity of synapses between axons and dendrites by a single ideal

junction. This summarizes logically the effect of all the synaptic contacts

between the incoming axon branches from neuron j say in the F bank and the

dendrites of the outgoing neuron i in the G bank neurons. While F is

concerned with incoming signals, G is associated with responses. Even though

the firing rate of a neuron depends in a complex and nonlinear fashion on the

presynaptic potentials, there is usually a reasonably well-defined linear

region. The firing rate gj of neuron i in G is mapped from the firing rates of all

the neurons f j in F by

N

s, ::: I Aij f j
j=l

where Aij is a mapping matrix depending on gj and f j •

(8.2)



Neural Models 287

The neural activity fin the F space is mapped into the neural activity g in the

G space and this can be written in a compact form as

g=Af

where A is a matrix with elements, Aij .

(8.3)

Thus memory is stored in the modifiable mapping of the type A. In

contrast to machine memory, which is local, the animal memory is likely to be

distributed and addressable by content or by association. It is convenient to

write the mapping A as

(8.4)
fJV

Based on the Anderson and Cooper model, Parikh and Pratap (1984)

developed a generalized evolutionary model in the framework of

nonequilibrium statistical mechanics as developed by Brussel School to

simulate the memory effects. Consider again a network of N neurons that are

all linked to each other. In the absence of input, the neurons have a certain

amount of spontaneous activitv, which is described by the firing frequencies

rJ. The firing frequency is random in time and rJ is considered as random

variable having a distribution around the time-averaged mean. The difference

between the actual firing rate rj and the spontaneous firing rates r
l
O is

represented as

(8.5)

The same stimulus can lead to firing patterns that vary from trial to trial, but

the average of the firing rates is roughly constant. Therefore, the frequencies

hJ are also random variables distributed about appropriate mean values. In
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order to simulate the memory effects consider that in the time interval - OCJ to

o (at instants ~1, ~2"""',~K) there have been K experiences and associated

correlations, defined by certain input and output firing rates. Denoting input

and output firing rates as f
J

v and s; respectively, where v and !-l take values

from 1 to K and i, j=l, ....,N neurons for all the past K events. Here f/ are

the afferent frequencies of the V
1h species at the instant j and gt are the

efferent ones.

The state of the neural network at t=O may be defined by a

distribution function p({ g;~V:},{hJ},t=O). The problem is to obtain the

distribution function p ( {g,},'). If a transition probability,

G({gJI {g:},{J;},{IJ~},t- r) is defined, which takes the state at t-r to t, then

one can obtain p( {gi },t) by writing an evolution equation as

In the equation, integrations are effected over all the variables except the

ga i.e. all the variables on the right of the vertical bar appearing in the

definition of G. It may be noted that time appears in the transition probability

as t-, which implies that Eq. (8.6) is non-Markovian in nature. In this

equation, G is the kernel in the integral equation. This kernel G maps the

input stimulus at t=O into the output signal at t after subjecting to the

interactions in the medium which is heterogeneous. Different hypothesis

about the synaptic changes would lead to different forms for G. This model is
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a general evolutionary model of a distributed memory with the "Kernel" in the

equation simulating the changes in the synaptic behaviour produced by

external stimuli (Parikh & Pratap, 1984).

The analysis of the collective modes in the brain has been undertaken

by various groups as well. In a subsequent work to the one described above,

Kulkarni et. at. (1997) analyzed the actual EEG records in accordance with the

idea of the signal being generated by the cooperative activity of a large

number of neurons. The parametric map approach for the modeling of time

series with broadband spectra was demonstrated by Abarbanel et. al., (1990).

Many models for the analysis of the observed EEG signal are broadly based on

such maps of which a prominent one could prove the predictability in EEG

patterns that was limited to a few steps (Parikh & Pratap, 1991). In recent

times, the use of nonlinear autoregressive structures for the modeling of the

output from continuous time dynamical systems with special implication for

EEG modeling have been suggested (Ozaki et. al., 1999). Neural modeling

continues to exist as a challenging field to researchers and the search for a

model that encompasses the system complexity on the whole is ongoing.

