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In this article it is proved that the stationary Markov sequences
generated by minification models are ergodic and uniformly
mixing. These results are used to establish the optimal properties
of estimators for the parameters in the model. The problem of
estimating the parameters in the exponential minification model is
discussed in detail.

Key Words: Consistent and asymptotically normal estimators;
Ergodicity; Exponential  distribution; Minification  models;
Uniformly mixing sequences.

*Correspondence: N. Balakrishna, Department of Statistics, Cochin University
of Science and Technology, Cochin 682022 India; E-mail: nb@cusat.ac.in.

2139

DOI: 10.1081/STA-120024472 0361-0926 (Print); 1532-415X (Online)
Copyright © 2003 by Marcel Dekker, Inc. www.dekker.com



07:54 17 March 2011

[ I NFLI BNET India Order] At:

Downl oaded By:

ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE  NEW YORK, NY 10016

™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2140 Balakrishna and Jacob
1. INTRODUCTION

One of the basic assumptions in the classical analysis of the time
series is that the sequence of observations is a realization from some
Gaussian sequence. Further, most of the models employed in analyzing
such series are linear in nature. However, in recent years it has been
found that nonlinear models with nonGaussian marginal distributions
are more suitable than linear Gaussian models in certain situations.
See, for example, Lawrance (1991) and the references cited there.
One of the important nonlinear models used to generate sequence {X,}
of nonnegative random variables (r.v.s) is defined by

_ X n=>0
X"_{k min(X,_;,&,) n=12...,k>1 (1.1)

where {g,} is a sequence of independent and identically distributed (i.i.d)
nonnegative nondegenerate r.v.s. called innovations and X, is independent
of ¢; . This model is referred to as a minification model. The Markov
sequence {X,,} defined by Eq. (1.1) has many properties of a first order
autoregressive (AR(1)) sequence. In particular, the exponential minifica-
tion process of Tavares (1980) is a time-reversed version of the first order
exponential autoregressive (EAR(1)) process introduced by Gaver and
Lewis (1980). This is an interesting result proved by Chernick et al.
(1988). It is worth recalling that Gaver and Lewis (1980) proposed an
estimation scheme based on the degeneracy property of the model,
which determines the exact value of the autoregressive parameter
and then estimates the scale parameter. In view of the time-reversibility
relation cited above, this estimation scheme can be extended to
determine the exact value of £ in a minification process as we illustrated
in Sec. 3.

Various aspects of the model (1.1) when X,, has a specified distribu-
tion have been studied by different researchers. For example, Tavares
(1980) discuss the minification process with exponential marginal, Sim
(1986) defined this model for Weibull r.v.s., Yeh et al. (1988) for Pareto
r.v.s. and Pillai (1991) studied a model with semi-Pareto marginal
distribution.

If F(x)=P(X,>x) and G(y)= P(g; > y)then {X,} defined by
Eq. (1.1) is stationary if and only if

 F(kx)
 F(x)

G(x) , x>0, k>1 (1.2)



07:54 17 March 2011

[ I NFLI BNET India Order] At:

Downl oaded By:

ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE  NEW YORK, NY 10016

™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.
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(cf. Lewis and Mckenzie (1991)). Arnold and Hallett (1989) showed that
if the distribution of X; is chosen as

F(x) = ﬁ G(x/k”) (1.3)

Jj=1

then Eq. (1.1) defines a stationary sequence with X, having survival
function F(.). It is assumed that the product (1.3) does not diverge to
zero. Let us define

Xo= inf ke, (1.4)
0= j=o0
where {e_;, j=0,1,2.....} is a sequence of i.i.d. nonnegative r.v.s. with

common survival function G(.). Now it follows that the survival function
of X, is given by Eq. (1.3). The applications of these models in various
areas such as geophysical science, reliability, etc., are discussed in the
above mentioned references.

As far as statistical inference is concerned, little work has been done
for these models. Adke and Balakrishna (1992) have estimated the
parameters of exponential minification model. Balakrishna (1998) dis-
cussed the estimation problems in semi-Pareto and Pareto processes. In
this article, we estimate the common mean of {X,,} and the parameter k of
the general stationary minification processes defined by Eq. (1.1).

