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ABSTRACT
This paper presents gamma stochastic volatility models and investigates its dis-
tributional and time series properties. The parameter estimators obtained by the
method of moments are shown analytically to be consistent and asymptotically
normal. The simulation results indicate that the estimators behave well. The in-
sample analysis shows that return models with gamma autoregressive stochas-
tic volatility processes capture the leptokurtic nature of return distributions and
the slowly decaying autocorrelation functions of squared stock index returns
for the USA and UK. In comparison with GARCH and EGARCH models, the
gamma autoregressive model picks up the persistence in volatility for the US
and UK index returns but not the volatility persistence for the Canadian and
Japanese index returns. The out-of-sample analysis indicates that the gamma
autoregressive model has a superior volatility forecasting performance com-
pared to GARCH and EGARCH models. Copyright © 2006 John Wiley &
Sons, Ltd.
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INTRODUCTION

Studies on financial time series reveal that changes in volatility (variance) over time occur for all
classes of assets such as stocks, currency and commodities. Time series studies also indicate that the
sequence of returns {yt} on some financial assets such as stocks often exhibit time-dependent vari-
ances and excess kurtosis in the marginal distributions. In such cases, forecasts of asset–return vari-
ance are central for financial applications such as portfolio optimization and valuation of financial
derivatives. Time series models, called volatility models in the literature, have been employed to
capture these salient features. As quoted by Shephard (1996), volatility models provide an excellent
testing ground for the development of new non-linear and non-Gaussian time series techniques.

In a broader sense, there are two kinds of models for time-dependent variances. They are obser-
vation-driven and parameter-driven models. An example of the former is the autoregressive condi-
tional heteroskedastic (ARCH) model introduced by Engle (1982). In this model, the variance of the
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series {yt} at time t is assumed to be a deterministic function of lagged values of the squared errors.
For a review of this model and its various generalizations, such as generalized ARCH (GARCH) by
Bollerslev (1986), see Shephard (1996) and Tsay (2002). In parameter-driven models, it is assumed
that the time-dependent variances are random variables (r.v.’s) generated by an underlying stochas-
tic process. For example, Taylor (1986) discussed a model for yt defined by

(1)

(2)

where {et} and {ht} are independent Gaussian white noise processes. Note that {ht} is a Gaussian
autoregressive (AR) process and exp(ht/2) has a lognormal distribution. Hence (1) & (2) is referred
to as a lognormal stochastic volatility model. A review of the properties of stochastic volatility (SV)
models may be found in Taylor (1994), Jacquier et al. (1994) and Ghysels et al. (1996).

Most empirical applications of the SV models have assumed that the conditional distribution of
returns is normal (Jacquier et al., 1994; Kim et al., 1998). Some studies (for example, Harvey et al.,
1994; Sandmann and Koopmann, 1998; Chib et al., 2002; Liesenfeld and Jung, 2000) assume that
the conditional distribution of returns is a Student-t distribution or a general error distribution (Box
and Tiao, 1973). These studies find that the SV models with conditional heavy-tailed distributions
are a better fit and capture the leptokurtic nature of the distribution better. However, the kurtosis in
these models is still lower than that of typical financial time series. Andersson (2001), using a normal
inverse Gaussian SV model, reports similar findings. In this paper, we focus on another class of
models, the gamma SV models. The objective is to examine the ability of the gamma SV models to
capture the leptokurtic nature of return distributions and the slowly decaying autocorrelation func-
tions of squared returns.

We study the model (1) when {ht} is a stationary Markov sequence with exponential and gamma
marginals. We note that a number of AR models are introduced for non-negative r.v.’s in the context
of non-Gaussian time series. See, for example, Gaver and Lewis (1980), Sim (1986), Abraham and
Balakrishna (1999) and the references cited therein. One can very well use these AR models to
describe the evolution of time-dependent volatilities. Here we concentrate on a SV model (1) when
{ht} is an AR(1) sequence with exponential and gamma marginal, and investigate its distributional
and time series properties.

In the next section, we discuss the time series properties of the SV model and in the third section,
we consider the distributional properties of the proposed model. In the fourth section, we present
some simulation results using a range of parameter values similar to those found in stock return
series and in the fifth section, we illustrate the models using daily stock returns data. A final section
gives some concluding remarks.

