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PREFACE 
 

The word “chaos” has become very popular nowadays. In electrical circuits, 

chemical reactions, laser systems every where we can find chaos. There is 

chaos within our body itself. The biological signals within our body can 

become chaotic at times. Unpredictability which is the main characteristic 

feature of chaos is everywhere. In nature the climate changes can become 

unpredictable. Sometimes spreading of a disease and population growth may 

go beyond our calculations. Since last century scientists are trying to unravel 

the mysteries behind chaos. They defined a chaotic system as one whose 

dynamics is complex and at the same time governed by deterministic 

evolution equations. The most important characteristic property of a chaotic 

system is found to be its sensitive dependence on initial conditions. Several 

roots to chaos are found and various quantitative and qualitative measures of 

chaos are introduced.  

 

It seems quite amazing that we can make two chaotic systems behave in the 

same manner or make them synchronize with each other. Synchronization of 

chaotic lasers has gained great importance as a means to generate high power 

laser sources. Efficient communication systems are devised based on the 

synchronization property of chaotic semiconductor lasers. Recently it has 

been shown that multimode lasers have many advantages over single mode 

lasers. Therefore novel high quality communication systems have been 

developed using multimode Nd:YAG lasers.  

 

Another related area which needs special attention is control of chaos. 

Introduction of a delay feedback is found to be an efficient method for 

controlling chaos in various laser systems. Semi conductor lasers and 

Nd:YAG lasers are found to exhibit interesting phenomena like hysteresis 
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and multistability. Multistability is also found to occur in various biological 

systems. Availability of good and fast computational tools and easily 

accessible control parameters make the laser systems good candidates as 

model systems for studying these phenomena. 

 

Nonlinear dynamics of multimode Nd:YAG lasers is the central theme of this 

thesis. We discuss the synchronization of chaotic Nd:YAG lasers under 

various coupling schemes, Hopf bifurcation phenomena exhibited by the 

laser under the variation of a particular control parameter and also the delay 

induced multistability in the laser system. The thesis is divided into seven 

chapters. 

 

Chapter 1 gives an introduction to chaos. Chaos in various dynamical 

systems is discussed briefly giving special concern to lasers. The 

characteristic features of a chaotic system are identified. Different tools for 

measuring chaos, routes to chaos undertaken by dynamical systems are also 

described. Hopf bifurcation phenomena and period doubling route to chaos 

are discussed in detail taking Rossler system and van der Pol oscillator as 

examples. There is also discussion about the origin of chaos in laser systems 

especially in semiconductor and Nd:YAG lasers. 

 

The concept of synchronization is introduced in Chapter 2. There is 

discussion about various coupling schemes used for achieving 

synchronization. Different types of synchronization in dynamical systems 

such as generalized synchronization, phase synchronization, lag 

synchronization and complete synchronization are explained. We take 

Rossler oscillator as a model system to study phase and lag synchronization. 

Synchronization phenomena exhibited by various dynamical systems 
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especially lasers are discussed. The importance of controlling chaos and 

various chaos controlling schemes are also described briefly in this chapter. 

 

In Chapter 3, there is description of our model system used for numerical 

studies which is an Nd:YAG laser with intracavity KTP crystal.  Origin of 

chaotic intensity fluctuations in this laser is discussed. There is detailed 

description of laser dynamics based on a rate equation model. Lasers with 

two mode and three mode output are studied separately. Time series plots, 

phase space plots and bifurcation diagrams are used to get a clear picture 

about the laser dynamics. The reverse period doubling route from chaos to 

stability exhibited by the laser as the orientation of the YAG rod and KTP 

crystal is varied is also studied. 

 

In Chapter 4 we present the results of our numerical studies on 

synchronization and control of chaos in coupled chaotic multimode Nd:YAG 

lasers. Effect of unidirectional and bidirectional couplings on the dynamics 

of Nd:YAG lasers having two mode and three mode output are studied. 

Lasers are coupled via external electronic coupling in which pumping of 

each laser is modulated according to the output intensity of the other. 

Unidirectional and bidirectional coupling schemes are adopted. It is found 

that bidirectional direct coupling scheme is effective in achieving control of 

chaos, synchronization and amplification in output intensity for lasers with 

two mode output. With bidirectional difference coupling the lasers remain 

chaotic for the entire range of coupling strength without any amplification or 

synchronization in output intensity. Lasers are found to exhibit phase 

synchronization under unidirectional direct coupling at higher coupling 

strengths. Unidirectional difference coupling can only produce amplification 

in output intensity for the second laser without any synchronization between 
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them. In the case of lasers having three mode output, bidirectional difference 

coupling can give synchronization of higher quality as compared to 

unidirectional difference coupling, only at the cost of higher coupling 

strength.  

 

In Chapter 5 we are presenting an analytical and numerical treatment of the 

dynamics of Nd:YAG laser operating with two modes having parallel 

polarization. System fixed points are found out analytically. It is found that 

the system has got nine fixed points out of which only three are having real 

values. In order to check the stability of these three fixed points, we use 

Routh-Hurwitz criteria and also the method of eigen values. It is found that 

one fixed point loses stability at a particular value of the control parameter 

and evolves as a limit cycle through Hopf bifurcation. The other two fixed 

points remain unstable throughout the entire region of the control parameter. 

Change in sign of the Routh Hurwitz coefficients and the real part of eigen 

values confirm our result. Hopf bifurcation phenomena exhibited by 

Nd:YAG laser is studied numerically also. Effect of change in control 

parameter on the energy transfer between the two modes is also investigated. 

 

Chapter 6 deals with the dynamics of Nd:YAG laser under a delay 

feedback. An optoelectronic delay feedback is given to an Nd:YAG laser 

operating in the limit cycle region and its dynamics is studied. Both positive 

and negative feedback cases are studied separately. Laser with positive 

feedback is found to exhibit rich dynamics as compared to that with negative 

feedback. We mainly use bifurcation diagrams to study the laser dynamics. 

Lasers with positive feedback exhibit quasiperiodicity, period doubling and 

chaos with increase of delay time. We use power spectra and intensity peak 

series plots to characterize various regions in the output. Existence of chaotic 
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region is confirmed with a positive Lyapunov exponent and a fractional 

correlation dimension. Laser is found to exhibit multistability and hysteresis 

for certain delay times. One interesting result in the delay feedback studies is 

the coexistence of chaotic and quasiperiodic regions in the laser output at a 

particular value of the delay under positive feedback. Chaotic windows are 

found to occur in a regular fashion as the delay is increased. As the feedback 

fraction is increased the laser output intensity also increases. 

 

With negative feedback, a sudden jump into chaotic region is observed at 

smaller delays. Chaotic and periodic regions occur alternately as the delay is 

increased. The frequency with which the chaotic region appears increases as 

the delay is increased while the peak intensity value of the chaotic regions 

decreases. At higher feedback fractions also the laser output intensity 

undergoes a sudden jump into the chaotic region. The output remains chaotic 

for higher delays. 

 

Summary and conclusions of our work are given in Chapter 7. Some 

possible works in this field are also discussed.  
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CHAPTER 1 
 

CHAOS AND LASERS  
 

In this chapter we describe chaos in various dynamical systems, with special 

reference to lasers. We give the conditions necessary for the occurrence of 

chaos, different tools for characterizing chaos and various routes to chaos 

exhibited by dynamical systems. Hopf bifurcation and period doubling route 

to chaos are also discussed taking Rossler system and van der Pol oscillator 

as examples. 
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1.1 WHAT IS CHAOS? 
 

“Chaos is the science of complexity of change” 
 

Chaos is there in the unpredictable weather, in the share price fluctuations in 

stock market and even in the variation of commodity prices. We can see 

chaos in ecology, economics, epidemiology, in the beating of the heart and in 

the electrical signals from the brain.  Discovery of chaos changed the world’s 

understanding of the foundations of Physics and led to new findings on the 

frontiers of lasers, fluid mechanics, chemical reactions, neural networks and 

biological rhythms. Chaos based studies of EEG and ECG signals lead to 

new developments in brain research and cardiology. It provided a novel way 

of thinking meaningfully about many phenomena such as turbulence which 

otherwise were considered as a   matter of utter confusion [1]. 

 

The word chaos means a state of disorder. Henri Poincare, a prominent 

mathematician and theoretical astronomer was the first person to glimpse the 

possibility of chaos. He developed a powerful geometric approach to various 

scientific problems. That approach flowered into the modern subject of 

dynamics with its applications spreading over vast scientific areas [2].  

Interest in nonlinear dynamics especially chaos gained pace after 1963, when 

Lorenz published his pioneering numerical work on a simple convection 

model and discussed its implications for weather prediction [3].   

    

A physical system whose state changes with time is termed as a dynamical 

system. The changes occur due to influence of forces that act on the system.  
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The evolution of physical systems depends on the nature of the forces acting 

on them and also on their initial condition. If the forces acting on a system 

are nonlinear we call the system as a nonlinear dynamical system. For certain 

values of the parameters that control the system, the evolution of many of the 

nonlinear dynamical systems become unpredictable [4]. A system whose 

temporal or spatial evolution seems random, but is completely deterministic, 

i.e obeys some definite evolutionary equation, is called a chaotic system.  Its 

central characteristic is that the system does not repeat its past behavior. For 

chaotic systems even a small difference in the initial conditions leads to an 

exponentially growing error and the system dynamics becomes unpredictable 

after a very short time. This is known as sensitivity to initial conditions. As 

Poincare said “…it may happen that small differences in the initial 

conditions produce very great ones in the final phenomena. A small error in 

the former will produce an enormous error in the latter. Prediction becomes 

impossible, and we have the fortuitous phenomenon” [2]. If the prediction 

becomes impossible a chaotic system can resemble a stochastic system. But 

for a chaotic system the irregularity arises from its intrinsic dynamics, not 

from any unpredictable external influences.  

