
REVIEW PAPER
International Journal of Recent Trends in Engineering, Vol 2, No. 4, November 2009

43

On Implementing Joins, Aggregates and
Universal Quantifier in Temporal Databases

using SQL Standards
Unnikrishnan K1, Dr. K.V Pramod2,

1 Caledonian College of Engineering, CPO Seeb, Sultanate of Oman
Email: unni_krishnan_k@yahoo.com

2 Dept. of Computer Applications, Cochin University of Science and Technology
Email: pramod_k_v@cusat.ac.in

Abstract— A feasible way of implementing a temporal
database is by mapping temporal data model onto a
conventional data model followed by a commercial database
management system. Even though extensions were proposed
to standard SQL for supporting temporal databases, such
proposals have not yet come across standardization
processes. This paper attempts to implement database
operators such as aggregates and universal quantifier for
temporal databases, implemented on top of relational
database systems, using currently available SQL standards.

Index Terms— Temporal Databases, SQL Standards,
Aggregates, Universal Quantifier, TSQL

I. INTRODUCTION

Temporal Database stores time-varying information. It
supports different aspects of time. But user-defined time
is not a part of the temporal database concept. Temporal
database can represent the evolution of an entity in the
database with respect to time. In order to achieve these
features, different kinds of time-stamps will be added to
data. One type of time-stamps is known as transaction
time - the time that represents when the data is added or
stored in the database. Another type of time-stamp is
valid time - the time that represents when data is true or
valid in the mini-world. When both valid-time and
transaction-time time-stamps are used in a temporal
database, then it is known as bitemporal database. There
are different ways of representing the time-stamps – as
time instants and time intervals. [1] - [4].

There are mainly two feasible ways of implementing
temporal databases. One way is to develop a database
system with temporal features from the scratch. But it
will be a complex time consuming task. Another feasible
way is to take a conventional commercial database
management system and add temporal features to that [3]
[5]. For example Oracle can be chosen as the
conventional commercial database management system
and the relational model features of Oracle are taken into
consideration. The implementation of the temporal
database can be done by mapping the temporal data
model into the underlying relational model followed by
Oracle. The implicit attributes, validity start time and
validity end time, for data items can be represented as
explicit attributes of the relation schema.

Here an example of temporal database schema for an
employee database is given. This database is similar to
the employee database followed in [2]. It consists of two
relations Employee and Employee_Sal as given in Table I
and Table II respectively. The non-temporal Employee
relation maintains the details of individual employees.
Employee_Sal is an example of a temporal relation with
EMP_SAL as the time-varying attribute. In this relation,
validity start time and validity end time for the temporal
attribute EMP_SAL are represented by the explicit
attributes START_DATE and END_DATE respectively.
An example of Employee_Sal relation instance is given
in Table III.

However manipulating temporal databases through
currently available SQL standards is a complex task.
Because of this rationale, a lot of research work was done
on temporal extensions to SQL standards. TSQL2,
extensions to the 1992 edition of the SQL standard were
proposed [6], resulting in a chapter named Part 7
SQL/Temporal in the SQL: 1999 standard [7] [8]. But
such extensions have not been accepted by the
standardization processes [9] – [10].

In the current scenario the application developers take
the help of currently available SQL standards for
performing data manipulation of temporal databases. [11]
gives a clear direction of using standard SQL for
temporal database manipulation with suitable examples
for temporal operations such as temporal joins, temporal
coalescing etc. In this paper an attempt is made to define
the methods that can be used for implementing
aggregates and universal quantification in temporal
databases. This study aims to provide a proper direction
towards implementing these operators on a DBMS
engine.

TABLE I. EMPLOYEE

EMP_ID EMP_NAME EMP_ADDRESS DATE_OF_JOIN

TABLE II. EMPLOYEE_SAL

EMP_ID EMP_SAL START_DATE END_DATE

© 2009 ACADEMY PUBLISHER

REVIEW PAPER
International Journal of Recent Trends in Engineering, Vol 2, No. 4, November 2009

44

TABLE III. EMPLOYEE_SAL RELATION INSTANCE

EMP_ID EMP_SAL START_DATE END_DATE
101 10000 01/Jan/05 31/Dec/06
101 12000 01/Jan/07 31/Dec/07

II. IMPLEMENTING JOIN OPERATOR IN TEMPORAL
DATABASES

Through join operation, tuples from two or more relations
or views can be combined. Joins may be required by
temporal database applications also. If through a Join
operation two or more temporal relations are combined, it
is a temporal join.