GAMMA AUTOREGRESSIVE MODELS FOR VOLATILITY

Let yt be the demeaned return on an asset at time t, t = 0, ±1, ±2, · · · . Define

(3)

where {et} is a sequence of independent and identically distributed (iid) standard normal r.v.’s. We
assume that {et} is independent of ht for every t. In this section, we discuss the properties of {yt}

y ht t t= e

h ht t t= + +-g g h0 1 1

y ht t t= ( )e exp 2
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when {ht} is a Markov sequence with exponential and gamma marginals. We assume that ht is a
gamma r.v. with probability density function (pdf ):

(4)

denoted by a G(l, p) distribution. Then the characteristic function (cf ) of yt is given by

(5)

Thus {yt} is a stationary Markov sequence whose marginal distribution has the cf (5). Note that (5)
is the cf of the difference of two iid gamma r.v.’s with parameters and p. The distribution of
such r.v.’s is referred to as a generalized Laplace distribution since at p = 1, the density correspon-
ding to (5) becomes

(6)

which is the Laplace pdf.
The properties of generalized Laplace distributions and their applications are discussed by Mathai

(1993). The odd moments of yt are zero and its even moments are given by

(7)

Then V(yt) = pq where q = 1/l, and the kurtosis of yt becomes

(8)

Note that if p = 1, then K = 6 which is the kurtosis of a Laplace distribution and as p Æ •, K Æ
3, that corresponding to a normal distribution. By choosing a smaller p, one can get a distribution
with larger kurtosis. So yt has a leptokurtic marginal distribution. The literature on financial time
series indicates that the return series shows the tendency to follow leptokurtic distributions (see, for
example, Hsieh, 1991). Hence the generalized Laplace distribution is a good candidate for model-
ling such data. Now we describe some of the models for generating the volatility sequence {ht}.

Exponential autoregressive model (EAR)
The simplest one is the exponential autoregressive model of order one [EAR(1)] introduced by Gaver
and Lewis (1980), given by

(9)

where {It} and {Et} are two mutually independent iid sequences such that Et is an exponential r.v.
with pdf
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(10)

and

(11)

Then {ht} defines a stationary Markov sequence with exponential marginals. Assume that ItEt is inde-
pendent of et for every t. The value of f in the range (0,1) ensures stationarity. Under this setup, {yt}
is a stationary sequence of Laplacian r.v.’s with marginal pdf (6). Similarly one can take {ht} as the
exponential sequences of Lawrance and Lewis (1981) and Sim (1990).

It can be shown that E(ht+1|yt, yt-1 . . .) = fht + (1 - f)q, E(ht) = q, V(ht) = q 2, E[ht
2] = 2q 2 and 

gk(h) = Cov(ht, ht-k) = q 2fk. Hence, rk (h) = Corr(ht, ht-k) = fk, which goes to zero as k Æ •, and this
autocorrelation function (acf) is very similar to that of the usual Gaussian AR(1) process.

In addition, gk [y2] = Cov[y2
t,y2

t-k] = q 2f k and V[y2
t ] = 5q 2. Hence the lag k autocorrelation

(12)

Thus if k = 1, rt[ y2] = f/5. In practice, the persistence parameter f ª 0.9, which implies that rt[y2]
ª 0.18, a value usually observed in stock return series (Liesenfeld and Jung, 2000).

Gamma autoregressive model (GAR)
We also study the properties of a SV model when {ht} is a first order gamma autoregressive [GAR(1)]
sequence of Gaver and Lewis (1980). In this case,

(13)

where {ht} is an iid sequence and ht has a G(l, p) distribution independent of ht. The distribution
of ht is specified as

(14)

where {Ul} is a sequence of iid uniform (0,1) r.v.’s, the Ej’s are iid exponentials as described earlier,
and N is Poisson with mean p log (1/f). The r.v.’s Uj, Ej and N are mutually independent for every
j. If N ∫ 0, then we take hj ∫ 0. The sequence {ht} defined by (13) is stationary and has G(l, p) as
the marginal distribution.

