Secret Sharing Schemes
 using
 Visual Cryptography

Thesis submitted to
Cochin University of Science and Technology

in partial fulfillment of the requirements
for the award of the degree of
DOCTOR OF PHILOSOPHY under the Faculty of Technology

> By
> A.Sreekumar

> Under the guidance of

Dr. S. Babusundar
Department of Computer Applications
Cochin University of Science and Technology
Kochi 22, India
June 2009

CERTIFICATE

Certified that the work presented in this thesis entitled "Secret Sharing Schemes Using Visual Cryptography" is based on the bona fide research work done by A. Sreekumar under my guidance in the Department of Computer Applications, Cochin University of Science and Technology, Kochi - 22, and has not been included in any other thesis submitted previously for the award of any degree.

Kochi - 22
June 23, 2009

Dr. S. Babusundar Professor in Computer Applications, (Supervising Guide) Department of Computer Applications, Cochin University of Science and Technology

DECLARATION

I hereby declare that the present work entitled "Secret Sharing
Schemes Using Visual Cryptography" is based on the original work done by me under the guidance of Dr. S. Babusundar, Department of Computer Applications, Cochin University of Science and Technology, Kochi - 22 and has not been included in any other thesis submitted previously for the award of any other degree.

Kochi - 22,
June 23, 2009
A. Sreekumar

ACKNOWLEDGEMENT

There are many people who deserve more than just an acknowledgement on this page. The following people deserve my heartfelt gratitude.

My supervising guide, Dr. S. Babusundar, Professor, Department of Computer Applications, Cochin University of Science and Technology, for his inspiring guidance and constant encouragement for his valuable suggestions, constant support, encouragement and always sharing his positive thinking during my candidature.

My thanks goes to my colleagues Dr. K. V. Pramod, Dr. B. Kannan and Smt. S. Malathi, for providing me with a stimulating research environment.

I also wish to thank G. Santhosh Kumar for wonderful collaborations. I thank Smt. Sindhu Menon and Smt. Padmakumary for their timely supports.

I would like to thank all staff members of the Department of Computer Applications, for helping me in one way or other.

I am extremely grateful to my family for the support rendered to me throughout my research work. Above all, I thank the Supreme Power, who has always showered countless blessings upon me.

Sreekumar, A.

Contents

1 Secret Sharing Schemes 1
1.1 Introduction 1
1.2 Principle of secret splitting 6
1.3 History of Secret Sharing 8
1.3.1 Threshold Scheme 10
1.3.2 The Shamir Secret Sharing Scheme 10
1.3.3 System Design 12
1.3.4 A method of solution 13
1.4 Concluding remarks 17
2 Evolution of Secret Sharing Schemes 19
2.1 Introduction 19
2.2 Evolution of the schemes 23
2.3 General Secret Sharing Schemes 32
2.4 Applications 33
2.5 Ito-Saito-Nishizeki Scheme 34
2.6 Benaloh-Leichter Scheme 36
2.7 Concluding remarks 41
3 Visual Cryptography 42
3.1 Introduction 42
3.2 Division of the pixel 45
3.3 Superposition of pixels 46
3.4 Dealing of a B/W Image 46
3.4.1 Algorithm to share a pixel into two shares 46
3.4.2 Shamir's solutions for small k and n 49
3.5 A general scheme for (k, k)
Visual cryptography 51
3.6 Concluding remarks 56
4 Modified Visual Cryptography 57
4.1 Introduction 57
4.2 A Modified scheme for (k, k)
Visual Cryptography 58
4.2.1 Comparison of the schemes 62
4.3 A simple Modified scheme for (k, k) 62
4.4 Generalization of (3, 3) scheme 64
4.5 Concluding remarks 64
5 Balanced Strings and Uniform Codes 65
5.1 Introduction 65
5.2 An Efficient $(2, n)$ - threshold scheme 69
5.3 An upper bound of the Blowing factor 73
5.4 Concluding remarks 77
6 Scheme for ($n-1, n$) threshold 78
6.1 Introduction 78
6.2 A new scheme 78
6.3 sharing one bit 79
6.4 Concluding remarks 84
7 An Efficient Scheme - Using Balanced Strings 85
7.1 Introduction 85
7.2 A (2, 2) Construction 87
7.3 A (n, n) Construction 91
7.4 Security Analysis 94
7.5 Concluding remarks 95
8 Permutation Ordered Binary Number System 96
8.1 Introduction 96
8.2 A new number system 96
8.3 POB-representation is unique 100
8.4 POB-number and POB-value 103
8.5 Illustrations 110
8.6 Concluding remarks 111
9 Improvement Scheme Using POB Numbers 112
9.1 Introduction 112
9.2 A (2, 2) Construction 113
9.2.1 Algorithm to Share one byte between two shares 113
9.2.2 Algorithm to Recover the shared byte 115
9.3 An (n, n) Construction 117
9.3.1 Algorithm to Share one byte between n shares 117
9.4 Security Analysis 121
9.5 Concluding remarks 122
10 Conclusions 123
Appendix 1: The Distribution of keys 125
Appendix 2: The Extended Euclidean Algorithm 134
Appendix 3: List of Research Papers 137
Appendix 4: Synopsis 138
References 150

Chapter 1

Secret Sharing Schemes

1.1 Introduction

4 Handling secret has been an issue of prominence from the time human beings started to live together. Important things and messages have been always there to be preserved and protected from possible misuse or loss. Some time secret is thought to be secure in a single hand and at other times it is thought to be secure when shared in many hands. Some of the formulae of vital combinations of medicinal plants or roots or leaves, in Ayurveda were known to a single person in a family. When he becomes old enough, he would rather share the secret formula to a chosen person from the family, or from among his disciples. There were times when the person with the secret dies before he could share the secret. Probably, similar incidents might have made the genius of those era to think of sharing the secrets with
more than one person so that in the event of death of the present custodian, there will be at least one other person who knows the secret.

Secret sharing in other forms were prevailing in the past, for other reasons also. Secrets were divided into number of pieces and given to the same number of people. To ensure unity among the participating people, the head of the family would share the information with respect to wealth among his children and insist that after his death, they all should join together to inherit the wealth.

To test the valor of the youth of a nation, a king, would hide treasure in some place in his kingdom and information about it would be placed in pieces at different places of varying grades of difficulty to reach. Only the brave and the intelligent would reach the treasure.

Military and defense secrets have been the subject matter for secret sharing in the past as well as in the modern days. Secret sharing is a very hot area of research in Computer Science in the recent past. Digital media has replaced almost all forms of communication and information preservation and processing. Security in digital media has been a matter of serious concern. This has resulted in the development of encryption and cryptography. Uniform secret sharing schemes form a part of this large study.

A Secret sharing scheme is a method of dividing a secret in- formation into two or more pieces, with or without modifications, and retrieving the information by combining all or predefined sub collection of pieces.

The pieces of information are called shares and the process responsible for the division is called dealer. A predefined subcollection of shares which contains the whole secret in some form is called an allowed coalition. The process responsible for the recovery of the secret information from an allowed coalition is called a combiner.

A share contains, logically, a part of the information, but will be of no use. Thus no single share is of any threat to the confidentiality of the secret information. It is also envisaged that after the dealer process is over, the original information can be destroyed forever. This would mean that even the person responsible for the dealer process will not be a threat, thereafter. The secret information is recovered from any allowed coalition using the recovery process called combiner. The combiner would be able to recover the secret information, only if, all shares in the allowed coalition is present and not with any fewer number of shares. Thus, in an allowed coalition, each member share is equally important such that without anyone of them, the secret information cannot be accessed.

Allowed coalition is also referred in the literature by other names too, such as, authentic collection, qualified collection
or authorized set. We, in our work, preferred to call the sub collection of shares as allowed coalition. The set of all allowed coalitions of participants is called the access structure and is usually denoted by Γ.

Secret Sharing is an important tool in Security and Cryptography. In many cases there is a single master key that provides the access to important secret information. Therefore, it would be desirable to keep the master key in a safe place to avoid accidental and malicious exposure. This scheme is unreliable: if master key is lost or destroyed, then all information accessed by the master key is no longer available. A possible solution would be that of storing copies of the key in different safe places or giving copies to trusted people. In such a case the system becomes more vulnerable to security breaches or betrayal [53], [30]. A better solution would be, breaking the master key into pieces in such a way that only the concurrence of certain predefined trusted people can recover it. This has proven to be an important tool in management of cryptographic keys and multi-party secure protocols (see for example [33]).

As a solution to this problem, Blakley [9] and Shamir [53]

Ito, Saito, and Nishizeki [36] described a more general method of secret sharing. An access structure is a specification of all subsets of participants who can recover the secret and it is said to be monotone if any set which contains a subset that can recover the secret, can itself recover the secret. Ito, Saito, and Nishizeki gave a methodology to realize secret sharing schemes for arbitrary monotone access structures.

Subsequently, Benaloh and Leichter [5] gave a simpler and more efficient way to realize such schemes.

An important issue in the implementation of secret sharing scheme is the size of the shares distributed to the participants, since the security of a system degrades as the amount of the information that must be kept secret increases. So the size of the shares given to the participants is a key point in the design of secret sharing schemes. Therefore, one of the main parameters in secret sharing is, the average information rate ρ, of the scheme, which is defined as the ratio between the average length (in bits) of the shares given to the participants and the length of the secret. Unfortunately, in all secret sharing schemes the size of the shares cannot be less than the size of the secret, and so the information rate cannot be less than one. Moreover, there are access structures, for which, any corresponding secret sharing scheme must give to some participant a share of size strictly bigger than the secret size. Secret sharing schemes with information rate equal to one are called ideal. A secret sharing
scheme is called efficient if the total length of the n shares is
polynomial in n.

1.2 Principle of secret splitting

The simplest sharing scheme splits a message between two people. Consider the case where Daniel has a message M, represented as an integer, that he would like to split between two people Alice, and Bob, in such a way that neither of them alone can reconstruct the message. A solution to the problem readily lends itself: Choose a random number r. Then r and $M-r$ are independently random. He gives $M-r$ to Alice and r to Bob as their shares. Each share by itself means nothing in relation to the message, but together, they carry the message M. To recover the message, Alice and Bob have to simply add their shares together.

Here is another method in which Daniel splits a message between Alice and Bob:

1. Daniel generates a random-bit string R, of the same length as the message, M.
2. Daniel XORs M with R to generate S. i.e., $M \oplus R=S$.
3. Daniel gives R to Alice and S to Bob.
${ }^{20}$
To reconstruct the message, Alice and Bob have only one step to do:
4. Alice and Bob XOR their pieces together to reconstruct the message:

$$
R \oplus S=M
$$

This technique is absolutely secure. Each piece, by itself, is absolutely worthless. Essentially, Daniel is encrypting the message with a one-time pad and giving the cipher text to one person and the pad to the other person. The one-time pad, which is an unbreakable cryptosystem, was developed by Gilbert Vernam and Joseph Mauborgne in 1917. It has perfect security [42]. No amount of computing power can determine the message from one of the pieces.

Shares can be constructed in several alternative forms using a random number. For example, $M-\frac{r}{2}$ and $M+\frac{r}{2}$ or $M r$ and $\frac{M}{r}$. Depending on the choice of constructing shares, suitable combiner has to be created.

It is easy to extend this scheme to more people:
Now let us examine the case where we would like to split the secret among three people. Any suitable splitting and combining method can be evolved. For example, the method employed for splitting the secret into two shares can be extended with the help of two random numbers r and s. For example, consider $M-r-s$, r and s as the three shares. To reconstruct the message M, simply add the shares. Similarly, we can evolve splitting and combining methods for a secret to be distributed as n shares with
the condition that only when all of them are combined together, the secret could be recovered.

Daniel divides up a message into $n(\geq 2)$ pieces:

1. Daniel generates $n-1$ random-bit strings S_{1}, \ldots, S_{n-1} having the same length as the message, M
2. Daniel XORs M with $n-1$ random-bit strings to generate S_{n} :

$$
\text { i.e., } \quad M \oplus S_{1} \oplus \ldots \oplus S_{n-1}=S_{n} \text {. }
$$

3. Daniel distributes the $S_{i},(i=1, \ldots, n)$ to the n participants.
4. The n participants working together can reconstruct the
message:

12

$$
S_{1} \oplus S_{2} \oplus \ldots \oplus S_{n-1} \oplus S_{n}=M
$$

Note: This protocol has a problem: If any of the pieces gets lost or is not available, the message cannot be reconstructed, since each piece is as critical to the message as every other piece.

1.3 History of Secret Sharing

In [43], Liu considered the following problem:
Eleven scientists are working on a secret project. They wish to lock up the documents in a cabinet so that the cabinet can be
opened, if and only if, six or more of the scientists are present. What is the smallest number of locks needed? What is the smallest number of keys to the locks each scientist must carry?

If we consider any five scientists together, there is a specific lock, which they cannot open. Consider a particular scientist. He must have the keys of those locks which cannot be opened by any five scientists from among the other ten scientists.

Among eleven scientists, five scientists can be selected in $\binom{11}{5}=462$ ways, and among ten scientists, five scientists can be selected in $\binom{10}{5}=252$ ways. (More details about one form of distribution of keys of the various locks to the scientists is included in Appendix 1.)

So, the minimal solution uses 462 locks and 252 keys per scientist. These numbers are clearly impractical, and they become exponentially worse when the number of scientists increases. Moreover, the secret documents are always as a single entity and is not being involved in the method. Since the secret is always in one piece, the level of security is low to that extent. The security in this case is solely depending on the locks and the keys. However, the cabinet with the document as a whole is at great risk.

1.3.1 Threshold scheme

In 1979 Shamir [53] and Blakley [9] introduced the concept of sharing of the secret message as a means and a method of making the message secure. Under this scheme, the message M is divided into n pieces $M_{1}, M_{2}, M_{3}, \ldots, M_{n}$, with or without transformation of the message, in such a way that, for a specified $k,(2 \leq k \leq n)$,

1. knowledge of any k or more pieces- M_{i} makes M computable;
2. knowledge of any $k-1$ or fewer M_{i} pieces leaves M completely undetermined (in the sense that all its possible values are equally likely).

Such a scheme is called a (k, n)-threshold scheme. The parameter $k \leq n$ is called the threshold value.

1.3.2 The Shamir Secret Sharing Scheme

Let $k, n \in \mathbb{Z}, k \leq n$. We will describe the (k, n) Secret Sharing Scheme by Shamir. It uses a prime number, p, which is greater than n and the set of possible secret. The scheme is based on the following lemma.

Lemma 1.1

20
Let $k \in \mathbb{Z}$. Also let $x_{i}, y_{i} \in \mathbb{Z} / p^{\mathbb{Z}}, 1 \leq i \leq k$, where the
x_{i} are pairwise distinct. Then there is a unique polynomial $b \in\left(\mathbb{Z} / p^{\mathbb{Z}}\right)[X]$ of degree $\leq k-1$ with $b\left(x_{i}\right)=y_{i}, 1 \leq i \leq k$.

Proof: The Lagrange interpolation formula yields the polynomial

$$
\begin{equation*}
b(X)=\sum_{i=1}^{k} y_{i} \prod_{j=1, j \neq i}^{k} \frac{\left(x_{j}-X\right)}{\left(x_{j}-x_{i}\right)} \tag{1.1}
\end{equation*}
$$

It satisfies $b\left(x_{i}\right)=y_{i}, 1 \leq i \leq k$. This shows that at least one polynomial exists with the asserted properties. Now we determine the number of such polynomials.

Let $b \in(\mathbb{Z} / p \mathbb{Z})[X]$ be such a polynomial. Write

$$
b(X)=\sum_{j=0}^{k-1} b_{j} X^{j}, \text { where, } b_{j} \in \mathbb{Z} / p \mathbb{Z}, 0 \leq j \leq k-1
$$

From $b\left(x_{i}\right)=y_{i}, 1 \leq i \leq k$, we obtain the linear system

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{k-1} \tag{1.2}\\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{k-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{k} & x_{k}^{2} & \ldots & x_{k}^{k-1}
\end{array}\right]\left[\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{k-1}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{k-1}
\end{array}\right]
$$

The coefficient matrix

$$
U=\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{k-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{k-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{k} & x_{k}^{2} & \ldots & x_{k}^{k-1}
\end{array}\right]
$$

is Vandermonde matrix. Its determinant is

$$
\operatorname{det} U=\prod_{1 \leq i<j \leq k}\left(x_{i}-x_{j}\right)
$$

Since the x_{i} are distinct by assumption, the determinant is non zero. So the rank of U is k. This implies that the kernel of the coefficient matrix (1.2) has rank 0 , and the number of solutions of our linear system is $p^{0}=1$. Hence the uniqueness. Now we are able to describe the scheme.

1.3.3 System Design

The dealer chooses a prime number p, which is greater than n and the set of possible secret and nonzero distinct elements $x_{i} \in$ $\mathbb{Z} / p \mathbb{Z}, 1 \leq i \leq n$. Those elements in $\mathbb{Z} / p \mathbb{Z}$ can, for example, be represented by their least nonnegative representative.

The shares

Let $S \in \mathbb{Z} /{ }_{p} \mathbb{Z}$ be the secret.

1. The dealer secretly at random chooses elements $b_{j} \in \mathbb{Z} /{ }_{p} \mathbb{Z}$, $1 \leq i \leq k-1$ and constructs the polynomial

$$
\begin{equation*}
b(X)=\sum_{i=1}^{k-1} b_{i} x^{i}+S \tag{1.3}
\end{equation*}
$$

It is of degree $\leq k-1$.
2. The dealer computes the shares $y_{i}=b\left(x_{i}\right), 1 \leq i \leq n$.
3. The dealer distributes the share $\left(x_{i}, y_{i}\right)$ to the $i^{\text {th }}$ share18 holder, $1 \leq i \leq n$.

So the secret is value $b(0)$ of the polynomial $b(X)$.

Reconstruction of the secret

Suppose that k shareholders collaborate. Without loss of gen4 erality assume that the shares are numbered, such that, $y_{i}=$ $b\left(x_{i}\right), 1 \leq i \leq k$ with the polynomial $\mathrm{b}[\mathrm{X}]$ from (1.3). Now we have

$$
\begin{equation*}
b(x)=\sum_{i=1}^{k} y_{i} \prod_{j=1, j \neq i}^{k} \frac{x_{j}-X}{x_{j}-x_{i}} \tag{1.4}
\end{equation*}
$$

In fact this polynomial satisfies $b\left(x_{i}\right)=y_{i}, 1 \leq i \leq k$ and by lemma 1.1 there is exactly one such polynomial of degree $\leq k-1$. Therefore, the shareholders can reconstruct the secret as

$$
\begin{equation*}
S=b(0)=\sum_{i=1}^{k} y_{i} \prod_{j=1, j \neq i}^{k} \frac{x_{j}}{x_{j}-x_{i}} \tag{1.5}
\end{equation*}
$$

1.3.4 A method of solution

Now a secret is shared by computing points on a random polynomial in $(\mathbb{Z} / p \mathbb{Z})[X]$. So first we must find a way of representing the "plaintext" secret as a set of class modulo p. This is not really part of secret sharing process; it is merely a way to prepare the secret so that it can be shared. To keep the things as simple as possible, we will assume that the "plaintext" secret contains only words written in uppercase letters. Thus the secret is ultimately a sequence of letters and blank spaces. The first step consists of
replacing each letter of the secret by a number, using the following correspondence:

A	B	C	D	E	F	G	H	I	J	K	L	M
10	11	12	13	14	15	16	17	18	19	20	21	22

N	O	P	Q	R	S	T	U	V	W	X	Y	Z
23	24	25	26	27	28	29	30	31	32	33	34	35

The blank space between words is replaced by 99. Having done that, we obtain a number, possibly a very large one, if the secret is large. However it is not a number we want, but rather classes modulo p. Therefore, we must break the numerical representation of the secret into a sequence of positive integers, each smaller than p. These are called the blocks of the secret.

For example, the numerical representation of the proverb
"A SMALL LEAK WILL SINK A GREAT SHIP" is

109928221021219921141020993218212199
2818232099109916271410299928171825 2818232099109916271410299928171825

If we choose the prime $p=9973$, the numerical representation of the proverb above must be broken into blocks smaller than 9973. One way to do this is as follows:

When secret is reconstructed, one obtains a sequence of blocks. The blocks are then joined together to give the numerical representation of the secret. It is only after replacing the numbers by letters, according to the table above, that one obtains the original secret.

Note that we have made each letter correspond to a two-digit number in order to avoid ambiguities. For example, if we had numbered the letters so that A corresponds to $1, B$ to 2 , and so on, then we wouldn't be able to tell whether 12 stood for $A B$ or for the letter L, which is the twelfth letter of the alphabet.

Of course, any convention that is unambiguous can be used instead of the one above. For example, one might prefer to use ASCII code, since the conversion of characters is automatically done by the computer.

Example 1.1

Let us return to the example we considered above. We choose $p=9973$. To construct a (3, 5)-threshold scheme, where any three of five people can reconstruct S, suppose the dealer chooses $x_{i}=i, 1 \leq i \leq 5$. Also assume that the randomly selected coefficients b_{2} and b_{1} are 1572 and 7583 respectively.

Thus to share the first block of the secret, we must compute the polynomial,
$F(x)=1572 x^{2}+7583 x+1099(\bmod 9973)$ at each x_{i}. Thus the five shares of the first block are:

$$
\begin{aligned}
& s_{1}=F(1)=1572.1^{2}+7583.1+1099 \equiv 281(\bmod 9973) \\
& s_{2}=F(2)=1572.2^{2}+7583.2+1099 \equiv 2607(\bmod 9973) \\
& s_{3}=F(3)=1572.3^{2}+7583.3+1099 \equiv 8077(\bmod 9973) \\
& s_{4}=F(4)=1572.4^{2}+7583.4+1099 \equiv 6718(\bmod 9973) \\
& s_{5}=F(5)=1572.5^{2}+7583.5+1099 \equiv 8503(\bmod 9973)
\end{aligned}
$$

Sharing the whole secret, we have the following sequence of blocks:

$$
\begin{aligned}
s_{1}= & 281-2004-203-1381-1296-202-9114-1003-1381- \\
& 2000-1502-9092-9098-1896-211-9110-900-9180 \\
s_{2}= & 2607-4330-2529-3707-3622-2528-1467-3329-3707- \\
& 4326-3828-1445-1451-4222-2537-1463-3226-1533 \\
s_{3}= & 8077-9800-7999-9177-9092-7998-6937-8799-9177- \\
& 9796-9298-6915-6921-9692-8007-6933-8696-7003 \\
s_{4}= & 6718-8441-6640-7818-7733-6639-5578-7440-7818- \\
& 8437-7939-5556-5562-8333-6648-5574-7337-5644 \\
s_{5}= & 8503-253-8425-9603-9518-8424-7363-9225-9603- \\
& 249-9724-7341-7347-145-8433-7359-9122-7429
\end{aligned}
$$

Let us see how a block of a secret can be reconstructed from the three shares. For example, the first block of S can be reconstructed from the first blocks of the shares s_{2}, s_{3} and s_{5} by using the formula (1.5):

$$
\begin{aligned}
b[0] & =\frac{2607.3 .5}{1.3}+\frac{8077.2 .5}{-1.2}+\frac{8503.2 .3}{-3 .-2}(\bmod 9973) \\
& =2607.5+8077 .(-5)+8503 \quad(\bmod 9973) \\
& =-18847 \quad(\bmod 9973) \\
& =1099
\end{aligned}
$$

Similarly each block can be reconstructed.
It may be noted that, we are working with prime modulo p, in which, the numbers that appear in the denominators ${ }_{4}$ of formula (1.5), have inverses. We can use the Extended Euclidean Algorithm to find the inverse: $m^{-1}(\bmod) p$, where, $m \not \equiv 0(\bmod p)$. The algorithm and an example are given as Appendix 2.

For example, suppose we want to construct the first block of the secret from s_{1}, s_{2} and s_{5}. Here,

$$
\begin{aligned}
b[0] & =\frac{281.2 .5}{1.4}+\frac{2607.1 .5}{-1.3}+\frac{8503.1 .2}{-4 .-3} \quad(\bmod 9973) \\
& =\frac{281.5}{2}+\frac{2607.5}{-3}-\frac{8503.1}{-6} \quad(\bmod 9973) \\
& =\frac{281 .(15)-2607.10+8503}{6} \quad(\bmod 9973) \\
& =\frac{-13352}{6} \quad(\bmod 9973) \\
& =-13352 * 8311 \quad(\bmod 9973) \\
& \quad\left[\text { because } 6^{-1} \equiv 8311 \quad(\bmod 9973)\right. \\
& =-110968472 \quad(\bmod 9973) \\
& 1099 \quad(\bmod 9973)
\end{aligned}
$$

1.4 Concluding remarks

We have seen the development of the subject from the simple case of $(2,2)$ sharing to the general (k, n) sharing. Some examples
are also given. The chapter also contains an algorithm for the key allotment. We have included simple examples to highlight the various aspects of the existing sharing schemes.