              

We can define chaos as “aperiodic long-term behavior in a deterministic 

system that exhibits sensitive dependence on initial conditions.” [5]. The 

most interesting thing about chaos is that in spite of its highly complex 

nature it happens in systems which are not complex and are even very 

simple. 
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1.2 CONDITIONS NECESSARY FOR CHAOS 
Dynamical systems can be broadly classified into continuous time dynamical 

system and discrete time dynamical system. A continuous time dynamical 

system can be represented by a set of equations of the form 

 

⎟
⎠
⎞

⎜
⎝
⎛=

→→
→

μ,XF
dt
Xd                                                 (1.1) 

 

where 

( )nxxxX ,......, 21=
→

 and ( )nFFFF ,......, 21=
→

 

       ),......,( 21 nxxx  are the dynamical variables and ),......,( 21 nFFF  are the 

source functions.  μ  is a set of control parameters that can be varied.  

We can write the necessary conditions for the occurrence of chaos in such a 

system as 

1) It must be nonlinear  

2) The order or dimension of the system must be greater than or equal to 

3.  

 Discrete time dynamical system can be represented by maps of the form 

⎟
⎠
⎞

⎜
⎝
⎛=

→

+

→

nn XFX μ1                                                     (1.2) 

where n refers to discrete values of time. 

 

Linear maps do not show chaotic behavior. Nonlinear maps are of two types 

namely invertible and noninvertible. Invertible maps can exhibit chaos only 

if the dimension is greater than one. Noninvertible maps can exhibit chaos 

even if the dimension is one. 
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1.3 TOOLS FOR THE STUDY OF CHAOS 

 
Three powerful mathematical tools used in the study of dynamical systems 

are phase space, Poincare section and power spectra. They give a qualitative 

and global understanding of chaos. 

 

1.3.1 Phase space 

               

The phase space of a dynamical system is a mathematical space having 

orthogonal coordinate directions which represent each of the variables 

needed to specify the instantaneous state of the system. The state of a particle 

moving in one dimension is specified by its position ( x ) and velocity 

(
•

x ).Thus its phase space is a plane. For a particle moving in three 

dimensions the phase space will be six dimensional. The phase space 

variables need not be mechanical coordinates like position and velocity. 

They may be concentration of reactants in a chemical reaction or output 

intensity or gain as in the case of laser etc. The state of a dynamical system is 

represented by a point in the phase space. As the system evolves in time, it 

constitutes a trajectory in the phase space [2, 4, 5]. 

 

1.3.2 Poincare section 

 
Poincare section provides a means for simplifying the complicated structure 

of attractors. Generally for an n- dimensional flow, the Poincare section will 

be an (n-1) dimensional hypersurface transverse to the flow. In order to 

construct the Poincare section for a three dimensional attractor, choose a 
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plane transverse to the direction of motion of the trajectories. Put a point on 

this plane every time the trajectory crosses it. This plane then constitutes the 

Poincare section for the attractor. It should be noted that while constructing 

the Poincare section, motion of the trajectories only in one direction has to be 

considered. The time interval between successive intersections need not be 

equal. The nonlinear three dimensional differential equations are replaced by 

nonlinear algebraic two dimensional difference equations that are simple and 

easier to handle. At the same time it retains the essential qualitative features 

of the phase flow. This reduction in dimension provides greater 

simplification. The observation of the distribution of points on a computer-

generated Poincare section [2, 4, 5] will be useful for the study of chaos. 

 

1.3.3 Power spectrum 

 
The spectral analysis of a signal is an important tool in the study of the 

temporal behavior of a system. Power spectrum gives the relative strengths 

of various frequency components of a time series. It is calculated by taking 

the Fourier transform of the auto-correlation function of the time series. 

Auto-correlation function measures the correlation between observations at 

different distances (times) apart. These functions exhibit the loss of 

information along the trajectory. The power spectrum is a function in the 

frequency domain. The power spectrum for a chaotic motion will be of 

continuous and broad band nature [2, 4].  

 

1.4 QUANTITATIVE MEASURES OF CHAOS 
 The motion of typical nonlinear systems undergoes characteristic changes as 

certain control parameters are varied continuously. These changes are 



 
 
 
 
 
 
                                                                                              Chaos and Lasers 

 
 

7 

identified by the changes of the system attractors or phase space structures 

and stability properties. In addition to these we use some quantitative criteria   

to differentiate between chaotic and regular motions. The most important 

criteria used for this purpose are  

1) Lyapunov exponents  

2) Correlation function  

3) Attractor dimensions 

 

1.4.1 Lyapunov exponents 

 

 Named after A.M.Lyapunov, a Russian mathematician, Lyapunov exponents 

describe the rate of divergence or convergence of nearby trajectories onto the 

attractor in different directions in phase space. It gives a measure of the 

sensitive dependence upon initial conditions which is a characteristic of 

chaotic system. Consider a system evolving from two slightly different initial 

conditions x and x+ε. After n iterations the divergence of the two trajectories 

may be represented as [2, 4, 5]  

       ( ) nen λεε ≈                                                 (1.3) 

where λ, the Lyapunov exponent gives the average rate of divergence. If λ is 

negative, the two nearby trajectories converge and the evolution is not 

chaotic. If λ is positive, nearby trajectories diverge as the evolution is 

sensitive to initial conditions and hence chaotic. We can similarly define 

Lyapunov exponents for continuous systems. 

Consider an n-dimensional system represented by the equation  

( )XFX =
•

                                               (1.4) 
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where ( )nxxxFx ,....,, 2111 =
•

 

          ( )nxxxFx ,....,, 2122 =
•

   

           ……. 

           ……. 

           ( )nnn xxxFx ,....,, 21=
•

   

( ) ( ) ( ) ( )( )txtxtxtX n,....,, 21=  represent the trajectory of the system (1.4). 

Consider two nearby trajectories in the n-dimensional phase space starting 

from slightly different initial conditions 0X  and 00 XXX o δ+=′  

respectively. Their time evolution will give the vectors ( )tX  and 

( ) ( )tXtX δ+ . In order to find the time evolution of Xδ , we linearize 

equation (1.4) so as to get 

 ( ) ( )XtXMX δδ •⎟
⎠
⎞

⎜
⎝
⎛=

••

  

where M= 
0XXX

F
=∂

∂ is the Jacobian matrix of  F.  

The Lyapunov exponent of the system can be defined as 

( ) ( )
( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∞→ 0,
,

log1lim,
0

0
0 Xd

tXd
t

XX
t

δλ                  (1.5) 

where ( )tXd ,0  is a measure of the distance between the trajectories ( )tX  

and ( )tX ′ . 
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1.4.2 Correlation function 

For a map ( )nn xfx =+1  the correlation function C(m) is defined as [6] 

( ) ( ) ( )2
0

1lim xxxNmC mn

N

n
nN

−= +
=

∞→ ∑                   (1.6) 

where x  is the mean value of the nx given by 

( )∑
=

∞→
=

N

n
nN

xNx
0

1lim                                         (1.7) 

Correlation function gives a measure of the extent to which iterates m 

steps apart are correlated in their evolution. Decaying correlation is a 

characteristic of the chaotic motion. Or we can say that correlation 

function measures the degree of randomness of a chaotic system. 

               

1.4.3 Attractor dimensions 

 
An attractor is a certain subspace of the full phase space into which all 

the trajectories settle down eventually. For regular nonchaotic systems 

attractor could be a point (of zero dimension) or a curve- a limit cycle- 

(of dimension one) or a torus (of dimension two). But when it comes to a 

chaotic system the task of finding dimension becomes tedious. A number 

of dimensions can be used to describe the characteristic features of a 

chaotic attractor. Most important of them are discussed below. 
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i) Fractal dimension or Capacity dimension or Hausdorff 

dimension (DF) [4,5] 

 

Consider a straight line of length L. Suppose this line can be covered by N(ε) 

one-dimensional boxes of side ε, then we can write 

               ( ) ( )εε 1LN =  

 Similarly for a two-dimensional square of side L, the number of boxes 

required are 

                  ( ) ( )22 1
εε LN =  

For a three-dimensional cube the exponent is 3. 

Generally for a d-dimensional figure we can write 

( ) ( )ddLN εε 1=                                       (1.8) 

Taking logarithms on both sides 

( )
( )ε
ε

1loglog
log
+

=
L

Nd                                 (1.9) 

In the limit of small ε, we can write 

( )
( )ε
ε

ε 1log
log

0
lim N

FD
→

=                              (1.10) 

 which is the capacity dimension or fractal dimension. There are attractors, 

called strange attractors for which the dimension will be noninteger. 

However when the phase space dimension becomes greater than two, the 

task of computing DF becomes very difficult. 
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ii) Correlation dimension (DC) [4,5] 

 

       The Correlation dimension is defined by 

       ( )
r
rC

rCD
log

log
0

lim
→

=                          (1.11) 

where ( )rC  is the correlation function discussed earlier. 

Correlation dimension can be calculated using a well known algorithm 

developed by Grassberger and Procaccia. As correlation dimension takes into 

account the density of data points on the attractor, its estimation requires a 

large number of data points. For a point attractor CD =0 and for a limit cycle 

attractor CD =1. A chaotic attractor is characterized by a noninteger 

CD value. 

 

Based on the above discussions we can summarize the important 

characteristic features of a chaotic system as  

1) At least one positive Lyapunov exponent. 

2) Continuous broad band power spectrum. 

3) Decaying autocorrelation function. 

4) A noninteger fractal and correlation dimension. 