In Sec. 2, we prove that a stationary minification process is ergodic
and uniformly mixing. These results are used to prove the optimal prop-
erties of the estimators of k and the common mean of X,, in Sec. 3. As an
illustration we discuss the details of estimation problems in exponential
minification model in Sec. 4. The simulation results in Sec. 5 show that
the proposed estimators perform well in the exponential case. The Sec. 6
gives some concluding remarks.

2. SOME PROBABILISTIC PROPERTIES
OF THE MODEL

In this section we prove that the minification process is ergodic and
uniformly mixing.

Lemma 2.1. The stationary Markov sequence defined by Eq. (1.1) is
ergodic.
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2142 Balakrishna and Jacob

Proof. LetF,=0 {X, X5,...X,,} and G, =0{...,6_2,6_1 &9 €1, 2,...€x} DE
the sigma fields induced by (X,X>,...X,) and (...,e_1,€0, €1 &2....8n)
respectively. Repeatedly using Eq. (1.1), we can write

X, = Min{k"X,, k"¢, K" ey, .. ke, n=1,2.... (2.1)
Thus it now follows from Eq. (1.4) that
F,cG, forn>1 (2.2)

and hence the tail sigma field 7 of {X,,} is contained in the tail sigma field
* of the iid. r.vs. ....e_y, &, &1, &2...,&, It is well-known that each
event of v has probability 0 or 1. This implies by Eq. (2.2) that t contains
only events of probability 0 or 1, which is a sufficient condition for {X,,}
to be ergodic (see Stout, 1974, p. 182). Hence the lemma is proved.

Definition. A sequence {X,} of r.v.s. is said to be uniformly mixing (or
¢-mixing) if

|P(A 0 B) — P(A)P(B)| < P(A)p(h).

where A4 €o(Xy,X1,...X,,}, Beo(XpnXpsns1----y and ¢(h) — 0 as
h — oo.

Lemma 2.2. A minification sequence {X,} generated by Eq. (1.1) and satis-
fving Egs. (1.2) and (1.4) is uniformly mixing with mixing parameters

o(h) = P[X, = k"X, h=0,1,2, ... (2.3)

Proof. Suppose that A € o(Xo,X1,... X}, B € o(XuqpmXnihat- -}
A close inspection of the model (1.1) reveals that if at least one innova-
tion occurs in the time interval (n+ 1, n+h — 1) then the events 4 and B
are independent. Let NV be the number of innovations occurring between
X, and X, ,. Hence we have

P(AN B|N > 0) = P(A|N > 0)P(B|N > 0). (2.4)
It also follows from Eq. (1.1) that N=0 if and only if X, ., =k" X,

and in this case the events 4 and B are dependent. These observations
along with Markov property of {X,} show that 4 and (N>0) are
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independent events. That is,

AN > 01 = [~ PUAN (i # KX, = ) dF ()
- / ~ P{A|X, = x)P{(N > 0)dF(x)
= PO(N > 0)P(A).
Thus we have
P(AN B|N > 0) = P(A)P(B|N > 0). (2.5)
On the similar lines, it can be shown that
P[ANBN(N =0)] = / ~ P{B|X,.;,=k"X,}P(N =0)P(4|X, = x)dF(x)
< PO(N =0)P(A). (2.6)
Now using Egs. (2.5) and (2.6) we can write

P(ANB)=P[ANBN(N =0)] + P[AN BN (N > 0)]
< P(N = 0)P(A) + P(A)P(N > 0)P[B|N > 0]

Hence

|P(4 N B) — P(A)P(B)| = P(A){P(N = 0) — P(BIN = 0)P(N = 0)}
< P(A)p(h),

where ¢(h) = P[N =0]= P[X,., =k"X,].
Since the sequence defined by Eq. (1.1) is stationary, we have (cf.
Lewis and Mckenzie, 1991),

> F(k"x)
F(x)

(i) = PLX, = k' Xy) = fo dF(x).