Chapter 2

Evolution of Secret Sharing Schemes

+ 2.1 Introduction

In this chapter, we discuss the evolution of Secret Sharing Schemes. Some important advancements in this area are discussed and illustrated with suitable examples. The difficulties and limitations of the different schemes is also discussed.

In this section we recall some general notations used and basic definitions of secret sharing schemes.

Definition 2.1

A secret sharing scheme permits a secret to be shared among a set \mathcal{P} of n participants in such a way that only qualified subsets of \mathcal{P} can recover the secret, and any non-qualified subset has
absolutely no information on the secret. In other words, a nonqualified subset knows only that the secret is chosen from a prespecified set (which we assume is public knowledge), and they cannot compute any further information regarding the value of the secret.

Definition 2.2
An access structure Γ is the set of all subsets of \mathcal{P} that can recover the secret.

Definition 2.3

The collection of subsets of participants that cannot reconstruct the secret is called prohibited access structure or simply prohibited structure and is usually denoted by Δ.

Definition 2.4
Let \mathcal{P} be a set of participants and $2^{\mathcal{P}}$ denotes the collection of all subsets of \mathcal{P}. A monotone access structure Γ on \mathcal{P} is a subset $\Gamma \subseteq 2^{\mathcal{P}}$, such that,

$$
A \in \Gamma, A \subseteq B \subseteq \mathcal{P} \Rightarrow B \in \Gamma
$$

i.e, if an access structure is monotone, then, any superset of an authorized subset must be authorized.

Definition 2.5
Let \mathcal{P} be a set of participants and let $\mathcal{A} \subseteq 2^{\mathcal{P}}$. The closure of \mathcal{A}, denoted by $\operatorname{cl}(\mathcal{A})$, is the set

$$
\operatorname{cl}(\mathcal{A})=\{C \mid \exists B \in \mathcal{A} \text { such that } B \subseteq C \subseteq \mathcal{P}\} .
$$

That is, the closure of an access structure Γ is the smallest monotone access structure containing Γ.

For a monotone access structure Γ, we have, $\Gamma=c l(\Gamma)$. Suppose Γ is an access structure on \mathcal{P}. Then $B \in \Gamma$ is a minimal authorized subset, if $A \notin \Gamma$ whenever $A \subset B$. The set of minimal authorized subsets of Γ is denoted by $\Gamma_{\min }$ and is called the basis of Γ. Similarly, for a prohibited structure Δ on $\mathcal{P}, B \in \Delta$ is a maximal unauthorized subset, if $A \notin \Delta$ whenever $A \supset B$. It is easy to see that, for every monotone access structure, there is a corresponding set of maximal unauthorized access sets.

We can see that a monotone access structure Γ is completely characterized by the family of its minimal authorized subsets $\Gamma_{m i n}$, via, $\Gamma=c l\left(\Gamma_{\text {min }}\right)$. Hence monotone access structures can be determined by the corresponding family of its minimal authorized subsets.

Obviously, it is hard to imagine a meaningful method of sharing a secret in which the access structure does not possess the monotone property. It is assumed that there is always at least one subset of participants who can reconstruct the secret, i.e., $\Gamma \neq \phi$, and also that every participant belongs to at least one minimal qualified subset.

For sets X and Y and for elements x and y, to avoid overburdening of the notations, we often write x for $\{x\}, x y$ for $\{x, y\}$, and $X Y$ for $X \cup Y$.

Example 2.1

Let \mathcal{P} be $P_{1} P_{2} P_{3} P_{4}$ and $\mathcal{A}=\left\{P_{1} P_{2} P_{3}, P_{1} P_{2} P_{4}, P_{1} P_{3} P_{4}, P_{2} P_{3}\right\}$. The subset \mathcal{A} is not a monotone subset, for both $P_{2} P_{3}$ and $P_{1} P_{2} P_{3} \in \mathcal{A}$, where one is a subset of other.

The closure of $\mathcal{A}, \operatorname{cl}(\mathcal{A})=\left\{P_{1} P_{2} P_{3}, P_{1} P_{2} P_{4}, P_{1} P_{3} P_{4}, P_{1} P_{2} P_{3} P_{4}\right.$, $\left.P_{2} P_{3}, P_{2} P_{3} P_{4}\right\}$ and the set of minimal subsets of \mathcal{A} is, $\mathcal{A}_{\text {min }}=\left\{P_{1} P_{2} P_{4}, P_{1} P_{3} P_{4}, P_{2} P_{3}\right\}$.

Example 2.2

Consider the following monotone access structure on $\mathcal{P}=P_{1} P_{2} P_{3} P_{4}:$

$$
\begin{aligned}
\mathcal{A}= & \left\{P_{1} P_{2}, P_{2} P_{3}, P_{3} P_{4}, P_{1} P_{4}, P_{1} P_{2} P_{3},\right. \\
& \left.P_{1} P_{2} P_{4}, P_{1} P_{3} P_{4}, P_{2} P_{3} P_{4}, P_{1} P_{2} P_{3} P_{4}\right\} .
\end{aligned}
$$

The set of minimal authorized subsets of \mathcal{A} is given by $\mathcal{A}_{\text {min }}=\left\{P_{1} P_{2}, P_{2} P_{3}, P_{3} P_{4}, P_{1} P_{4}\right\}$ and the corresponding maximal unauthorized access sets are $P_{1} P_{3}$ and $P_{2} P_{4}$.

Definition 2.6
16
A Secret Sharing Scheme is called ideal, if the size of the shares is less than or equal to the size of the secret.

Definition 2.7

A Secret Sharing Scheme is called perfect, if, no information about the secret is obtained on pooling of shares of any unauthorized set of participants.

2.2 Evolution of the schemes

In the initial stages of work on secret sharing, Blakley [9] and Shamir [53] considered only schemes with a (k, n)-threshold access structure. Benaloh showed an interactive verifiable (k, n) threshold secret sharing scheme which is zero knowledge [6]. In [61], D. R. Stinson and S. A. Vanstone introduced the anonymous threshold scheme. Informally, in an anonymous secret sharing scheme, the secret is reconstructed without the knowledge of, which participants hold which shares. In such schemes the computation of the secret can be carried out by giving the shares to a black box that does not know the identities of the participants holding those shares. The authors proved a lower bound on the size of the shares for anonymous threshold schemes and provided optimal schemes for certain classes of threshold structures by using a combinatorial characterization of optimal schemes. Further results can be found in [51] and in [26].

Phillips and Phillips [49] considered a different model for anonymous secret sharing schemes. In their model, different participants are allowed to receive the same shares. They proved the interesting result that a strongly ideal scheme for an access structure Γ on n participants can be realized, if and only if, Γ is either a $(1, n)$-threshold structure, a (n, n)-threshold structure, or the closure of the edge set of a complete bipartite graph. Further
results on this type of anonymous secret sharing schemes can be found in [16].

Non-anonymous secret sharing schemes for graph access structures have been extensively studied in several papers, such as [18] [19] [22] [15] [14] [59] [60].

Further works considered the problem of finding secret sharing schemes for more general access structures. D. R. Stinson [58] gives a comprehensive introduction to this topic.

Secret Sharing schemes based on Chinese Remainder Theorem was introduced by Mignotte [47]. Asmuth and Bloom [1] implemented a (k, n) threshold scheme based on Chinese Remainder Theorem in 1983.

A black-box secret sharing scheme for the threshold access structure is one which works over any finite Abelian group. G. Bertilsson and I. Ingemarsson [8] describes a construction method of practical secret sharing schemes using Linear Block Codes.

A more general approach has been considered by Karnin, Greene and Hellman [39], who invented the analysis (limited to threshold scheme) of secret sharing schemes when arbitrary probability distributions are involved.

Some other general techniques handling arbitrary access struc-
tures are given by Simmons, Jackson, and Martin [45] [56] and also suggested by Kothari [41].

In [17], Brickell introduced the vector space construction which provides secret sharing schemes for a wide family of access structures. In [58], Stinson proved that threshold schemes are vector space access structures.

During 1987 Ito, Saito, and Nishizeki [36] described a generalized method of secret sharing scheme whereby a secret can be divided among a set \mathcal{P} of trustees such that any qualified subset of \mathcal{P} can reconstruct the secret and unqualified subsets cannot. They have described a secret sharing scheme, for a generalized monotone access structure.

While in threshold schemes proposed by Blakley [9] and Shamir [53] and in the vector space schemes given by Brickell [17] the shares have the same size as the secret, in the schemes constructed by M. Ito, A. Saito, and T. Nishizeki [36] for general access structures, the shares are, in general, much larger than the secret.

An important issue in the implementation of secret sharing schemes is the size of shares, since the security of a system degrades as the amount of the information that must be kept secret increases. J. C. Benaloh and J. Leichter, proved that there exists an access structure (namely the path of length three) for
which any secret sharing scheme must give to some participant a share which is from a domain larger than that of the secret.

Subsequently, Benaloh and Leichter [5] gave a simpler and more efficient way to realize such schemes. They also proved that no threshold scheme is sufficient to realize secret sharing on general monotone access structures. In support of their claim, they have shown that there is no threshold scheme such that the access structure $((A \vee B) \wedge(C \vee D))$ can be achieved. [see Example 2.3.]

In [6], Benaloh describes a homomorphism property that is present in many threshold schemes which allows shares of multiple secrets to be combined to form "composite shares" which are shares of a composition of the secrets. This property, makes the entity best suitable in implementing the cases in which, one requires high confidentiality, such as e-voting. While casting the vote, each voter will take the role of dealer, and the votes casted will be recorded in terms of shares given to each contesting candidate. Because of the homomorphism property, (i.e., $h(a b)=h(a) . h(b)$,) one can combine shares, and compute the votes scored by each contesting candidate.

Capocelli, De Santis, Gargano and Vaccaro [22] proved that, there exist access structures for which the best achievable information rate (i.e., the ratio between the size of the secret and that of the largest share) is bounded away from 1. An ideal
secret sharing scheme is a scheme in which the size of the shares given to each participant is equal to the size of the secret. Brickell and Davenport [18] showed a correspondence between ideal secret sharing schemes and matroids (see also [38]).The uniqueness of the associated matroid is established by Martin in [44]. Beimel and Chor [4] investigate the access structures for which an ideal scheme can be constructed for every possible size of the set of secrets.

The following are some "extended capabilities" of secret sharing schemes that have been studied.

- The idea of protecting against cheating by one or more participants is addressed in [46], [62], [50], [54], [20], [23]. The problem of identifying the cheater is solved by Tompa and Woll [62]. In a sense, it is an improvement on the works of Shamir [53]. A cheater might tamper with the content of a share and make the share unusable for combining, to retrieve the secret.
- Prepositioned schemes are studied in [55].
- Threshold schemes that permit disenrollment of participants are investigated and redistributing secret shares to new access structures has been considered in [10].
- Secret sharing schemes in which the dealer has the feature of being able (after a preprocessing stage) to activate a
particular access structure out of a given set and/or to allow the participants to reconstruct different secrets (in different time instants) by sending to all participants the same broadcast message have been analyzed in [13].
- Schemes for sharing several non-independent secrets simultaneously have been analyzed in [14].
- Schemes where different secrets are associated with different subsets of participants are considered in [37].
- The question of how to set up a secret sharing scheme in the absence of a trusted party is solved in [35].

De Santis, Desmedt, Frankel, and Yung [31] introduced the notion of threshold sharing for functions and they described how to share a key to a cryptographically secure function f in such a way that:

- Any k shareholders can collectively compute f.
- Even after taking part in the computation of f on some inputs, no set of up to $k-1$ shareholders can compute f on other inputs.
B. Chor and E. Kushilevitz [27] investigated secret sharing systems on infinite domain with finite access structures.

1994, Naor and Shamir [48] described a new (k, n) visual cryptographic scheme using black and white images, where the dealer distributes a secret into n participants. In this scheme, a shared secret information (printed text, handwritten notes, pictures, etc.) can be revealed without any cryptographic computations. For example, in a (k, n) visual cryptography scheme, a dealer encodes a secret into n shares and gives each participant a share, where each share is a transparency. The secret is visible if any k (or more) of participants stack their transparencies together (in an arbitrary order), but none can see the shared secret if fewer than k transparencies are stacked together. It is clear that the visual secret sharing scheme needs no computation in decryption. This property distinguishes the visual secret sharing schemes from ordinary secret sharing schemes. In [3], G. Ateniese, C. Blundo, A. D. Santis, and D. R Stinson gave a construction method to extend the (k, n) visual cryptography scheme to a general access structure which is specified by qualified sets and forbidden sets. The qualified set is a subset of n participants that can decrypt the secret image while a forbidden set is a subset of participants that can gain no information of the secret image. A more detailed discussion about visual cryptographic scheme with examples are given in the first part of chapter 3.

Until the year 1997, although the transparencies could be stacked to recover the secret image without any computation, the revealed secret images (as in [2] [3] [32] [48]) were all black
and white. In [63], Verheul and Van Tilborg used the concept of arcs to construct a colored visual cryptography scheme, where users could share colored secret images. The key concept for a c-colorful visual cryptography scheme is to transform one pixel to b sub-pixels, and each sub-pixel is divided into c color regions. In each sub-pixel, there is exactly one color region colored, and all the other color regions are black. The color of one pixel depends on the interrelations between the stacked sub-pixels. For example, if we want to encrypt a pixel of color c_{i}, we color region i with color c_{i} on all sub-pixels. If all sub-pixels are colored in the same way, one sees color c_{i}, when looking at this pixel; otherwise one sees black.

A major disadvantage of this scheme is that the number of colors and the number of sub-pixels determine the resolution of the revealed secret image. If the number of colors is large, coloring the sub-pixels will become a very difficult task, even though we can use a special image editing package to color these sub-pixels. How to stack these transparencies correctly and precisely by human beings is also a difficult problem. Another problem is that when the number of sub-pixels is b, the loss in resolution from the original secret image to the revealed image becomes b.

In [34], Hwang proposed a new visual cryptography scheme which improved the visual effect of the shares (the shares in their scheme were significant images, while those in the previous
scheme were meaningless images). Hwang's scheme is very useful when we need to manage a lot of transparencies; nevertheless, it can only be used in black and white images. For this reason, Chang, Tsai and Chen [24] proposed a new secret color image sharing scheme based on modified visual cryptography.

In that scheme, through a predefined Color Index Table (CIT) and a few computations they can decode the secret image precisely. Using the concept of modified visual cryptography, the recovered secret image has the same resolution as the original secret image in their scheme. However, the number of subpixels in their scheme is also proportional to the number of colors appearing in the secret image; i.e., the more colors the secret image has, the larger the shares will become. Another disadvantage is that additional space is needed to store the Color Index Table (CIT). In [25], Chang proposed a scheme wherein the size of the share is fixed and independent of the number of colors appearing in the secret image. Further, the pixel expansion was only 9 , which was the least amongst the previously proposed methods. But this algorithm is applicable only for (n, n) schemes. In paper [29], Tsai gives the concept of the sharing of the multiple secrets in the digital image.

2.3 General Secret Sharing Schemes

There are situations which require more complex access structures than the threshold ones. Shamir [53] discussed the case of sharing a secret between the executives of a company such that the secret can be recovered by any three executives, or by any executive and any vice-president, or by the president alone. This is an example of the so-called hierarchical secret sharing schemes. The Shamir's solution for this case is based on an ordinary ($3, n$) - threshold secret sharing scheme. Thus, the president receives three shares, each vice-president receives two shares and, finally, every simple executive receives a single share.

The above idea leads to the so-called weighted (or multiple shares based) threshold secret sharing schemes. Benaloh and Leichter have proven in [5] that, there are access structures that cannot be realized using such schemes. We present next their example that proves this.

Example 2.3

Consider the access structure \mathcal{A} defined by the formula $\mathcal{A}_{\text {min }}=$ $\{A B, C D\}$, and assume that a threshold scheme is to be used to divide a secret values among A, B, C, and D such that only those subsets of A, B, C, D which are in \mathcal{A} can reconstruct s.

Let a, b, c, and d respectively denote the weight (number of shares) held by each of A, B, C, and D. Since A together with B
can compute the secret, it must be the case that $a+b \geq t$ where t is the value of the threshold. Similarly, since C and D can together compute the secret, it is also true that $c+d \geq t$. Now assume without loss of generality that $a \geq b$ and $c \geq d$. (If this is not the case, the variables can be renamed.) Since $a+b \geq t$ and $a \geq b, a+a \geq a+b \geq t$. So $a \geq t / 2$. Similarly, $c \geq t / 2$. Therefore, $a+c \geq t$. Thus, A together with C can reconstruct the secret value s. This violates the assumption of the access structure.

2.4 Applications

Most of the business organizations need to protect data from disclosure. As the world is more connected by computers, the hackers, power abusers have also increased, and most organizations are afraid to store data in a computer. So there is a need of a method to distribute the data at several places and destroy the original one. When a need of original data arises, it could be reconstructed from the distributed shares. Initially, when it was introduced, its goal was to present its customers a secure information storage media. Secret Sharing can provide confidentiality of the data base. For example, e-voting can be effectively implemented by secret sharing technique. It can ensure confidentiality. It aims to achieve the two somewhat divergent goals of data secrecy and data availability. If availability were the only goal, then simple duplication of the full data among n
places would prevent the loss of data upto $n-1$ places from erasing the secret. However, this would increase the threats also. Capturing any one place could disclose the secret to an adversary. If secrecy were the only goal, then solutions might include splitting the data into n pieces and storing each piece at each of the n places. This would require all n places accessible to get the secret. However, the destruction or alteration of any one piece would erase the distributed information. It ensures secrecy in the face of adversaries and yet achieves data integrity and availability with the cooperation of its shareholders. General concept of secret sharing is that, it doesn't want information to be centralized at one point. For example, in the preparation of plastic cards, such as ATM cards, it can provide good security. Presently, a vide range of its applications have been identified.

We present next the most important general secret sharing techniques.

2.5 Ito-Saito-Nishizeki Scheme

Ito, Saito, and Nishizeki [36] have introduced the so-called cumulative array technique for monotone access structures.

Definition 2.8
Let \mathcal{A} be a monotone authorized access structure of size n and let B_{1}, \ldots, B_{m} be the corresponding maximal unauthorized access
sets. The cumulative array f or the access structure \mathcal{A}, denoted
$4 \quad$ for all $1 \leq i \leq n$, and $1 \leq j \leq n$.

Let us consider now an arbitrary (m, m)-threshold secret sharing scheme with the secret S and the corresponding shares s_{1}, \ldots, s_{m}. In the \mathcal{A}-secret sharing scheme, the shares I_{1}, \ldots, I_{n} by $\mathcal{C}^{\mathcal{A}}$, is the $n \times m$ matrix, $\left(\mathcal{C}_{i, j}^{\mathcal{A}}\right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$, where,

$$
\mathcal{C}_{i, j}^{\mathcal{A}}= \begin{cases}0, & \text { if } i \in B_{j} \\ 1, & \text { if } i \notin B_{j}\end{cases}
$$ corresponding to the secret S will be defined as

$$
I_{i}=\left\{s_{j} \mid \mathcal{C}_{i, j}^{\mathcal{A}}=1\right\}
$$

for all $1 \leq i \leq n$.

Example 2.4

Let $n=4$ and $\mathcal{A}_{\text {min }}=\{\{1,2\},\{3,4\}\}$. In this case, we obtain that $\overline{\mathcal{A}}_{\text {max }}=\{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$ and $m=4$.

The cumulative array for the access structure \mathcal{A} is,

$$
\mathcal{C}^{\mathcal{A}}=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

In this case, $I_{1}=\left\{s_{3}, s_{4}\right\}, I_{2}=\left\{s_{1}, s_{2}\right\}, I_{3}=\left\{s_{2}, s_{4}\right\}$ and $I_{4}=\left\{s_{1}, s_{3}\right\}$, where $s_{1}, s_{2}, s_{3}, s_{4}$ are the shares of a (4, 4)threshold secret sharing scheme with the secret S.

2.6 Benaloh-Leichter Scheme

Benaloh and Leichter [5] have represented the access structures using formulae. More exactly, for a monotone authorized access structure \mathcal{A} of size n, they defined the set $\mathcal{F}_{\mathcal{A}}$ as the set of formulae on a set of variables $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that for every $\mathcal{F} \in \mathcal{F}_{\mathcal{A}}$, the interpretation of \mathcal{F} with respect to an assignation of the variables is true if and only if the true variables correspond to a set $A \in \mathcal{A}$. They have remarked that such formulae can be used as templates for describing how a secret can be shared with respect to the given access structure. Because the formulae can be expressed using only \wedge operators and \vee operators, it is sufficient to indicate how to "split" the secret across these operators.

Thus, we can inductively define the shares of a secret S with respect to a formulae \mathcal{F} as follows:

$$
\operatorname{Shares}(S, F)= \begin{cases}(S, i), & \text { if } F=v_{i}, 1 \leq i \leq n ; \\ \bigcup_{i=1}^{k} \operatorname{Shares}\left(S, F_{i}\right), & \text { if } F=F_{1} \vee \cdots \vee F_{k} ; \\ \bigcup_{i=1}^{k} \operatorname{Shares}\left(s_{i}, F_{i}\right), & \text { if } F=F_{1} \wedge \cdots \wedge F_{k},\end{cases}
$$

where, for the case $F=F_{1} \wedge F_{2} \wedge \cdots \wedge F_{k}$, we can use any (k, k)-threshold secret sharing scheme for deriving some shares s_{1}, \ldots, s_{k} corresponding to the secret S and, finally, the shares as $I_{i}=\{s \mid(s, i) \in \operatorname{Shares}(S, F)\}$, for all $1 \leq i \leq n$, where, F is an arbitrary formula in the set $\mathcal{F}_{\mathcal{A}}$.

Example 2.5

Let $n=3$ and an authorized access structure \mathcal{A} given by
$\mathcal{A}_{\text {min }}=\{\{1,2\},\{2,3\}\}$. For example, the formula $F=\left(v_{1} \wedge v_{2}\right) \vee$ $\left(v_{2} \wedge v_{3}\right)$ is in the set $\mathcal{F}_{\mathcal{A}}$. In this case, Shares (S, F), for some secret S, can be obtained as

$$
\begin{aligned}
\operatorname{Shares}(S, F)= & \operatorname{Shares}\left(S, v_{1} \wedge v_{2}\right) \cup \operatorname{Shares}\left(S, v_{2} \wedge v_{3}\right) \\
= & \operatorname{Shares}\left(s_{1}, v_{1}\right) \cup \operatorname{Shares}\left(s_{2,1}, v_{2}\right) \cup \\
& \operatorname{Shares}\left(s_{2,2}, v_{2}\right) \cup \operatorname{Shares}\left(s_{3}, v_{3}\right) \\
= & \left\{\left(s_{1}, 1\right),\left(s_{2,1}, 2\right),\left(s_{2,2}, 2\right),\left(s_{3}, 3\right)\right\},
\end{aligned}
$$

where, $s_{1}, s_{2,1}$ and respectively, $s_{2,2}, s_{3}$ are shares of the secret S with respect to two arbitrary (2, 2)-threshold secret schemes. Thus, the shares corresponding to the secret S with respect to the access structure \mathcal{A} are

$$
I_{1}=\left\{s_{1}\right\}, I_{2}=\left\{s_{2,1}, s_{2,2}\right\} \text { and } I_{3}=\left\{s_{3}\right\} .
$$

Example 2.6

Consider the access structure $\Gamma_{\text {min }}=\left\{P_{1} P_{2} P_{3}, P_{1} P_{4}\right\}$. Let the secret $s \in G F\left(2^{r}\right)$.

A secret sharing scheme for $\Gamma_{\text {min }}$ can be realized in the following way:

Randomly choose $x, y \in G F\left(2^{r}\right)$.
Compute z such that $s=(x+y+z)\left(\bmod 2^{r}\right)$.
Let $a_{1}=x ; a_{2}=y ; a_{3}=z$ and $a_{4}=y+z\left(\bmod 2^{r}\right)$.