The employee database explained in introduction
section has two relations Employee and Employee_Sal
where Employee_Sal is a temporal relation. Assume there
is one more relation Employee_Dept in this database with
the schema as shown in Table IV. Employee_Dept is a
temporal relation with time-varying attribute EMP_DEPT
which describes the department in which an employee
works during a particular time period. In order to find out
the evolution of salary and department together, a join
involving two relations Employee_Sal and
Employee_Dept is required. This join can be
implemented using standard SQL as follows:
SELECT A.EMP_ID, EMP_SAL, EMP_DEPT,
A.START_DATE, A.END_DATE
FROM EMPLOYEE_SAL A, EMPLOYEE_DEPT B
WHERE A.EMP_ID = B.EMP_ID
AND B.START_DATE < A.START_DATE AND A.END_DATE <=
B.END_DATE
UNION ALL
SELECT A.EMP_ID, EMP_SAL, EMP_DEPT, A.START_DATE,
B.END_DATE FROM EMPLOYEE_SAL A, EMPLOYEE_DEPT B
WHERE A.EMP_ID = B.EMP_ID
AND A.START_DATE >= B.START_DATE AND A.START_DATE <
B.END_DATE AND B.END_DATE < A.END_DATE
UNION ALL
SELECT A.EMP_ID, EMP_SAL, EMP_DEPT,
B.START_DATE, A.END_DATE
FROM EMPLOYEE_SAL A, EMPLOYEE_DEPT B
WHERE A.EMP_ID = B.EMP_ID
AND B.START_DATE >= A.START_DATE AND B.START_DATE <
A.END_DATE AND A.END_DATE < B.END_DATE
UNION ALL
SELECT A.EMP_ID, EMP_SAL, EMP_DEPT,
B.START_DATE, B.END_DATE
FROM EMPLOYEE_SAL A, EMPLOYEE_DEPT B
WHERE A.EMP_ID = B.EMP_ID
AND B.START_DATE > A.START_DATE AND B.END_DATE <
A.END_DATE

TABLE IV. EMPLOYEE_DEPT

EMP_ID EMP_DEPT START_DATE END_DATE

It is assumed that there are no duplicate tuples the above
two relations. The advantage of using UNION ALL
clause than UNION here is that the query does not
produce duplicates. In order to reduce the complexity of
the above query, functions can be used. Using two
functions the above query can be simplified as follows:

SELECT A.EMP_ID, EMP_SAL, EMP_DEPT

UPPER_DATE (A.START_DATE, B.START_DATE) AS START_DATE,
LOWER_DATE (A.END_DATE, B.END_DATE) AS END_DATE
FROM EMPLOYEE_SAL A, EMPLOYEE_DEPT B
WHERE A.EMP_ID = B.EMP_ID
AND HIGH (A.START_DATE, B.START_DATE) < LOW
(A.END_DATE, B.END_DATE)
 The function HIGH can be defined as follows:
CREATE OR REPLACE UPPER_DATE (d1 DATE, d2 DATE)
RETURNS DATE
BEGIN
 RETURN CASE WHEN d1 > d2 THEN d1

ELSE d2 END
END
The function LOW can be defined as follows:
CREATE OR REPLACE LOWER_DATE (d1 DATE, d2 DATE)
RETURNS DATE
BEGIN
 RETURN CASE WHEN d1 < d2 THEN d1

ELSE d2 END
END

UPPER_DATE and LOWER_DATE functions in
SELECT clause are supporting to make the intersection
of corresponding validity time periods. Here the WHERE
clause condition is used for testing the overlapping of
validity time periods