Note that F(k"x)/F(x)is decreasing function of / and hence by the
monotone convergence theorem it follows that ¢(h) — 0 as & — oo. This
completes the proof of the lemma.
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2144 Balakrishna and Jacob
3. ESTIMATION OF &k AND THE COMMON MEAN

Let {X,,} be a stationary sequence defined by Eq. (1.1) with common
distribution function F(.) and common mean u = E(X7). Assume further
that Var(X,)=oc><oo for all n. The ergodicity of {X,,} implies that the
sample mean X, = (X; + X, +--- + X,)/n is a natural estimator of u.
The asymptotic properties of X, are proved in the following theorem.

Theorem 3.1. The time average X, is strongly consistent and asymptoti-
cally normal (CAN) estimator of ju. The asymptotic variance (AV') of X,, is
given by

AV(X,) = o> A(k)/n, (3.1)
where A(.) is a continuous nonnegative function.
Proof. By Lemma 2.1 and the point wise ergodic theorem, it follows that

X, — 1 almost surely (a.s) as n— oco. The uniform mixing property of
{X,} implies that (cf. Billingsley, 1968, p. 174),

(X, — 1) = Z,, (3.2)

L e .
where —> stands for convergence in distribution and Z; is a normal r.v.
with mean zero and variance

o0
of =0 +20° Y p()). (3.3)
j=1

In this case p()) is the autocorrelation between X and X, Further
0 <07 < o0o. Thus X, is a CAN estimator of w and its asymptotic
variance is given by
_ 0_2 00
AV (X,) = —{1 ~|—2Zp(j)}. (3.4)
n =
Let us denote by p(1) = Corr(X;,X>) and assume that p(1) is a con-

tinuous function of k, say c(k). Then it is known (see Lewis and
Mckenzie, 1991) that p(j) = c(k’). Thus we can write

AV(X,) = o” A(k)/n, (3.5)
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Estimation in Minification 2145
where
oS .
A() =142 (k) (3.6)
j=1

which is continuous in k. Proof of the theorem is complete.

Remark 3.1. The uniform mixing property of {X,} implies that the sum-
mations in Eqgs. (3.3) and (3.6) are finite.

In the rest of this section, we discuss the problem of estimating k. For
the model (1.1) let us define

_ Xvn _ k ian—] =&y
W = X, {k(sn/Xn_l) ifX, |, >e, (.7
so that W, <k for all n. Let
k, = Max W,. (3.8)

1<i<n

Theorem 3.2. The estimator lgn is a strongly consistent estimator of k,
which is not asymptotically normal.

Proof. From Egs. (3.7) and (3.8) it is clear that Ign =k if and only if
X;,_1<g, for at least one i, i=1,2,...,n. Thus
Plk, £kl = P[X; | > & foralli=1,2,...,n]
< Plkeg;_; > g foralli=1,2,...,n]
< Plkeyi_| > &y foralli=1,2,...,[n/2] — 1].
This implies that

S P, £ <Y < oo (3.9)
n=1 n=1

where p = Plke| > &,] and since ¢;’s are i.i.d nondegenerate r.v.s. we have
0<p<1. Now by the Borel-Cantelli lemma, we have

Plk, # k, infinitely often] = 0.

That is, lgn = k infinitely often with probability 1 and hence lgn — k
a.s. as n — oo. _ B _

However, P[/n(k, — k) < x] = Plk, < k + x/+/n] = land hence k&, is
not CAN. This completes the proof.
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2146 Balakrishna and Jacob

Remark 3.2. From Eq. (3.7) it is clear that 0< W; <k for all i and W;=k
if and only if ;> X;_; Thus the distribution function of W; is concen-
trated on a finite interval with a positive jump at the right end point.
From the study of extreme value theory, we know that there does not
exist a non-degenerate limit distribution for {I¥,} for any choice of a
norming sequence (cf. Leadbetter et al., 1983, p. 13 and p. 60).