 

1.5 ROUTES TO CHAOS 

 
 For every dynamical system there will be a set of control parameters whose 

variation can produce sudden changes in the system dynamics. These sudden 

qualitative changes which occur at a critical value of the control parameter 

are called bifurcations. Bifurcations may lead the system to chaos. Often 
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there will be some intermediate states through which the system evolves 

before coming to the chaotic state. Usually one type of motion losses 

stability at a particular value of the control parameter at the same time giving 

rise to a new type of stable motion. This process continues further to give 

new and often more complicated type of motions. We can identify various 

routes to chaos taken by dynamical systems. The most common are  

i) The period doubling route 

ii) The quasiperiodic route 

iii) Intermittency route. 

 

1.5.1 Period doubling route 

 
 In period doubling route, the period of the oscillation doubles as the control 

parameter is varied [1, 4, 7]. After a sequence of such period doublings the 

system becomes aperiodic or chaotic. Logistic map is a simple model system 

where we can see this period doubling route to chaos.  

Logistic map is a discrete dynamical system represented by the equation 

( )nnn XXX −=+ 11 λ                         (1.12) 

 

where 0 ≤ λ ≤ 4   and  0 ≤ X ≤ 1    

 

Bifurcation diagram for a logistic map showing period doubling phenomena 

is given below [1, 4] 
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Figure 1.1: Bifurcation diagram of the logistic equation 

 

1.5.2 Quasiperiodic route   

 
 The quasiperiodic route to chaos is also termed as Ruelle- Newhouse - 

Takens scenario.  The basic mechanism taking place here is the phenomenon 

called Hopf bifurcation. In Hopf bifurcation a stable fixed point loses 

stability at a particular value of the control parameter and evolves into a limit 

cycle. The system undergoes one more Hopf bifurcation as the control 

parameter is varied further to form a two frequency periodic orbit. If the two 

frequencies of this orbit are not commensurate we call it as a quasiperiodic 

orbit. This quasiperiodic orbit then bifurcates into chaotic motion as the 

λ 
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control parameter is varied. Quasiperiodic route to chaos is observed in maps 

and in continuous time dynamical systems [4]. 

 

1.5.3 Intermittency route  

 
 This route is also known as Pomeau-Manneville scenario. Time series 

appears as nearly periodic interrupted by occasional irregular bursts. The 

time between bursts is statistically distributed like a random variable even 

though the system is completely deterministic. As the control parameter is 

varied the bursts become more and more frequent and finally the system 

becomes fully chaotic at a particular value of the control parameter. This 

intermittent behavior was first observed by Pomeau and Manneville in 

Lorenz equations [4, 5]. 

 

1.6 TWO SIMPLE MODEL SYSTEMS 

 
In this section we describe two simple model systems namely the Rossler 

system and the van der Pol oscillator. 

 

1.6.1 CHAOS IN A ROSSLER SYSTEM 

 

              The Rossler system is represented by the following set of equations 
[8, 9] 
 

( )cxzbz

ayxy

zyx

−+=

+=

−−=

•

•

•

                                (1.13) 
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where a,b,c are parameters. The parameter c is treated as the control 

parameter. 

 
This system has only one quadratic nonlinearity xz. These equations 

represent a continuous time dynamical system that exhibits chaotic dynamics 

as the control parameter is varied. The famous simply folded band attractor 

for the Rossler system is shown in figure 1.2. An orbit within the attractor 

follows an outward spiral close to the X-Y plane around an unstable fixed 

point. Once the graph spirals out enough, it shows a rise and twist in the z 

dimension because of the influence of a second fixed point. Even though 

each variable is oscillating within a fixed range of values, the oscillations are 

found to be chaotic. 

 
 
 

  

          

 

 

 

 

 

 

Figure 1.2: Simply folded band attractor of the Rossler system 
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To study the dynamics of the Rossler system we fix the parameters a=b=0.1 

and vary c. The attractors corresponding to various c values are given in 

figure 1.3. 

 

 

 

 

 

 

 

 

 

 
 
 
 
  

 
 

Figure 1.3: Attractors of the Rossler system for various c values .a) c=4; b) 
c=6; c) c=8.5; d) c=9 

 
               

We can see the structure of attractor changing as the c value is varied. The 

attractor is a   single loop periodic orbit at low c value. It suddenly undergoes 

period doubling at a bifurcation value of c changing into a double loop. The 

period doubling continues infinitely at higher c values and at last there is 

chaos. The route taken by the Rossler system is called the period doubling 

route to chaos. Figure 1.4 is the bifurcation diagram where the local maxima 

of the x- variable are plotted against the bifurcation parameter c.  Similar 
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period doubling route to chaos is exhibited by semiconductor laser [10] and 

Nd:YAG laser [11]. Also Rossler system is a very good candidate for 

studying different types of synchronization such as phase and lag [12].  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
Figure 1.4: Bifurcation diagram for the Rossler system 

 
 

 
1.6.2 THE VAN DER POL OSCILLATOR 
 
 It is a type of non conservative oscillator with a nonlinear damping. It 

evolves in time according to the pairs of first order differential equations [4-

6] 

( ) xyxby

yx

−−=

=
•

•

21
                                                 (1.14) 



 
 
 
 
 
 
Chapter 1 

 
 

18 

where b is the damping coefficient. 

Origin is found to be the equilibrium point for this system. Eigen values of 

the system are given by 

[ ]4
2
1 2 −±=± bbλ                                            (1.15) 

Corresponding to different regions of the parameter b we can have different 

types of equilibrium states which are given in table 1.1. 

 

 
Range of  b Nature of eigenvalues Type of attractor/repellor 

-∞<b<-2 λ±  <0, λ+ ≠ λ- Stable node 

b=-2 λ+ = λ-    <0 Stable star 

-2<b<0 λ± = α±iβ, α<0 Stable focus 

b=0 λ± = ±iβ Center 

0<b<2 λ± = α±iβ, α>0 Unstable focus 

b=2 λ+ = λ-    >0 Unstable star 

2<b<∞ λ± >0, λ+ ≠ λ- Unstable node 

 

Table 1.1: Dynamics of the van der Pol oscillator for different b values. 

   

 The attractor is an unstable equilibrium point for 0<b<∞. At b=0, the real 

parts of the eigen values λ±    changes from negative to positive values as the 

parameter b is increased through zero. This causes a bifurcation from a stable 

focus to a stable limit cycle. A limit cycle is an isolated closed stable orbit 

that can exist in two dimensional dynamical systems. Every trajectory 

beginning sufficiently near a limit cycle approaches it either for t→ ∞ or t→ 

-∞. A limit cycle is said to be stable if all the nearby trajectories approach it 

as t→ ∞. If the trajectories deviate from it as t→ ∞ (or approach it as t→ -∞), 
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the limit cycle is said to be unstable. A stable limit cycle is a period T 

attractor or a periodic attractor. Such a bifurcation is called a Hopf 

bifurcation. i.e as a control parameter is varied a stable equilibrium point 

losses stability at a critical value and evolves into a limit cycle. It is 

characterized by a change of the real part of a pair of complex conjugate 

eigen values from negative to positive. In the van der Pol oscillator the limit 

cycle attractor is found to occur due to the dynamical balance between the 

positive and the negative damping. Figure 1.5 shows the limit cycle attractor 

for the van der Pol oscillator. 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 1.5: Phase portrait of the van der Pol oscillator for b=0.4 exhibiting 

limit cycle motion. 
 

 
When driven by an external periodic forcing the oscillator exhibits 

interesting dynamical behaviors. A driven van der Pol oscillator is 

represented by the equation [4] 
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( ) tfxyxby

yx

ωcos1 2 +−−=

=
•

•

                                 (1.16) 

 
Here b is the damping coefficient, f is amplitude of the driving force and ω is 

the frequency of the external periodic forcing. 

 
Depending on the values of ω we can see mode locking, quasiperiodicity and 

chaos in the oscillator output. The oscillator dynamics can be summarized as 

in the following table. 

 
 

f Range of ω Output dynamics 
1.0 0-1.5 Mode locking and 

quasiperiodicity 
2.5 0-6 Mode locking, large 

periodic oscillations and 
quasiperiodicity 

5 2.424-2.502 Periodic windows,period 
doubling bifurcations and 

chaos 
 
Table 1.2: Dynamics of the driven van der Pol oscillator for various ranges 

of f and ω 

 

Bifurcation diagram for the driven van der Pol oscillator showing the period 

doubling route to chaos is given in figure 1.6. 
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Figure 1.6: Period doubling route to chaos in driven van der Pol oscillator 
 
 
 
1.7 LASERS 
 
 Lasers are devices that generate, or amplify coherent radiation at frequencies 

in the infrared, visible or ultraviolet regions of the electromagnetic spectrum. 

Invention of Ruby laser by Maiman in 1960 had a great impact on the 

scientific community. Processes such as signal generation, amplification, 

transmission and detection at much higher frequencies are made possible. 

Unique properties of lasers such as ultrashort pulsewidth, high power and 

short wavelength helped scientists and engineers to perform a wide variety of 

new and unexpected functions [13]. 
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 A laser consists of a gain medium placed inside a highly reflective optical 

cavity and a source to supply energy to the gain medium.  The gain medium 

is a material which can amplify light by stimulated emission. The optical 

cavity consists of two mirrors. They are arranged such that the light bounces 

back and forth between the mirrors each time passing through the gain 

medium. One of the two mirrors –the output coupler- is made partially 

transparent so as to couple out the laser beam. Light of a specific wavelength 

is amplified through stimulated emission as it passes thorough the gain 

medium. Part of the light that is between the mirrors, after sufficient 

amplification comes out as laser beam through the output coupler. The 

process of supplying energy required for amplification is called pumping. 