8.3 Maps in the Brain

The most astounding discovery in neuroscience in this century is that there is

a constant generation of neuronal cells in adult primates in basal ganglia

(Gould et. al., 1999) and that they migrate tangentially and dorsally from a

lateral region (Kaas & Reiner, 1999). It was almost axiomatic for medical

scientists that while all body tissue are regenerated during life, brain cells are

formed during a short period after birth, and that their number only decrease

in time and not increase. The implication of this assumption is that the

various neuronal connections can be made only from amongst this given
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number of cells and that as they degenerate due to ageing, the number of

connections also get decreased in time which manifests itself in an altered

metabolic condition amongst other effects. The above discovery is significant

in this context that the existlnq connections can be maintained and even fresh

ones can be formed with the help of these newly generated neurons by giving

constant stimuli.

It is well established by now that when a sensory terminal receives a

stimulus (stimuli) it is transmitted to the cortex and the neuronal firings

establish patterns in the brain. These patterns are distinctly different for

different kinds of signals received by the same individual and they also differ

from person to person; i.e. different persons will not have the same map

established in the brain for the same input signal or identical signal inputs.

This implies that the acquired characteristics as well as psychological make up

play a significant role in the formation of brain maps.

There have been various attempts in the study of map formation both

invasive and noninvasive (Law & Paton, 1981). In the invasive case, an amino

acid (proline) labeled with radioactive tritium is injected into one of the optic

nerves. The animal brain is then sliced after a fortnight to determine the

distribution of radioactivity. It was found that the neuronal cells affected by

the radioactivity form patterns consisting of stripes in the cerebral cortex.

This method however has a limitation for it does not convey any insight

regarding dynamic activity in the brain. Recently non invasive processes have

been developed to study the dynamical process in synapses (Colicos et. al.,

2001; Pratap 1999) both experimentally and theoretically. Since intra cellular

electrode stimulation (invasive) as in the voltage clamp method result in a

psychological perturbation of the system, the recent method based on a

noninvasive stimulation by changing the photoconductivity of the membrane
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of the system is an improvement. This again may result in a perturbation

since conductivity changes play a significant role in the synaptic transduction

(Pratap, 1999). The above-mentioned impasse may be avoided by studying

the electrical activity of the brain as obtained from the electroencephalogram

(EEG).

In the recent past, there have been a series of non invasive attempts

to locate and determine the distribution of activity sources in the cortex,

which generate electric/magnetic activity, which are measured at the scalp

surface (Wang & He, 1998). In this method, EEG/MEG potential measured is

assumed to be generated by a current function satisfying a two dimensional

Laplace equation. Having obtained the function and applying Maxwell's

equation with homogeneous conductivity the authors have located the source

distribution. In this the assumption made is that the sources are of internal

origin (Chapman & Bartels, 1940). In geomagnetism this method has been

used extensively, but did not give any information regarding the internal

structure, since the conductivity distribution is heterogeneous and complex.

This is exactly the condition even in the cerebral cortex. Further, in the

general problem of signal propagation along the nerve while there is no

amplitude modulation, frequency modulation is found to be directly

proportional to the stimulus strength. These features are not exhibited by any

electrical system to which Maxwell's equation are applied. Hence the validity

of Maxwell's equation in such a complex system is to be further examined

especially when the conductance is a complex function of the fields. It should

be realized that in the cortex in particular and in the nervous system in

general there are a wide variety of amino acids, enzymes and also different

kinds of cells and hence such a procedure does not give any insight into the

dynamics of the system. An attempt was made in the last decade to
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formulate a quantum theory for a more realistic brain (Donald, 1990) model

with limited success. It should further be realized that a nonlinear, complex,

non-Marcoffian system such as human brain is dynamically a non-Hamiltonian

system. This implies that there does not exist a potential in the usual sense.

If however we define a Motion Generating Function (MGF) it would be a

complicated function of space-time. The system is thermodynamically open

and hence there is no equilibrium state even in the asymptotic sense and

therefore use of a two-dimensional or three-dimensional Laplace's equation is

inadequate to the problem in hand. However there can be steady states

(Glansdorff & Prigogine, 1971) and the dynamics is dominated by nonlinearity

and feedback-feed forward mechanisms.