Example 2.7

Consider the access structure $\Gamma_{\text {min }}=\left\{P_{1} P_{2} P_{3}, P_{1} P_{2} P_{4}\right\}$.
Let $s \in G F\left(2^{r}\right)$.

A secret sharing scheme for $\Gamma_{\text {min }}$ can be realized in the following way:
Randomly choose $x, y \in G F\left(2^{r}\right)$.
Compute z such that $s=(x+y+z)\left(\bmod 2^{r}\right)$.
Let $a_{1}=x ; a_{2}=y ; a_{3}=z$ and $a_{4}=z$.

Example 2.8

Consider the access structure $\Gamma_{\text {min }}=\left\{P_{1} P_{2} P_{4}, P_{1} P_{3} P_{4}, P_{2} P_{3}\right\}$.
Let $s \in G F\left(2^{r}\right)$.

A secret sharing scheme for $\Gamma_{\text {min }}$ can be realized in the following way:
Randomly choose $x, y \in G F\left(2^{r}\right)$.
Let $a_{1}=x ; a_{2}=s+y ; a_{3}=s-y$ and $a_{4}=y-x$.

Remark 2.1

A share I_{i} may contain many sub-shares, one sub-share for every minimal access set to which i belongs. Thus, an ordering of these sub-shares is required in order to select the correct sub-share corresponding to a certain access set in the reconstruction phase.

Remark 2.2

They also proposed using general threshold ${ }_{k, m}{ }^{1}$ operators in order

[^0]$$
\bigvee_{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq i_{k}}\left(\bigwedge_{j=1}^{k} F_{i_{j}}\right)
$$

Thus, $F_{1} \vee F_{2} \vee \ldots F_{m}=$ threshold $_{1, m}\left(F_{1}, \ldots, F_{m}\right)$ and

$$
F_{1} \wedge F_{2} \wedge \ldots F_{m}=\text { threshold }_{m, m}\left(F_{1}, \ldots, F_{m}\right)
$$

to construct smaller formulae, reducing in this way the size of the shares. In this case, the definition of Shares (S, F) can be extended for these operators as follows:

$$
\operatorname{Shares}(S, F)=\cup_{i=1}^{m} \operatorname{Shares}\left(s_{i}, F_{i}\right),
$$

if $F=$ threshold $_{k, m}\left(F_{1}, \ldots, F_{m}\right)$, where s_{1}, \ldots, s_{m} are the shares corresponding to the secret S with respect to an arbitrary (k, m)threshold secret sharing scheme.

Example 2.9

Let $n=4$ and a monotone authorized access structure \mathcal{A} given by $\mathcal{A}_{\text {min }}=\{\{2,3\},\{1,2,4\},\{1,3,4\}\}$. For example, the formula $F=\left(v_{2} \wedge v_{3}\right) \vee\left(v_{1} \wedge v_{2} \wedge v_{4}\right) \vee\left(v_{1} \wedge v_{3} \wedge v_{4}\right)$ is in the set $\mathcal{F}_{\mathcal{A}}$. Using the threshold operator, we can obtain a shorter formula, namely, $\left(v_{2} \wedge v_{3}\right) \vee$ threshold $_{3,4}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$.

Example 2.10

Consider the access structure $\Gamma_{\text {min }}=\left\{P_{1} P_{3} P_{4}, P_{1} P_{2}, P_{2} P_{3}\right\}$.
Let $s \in G F\left(2^{r}\right)$.

A secret sharing scheme for $\Gamma_{\text {min }}$ can be realized in the following way: Construct a $(3,4)$ threshold scheme for the secret s and let y_{1}, \ldots, y_{4} be the shares of this threshold scheme.
Let $a_{1}=y_{1} ; a_{2}=y_{2}, y_{4} ; a_{3}=y_{3}$ and $a_{4}=y_{4}$.

Example 2.11

Consider the access structure $\Gamma_{\text {min }}=\left\{P_{1} P_{3} P_{4}, P_{1} P_{2}, P_{2} P_{3}, P_{2} P_{4}\right\}$.
Let $s \in G F\left(2^{r}\right)$.

A secret sharing scheme for $\Gamma_{\text {min }}$ can be realized in the following way:

Construct a $(3,5)$ threshold scheme for the secret s and let y_{1}, \ldots, y_{5} be the shares of this threshold scheme.
Let $a_{1}=y_{1} ; a_{2}=y_{2}, y_{5} ; a_{3}=y_{3}$ and $a_{4}=y_{4}$.
Example 2.12
Consider the access structure $\Gamma_{\text {min }}=\left\{P_{1} P_{2} P_{3}, P_{1} P_{2} P_{4}, P_{1} P_{3} P_{4}\right\}$. Let $s \in G F\left(2^{r}\right)$.

A secret sharing scheme for $\Gamma_{\text {min }}$ can be realized in the following way:

Randomly choose $x \in G F\left(2^{r}\right)$. Compute y such that $s=(x+y)$ $\left(\bmod 2^{r}\right)$. Construct a $(2,3)$ threshold scheme for the secret y and let $y_{1}, y_{2} a n d y_{3}$ be the shares of this threshold scheme.

Let $a_{1}=x ; a_{2}=y_{1} ; a_{3}=y_{2}$ and $a_{4}=y_{3}$.

Example 2.13

Consider the access structure given by $\Gamma_{\min }=\left\{P_{1} P_{2}, P_{2} P_{3}\right.$, $\left.P_{3} P_{4}, P_{4} P_{5}, P_{5} P_{6}, P_{6} P_{7}, P_{7} P_{8}, P_{8} P_{1}\right\}$. Let $s \in\{0,1\}$.

Let the four distinct numbers $a, b, c, d \in B=\{0,1,2,3\}$. Let \mathcal{C}_{0} consists of all the 24 column matrices: [a abbccdd] and let \mathcal{C}_{1} consists of all the 24 column matrices: [abbccdda].
To share $s=0$, the dealer randomly chooses one of the matrices in C_{0}, and to share $s=1$, the dealer randomly chooses one of the matrices in C_{1}. The rows of chosen matrix defines shares given
to each one of the 8 participants.

Let $A=\left\{P_{1} P_{2}, P_{3} P_{4}, P_{5} P_{6}, P_{7} P_{8}\right\}$, and $B=\left\{P_{2} P_{3}, P_{4} P_{5}, P_{6} P_{7}, P_{8} P_{1}\right\}$. In this example, at the reconstruction stage, if $P_{i} P_{j} \in A$ and the value of the shares of P_{i} and that of P_{j} are equal or if $P_{i} P_{j} \in B$, and the value of the shares of P_{i} and that of P_{j} are not equal, the secret $s=0$; otherwise secret $s=1$.

2.7 Concluding remarks

In this chapter, the different research findings were analyzed and the efficiency aa well as the level of difficulty were brought out. Also discussed were, various examples to illustrate the secret sharing schemes in general.

Chapter 3

Visual Cryptography

3.1 Introduction

1994, Naor and Shamir [48] described a new (k, n) visual cryptographic scheme using black and white images, where the dealer encodes a secret into n participants. In this scheme, a shared secret information (printed text, handwritten notes, pictures, etc.) can be revealed without any cryptographic computations. For example, in a (k, n) visual cryptography scheme, a dealer encodes a secret into n shares and gives each participant a share, where each share is a transparency. The secret is visible if any k (or more) of participants stack their transparencies together, but none can see the shared secret if fewer than k transparencies are stacked together. By identifying that the result of stacking the transparencies are the same as BooleanOR operation denoted by \vee on the binary digits involved, it
is possible to extend the Visual Cryptography schemes to any binary string. For example, the following scheme describes how one could implement Visual cryptography scheme for a single binary digit. In order to share a binary string, each binary digit in it could be shared independently, one after the other using the same scheme.

Example 3.1

Let the secret, s, $\in\{0,1\}$. The $(2,7)-$ visual secret sharing problem can be solved as follows:

$$
\text { Let } A=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Let \mathcal{C}_{0} be the set of all the matrices obtained by permuting the columns of A, and \mathcal{C}_{1} be the set of all the matrices obtained by permuting the columns of B

To share a bit, $s=0$ or 1 , the dealer randomly chooses one of the matrix $\in \mathcal{C}_{s}$. Each rows of chosen matrix defines shares to be given to each one of the 7 participants.

A single share in either \mathcal{C}_{0} or \mathcal{C}_{1} is a random choice of three $1 s$ and four 0s, and so they are equally likely. So by having only one share, one cannot identify whether it is from \mathcal{C}_{0} or from \mathcal{C}_{1}. On the other hand, if we combine (i.e., "OR") any two shares, we get a binary string of length 7 , consists of all 0 s, or four 1 s and three $0 s$ depending on whether the shares belong to \mathcal{C}_{0} or \mathcal{C}_{1}. In this scheme, the size of one share is 7 bits. So a bit is expanded to 7 times.

Since each binary digit in the secret is shared by choosing a matrix independently, there is no information to be gained by looking at any group of binary digits on a share, either. This demonstrates the security of the scheme.

Remark 3.1

For implementing the visual cryptographic scheme as above, one does not have to generate the entire collection of matrices such as \mathcal{C}_{0} and \mathcal{C}_{1}. One could simply generate two matrices A and B and store them. During the process of sharing individual bits, depending on the value of s, choose the matrix A or B, generate a random permutation, μ, of $\{1,2, \ldots, m\}$, where, m is the number of columns in it; and permute the rows of the chosen matrix with respect to μ. The rows of the resulting matrices may be regarded as shares, and be distributed to the various participants.

3.2 Division of the pixel

In this section, we shall review the basic visual cryptography scheme proposed by Naor and Shamir. Here a secret black and white image is divided into two grey images. In order to share a secret black and white image, the concept of their scheme is to transform one pixel into two sub-pixels and divide each sub-pixel two color regions. The sub-pixels are half white and half black (can be called grey).

(a)

(b)

(c)

(d)

Figure 3.1: Different types of pixels along with the representation.
(a) White pixel
(b) Black pixel
(c) LB pixel
(d) RB pixel

For example, Figure 3.1 represents four different type of pixels. The first is a white pixel, the next is a black pixel, and the last two are grey pixels. Note that in the grey pixels, the black and white portions are different. Let us call these pixels as LB and RB pixels respectively. We represent a white pixel by 00 , black by 11 , LB-pixel by 10 and RB-pixel by 01 . They can be thought of as modified version of pixels to be used in shares.

3.3 Superposition of pixels

If we stack two LB pixels (or two RB pixels) we get nothing new, where as, if we stack an LB pixel and an RB pixel, we get a black pixel. This can be shown as in Figure 3.2. We can see that by the representation used for pixels, the superposition of two pixels can be thought of as if a binary "OR" operation.

Figure 3.2: Superposition of two grey pixels.

3.4 Dealing of a B/W Image

3.4.1 Algorithm to share a pixel into two shares

The following algorithm specifies how to encode a single pixel into two shares:

Algorithm 3.1 (Share a single pixel into two shares) Input: A pixel P, which is either Black or White Output : Two sub-pixels s_{1} and s_{2}.

Step 1. Let $x \in\{H, T\}$ be the outcome of a coin toss

$$
\begin{array}{lrl}
\text { if }(P=\text { white }) & & \\
& \text { if }(x=H) & r
\end{array}=1
$$

Step 2. Then the pixel P is encrypted as two sub-pixels in each of the two shares, as determined by the $r^{\text {th }}$ row in the figure 3.3.

Naor and Shamir devised the following scheme, illustrated in Figure 3.3 below.

Every pixel is encrypted using algorithm 3.1. Suppose we look at a pixel P in the first share. One of the two sub-pixels in P is black and the other is white. Moreover, each of the two possibilities "black-white" and "white-black" is equally likely to occur, independent of whether the corresponding pixel in the secret image is black or white. Thus the first share gives no clue as to whether the pixel is black or white. The same argument applies to the second share. Since all the pixels in the secret image were encrypted using independent random coin flips, there

Figure 3.3: Superposition of two grey pixels.
is no information to be gained by looking at any group of pixels on a share, either. This demonstrates the security of the scheme.

Now let us consider what happens when we superimpose the two shares (here we refer to the last column of the figure 3.3. Consider one pixel P in the image. If P is black, we get two black sub-pixels when we superimpose the two shares; if P is white, we get one black sub-pixel and one white sub-pixel when we superimpose the two shares. Thus, we could say that the reconstructed pixel (consisting of two sub-pixels) has a grey level
of 2 , if P is black, and a grey level of 1 , if P is white. There will be a 50% loss of contrast in the reconstructed image, but it should still be visible. In this case, each pixel is divided into two sub-pixels.

Definition 3.1

6 The ratio of the size of the share to the size of the secret is called the blowing factor.

Since the result of stacking of pixels can be completely determined by the binary "OR" operation, the visual cryptography scheme could also be implemented to any binary strings of 0 s and 1 s . This method could be extended to any number of participants. When more number of participants are involved, the pixels should be divided into more parts. For example, Noar and Shamir [48] described how to solve the $(2, n)$ visual secret sharing. We present next their solution.

3.4.2 Shamir's solutions for small k and n

$$
\text { Let } A=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
\cdots & \cdots & & & \\
1 & 0 & 0 & \cdots & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & & \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

The $(2, n)$ visual secret sharing problem can be solved by the following collections of $n \times n$ matrices:
$\mathcal{C}_{0}=\{$ all the matrices obtained by permuting the columns of $A\}$
and $\mathcal{C}_{1}=\{$ all the matrices obtained by permuting the columns of $B\}$

Any single share in either \mathcal{C}_{0} or \mathcal{C}_{1} is a random choice of one black and $n-1$ white sub-pixels. To share a pixel $P \in\{0,1\}$, randomly choose one of the matrix from \mathcal{C}_{P}. Then the pixel P is shared with the n participants, by giving each row of the chosen matrix to each participant. If we superimpose any two shares of a white pixel, will have one black and $n-1$ white sub-pixels, whereas any two shares of a black pixel, will have two black and $n-2$ white sub-pixels, which looks darker. So the shared secret bit is recovered. The visual difference between the two cases becomes clearer as we stack additional transparencies.

The blowing factor of this $(2, n)$ scheme is n. That is, the size of a share is n times larger than the size of the secret. It can be shown that the blowing factor can be made smaller. In example 3.2 , we present a $(2,9)$ visual secret sharing, in which, the blowing factor is 6 . In Chapter 5 , we present a better scheme to achieve the same, in which the blowing factor is of $O\left(\log _{2} n\right)$.

Example 3.2

$$
\text { Let } A=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

3.5 A general scheme for (k, k) Visual cryptography

We now describe a general construction which can solve any (k, k) visual secret sharing problem, having a blowing factor 2^{k-1}.

Let e_{i} be a column vector consisting of $i 1 \mathrm{~s}$ and $k-i 0 \mathrm{~s}$. The length of e_{i} is k, and so there are $\binom{k}{i}$ such vectors.
Let B_{i} be the exhaustive collection of all e_{i} 's. B_{i} can be thought of as a matrix of order $k \times\binom{ k}{i}$.

$$
\text { Let } R=B_{i}^{(1)} \vee B_{i}^{(2)} \vee B_{i}^{(3)} \vee \ldots \vee B_{i}^{(r)}
$$

where, $B_{i}^{(1)}, B_{i}^{(2)}, B_{i}^{(3)}, \ldots B_{i}^{(r)}$, are any r distinct rows from B_{i}.
Let $n_{0}(R)$ and $n_{1}(R)$ denote the number of 0 s and 1 s , respectively, in R.

Consider a particular bit in R. It can be 0 , if and only if, all the selected $B_{i}^{(j)}$, s have the corresponding bit 0 . In other words, since any column contains exactly $i 1 \mathrm{~s}$, the unselected $k-r$ rows collectively must have all the i s in the respective column. Hence $n_{0}(R)=\binom{k-r}{i}$. Since the length of $R=\binom{k}{i}$, the number $\quad 8$ of 1 s in R is given by the following formula:

$$
\begin{equation*}
n_{1}(R)=\binom{k}{i}-\binom{k-r}{i} . \tag{3.1}
\end{equation*}
$$

Lemma 3.1

Let k be a non negative integer. Then, if $k \neq 0$,

$$
\begin{equation*}
\sum_{\substack{i=0, i \text { iseven }}}^{k}\binom{k}{i}=\sum_{\substack{i=0, i \text { is odd }}}^{k}\binom{k}{i}=2^{k-1}, \tag{3.2}
\end{equation*}
$$

and if $k=0$,

$$
\begin{equation*}
\sum_{\substack{i=0, \\ \text { iseven }}}^{k}\binom{k}{i}=1, \text { and } \sum_{\substack{i=0, i \text { is odd }}}^{k}\binom{k}{i}=0 . \tag{3.3}
\end{equation*}
$$

Proof: The case when $n=0$, can be verified.
So, consider the case when $n \neq 0$. From the equation

$$
\begin{equation*}
\sum_{i=0}^{k}(-1)^{i} \cdot\binom{k}{i}=(1-1)^{k}=0 \tag{3.4}
\end{equation*}
$$

separating the negative and nonnegative terms, we get first part

4 So,

$$
\begin{equation*}
\sum_{\substack{i=0, \\ \text { iseven }}}^{k}\binom{k}{i}=\sum_{\substack{i=0,0 \\ i \text { is odd }}}^{k}\binom{k}{i}=2^{k-1} \tag{3.6}
\end{equation*}
$$

Let X denote the matrix obtained by concatenating B_{i} for all nonnegative even integer $i \leq k$, and let Y be the matrix obtained of equation (3.2). Also we have,

$$
\begin{equation*}
2^{k}=(1+1)^{k}=\sum_{i=0}^{k}\binom{k}{i} . \tag{3.5}
\end{equation*}
$$ by concatenating B_{i} for all nonnegative odd integer $i \leq k$.

Now, the number of columns in the matrix X and that of Y are

$$
\sum_{\substack{i=0, i \text { iseven }}}^{k}\binom{k}{i}, \text { and } \sum_{\substack{i=0, i \text { is odd }}}^{k}\binom{k}{i},
$$

respectively, and by lemma 3.1, both equal to 2^{k-1}.
So, both X and Y are the same order, $k \times 2^{k-1}$.

$$
\begin{equation*}
\text { Let } W=X^{(1)} \vee X^{(2)} \vee X^{(3)} \vee \ldots \vee X^{(r)} \text {, } \tag{3.7}
\end{equation*}
$$

where, $X^{(1)}, X^{(2)}, X^{(3)}, \ldots X^{(r)}$, are any r distinct rows from X.

Then, by equation (3.1),

$$
\begin{align*}
n_{1}(W) & =\sum_{i \text { is even }}\left\{\binom{k}{i}-\binom{k-r}{i}\right\} \\
& =\sum_{i \text { is even }}\binom{k}{i}-\sum_{i \text { is even }}\binom{k-r}{i} \\
& = \begin{cases}2^{k-1}-2^{k-r-1}, & \text { if } r \neq k \\
2^{k-1}-1, & \text { if } r=k\end{cases} \\
& = \begin{cases}2^{k-r-1} \cdot\left(2^{r}-1\right), & \text { if } r \neq k \\
2^{k-1}-1, & \text { if } r=k\end{cases} \tag{3.8}
\end{align*}
$$

Similarly, if we take r distinct rows from Y, say, $Y^{(1)}, Y^{(2)}, Y^{(3)}, \ldots, Y^{(r)}$, and if we compute

$$
\begin{equation*}
Z=Y^{(1)} \vee Y^{(2)} \vee Y^{(3)} \vee \ldots \vee Y^{(r)} \tag{3.9}
\end{equation*}
$$

then, the number of 1 s in Z is given by,

$$
\begin{align*}
n_{1}(Z) & =\sum_{i \text { is odd }}\left\{\binom{k}{i}-\binom{k-r}{i}\right\} \\
& =\sum_{i \text { is odd }}\binom{k}{i}-\sum_{i \text { is odd }}\binom{k-r}{i} \\
& = \begin{cases}2^{k-1}-2^{k-r-1}, & \text { if } r \neq k \\
2^{k-1}, & \text { if } r=k\end{cases} \\
& = \begin{cases}2^{k-r-1} \cdot\left(2^{r}-1\right), & \text { if } r \neq k \\
2^{k-1}, & \text { if } r=k\end{cases} \tag{3.10}
\end{align*}
$$

Let \mathcal{C}_{0} be the set of all the matrices obtained by permuting the columns of X Let \mathcal{C}_{1} be the set of all the matrices obtained by permuting the columns of Y

Equation (3.8) and equation (3.10) tells that any $r(<k)$ shares of a secret bit from either \mathcal{C}_{0} or \mathcal{C}_{1} together has a random

collection of $2^{k-r-1} .\left(2^{r}-1\right) 1$ s. Consequently, the analysis of any $r(<k)$ shares makes it impossible to distinguish between \mathcal{C}_{0} and \mathcal{C}_{1}. On the other hand, k shares from \mathcal{C}_{0} results in a collection of
$4 \quad$ single 0 along with $2^{k-1}-11 \mathrm{~s}$, where as k shares from \mathcal{C}_{1} results in a collection of all $1 \mathrm{~s}($ no 0 s$)$.

6 \quad Example 3.3
Let $n=4$. Consider the matrices X and Y obtained by concatenating $\left\{B_{0}, B_{2}, B_{4}\right\}$ and $\left\{B_{1}, B_{3}\right\}$ respectively.

$$
\begin{aligned}
\text { So, } X & =\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
\text { and } Y & =\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Let \mathcal{C}_{0} and \mathcal{C}_{1} be the set of all the matrices obtained by permuting the columns of X and Y respectively.

Any single row from \mathcal{C}_{0} or \mathcal{C}_{1}, contains four $1 s$, any combined (V) pair of rows contains six 1s, any combined triplet of rows contains seven $1 s$, and any combined quadruple of rows contains seven or eight $1 s$ depending on whether the rows were taken from \mathcal{C}_{0} or \mathcal{C}_{1}.

In [48] Naor and Shamir also describes, how to extend a (k, k) scheme to (k, n) scheme for arbitrary $n>k$.

Various schemes have been discovered. But a generalized scheme is not invented so far.

3.6 Concluding remarks

In this chapter, we have seen how the Visual Cryptography
2 schemes are distinguished from traditional secret sharing schemes. We have also seen some examples, to illustrate the benefits of Visual Cryptography.

Chapter 4

Modified Visual Cryptography

4.1 Introduction

We have seen that in the case of visual cryptography schemes, the result of stacking of transparencies, can be completely characterized by the boolean "OR" operation. We know that it favours 1 s to 0 s. i.e., If we "OR" two random bits, the result is more likely towards 1 than 0 . When more random bits are involved, it will be more and more likely that the result is 1 . So, when k increases, the distinguishing threshold for 0 bit and 1 bit will be at a higher level. So, it is natural that as k increases, the blowing factor also increases. This threshold will not effect the security of the system. Its purpose is only to distinguish the two bits from one another. So, if one could reduce the distinguishing threshold,
the blowing factor may decrease. Since "XOR" does not favour either 0 or 1 , it could be a better choice to "OR". This is the difference between traditional Visual Cryptography and Modified Visual Cryptography. This cannot be implemented in the case of images, where as for binary strings it can be done. It is easy to see that, in modified visual cryptography, the blowing factor will never increase, (if not decreased) compared with ordinary visual cryptography.

4.2 A Modified scheme for (k, k) Visual Cryptography

We now describe a general construction which can solve any (k, k) modified visual secret sharing problem, having a blowing factor, one. Let B_{i}, X, and Y be the matrices defined in section 3.5. In Modified Visual Cryptography we perform \oplus instead of \vee. So, let

$$
R=B_{i}^{(1)} \oplus B_{i}^{(2)} \oplus B_{i}^{(3)} \oplus \ldots \oplus B_{i}^{(r)},
$$

where, $B_{i}^{(1)}, B_{i}^{(2)}, B_{i}^{(3)}, \ldots B_{i}^{(r)}$, are any r distinct rows from B_{i}. We claim that,

$$
\begin{equation*}
n_{1}(R)=\sum_{\substack{j \\ j \text { is odd }}}\binom{r}{j}\binom{k-r}{i-j} \tag{4.1}
\end{equation*}
$$

Consider a particular bit in R. It can be 1 , if and only if, there are an odd number of $B_{i}^{(j)}$, having the corresponding bit 1 .