We can show that

Hence, rk(h) = Corr(ht, ht-k) = fk, which goes to zero as k Æ • and this acf is very similar to that
of the usual Gaussian AR(1) process.
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In addition, V[yt
2] = pq2(3 + 2p) and gk[y2] = pq2fk. Hence the lag k autocorrelation is

(15)

Note:

(i) If p = 1, the acf simplifies to r1[ y2] = fk/5, and r1[ y2] = f/5 is the acf of an EAR(1) SV model.
(ii) When k = 1, r1[ y2] = f/(3 + 2p) and also if p = 0.5 (this corresponds to a kurtosis K = 9, which

is observed in practice), r1[ y2] = f/4. In addition, if the persistence parameter f ª 0.9, then r1[ y2]
ª 0.22, again a reasonable value seen in practice (Liesenfeld and Jung, 2000).

When the kurtosis is large (i.e. p is small), r1[ y2] will be larger. For instance, if p = 1/3 then 
kurtosis K = 12 and r1[ y2] = f/3.67.

From (8) and (15), the acf and the kurtosis are related as follows:

(16)

This implies that . For K = 9 observed in practice, r1[y2] = 0.25f. Similarly, we

can show that the kurtosis .

When k = 1,

(17)

(For the persistence parameter, f ª 0.9 and acf, r1[ y2] ª 0.2 that are observed in practice, K ª 7.)
This implies that for the model, the persistence parameter f has to be more than three times larger

than r1[y2]. Figure 1 shows the relation between the kurtosis, K and r1[ y2] as implied by the GAR(1)
model, for values of f ranging from 0.35 to 0.95. Note that the persistence parameter f is restricted
to the range (0, 1) to ensure stationarity. Figure 1 indicates that the GAR specification covers the
empirical points that relate to all the stock index returns except for Canada. It should be noted that
the data points for Canada and Japan are somewhat away from those of the USA and UK. In com-
parison with Andersson (2001), we find that the GAR(1) model seems to respond better to the co-
existence of a high kurtosis and low acf.

ESTIMATION OF PARAMETERS

The likelihood-based inference in SV models is quite complicated as the likelihood function of (y1,
y2, . . . , yT) is a T-dimensional integral. A number of methods are proposed for estimating the param-
eters and a comprehensive survey may be seen in Shephard (1996) and Tsay (2002). The GMM
approach to estimation has been used, among others, by Melino and Turnbull (1990), Duffie and
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Singleton (1993), and Andersen and Sorensen (1995). Jacquier et al. (1994) analysed the model (1)
using a Bayesian approach based on Markov chain Monte Carlo (MCMC) techniques. Kim et al.
(1998) use the MCMC approach as well. Harvey et al. (1994) use the quasi maximum likelihood
(QML) approach, while Gallant et al. (1997) and Gallant and Tauchen (1998) adopt the efficient
method of moments (EMM) approach. Fridman and Harris (1998) discuss a maximum likelihood
approach for SV models in which the authors use a recursive numerical integration procedure to cal-
culate the likelihood. Liesenfeld and Jung (2000) use the simulated maximum likelihood (SML)
approach and suggest that MCMC and SML have the best small sample properties.

For the SV models described above, we adopt the method of moments to estimate the parame-
ters. We are aware that its efficiency does not compare favourably with more complicated approaches
indicated above. However, we use this method because its estimation simplicity and analytical
tractability are the basic premises of the study.

Let b be the vector of unknown parameters and T be its estimator based on a sample of size T.
We apply the theory developed by Hansen (1982) to show that the moment estimators are consis-
tent and asymptotically normal (CAN). Hansen (1982) proved the results under the following
assumptions:

A1 Let {yt, -• < t < •} be a stationary and ergodic sequence whose finite-dimensional distribu-
tion depends on a q-dimensional parameter vector.

A2 The parameter space S is an open subset of Rq that contains the true parameter b0.
A3 Let f be a function f: Rq ¥ S Æ Rr, r ≥ q.