III. IMPLEMENTING AGGREGATES IN TEMPORAL
DATABASES

Aggregate functions in SQL return a single value
based on values in an attribute of a relation. COUNT,
AVG, MIN and MAX are the different aggregate
functions defined in SQL. GROUP BY clause in SQL
helps in combining the data across several records and
then grouping the results by one or more attributes.
Aggregate functions may be required by temporal
database applications also. For example, retrieving the
highest salary for the above employee database schema
involves the use of aggregate function MAX. First step in
retrieving the result for such a query is finding the
periods during which aggregate should be computed. This
can be done by defining a VIEW as follows: First using a
view assemble the dates in which salary was modified
and then using another view build the periods based on
those dates. This is defined as follows:

CREATE VIEW MODIFYDAYS (MODIFY_DATE) AS
SELECT DISTINCT START_DATE FROM EMPLOYEE_SAL
UNION
SELECT DISTINCT END_DATE FROM EMPLOYEE_SAL

CREATE VIEW MODIFYPERIODS (START_DATE, END_DATE) AS
SELECT A.MODIFY_DATE, B.MODIFY_DATE
FROM MODIFYDAYS A, MODIFYDAYS B
WHERE A.MODIFY_DATE < B.MODIFY_DATE
AND NOT EXISTS (SELECT * FROM MODIFYDAYS C
WHERE A.MODIFY_DATE < C.MODIFY_DATE
AND C.MODIFY_DATE< B.MODIFY_DATE)
 The view MODIFYDAYS finds the dates on which
SALARY attribute was modified and the view
MODIFYPERIODS assembles those dates into periods.
Now the aggregates can be found based on these periods.

CREATE VIEW MAX_SAL (SAL, START_DATE, END_DATE) AS
SELECT MAX (EMP_SAL), B.START_DATE, B.END_DATE
FROM EMPLOYEE_SAL A, MODIFYPERIODS B

© 2009 ACADEMY PUBLISHER

REVIEW PAPER
International Journal of Recent Trends in Engineering, Vol 2, No. 4, November 2009

45

WHERE A.START_DATE <= B.START_DATE
AND B.END_DATE <= S.END_DATE
GROUP BY B.START_DATE, B.END_DATE
 In this way, the maximum salary during valid periods
can be retrieved. Now the possible implementation of an
aggregate function with the group by clause for this
temporal database application can be done. For example,
retrieving the highest salaries for each department
involves the use of aggregate function MAX along with
the GROUP BY clause. This can be done by first making
a join (which is temporal join as mentioned in section II)
among the EMPLOYEE_SAL and EMPLOYEE_DEPT
temporal relations. That is, define a view which will
compute this join and retrieve the dates in which the
maximum salary of a department is updated. Then bring
together those dates department wise and build valid
periods based on these dates. Then figure out the
maximum salaries for these periods. This can be done as
follows.

CREATE VIEW MODIFYDAYS_MAXSAL (EMP_DEPT, EMP_SAL,
START_DATE, END_DATE) AS
SELECT DISTINCT A.EMP_DEPT, B.EMP_SAL
UPPER_DATE (B.START_DATE, A.START_DATE),
LOWER_DATE (B.END_DATE, A.END_DATE
FROM EMPLOYEE_DEPT A, EMPLOYEE_SAL B
WHERE A.EMP_ID=B.EMP_ID
AND UPPER_DATE (B.FROM_DATE, A.FROM_DATE) <
LOWER_DATE (B.END_DATE, A.END_DATE)
CREATE VIEW MODIFYDAYS_MAXSAL_DEP (EMP_DEPT,
MODIFY_DATE) AS
SELECT DISTINCT EMP_DEPT, START_DATE FROM
MODIFYDAYS_MAXSAL
UNION
SELECT DISTINCT EMP_DEPT, END_DATE FROM
MODIFYDAYS_MAXSAL
CREATE VIEW MODIFYPERIODS_MAXSAL_DEP(EMP_DEPT,
START_DATE, END_DATE) AS SELECT A.EMP_DEPT,
A.MODIFY_DATE, B.MODIFY_DATE
FROM MODIFYDAYS_MAXSAL_DEP A,
MODIFYDAYS_MAXSAL_DEP B
WHERE A.EMP_DEPT = B.EMP_DEPT AND A.MODIFY_DATE <
B.MODIFY_DATE AND NOT EXISTS (SELECT * FROM
MODIFYDAYS_MAXSAL_DEP C
WHERE A.EMP_DEPT = C.EMP_DEPT AND A.MODIFY_DATE <
C.MODIFY_DATE AND C.MODIFY_DATE < B.MODIFY_DATE)