In view of the above, a different approach has been adopted in this

study. From the analysis of the EEG signal, it is largely accepted that system

is nonlinear and complex; but there are invariants such as the correlation

dimension (0;), Kolmogorov entropy (Ki ) , Lyapunov exponents (A;) etc. which

are distinctly different at different points pointing to the presence of more

than one attractor in the scalp area. Hence the system may be assumed to

consist of a collection of attractors instead of a single global attractor. The

system is represented in an attractor space equivalent to the gamma space

(or r space) in non-equilibrium statistical mechanics. This space is spanned

by the known invariant parameters such as Di, Ki, A; ete. A multi-species

representation is obtained which is dynamic in nature. Since at a given scalp

point attractors appear and then disappear in time, the global state of the

system in the attractor space is ever changing as it evolves in time. Thus

neither the neuronal number nor the number of connections or the number of

attractors in the attractor space is conserved. Under these circumstances, the
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formulation of a nonequilibrium statistical mechanics has to be done in an

entirely new format.

8.4 Formulation of Nonequilibrium Statistical Mechanics

Equilibrium of a dynamical system, by definition, is that the system remains

in that state for all times to come. The assumption made under this condition

is that if the system is perturbed and then left alone, it attains the equilibrium

state asymptotically. This asymptotic nature implies that as the system is

perturbed, it relaxes exponentiallv i.e. the time behaviour is of the form

exp(->~) and as t~'tf the perturbation attains an e-folded value and hence is

negligible. Such assumptions are probably satisfied when the system is

linear. However in the case where the interactions in the system are

nonlinear, instabilities can set in and ultimately take the system over to an

explosive state. It could also lead to a generation of synergic frequencies,

which lead the system to a new state of equilibrium different from the

equilibrium state at which the perturbation was done. This scenario

necessitates the development of a statistical mechanics for the system far

removed from equilibrium that traces its evolution in time.

Interactions in the human brain generate a large number of attractors

specified by various characteristic parameters such as embedding dimension

c: if attractor basin B, f generalized metric dimension D iq f generalized

entropy K iq and Lyapunov exponent Aiq/Lyapunov function. Here, i is the

attractor index and q are integers 0 ~ q ~ ex) for any specified i, The value

q=O for the ith attractor is known as Hausdorff dimension. The dimension at

q=l is called the information dimension while q=2 case corresponds to the
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two body correlation dimension. D iq for q>2 are the higher order dimensions

and all these are geometric parameters specifying the shape of the attractor

in a suttablv chosen phase space. Similarly K iq are the Shannon entropy and

Ki2 is known as Kolmogorov entropy of the l'" attractor which is the measure

of the information capacity of the system. Aiq = 0 for any q implies that

Lyapunov exponents do not indicate the stability/ instability of the system. In

such a case one has to resort to Lyapunov functions. It should be emphasized

here that the above parameters are only a certain set of 'invariant'

parameters and that this set is not closed by any means.

The collection of attractors as has been mentioned before is considered

in this section. If at a given point on the scalp space, an attractor specified by

the invariant characteristic parameters disappears at a given instant t I , and

reappears at a different scalp point at t 2 we say that a scattering process is

complete in the interval (t2 - t.). If this attraetor does not appear at all, we

consider this as a case of loss from the system. It could also happen that the

same attractor can appear at the same scalp point at t2. This we denote as a

temporal scattering.

In the present case, the measured data, the EEG, indicates the end

result of all interactions in the system at the space-time point from which it is

collected. Hence the effort must be to infer the plausible interactions in the

system, which result in the final state indicated by the data set. This is a

particular case of doing an inverse analysis of the data set to get an insight

into the interactions in the system. Hence one necessarily has to assume a

model in which an interaction is postulated and examine whether the

assumed model reproduces the output data. To study such a system, the first
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step is to perform a singular value decomposition (5VD) of the digitized EEG

output.

8.4.1 Schematics of SVD

The digitized output data from a 16 channel EEG machine is now analyzed

channel wise. The data from a single channel is divided into 10 windows, each

containing 2 second data (1024 data points). The data is then arranged in the

form of a delayed matrix (Broomhead & King, 1986) in an embedding space

of dimension (15) giving a rectangular matrix F. We now obtain from this a

(15x15) symmetric square matrix FTF and determine the eigen values Aijk and

the corresponding eigen functions ~ijk where i denotes the index specifying the

location of the electrode or channel index (1-16) and j is the window number

(1-10). k denotes the order of the eigen value having a range of 1-00. This

procedure is known as the singular value decomposition

The most significant feature in SVD is that the eigen values fall into

two distinctly different groups; one having significant eigen values denoting

the deterministic component while for the other group, the eigen values are

very small and hence insignificant giving the noise contribution. The eigen

values are arranged in descending order of importance and all the lower ones

which are less than or equal to the e-folded value of the most significant

value are neglected. If now the original time series is projected onto the

space spanned by these basis functions, a noise free series is obtained. It

should however be realized that in this process only a very insignificant

residue of the noise is filtered out and that a significant part of the random

component has contributed to the eigen functions. Contrary to the case of

linear systems, nonlinearity does not permit a stochastic series as being

written as an addition of harmonic component and a random factor. This fact
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is reflected in the small eigen values neglected in the analysis. It should also