4. ESTIMATION FOR EXPONENTIAL
MINIFICATION PROCESS

One of the well-known minification models is that defined by Tavares
(1981) for exponential r.v.s. In this case X, has the distribution

Fx)=PX <x)=1-e" >0 x>0. 4.1)
and the 1.i.d. sequence {¢,} has the common distribution specified by

G(x)=P(e; <x)=1—e "1 x>0, (4.2)
Then X, defined by

X, =kMin(X,_y,¢,), n=1,2... 4.3)

has exponential distribution F(x) for all n>0. Here {X,,} is referred to
as an exponential minification sequence, which is uniformly mixing with
(cf. Sec. 2)

ph) =k, h=102,... (4.4)
The sample mean X, is CAN estimator for u and

- k+ 12

Hence we estimate p by the sample mean X,,.
In the following discussion we propose an estimator for k denoted by

k which is different from k, defined by Eq. (3.8).
Let

U =

J

{1 X=Xy (4.6)

0 ifA/}<A/}_1’
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then
E(U)) =k/(2k—1)

and
V(Uj) = k(k — 1)/(2k — 1)*. 4.7
Let U, = n! 27:1 U; be the arithmetic mean of Uy,Us,....,U,.

Theorem 4.1. For the exponential minification process, the Leslimalor
k,=U,/QU,—1) is strongly consistent and +/nlk,—k)— Z, as
n— 00, where Z, is a normal r.v. with mean zero and variance

o3 = k(k — )2k — 1)* =22k — 1)’ (k — 1)’
e 1

> k=14 K102k —1)

h=1

(4.8)

Proof. By the ergodicity of {X,,} we have as n— oo, U, — k/Qk —1)as.
and hence k, — k a.s.

As U, is a function of X, and X,_;, by Lemma 2.2, it follows that
{U,} is also stationary and mixing with coefficients (see Billingsley, 1968,
p. 186)

d=¢ph—1) =" n=1,2,... (4.9)

Now by applying the theorem 20.1 of Billingsley (1968), we get the
result that

iU, = kj2k - ] = Z, (4.10)
where Z is normal r.v. with mean zero and variance

Var(Z) = Var(U;) +2 Y Cov(Uy, Upy)
h=1

o0
Cov(U;, Upyp) = PIX; > Xo, Xip > X5] — PLX) > XolP[X 4y > X))
=1—P[Xy > ke ]P[X), > kejpqi]
+ P[Xg > key, X;, > keyy] — {k/Qk — DY

=1—po — pi + por — (k/ 2k — 1)}, say. (4.11)
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2148 Balakrishna and Jacob

Now simplify the term py,

h—1 h—1
Pon = P[XO > k{;‘],k XO > 8h+1,k &1 > Epys

h—=2
k 82>8h+1,...8h>8h+1].
By conditioning on (g1, &;,41)., it becomes,

B “A(k—l)ze
Pon = A 7(21{_1)

h—2
—ak — 1){2 + Zk—f}g,ﬁl} dep, .
=1

After simplifying the integral we get

xp[{—x(zk — Dejar /K"

on = (k— D*K' Y2k — D)Wk — 1+ 2K — k1!
From the definition of the model (4.3), it immediately follows that
Po=pp=(k—1/2k—1).
Substituting these values in Eq. (4.11), we get

Cov(Uy, Upyy) = —(k — D32k — D)2 {k — 1 + K12k — 1))
(4.12)

An application of the ratio test for convergence of series implies that
o0
> " 1Cov(Uy, Upyy)| < oo.
h=1
Further, it is readily verified that
o0
{k(k = 1)}/(2k = 1)* + > Cov(Uy, Upyy)
h=1

is strictly positive. Thus we have the result specified by Eq. (4.10) with
0 <Var(Z) < oco.
Let us write

. Qk — 1) k
\/ﬁ(kn_k) (2U _1)\/—( n_1>
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Now, since (2k—1)/(2U, — 1) — (2k — 1) a.s. as n — oo, by Slutsky’s
theorem, we have

Jalk, — k) = 7,

where Z, is a normal r.v. with mean 0 and variance o3 given by Eq. (4.8).
This completes the proof.