Since any column contains exactly $i 1 \mathrm{~s}$, the unselected $k-r$ rows collectively must have the remaining $(i-j)$ 1s. Since the rows are independent, this is possible in

$$
\sum_{\substack{j=1 \\ j \text { is odd }}}^{r}\binom{r}{j}\binom{k-r}{i-j}
$$

many places. Here, the range of j can be unrestricted, because $\binom{p}{q}=0$, if $p<q$.

So, equation (4.1) is established.

$$
\begin{equation*}
\text { Let } W=X^{(1)} \oplus X^{(2)} \oplus X^{(3)} \oplus \ldots \oplus X^{(r)} \text {, } \tag{4.2}
\end{equation*}
$$

where, $X^{(1)}, X^{(2)}, X^{(3)}, \ldots X^{(r)}$, are any r distinct rows from X. Then, by equation (4.1),

$$
\begin{equation*}
n_{1}(W)=\sum_{\substack{i \\ i \text { is even } j \text { is odd }}} \sum_{\substack{j \\ j}}\binom{r}{j} \cdot\binom{k-r}{i-j} \tag{4.3}
\end{equation*}
$$

Because the right side of this equation evaluates to a finite number, we can interchange the summation, and get,

$$
\begin{equation*}
n_{1}(W)=\sum_{\substack{j \\ j \text { is odd } i \text { is even }}} \sum_{i}\binom{r}{j} \cdot\binom{k-r}{i-j} \tag{4.4}
\end{equation*}
$$

The inner \sum runs on variable i, and so, $\binom{r}{j}$ is constant. So we get,

$$
\begin{equation*}
n_{1}(W)=\sum_{\substack{j \\ j \text { is odd }}}\left[\binom{r}{j} \cdot \sum_{\substack{i \\ i \text { is even }}}\binom{k-r}{i-j}\right] \tag{4.5}
\end{equation*}
$$

Since i is even and j is odd, $i-j$ is odd, and so by a change of variable,

$$
\begin{align*}
& \sum_{\substack{i \\
i \text { is even }}}\binom{k-r}{i-j}= \sum_{\substack{i \\
i \text { is odd } \\
i}}\binom{k-r}{i} \\
&= \begin{cases}2^{k-r-1}, & \text { if } r \neq k \\
0, & \text { if } r=k\end{cases} \tag{4.6}\\
& {[\text { by lemma } 3.1,}
\end{align*}
$$

So,

$$
n_{1}(W)= \begin{cases}2^{k-r-1} \sum_{j \text { is odd }}^{j}\binom{r}{j}, & \text { if } r \neq k \tag{4.7}\\ 0, & \text { if } r=k\end{cases}
$$

Again by lemma 3.1, being $r \neq 0, \sum_{j \text { is odd }}^{j}\binom{r}{j}=2^{r-1}$. So, equation (4.7) becomes,

$$
n_{1}(W)= \begin{cases}2^{k-2}, & \text { if } r \neq k \tag{4.8}\\ 0, & \text { if } r=k\end{cases}
$$

Similarly, if we take r distinct rows from Y, say, $Y^{(1)}, Y^{(2)}, Y^{(3)}, \ldots, Y^{(r)}$, and if we compute

$$
\begin{equation*}
Z=Y^{(1)} \oplus Y^{(2)} \oplus Y^{(3)} \oplus \ldots \oplus Y^{(r)} \tag{4.9}
\end{equation*}
$$

then, the number of 1 s in Z is given by,

$$
\left.\begin{array}{rl}
n_{1}(Z) & =\sum_{\substack{i \\
\text { is odd } j \text { is odd }}} \sum_{\substack{j \\
j}}\binom{r}{j} \cdot\binom{k-r}{i-j} \\
& =\sum_{\substack{j \\
j \text { is odd } i \text { is odd }}} \sum_{r}^{r} \\
j
\end{array}\right) \cdot\binom{k-r}{i-j}
$$

$$
\begin{equation*}
=\sum_{\substack{j \\ j \text { is odd }}}\left[\binom{r}{j} \sum_{i \text { is odd }} \cdot\binom{k-r}{i-j}\right] \tag{4.10}
\end{equation*}
$$

Since both i and j are odd, $i-j$ is even, and so by a change of variable,

$$
\begin{align*}
\sum_{i}^{i}\left(\begin{array}{c}
k-r \\
i \text { is odd } \\
i-j
\end{array}\right)= & \sum_{\substack{i \\
\text { i is even }}}\binom{k-r}{i} \\
= & \begin{cases}2^{k-r-1}, & \text { if } r \neq k \\
1, & \text { if } r=k\end{cases} \tag{4.11}\\
& {[\text { by lemma } 3.1,}
\end{align*}
$$

So, equation (4.10) becomes,

$$
\begin{align*}
n_{1}(Z) & = \begin{cases}2^{k-r-1} \sum_{j \text { is odd }}\binom{r}{j}, & \text { if } r \neq k \\
\sum_{j \text { is odd }}\binom{r}{j}, & \text { if } r=k\end{cases} \\
& = \begin{cases}2^{k-r-1} \cdot 2^{r-1}=2^{k-2}, & \text { if } r \neq k \\
2^{k-1}, & \text { if } r=k\end{cases} \tag{4.12}
\end{align*}
$$

Let \mathcal{C}_{0} and \mathcal{C}_{1} be the set of all the matrices obtained by permuting the columns of X and Y, respectively.

Equation (4.8) and equation (4.12) tells that any $r(<k)$ shares of a secret bit from either \mathcal{C}_{0} or \mathcal{C}_{1} together has a random collection of $2^{k-2} 1 \mathrm{~s}$ and 0 s . Consequently, the analysis of $r(<k)$ shares makes it impossible to distinguish between \mathcal{C}_{0} and \mathcal{C}_{1}. On the other hand, k shares from \mathcal{C}_{0} results in a collection of only 0 s, where as k shares from \mathcal{C}_{1} results in a collection of only 1 s .

4.2.1 Comparison of the schemes

While both the schemes are equally secure, in the former scheme, the result of combining $r(<k)$ shares (i.e., the number of $1 \mathrm{~s}=$ $2^{k-r-1} .\left(2^{r}-1\right)$,) varies on r, where as in latter one, it is a fixed value (i.e., 2^{k-2}). This phenomena does not enhance or reduce the security of the system. So, we suspect that the former scheme, has done some extra effort for unnecessarily distinguishing the number of shares combined, which is insignificant. So we strongly believe that the blowing factor could be reduced, by striking at a better modified visual cryptography scheme, than the corresponding one. When the secret is recovered by combining all the k shares, in the former, we have to search for the single 0 present, in case, the secret bit is 0 . Where as in the latter one, because the result is either all zeros or all 1 s, one can recover the secret bit just by looking at the first bit itself. So, though both are equally secure, the modified cryptographic scheme is at least more efficient in the combining process.

4.3 A simple Modified scheme for $(k, k) \quad{ }^{18}$

The following is a very simple algorithm to share a binary string in a (k, k) Modified Visual Cryptography scheme:

Algorithm 4.1 (k, k) Modified Visual Cryptography construction)

Input: A secret binary bit $S \in\{0,1\}$

Output: k bits $s_{1}, s_{2}, \ldots, s_{k}$

Step 1. let $y=0$

$$
\text { For } \begin{aligned}
i & =1 \text { to } k-1 \text { do } \\
& \text { Generate a random bit, say } x, \in\{0,1\} \\
& s_{i}=x \\
& y=y \oplus x
\end{aligned}
$$

Step 2. $s_{k}=y \oplus S$
Step 3. The shares are $s_{1}, s_{2}, \ldots, s_{k}$

The algorithm 4.1 computes k shares of a single binary digit S. In Step 1 , after setting a variable y is 0 , it computes $k-1$ shares, $s_{i}, 1 \leq i \leq k-1$, which are nothing but random bits. Also note that, when the for loop in step 1 terminates, the value of y is $s_{1} \oplus s_{2} \oplus \ldots \oplus s_{k-1}$. In step 2., the last share, s_{k} is computed as, $s_{k}=y \oplus S=s_{1} \oplus s_{2} \oplus \ldots \oplus s_{k-1} \oplus S$. This implies that, $S=s_{1} \oplus s_{2} \oplus \ldots \oplus s_{k}$. All the $k-1$ shares being random, and the secret S being unknown, s_{k} will also be random. So, there is no information to be gained by looking at r number of shares, for $r<k$. Each and every bit of the secret could be shared one after the other using the same algorithm. Since every bit is shared using random bits, looking at consecutive shares also gains no information. This proves the security of the scheme. The blowing factor of the scheme is 1 .

4.4 Generalization of $(3,3)$ scheme

The following scheme generalizes the $(3,3)$ scheme described in the last chapter into a $(3, n)$ scheme for an arbitrary $n>3$. Let B be the black $n \times(n-2)$ matrix which contains only 1 s , and let I be the identity $n \times n$ matrix which contains 1 s on the diagonal and 0s elsewhere. Let $B I$ denote the $n \times(2 n-2)$ matrix obtained by concatenating B and I, and let $\overline{B I}$ be the Boolean complement of the matrix $B I$. Then $\mathcal{C}_{0}=\{$ all the matrices obtained by permuting the columns of $\overline{B I}\} \mathcal{C}_{1}=\{$ all the matrices obtained by permuting the columns of $B I\}$ has the following properties: Any single share contains an arbitrary collection of $n-1$ black and $n-1$ white sub-pixels; any pair of shares have $n-2$ common black and two individual black sub-pixels; any stacked triplet of shares from \mathcal{C}_{0} has n black sub-pixels, whereas any stacked triplet of shares from \mathcal{C}_{1} has $n+1$ black sub-pixels, which looks darker.

4.5 Concluding remarks

Here, we have seen the difference between traditional Visual Cryptography and Modified Visual Cryptography. We have also proposed a very simple modified sharing scheme.

Chapter 5

Balanced Strings and Uniform Codes

5.1 Introduction

We have seen that in modified visual cryptography, the pixels are expanded by a factor, called the blowing factor. So if one needs to improve the efficiency, one has to reduce the blowing factor. In this chapter, we investigate solutions with small blowing factor.

For a (k, n) - modified visual cryptography scheme, all the possible collections of less than k shares for each of the binary bit should possess identical properties. Otherwise, some (may be partial) information is leaked out. So, we can use only alike shares, i.e., which have equal length, say z, (= blowing factor) and consists of same number of 1 s (say r). So the number of
possible shares are limited to $\binom{z}{r}$. This number is maximum when $r=\left\lfloor\frac{z}{2}\right\rfloor$ or $\left\lceil\frac{z}{2}\right\rceil$. By these choices of r, the shares are more or less balanced in the sense that it has almost same number of 1 s and 0 s . Let us define the things more precisely.

Definition 5.1

Let $n_{0}(w)$ and $n_{1}(w)$ denote the number of 0 s and number of 1 s in a binary string w. We say that the string w is perfectly balanced, if $n_{1}(w)=n_{0}(w)$.

Then, by our definition, no string of odd length is perfectly balanced. So we relax that condition, and introduce the concept balanced string.

Definition 5.2
A binary string w is considered as balanced, if $n_{1}(w)-n_{0}(w)=$ 0 , (or ± 1), depending on whether the length of w is even or odd, as the case may be.

Definition 5.3
A balanced string is called a Uniform Code, if, and only if,

$$
\begin{equation*}
n_{0}(w) \leq n_{1}(w) \leq n_{0}(w)+1 \tag{5.1}
\end{equation*}
$$

For example, 011010, 0101101 are uniform codes, 1010001, 0101101 are balanced strings, where as 0100 is an unbalanced string. Irrespective of whether z is odd or even, a uniform code
of length z consists of precisely $\left\lceil\frac{z}{2}\right\rceil$ many 1 s and $r=\left\lfloor\frac{z}{2}\right\rfloor$ many 0 s . Let U_{z} denote the number of uniform codes of length z. Then

$$
\begin{equation*}
U_{z}=\binom{z}{\left\lfloor\frac{z}{2}\right\rfloor} \tag{5.2}
\end{equation*}
$$

We have investigated the suitability of uniform codes for secret sharing schemes, and seen that they are most suitable in modified visual cryptography.

In the next section, we present a secret sharing scheme with modified visual cryptography, in which, the 0 s and 1 s are expanded with uniform codes.

We can see that in a $(2, n)$ secret sharing scheme, each bit can be recovered by combining the corresponding modified version of the bits from any two out of the n shares, depending upon whether the shares are same or different. Let z be the length of modified version of a bit. These uniform codes (by applying a random column permutation) are the shares to be distributed to the n participants. So we have chosen z such that $n \leq U_{z}$. Because, we want to reduce the blowing factor, we choose the smallest integer z, such that $n \leq U_{z}$ where n is the number of participants.

This choice of z ensures the existence of enough distinct shares for distribution to the n participants.

It may be noted that our choice of z implies,

$$
\begin{equation*}
U_{z-1}<n \leq U_{z}, \tag{5.3}
\end{equation*}
$$

otherwise z might not be the smallest integer with the said property. Since $n \geq 2$, (otherwise, no sharing at all), $U_{z} \geq 2$, and so $z \geq 2$. It can be proved that $z=O(\log n)$.

In fact, it can be shown that

$$
\begin{equation*}
z<\frac{6}{5} \cdot\left(\log _{2} n\right)+2 \tag{5.4}
\end{equation*}
$$

We consider two matrices, A and B, each of order $n \times z$. While rows in A are a random selection of identical Uniform codes, the rows in B consist of a random selection of distinct Uniform codes. The resulting structure can be described by an $n \times z$ Boolean matrix, $S=\left[s_{i j}\right]$, where $S_{i j}=1$, if and only if, the $j^{\text {th }}$ bit in the $i^{\text {th }}$ share is 1 .

A solution to the 2 out of n modified visual secret sharing scheme consists of two collections of $n \times z$ Boolean matrices \mathcal{C}_{0} and \mathcal{C}_{1}. To share a bit of value 0 , the dealer randomly chooses one of the matrices in \mathcal{C}_{0}, and to share a bit of value 1 , the dealer randomly chooses one of the matrices in \mathcal{C}_{1}. The rows of the chosen matrix define the modified version of the bit to be given to the n participants.

Definition 5.4

The solution is considered valid if the following pair of conditions are met:

1. Any share of a secret bit from either \mathcal{C}_{0} or \mathcal{C}_{1} is indistinguishable in the sense that it contains a random selection of the same number of 1 s and 0 s .
2. The result of combining (means "OR" or \oplus, depends on whether it is traditional or modified Visual cryptography, as the case may be) any pair of shares of a secret bit from \mathcal{C}_{0}, must be distinguishable from that of \mathcal{C}_{1}.

Consequently, the analysis of a single share makes it impossible to distinguish between \mathcal{C}_{0} and \mathcal{C}_{1}. At the same time, if two shares are available, one can reveal the secret.

5.2 An Efficient (2, n)- threshold scheme

Let B be an $n \times z$ matrix, in which each row represents a distinct uniform code, and A be an $n \times z$ matrix, in which each row is the same as the first row of B.

Then a $(2, n)$ - visual secret sharing problem can be solved by using the following collections of $n \times z$ matrices:
$\mathcal{C}_{0}=$ all the matrices obtained by permuting the columns of A $\mathcal{C}_{1}=$ all the matrices obtained by permuting the columns of B Any single share in either \mathcal{C}_{0} or \mathcal{C}_{1} is a random selection of $\left\lceil\frac{z}{2}\right\rceil 1 \mathrm{~s}$ and $\left\lfloor\frac{z}{2}\right\rfloor 0$ s. Consequently, the analysis of a single share makes it impossible to distinguish between \mathcal{C}_{0} and \mathcal{C}_{1}. However, combining two shares from \mathcal{C}_{0} results in a binary string consisting of only 0 s , where as two shares from \mathcal{C}_{1} results in binary string which has one or more 1s.

The shares are constructed by using the Algorithm 5.1 described below:

Algorithm 5.1 ((2, n) uniform construction)
Input: A binary string $B=b_{1} b_{2} \ldots b_{t}$ of length t.
Output: n blocks $S_{1}, S_{2}, \ldots, S_{n}$ of length t.z

Step 1. For $i=1$ to n do
Initialize each share S_{i} to null.
Step 2. For $i=1$ to t do
if $\left(b_{t}=0\right)$ randomly select a matrix C from \mathcal{C}_{0}.
else randomly select a matrix C from \mathcal{C}_{1}.
For $j=1$ to n do
concatenate the j th row of C with S_{j}.

It may be noted that each participant gets the same or different uniform codes depending on whether the respective bit is 0 or 1 .

Algorithm 5.2 (To recover the secret information)
Input: Shares $A=a_{1} a_{2} \ldots a_{t}$ and
$B=b_{1} b_{2} \ldots b_{t}$ of t blocks of z bits each.
Output: The secret information $S=s_{1} s_{2} s_{3} \ldots s_{t}$.

Step 1. For $i=1$ to t do

$$
\begin{aligned}
& \text { if }\left(a_{i}=b_{i}\right) s_{i}=0 ; \\
& \text { else } s_{i}=1
\end{aligned}
$$

Step 2. The recovered secret $S=s_{1} s_{2} s_{3} \ldots s_{t}$.

Example 5.1

Table 5.1: The list of all the 10 uniform codes of length 5 .

Sl. No.	Code	Sl. No.	Code
1.	00111	6.	10101
2.	01011	7.	10110
3.	01101	8.	11001
4.	01110	9.	11010
5.	10011	10.	11100

$$
\text { Let } A=\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

Let $\mathcal{C}_{0}=\{$ all the matrices obtained by permuting the columns of
Let there be 10 participants $1,2, \ldots, 10$ and suppose the secret encoded in binary is 100110.

The value of z, obtained from the inequality (5.3) is, $z=5$ and the list of uniform codes of length 5 are shown in Table 5.1. $A\}$ and $\mathcal{C}_{1}=$ all the matrices obtained by permuting the columns of B \}

The shares computed for each participant are as shown in Table 5.2. Let us compare any two shares block-wise, for example,

Table 5.2: The shares computed for different participants.

Sl. No.	shares
1	011011011011100101010111001011
2	010111011011100001111110001011
3	001111011011100100111101001011
4	011101011011100101101011001011
5	110011011011100011010110101011
6	101011011011100110010101101011
7	111001011011100111000011101011
8	100111011011100010111100101011
9	110101011011100011101010101011
10	101101011011100110101001101011

$3^{\text {rd }}$ and $5^{\text {th }}$ shares. We see that, the first blocks are different, the next two blocks are the same, subsequent two blocks are different, and the last blocks are same. So the first bit is 1 , next two bits are 0 s , and so on. The entire secret is 100110 .

It may be seen that, if we just perform block bitwise-OR by using the two shares, we get the following bit sequence, 11111 1011011100111111111101011 and each bit of the secret can be computed by counting the number of 1 s in the successive blocks of 5 bits. If the number of 1 s in a block is 3 , the corresponding bit in the secret must be 0 , and if more than 3 , it must be 1 .

5.3 An upper bound of the Blowing factor

Theorem 1

$$
\begin{equation*}
\frac{2^{z}}{z+1} \leq U_{z} \leq 2^{z-1} \tag{5.5}
\end{equation*}
$$

for all positive integers z.

Proof: This can be proved as follows:
First we prove that the recurrence relation satisfied by $U_{z}=\binom{z}{\left\lfloor\frac{z}{2}\right\rfloor}$ is,

$$
U_{z}= \begin{cases}\left(\frac{2 z}{z+1}\right) U_{z-1}, & \text { if } z \text { is an odd number } \tag{5.6}\\ 2 \cdot U_{z-1}, & \text { if } z \text { is an even number }\end{cases}
$$

This can be done by taking the two cases separately as follows: Case 1. z is an odd number, say, $z=2 m-1$, where m is an integer

$$
\begin{align*}
U_{z} & =\binom{2 m-1}{m-1} \\
& =\frac{(2 m-1)(2 m-2) \ldots(m+1)}{1 \cdot 2 \ldots(m-1)} \\
& =\frac{(2 m-1)}{m} \cdot \frac{(2 m-2)(2 m-3) \ldots(m+1) \cdot m}{1 \cdot 2 \ldots(m-1)} \\
& =\left(\frac{2 . z}{z+1}\right) \cdot U_{z-1} \tag{5.7}
\end{align*}
$$

Case 2. z is an even number, say, $z=2 m$, where m is an integer

$$
\begin{align*}
U_{z} & =\binom{2 m}{m} \\
& =\frac{(2 m)(2 m-1) \ldots(m+1)}{1.2 \ldots \cdot(m-1) \cdot m} \\
& =2 \cdot \frac{(2 m-1)(2 m-2) \ldots(m+1)}{1.2 \ldots \cdot(m-1)} \\
& =2 \cdot U_{z-1} \tag{5.8}
\end{align*}
$$

So,

$$
U_{z}= \begin{cases}\left(\frac{2 z}{z+1}\right) U_{z-1}, & \text { if } z \text { is an odd number } \\ 2 . U_{z-1}, & \text { if } z \text { is an even number }\end{cases}
$$

Since $\left(\frac{2 z}{z+1}\right)<2$, whenever $z>0$, equation (5.6) becomes,

$$
\begin{equation*}
\text { 2. }\left(\frac{z}{z+1}\right) U_{z-1} \leq U_{z} \leq 2 . U_{z-1} \tag{5.9}
\end{equation*}
$$

Applying the inequality (5.9) $(z-1)$ times, and using the fact that $U_{1}=U_{0}=1$, we get,

$$
\begin{equation*}
\frac{2^{z}}{z+1} \leq U_{z} \leq 2^{z-1} \tag{5.10}
\end{equation*}
$$

Theorem 2

$U_{z} \notin O\left(B^{z}\right)$, for any $B<2$.

Proof: If possible, assume that $U_{z} \in O\left(B^{z}\right)$, for some $B<2$. Then $\exists k>0$ and an n_{0}, such that,

$$
\begin{equation*}
U_{z} \leq k B^{z}, \text { for all } z \geq n_{0} \tag{5.11}
\end{equation*}
$$

Then by inequality (5.10), $\frac{2^{z}}{z+1} \leq k B^{z}$, for all $z \geq n_{0}$.
$4 \quad$ Since $\frac{2}{B}>1$, inequality (5.12) is absurd, since, the left side is exponential and the right side is linear. Hence the theorem.
This implies that

$$
\begin{equation*}
\left(\frac{2}{B}\right)^{z} \leq k(z+1), \text { for all } z \geq n_{0} \tag{5.12}
\end{equation*}
$$

Theorem 3

$$
\begin{equation*}
\left(\frac{9}{5}\right)^{z-1}<\binom{z}{\left\lfloor\frac{z}{2}\right\rfloor} \tag{5.13}
\end{equation*}
$$

for all positive integers z, except $z=3$ and 5 .

Proof: It can be easily settled in the case of $z=2,4,6$, and 7 by comparing the respective values:

- when $z=2,\left(\frac{9}{5}\right)<\binom{2}{1}=2$,
- when $z=4,\left(\frac{9}{5}\right)^{3}=\frac{729}{125}<\binom{4}{2}=6$,
- when $z=6,\left(\frac{9}{5}\right)^{5}=\frac{59049}{3125}<\binom{6}{3}=20$,
- when $z=7,\left(\frac{9}{5}\right)^{6}=\frac{531441}{15625}<\binom{7}{3}=35$.

If $z \geq 9$, we have,

$$
\begin{equation*}
\frac{9}{5} \leq \frac{2 z}{z+1} \tag{5.14}
\end{equation*}
$$

So, if $z \geq 8$, the recurrence relation (5.6) becomes,

$$
\begin{equation*}
\left(\frac{9}{5}\right) U_{z-1} \leq U_{z} \tag{5.15}
\end{equation*}
$$

Applying the above inequality $(z-8)$ times, we get,

$$
\begin{equation*}
\left(\frac{9}{5}\right)^{z-7} U_{7} \leq U_{z} \tag{5.16}
\end{equation*}
$$

and hence we get, $\left(\frac{9}{5}\right)^{z-1}<U_{z}$, since $\left(\frac{9}{5}\right)^{6}<U_{7}$.
So, $\left(\frac{9}{5}\right)^{z-1}<U_{z}=\binom{z}{\left\lfloor\frac{z}{2}\right\rfloor}$, when z is any integer other than 3 and 5 and hence the theorem.