Asume that f(·, b) and ∂f/∂b are Borel measurable functions for b Œ S and ∂f(x, ·)/∂b is con-
tinuous on S for each x Œ Rq.
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Figure 1. GAR(1) model–combination of first-order autocorrelation of squared returns and kurtosis
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A4 Let ft(·, b) = f( yt
(·), b) and assume that ∂f1/∂b is first moment continuous at b0 and 

exists, is finite and has full rank.

A5 Let wt = f(xt, b0), -• < t < • and Jj = E(w0|w-j, w-j-1, · · ·) - E(w0|w-j-1, w-j-2, · · ·), j ≥ 0.

The assumptions are that E(w0w ¢0) exists and is finite, E(w 0|w-j, w-j-1, . . .) converges in mean square 

to zero and .

Now we state the following result from Hansen (1982).

Result Suppose that the sequence {yt, -• < t < •} satisfies the assumptions A1 - A5. Then
converges in distribution to a normal random vector with mean 0 and 

dispersion matrix [DS-1D¢]-1. D is as in A4 and

(18)

We have verified that the assumptions A1 - A5 hold good for all the SV models given earlier. From
the general theory of AR(1) sequences it follows that {ht} defined by (9) and (13) is stationary and
ergodic. Hence the corresponding yt sequences also have these properties. Then by the pointwise
ergodic theorem, the moment estimators are consistent for their expectations.

In the following discussion, the suffixes 1 and 2 of the matrices D, S and S denote that they rep-
resent the matrices associated with the EAR(1) and GAR(1) models, respectively.

EAR(1) process
Now we estimate the parameters of an SV model when {ht} is an EAR(1) process defined by (9).
In this case, the parameter vector b = (q, f)1, q = 1/l. We have E( y2

t ) = q and E(y2
t y

2
t-1) = (1 + f)q2.

Let

(19)

The moment estimator of b can be obtained by solving f( yt, b0) = 0.1
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1 In general, there is no restriction for choosing the number of moment conditions. A larger number of conditions may improve
the precision but will lead to computational complications. We have chosen a just-identified system because it leads to simple
expressions for the estimators and explicit evaluation of the dispersion matrices, since simplicity was a basic premise of the
study. If we increase the number of conditions, then the analytics will be much more complicated. There appears to be a
tradeoff between the gains in efficiency and the analytical tractability when moving beyond a just-identified system. We
thank the referee for pointing out the inefficiencies in using a just-identified framework cited by Andersen and Sorensen
(1995).
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where and .

The matrix S1 is given by equation (18) as

The sequence {G(k)} of matrices is shown in the Appendix. Hence the matrix S1 associated with the
EAR(1) model is given by

(21)

For our choice of f in (19), we have the matrix given by

(22)

Hence, by our previous result, the asymptotic dispersion matrix of T for the exponential SV model
is given by S1/T, where

(23)

Next we obtain the asymptotic dispersion matrix of T for a GAR(1) model.

GAR(1) process
When {ht} is a GAR(1) process defined by (13) & (14), the parameter vector is given by b = (q, p,
f)1, where q = 1/l. Here we choose
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The notations 2 and 22 are as defined in (19) and .

To apply our result, we need to compute the matrices G(k), k = 0, ±1,±2, · · · .

Let

(26)

where G(k) = G(-k), k = 1, 2, · · · .

The matrix S2 for the GAR(1) SV model is given by .

We denote it by

(27)

The elements for G(k) and S2 are shown in the Appendix.

The matrix D in this case is denoted by D2, which is given by .

(28)

Hence the asymptotic dispersion matrix becomes S2/T, where

(29)

SIMULATION

We carry out a simulation study to understand the performance of the estimators with T = 2000
observations since several empirical applications use sample sizes around T = 2000 (Andersson,
2001; Liesenfeld and Jung, 2000). The parameter estimates were obtained for each simulated series.
This was repeated 1000 times. The averages and standard deviations of the estimates over the 1000
repetitions are reported. In addition, we also report the estimates of the asymptotic standard devia-
tion obtained from (23) for the EAR(1) model and from (29) for the GAR(1) model.