5. SIMULATION STUDY

In this section we study the performance of the estimators proposed
for the parameters of an exponential minification process discussed in
Sec. 4. We estimate u by X, and k by k, defined in Theorem 4.1. For
specified values of k and p we generated samples of 1100 observations
and computed /i and k, after skipping the first 100 values. We repeated
the experiment 100 times and then evaluated the averages of 4 and k,

Table 5.1. Averages of i and k from 100 simulations based on the exponential
minification model for specified values of u and k, where the observations in each
sample is 1000.

k m k  SE(k) ASE(k) Q SE(4) ASE(4d) COR(K, Q)

1.1 0.5 1.099 0.012 0.011 0.486  0.072 0.071 0.723
1 1.102  0.011 0.012 1.006  0.135 0.144 0.618
2 1.103 0.010 0.012 2.007  0.299 0.287 0.641
5 1.100 0.011 0.012 5.096 0.682 0.738 0.649
10 1.099 0.013 0.011 10.024  1.577 1.460 0.701
1.25 0.5 1.251 0.025 0.022 0.506  0.048 0.048 0.654
1 1.252  0.022  0.022 1.005 0.086 0.095 0.565
2 1.249 0.022  0.022 1.983  0.169 0.189 0.607
5 1249 0.021 0.022 4956 0.432 0.471 0.517
10  1.250 0.023 0.022 9.943  0.938 0.943 0.595
25 0.5 2514 0.149 0.157 0.502  0.026 0.024 0.506
1 2493 0.142  0.154 1.006  0.046 0.049 0.228
2 2510 0.178 0.157 1.985  0.097 0.096 0.268
5 2508 0.150  0.156 5.033  0.227 0.243 0.211
10 2532 0.168 0.160 10.027  0.479 0.481 0.221
5 0.5 5.108 0.899 0.780 0.498  0.021 0.019 0.101
1 5270 1.000  0.835 1.000  0.044 0.038 0.044
2 5178 0.851 0.803 1.989 0.074 0.076 0.177
5 5239 0971 0.824 4972 0.190 0.191 0.175

—
()

5151 0910 0.794  10.016 0.373 0.386 0.148
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Table 5.2. Averages of i from 100 simulations based on the exponential
minification model for known values of k, where the observations in each
sample is 100.

k

1.1 1.25 2.5

mw @ SECp) ASE(p) 4 SE(@) ASE(a) 4 SE(A) ASE(R)

0.5 0.520 0.217  0.238 0.486 0.137  0.146 0.516 0.072  0.079
1 1.041 0.430 0477 1.001 0.314  0.301 0.990 0.164  0.151
2 2013 0.789  0.923 2.088 0.528  0.624 1.969 0.305  0.301
5 5177 2295 2373 5151 1.556  1.545 5.030 0.683  0.768
10 9.996 4481 4581 1021 3378 3.063 10.07 1306 1.538

over the repetitions. The Table 5.1 presents the specified values of the
parameters u, k, the averages of the estimates based on 100 trials, along
with the standard errors. The columns of ASE (/i) and ASE (k) provide
the asymptotic standard deviations evaluated at (&, k), using Eq. (4.5)
and (4.8) respectively. The column with COR gives the estimated coeffi-
cient of correlation between i and k,. Observe that the estimates & and
k, are very close to the respective parameter values with their standard
errors close to the corresponding asymptotic standard errors for all com-
binations of the parameters.

However, the correlation between the estimators decreases when k
increases. The simulated values of the estimator k defined by Eq. (3.8)
coincides with the theoretical value of k in each trial, but such situations
may not occur in practice. ~

When k is known or it is replaced by k, the estimates of u coincide
with 4 with its standard error equal to SE(&) for n=1000. However, in
this case we get a good estimate for u for relatively smaller sample size.
The Table 5.2 summarizes the computation of the estimates along with
the standard errors for known values of k£ when n=100.

6. CONCLUDING REMARKS

There are several minification models available in the literature for
generating variety of nonGaussian sequences. If we want to use
these models in the practical situations, a valid estimation procedure is
necessary. In this article we proposed some estimators for the common
mean and k of a stationary minification model. The asymptotic properties
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of the estimators are also studied. The simulation study shows that the
estimators perform well.
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