Now the maximum salary for these periods can be
retrieved using another view as follows:

CREATE VIEW MAX_SAL_BY_DEPT (EMP_DEPT, MAX_SAL,
START_DATE, END_DATE)
AS
SELECT B.EMP_DEPT, MAX (EMP_SAL), B.START_DATE,
B.END_DATE
FROM MODIFYDAYS_MAXSAL A,
MODIFYPERIODS_MAXSAL_DEP B
WHERE A.EMP_DEPT=B.EMP_DEPT
AND A.START_DATE <= B.START_DATE AND B.END_DATE <=
A.END_DATE
GROUP BY B.EMP_DEPT, B.START_DATE, B.END_DATE

IV. IMPLEMENTING UNIERSAL QUANTIFIER IN
TEMPORAL DATABASES

Universal quantification denotes that something is true
for everything. This operator is required in many queries.
Standard SQL does not directly provide any universal

quantification operator and its implementation can be
done with the help of NOT EXISTS clause.

Universal quantifier may be required by temporal
database applications also. For example, assume that in
the employee database, there are two relations
Department_Proj and Employee_Proj, with the schema as
shown in Table V and Table VI respectively.

Employee_Proj is a temporal relation with time-
varying attribute EMP_PROJ describes the project in
which an employee works during a particular time period.
Application of universal quantifier is required for
retrieving the employee who works on all projects
monitored by their department. Department_Proj is
another temporal relation describing the projects
monitored by a department during a particular time
period.

TABLE V. DEPARTMENT_PROJ
EMP_DEPT EMP_PROJ START_DATE END_DATE

TABLE VI. EMPLOYEE_PROJ

EMP_ID EMP_PROJ START_DATE END_DATE

In order to retrieve the set of employees working on all
the projects monitored by their department, universal
quantifier is required. In this scenario, both
Department_Proj and Employee_Proj are temporal
relations. The first task in evaluating this query is to build
the validity periods over which the universal quantifier is
to be applied. This can be achieved by a view as follows:

CREATE VIEW EMP_PROJ_MODIFY_DATE (EMP_ID,
FROM_TO_DATE) AS
SELECT DISTINCT EMP_ID, START_DATE
FROM EMPLOYEE_DEPT A, DEPARTMENT_PROJ B
WHERE A.EMP_DEPT = B.EMP_DEPT
UNION
SELECT DISTINCT EMP_ID, END_DATE
FROM EMPLOYEE_DEPT A, DEPARTMENT_PROJ B
WHERE A.EMP_DEPT = B.EMP_DEPT
UNION
SELECT DISTINCT EMP_ID, START_DATE
FROM EMPLOYEE_PROJ
UNION
SELECT DISTINCT EMP_ID, END_DATE
FROM EMPLOYEE_PROJ

This view takes out the dates in which the department in
which he is working begins or ends controlling a project
and also the dates in which the employee begins or ends
in working in a project. Now periods have to be
constructed based on these dates. This can be done with
another view as follows:

CREATE VIEW MODIFY_PERIODS_PROJ_EMP (EMP_ID,
START_DATE, END_DATE)
AS
SELECT A.EMP_ID, A.FROM_TO_DATE, B.FROM_TO_DATE
FROM EMP_PROJ_MODIFY_DATE A, EMP_PROJ_MODIFY_DATE
B
WHERE A.EMP_ID = B.EMP_ID
AND A.FROM_TO_DATE < B.FROM_TO_DATE

© 2009 ACADEMY PUBLISHER

REVIEW PAPER
International Journal of Recent Trends in Engineering, Vol 2, No. 4, November 2009

46

AND NOT EXISTS (SELECT * FROM PROJ_MODIFY_DATE C
WHERE A.EMP_ID = C.EMP_ID AND A.FROM_TO_DATE
<C.FROM_TO_DATE
AND C.FROM_TO_DATE <B.FROM_TO_DATE)