In Table I, we present the results from the EAR (1) model for q = 1.00 and 2.00 and f = 0.25,
0.50, 0.75 and 0.90. For the EAR(1) model, the implicit value of p is 1 and hence the kurtosis is 6.
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We find that the estimates of q and f are close to the true values. For instance, at q = 1.00 and f =
0.25, the average is 0.9987 and the average is 0.2410. The standard deviations of the estimates
and the estimates of the asymptotic standard deviation are also close. For example, at q = 1.00 and
f = 0.25, the standard deviation for from the simulations is 0.0547 and the asymptotic standard
deviation of is 0.0532. For f = 0.75 and 0.90, in simulations where was greater than one, the
value was truncated to 0.99. Hence, the corresponding standard deviations of the estimates from the
simulations appear to be smaller than the asymptotic standard deviations.

In Table II, we present the simulation results for the GAR(1) model. The procedure adopted is
similar to that described above. For this model, the values of kurtosis for p = 0.30, 0.50 and 1.50
are 13, 9 and 5, respectively. We provide the estimates for series with 2000 observations. As before,
we find that the estimates of q and f are close to the true values. The standard deviations of and

increase as f increases. The standard deviations of the estimates and the estimates of the asymp-
totic standard deviation are close. As in the case of the EAR(1) model, in the GAR(1) model also,
for f = 0.75 and 0.90 where was greater than one, the value was truncated to 0.99.

Overall, the simulation results suggest that the moment estimators behave reasonably well for the
EAR(1) and GAR(1) models for large samples. In unreported results, we repeated the simulations
for series with 1000 and 5000 observations and find that the results for 1000 observations are qual-
itatively similar to the results for series with 2000 observations. The results for 5000 observations
are much better than those for 2000 observations.

We next illustrate the model using stock index returns data for Canada, Japan, the UK and the
USA for the period 1997–2002, which is comparable in size to our simulation illustration (T = 2000).

APPLICATION TO STOCK RETURN DATA

We examine daily stock price index returns for the period 1997–2002. We use the closing index data
on Canada (TSE300), Japan (TOPIX), the UK (FTSE100) and the USA (S&P500 composite). The
returns are defined as the first difference of the logarithm of prices and are demeaned. In Table III,

f̂

q̂
p̂

f̂q̂
q̂

f̂q̂

Table I. Averages of and from 1000 simulations based on the EAR model for specified values of q and f

(q, f)

Mean Standard Estimates of Mean Standard Estimates of
deviation asymptotic deviation asymptotic

standard standard 
deviations deviations

1.00, 0.25 0.9987 0.0547 0.0532 0.2410 0.1365 0.1400
1.00, 0.50 1.0013 0.0582 0.0592 0.4846 0.1717 0.1787
1.00, 0.75 1.0036 0.0731 0.0742 0.7144 0.1819 0.2288
1.00, 0.90 0.9992 0.1071 0.1072 0.8135 0.1741 0.2785
2.00, 0.25 1.9966 0.1041 0.1065 0.2438 0.1361 0.1400
2.00, 0.50 2.0004 0.1182 0.1183 0.4999 0.1733 0.1787
2.00, 0.75 2.0008 0.1490 0.1483 0.7181 0.1791 0.2288
2.00, 0.90 2.0091 0.2067 0.2145 0.8090 0.1705 0.2785

Note: The number of observations in the time series in each simulation is 2000. The estimates of the asymptotic standard
deviation are obtained from equation (23).

f̂q̂

f̂q̂
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we present the descriptive statistics for the returns on the indexes. The kurtosis of returns ranges
from 4.7 to 7.6 and is much higher than would be expected if returns were normally distributed.

Since the EAR(1) model has the limitation that its implied unconditional kurtosis is always six,
we omit the EAR(1) model in this part of the analysis and focus on the GAR(1) model. We compare
the GAR(1) model with the basic GARCH(1, 1) model and the EGARCH(1, 1) model. The com-
parison with the EGARCH model would be especially useful since the GAR(1) model does not allow
for skewness or for asymmetric responses of volatility to news.