So, if we select z as per inequality (5.3), we have,

$$
\begin{equation*}
U_{z-1}<n \leq U_{z} \tag{5.17}
\end{equation*}
$$

and by Theorems 1 , and 3 , we get,

$$
\begin{equation*}
\left(\frac{9}{5}\right)^{(z-2)}<n \leq 2^{(z-1)} \tag{5.18}
\end{equation*}
$$

when $z-1$ is other than 3 or 5 , i.e, when z is other than 4 or 6 .
Taking logarithm, we get,

$$
\begin{equation*}
(z-2) \cdot \log _{2}\left(\frac{9}{5}\right)<\log _{2} n \leq z-1 . \tag{14}
\end{equation*}
$$

Since $\frac{5}{6}<\log _{2}\left(\frac{9}{5}\right)$, we have,

$$
\frac{5}{6}(z-2)<\log _{2} n \leq z-1
$$

and hence,

$$
\begin{equation*}
z<\frac{6}{5} \cdot\left(\log _{2} n\right)+2 \tag{5.19}
\end{equation*}
$$

18

If $z=4$, then $4 \leq n \leq 9$, and in this case,
2
$\frac{6}{5}\left(\log _{2} n\right)+2 \geq 4.4>z$.
If $z=6$, then $11 \leq n \leq 20$, and in this case,
$\frac{6}{5}\left(\log _{2} n\right)+2>6.15>z$. So, equation (5.4) is established.

5.4 Concluding remarks

We have presented a secret sharing scheme, in which the size of a share is in the $O\left(\log _{2} n\right)$ times the size of the original secret, where n is the number of participants. It may be noted that the the blowing factor of the scheme suggested by Shamir, is n.

Chapter 6

Scheme for ($n-1, n$) threshold

6.1 Introduction

In this section, we present our method to construct an $(n-1, n)$ secret sharing scheme based on the modified visual cryptography. In this scheme, every bit is expanded to $\left\lceil\frac{n}{2}\right\rceil$ many bits.

6.2 A new scheme

Let the participants be $\left\{P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right\}$. In this case, the access structure consists of all the $n-1$ participants, namely:

$$
\Gamma=\bigcup_{i=1}^{n} P_{1} P_{2} \ldots P_{i-1} \widehat{P}_{i} P_{i+1} \ldots P_{n-1} P_{n}
$$

Here the \widehat{P}_{i} indicate the absence of the participants P_{i} in the set. The complete elements can be listed as follows:

1. $\widehat{\widehat{P}} \begin{array}{llllllll} & P_{2} & P_{3} & P_{4} & \ldots & P_{n-2} & P_{n-1} & P_{n}\end{array}$
2. $\quad P_{1} \widehat{\widehat{P}} \quad P_{3} \quad P_{4} \ldots P_{n-2} \quad P_{n-1} \quad P_{n}$
3. $\begin{array}{lllllllll}P_{1} & P_{2} & \widehat{P_{3}} & P_{4} & \ldots & P_{n-2} & P_{n-1} & P_{n}\end{array}$
4. $\begin{array}{lllllllll}P_{1} & P_{2} & P_{3} & \widehat{P_{4}} & \ldots & P_{n-2} & P_{n-1} & P_{n}\end{array}$

We can see that the first two sets differ in P_{1} and P_{2}; the next two sets differ in P_{3} and P_{4}; and so on. If we combine these sets pairwise, if n is even, there are exactly $\frac{n}{2}$ pairs of sets and if n is odd, there are $\left\lfloor\frac{n}{2}\right\rfloor$ many pairs and one set left out. Let the secret be $B=B_{1} B_{2} B_{3} \ldots B_{t}$. Our scheme will generate n shares for each bit B_{i} of the secret.

6.3 Algorithm for sharing one bit among n shares

The following Algorithm describes how to share a single bit b among n shares.

Algorithm 6.1 (Sharing one bit among n shares)
Input: A binary bit $b \in\{0,1\}$
Output: The n shares $S_{1}, S_{2}, \ldots, S_{n}$, where, each S_{i} is of length $\left\lceil\frac{n}{2}\right\rceil$ bits.

Step 1. Let $S_{i, j}$ denote the j th bit of S_{i}

$$
\begin{aligned}
& \text { For } j=1 \text { to }\left\lfloor\frac{n}{2}\right\rfloor d o \\
& \qquad \begin{array}{l}
\quad x=b \\
\quad \text { For } i=1 \text { to } n \text { do } \\
\quad \text { if }(i \neq 2 j-1 \text { AND } i \neq 2 j)\{
\end{array}
\end{aligned}
$$

Generate a random number $r \in\{0,1\}$

$$
S_{i, j}=r
$$

$$
x=x \oplus r
$$

$$
\}
$$

$$
S_{2 j-1, j}=S_{2 j, j}=x
$$

Step 2. If (n is odd) then $\left\{\backslash \backslash\right.$ Here $j=\left\lceil\frac{n}{2}\right\rceil$

$$
x=b
$$

For $i=1$ to $n-2 d o$
Generate a random number $r \in\{0,1\}$
$S_{i, j}=r$
$x=x \oplus r$
$S_{n-1, j}=x$
$\} \backslash \backslash$ Note that in this case, $S_{n, j}$ is unknown
Step 3. The shares are $S_{1}, S_{2}, \ldots, S_{n}$

Algorithm 6.2 (Recover the shared secret bit b)
Input: $n-1$ shares $S_{1} S_{2} \ldots S_{j-1} S_{j+1} \ldots S_{n}$,
each of length $\left\lceil\frac{n}{2}\right\rceil$ bits
Observe that S_{j} is the missing share.
Output: The shared secret bit b

Step 1. Let $c=\left\lceil\frac{j}{2}\right\rceil$ and $x=0$

$$
\begin{aligned}
& \text { For } k=1 \text { to } n \text { do } \\
& \quad \text { if }(k \neq j) x=x \oplus S_{k, c} \\
& b=x
\end{aligned}
$$

Step 2. The shared secret bit is recovered as b

Lemma 6.1

The above scheme is a $(n-1, n)$ threshold secret sharing scheme, in which the size of a share is $\left\lceil\frac{n}{2}\right\rceil$ bits.

Proof: It is easy to observe the following from Algorithm 6.1.

1. For each $j \in\left\{1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$, the Step 1. of the algorithm generates $n-2$ random bits and assigns one each to $S_{i, j}$ for $i \in\{1, \ldots, n\} \backslash\{2 j-1,2 j\}$.
2. The final value of x computed in the inner for loop is

$$
x=b \oplus S_{1, j} \oplus \ldots \oplus S_{2 j-2, j} \oplus S_{2 j+1, j} \oplus \ldots \oplus S_{n, j}
$$

3. This value of x is assigned to $S_{2 j-1, j}$ and $S_{2 j, j}$.

So, $S_{1, j} \oplus \ldots \oplus S_{2 j-1, j} \oplus S_{2 j+1, j} \oplus \ldots \oplus S_{n, j}=b$
and $S_{1, j} \oplus \ldots \oplus S_{2 j-2, j} \oplus S_{2 j, j} \oplus \ldots \oplus S_{n, j}=b$
4. If n is odd, Step 2 of the algorithm generates $n-2$ random bits and assigns one each to $S_{i, j}$ for $i \in\{1, \ldots, n-2\}$. The final value of x computed in the for loop is $x=b \oplus S_{1, j} \oplus \ldots \oplus S_{n-2, j}$
5. This value of x is assigned to $S_{n-1, j}$.

So, $S_{1, j} \oplus \ldots \oplus S_{n-1, j}=b$

Algorithm 6.3 (Sharing a secret among n shares)
Input: A binary string $B=B_{1} B_{2} \ldots B_{t}$ of length t
Output: The n shares $S_{1}, S_{2}, \ldots, S_{n}$, where, each S_{i} is of length $\left\lceil\frac{n}{2}\right\rceil$ times t.

Step 1. For $i=1$ to n do
Initialize S_{i} to NULL
Step 2. For $i=1$ to t do
Compute the n shares corresponding to B_{i}
using Algorithm 6.1 and append to the
corresponding S_{j}, for $j=\{1, \ldots, n\}$.
Algorithm 6.4 (Recover the shared secret)

Input: $n-1$ shares $S_{1} S_{2} \ldots S_{j-1} S_{j+1} \ldots S_{n}$,
each of length t times $\left\lceil\frac{n}{2}\right\rceil$
Observe that S_{j} is the missing share.
6

Output: The shared secret $B=B_{1} B_{2} \ldots B_{t}$

Step 1. Let $S_{j}^{(1)}, S_{j}^{(2)}, \ldots S_{j}^{(t)}$ be the consecutive bits of length $\left\lceil\frac{n}{2}\right\rceil$ in S_{j}, for $j \in\{1, \ldots, n\}$ For $i=1$ to t do

Recover the secret bit B_{i} by using Algorithm 6.2
with input $S_{j}^{(i)}$, for $j \in\{1, \ldots, n\}$
Step 2. The shared secret is $B=B_{1} B_{2} \ldots B_{t}$

Example 6.1

10
Let a $(4,5)$ threshold secret sharing scheme be constructed for the secret $B=101111011110111$ (which corresponds to "www").

Here $\mathrm{n}=5$, so each bit will be expanded to 3 bits. The random bits generated by the Algorithm 6.3, and assigned at various places in the shares are as follows: (the $*$ indicates NULL bit and - indicates an unknown bit)

Table 6.1: Random bits assigned in the shares by Algorithm 6.1.
$S_{1} \quad * 10 * 01 * 10 * 00 * 10 * 10 * 01 * 10 * 10 * 11 * 10 * 01 * 01 * 10 * 00$
$S_{2} \quad * 10 * 00 * 10 * 11 * 01 * 11 * 10 * 10 * 00 * 01 * 01 * 10 * 10 * 01 * 11$
$S_{3} 1 * 10 * 10 * 00 * 01 * 10 * 10 * 11 * 01 * 10 * 11 * 01 * 10 * 10 * 01 * 1$
$S_{4} 0 * * 1 * * 0 * * 0 * * 1 * * 0 * * 1 * * 0 * * 1 * * 0 * * 1 * * 0 * * 1 * * 0 * * 1 * *$
$S_{5} 01-01-10-01-01-10-01-11-11-01-00-11-00-00-10-$

The bit values at the NULL positions are evaluated and the final shares are as seen in Table 6.2.

Table 6.2: Final Shares computed by Algorithm 6.1.
$S_{1} \quad 010101010100110010101110010111110001001110000$
$S_{2} \quad 010100010111101011110110000101101010010101011$
$S_{3} \quad 101011010010111011001100111011100101001000101$
$S_{4} \quad 000110011010111011100001110010100000101000101$
$S_{5} 01-01-10-01-01-10-01-11-11-01-00-11-00-00-10-$

Suppose we want to reconstruct the secret from $1^{\text {st }}, 3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ shares. If we compute $S_{1} \oplus S_{3} \oplus S_{4} \oplus S_{5}$, we get, result as 10-01-11-11-10-11-01-10-10-10-11-01-10-11-100. Here 2 nd share is missing. So every first bit in the block of 3 bits are selected
as : 101111011110111
Suppose we want to reconstruct the secret from $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$, and $4^{\text {th }}$. If we compute $S_{1} \oplus S_{2} \oplus S_{3} \oplus S_{4}$, we get, result as

$$
101100001011011001110101011011011110111011011
$$

Here $5^{\text {th }}$ share is missing. So every third bit in the block of 3 bits are selected as : 101111011110111

6.4 Concluding remarks

We have now presented an ($n-1, n$)-threshold secret sharing scheme, in which the size of a share is $\left\lceil\frac{n}{2}\right\rceil$ times the size of the 10 secret.

Chapter 7

 \section*{An Efficient Scheme
 \section*{An Efficient Scheme Using Balanced Strings}Using Balanced Strings}
7.1 Introduction

In this chapter, we present our method to construct an (n, n) secret sharing scheme based on the modified visual cryptography. Assume that the secret is represented as a binary string $B=$ $b_{1} b_{2} b_{3} \ldots b_{t}$. Our scheme will generate n shares after concatenating a single bit, b_{t+1} at the right end of the secret. The resulting structure of the share can be described as a $k \times t$ Boolean matrix $\mathcal{C}=\left[S_{i j}\right]$, where, $1 \leq i \leq n, 1 \leq j \leq(t+1)$ and $k \in O\left(2^{n}\right)$.
The construction is considered valid if, for any Boolean string $B=b_{1} b_{2} \ldots b_{t}$, there exist solutions, $S_{1}, S_{2}, \ldots, S_{n}$, such that, $B=S_{1} \oplus S_{2} \oplus \ldots \oplus S_{n}$, where, $S_{1}, S_{2}, \ldots, S_{n}$ are rows in \mathcal{C}. In the proposed scheme, the rows of \mathcal{C} consist of all the possible
balanced strings of length t. By Theorem 2, the cardinality of the class of uniform codes and balanced strings are in $O\left(2^{n}\right)$. We can choose \mathcal{C} as the set of all uniform code or balanced strings.

The proposed scheme is based on the following theorem related to even parity strings and balanced strings:

Theorem 4

Let T be an even parity binary string of length t. Then we can find two balanced strings A and B, such that $T=A \oplus B$.

Proof: We can assume, without loss of generality that, the leading $2 m,\left(0 \leq m \leq\left\lfloor\frac{t}{2}\right\rfloor\right)$ digits of T are 1s and remaining $t-2 m(\geq 0)$ digits are 0 s. Now, let $A=P Q$ be the binary string obtained by concatenating the strings P and Q, where, P is the perfectly balanced string consisting of exactly m 1s, followed by $m 0 \mathrm{~s}$, and Q is the balanced string consisting of exactly $\left\lfloor\frac{t-2 m}{2}\right\rfloor$ 1 s and $\left\lceil\frac{t-2 m}{2}\right\rceil 0$ s. Note that Q is perfectly balanced, only if t is an even number. Choose $B=\bar{P} Q$, where, \bar{P} is the Boolean complement of P, so that $T=A \oplus B$. Since the complement of a perfectly balanced string is also a perfectly balanced string and concatenation of a perfectly balanced string and a balanced string is a balanced string, both A and B are balanced strings. Hence the theorem.

Remark 7.1

Interchanging the number of 1 s and 0 s in Q, will lead to a decomposition of T in uniform codes. But decomposition in perfectly
balanced strings will be possible only if t is even. However, such a decomposition, in general, need not be unique. Also, once we find A, we can immediately obtain B, as $B=T \oplus A$.

It may be noted that, among the $2 m 1 \mathrm{~s}$ in T, exactly $m 1 \mathrm{~s}$ are in matched position with P, and the other m 1s are in matched position with Q. The matching can be made randomly. The bits in P and Q, corresponding to a 0 in T are same (either both 0 or both 1) and they can be assigned randomly, with ensuring that, $n_{1}(P)=n_{1}(Q)=\left\lfloor\frac{t}{2}\right\rfloor$.
Now we shall describe the construction details of a (2, 2)- secret sharing scheme and extend it to an (n, n) - scheme in the next section.

7.2 A (2, 2) Construction

Let $B=b_{1} b_{2} b_{3} \ldots b_{t}$ be the secret information to be shared between two participants. We describe an efficient $(2,2)$ scheme by making use of the theorem 4 . First of all, the necessary condition to use the theorem is that, the concerned string must be even parity. So, we extend the secret by appending a single bit at the right end. If we discard the appended last bit, we get precisely the secret. The length of the extended string is just one more than that of the secret. The Algorithm 7.1 extends the string and makes the resulting string an even parity.

Algorithm 7.1 (Append a single bit at the end)
Input: A binary string $B_{t}=b_{1} b_{2} \ldots b_{t}$ of length t.
Output : An even parity string $E_{t+1}=e_{1} e_{2} \ldots e_{t+1}$
of length $t+1$, such that $e_{i}=b_{i}$, for $i \leq t$.

Step 1. noOfOne $=0$;
For $i=1$ to t do

$$
\begin{aligned}
& e_{i}=b i ; \\
& \text { if }\left(b_{i}=1\right) \text { noOfOne }=\text { noOfOne }+1 \text {; }
\end{aligned}
$$

Step 2. if (noOfOne is odd) $e_{t+1}=1$;
else $\quad e_{t+1}=0$;
Step 3. The extended string is $E_{t+1}=e_{1} e_{2} \ldots e_{t+1}$.

Now, using construction method in theorem 4, we split this extended string and obtain the two shares. The very simple algorithm 7.2, shown below, finds the decomposition of the extended string, as in theorem 4.

Algorithm 7.2 (Sharing an even parity binary string between two blocks)

Input: An even parity binary string $E_{t+1}=e_{1} e_{2} \ldots e_{t+1}$.
Output : Two blocks $S_{t+1}^{(1)}=s_{1}^{(1)} s_{2}^{(1)} \ldots s_{t+1}^{(1)}$ and
$S_{t+1}^{(2)}=s_{1}^{(2)} s_{2}^{(2)} \ldots s_{t+1}^{(2)}$ of length $t+1$ each.

Step 1. Set all bits of $S_{t+1}^{(1)}$ and $S_{t+1}^{(2)}$ null.
Step 2. noOfOne $=0$;
For $i=1$ to $(t+1) d o$

$$
\begin{aligned}
& \text { if }\left(e_{i}=1\right) \text { then } \\
& \text { noOfOne }=\text { noOfOne }+1 ; \\
& \text { if }(\text { noOfOne is odd }) s_{i}^{(1)}=1 ; \\
& \text { else } s_{i}^{(1)}=0 ;
\end{aligned}
$$

Step 3. Randomly assign the rest null bits of $S_{t+1}^{(1)}$

$$
\text { to } 0 \text { or } 1, \text { such that } n_{1}\left(S_{t+1}^{(1)}\right)=\left\lfloor\frac{t+1}{2}\right\rfloor \text {. }
$$

Step 4. For $i=1$ to $t+1$ do

$$
s_{i}^{(2)}=s_{i}^{(1)} \oplus e_{i}
$$

The algorithm 7.3 shares any binary string between two shares, by using algorithm 7.1 and then algorithm 7.2.

Algorithm 7.3 (Sharing any binary string between two blocks)
Input: A binary string $B_{t}=b_{1} b_{2} \ldots b_{t}$.
Output: Two blocks $S_{t+1}^{(1)}$ and $S_{t+1}^{(2)}$ each
of length $t+1$

Step 1. Let $E_{t+1}=e_{1} e_{2} \ldots e_{t+1}$ be the extended string obtained by Algorithm 7.1 with the input B_{t}.
Step 2. Obtain the shares $S_{t+1}^{(1)}$ and $S_{t+1}^{(2)}$ by Algorithm 7.2 with input E_{t+1}.

Algorithm 7.4 (Recover the secret information)

Output: The secret information $B_{t}=b_{1} b_{2} \ldots b_{t}$.

Step 1. $B_{t+1}=S_{1} \oplus S_{2}$
Step 2. The recovered secret is $B=b_{1} b_{2} b_{3} \ldots b_{t}$ (Note that b_{t+1} is unwanted.)

Recovery: From $E_{t+1}=S_{t+1}^{(1)} \oplus S_{t+1}^{(2)}$, it follows that, if we just discard last bit of E_{t+1} we get B_{t}. i.e, the recovery procedure is that, just \oplus the two shares, we get the extended string, and discard the last appended bit we get the secret. Hence the following lemma:

Lemma 7.1

The Algorithm 7.3 described above is a (2, 2)- modified visual cryptography scheme, in which the size of the share is just one bit more than the size of secret. More over, all the shares are balanced strings.

Example 7.1

Let the secret B be

$$
100110010100011100100010110100
$$

(which corresponds to the word "secret").

Here length of the secret $t=6^{*} 5=30$. By Step 1. of Algorithm 7.3, the extended secret is

$$
B_{t+1}=1001100101000111001000101101001
$$

By Step 1. of Algorithm 7.2, initialize S_{1} and S_{2} null.

In Step 2, S_{1} is computed as
$1 * * 01 * * 0 * 1 * * * 010 * * 1 * * * 0 * 10 * 1 * * 0$ (Here $*$ indicates null bits.) and by Step 3, S_{1} is randomly set as

1110110001010010011101001001110

Finally by Step 4. of Algorithm 7.2,
$S_{2}=S_{1} \oplus B_{t+1}=0111010100010101010101100100111$
Recovery : Compute $S_{1} \oplus S_{2}$ and get

$$
B_{t}=1001100101000111001000101101001
$$

Last bit is 1 and is deleted to get B : 10011001010001110010 0010110100.

7.3 A (n, n) Construction

We in this section develop a secret sharing scheme among n blocks.

Algorithm 7.5 (Sharing a secret among n blocks)
Input: A binary string $B_{t}=b_{1} b_{2} \ldots b_{t}$ of length t.
Output: n blocks $S_{1}, S_{2}, \ldots, S_{n}$ of length $t+1$.

Step 1. $b_{t+1}=0$;
Step 2. Randomly assign n-2 blocks,
$\left\{S_{2}, \ldots, S_{(n-1)}\right\}$, with $\left\lceil\frac{t+1}{2}\right\rceil$ Os and $\left\lfloor\frac{t+1}{2}\right\rfloor 1 \mathrm{~s}$.
Step 3. Compute $K_{t+1}=B_{t+1} \oplus S_{2} \oplus \ldots \oplus S_{(n-1)}$.

Step 4. if (K_{t+1} is odd parity) then

$$
\begin{aligned}
k_{t+1} & =\overline{k_{t+1}} \\
b_{t+1} & =\overline{b_{t+1}}
\end{aligned}
$$

Step 5. Compute S_{1} and S_{n} by Algorithm 7.2, with input K_{t+1}, such that, $K_{t+1}=S_{1} \oplus S_{n}$.

Algorithm 7.6 (Recover the secret information)

Input : n shares $S_{1}, S_{2}, \ldots, S_{n}$ of length $t+1$
Output: The secret information $B_{t}=b_{1} b_{2} \ldots b_{t}$.

Step 1. Compute the string $B_{t+1}=b_{1} b_{2} b_{3} \ldots b_{t+1}$ such that $B_{t+1}=S_{1} \oplus S_{2} \oplus S_{3} \oplus \ldots \oplus S_{n}$
Step 2. Discard the last bit of B_{t+1} and the recovered secret B_{t} is $b_{1} b_{2} b_{3} \ldots b_{t}$

Lemma 7.2

The Algorithm 7.5 described above, is an (n, n)- modified visual cryptography scheme, in which the size of the share is just one bit more than the size of secret. More over, all the shares are balanced strings.

Proof: It is clear that Step 1 of algorithm 7.5 appends a single bit at the end of the input string B_{t} and the extended string B_{t+1} is obtained. Note that the last bit appended is insignificant. In Step 2. it generates $n-2$ shares, $S_{2}, S_{3}, \ldots, S_{n-1}$. They are all random balanced strings. In Step 3, from the equation,

$$
\begin{equation*}
K_{t+1}=B_{t+1} \oplus S_{2} \oplus \ldots \oplus S_{(n-1)} \tag{7.1}
\end{equation*}
$$

the following equation holds:

$$
\begin{equation*}
B_{t+1}=K_{t+1} \oplus S_{2} \oplus \ldots \oplus S_{(n-1)} \tag{7.2}
\end{equation*}
$$

In step 4, we ensure that K_{t+1} is even parity. If not, the last

$$
\begin{aligned}
& S_{2}=1011000101, \\
& S_{3}=0101010110, \text { and } \\
& S_{4}=1100101010 .
\end{aligned}
$$

Step 3. computes $K=10011001$ 01, and in Step 5., 100110010 is split into

$$
\begin{aligned}
& S_{1}=1010110010, \text { and } \\
& S_{5}=0011010110
\end{aligned}
$$

All the 5 shares are as listed below:

$$
\begin{aligned}
& S_{1}=1010110010 \\
& S_{2}=1011000101 \\
& S_{3}=0101010110 \\
& S_{4}=1100101010, \text { and } \\
& S_{5}=0011010110
\end{aligned}
$$

Recovery: Computes $S_{1} \oplus S_{2} \oplus S_{3} \oplus S_{4} \oplus S_{n}$, and obtains

$$
B_{t+1}=1011011101
$$

Deleting the last bit of B_{t+1}, we get the secret as

$$
B_{t}=101101110
$$

7.4 Security Analysis

In this section, we discuss the security of the proposed scheme. In order to show the security of the $(2,2)$ construction, suppose an illegal user gets one of the two shares. Lemma 7.3 shows that, guessing the secret correctly, is very difficult.

Lemma 7.3

With only one share, the probability of guessing the shared secret correctly in our construction is $\binom{t+1}{\left\lfloor\frac{t+1}{2}\right\rfloor}^{-1}$.