be mentioned that it is safer to choose an embedding dimension, which is

larger than the attractor dimension. The most remarkable feature of this

decomposition is that these eigen functions would include all the main

features of the system such as nonlinearity and non-Marcoffian nature. This

becomes obvious, in the representation of the orthogonal functions in a

different orthogonal basis function sets.

8.4.2 Eigen Function Representation

It is well known that one can represent a given set of orthogonal functions in

a different set of orthogonal basis functions. Hence we can write

~;k = Laijk, ;;
f

where ;; are Gegenbauer polynomials. For the value v =~ the above

reduces to Legendre polynomials. Thus

(8.7)

where now the coefficients aijkl are functions of space time variables and

thereby account for the nonlinearity and complexity of the system. PI s are

independent of the space-time variables. The coefficients aijk! could be

determined using the usual orthogonality property of the Legendre

polynomials.

Equation (8.1) can be considered as a numerical fit as

(8.8)
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Since tAjk! are known, the above integration can be effected numerically and

the coefficients are determined. This is tantamount to fitting the curve

depicting t/J with analytical functions Pm. We shall however make this

transformation at a later stage.

8.4.3 Inverse Scattering Calculation

An inverse scattering calculation can be performed using these orthogonal

eigen functions and eigen values (Toda, 1975). This procedure is distinctly

different from the inverse problem discussed in earlier attempts. We consider

here an attractor collection in an attractor space and not the actual brain in

the configuration space. This collection is characterized by the eigen functions

and eigen values and the evolution equation in general can be written as

(8.9)

The double primes indicate double differentiation with respect to the

argument of the function. et> is the set of all eigen functions for the entire

scalp domain. Thus

(8.10)

and the set includes all location points i, all windows in each channel (i, j) and

all the functions in each channel and in each window (i, j, k). V represents the

MGF in a global sense.

The MGF is a nonlinear function of its argument and at any specific

point, the interaction with all other points in the skull space is taken care of

by taking Eq. (8.10) for all channels, for all windows and all the functions in
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the same window. Since the !4 5 are orthogonal, one can expand V in terms of

os as

'"V(<I>,t) =LAn (t)<I>n
n=O

(8.11)

where An are to be determined from the equation (8.9) written as

(8.12)
rj;ijk

IJlijk ~ijk - ~:k ]
v(<l>,t) = ....:....ijk _

In this preliminary investigation equation (8.12) is rewritten as

(8.13)

where <1lis given in (8.tO). To simplify this further, we have taken <I> as

(8.14)

as the number of significant eigen functions in each channel and in each

window are only about 5 in number. Since all the elements on the right hand

side of Eq. (8.13) are known numerically, this equation is evaluated at each

scalp point, each window and used in the map construction.

8.5 Map Construction

In drawing the maps, a 16 channel digitized EEG output is used for the two

cases- eyes closed and eyes open. We evaluated the MGF given by Eq. (8.13)

and plotted the isocontours for this function.
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It has been shown (Indic et. al., 1999; Indict 1999) that the EEG

generated time series are in general nonstationary, and hence this effect can

be kept a minimum by taking shorter windows. However too short a window

length would introduce spurious correlations. Hence a choice of two second

windows, each containing 1024 data points is made. Also the attractors in the

various windows have dimensions of the order of 5-7, Hence in carrying out

2,98 2,91

Figure 8.1(a) The iso contours of MGF evaluated at 16 location points in the skull
space for the eyes closed condition. The curves represent the intersection
contours with the topological manifold.

the SVD we arranged the data in a delayed matrix F in an embedding

dimension 15. This gives the total number of rows as 1010 using NT = N+ m­

1 where NT is the total number of data points, N is the total number of rows

and m the embedding space.

From this, the 15 x 15 matrix FTF is formed and the eigen values and

eigen functions ~jk and tAjk where i runs from 1-16, j from 1-10 and k, 1-00

are evaluated. As has already been pointed out by Broomhead & King (1986),
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the eigen values fall into two groups, one with significant values while the

other has almost zero values. The former signifies the characteristics of the

deterministic part, while the latter corresponds to noise.