In Table IV panel A, we report the parameter estimates for each of the return series for the
GARCH(1, 1), EGARCH(1, 1) and GAR(1) models. The values of the persistence parameter, in
the GARCH(1, 1) and EGARCH(1, 1) models suggest significant persistence of volatility. For most
of the series, the values of , the persistence parameter in the SV models are smaller than that in
the EGARCH(1, 1) and GARCH(1, 1) models, consistent with Shephard’s (1996) findings. Notice
that for Canada and Japan, the persistence parameter estimates, are much lower in the GAR(1)
model. As shown in Figure 1, the behaviour of the returns for Canada and Japan is somewhat dif-
ferent from that of the USA and UK in terms of the first lag autocorrelation of the squared returns
and the kurtosis of the returns. Thus GAR(1) is not picking up the persistence in volatility as well
as GARCH(1, 1) or EGARCH(1, 1). The values of lie between 0.9 and 2.1 and the values of 
range from 0.6 to 1.80. In panel B, we present the Ljung–Box statistics as diagnostics of the auto-
correlations of standardized and squared standardized residuals. The diagnostics indicate that the
GAR(1) model specification is better than the GARCH(1, 1) and EGARCH(1, 1) models for the
USA and UK returns. However, the GAR(1) model does worse than the other two models for the
Canadian and Japanese returns, consistent with the findings of low persistence in volatility for these
two returns in panel A. Further model testing with post-sample data will be considered later.

In Table V, we find that the kurtosis captured by the GAR(1) model is fairly close to the kurtosis
obtained from the stock return data for all four return series. This is broadly in agreement with our
findings in Figure 1, except for Canadian index returns. It may be noted that the GAR(1) model is
better able to capture the kurtosis for the series compared to that documented by Andersson (2001)
using the normal inverse Gaussian SV model.

In Table VI, we present the results of an out-of-sample analysis with the squared return series.
The parameters were estimated for the period 1997–2002 and the out-of-sample analysis is per-
formed for the first 100 trading days of 2003.

For the GAR(1) model, we note that E(hT+1|yT, yT-1 . . .) = fhT + (1 - f)pq. Hence, we can esti-
mate the one-step prediction of hT+j given yT+j-1, yT+j-2, . . . as hT+j = E(hT+j|yT+j-1,yT+j-2 . . .), j = 1, 2,
. . . , 100, by estimating f, p and q at every point in the post-sample period. From this, we obtain

p̂q̂

f̂

f̂

b̂

Table III. Summary statistics of daily stock index returns (1997–2002) 1565 observations

Mean (%) Standard deviation Skewness Kurtosis Ljung–Box
statistics Q2

12
#

Canada TSE300 0.0130 1.1676 -0.6116 7.5906 146.26***
Japan TOPIX -0.0227 1.3279 -0.0057 4.7415 124.29***
UK FTSE100 0.0072 1.2876 -0.1846 4.6780 826.07***
USA S&P500 0.0164 1.3130 -0.0656 5.3280 215.99***

Note: #Ljung–Box statistics for up to 12th-order serial correlation in squared returns. *** Denotes the Ljung–Box statistic
is significant at the 1% level.
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the ‘prediction’ errors dj = y2
T+j - T+j as in Andersson (2001) and obtain the mean absolute errors, 

.

Table VI presents MAE for GARCH(1, 1), EGARCH(1, 1) and GAR(1) models and we observe
that the GAR(1) model has the smallest mean absolute error of prediction in all four cases.

For further model evaluations with post-sample data, we compute the standardized ‘errors’, T+j =
yT+j/ T+j, j = 1, 2, . . . , 100. The diagnostics in Table VI indicate that the autocorrelations of stan-
dardized and squared standardized residuals are negligible for all the series, except possibly for the
Canadian returns series.

Recall that Figure 1 indicates that the GAR(1) model seems to respond well to the co-existence
of a high kurtosis and low acf. Figure 1 also shows that the GAR specifications cover the empirical
points denoted as data that relate to stock index returns for Japan, the USA and UK and suggests
that the GAR(1) model captures the leptokurtic nature of return distributions and the slowly decay-
ing autocorrelation functions of squared returns for three return series. Overall, we find that 
the GAR(1) model fits the stylized features of stock returns better than the GARCH(1, 1) and
EGARCH(1, 1) models for the USA and UK stock index returns. It may be noted that Andersson
(2001) reported that the GARCH(1, 1) model outperformed the normal inverse Gaussian SV model
for Canada and the UK but did not for the USA and Japan for the period 1991–1998.