Proof: In our construction, it is easy to observe that each share contains $\left\lceil\frac{t+1}{2}\right\rceil 1$ s. There are $\binom{t+1}{\left\lfloor\frac{t+1}{2}\right\rfloor}$ many variations $\quad 20$ 94
for a block, and the probability of guessing one block correctly is $\binom{t+1}{\left\lfloor\frac{t+1}{2}\right\rfloor}^{-1}$. Hence the probability of an illegal user, who has only one share, guessing the shared secret is $\binom{t+1}{\left\lfloor\frac{t+1}{2}\right\rfloor}^{-1}$.

In order to show the security of an (n, n) construction, suppose there are fewer than n participants cooperating to guess the shared secret. Lemma 7.4 shows that even though there are $n-1$ participants cooperating, the probability of guessing the shared secret correctly is still very low.

Lemma 7.4

The probability of guessing the shared secret correctly in our construction is $\binom{t+1}{\left\lfloor\frac{t+1}{2}\right\rfloor}^{-1}$, if only $n-1$ shares are used to guess the share.

Proof: The proof is similar to that of Lemma 7.3.

7.5 Concluding remarks

In this chapter, we have classified three types of balanced strings, and established a very strong theorem related to balanced string. As per the theorem, any string can be written as the ring sum (\oplus) of two balanced strings. We have used this property and presented a secret sharing scheme, in which the size of a share is just one bit more than the size of the original secret.

Chapter 8

Permutation Ordered Binary Number System

8.1 Introduction

In the course of our research work we have formulated a new number system. This number system is found to be very useful and more efficient than the conventional number systems under use. We have used this number system in some of our newly introduced secret sharing schemes.

8.2 A new number system

We consider a general number system, called, Permutation Ordered Binary (POB) Number System with two non negative integral parameters, n and r, where $n \geq r$. The system is
denoted by $\operatorname{POB}(n, r)$. In this number system, we represent all integers in the range $0, \ldots,\binom{n}{r}-1$, as a binary string, say $B=b_{n-1} b_{n-2} \ldots b_{0}$, of length n, and having exactly $r 1 \mathrm{~s}$.

Each digit of this number, say, b_{j} is associated with its position value, given by

$$
b_{j} .\binom{j}{p_{j}} \text {, where, } p_{j}=\sum_{i=0}^{j} b_{i},
$$

and the value represented by the POB-number B, denoted by $V(B)$, will be the sum of position values of all of its digits.
i.e.,

$$
\begin{equation*}
V(B)=\sum_{j=0}^{n-1} b_{j} \cdot\binom{j}{p_{j}} \tag{8.1}
\end{equation*}
$$

It can be proved that, since exactly $\binom{n}{r}$ such binary strings exist, each number will have a distinct representation. In order to emphasize that a binary string, $B=b_{n-1} b_{n-2} \ldots b_{0}$ is a POBnumber, we denote the same by using the suffix ' p '. For example, 001110100_{p} is a $\operatorname{POB}(9,4)$ number represented by 33 . However, such a string, regarded as a binary number will have a decimal value of 116 . We can arrange all those string in the ascending order, by considering this decimal value as in Table 8.1. Indeed, Table 8.1 represents $\operatorname{POB}(9,4)$ number system completely.

Table 8.1: List of $\operatorname{POB}(9,4)$ numbers

S	POB Numbers	Binary	Sl.	POB Numbers	
No.	123456789	alue	No.	123456789	value
0	000001111	15	31	001110001	113
1	000010111	23	32	001110010	114
2	000011011	27	33	001110100	116
3	000011101	29	34	001111000	120
4	000011110	30	35	010000111	135
5	000100111	39	36	010001011	139
6	000101011	43	37	010001101	141
7	000101101	45	38	010001110	142
8	000101110	46	39	010010011	147
9	000110011	51	40	010010101	149
10	000110101	53	41	010010110	150
11	000110110	54	42	010011001	153
12	000111001	57	43	010011010	154
13	000111010	58	44	010011100	156
14	000111100	60	45	010100011	163
15	001000111	71	46	010100101	165
16	001001011	75	47	010100110	166
17	001001101	77	48	010101001	169
18	001001110	78	49	010101010	170
19	001010011	83	50	010101100	172
20	001010101	85	51	010110001	177
21	001010110	86	52	010110010	178
22	001011001	89	53	010110100	180
23	001011010	90	54	010111000	184
24	001011100	92	55	011000011	195
25	001100011	99	56	011000101	197
26	001100101	101	57	011000110	198
27	001100110	102	58	011001001	201
28	001101001	105	59	011001010	202
29	001101010	106	60	011001100	204
30	001101100	108	61	011010001	209

Table 8.1 Continues

	POB Numbers		Sl.		
No	123456789	value	No.	456789	
62	011010010	210	94	0	330
63	011	212	95	101001100	332
6	011011000	216	96	101010	3
65	011100001	225	97	101010010	338
66	011100010	226	98	101010100	40
	01110010	228	99	101011000	344
68	011101000	232	100		353
69	011110000	240	101	101100010	354
70	100	63	102	1	56
71	100001011	267	103	101101000	360
72	100001101	269	104	101110000	368
73	100001110	270	105	110000011	387
74	100010011	275	10	00001	389
75	100010101	277	107	10000110	390
76	100010110	278	108	11000100	393
77	100011001	281	109	110001010	394
78	100011010	282	110	11000110	396
79	100011100	284	11	001000	01
80	100100011	291	112	110010010	02
	100100101	293	113	010	404
82	100100110	294	11	110011000	408
8	100101001	297	11	1010000	17
84	100101010	29		010001	418
	100101100	300	11	1001	420
	100110001	305	118	110101000	424
	100110010	306	119	110110000	432
	100110100	308	120	11000001	449
89	100111000	312	121	111000010	450
	101000011	323	122	1100010	452
91	101000101	325	123	111001000	56
92	101000110	326		11010000	464
93	101001001	329	125	111100000	480

8.3 POB-representation is unique

We prove that the POB-representation is unique in the sense that the binary correspondence of a POB-number is unique.

Theorem 5 (POB-representation is unique)
The value of a $P O B$-number, $V(B)$ of $B=b_{n-1} b_{n-2} \ldots b_{0}$ computed by the formula (8.1) given above, produces distinct values in the range $0, \cdots,\binom{n}{r}-1$.

Proof: First, we prove that,

$$
\begin{equation*}
0 \leq V(B) \leq\binom{ n}{r}-1 \tag{8.2}
\end{equation*}
$$

and then we prove that formula computes distinct values for distinct POB-numbers.

Let $b_{d_{1}}, b_{d_{2}}, \ldots, b_{d_{r}}$, with

$$
\begin{equation*}
0 \leq d_{1}<d_{2}<\ldots<d_{r} \leq n-1 \tag{8.3}
\end{equation*}
$$

be the binary digits of B, having value 1 .
Then the formula (8.1) takes the form

$$
\begin{equation*}
V(B)=\sum_{i=1}^{r}\binom{d_{i}}{i} \tag{8.4}
\end{equation*}
$$

From the inequalities listed in (8.3), we get,

$$
\begin{array}{ccccc}
d_{r-1} & \leq & d_{r} & - & 1 \\
d_{r-2} & \leq & d_{r-1} & - & 1 \\
d_{r-3} & \leq & d_{r-2} & - & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
d_{1} & \leq & d_{2} & - & 1
\end{array}
$$

Adding the first k inequalities listed above, we get,

$$
\begin{equation*}
d_{r-k} \leq d_{r}-k, \text { for } k=0,1, \ldots, r-1 \tag{8.5}
\end{equation*}
$$

Substituting $k=r-i$, inequality (8.5) becomes,

$$
\begin{equation*}
d_{i} \leq d_{r}-r+i, \text { for } i=r, r-1, \ldots, 1 \tag{8.6}
\end{equation*}
$$

Combining the inequalities (8.3) and (8.6), we get,

$$
\begin{equation*}
0 \leq d_{i} \leq d_{r}-r+i, \text { for } i=1,2, \ldots, r \tag{8.7}
\end{equation*}
$$

It may also be noted that

$$
\begin{align*}
\binom{n}{0} & =1, \text { whenever } n \geq 0 \tag{8.8}\\
\binom{p}{i} & =\binom{p-1}{i-1}+\binom{p-1}{i} \tag{8.9}\\
\binom{p}{i} & \leq\binom{ q}{i} \text { whenever } p \leq q \tag{8.10}
\end{align*}
$$

So, equation (8.4) becomes,

$$
\begin{align*}
V(B) & =\sum_{i=1}^{r}\binom{d_{i}}{i} \\
& \leq \sum_{i=1}^{r}\binom{d_{r}-r+i}{i}, \quad[b y(8.7) \&(8.10) \\
& =\binom{d_{r}-r+1}{0}+\sum_{i=1}^{r}\binom{d_{r}-r+i}{i}-1 \\
& =(b y(8.7) \&(8.8)
\end{align*}
$$

$$
\text { [by (8.9) applied } r \text { times }
$$

i.e, if j is the highest integer with $b_{j}=1$, then

$$
V(B) \leq\binom{ j+1}{r}-1 .
$$

In other words, if $V(B) \leq\binom{ j+1}{r}-1$, then

$$
b_{n-1}=b_{n-2}=\cdots=b_{j+1}=0
$$

and if $V(B) \geq\binom{ j+1}{r}$, then at least one of

$$
b_{n-1}, b_{n-2}, \cdots, b_{j+1} \neq 0
$$

Since $d_{r} \leq n-1$, we get, $V(B) \leq\binom{ n}{r}-1$.
As $V(B)$ is the sum of non-negative terms, we have,

$$
0 \leq V(B) \leq\binom{ n}{r}-1
$$

So, the above formula will generate a maximum of $\binom{n}{r}$ values. $\quad 2$
Now, let $X=x_{n-1} x_{n-2} \ldots x_{0}$ be any POB-number having r 1 s , such that $X>B$ (by considering them as binary numbers). Being $X>B$, there is at least a digit x_{l} in X such $x_{l} \neq b_{l}$. Let l be the biggest suffix such that $x_{l} \neq b_{l}$.

Then, $x_{n-1} x_{n-2} \ldots x_{l+1}=b_{n-1} b_{n-2} \ldots b_{l+1}, x_{l} \neq b_{l}$ and $X>$ B implies $x_{l}=1$ and $b_{l}=0$. Now consider the strings $X_{l}=$ $x_{l} x_{l-1} \ldots x_{0}$ and $B_{l}=b_{l} b_{l-1} \ldots b_{0}$. Both the strings X_{l} and B_{l} have equal number of 1 s , say $k \leq r$ and hence can be regarded
as POB numbers(may be with different parameters). Being X_{l} starts with $1, V\left(X_{l}\right) \geq\binom{ l}{k}$, and B_{l} starts with 0 , $V\left(B_{l}\right) \leq\binom{ l}{k}-1$.

So, $V\left(X_{l}\right)>V\left(B_{l}\right)$ and thus, we get $V(X)>V(B)$.
i.e., if X and B are two distinct POB-numbers then $V(X) \neq$ $V(B)$ and hence, the formula (8.1) generates exactly $\binom{n}{r}$ POB-values. Therefore the POB-representation is unique. Hence the theorem.

Moreover, V() preservers the natural order in binary number system.

8.4 POB-number and POB-value

In a practical situation, for any (n, r) threshold secret sharing system, it is required to find out the distribution of all of its keys. In all there will be $\binom{n}{r-1}$ keys, to be distributed among n participants. Which means, given a key, we should identify participants who should hold that particular key. In a sense, the key no. is the POB-value, and the allotment to participants is contained in the corresponding POB-number. Essentially, the position of 1 s in the POB-number represents the participants holding the specific key. Therefore, the problem of allotment of keys to participants is equivalent to finding the POB-number
corresponding to a POB-value. We have developed an algorithm for this problem.

For a given pair of parameters n and r with $r \leq n$, the algorithm takes three inputs: n, r and value with $0 \leq$ value \leq
$\binom{n}{r}-1$ and produce POB-number corresponding to the value.
Algorithm 8.1 (Generate POB-number corresponding to a
6 given POB-value)
In a $P O B(n, r)$ number system, if a $P O B$-value, 'value' is given, the algorithm generates the binary digits of the corresponding $P O B$-number: B, such that value $=V(B)$.

Input : Three numbers: n, r and value with $r \leq n$ and $0 \leq$ value $\leq\binom{ n}{r}-1$.
Output: The POB-number $B=b_{n-1} b_{n-2} \ldots b_{0}$.

Step 1. Let $j=n$ and temp $=$ value.
Step 2. For $k=r$ down to 1 do:

1. Repeat \{
2. $\quad j=j-1$;
3. $p=\binom{j}{k}$;
4. if $(t e m p \geq p)$
5. \quad temp $=$ temp $-p$;
6. $\quad b_{j}=1$;
7. else $b_{j}=0$;
8. $\}$ Until $\left(b_{j}=1\right)$;
9. Next k

Step 3. if $(j>0)$

$$
\begin{aligned}
& \text { For } k=j-1 \text { down to } 0 \text { do: } \\
& \qquad b_{k}=0
\end{aligned}
$$

Remark: $B=b_{n-1} b_{n-2} \ldots b_{0}$ is the $P O B$-number.

Lemma 8.1

Algorithm 8.1 generates the POB-number corresponding to the given $P O B$-value.

Proof: At step 2, of the algorithm, a maximum of $r b_{j} \mathrm{~S}$ will be equal to 1 . It may be observed that at any stage of the algorithm, $0 \leq t e m p$. Further, in any iteration of Step 2, for a k, at $j=k-1, p=\binom{k-1}{k}=0$ and so temp $\geq p$ (in line no. 4 of Step 2) and hence, b_{j} will be equal to 1 , if not so for a higher value of j. Hence, it is clear that, after execution of Step 2 , the binary string $B=b_{n-1} b_{n-2} \ldots b_{0}$ will have precisely r s and $n-j 0 \mathrm{~s}$. By Step 3, it will have $r 1 \mathrm{~s}$ and $n-r 0 \mathrm{~s}$.

It may also be noted that, in step 2 of the algorithm, the following two conditions hold good:
(i.) in line no. 1,

$$
\begin{equation*}
0 \leq t e m p \leq\binom{ j}{k}-1 \tag{8.12}
\end{equation*}
$$

and (ii.) in line no. 9,

$$
\begin{equation*}
0 \leq t e m p \leq\binom{ j}{k-1}-1 \tag{8.13}
\end{equation*}
$$

This can be proved as follows:
At the first time when the control reaches the line no. 1, in Step 2., we have, temp $=$ value, $j=n, k=r$. So, inequality (8.12) trivially holds good as per the specification, $0 \leq$ value $\leq\binom{ n}{r}-1$, mentioned in the input. In line no. $2, j$ is decremented by 1 , so that in line no. 2 , with new value of j, inequality (8.12) takes the form

$$
\begin{equation*}
0 \leq t e m p \leq\binom{ j+1}{k}-1 \tag{8.14}
\end{equation*}
$$

In line no. 4 , if $\operatorname{temp} \leq p-1$, where $p=\binom{j}{k}$, then b_{j} will be set to 0 , and the Repeat ... Until loop continues with none of the variables modified and control reaches line no. 1, so that inequality (8.12) holds good in this case.

On the other hand, if temp $\geq p$, then, temp is decremented by a value of $p=\binom{j}{k}, b_{j}$ will be set to 1 , so that the Repeat ... Until loop terminates and control reaches line no. 9. By using equation (8.9), the new value of temp satisfies $0 \leq t e m p \leq$ $\binom{j}{k-1}-1$. i.e., inequality (8.13) holds good at line no 9 .

In this case, value of k is decremented by 1 , and if $k \geq 1$, the for loop continues and control reaches line no. 1 , and inequality (8.13) becomes inequality (8.12) with the new value of k.

By principle of induction, the argument holds good for the new set of values of j, k and temp so long as k reaches 1 .

It may be noted that, when k reaches 1, in Step2, and for a j, when $b_{j}=1$, at line no. 6 of Step 2,
tem $p \leq\binom{ j}{k-1}-1=0$. Since, temp ≥ 0, temp $=0$. In Step 3. we fills rest of $b_{j} \mathrm{~s}$ (if any), with 0 . We have already ensured that there are exactly r number of $b_{j} \mathrm{~S}$ with 1 s .

Whenever b_{j} is assigned 1 , temp is diminished by p which is indeed $\binom{j}{k}$ and for the last j when b_{j} is assigned 1 , in the algorithm, temp $=0$. Thus POB-value of the B generated by the algorithm is value and the correctness of the algorithm is established.

If we want to compute all the POB-values sequentially, we could even have easier algorithm as follows:

Algorithm 8.2 (Generate all POB-numbers)
In a $P O B(n, r)$ number system, the algorithm prints all the $P O B$ Numbers sequentially.
Input : Positive integers n and r, with the condition $r \leq n$.
Output: All the POB-numbers in $\operatorname{POB}(n, r)$ number system.

Step 1. Let $B=b_{n-1} b_{n-2} \ldots b_{0}$ be a binary string,

$$
\text { suchthat, } b_{i}= \begin{cases}1, & \text { if } 0 \leq i \leq r-1 \\ 0, & \text { if } r \leq i \leq n-1\end{cases}
$$

[B is the first $P O B$-number in the $P O B(n, r)$ number system.]

Step 2. Let done $=0$

1. Repeat \{
2. Print B
3. Let $\operatorname{NoOfZeros}=0, i=0$ and $j=1$.
4. while $\left(b_{j}=1\right.$ or $\left.b_{i}=0\right)$ do $\{$
5. if $\left(b_{i}=0\right)$ NoOfZeros $=$ NoOfZeros +1 ;
6. \quad if $(j=n-1)$ done $=1$;
7. $\quad i=j$;
8. $\quad j=j+1$
9. \}
10. $\quad b_{j}=1$;
11. $j=i-$ NoOf Zeros;
12. while $(i \geq j)$ do $\{$
13. $\quad b_{i}=0, i=i-1$
14. \}
15. while $(i \geq 0)$ do $\{$
16. $\quad b_{i}=1, i=i-1$
17. \}
18. \} Until $($ done $=1)$;

Given a POB-number B with POB-value $V(B)$, the algorithm 8.3, described below, will generate the successor of the POB-number, which corresponds to the value $V(B)+1$. The algorithm may be used at the key distribution time for an easier and fast computation of the distribution of various keys.

In a $\operatorname{POB}(n, r)$ number system, given a POB-number $B=$ $b_{n-1} b_{n-2} \ldots b_{0}$, with POB-value $V(B)$, the following algorithm
\square
\square

generates the binary digits of the POB-number, having POB- value $V(B)+1$ and algorithm returns 1. If the input B is the last POB-number, the algorithm returns 0 as an indication that the output is not correct.

Algorithm 8.3 (Generate the next POB-number)
Input : An n digit $P O B$-number $B=b_{n-1} b_{n-2} \ldots b_{0}$.
Output: The POB-number corresponding to POB-value $=V(B)+$ 1, and return 1 or 0.

Step 1. Search for the substring 01 in B from right end, i.e., find the max j, such that $b_{j}=0, b_{j-1}=1$

Step 2. If the search in Step 1 failed, return 0, as B contains no substring as 01, B is the maximum number that can be represented,

Step 3. Set $b_{j}=1, b_{j-1}=0$ and reverse the substring $b_{j-2} \ldots b_{0}$ and return 1. The resulting string corresponds to $V(B)+1$.

It can be seen that the algorithm 8.4 discussed below, generates the predecessor of POB-number, which corresponds to the value $V(B)-1$

Algorithm 8.4 (Generate Predecessor POB-number)
Input : An n digit $P O B$-number $B=b_{n-1} b_{n-2} \ldots b_{0}$.
Output: The POB-number corresponding to POB-value $=V(B)-$ 1 , and return 1 or 0.

Step 1. Search for the substring 10 in B from right end, i.e., find the max j, such that $b_{j}=1, b_{j-1}=0$

Step 2. If the search in Step 1 failed, return 0, as B contains no substring as 10 , and $B=0$, the smallest number that can be represented.

Step 3. Set $b_{j}=0, b_{j-1}=1$ and reverse the substring $b_{j-2} \ldots b_{0}$ and return 1.

The resulting string corresponds to $V(B)-1$.

8.5 Illustrations

If $B=001101010$, the next no. is 001101100 ;
If $B=000111100$, the next no. is 001000111 ;
If $\mathrm{B}=111100000$, B is the largest number which can be represented, and so it returns zero. If $B=101001100$, the predecessor no. is 101001010;
If $B=001000111$, the predecessor no. is 000111100 ;
If $\mathrm{B}=000001111, \mathrm{~B}$ is the smallest number which can be represented, and so it returns zero.

Remarks

Given two positive integral values n and r such that $n \geq r$, there will be exactly $\binom{n}{r}$ members in $\operatorname{POB}(n, r)$. Using

Algorithm 8.1 and taking $0 \ldots\binom{n}{r}-1$ as POB-values, the corresponding POB-numbers can be generated and therefore the entire $\operatorname{POB}(n, r)$ system could be generated by the Algorithm 8.1.

8.6 Concluding remarks

We have generalized the concept of balanced string, and have introduced a new number system, called Permutation Ordered Binary Number System. We have proved that the POB-number representation is unique. Also, several algorithms to manipulate POB-number system are discussed. This number system has great potential in Secret Sharing.

Chapter 9

Improvement Scheme Using POB Numbers

9.1 Introduction

In this section we describe the construction details of a $(2,2)$ secret sharing scheme and in the next section, the construction details of an n out of n scheme for $n \geq 3$. The simplest version of the scheme assumes that the secret consists of a sequence of bytes and each byte is handled separately. The construction is based on the following theorem, which is a particular case (when $t=9$) of the theorem 4, discussed in the last chapter.

Theorem 6

Let T be a binary string of even parity, having length 9. Then we can find two binary strings A and B each having exactly four $1 s$ and five 0s such that $T=A \oplus B$.

9.2 A (2, 2) Construction

Let $K=k_{1} k_{2} \ldots k_{8}$ be one byte of the secret information to be shared between two participants. In order to share the byte between two participants, we first extend the byte by inserting a bit at random position, $r, 1 \leq r \leq 9$. The inserted digit will be such that, the resulting extended string T is of even parity. This extended string T is split into two $\operatorname{POB}(9,4)$ numbers, according to theorem 6 , such that $T=A \oplus B$. The shares S_{1} and S_{2} are the values $V(A)$ and $V(B)$ represented by the POB-numbers A and B respectively. Note that $V(A)$ and $V(B)$ are 7 bits long.

9.2.1 Algorithm to Share one byte between two shares

The details of construction is described in the following Algorithm 9.1.

Algorithm 9.1 (Sharing a byte between two blocks)
Input: A binary string $K=K_{1} K_{2} \ldots K_{8}$.
Output: Two blocks S_{1} and S_{2} of length 7 bits.

Step 1. Let A and B are two 9 bits long integers.
Set all the bits of A and B to null, randomly select an integer r in [1...9].

Step 2. The input string K is extended to T by inserting one bit at position r.

Compute the binary string $T=T_{1} T_{2} \ldots T_{9}$
where $T_{i}= \begin{cases}K_{i}, & \text { if } i<r \\ K_{i-1}, & \text { if } i>r \\ 0, & \text { if } i=r \text { and } K \text { is even parity } \\ 1, & \text { if } i=r \text { and } K \text { is odd parity }\end{cases}$

Step 3. noOfOne $=0$;
For $i=1$ to 9 do
if $\left(T_{i}=1\right)$ then
noOfOne $=n o O f O n e+1 ;$
if (noOfOne is odd) $A_{i}=1$;
else $A_{i}=0$;
Step 4. Randomly assign the rest null bits of A
to 0 or 1, and let A consists of four 1s and five 0s.
Step 5. let $j=0$.
For $i=1$ to 9 do

$$
B_{i}=A_{i} \oplus T_{i}
$$

Step 6. Let S_{1} and S_{2} be the POB-values corresponding to the $P O B$-numbers A and B, respectively.

9.2.2 Algorithm to Recover the shared byte

Algorithm 9.2 (Recover the secret information)
Input: Two shares S_{1} and S_{2} of length 7 bits each and the random integer r.
Output: The secret information $K=K_{1} K_{2} K_{3} \ldots K_{8}$.

Step 1. Let A and B be the $P O B$-numbers corresponding to S_{1} and S_{2} respectively.