The data (Parikh & Pratap, 1991) is projected onto the space spanned

by these basis orthogonal functions and the ensuing series was used to

construct a model, which reproduced the filtered data in an excellent manner.

We used the first five eigen functions, which are the significant ones in

evaluating V(<t>,t). The isocontours for this are drawn and are shown in

figures 8.1(a,b) for eyes closed and 8.2 (a,b) for eyes open.

2~
cv

V

2.45 2.31

I

I
2.29
•

Figure 8.1 (b) The iso-contours as in 8.1(a) for eyes closed condition at the
adjacent time window. Note the three disjointed contours giving
thereby the intersection ofthe plane with these tubular structures.



Neural Models

Figure 8.2(a)

301

2.57
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2.82
•
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3.00-

~6\J
The iso contours ofpotentials evaluated at 16 location points in the

skull space for the eyes open condition. The curves represent the
intersection contours with the topological manifold.

2.78 3.30

Figure 8.2(b) The iso contours as in 8.2(a) for eyes open condition at the
adjacent time window.
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8.5.1Topological Manifolds

Chapter 8

A topological space by definition is a set of arbitrary elements (or points)

based on a certain relation in a Rn (real, n dimensional) space. If these

elements are confined to a certain subspace, we call this subspace a manifold.

The most commonly understood and familiar to physicists is the double cone

with the apex at the point 'event' situated on the space coordinate (x-axis)

and the cone having its axis along the time axis normal to the space

coordinate (y-axis). The x-axls divides the space into two viz. past and future

and the cones divide the space into time like and space like. These cones

open out to ± 00 and this is known as an open manifold. However if the

relation generating these surfaces is bounded, we call it as a closed manifold.

In the present case we do not have a metric as in the previous one.

We therefore define the MGF as the relation defining the manifold. Thus the

relation can be defined as

V(<p,t) = C (8.15)

where we evaluate V(<p,t) from the relation given by Eq. (8.13). We have

estimated the above quantity at the various scalp points (16 in number) for

the adjacent instants of time to and to+2 seconds and plotted the iso-contours

at (a.b), These iso-contours for the eyes closed state are given in figure

8.1(a,b) and 8.2(a,b) represent similar contours for the eyes op.en state. If

we now stack one above the other the two figures 8.1(a,b) (b above a); we

can construct the surfaces by joining the contours of any specified value. The

stacked arrangement is given in figure 8.3. Similar plot for eyes open case is

given in figure 8.4.
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Figure 8.3. The two diagrams 8. I (a & b) drawn in a perspective scheme. It
becomes evident that the simply connected region splits up into
multiply connected domains as time progresses. To avoid confusion
we have selected only V=3 (in arbitrary units).
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Figure 8.4. The two diagrams 8.2 (a & b) drawn in a perspective scheme. Here the
disjointed tubular structures coalesce into one simply connected
domain in the adjacent window. To avoid only V=3 (in arbitrary units)
is presented.
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In the resulting diagrams, we can visualize that there are protruding

finger /tongue like structures some of which get closed, (because one does

not see a closed contour with the same values in the next higher diagram in

the stack) while the others are open and that they spin different patterns in

the space-time continuum. It becomes quite obvious that these manifolds

spin different structures revealing the high degree of complexity inherent in

the system. It is indeed a major task to identify such a structural behaviour

with any given thought process looking at the amount of computational

complexities. Nevertheless, if we can develop this into an online system, it

can reveal the brain dynamics.

The results are presented for the two cases of eyes closed figure a.1

(a, b) and eyes open figure a.2(a, b). Figure a.l(a, b) are the two separated

frames at the instants to and (to +2) sec. This could be considered as a curve

generated by the intersection of the topological surface with the planes at to

and t 1 = (to + 2 sec). In figure a.l(a) the isocontours are not closed, since we

have only 16 channels and that is not enough for the complete map. The

contours would have been closed if we had 64 or 12a or more location points.

In the (to +2) sec. frame, the composite surface of a.l(a) has separated itself

into three islands and this could be visualized as three finger-like structures

starting from the composite surface. While the surface a.l(a) is simply

connected, in a.l(b) frame they are multiply connected. One can construct

the composite picture by stacking these two as shown in figure 8.3.

Incidentally we have not drawn the explicit surface but the structure is

obvious.