Usually electric discharge or flash lamp is used as pumping sources. The 

output of laser may be of two types- continuous constant amplitude output 

and pulsed output [14]. 

 

  1.8 DIFFERENT TYPES OF LASERS      

 

1.8.1 Gas lasers 
The Helium-Neon laser was the first gas laser to be operated successfully. It 

was fabricated by Ali Javan and his co-workers [15]. It emits at a variety of 

wavelengths with the well-known red light at 6328 Å. It is commonly used 

for educational purposes because of its low cost. Carbon dioxide lasers can 

emit hundreds of kilowatts at 9.6 µm and 10.6 µm and are often used in 

industry for cutting and welding. Argon-ion lasers have emission at 

wavelengths 351nm- 528.7 nm. Metal ion lasers are gas lasers that can 

generate light at deep ultraviolet wavelengths. Helium-Silver (HeAg) and 

Neon-Copper (NeCu) lasers come under this category. These lasers have 
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found applications in fluorescence suppressed Raman spectroscopy because 

of their narrow oscillation linewidth. 

 

1.8.2 Chemical lasers 
Chemical lasers obtain their energy from chemical reactions. They can 

produce power in the megawatt level and are used in industry for cutting and 

drilling and also for military purposes. Examples are Hydrogen fluoride laser 

and   Deuterium fluoride laser. 

 

1.8.3    Excimer laser     
Excimer lasers are powered by chemical reaction involving excimer 

(excited dimer) which is a short lived dimeric or heterodimeric 

molecule formed from   two atoms one of which is in an excited 

electronic state. They produce ultraviolet light and are used in 

semiconductor photolithography and in eye surgery. 

 

1.8.4 Solid state lasers 
Solid state laser materials have a crystalline host doped with ions that 

provide the required energy states. Neodymium is a common dopant in 

various solid state laser crystals which include yttrium orthovanadate 

(Nd:YVO4), yttrium lithium fluoride (Nd:YLF) and yttrium aluminium 

garnet (Nd:YAG). These lasers can produce high powers in the infrared 

region. They find applications in cutting, welding, marking of metals, in 

spectroscopy and for pumping dye lasers. They can be frequency doubled, 

tripled or quadrupled to produce light at desired wavelengths. Solid state 

lasers where light is guided due to total internal reflection in an optical fiber 

are called fiber lasers. 
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1.8.5 Semiconductor lasers 
Stimulated emission in a semiconductor pn junction is the basis of 

semiconductor lasers. The laser emission is not as monochromatic as that 

from a gas laser as it occurs between two bands of energies. Because of the 

direct conversion of electric current to light energy, semiconductor laser is 

very efficient. External cavity semiconductor lasers can generate high power 

outputs with good beam quality, narrow linewidth radiation with tunable 

wavelength and ultra short laser pulses. 

 

1.8.6 Dye lasers 
 Dye lasers use organic dye as the lasing medium. They are highly tunable 

and capable of producing very short-duration pulses in the femtosecond 

range. Dye lasers are used dermatologically to make skin tone more even. 

 

1.9 CHAOS IN LASERS 
 
 Instabilities in laser action were apparent since early days of laser 

technology. Semi classical model of the laser known as the Maxwell-Bloch 

equations [2] describe the time dependence of the electric field E, the mean 

polarization P of the atoms and the amount of population inversion D. 

 

 

( ) EPD
dt
dD

PED
dt
dP

PE
dt
dE

λγγλγ

γγ

κκ

222
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1 −−+=

−=

+−=

                           (1.17) 
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where κ is the decay rate in the laser cavity due to beam transition, γ1 is the 

decay rate of the atomic polarization, γ2  is the decay rate of the population 

inversion and λ is a pumping energy parameter. 

 

Even though numerical simulation of Maxwell-Bloch equations may exhibit 

chaos, many conventional lasers do not operate within a parameter range 

where chaos occurs. In them the polarization and population inversion decay 

quickly to their steady state values which in turn reduces the dimension of 

the system to one. This will make the system out of the chaotic behavior. But 

the chaotic behavior can be induced by modifying the laser configurations i.e 

by tuning the cavity length, varying the laser gain, tilting the mirrors or by 

adding feedback from external cavity [16].  Lasers in which the frequency is 

broadened by the characteristics of the laser medium exhibit both periodic 

and chaotic behavior. 

 

A detailed study of Maxwell- Bloch equations was carried out by Herman 

Haken [17] who reported that the instabilities seen in the Lorenz model [3] in 

fluids are identical with that of a single mode laser. This discovery was so 

important that it paved the way to a lot of research in the area of laser chaos. 

It started with Arecchi who reported the experimental observation of 

subharmonic bifurcations, generalized multistability, and chaotic behavior in 

a Q-switched CO2 laser. They also presented a theoretical model which is 

found to be in good agreement with the experimental results [18]. In 1983 

Gioggia and Abraham found instabilities in a single mode, inhomogeneously 

broadened Xenon laser exhibiting complicated periodic behavior ultimately 

reaching a deterministic chaotic behavior. Period doubling, two frequency 

quasiperiodic and intermittency route to chaos have also been found [19]. 

Chaos in a solid state laser with periodically modulated pump was reported 
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by Klische et.al [20]. A comparison of theoretical and experimental studies 

of unidirectional, single mode, inhomogeneously broadened ring laser was 

carried out by Tarroja et.al [21]. 

 

 Semiconductor lasers are of special importance because of their potential 

applications in areas such as secure communication. Some of the pioneering 

works in this area include those of Min Tang, Shyh Wang and Kawaguchi 

[22, 23]. In 1986, studies by Winful and Liu revealed a quasiperiodicity route 

to chaos for a directly modulated self-pulsating semiconductor laser [24]. 

Kao et.al investigated a period doubling route to chaos in modulated 

semiconductor laser [25]. Effect of nonlinear gain on period doubling and 

chaos in a semiconductor laser was studied by G.P.Agrawal and it was 

shown that chaos occurred at modulation frequency around 1 GHz, which is 

of much importance in optical communication system [10]. Synchronization 

of chaotic lasers is widely studied [26] as it can enhance privacy and security 

of communication systems [27]. Semiconductor laser with feedback is an 

excellent model of nonlinear optical system which shows chaotic dynamics. 

The feedback induced instabilities, chaos and their applications have been 

widely studied [28-34]. 

               

Chaos in solid state lasers is also an area of much interest. Nd:YAG laser 

with intracavity KTP crystal serves as a good model system for this purpose. 

An early prediction of instabilities in this laser was made by Arecchi and 

Ricca [35]. Baer reported chaotic intensity fluctuations in this laser system 

and analyzed it using a rate equation model [36]. Significant contributions 

include those of Wu, Mandel, Oka and Kubota, Bracikowski and Rajarshi 

Roy [37-40]. A reverse period doubling route from chaos to stability in a two 

mode intracavity doubled Nd:YAG laser was reported in 1999 [11]. 
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Dynamics of Nd:YAG laser with three modes has also been studied [41]. 

Recently it has been shown that multimode lasers have many advantages 

over single mode lasers which make them suitable for communication 

purposes [42-44]. 
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CHAPTER 2 
 

SYNCHRONIZATION AND CONTROL OF CHAOS 
 

The phenomenon of synchronization – its fundamental concepts, different 

methods for achieving synchronization, important types of synchronization- 

is presented in this chapter. Chaotic synchronization in various laser systems 

is also discussed. Special mention is made about the importance of chaos 

control and various methods employed for chaos control. 
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2.1 INTRODUCTION              
 

 The word ‘synchronization’ which means “ sharing the common time”  or “ 

occurring in the same time” has its origin from the Greek words 

‘chronos’(means time) and ‘syn’ (means the same, common) . We use 

‘synchronization’ to describe processes that occur at the same time. Various 

man made devices such as pendulum clocks, musical instruments, lasers 

exhibit this phenomenon. Synchronization comes into play within human 

body also. Synchronous variation of cell nuclei, synchronous firing of 

neurons and adjustment of heart rate with respiration are a few to name. We 

can see several oscillating objects around us such as violins in an orchestra, 

fireflies emitting sequences of light pulses, crickets producing chirps and 

birds flapping their wings. These objects are not isolated from their 

environment, but interact with other objects. Even though this interaction can 

be very weak at times, an object adjusts its rhythm with that of others. As a 

result violinists play in unison, birds in a flock flap their wings 

simultaneously or insects in a population produce acoustic or light pulses at a 

common rate. As said in [1], “this adjustment of rhythms due to an 

interaction is the essence of synchronization”. 

 

Dutch researcher Christian Huygens is the first scientist to observe and 

describe the synchronization phenomena in seventeenth century. He made an 

interesting discovery that a couple of pendulum clocks hanging from a 

common support are synchronized which means their oscillations coincided 

perfectly and the pendula move always in opposite directions. In his own 

words “It is quite worth noting that when we suspended two clocks so 

constructed from two hooks imbedded in the same wooden beam, the motions 

of each pendulum in opposite swings were so much in agreement that they 
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never receded the least bit from each other and the sound of each was 

always heard simultaneously. Further if this agreement was disturbed by 

some interference, it reestablished itself in a short time. For a long time I 

was amazed at this unexpected result, but after a careful examination finally 

found that the cause of this is due to the motion of the beam, even though this 

is hardly perceptible. The cause is that the oscillations of the pendula, in 

proportion to their weight, communicate some motion to the clocks. This 

motion, impressed onto the beam, necessarily has the effect of making the 

pendula come to a state of exactly contrary swings if it happened that they 

moved otherwise at first and from this finally the motion of the beam 

completely ceases. But this cause is not sufficiently powerful unless the 

opposite motions of the clocks are exactly equal and uniform”.  [1]   

 

It is also possible to make two chaotic systems get synchronized. Because of 

the sensitive dependence of initial conditions, it is very difficult to predict the 

present position of the system on the attractor. If there are two identical 

chaotic systems starting with slightly different initial conditions, we can 

make them follow same path on the attractor – making them synchronized- 

through some coupling. Applications of this chaotic synchronization will be 

discussed later. 