Step 2. For $i=1$ to 8 do

$$
\begin{aligned}
& \text { if }(i \geq r) j=i+1 \\
& \text { else } j=i \\
& K_{i}=A_{j} \oplus B_{j}
\end{aligned}
$$

Step 3. The recovered secret is $K=K_{1} K_{2} K_{3} \ldots K_{8}$

Lemma 9.1

The above scheme is a 2 out of 2 secret sharing scheme.

Proof: It may be observed that, in step 2 of Algorithm 9.1, the extended string T is of even parity. Since the length of T is 9 , it can have a maximum of eight 1 s . Let T contains $2 m,(0 \leq$ $m \leq 4) 1 \mathrm{~s}$. Then in Step 3, the $2 m$ bits of A, corresponding to the 1 s in T will be set to 1 s and 0 s equally. The Step 4 of Algorithm 9.1, ensures that A contains four 1s and five 0s. The string $B=A \oplus T$, computed in Step 5 , also consists of four 1 s and five 0 s , as per Theorem 4. So the shares S_{1} and S_{2}, which are POB-values of A and B, are each of 7 bits length. The condition
$B=A \oplus T$ in Step 5 , implies $T=A \oplus B$, and if we drop out $r^{\text {th }}$ bit of T, we get, K. Thus, the above scheme is a 2 out of 2 secret sharing scheme. Besides, each byte is shared by a seven bit string.

It may be seen that in algorithm 9.1, the size of shares is only 7 bits, while the size of the original secret message is 8 bits. The new scheme provides a gain of one bit per one byte of secret in its representation.

Example 9.1

Let us consider a secret of two bytes, say, $K=1101111010100001$

Let the random numbers generated to share these two bytes be 4 , and 3 respectively, so that the extended string T (inserted bits are underlined) is as follows:

Step 2. 110011110101100001.
The string A after step 3 and 4 are as follows:
Step 3. $10 * * 1010 * 1 * \underline{0} 1 * * * * 0$.
Step 4. 101010100100110100
The string $B=A \oplus T$, computed in Step 5 is:
011001010001010101.

The indices of these codes are 98,88 and 59,20 .

The final shares are 11000101011000 and 01110110010100.

Recovery : The codes corresponding to the numbers are as follows:

$$
\begin{aligned}
A & : 101010100100110100 \\
B & : 011001010001010101 \\
\text { Compute } T=A \oplus B & =110011110101100001
\end{aligned}
$$

6 Deleting the $4^{\text {th }}$ and $3^{\text {rd }}$ bits from the consecutive blocks of T, we get, the secret $K=1101111010100001$.

9.3 An (n, n) Construction

9.3.1 Algorithm to Share one byte between n shares

The details of construction is described in the following Algorithm 9.3.

Algorithm 9.3 (Sharing a secret among n blocks)
Input:A single byte string $K=K_{1} K_{2} K_{3} \ldots K_{8}$.
Output: n shares $S_{1}, S_{2}, \ldots, S_{n}$ of length 7 bits.

Step 1. Let $A_{1}, A_{2}, \ldots A_{n}$ be null strings of length 9 bits.
Step 2. Randomly assign n-2 POB(9,4)-numbers one
for each of $A_{i}, 2 \leq i \leq n-1$.
Let $r=\left\lceil\frac{V\left(A_{2}\right)+1}{14}\right\rceil$
Step 3. The input string K is expanded to T
by inserting one bit at position r.
Compute the binary string $T=T_{1} T_{2} \ldots T_{9}$

$$
T_{i}= \begin{cases}K_{i}, & \text { if } i<r \\ K_{i-1}, & \text { if } i>r \\ 0, & \text { if } i=r \text { and } K \text { is even parity } \\ 1, & \text { if } i=r \text { and } K \text { is odd parity }\end{cases}
$$

Step 4. Let $W=T \oplus A_{2} \oplus A_{3} \oplus \ldots \oplus A_{n-1}$
Step 5. Let $W=W_{1} W_{2} \ldots W_{9}$

$$
\text { noOfOne }=0 \text {; }
$$

For $i=1$ to 9 do

$$
\begin{aligned}
& \text { if }\left(W_{i}=1\right) \text { then } \\
& \quad \text { noOfOne }=\text { noOfOne }+1 ; \\
& \quad \text { if (noOfOne is odd) } A_{1 i}=1 ; \\
& \quad \text { else } A_{1 i}=0 ;
\end{aligned}
$$

Step 6. Randomly assign the rest null bits of A_{1} to 0 or 1, let A_{1} consists of four $1 s$ and five 0 s.

Step 7. Compute $A_{n}=W \oplus A_{1}$
Step 8. For $i=1$ to n do

$$
S_{i}=V\left(A_{i}\right)
$$

Algorithm 9.4 (Recover the secret information)
Input: n shares $S_{1}, S_{2}, \ldots, S_{n}$ of length 7 bits each.
Output: The secret information $K=K_{1} K_{2} K_{3} \ldots K_{8}$.

Step 1. Let $A_{1}, A_{2}, \ldots A_{n}$ be the POB-numbers corresponding to $S_{1}, S_{2}, \ldots, S_{n}$ respectively and $r=\left\lceil\frac{\left.S_{2}\right)+1}{14}\right\rceil$

$$
\begin{aligned}
& \text { Compute } T=A_{1} \oplus A_{2} \oplus A_{3} \oplus \ldots \oplus A_{n} \\
& \text { Let } T=T_{1} T_{2} \ldots T_{9} \\
& \text { Step 2. For } i=1 \text { to } 8 \text { do } \\
& \text { if }(i \geq r) j=i+1 \text {; } \\
& \text { else } j=i \text {; } \\
& K_{i}=T_{j} .
\end{aligned}
$$

Step 3. The recovered secret is $K=K_{1} K_{2} K_{3} \ldots K_{8}$

Lemma 9.2

The above scheme is an n out of n secret sharing scheme.

Proof: In Step 2, of Algorithm 9.3, A_{i} s are assigned as random $\operatorname{POB}(9,4)$-numbers, $V\left(A_{2}\right)$ is a random number in $[0$, $\ldots, 125]$ and hence, $r=\left\lceil\frac{V\left(A_{2}\right)+1}{14}\right\rceil$, is uniformly at random number in $[1, \ldots, 9]$. It may be noted that after Step 3, the expanded string T is of even parity. It is clear that Step 4 of Algorithm 9.3, we have,

$$
\begin{equation*}
W=T \oplus A_{2} \oplus A_{3} \oplus \ldots \oplus A_{n-1} \tag{9.1}
\end{equation*}
$$

from which the following equation holds:

$$
\begin{equation*}
T=W \oplus A_{2} \oplus A_{3} \oplus \ldots \oplus A_{n-1} \tag{9.2}
\end{equation*}
$$

Further more, since all the $A_{i} \mathrm{~S}$ are of even parity, W is also of even parity. The W is written as,

$$
\begin{equation*}
W=A_{1} \oplus A_{n} \tag{9.3}
\end{equation*}
$$

by using Steps 5, 6, and 7, in the same way as what we have done in the case of Algorithm 9.1. Substituting equation (9.3) in equation (9.2), we get,

$$
\begin{equation*}
T=A_{1} \oplus A_{2} \oplus A_{3} \oplus \ldots \oplus A_{n} \tag{9.4}
\end{equation*}
$$

Finally, the shares, $S_{i} \mathrm{~s}$, are POB-values corresponding to the POB-numbers $A_{i} \mathrm{~s}$. In order to get the secret $\mathrm{K}, r^{\text {th }}$ bit of T is dropped out.

Example 9.2

For a $(5,5)$ threshold scheme, secret $K=10110110$ is taken.

Randomly assign five 0 s and four 1 s to 3 rows $\left\{A_{2}, A_{3}, A_{4}\right\}$. ${ }_{10}$ Therefore,

$$
\begin{aligned}
& A_{2}=101100010, \\
& A_{3}=010101001, \text { and } \\
& A_{4}=110010100 .
\end{aligned}
$$

Let the random number $r=\left\lceil\frac{V\left(A_{2}\right)+1}{14}\right\rceil=\left\lceil\frac{102}{14}\right\rceil=8$.
The expanded string T as per step 3, of Algorithm 9.3 is $T=101101110$

Step 4. Computes $W=100110001$,
by Step 5., $A_{1}=1 * * 01 * * * 0$, and by step $6 ., A_{1}$ becomes $=110010100$

By Step 7, $A_{5}=010100101$
$S_{1}=1110001$,
$S_{2}=1100101$,
$S_{3}=0110000$,
$S_{4}=1110001$, and
$S_{5}=0101110$.

Recovery: Compute $T=A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{4} \oplus A_{5}$, and get 101101110. Deleting the $8^{\text {th }}$ bit, we get secret as $K=10110110$.

9.4 Security Analysis

In the construction under the $\operatorname{POB}(9,4)$ number system there are a total of 126 shares corresponding to one byte of secret. The probability of a correct guess of a share is $\frac{1}{126}$ per byte of secret. This would mean that for a secret of m-bytes, the probability of correct guess of a share will be as low as $\left(\frac{1}{126}\right)^{m}$.

9.5 Concluding remarks

We have seen that, a 9 bit POB-number could be represented by a 7 bit binary number. By taking the benefit of this, we have proposed a secret sharing scheme. The algorithms for generating the shares and recovery of the secret are discussed. The proposed scheme is effective, where we have a gain of one bit for every 8 bits of information. The full potential of the newly introduced POB-number system is yet to be explored.

Chapter 10

Conclusions

We have given the theoretical background of Secret Sharing Schemes and the historical development of the subject. The evolution of the various schemes are accounted in the initial chapters. We have included a few examples to improve the readability of the thesis. We have tried to maintain the rigor of the treatment of the subject.

The limitations and disadvantages of the various forms secret sharing schemes are brought out. Several new schemes for both dealing and combining are included in the thesis. We have introduced a new number system, called, POB number system. Representation using POB number system has been presented. Algorithms for finding the POB number and POB value are given. We have also proved that the representation using POB number system is unique and is more efficient. Being a new system, there
is much scope for further development in this area.
Our research findings are well appreciated by the research

APPENDIX 1

The Distribution of keys

Let us return to the example we considered in section 1.3. We denote the scientists by the letters: a, b, \ldots, k. As per our scheme, any 6 of the 11 scientists together should be able to open the cabinet using the keys in their possession. The scheme envisages the use of at least one key from each of the six scientists. There are in all 462 different locks and keys. The keys are numbered from 0 to 461 . For each lock there must be exactly six keys as no five from among the 11 scientists could be able to open a particular lock. The allotment of each key to the scientists are denoted by 1s against their names in the column. For example key no. 3 will be available with scientists - e, f, g, i, j and k. In other words, any permutation of six 1 s and five 0 s denote allotment of a specific key. Every such permutation can be considered as a unique 11 digit binary number having a specific decimal value. We have chosen to assign the key numbers in the ascending order of its decimal value. For example, key no. 0 has 63 as decimal value, where as key no. 35 has 343 as its value.

An algorithm for allocating the 462 keys is given in Table 10.1.

It may be noted that the numeric value corresponding to the distribution of keys of a specific lock can be easily computed as follows:

The key no. can be computed from the corresponding binary number in the table using the following formula:

$$
\text { keyno. }=\sum_{j=0}^{10} b_{j}\binom{j}{p_{j}}
$$

where

$$
\begin{equation*}
p_{j}=\sum_{i=0}^{j} b_{i} \tag{10}
\end{equation*}
$$

and $b_{10} b_{9} \ldots b_{0}$ is the binary number. For example, the key no. corresponding to the binary number

$$
\begin{aligned}
10110011010 & =\binom{10}{6}+\binom{8}{5}+\binom{7}{4}+\binom{4}{3}+\binom{3}{2}+\binom{1}{1} \\
& =210+56+35+4+3+1 \\
& =309
\end{aligned}
$$

It may be noted that the table consists of all binary numbers of length 11 and having precisely 61 s, arranged in the ascending order of its decimal value.

16
12

Table 10.1: The distribution of keys of various locks to the scientists.

S	Scientists		Sl	Scientists	
No.	a b c d ef ghi j k	value	No.	abcdefghi j k	value
0	00000111111	63	33	00100111110	318
1	00001011111	95	34	00101001111	335
2	00001101111	111	35	00101010111	343
3	00001110111	119	36	00101011011	347
4	00001111011	123	37	00101011101	349
5	00001111101	125	38	00101011110	350
6	00001111110	126	39	00101100111	359
7	00010011111	159	40	00101101011	363
8	00010101111	175	41	00101101101	365
9	00010110111	183	42	00101101110	366
10	00010111011	187	43	00101110011	371
11	00010111101	189	44	00101110101	373
12	00010111110	190	45	00101110110	374
13	00011001111	207	46	00101111001	377
14	00011010111	215	47	00101111010	378
15	00011011011	219	48	00101111100	380
16	00011011101	221	49	00110001111	399
17	00011011110	222	50	00110010111	407
18	00011100111	231	51	00110011011	411
19	00011101011	235	52	00110011101	413
20	00011101101	237	53	00110011110	414
21	00011101110	238	54	00110100111	423
22	00011110011	243	55	00110101011	427
23	00011110101	245	56	00110101101	429
24	00011110110	246	57	00110101110	430
25	00011111001	249	58	00110110011	435
26	00011111010	250	59	00110110101	437
27	000111111100	252	60	00110110110	438
28	00100011111	287	61	00110111001	441
29	00100101111	303	62	00110111010	442
30	00100110111	311	63	00110111100	444
31	00100111011	315	64	00111000111	455
32	00100111101	317	65	00111001011	459

Table 10.1 Continues

Sl.	Scientists	Binary	Sl.	Scientists	
No	abcdefghijk	value	No.	abcdefghijk	value
66	00111001101	461	99	01001110011	627
67	00111001110	462	100	01001110101	629
68	00111010011	467	1010	01001110110	630
69	00111010101	469	102	01001111001	633
70	00111010110	470	03	01001111010	634
71	00111011001	473	104	01001111100	636
72	00111011010	474	105	01010001111	655
73	00111011100	476	106	01010010111	663
74	00111100011	483	107	01010011011	667
75	00111100101	485	108	01010011101	669
76	00111100110	486	109	01010011110	670
77	00111101001	489	110	01010100111	679
78	00111101010	490	1110	0101010101	683
79	00111101100	492	112	01010101101	685
80	00111110001	497	1130	01010101110	686
81	00111110010	98	114	01010110011	691
82	00111110100	500	115	01010110101	仡
83	00111111000	504	116	01010110110	694
84	01000011111	543	0	01010111001	697
85	01000101111	559	118	01010111010	698
86	01000110111	567	119	01010111100	700
87	01000111011	571	0	01011000111	711
88	01000111101	573	1210	01011001011	715
89	01000111110	574	122	0101100110	717
90	01001001111	591	0	01011001110	718
91	01001010111	599	124	01011010011	723
92	01001011011	603	125	01011010101	5
93	01001011101	605	0	01011010110	726
94	01001011110	606	1270	01011011001	729
95	01001100111	615	128	01011011010	30
96	01001101011	619	129	01011011100	732
97	01001101101	621	130	01011100011	739
98	01001101110	622	1310	01011100101	741

Table 10.1 Continues

Sl.	Scientists	Binary	S	Scientists	Binary
No.	abc de f g h i j k	value	No.	abcdefgh i j k	al
132	01011100110	742	165	01101100011	867
133	01011101001	745	166	01101100101	869
134	01011101010	746	167	01101100110	870
135	01011101100	748	168	01101101001	873
136	010111110001	753	169	01101101010	874
137	01011110010	754	170	01101101100	876
138	01011110100	756	171	01101110001	881
139	01011111000	760	172	01101110010	882
140	01100001111	783	173	01101110100	884
141	01100010111	791	174	01101111000	888
142	01100011011	795	175	01110000111	903
143	01100011101	797	176	01110001011	907
144	01100011110	798	177	01110001101	909
145	01100100111	807	178	01110001110	910
146	01100101011	811	179	01110010011	915
147	01100101101	813	180	01110010101	917
14	01100101110	814	18	01110010110	918
149	01100110011	819	182	01110011001	921
150	01100110101	821	183	01110011010	922
151	01100110110	822	184	011110011100	924
152	01100111001	825	185	01110100011	931
153	01100111010	826	186	01110100101	933
154	01100111100	828	187	01110100110	934
155	01101000111	839	188	01110101001	937
156	01101001011	843	189	01110101010	938
157	01101001101	845	190	01110101100	940
158	01101001110	846	191	01110110001	945
159	01101010011	851	192	011101010010	946
160	01101010101	853	193	01110110100	948
161	01101010110	854	194	01110111000	952
162	01101011001	857	195	01111000011	963
163	01101011010	858	196	01111000101	965
164	01101011100	860	197	01111000110	966

Table 10.1 Continues

Sl.	Scientists	Binary	Sl.	Scientists	ry
No	abcdefghi jk	value	No.	abcdefghijk	value
19	01111001010	970	231	10010001111	1167
198	01111001001	969	232	10010010111	1175
200	01111001100	972	233	10010011011	1179
201	01111010001	977	234	10010011101	1181
202	01111010010	978	235	10010011110	1182
203	01111010100	980	236	10010100111	1191
204	01111011000	984	237	10010101011	1195
20	01111100001	993	238	10010101101	1197
206	01111100010	994	239	10010101110	1198
207	01111100100	996	240	10010110011	1203
208	01111101000	1000	241	10010110101	1205
209	01111110000	1008	242	10010110110	1206
210	10000011111	1055	243	10010111001	1209
211	10000101111	1071	244	10010111010	1210
212	10000110111	1079	245	10010111100	1212
213	10000111011	1083	246	10011000111	1223
214	10000111101	1085	247	10011001011	1227
215	10000111110	1086	248	10011001101	1229
	10001001111	1103	249	10011001110	1230
217	10001010111	1111	250	10011010011	1235
218	10001011011	1115	251	10011010101	1237
219	10001011101	1117	252	10011010110	1238
220	10001011110	1118	253	10011011001	1241
221	10001100111	1127	254	10011011010	1242
222	10001101011	1131	255	10011011100	1244
223	10001101101	1133	256	10011100011	1251
224	10001101110	1134	257	10011100101	1253
225	10001110011	1139	258	10011100110	1254
226	10001110101	1141	259	10011101001	1257
227	10001110110	1142	260	10011101010	1258
228	10001111001	1145	261	10011101100	1260
229	10001111010	1146	262	10011110001	1265
230	10001111100	1148	263	10011110010	1266

Table 10.1 Continues

	abcdefohijk				
		12	297	1	1393
	10011111000	1272	98	10101110010	1394
	10100001111	1295	99	10101	396
		1303			400
	101	1307	01	101100	
	10100011101	1309	02	1011000101	
	10100011110	1310			
	10	1319		10	
	10100101011	1323	05	1011001	1427
	10100101101	32		1011001	
	10	1326		1	
	101	1331	08	101100	
	10100110101	1333	309	10110011010	
	10100110110	1334		10	
	10	133		10	
	10100111010	13	12	1011010010	
	10100111100	1340		10110100	
	10101000111	1351		1	
	10101001011	1355		10110	
	10101001101	1357	16	101101	452
	10101001110	1358		1011011000	
	10			10	
	1010	1365	19	10110	
	10101010110	1366	20	10110111000	
	10101011001			101110	
	1010	1370		10	
	10101011100	137		101	
	10101100011	1379		1011100100	
	101				
	10101100110	1382	326	10111001	
	10101101001	1385	27	10111010001	
	10101101010	1386	328		

Table 10.1 Continues

Sl.	Scientists	Binary	Sl.	Scientists	Binary
No	abcdefghijk	value	No.	abcdefghijk	value
330	10111011000	1496	363	11001100110	1638
331	10111100001	1505	364	11001101001	1641
332	10111100010	1506	365	11001101010	1642
33	10111100100	1508	366	11001101100	1644
334	10111101000	1512	367	11001110001	1649
335	10111110000	1520	368	11001110010	1650
336	11000001111	1551	369	11001110100	1652
337	11000010111	1559	370	11001111000	1656
338	11000011011	1563	371	11010000111	1671
339	11000011101	1565	372	11010001011	1675
340	11000011110	1566	373	11010001101	1677
341	11000100111	1575	374	11010001110	1678
342	11000101011	1579	375	11010010011	1683
343	11000101101	1581	376	11010010101	1685
344	11000101110	1582	377	11010010110	1686
34	11000110011	1587	378	11010011001	1689
346	11000110101	1589	379	11010011010	1690
347	11000110110	1590	380	11010011100	1692
348	11000111001	1593	381	11010100011	1699
349	11000111010	1594	382	11010100101	1701
350	11000111100	1596	383	11010100110	1702
351	11001000111	1607	384	11010101001	1705
352	11001001011	1611	385	11010101010	1706
353	11001001101	1613	386	11010101100	1708
354	11001001110	1614	387	11010110001	1713
355	11001010011	1619	388	11010110010	1714
356	11001010101	1621	389	11010110100	1716
357	11001010110	1622	390	11010111000	1720
358	11001011001	1625	391	11011000011	1731
359	11001011010	1626	392	11011000101	1733
360	11001011100	1628	393	11011000110	1734
361	11001100011	1635	394	11011001001	1737
362	11001100101	1637	395	11011001010	1738

Table 10.1 Continues

				abcdefghi	
	11011001100	1740	429	11101001001	
	11011010001	1745	30		1866
		1746		11	
		1748		1110	
	11011011000	1752	33	1110101001	1874
	11011100001	1761		11101	1876
		1762			
	11011100100	1764	36	11	889
	11011101000	1768	37	11101	890
		1776			
	11100000111	1799	439	11	
	11100001011	1803	440	11101110000	1904
	11100001101	1805		111	
		1806		11	
	11100010011	18	43	111	
	11100010101	1813		1111000100	1929
		1814		11110001010	
		1817		11	
	11100011010	1818	447	11	937
	11100011100	1820		1	
				1	
	11	1829	50	11	
	11100100110	183	451	1111010000	953
	11100101001	183		1111010	
				11110	
	11100101100	183		111101	
	11100110001			1111011000	
	11100110010			11	
	11100110100	1844	457	11	986
	11100111000	184	458	11111000100	988
	11101000011	185		11	992
					2000
		186			

APPENDIX 2

The Extended Euclidean Algorithm

Suppose a and b are positive integers and d be their greatest common divisor. We know that the g.c.d can be written as a linear combination of the numbers. S, there exists integers x and y, such that,

$$
\begin{equation*}
a x+b y=d \tag{10.1}
\end{equation*}
$$

It may be noted that, except in some trivial cases, x and y will be of opposite signs. If x and y satisfies equation (10.1), so is $(x+q b)$ and $(y-q a)$, for any integer q. So, one can always find integers x any y, with $x>0$ and $y<0$, which satisfies the equation (10.1).

The Extended Euclidean Algorithm will calculate d, and also two integers x and y, such that $a x+b y=d$ at the same time. This explains why the resulting procedure is known as the Extended Euclidean Algorithm. The version of the algorithm we present here is the creation of D. E. Knuth, author of the famous book The Art of Computer Programming. The Algorithm can be found in volume 2 of the series; (see Knuth [40]. section 4.5.2, algorithm X.$)$

Algorithm 10.1 (Extended Euclidean Algorithm)

Step 1. Initialize $x=0, y=1$

$$
c=a, d=b
$$

Step 2. Repeat

$$
\begin{aligned}
& r=c(\bmod d) \\
& q=(c-r) / d \\
& \text { if }(r=0) \text { GO TO Step } 3 . \\
& t=x \\
& x=y-x * q \\
& y=t \\
& c=d \\
& d=r
\end{aligned}
$$

Step 3. $y=(d-a * x) / b$
Step 4. The numbers x and y satisfies

$$
a x+b y=d=G \cdot C \cdot D(a, b)
$$

If G.C.D $(a, b)=1$, then $a x+b y=d$ becomes $a x \equiv 1(\bmod b)$ and $b y \equiv 1(\bmod a) . S o, a^{-1} \equiv x(\bmod b)$, as well as $b^{-1} \equiv y$ $(\bmod a)$. We can use the above algorithm to find out the inverse, whenever it exists.

Example 10.1

Let us find the inverse of $655(\bmod 1234), 655^{-1}(\bmod 1234)$

The following table shows the values of the variables r, q, and x at $3^{\text {rd }}$ line in each iteration of Step 2.
Step 3 evaluates $y=341$, which is the inverse of $655(\bmod 1234)$.