The opposite feature is seen in the case when eyes are open- figure

8.2(a, b). Here at to, we have two tube intersections with the plane but they

coalesce into one in a.2(b). A perspective view of this can be comprehended
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from figure 8.4. Thus while in figure 8.1, the mono structure evolves into

tubular structures, in the second case we get disjointed structures coalescing

to form a cogent structure. Thus the complexity is evident from a wide variety

of surface structures and that they go from simply connected to multiply

connected and back to simply connected spaces.

The merits of this method are that we obtain a visual representation of

the evolution of thought processes in the brain by taking various time frames

in the interval (i, i+1). We there by achieve from an online system a moving

representation of the brain activity in time. This may possibly be used to

classify different thought processes or the same thought process under

diverse emotional states. Secondly by writing the equations for tangent,

normal and bt-norrnal for these surfaces one can explicitly represent the

dynamics of this complex system. This we are pursuing at present. These

three vector equations however will be in the space-time continuum but will

be functions of the various invariants of the systems such as D;, K, A.; etc. It

should however be realized that as stated above these invariants do not form

a complete closed set. Probably one can embark into the search for new

invariants. This may also reveal aspects of dynamics which are yet unknown.

The dynamics of these surfaces from a clinician's point of view will be helpful

to understand the emotional stresses a patient is undergoing during

conditions such as those induced by Parkinson's or Alzheimer's disease or

even mental depression. In this sense, this opens up a new and wide field for

investigation.

On the demerit side, there are a few limitations in this analysis. In the

present analysis, windows of two seconds data length are chosen. If we

reduce this to one second, the number of data points may become insufficient

to give consistent and coherent results. Thus we get in 2second windows only
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broader time scales. Since the data is of millisecond interval, we miss a large

amount of information in the dynamics, which is very significant since the

natural time scale in the system is small and the system is nonlinear, complex

and thermodynamically open. Probably a more sensitive data collection

process may give a closer scan. This has to be investigated further.

8.6 Conclusion

The method of arriving at conclusions based on maps is only in the

preliminary investigation stage and hence the conclusions that can be drawn

from it are plausible rather than unique. A remarkable feature revealed here

is that the study of complexity can be undertaken by increasing the space

dimension. At present a simple case as defined in Eq. (8.8) is undertaken. A

higher degree of complexity can be brought into the analysis by taking higher

powers of cl> in the definition of V and this results in higher space-time

dimension.

A serious difficulty in the study is to obtain what is called a 'baseline'.

Towards this end, a large number of cognitive and other task states should be

analyzed. The investigation of the manifold dynamics during different

pathological conditions such as seizures, depression ete. is expected to turn

up results that will go a long way towards the comprehension of the

functioning of the brain useful from a clinical point of view.
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God has put a secret art into the forces ofnature so as to enable it to fashion itselfout of
chaos into a perfect world system.

--- Immanuel Kant

A technique usually adopted in physiological system examination involves the

nonlinear analysis of the time series signal generated from it and subsequent

interpretation of results. The frustration that was experienced earlier in failing

to detect patterns within biological time series by using the usual statistical

techniques was obliterated by the entry of the newer paradigm of nonlinear

theory and deterministic chaos. The work presented in this contribution is a

compilation of the relevant findings in the attempted deciphering of the brain

dynamics by application of these principles.

While nonlinearity was long accepted as ubiquitous in nature the

application of its methods and techniques to infer the dynamics of blo­

systems was introduced only in the early eighties. As with any new research

309
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field this multidisciplinary approach directed at studying the neural dynamics

with principles from physics and mathematics had its fair share of triumphs

and setbacks that have been discussed in various contexts in this thesis. At

this juncture, the field has come of age and rather than wrangle over many

disputable questions such as the chaotic nature of the brain, researchers are

concentrating on more meaningful objectives. These are questions regarding

what new information pertaining to the brain functioning can be gained by

applying novel, nonlinear methods and how these can be made useful in

diagnosis or treatment of abnormal brain conditions.