 

2.2 METHODS OF SYNCHRONIZATION 

 
According to Huygens the conformity of the rhythms of two clocks is due to 

an imperceptible motion of the beam. It can be the vibration or a slight 

movement from right to left. The motion of each pendulum is transmitted to 

the other pendulum through this common beam. Thus their motion gets 

influenced by each other. This means that the beam provides some coupling 
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between the clocks which resulted in their synchronized anti-phase motion. 

Synchronization can be achieved between two oscillators only if there is 

some kind of coupling between them. Degree of synchronization may vary 

with the strength of coupling. The coupling strategies must be chosen as per 

the system properties and the particular application for which the 

synchronization is sought for. The synchronization strategies can be broadly 

classified into drive-response scheme and coupling scheme. 

 

2.2.1 DRIVE-RESPONSE SCHEME 

 

 There will be a driving system which is chaotic and a response system 

which is a subsystem of the driving system. Both the systems are coupled 

unidirectionally i.e the dynamics of the response system is influenced by that 

of the driving system, but not in the opposite direction [2, 3]. The system can 

be schematically represented as shown below. 

 

 

 

                         

 

Figure 2.1: Drive – Response scheme 

 

In a simple synchronization circuit, there will be only one response system 

driven by the drive system. We can also construct cascaded drive –response 

system [4] where there is more than one response subsystem driven by a 

common drive system. The response subsystems will synchronize with the 

drive and with each other provided that each response system is stable.  

 

Drive Response 
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2.2.2 COUPLING SCHEME 

 

In this scheme there are two chaotic systems which are identical but starting 

from slightly different initial conditions [5, 6]. The two systems can be 

coupled unidirectionally or bidirectionally. Figure 2.2 is a schematic 

representation of this coupling scheme. 

 

 

                                           
 

                              Figure 2.2: General coupling scheme 

 

2.2.2.1 Occasional Coupling  

 
It is a subclass of the drive-response scheme. Here the drive signal is sent 

only occasionally to the response system and at those times the response 

variables are updated. In between the updates the drive and response evolve 

independently. The time interval during which the response system gets 

influenced by the driving system is called the synchronization phase. The 

two systems get synchronized during this phase. On the other hand during 

autonomous phase there will be no coupling between the two systems and 

they evolve independently [4]. 

 

2.2.2.2 Variable feedback 

 
In variable feedback scheme, there is a master system and slave systems. A 

fraction of the difference between the outputs of the master and the slave is 

System 1 System 2 
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input 

input 

feedback 

output 

output 

Feedback 
generator 

System 1 

System 2 

fed back to the input of the slave system [7]. Figure 2.3 gives a schematic 

representation of this coupling scheme. 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 2.3: Variable feedback scheme 

 

2.3 TYPES OF SYNCHRONIZATION 

 
Depending on the degree of correlation between the interacting systems, 

there exist different types of synchronization such as generalized 

synchronization, phase synchronization, lag synchronization and complete 

synchronization.  

 

2.3.1 COMPLETE SYNCHRONIZATION 

 

Complete synchronization is the strongest among all types in the degree of 

correlation. It is identified as the coincidence of states of interacting systems 

i.e x1(t) =x2(t) and it appears only when the interacting systems are identical. 
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Complete synchronization is a threshold phenomenon. It occurs only when 

the coupling exceeds some critical value. Below the threshold, even though 

the states of two chaotic systems are different, they will be close to one 

another. When the threshold is exceeded, the two systems become identical 

in time still remaining chaotic [1]. 

 

2.3.2 GENERALIZED SYNCHRONIZATION 

 

Generalized synchronization has been introduced for drive-response system 

and is identified as the presence of some functional relation between the 

states of the drive and the response. i.e x2(t) = ψ(x1(t)). The state of the 

driven system is completely determined by the state of the driving system [1, 

8] 

 

2.3.3 PHASE SYNCHRONIZATION 

 

There have always been complex and obscure ideas about the phase of a 

chaotic system. However phase synchronization of two chaotic systems can 

be defined as the entrainment between the phases of interacting systems 

while their amplitude remains chaotic and uncorrelated [9]. It occurs between 

systems with a slight parameter mismatch. Phase of a chaotic time series can 

be calculated using the method of Hilbert transform [10]. Phase 

synchronization is weaker than generalized synchronization and may occur 

in cases where generalized synchronization is not observed. But in some 

cases depending on parameter mismatches, phase synchronization appears 

after generalized synchronization with increase in coupling strength [1, 11]. 
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2.3.4 LAG SYNCHRONIZATION 

 

Lag synchronization is also observed in coupled systems with parameter 

mismatches. It appears as coincidence of states of the interacting systems 

shifted in time i.e x2(t) =x1(t+τ0) .As the coupling strength is increased the 

time shift τ0  decreases, leading to complete synchronization. Usually the lag 

synchronization is characterized by the quantity called similarity function, 

which is the time averaged difference between the variables x1 and x2 taken 

with time shift τ [11-13]. 
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If the signals x1 and x2 are independent, S(τ) ≈ 2  for all τ. If x1(t) =x2(t), as 

for complete synchronization S(τ) has its minimum equal to zero for τ=0. If a 

time lag exists between the two signals, S(τ) has a minimum for nonzero τ. 

 

 Usually for a system of two coupled non identical oscillators, there is a 

transition from non synchronization to phase synchronization then to lag 

synchronization and finally to complete synchronization with increase in 

coupling strength. 

 

To describe phase and lag synchronization we take Rossler system whose 

dynamics are given in detail in the chapter 1 as an example [11] 

Consider a system of two coupled chaotic Rossler oscillators 



 
                                                             
 
 
 
 
                                                              Synchronization and Control of Chaos 39 

-20 -10 0 10 20
-20

-10

0

10

20

x1(t)

x 2(t
)

-20 -10 0 10 20
-20

-10

0

10

20

x1(t)

x 2(t
+
τ)

-20 -10 0 10 20
-20

-10

0

10

20

x1(t)

x 2(t
)

-20 -10 0 10 20
-20

-10

0

10

20

x1(t)

x 2(t
+
τ)

(a) (b)

(c) (d)

( )

( )cxzbz

ayxy

xxzyx

−+=

+=

−+−−=

2,12,12,1

.

2,12,12,12,1

.

2,11,22,12,12,12,1

.

ω

εω

                             (2.2) 

 

where a=0.165, b=0.2 and c=10. The parameters Δ±= 02,1 ωω  and ε 

determine the parameter mismatch and coupling strength respectively. The 

mismatch is produced by choosing ω0 =0.86 and Δ=0.02. Figure 2.4 shows 

the projections of the attractor of the coupled Rossler system on the plane 

(x1(t), x2(t)) and the delayed coordinate plots x2(t+τ) vs x1(t) for various 

coupling strengths. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: (a) and (b) corresponds to ε=0.04 and time shift τ0 =0.9 a region 

with phase synchronization. (c) and (d) corresponds to ε=0.28 and time shift 

τ0 =0.15 a region with lag synchronization 
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2.4 CONCEPT OF CHAOTIC SYNCHRONIZATION WITH      

     SPECIAL REFERENCE TO LASER SYSTEMS 

 
It is possible to make two or more coupled systems to follow closely related 

orbits even when their motions are chaotic. Synchronization of coupled 

chaotic systems has been widely studied for the past few decades. This 

phenomenon has found numerous applications in areas such as laser 

dynamics [14-17], electronic circuits [18, 19], chemical and biological 

systems [20, 21], and secure communication [22, 23]. Synchronization is 

also found to occur in coupled maps [24-26], coupled semiconductor lasers 

[27] and in coupled Josephson junction arrays [28]. 

 

The main motivation behind the development of coupled lasers was the   

requirement of high power laser sources. Also synchronization of chaotic 

lasers has found to play vital role in secure communication.  Semiconductor 

lasers with emission in the long wavelength (1.3-1.5µm) region are very 

useful in optical communication systems. Semiconductor lasers and erbium 

doped fiber lasers are the most efficient sources in present day   

communication systems [23].  Nd:YAG laser with intracavity   KTP crystal 

is a system of special interest because of its high nonlinearity and multimode 

operation. The development of high power laser diode arrays which provide 

a long lived, highly efficient pump source for the Nd YAG laser, and the 

availability of doubling crystals with large non linear coefficients have 

permitted the development of cw visible sources with electrical efficiencies 

approaching 1%. These systems are one of the most efficient sources of cw 

coherent light in this portion of the visible spectrum [29].  Chaotic Nd:YAG 

lasers are proved to be ideal candidates for multichannel communication 

purposes. Chaotic synchronization of multimode Nd: YAG lasers can be 
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used in digital communication of two-dimensional messages and in 

encrypted audio transmission [30, 31]. In a multimode laser chaotic 

synchronization between corresponding cavity modes will be different from 

that between different cavity modes. Thus each pair of corresponding cavity 

modes can be used as a channel in optical communication [32]. 