Now universal quantifier can be calculated over these
time periods.
CREATE VIEW UNIV_QUANTIFIER (EMP_ID, START_DATE,
END_DATE) AS
SELECT DISTINCT A.EMP_ID, A.START_DATE, A.END_DATE
FROM MODIFY_PERIODS_PROJ_EMP A, EMPLOYEE_DEPT B
WHERE A.EMP_ID = B.EMP_ID AND NOT EXISTS (SELECT *
FROM DEPARTMENT_PROJ C WHERE B.EMP_DEPT =
C.EMP_DEPT AND C.START_DATE <= A.START_DATE AND
A.END_DATE <= C.END_DATE AND NOT EXISTS (SELECT *
FROM EMPLOYEE_PROJ D WHERE C.EMP_PROJ = D.EMP_PROJ
AND A.EMP_ID = D.EMP_ID AND D.START_DATE <=
A.START_DATE AND A.END_DATE <= D.END_DATE))

V. CONCLUSION

This paper attempts to realize aggregates and universal
quantifier for temporal databases. Manipulating temporal
databases with standard SQL is a complex time
consuming task. Even though extensions were proposed
to standard SQL for supporting temporal databases, such
proposals have not yet come across standardization
processes. In this scenario, application developers still
make use of standard SQL for temporal database
manipulations. Considering this well acknowledged fact,
this paper attempts to implement some essential operators
like aggregation and universal quantifier for temporal
databases implemented on top of relational databases
using currently available SQL standards.

For the experimentation, relations instances
corresponding to the relations schemas as given in Table
1 through VI were simulated with different number of
tuples 10K and 100K and the queries were executed on
Oracle database server 10g on a system with AMD
Athlon processor and IGB RAM and it was proved the
complexity of the queries are high. Performance
improvement can be done with the use of cursors. The
views like MODIFYPERIODS_MAXSAL_DEP
MODIFYPERIOD, are really adding to the complexity.
But these views were conceptually really simple as they
make periods out of dates and the major reason for this is

the inner NOT EXISTS clause. If these views can be
replaced by PL/SQL procedures which access these dates
in ascending order generated by a cursor the complexity
can be really reduced. Optimizing the implementation of
these operators is a major future challenge.

REFERENCES
[1] C.D Dyreson, C.S Jensen. “A Consensus Glossary of

Temporal Database Concepts.” February, 1998 Vesrion.
[Online] Available
http://www.timeconsult.com/Publications/diss.pdf

[2] Navathe, Elmasri. “Fundamentals of Database Systems”.
Pearson Education Inv., Third Edition, 2000

[3] Nina Edelweiss, Patricia Hubler. Implementing a Temporal
Database on top of a Conventional Database: Mapping of
the Data Model and Data efinition Management. In Proc.
15th razilian Symposium on Databases (SBBD), 2000.

[4] R.T Snodgrass, C.S Jensen. Temporal Data Management.
IEEE Trans. On Knowledge and Data Engineering, 11(1),
, Jan-Feb 1999.

[5] A.U Tansel. Temporal Relational Data Model. IEEE
Trans. on Knowledge and Data Engineering, 9(3), May-
June 1999.

[6] R.T Snodgrass The TSQL2 Temporal Query Language,
Kluwer 1995, ISBN 0-7923-9614-6.

[7] R.T Snodgrass, M.Bohlen, C.Jensen and N. Kline Adding
Valid Time to SQL/Temporal ANSI X3H2-96-501r2,
ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2, 1996.

[8] R T Snodgrass, M.Bohlen, C.Jensen and and A Steiner,
Adding Transaction Time to SQL/Temporal ANSI X3H2-
96-152r, ISO-ANSI SQL/ISO/IEC JTC1/SC21/WG3 DBL
MCI-143, 1996.

[9] Hugh Darwen, “ Valid Time and Transaction Time
Proposals: Language Design Aspects”, in Temporal
Databaseses Reseacrh and Practice , vol 1399/1998,
Springer Berlin/Heidelberg,1998, pp.195-210

[10] R.T Snodgrass, M.Bohlen, C.Jensen and A Steiner,
“Transitioning Temporal Support in TSQL2 to SQL3”, in
Temporal Databasese Reseacrh and Practice , vol
1399/1998, Springer Berlin/Heidelberg,1998, pp.150-194

[11] R.T Snodgrass, “Developing Time-Oriented Database
Applications in SQL”, Mauragn Kaufman Publishers,
2000.

© 2009 ACADEMY PUBLISHER