In this work, the electroencephalogram signal recorded on the scalp

forms the time series data, which is subjected to the repertoire of techniques

developed within the framework of nonlinear theory of oscillations and

deterministic chaos. The implications of the results obtained are judiciously

accepted on the background of known facts regarding the brain function. The

possibility of modeling the brain as a system of coupled nonlinear units has

been greatly worked upon. A similar line of approach undertaken by us

investigated the static and dynamical aspects of a coupled set of nonlinear

oscillators. Besides this, the cooperative nature between the subunits was

looked into. This analysis was then extended to include the more natural

noisy coupling schemes that may be expected in biological environments. It

was observed that while the dynamics of the subsystems evolved in an

individual manner, noise was found to catalyze the onset of synchronization

or cooperative nature between the coupled units. This finding against the

context of stochastic resonance in living systems holds potential for further

investigation.

The idea of processes in the neural system occurring at vastly varied

timescales has gained significance in the recent past. This phenomenon is
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looked upon as a natural cause of the inherent nonstationarity of the recorded

EEG signal which has led to modifications and caution in examining results

from application of algorithms originally devised for infinitely long, noise-free,

stationary data as obtained from model non linear systems. In this work, we

have attempted a study of the unfolding of the neural attractors with varying

time scales for normal and the abnormal epileptic brain conditions. The rate

of unfolding quantified by a parameter known as the unfolding dimension was

observed to have saturation behaviour for attractors reconstructed from

normal EEG signals. The epileptic subject EEGs on the other hand exhibited

an unfolding behaviour that failed to attain saturation with increasing time

scales. Moreover this behaviour was observed even during the no-seizure or

the 'normal' state of the epileptic subjects. The unfolding dimension may thus

be looked upon as a marker of brain malfunctioning and may be developed

into a monitor with predictive capability. The subsequent section addressed

the question of signal complexity using Approximate entropy (ApEn) and its

variant Sample entropy (SampEn) as quantifiers to study the data. Examining

a dense array EEG data, SampEn measure was able to identify variations in

complexity exhibited by various brain regions during a mental arithmetic task

of serial subtraction. The activation of multiple brain regions was detected by

this technique, which is relatively simple as compared to sophisticated

imaging methods such as PET and MRI; yet equally effective.

The gender-based study produced interesting findings of a subtle

complexity variation existing during passive conditions of eyes closed and

eyes open state. The onset of a common task scenario of mental arithmetic

was found to smear out such differences pointing to a common mode of

operation in both genders. This is probably a result of the common type of

learning or training process that the subjects had undergone in childhood
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irrespective of the gender. This finding supports the idea of such analyses

being able to emphasize commonalities among people in the use of brain

areas. This is not withstanding the fact that human brain anatomy differs

considerably from person to person and individuals differ in the strategies

they use to accomplish simple mental tasks like reading or remembering

words.

The collective nature of cell assemblies in the brain during task

performance has been stressed in much of the recent research literature. How

the brain regions interact so that information necessary for the performance

of a task flows in the brain is significant in learning about the patterns that

may be associated with particular tasks and how these are orchestrated in

carrying out complex operations. The EEG may be utilized to look for phase

entrainment in the signals emanating from multiple brain locations and the

strength of interaction between the regions quantified with a parameter

known as the synchronization index. It is seen that despite the signal traces

being uncorretated and highly irregular looking in amplitude, their phases do

exhibit an entrainment specific of certain states. We have investigated the

temporal evolution of the synchrony exhibited by cortical regions during

passive conditions and this has been extended to include the analysis of the

epileptic condition. The phase synchrony method reliably points out the rise in

synchronization in the brain during a seizure state as well as the long distance

interactions that are a hallmark of abnormal brain discharges. This technique

was applied to the study of effect of fatigue on the performance of a mental

task. In this case, mental arithmetic was chosen as the specific task state on

which the effect that fatigue induced by physical exertion was monitored. A

rise in synchrony during the mental task under fatigued state was observed

and a directional coupling analysis indicated an increase in the number of
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connections in the parietal -occipital regions of the brain when compared to

the task performance under unfatigued conditions. The technique is thus quite

effective in giving information regarding the brain coordination due to

intangible effects such as mental fatigue. Once the relationship among

fatigue, intensity of effort and pacing strategies during exercise get

established; this knowledge will benefit groups engaged in activities requiring

exertion in daily life such as sprinters, athletes, weightlifters and so on.