ĥ
ê

MAE dj

j

=
=

Â 100
1

100
ĥ

Table V. Kurtosis of stock returns implied by the estimated models (1997–2002: 1565 observations)

Data GARCH(1,1) EGARCH(1,1) GAR(1)

Canada–TSE300 7.5906 4.8872 6.5368 7.5949
Japan–TOPIX 4.7415 3.3952 4.4633 4.7701
UK–FTSE100 4.6780 4.7902 4.4903 4.6702
US–S&P500 5.3280 3.6351 5.3376 5.3240

Table VI. Out-of-sample, one-day volatility forecast evaluation for the first 100 days of trading in 2003

Mean absolute errors of prediction Ljung–Box statistics for 
GAR(1) model

GARCH(1,1) EGARCH(1,1) GAR(1) Standardized Squared
residuals standardized

Q12 residuals
Q2

12

Canada–TSE300 1.0272 1.0532 0.9330 13.14 20.10*
Japan–TOPIX 2.6893 2.7093 1.6072 15.73 18.14
UK–FTSE100 4.6068 4.1394 3.2201 0.91 0.13
USA–S&P500 3.3147 3.4275 2.5136 16.45 16.23

Note: ***, **, and * denote significance at the 1%, 5% and 10% levels.
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CONCLUSION

In this paper, we propose models for returns in which return volatilities evolve according to sta-
tionary gamma and exponential autoregressive specifications. We obtain moment estimators for the
parameters of the models and show analytically that these estimators are consistent and asymptoti-
cally normal. In the in-sample analysis with stock index return data we find that return models with
gamma stochastic volatility processes capture the leptokurtic nature of return distributions and the
slowly decaying autocorrelation functions of squared returns for the USA and UK index return series.
However, the GAR(1) model does not pick up the persistence in volatility for the Canadian and
Japanese index returns as well as the GARCH(1, 1) and EGARCH(1, 1) models. It should also be
noted that the GARCH(1, 1) and EGARCH(1, 1) models are not fitting the Japanese index return
series well. In the out-of-sample analysis we show that the gamma autoregressive stochastic volatil-
ity has a superior forecasting performance compared to the commonly used GARCH and EGARCH
models.

APPENDIX

EAR(1) process
The sequence {G(k)} of matrices is,

and

GAR(1) process
Let

G k

k

k

k

k

k

k

k

k

k

k( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ± ± ◊ ◊ ◊
g
g
g

g
g
g

g
g
g

11

21

31

12

22

32

13

23

33

0 1 2, , , , ,

G G-( ) ( )= = ◊ ◊ ◊k k kfor 1 2, , .

G k

k

k k

k

k
k k

k( ) -
+ +

=
+ +( )

+ +( )
+ +

+ +
Ê
Ë

ˆ
¯

È

Î

Í
Í

˘

˚

˙
˙

= ◊ ◊ ◊
f q
f q f f

r q f f

r q
f f

f f

2

1 3

3 2

4
2

1 21 2

1 2
1 4 3

2 10

2 3, , ,for

G 1

2

3

3 2

4
2

3 411 5

1 2
5 16 17

12 18

1( ) =
+( )

+ +( )
+ +

+ +
Ê
Ë

ˆ
¯

È

Î

Í
Í

˘

˚

˙
˙

=
fq
q f

fq f f

q
f f

f f
, for k

G 0

2

3 2

3 2

4
2

2

5

5 5 6

5 5 6
36 3 2 1

1

0( ) =
+ +( )

+ +( )
+ +( )

- +( )
Ê
Ë

ˆ
¯

È

Î

Í
Í

˘

˚

˙
˙ =

q
q f f

q f f

q
f f
fr

, for k



168 B. Abraham, N. Balakrishna and R. Sivakumar

Copyright © 2006 John Wiley & Sons, Ltd. J. Forecast. 25, 153–171 (2006)
DOI: 10.1002/for

where G(k) = G(-k), k = 1, 2, · · · .
The elements of G(0) are given by

Similarly, the following are the elements of G(k):

The matrix S for the GAR(1) SV model is given by .

We denote it by
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