 

2.5 CONTROL OF CHAOS IN LASER SYSTEMS 

 
Even though chaotic lasers are important from the point of view of 

communication, there are situations where we have to control chaos such as 

in experiments where a stable laser output is desired. Control of chaos in 

semiconductor lasers is very much important so as to improve the quality of 

optical communication systems. In 1988 it was Pettini who made the 

discovery that introduction of some suitable time dependant variations to 

certain parameters of the system can control chaos [33]. It was shown that 

application of periodic perturbations to the accessible control parameters of 

multimode solid state lasers can eliminate chaos in the output [34]. Later Ott, 

Grebogi and York developed a method for chaos control by stabilizing the 

unstable periodic orbits embedded in the chaotic attractor of the system [35]. 

In a method devised by Murali and Lakshmanan introduction of a second 

periodic signal generator in series with the original produces a quasiperiodic 

driving which in turn suppresses chaos [36]. Bidirectional coupling with 

another laser is found to be an efficient method for controlling chaos in 

directly modulated semiconductor laser [14, 37]. Recently a much novel and 

efficient method for controlling chaos in directly modulated semiconductor 

laser was introduced in which a delayed optoelectronic feedback was given 

to suppress chaos [38]. This time delay feedback control scheme introduced 

by Pyragas is known as Time Delay Auto Synchronization (TDAS) and has 
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been used for chaos control in various dynamical systems [39]. In TDAS 

method the Unstable Periodic Orbits of the chaotic system is stabilized by 

applying a self-adjusting feedback with a delay time that is equal to the 

period of the corresponding cycle. But in the delay feedback control scheme 

discussed in [38], a simple positive feedback of very small delay compared 

with the period of the 1 cycle is applied. Roy et al   used the   method of 

occasional proportional feedback to control chaos in Nd:YAG lasers [40].   
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CHAPTER 3  
 

LASER MODEL AND ITS DYNAMICAL PROPERTIES 
 
 In this chapter we describe the laser model used for our numerical studies. 

The dynamics of two mode and three mode Nd: YAG lasers with intracavity 

KTP crystal is discussed using rate equations. Phase portraits and bifurcation 

diagrams are used to get a clear picture of laser dynamics. 
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3.1 LASER MODEL 
 

 Nd:YAG laser, one of the   most commonly used solid state lasers possesses 

a number of unique properties favorable for laser operation. The YAG 

(yttrium aluminium garnet) host is hard and has good optical quality and 

high thermal conductivity. Because of the cubic structure of YAG, the laser 

has a narrow fluorescent linewidth which again results in high gain and low 

threshold for the laser operation. Nd:YAG host also possesses many 

physical, chemical and mechanical properties.   The YAG structure is stable 

from the lowest temperatures up to the melting point. Even though the 

strength and hardness of YAG are lower than ruby it is high enough to not 

produce any serious breakage problems during fabrication [1-3]. 

 

Usually Nd:YAG lasers are optically pumped using flash lamp or laser 

diode. The lasing medium is the colorless isotropic crystal Y3Al5O12 (YAG) 

with nearly 1% of yttrium replaced by neodymium. The energy levels of the 

Nd3+ ion are responsible for the fluorescent properties in the amplification 

process. The energy level diagram of neodymium ions is shown in figure 3.1. 

Neodymium ions are excited to high energy levels using an optical pumping 

mechanism. These ions deexcite to the level marked M which is the 

metastable state having a life time of about 0.25 ms. Laser action is obtained 

between the levels M and L at a wavelength of about 1.06 µm. Nd:YAG 

lasers find applications in ophthalmology, dentistry, cosmetic medicine, 

manufacturing and fluid dynamics [4,5,6]. 

 
 

 

 



 
  
 
 
 
 
                                                                                                       Laser Model                                     49 

 

 
 

Figure 3.1: Energy level diagram of neodymium ions. 

 

Our model system is a diode-pumped Nd:YAG laser with intracavity KTP 

(potassium titanyl phosphate) crystal. Nd:YAG laser  has the fundamental 

wavelength at 1064 nm in the infrared region. The laser output is stable 

without the intracavity doubling crystal. When the nonlinear KTP crystal in 

inserted into the laser cavity some of the infrared fundamentals are converted 

into green light (532 nm)by the process of second harmonic and sum 

frequency generation. Different longitudinal modes get coupled due to this 

sum frequency generation, which again produces deterministic intensity 

fluctuations in the laser output. Therefore with the crystal inserted into the 

laser cavity, output intensity exhibits periodic and chaotic fluctuations [7]. 
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Figure 3.2: Schematic of the laser model used for numerical studies 

 
 
Figure 3.2 is a schematic of the laser model used in our numerical studies 

[8].  The nonlinear KTP crystal which serves as the frequency doubling 

element is placed inside the Nd:YAG laser cavity. The intensity at the 

fundamental wavelength is maximum within the laser cavity. The intensity of 

green light produced by the KTP crystal is found to be proportional to the 

square of the fundamental intensity. Therefore the KTP crystal is placed 

inside the laser cavity to get maximum green light. The YAG rod and KTP 

crystal have the property called birefringence. A birefringent material 

possesses two orthogonal directions along which the material has different 

indices of refraction. Therefore light polarized along one axis travels faster 

than the light polarized along the other orthogonal axis. Accordingly one of 
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the axes is termed as “fast” axis and the other is called “slow” axis. Undoped 

YAG is isotropic and homogeneous and exhibits no birefringence. When 

YAG crystal is doped with neodymium ion Nd3+, it introduces some stress 

induced birefringence in the Nd:YAG rod. There are only two orthogonal 

polarization directions for the laser and the laser output is usually polarized 

in either one or both of these orthogonal polarization directions. The number 

of modes can vary from one to ten. 

 

Green light is produced in the KTP crystal by second harmonic generation 

and by sum frequency generation [8]. In second harmonic generation two 

photons from the same cavity mode of fundamental frequency ω combine to 

generate one photon of green at frequency 2 ω. In sum frequency generation 

one photon from a cavity mode at frequency ω1 combine with one photon 

from another mode at frequency ω2 to produce one photon of green at 

frequency (ω1+ ω2). The amount of green light produced by sum frequency 

generation depends on the orientation of the contributing laser cavity modes 

i.e whether they are polarized parallel or perpendicular to each other.  

 

Baer developed a deterministic rate equation model to describe the laser 

dynamics. The differential equations describing the time dependence of the 

laser intensity (I1) and gain (G1) for single mode operation are [7] 

 

( ) 1111
1 IIG

dt
dI

c εατ −−=                             (3.1a) 

( ) 0
111

1 1 GGI
dt

dG
f ++= βτ                           (3.1b) 
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where τc is the cavity round trip time, τf is the fluorescence life time (of Nd3+ 

ion), α1 is the mode 1 losses, ε is the nonlinear coefficient which is related to 

the KTP crystal properties and describes the conversion efficiency of the 

fundamental intensity into green light, β is the saturation parameter and G1
0 

is the small signal gain related to the pump rate. Values of the parameters are 

given in table below. 

 

τc 0.5 ns 

τf 240µs 

α1 0.015 

ε 5×10-5 W-1 

β 1W-1 

G1
0 0.12 

 

Table 3.1: Parameter values used in Eqs.3.1 (a) and 3.1(b) 

 

This model can be extended to the case of two oscillating longitudinal modes 

where each longitudinal mode is represented by a pair of equations similar to 

Eqs. 3.1(a) and 3.1(b) [7].            

 

( ) 12111
1 2 IIIG

dt
dI

c εεατ −−−=                             (3.2a) 

( ) 0
112121

1 1 GGII
dt

dG
f +++−= ββτ                       (3.2b) 

( ) 21222
2 2 IIIG

dt
dI

c εεατ −−−=                           (3.3a) 

( ) 0
221212

2 1 GGII
dt

dG
f +++−= ββτ                       (3.3b) 
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where β12 = β21 (0.666 W-1) is the cross- saturation parameter for modes 1 

and 2 . 

 

The losses in the fundamental intensity which arises due to the intracavity 

doubling and the sum-frequency generation are represented by the last two 

terms in Eqs. (3.2a) and (3.3a) respectively. The cross-saturation effects due 

to the partial inhomogeneous broadening in the laser cavity are incorporated 

in the rate equation by the second terms in Eqs. (3.2b) and (3.3b) where 

intensity of one mode is coupled to the gain of the other mode. 

              

The above model can be extended so as to include more oscillating 

longitudinal modes. If there are N oscillating modes we can write [7] 

 

i

N

ij
jiii

i
c IIIG

dt
dI

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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≠
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01 ii
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f GGII

dt
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⎞
⎜⎜
⎝

⎛
++−= ∑

≠

ββτ                (3.4b) 

  i=1, 2…N 

ijβ  is the cross- saturation of modes i and j.  

 

 Later Bracokowski and Rajarshi Roy [8, 9] reported that the chaotic 

intensity fluctuations in the laser output can be eliminated by proper 

orientation of the YAG rod and the KTP crystal. They also modified the Baer 

model by incorporating a geometric factor (represented as g in Eqn.3.5a) 

which is a measure of the relative orientation of the YAG and KTP fast axes. 

 

Each cavity mode can be polarized in either one of the two orthogonal 

polarization directions. The modified rate equations for the fundamental 
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intensities Ik and gains Gk associated with the kth longitudinal mode are given 

by  

 

k
kj

jjkkk
k

c IIIgG
dt
dI

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= ∑

≠

μεεατ 2              (3.5a) 

k
kj

jk
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f GII
dt

dG
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−= ∑

≠

βγτ 1                         (3.5b) 

k=1, 2, 3….are the mode numbers. 

Here γ is the small signal gain which is related to the pump rate. 

The parameter values are same as in table 3.1 

              

For modes having same polarization as the kth mode, μjk =g, and for modes 

having orthogonal polarization, μjk = (1-g) .This difference arises due to the 

different amounts of sum frequency generated green light produced by pairs 

of parallel polarized modes or by pairs of orthogonally polarized modes.  