The ultimate brain model is yet to be realized. The efforts in this

direction were initiated as early as 1943 by Hebb and today there exist

individual mathematical models for the many specific brain functions such as

the olfactory bulb and so on. The emergence of the field of neural networks

based on the learning strategy in the brain utiliZing distributive networks and

its success in modeling many complex real world phenomena has provided a

boost to the field of data based prediction and modeling. In modeling the

highly complex brain state which is non linear and in which feedback and

feedforward mechanisms are operative, we have adopted an approach within

the realm of nonequilibrium statistical dynamics to formulate an inverse value

problem and determined numerically an effective Motion Generating Function

using the EEG data. This is a function encompassing all the interactions in the

system that has been captured by the EEG signal. The isocontours of this

function evaluated over successive time intervals stacked one over the other

may be thought of as giving spatio-temporal evolution of the system. Such

EEG based brain maps may be considered a preliminary effort in accounting

for the system behaviour by including all the system cornplexlttes. Yet these

are expected to yield important information about the brain functioning for

pathological conditions such as seizures, depression, derangement etc. useful

from a clinical point of view.
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Research in cognitive neuroscience is an attempt to unravel the

mysteries of the most complex living structure, the brain, using all the known

theories and techniques from various fields of science. The general objective

remains a basic understanding of brain functioning during performance of

cognitive tasks as well as the abnormalities that may creep up to disrupt its

normal functioning causing conditions that are to be treated clinically. A few

of themes for future research may be listed as follows .

•:. Investigation of the dynamic functional coupling between the rhythmic

activity of different cortical regions during motor behaviour, verbal

cognitive tasks, auditory stimulation tasks.

•:. Bridging the gap between the various brain imaging techniques and

establishing more composite means of study involving the temporal

resolution of the EEG with the better spatial resolution of the

techniques such as fMRI and the latest diffuse optical imaging

methods.

•:. A greater impetus may be given to the study of pathological brain

conditions such as prediction of seizures, motor dysfunction as in

Parkinson's disorder, Alzheimer's disease and the lesser-known

abnormalities such as depression and derangement.

•:. The development of an online diagnostic system, which computes the

nonlinear quantifiers even as the recording is carried out to provide

the clinician with additional information regarding the brain state that

is not directly perceptible from the EEG record .

•:. A search for new, computationally viable quantifiers better suited to

deal with nonstationary biological data that contain relevant dynamical

information pertaining to the underlying system.
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.:. A more wholesome development of the skeletal theory for the brain

function evolution that has been proposed in the framework of

nonequilibrium statistical mechanics.

The process of understanding and learning how the brain operates is a

tedious yet highly exciting field. It has implications in the development of new

fields, for instance those based on emergent complex behaviour such as

cellular automata, learning methods as in artificial neural networks, genetic

algorithms and synergetics. Nonlinear dynamics paradigm is a suitable

ideology when trying to make sense of the morass of data available from the

highly nonlinear and complex brain. We have attempted to review as well as

present some new findings in the examination of brain dynamics using the

nonlinear time series analysis technique. It must however be realized that

there exist limitations in the characterization and prediction of cortical activity

and neither is it suggested that nonlinear dynamics would answer all our

questions. But it provides neurophysicists with a revolutionary approach to

formulate old questions and rearticulate new ones bettering our knowledge of

the brain in the process.
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Errata to the thesis

1. Pg. 24 Lines after Eq. 2.1 - x and F are vectors

This is a dynamical system since for any initial state of the system, x(O) the equations can

be solved to obtain the state x(t) at a later time t>0.. F = (Ft, ..., FN ) is a vector field in

the state space, i.e. F, are functions of XCi) and p(i) are the corresponding vectors of control

parameters (if any).

2. Page 25, following eq. 2.2 x is a vector.

h N - (I) (2) K (N»)In as components, XD - Xn , ID' ,ID .

3. Page 25: In the repeated operation of F on the initial state Xo a misprint has occurred

and is rectified as:

4. Page 26, line 12

Hence the application of this theorem to a single differential equation of order N involves

solving the differential equation for the highest derivative, which is written as,

dNx ( dx d 2x dN-1X]
x N == dt N =f t'X'dt' de ,K, dt N- 1

5. Page 30, Eq. 2.6

F(xo + 11(t)) = F(xo)+OF(xo)''1+ 0('1 2
)

6. Pg 215 line 8. Replace word 'locus' by 'electrode'

The variation in SampEn with state at the electrodes is characterized by the

(state*electrode interaction) which is....

7. Page 243 line7

We follow the phase synchronization techniques, therefore, to delve into ....
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"The search for what is meaningful and what is true by opposition to noise is

a tentative step that appears to be intrinsically related to the coming into

consciousness of man facing the nature ofwhich he is a part. 11

lIya Prigogine.
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