Table 10.2: Illustration of Extended Euclidean Algorithm

Iteration Number	Remainders (r)	Quotients (q)	(x)
1	579	1	0
2	76	1	1
3	47	7	-1
4	29	1	8
5	18	1	-9
6	11	1	17
7	7	1	-26
8	4	1	43
9	3	1	-69
10	1	1	112
11	0	3	-181

APPENDIX 3

2 List of Research Papers

Published Papers :

1. Uniform Secret Sharing Schemes for (2, n) Threshold Using Visual Cryptography:
International Journal of Information Processing, Volume 2, Number 4, 2008 pp 82- 87.
2. International Conference held at I.I.T., Kanpur. The paper is available in the web-site of the conference at pages: 33 to 37 . The URL is
http://www.security.iitk.ac.in/hack.in/2009/repository/proceedings_hack.in.pdf

Accepted Papers:

3. An Efficient Secret Sharing Scheme for n out of n scheme using POB-number system:
Journal of Discrete Mathematical Sciences and Cryptography
4. An Effective Secret Sharing Scheme for n out of n scheme using modified Visual cryptography:
Journal of Computer Science

Communicated papers:

5. An Efficient Secret Sharing Scheme for $(n-1, n)$ threshold using Visual cryptography:
International Journal of Information Processing.

APPENDIX 4

SYNOPSIS of the Ph. D. thesis

Submitted by
A. Sreekumar, Research Scholar (Part-time),

Department of Computer Applications, Cochin University of Science and Technology,

Under the guidance of
Professor, Dr. S. Babusundar

Topic: CRYPTOGRAPHY

Title: Secret Sharing Schemes using Visual Cryptography

1. Introduction

Handling secret has been an issue of prominence from the time human beings started to live together. Important things and messages have been always there to be preserved and protected from possible misuse or loss. Some time secret is thought to be secure in a single hand and at other times it is thought to be secure when shared in many hands. Some of the formulae of vital combinations of medicinal plants or roots or leaves, in

Ayurveda were known to a single person in a family. When he becomes old enough, he would rather share the secret formula to a chosen person from the family, or from among his disciples. There were times when the person with the secret dies before he could share the secret. Probably, similar incidents might have made the genius of those era to think of sharing the secrets with more than one person so that in the event of death of the present custodian, there will be at least one other person who knows the secret.

Secret sharing in other forms were prevailing in the past, for other reasons also. Secrets were divided into number of pieces and given to the same number of people. To ensure unity among the participating people, the head of the family would share the information with respect to wealth among his children and insist that after his death, they all should join together to inherit the wealth.

To test the valor of the youth of a nation, a king, would hide treasure in some place in his kingdom and information about it would be placed in pieces at different places of varying grades of difficulty to reach. Only the brave and the intelligent would reach the treasure.

Military and defense secrets have been the subject matter for secret sharing in the past as well as in the modern days. Secret sharing is a very hot area of research in Computer Science in
the recent past. Digital media has replaced almost all forms of communication and information preservation and processing. Security in digital media has been a matter of serious concern. This has resulted in the development of encryption and cryptography. Uniform secret sharing schemes form a part of this large study.
1.1 Definition: A Secret sharing scheme is a method of dividing a secret information into two or more pieces, with or without modifications, and retrieving the information by combining all or predefined sub collection of pieces.

The pieces of information are called shares and the process responsible for the division is called dealer. A predefined sub collection of shares which contains the whole secret in some form is called an allowed coalition. The process responsible for the recovery of the secret information from an allowed coalition is called a combiner.

A share contains, logically, a part of the information, but will be of no use. Thus no single share is of any threat to the confidentiality of the secret information. It is also envisaged that after the dealer process is over, the original information can be destroyed forever. This would mean that even the person responsible for the dealer process will not be a threat, thereafter. The secret information is recovered from any allowed coalition using the recovery process called combiner. The combiner would be able to recover the secret information, only if, all shares in
the allowed coalition is present and not with any fewer number of shares. Thus, in an allowed coalition, each member share is equally important such that without anyone of them, the secret information cannot be accessed.

Allowed coalition is also referred in the literature by other names too, such as, authentic collection, qualified collection or authorized set. We, in our work, preferred to call the sub collection of shares as allowed coalition.

Secret Sharing is an important tool in Security and Cryptography. In many cases there is a single master key that provides the access to important secret information. Therefore, it would be desirable to keep the master key in a safe place to avoid accidental and malicious exposure. This scheme is unreliable: if master key is lost or destroyed, then all information accessed by the master key is no longer available. A possible solution would be that of storing copies of the key in different safe places or giving copies to trusted people. In such a case the system becomes more vulnerable to security breaches or betrayal [53], [30]. A better solution would be, breaking the master key into pieces in such a way that only the concurrence of certain predefined trusted people can recover it. This has proven to be an important tool in management of cryptographic keys and multi-party secure protocols (see for example [33]).

As a solution to this problem, Blakley [9] and Shamir [53] introduced (k, n) threshold schemes. A (k, n) threshold scheme
allows a secret to be shared among n participants, in such a way that, any k of them can recover the secret, but $k-1$, or fewer, have absolutely no information on the secret.

Ito, Saito, and Nishizeki [36] described a more general method of secret sharing. An access structure is a specification of all subsets of participants who can recover the secret and it is said to be monotone if any set which contains a subset that can recover the secret, can itself recover the secret. Ito, Saito, and Nishizeki gave a methodology to realize secret sharing schemes for arbitrary monotone access structures. Subsequently, Benaloh and Leichter [5] gave a simpler and more efficient way to realize such schemes.

An important issue in the implementation of secret sharing scheme is the size of the shares distributed to the participants, since the security of a system degrades as the amount of the information that must be kept secret increases. So the size of the shares given to the participants is a key point in the design of secret sharing schemes. Therefore, one of the main parameters in secret sharing is, the average information rate ρ, of the scheme, which is defined as the ratio between the average length (in bits) of the shares given to the participants and the length of the secret. Unfortunately, in all secret sharing schemes the size of the shares cannot be less than the size of the secret, and so the information rate cannot be less than one. Moreover, there are access structures, for which, any corresponding secret
sharing scheme must give to some participant a share of size strictly bigger than the secret size. Secret sharing schemes with information rate equal to one are called ideal. A secret sharing scheme is called efficient if the total length of the n shares is polynomial in n.

2. Model of secret sharing

A common model of secret sharing has two phases. In the initialization phase, a trusted entity - the dealer, divides the secret information into shares and distributes the shares by secure means. In the reconstruction phase one of the allowed coalition submit their shares to a combiner, who reconstructs the secret. It is assumed that the combiner is an algorithm which only performs the task of reconstructing the secret. Various Secret Sharing Schemes have been proposed since 1979. The following are some of the known schemes:

1. Blakley's scheme using projective spaces over finite fields GF (q)
2. Simmons' scheme in terms of affine spaces
3. Shamir's scheme based on polynomial interpolation over finite fields.

In most of the schemes, when a great number of participants are involved, the scheme will become impractical. In the traditional

Secret Sharing Schemes, a shared secret information cannot be revealed without any cryptographic computations.
2.1 Visual Cryptography There are various connections between combinatorial structures and secret sharing. For example, a $(2,3)$ threshold scheme can be implemented based on a small Latin square. In 1994, Naor and Shamir invented a new type of secret sharing scheme, called Visual Cryptography scheme [48]. In secret sharing schemes using Visual Cryptography, a shared secret information (printed text, handwritten notes, pictures, etc.) can be revealed without any cryptographic computations. For example, in a (k, n) visual cryptography scheme, a dealer encodes a secret into n shares and gives each participant a share, where each share is a transparency. The secret is visible if any k (or more) of participants stack their transparencies together, but none can see the shared secret if fewer than k transparencies are stacked together.

3. Problem specification

Secret sharing is one of the cryptographic techniques providing security measures to protect information. Due to difficulty of finding a general solution, those problems have been studied in several particular cases, and several sharing schemes have been proposed. So this particular work focuses on a generalized scheme, for at least some values of k, which works with any number of participants.

4. Objective and scope of this Research

Most of the business organizations need to protect data from disclosure. As the world is more connected by computers, the hackers, power abusers have also increased, and most organizations are afraid to store data in a computer. So there is a need of a method to distribute the data at several places and destroy the original one. When a need of original data arises, it could be reconstructed from the distributed shares. The primitive objective of this research is to provide a solution to this problem.

5. Contribution of the Thesis

The research work provides a better mechanism for secure storage of information. The thesis work proceeds into three phases.

1. The first phase deals with studies and findings in the area of secret sharing.
2. The second phase of the work relates to investigating new structures suitable for specific applications.
3. The third phase deals with the mathematical proofs of the new findings.

6. Design of the scheme

In this research work, we considered a special type of codes, called Uniform Codes to propose sharing schemes. A string of 0s
and 1 s is called a uniform code, if the number of 1 's is either equal to or one more than the number of 0's. For example, 011010 and 1101001 are uniform codes where as 001 and 110110 are not. It can be seen that, if the length of a binary string is w, then the number of codes having length w, and having t 's is $\binom{\mathrm{w}}{\mathrm{t}}$. For a given w, this number is maximum when $t=\left\lfloor\frac{n}{2}\right\rfloor$, the integer part of $\frac{n}{2}$. So the maximum number of codes with a given length occurs when they are uniform. Four efficient threshold schemes are proposed based on Modified Visual Cryptography introduced in 2002. All the schemes are based on the uniform codes. The first scheme proposed is an efficient $(2, n)$ threshold scheme. This scheme provides an efficient way to hide a secret information in different shares, in which the size of the shares is just in $O\left(\log _{2} n\right)$ times the original secret size, where n is the number of participants. The second scheme is a $(3, n)$ threshold scheme in which the size of the shares is just in $O(n)$ times the original secret size, where n is the number of participants. The third scheme is $(n-1, n)$ threshold scheme in which the size of the share is in $O(n / 2)$. We have generalized the concept of Uniform code by relaxing the constraints, and introduced a new number system, called Permutation Ordered Number System (or POB-Number system). The system has two parameters. We have developed some algorithms for efficiently representing the usual numbers in the new system, and vice-versa. Finally we found that a certain class of binary strings can be decomposed in the
class of balanced strings, and Uniform Codes. By using the POBNumber system, we can represent Uniform codes and balanced strings effectively. We exploit this property, and developed an efficient sharing algorithm in which the size of the share is less than the size of the secret. We have come across the following finding: Let w be an even parity string and $n_{1}(w)$ denotes the number of 1's in a binary string w of length t. Then w can be written as $w=S_{1} \oplus S_{2} \oplus \ldots \oplus S_{n}$, where, S_{i} is a Uniform Code, for each $i=1,2, \ldots, n$. Here \oplus is the usual bitwise XOR operation. We have developed all the algorithms and illustrated them with appropriate examples. This scheme is very efficient, as the size of the share is less than the size of the original secret, in which we have a gain of $1 / 8$.

7. Content of the thesis

The thesis is presented in 10 chapters. We have taken care to provide a good account of the literature survey and the theoretical background of the topic of study. All the details of the development of the newly proposed algorithms and the proofs of the claim are also included. Some of the algorithms have been presented, either in full or in parts, in conferences and journals. An account of these publications are also included.

The first chapter deals with the introduction. It contains the sketch of the development and progress of the topic of study.

The Second chapter deals with history and literature survey.

The Third chapter deals with the visual cryptography and its examples.

The Fourth chapter deals with modified cryptography.
The next four chapters deal with the solutions proposed by us, which is our contribution to this area of study. The findings are presented in conferences and others are either published or accepted for publication in journals. One of our research paper is published in the International Journal of Information Processing, Volume 2, Number 4, 2008 pp 82-87.

Another two papers are accepted for publication, and will be published within one month. A fifth paper is communicated for publication. The result is awaited. The details are included in the thesis

As a good by-product of this research work, we have developed a new number system. It is named as Permutation Oriented Binary Number System (POB-number system). In an International Conference at I.I.T., Kanpur, we have presented this part of the research work. The paper was one among the eleven selected papers out of a total of 40 research papers, submitted, in the areas of Cryptography and Network Security. We are happy to say that, our paper was ranked fourth among the 10 papers presented there. The paper is available in the web-site of the conference at pages: 33 to 37 . The url is
http://www.security.iitk.ac.in/hack.in/2009/repository/proceedings_hack.in.pdf

The Ninth chapter deals with the most important result we have achieved. We have developed an algorithm, in which the secret could be shared among n participants with a single allowed coalition such that the size of the share is less the size of the secret message. The final chapter deals with the probable direction of future research work in this area.

Bibliography

[1] C. Asmuth and J. Bloom: A Modular Approach to Key Safeguarding, IEEE Transactions on Information Theory, vol.IT29, no.2, 1983, pp. 208-210.
[2] G. Ateniese, C. Blundo, A.D. Santis, and D. Atinson: Constructions and Bounds for Visual Cryptography, Proceedings 23rd International Colloquium on Automata, Languages, and Programming (ICALP '96), 1099, 1996, pp. 416-428.
[3] G. Ateniese, C. Blundo, A. D. Santis, and D. R. Stinson: Visual Cryptography for General Access Structures, Information and Computation, vol. 129, no.2, 1996, pp. 86-106.
[4] A. Beimel and B. Chor: Universally Ideal Secret Sharing Schemes, Lecture Notes in Computer Science vol. 740, 1993, pp. 185-197.
[5] J. C. Benaloh and J. Leichter: Generalized Secret Sharing and Monotone Functions, Proceedings of Crypto '88, Advances in Cryptology, Lecture Notes in Computer Science, vol. 403, S. Goldwasser, Ed., Springer-Verlag, Berlin, 1990, pp. 27-35.
[6] J. Benaloh: Secret Sharing Homomorphisms - Keeping Shares of a Secret Secret, In Advances in Cryptology - CRYPTO '86, A. M. Odlyzko, Ed. 1987, vol. 263 of Lecture Notes in Computer Science, pp. 251-260, Springer-Verlag.
[7] E. Bertinoro: Secure and Selective Dissemination of XML Documents, ACM Transactions on Information System Security, vol. 5, No. 3, 2002, pp 290-331.
[8] M. Bertilsson, I. Ingemarsson: A Construction of Practical Secret Sharing Schemes using Linear Block Codes. In Proceedings AUSCRYPT '92, Springer Lecture Notes in Computer Science, vol. 718, pp. 67-79, 1993.
[9] G. R. Blakley: Safeguarding Cryptographic Keys, Proceeding of AFIPS 1979 National Computer Conference, vol. 48, New York, NY, June 1979, pp. 313-317.
[10] B. Blakley, G. R. Blakley, A. H. Chan and J. L. Massey: Threshold Schemes with Disenrollment. Lecture Notes in Computer Science 740, 1993, pp. 546-554.
[11] G. R. Blakley and C. Meadows: Security of Ramp Schemes, Proceeding of Crypto '84, Advances in Cryptology, Lecture notes in Computer Science, vol 196, 1985, G. R. Blakley and D. Chaum, Eds., Springer Verlag, pp 411-431.
[12] C. Blundo, A. De Santis and U. Vaccaro: Efficient Sharing of Many Secrets, Proceeding of STACS'93, Lecture Notes in Computer Science vol. 665, 1993, Springer Verlag, pp. 692-703.
[13] C. Blundo, A. Cresti, A. De Santis and U. Vaccaro: Fully Dynamic Secret Sharing Schemes. Theoretical Computer Science, vol. 165, no. 2, 1996, pp. 407-440.
[14] C. Blundo, A. De Santis, L. Gargano and U. Vaccaro: On the Information Rate of Secret Sharing Schemes, Lecture Notes in Computer Science vol. 740, 1993, pp. 149-169.
[15] C. Blundo, A. De Santis, D. R. Stinson, and U. Vaccaro: Graph Decomposition and Secret Sharing Schemes, Journal Cryptology. no. 8 1995, pp. 39-64.
[16] C. Blundo and D. R. Stinson: Anonymous Secret Sharing Schemes, Discrete Applied Mathematics, 77, 1997, pp 13-28.
[17] E. F. Brickell: Some ideal secret sharing schemes, Journal of Combin. Math. and Commbin. Comput. no. 9, 1989, pp 105-113.
[18] E. F. Brickell and D. M. Davenport: On Classification of Ideal Secret Sharing Schemes, Journal of Cryptology, vol 4, No. 2 1991, pp 123-134.
[19] E. F. Brickell and D. R. Stinson: Some Improved Bounds on the Information Rate Of Perfect Secret Sharing Schemes. Journal Cryptology vol. 5 no. 3, 1992, pp. 153-166.
[20] E. F. Brickell and D. R. Stinson: The Detection Of Cheaters In Threshold Schemes, SI AM J. on Discrete Math. no. 4, 1991, pp. 502-510.
[21] R. Brinkman, J. M. Doumen and W. Jonker: Using secret sharing for searching in encrypted data, In Workshop on Secure Data Management in a Connected World (SDM), 30 Aug 2004, Toronto, Canada. pp. 18-27. Lecture Notes in Computer Science 3178. Springer-Verlag. ISSN 0302-9743 ISBN 3-540-22983-3.
[22] R. M. Capocelli, A. De Santis, L. Gargano and U. Vaccaro: On the size of shares for secret sharing schemes. Journal Cryptology no. 6,1993 , pp. 157-168.
[23] M. Carpentieri, A. De Santis and U. Vaccaro: Size of shares and probability of cheating in threshold schemes, Presented at EUROCRYPT '93.
[24] C. Chang, C. Tsait and T. Chen: A New Scheme for Sharing Secret Colour Images in Computer Network, Proceeding of International Conference on Parallel and Distributed Systems, July 2000, pp 21-27.
[25] Chin-Chen Chang and Tai-Xing Yu: Sharing Secret Gray Image in Multiple Images, National Chung Cheng University, Taiwan, 2002.
[26] D. Chen and D. R. Stinson: Recent Results on Combinatorial Constructions for Threshold Schemes, Australasian Journal of Combinatorics, vol 1, 1990, pp. 29-48.
[27] B. Chor, E. Kushilevitz: Secret Sharing Over Infinite Domains, Journal of Cryptology, Vol 6, 1993, pp. 87-96
[28] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan: Private Information Retrieval, IN FOCS, 1995, pp 41-50.
[29] Chwei-Shyong Tsai, Chin-Chen Chang and Tung-Shou Chen: Sharing Multiple Secrets in Digital Images, The Journal of Systems and Software, vol 64, 2002, pp.163-170.
[30] D. Denning: Cryptography and Data Security, Addison-Wesley, Reading, MA, 1983.
[31] Y. Desmedt, A. De Santis, Y. Frankel, and M. Yung: How to Share a Function Securely. In: Proceedings STOC '94, ACM Press, 1994, pp. 22-33.
[32] S. Droste: New Results on Visual Cryptography, Advances in Cryptology-CRYPTO'96, Lecture Notes in Computer Science, vol. 1109, 1996, pp. 401-415.
[33] O. Goldreich, S. Micali, and A. Wigderson: How to Play Any Mental Game, Proceeding of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, pp. 218-229.
[34] R. Hwang and C. Chang: Some Secret Sharing Schemes and their Applications, Ph. D. dissertation of the Department of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan, 1998.
[35] I. Ingemarsson and G. J. Simmons: A Protocol to set up Shared Secret Schemes Without the Assistance of a Mutually Trusted Party. Lecture Notes in Computer Science vol. 473, 1991, pp. 266-282.
[36] M. Ito, A. Saito, and T. Nishizeki: Secret Sharing Schemes Realizing General Access Structure, Proceeding of IEEE Global Telecommunications Conference, Globecom 87, Tokyo, Japan, 1987, pp. 99-102, . Journal version: Multiple Assignment Scheme for Sharing Secret, Journal Cryptology, vol 6, no. 6, 1993, pp. 1520.
[37] W. A. Jackson and K M. Martin and C. M. O'Keefe: On Sharing Many Secrets, Lecture Notes in Computer Science 917, Advances in Cryptology, Proceedings of Asiacrypt'94, Springer Verlag, 1994, pp. 42-54.
[38] W.A. Jackson and K. M. Martin: Combinatorial Models for Perfect Secret Sharing Schemes, J. Corn-bin. Math. Combin. Comput., Vol. 28, 1998 pp 249-265.
[39] E. D. Karnin, J. W. Greene and M. E. Hellman: On Secret Sharing Systems, IEEE Transactions on Information Theory, vol.IT-29, no. 1, Jan 1983, pp 35-41.
[40] D. E. Knuth: The Art of Computer Programming, Vol. 2, Seminumerical algorithms,2nd edition, Addison-Wesley Publishing Company, Reading, Massachusetts, 1981.
[41] S. Kothari: Generalized Linear Threshold Scheme, Proceedings Crypto '84, Santa Barbara, CA (Aug 1984), 231-241. Published as Advances in Cryptology, ed. by Blakley and D. Chaum in Lecture Notes in Computer Science, vol. 196, ed. by G. Goos and J. Hartmains. Springer-Verlag, New York 1985.
[42] Lawrence C. Washington , Wade Trappe: Introduction to Cryptography: With Coding Theory ,Prentice Hall PTR, Upper Saddle River, NJ, 2002.
[43] C. L. Liu: Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.
[44] K. M. Martin: Discrete Structures in the Theory of Secret Sharing. Ph. D. Thesis, University of London, 1991.
[45] K. M. Martin: New Secret Sharing Schemes fron Old, Journal of Combin. Math. and Combin. Comput. no. 14, 1993, pp 65-77.
[46] R. J. McEliece and D. V. Sarwate.: On Sharing Secrets and Reed-Solomon Codes. Commun. of the ACM no. 24, 1981, pp. 583-584.
[47] M. Mignotte: How to share a secret, Cryptography Proceedings of the Workshop on Cryptography, Burg Feuerstein, 1982, volume 149 of LNCS, pp 371-375 Springer-Verlag, 1983.
[48] M. Naor and A. Shamir: Visual Cryptography, Advances in cryptology- EUROCRYPT94, Lecture Notes in Computer Science, vol. 950, 1995, pp. 1-12.
[49] S. J. Phillips and N. C. Phillips: Strongly Ideal Secret Sharing Schemes, J. Cryptology, Vol. 5 (1992), pp. 185-191.
[50] T. Rabin and M. Ben-Or: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. Proceedings 21st ACM Symp. on Theory of Computing, 1989, pp. 73-85.
[51] P. J. Schellenberg and D. R. Stinson: Threshold Schemes from Combinatorial Designs, J. Combin. Math. Combin. Comput., vol. 5, 1989, pp. 143-160.
[52] P. D. Seymour: On Secret-Sharing Matroids, J. Combin. Theory B vol. 56, 1992, pp. 69-73.
[53] A. Shamir: How to Share a Secret, Communications of the ACM, vol. 22, no. 11, Nov. 1979, pp. 612-613.
[54] G. J. Simmons: Robust Shared Secret Schemes or "How to be Sure You Have the Right Answer even though You don't know the question", Congressus Numerantium, vol. 8, 1989, pp 215248.
[55] G. J. Simmons: Shared Secret and/or Shared Control Schemes, Lecture Notes in Computer Science vol. 537, 1991, pp. 216-241.
[56] G. J Simmons, W. Jacjson and K. Martin: The Geometry of Shared Secret Schemes. Bulletin of ICA vol. 1, 1991, pp. 71-88.
[57] Dawn Xiaodong Song, David Wagner and Adrian Perrig: Practical techniques for searchs on encrypted data, In IEEE Symposium on Security and Privacy, pp 44-55, 2000. http://citeseer.nj.nec.com/song00practical.html.
[58] D. R. Stinson: An Explication of Secret Sharing Schemes, Designs, Codes and Cryptography, vol. 2, 1992, pp 357-390.
[59] D. R. Stinson: New General Lower Bounds on the Information Rate of Secret Sharing Schemes. Lecture Notes in Computer Science, vol. 740, 1993, pp. 170-184.
[60] D. R. Stinson: Decomposition Constructions for Secret Sharing Schemes. IEEE Transactions on Inform. Theory, (40) 1994, pp 118-125.
[61] D. R. Stinson and S. A. Vanstone: A combinatorial approach to threshold schemes. SIAMJ. on Discrete Mathematics, 1(2):230236, 1988.
[62] M. Tompa and H. Woll: How to share a Secret with Cheaters, Journal of Cryptography, vol. 1, no.2, 1988,pp 133-138
[63] E. Verheul and H.V. Tilborg: Constructions and Propertics of k out of n Visual Secret Sharing Schemes, Designs, Codes and Cryptography, vol. 11 no.2, 1997, pp. 179-196.

[^0]: ${ }^{1}$ For $m \geq 1,1 \leq k \leq m$, threshold $_{k, m}$ denotes the formula