               

Numerical simulations of the rate equations for a two mode Nd: YAG laser 

with intracavity KTP crystal show a reverse period doubling route from 

chaos to stability as the control parameter is varied [10]. The modes chosen 

are orthogonally polarized and termed as j and k. The control parameter is 

‘g’. The rate equations are 
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 As the control parameter, which is the orientation of YAG and KTP fast 

axes, is changed from 0 to 1 the output intensity undergoes a reverse period 

doubling sequence from chaos to stable behavior [10].  The phase portraits 

where the total output intensity is plotted against total gain for different g 

values showing the reverse period doubling route is given in figure 3.3. 

 

 

 

 
Figure 3.3: Phase portrait for two mode laser with a) g=0.002 b) g=0.1 
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A bifurcation diagram is drawn taking the control parameter g along x axis 

and maxima of the intensity along y axis.The reverse period doubling route is 

clear from the bifurcation diagram shown below. 

Figure 3.3: Phase portrait for two mode laser with c) g=0.2 d) g=0.5 e) 
g=0.65 
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Figure 3.4: Bifurcation diagram for the laser showing the reverse period  
doubling route 

 
 
 The laser intensity is found to be stable for higher g values [11]. It has been 

proved analytically that there was  no sumfrequency generation at g=1. So 

there is no mode coupling at this g value and hence the output intensity is 

stable.  

 
 Effect of varying g value on the energy transfer between the modes is also 

studied [10]. For this intensity in the x -polarized mode is plotted against that 

in the y -polarized mode for various g values. For g=0.002, there is a 

complex pattern indicating that the energy exchange between the modes take 
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place in a chaotic manner.As the g value is increased, we can see a closed 

loop which means that energy tranfer has a pariodic nature. Finally coming 

to the stable region it is a single spot showing that there is no exchange of 

energy between the modes. The various plots are given in figure 3.5. 

  

 

 

 

 

 

 

 

 

 

Figure 3.5: Intensity in the x -polarized mode plotted against that in the y- 
polarized mode for a) g=0.002 b) g=0.1 c) g=0.2 d) g=0.5 
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Numerical studies for a three mode laser reveals almost similar behavior, 

although the reverse period doubling route is absent. We assume that the 

laser is operating with three coexisting longitudinal modes with two modes 

polarized parallel to each other and the third mode polarized orthogonal. The 

corresponding rate equations are [12]. 

 

 
Figure 3.5: Intensity in the x- polarized mode plotted against that in the y- polarized 

mode for e) g=0.65 
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The laser is found to be chaotic upto g=0.4, after which it becomes periodic. 

When g=0.43,  we can see period three oscillations in the output . Figure 3.6 

shows the intensity time series plots corresponding to the chaotic and 

periodic regions. Figure 3.7 shows corresponding phase space plots. 

 

 

 
 
 
    

 

Figure 3.6: Intensity time series plots for three mode laser with a) g=0.12 b) g=0.43
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Figure 3.7: Phase space plots for three mode laser with a) g=0.12 b) g=0.43 
         

 The numerical studies reveal that for two mode and three mode lasers, an 

increase in the control parameter- orientation of the YAG and KTP fast axes- 

causes a transition from chaotic to stable behavior . The route taken in each 

case is different and the orientation of the laser cavity modes play an 

important role in determining the dynamics. Also the nature of energy 

transfer between the modes is affected by the orientation of YAG rod and 

KTP crystal. 
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CHAPTER 4 

 

SYNCHRONIZATION AND CONTROL OF CHAOS IN 

COUPLED CHAOTIC MULTIMODE Nd: YAG LASERS 

 

In this chapter we numerically investigate the dynamics of a system of two 

coupled chaotic multimode Nd: YAG lasers with two mode and three mode 

outputs. Unidirectional and bidirectional coupling schemes are adopted; 

intensity time series plots, phase space plots and synchronization plots are 

used for studying the dynamics. Quality of synchronization is measured 

using correlation index plots.  It is found that for lasers with two mode 

output, bidirectional direct coupling scheme is found to be effective in 

achieving complete synchronization, control of chaos and amplification in 

output intensity. For lasers with three mode output, bidirectional difference 

coupling scheme gives much better chaotic synchronization as compared to 

unidirectional difference coupling but at the cost of higher coupling strength. 

We also conclude that the coupling scheme and system properties play an 

important role in determining the type of synchronization exhibited by the 

system. 
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4.1 INTRODUCTION 
 
Study of coupled chaotic systems, especially their synchronization properties 

has been an area of intense research for the last few decades. This 

phenomenon has found many applications in laser dynamics [1-4], electronic 

circuits [5, 6], chemical and biological systems [7, 8] and secure 

communication [9, 10]. Dynamics of an array of coupled systems has also 

been studied for coupled maps [11-13], coupled semi conductor lasers [14], 

neural networks [15] and in the Josephson junction [16]. Many studies of 

coupled lasers have been motivated by the requirement of high power 

coherent sources. Intracavity doubled continuous wave infrared lasers have 

been identified as efficient source of coherent visible light. The development 

of high power laser diode arrays which provide a long lived, highly efficient 

pump source for the Nd: YAG laser and the availability of doubling crystals 

with large non linear coefficients have permitted the development of cw 

visible sources with electrical efficiencies approaching 1%. These systems 

are one of the most efficient sources of cw coherent light in this portion of 

the visible spectrum [17]   

 

 Nd: YAG laser with intracavity KTP crystal is a system of special interest as 

the crystal can introduce periodic as well as chaotic fluctuations in the laser 

output. Baer developed a deterministic rate equation model and explained the 

fluctuations as the manifestation of deterministic chaos [17]. It has been 

shown that the laser output can be stabilized through a sequence of reverse 

period doubling bifurcation by varying the orientation of KTP crystal and the 

laser cavity [18]. 

 

Several investigations have been carried out to understand the dynamics of 

coupled Nd: YAG lasers. Roy and Thornburg studied the coupling of two 
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chaotic Nd: YAG lasers experimentally [4]. In their experiment the coupling 

of lasers was achieved by generating two laser beams on the same crystal so 

that the intracavity laser fields overlap. They have also studied the chaotic 

behavior of two coupled single mode Nd: YAG lasers [19]. Coupled 

dynamics of two chaotic Nd: YAG lasers operating in three longitudinal 

modes were studied to show that the system goes from chaotic state to 

periodic and then to steady state as the coupling strength is increased [2]. 

 

Synchronization of chaotic systems has been widely studied because of its 

potential applications in the area of secure communication. Chaos based 

communication using Lorentz oscillators, Rossler systems and electronic 

circuits are possible at bandwidths of several tens of kilohertz [20-30]. By 

using the synchronization of optical chaos the available bandwidth can be 

extended up to hundreds of megahertz. Information encoding and decoding 

was studied in semiconductor lasers [31, 32], solid state lasers [33], fiber- 

ring lasers [34] and in microchip lasers [35]. Quality of message encoding 

and decoding also depends on the choice of coupling scheme between the 

transmitter and the receiver laser systems. Proper selection of coupling 

schemes can enhance the privacy and security of communication. 

 

Only single mode laser systems have been considered for single channel 

communication for the past several years. Recent studies reveal that 

multimode lasers can be used effectively for multichannel communication. 

Chaotic Nd: YAG lasers are ideal candidates for this purpose because of 

their inherent nonlinearity and multimode operation. Chaotic synchronization 

of multimode Nd:YAG lasers can be used to achieve high quality digital 

communication of two dimensional messages and encrypted audio 

transmission [36,37]. Each pair of corresponding cavity modes in a system of 
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coupled chaotic multimode Nd:YAG lasers can be used as a channel in 

optical communication [38]. To the best of our knowledge the effect of 

various coupling schemes on the dynamics of multimode Nd: YAG lasers 

and their synchronization properties have not yet been discussed in detail. 

 

In this chapter we present the results of our numerical studies on the effect of 

external electronic coupling on the dynamics of two mode and three mode 

lasers. Direct and difference couplings are investigated separately for 

unidirectional and bidirectional schemes. 

 

4.2 LASER MODEL 
 

The model system consists of two identical Nd:YAG lasers operating in the 

chaotic region and starting from slightly different initial conditions. The 

dynamics of individual lasers are described in the previous chapter.  The 

lasers are coupled via external electronic coupling scheme whereby the 

pumping of each laser is modulated according to the output intensity of the 

other. The rate equations for the coupled system are given by [2] 
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A schematic diagram of the coupled system is shown in figure 4.1. 

 
Figure 4.1: Schematic of the coupled laser system 

 

 The coupling is done by modifying the parameter γ. We have considered 

two types of couplings, namely direct coupling and difference coupling 

schemes. In the direct coupling scheme, the parameter γ of laser 2 is 

modulated according to the total intensity of laser 1 and vice versa. 
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On the other hand, in the difference coupling scheme the parameter is 

modulated according to the difference in intensities of the two lasers 1 and 2. 
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Here bγ  is the small signal gain (which is related to the pump rate)for the 

individual lasers, γ1 and γ2  are the pump parameters for laser 1 and laser 2 

respectively, K1 and K2 are the coupling constants, ∑ 1kI  and ∑ 2kI  are the 

total output intensities in all the modes for laser 1 and laser 2 respectively.  

 

4.3 NUMERICAL RESULTS AND DISCUSSION 

The rate equations (4.1) and (4.2) are numerically integrated using Runge- 

Kutta fourth order method with a nanosecond step size. Intensity time series 

plots, phase space plots and synchronization plots are used for studying the 

dynamics. Quality of synchronization is measured using correlation index 

plots. 

 

4.3.1 DYNAMICS OF THE SYSTEM UNDER UNIDIRECTIONAL   

         COUPLING 
Here the coupling constants are set as K1=0 and K2=K such that laser 1 is 

coupled to laser 2 and there is no backward coupling. We have investigated 

the system dynamics under direct and difference coupling schemes for lasers 

with two mode and three mode output. 
 

4.3.1.1 TWO MODE CASE WITH UNIDIRECTIONAL COUPLING 
 

In this section we present the dynamics of two coupled Nd: YAG lasers each 

operating in two orthogonal longitudinal modes with unidirectional coupling 

between them. First we investigate the dynamics of the system under direct 

coupling scheme. Figure 4.2a shows the time series for the total intensities 

for the lasers 1 and 2 for the coupling strength K=0.002. It is seen that there 

is amplification in the output intensity of laser 2 as the coupling strength is 
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increased. Figure 4.2b shows the time series for the total intensities for the 

lasers 1 and 2 for K=0.8.   Figure 4.3a and 4.3b show the corresponding 

synchronization plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Intensity time series plots for laser 1 and 2 for a) K=0.002 b) 

K=0.8 
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Figure 4.3: Synchronization plots for laser 1 and 2 for a) K=0.002 b) K=0.8 

 

 At higher coupling strength (K=1) the two lasers achieve phase 

synchronization. The intensity time series plot and synchronization plot 
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corresponding to this coupling strength is given in figure 4.4 and figure 4.5 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Intensity time series plot for the lasers 1 and 2 for K=1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Synchronization plot for lasers 1 and 2 for K=1 
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 The phase of the chaotic time series is calculated using the method of 

Hilbert Transform [40]. In order to estimate the phase function φ (t) 

corresponding to a time series z (t) we take Hilbert transform of z (t) to 

obtain 
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where P.V. is the Cauchy principal value for the integral. Now an analytical 

signal is constructed to yield an amplitude function A (t) and a phase 

function φ (t) which is given by 
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In order to show the phase synchronization we calculate the similarity 

function defined by [41] 
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where x (t) could either be the phase or intensity of the laser output 

 

For values of the coupling increasing from zero in small steps the similarity 

function for both phase and intensity are determined. Figure 4.6 shows the 

variation of similarity function for intensity and phase with respect to 

increase in coupling strength. It is seen from the figure that for a large range 
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of values of the coupling strengths the similarity function for the phase show 

very low values indicating the existence of phase synchronization in the 

system. The synchronization of intensities is not so pronounced for lower 

coupling strengths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6:  Similarity function Vs coupling strength for both phase and 

intensity   under   unidirectional direct coupling scheme. 

  

 In the case of difference coupling there is no synchronization. However, 

amplification of the signal is present in this case also. Figure 4.7a shows the 

intensity time series plots of laser 1 and 2 for the coupling strength K=0.002. 

Amplification present is clear from the time series plots in Figure 4.7b for 

the coupling strength K=0.006.  
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Figure 4.7: Intensity time series plots for lasers 1 and 2 for a) K=0.002 b) 

K=0.006 
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Corresponding synchronization plots are given in figure 4.8. Inspite of the 

high coupling strength the lasers remain unsynchronized. 

 

 

 

                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            

                                                               

 

 

 

Figure 4.8: Synchronization plots for lasers 1 and 2 for a) K=0.002 b) 

K=0.006 
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4.3.1.2 THREE MODE CASE WITH UNIDIRECTINAL COUPLING 

 

Here we consider two coupled Nd: YAG lasers each operating in three 

longitudinal modes, two of which are polarized parallel to each other while 

the third mode is polarized in the orthogonal direction. When   direct 

coupling is employed, the system shows amplification of the output intensity 

of the second laser as in the two mode case, but does not show any tendency 

to get synchronized. However, when the difference coupling scheme is used, 

the system shows a tendency towards synchronization. Figure 4.9 show the 

synchronization plots for various coupling strengths. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Synchronization plots for the coupled lasers for various coupling 

strengths a) K= 0.02 b) K=0.04 c) K=0.05   d) K=0.055 
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The quality of synchronization is determined by the correlation index defined 

by [42] 
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where x (t) could either be the phase or intensity of the laser output. 

 

In Figure 4.10 we plot correlation index, as a function of coupling strength. 

The maximum value of ρ obtained is 0.9710 corresponding to a coupling 

strength of 0.055. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Correlation index Vs coupling strength under unidirectional 

difference coupling scheme 
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4.3.2 DYNAMICS OF THE SYSTEM UNDER 

BIDIRECTIONAL COUPLING 

   

The coupling constants are set as K1=K2=K so that laser 1 is coupled to laser 

2 and vice versa. Here also we give the results of both direct and difference 

coupling schemes for lasers with two mode and three mode output. 

 

4.3.2.1 TWO MODE CASE WITH BIDIRECTIONAL COUPLING  

 

Dynamics of two coupled Nd: YAG lasers each operating in two orthogonal 

longitudinal modes with bidirectional coupling between them is studied. 

Under direct coupling scheme the two lasers remain chaotic up to K=0.0072 

after which they begin to be periodic. The two lasers exhibit period 1 

oscillations in their output at K=0.008. Even though the lasers exhibit 

periodic behavior above 0.0072, they are not synchronized. The two lasers 

get synchronized only at K=0.008. We can also see an amplification in 

output intensity of both the lasers at K=0.008. After K=0.008, even though 

synchronization is lost for some values of coupling strength, for higher 

values of coupling strength they again get synchronized.  Figure 4.11 show 

the intensity time series plots for the lasers for various coupling strengths. 

The corresponding phase space plots are given in figure 4.12. 
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Figure 4.11: Intensity time series plots for lasers 1 and 2 for a) K=0.0072 

b) K=0.0075 
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Figure 4.11: Intensity time series plots for lasers 1 and 2 for c) K=0.0077 d) 

K=0.008 
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Figure 4.12: Phase space plots for lasers 1 and 2 for a) K=0.0072 b) 

K=0.0075 
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Figure 4.12: Phase space plots for lasers 1 and 2 for c) K=0.0077 d) 

K=0.008 
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The synchronization plot corresponding to K=0.008 is given in figure 4.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Synchronization plot for lasers 1 and 2 for K=0.008 

 

 

 

In figure 4.14 we plot the correlation index ρ as a function of coupling 

strength. ρ is close to 1 for coupling strengths between 0.008 and 0.01.  
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Figure 4.14: Correlation index Vs coupling strength under bidirectional 

direct coupling 

 

However when we use difference coupling the outputs are neither stabilized 

nor synchronized. 

 

4.3.2.2 THREE MODE CASE WITH BIDIRECTIONAL COUPLING 

 

Here we consider two Nd: YAG lasers each operating in three longitudinal 

modes, two of which are polarized parallel to each other while the third 

mode is polarized in the orthogonal direction.  It has been proved earlier that 

the lasers can be stabilized through direct coupling scheme and thus control 

chaos [2]. When the difference coupling scheme is used, it is seen that both 

the lasers remain chaotic throughout the entire range of coupling strengths. 

Though we can not control chaos using this scheme it is found to be effective 

in synchronizing the lasers. The quality of synchronization is better as 
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compared to unidirectional scheme. The synchronization plots for various 

coupling strengths are shown in figure 4.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4.15: Synchronization plots of two, coupled three mode chaotic 

lasers for various coupling strengths under bidirectional difference coupling 

scheme.a) K=0.004 b) K=0.02 c) K=0.085 d) K=0.101 e) K=0.102 f) 

K=0.105 

            

Here also the correlation index is calculated for various values of coupling 

strength and is plotted in figure 4.16. Correlation index increases with the 

coupling strength initially, reaches a maximum at the coupling strength 0.101 

and decreases steeply for higher values of couplings. Maximum value of the 

correlation index obtained is 0.9987 corresponding to the coupling strength 
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0.101. The sharp decrease in correlation index for higher values of couplings 

indicates the loss of synchronization in that region. 

 

 

 

 

 

 

 

 

 

 

 

 

           

Figure 4.16: Correlation index Vs coupling strength under bidirectional 

difference coupling 

 

4.4 CONCLUSIONS 

                

 Dynamics of a system of two coupled chaotic multimode Nd: YAG lasers 

having two mode and three mode outputs was studied numerically. The 

lasers were coupled using external electronic coupling in which the pumping 

of each laser is modulated according to the output intensity of the other. Both 

bidirectional and unidirectional coupling strategies are employed.  Intensity 

time series plots, phase space plots and synchronization plots are used to 

study the individual dynamics and synchronization properties [44]. 
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We have found that for a system of coupled   Nd: YAG lasers operating in 

two modes, complete synchronization between the lasers can be achieved 

using bidirectional direct coupling only. With this coupling scheme, we can 

control chaos and get amplification in output intensity of both the lasers. 

With bidirectional difference coupling, the lasers remain chaotic for the 

entire region of coupling strength. We can not observe any amplification or 

synchronization under this scheme. With unidirectional direct coupling, 

phase synchronization between the lasers can be observed at higher coupling 

strengths. Amplification in output intensity of second laser is also observed 

in this region. Unidirectional difference coupling can give the same results 

except that it does not lead to any type of synchronization. 

 

For systems operating in three mode, both unidirectional and bidirectional 

difference coupling schemes are effective in inducing complete chaotic 

synchronization between the lasers. Much better synchronization is obtained 

with bidirectional difference coupling, but at the cost of higher coupling 

strength. With bidirectional direct coupling we can control chaos [2] while 

unidirectional direct coupling is not efficient in controlling chaos or 

synchronizing the lasers.  

 

To conclude, our results corroborate the findings that the coupling strategies 

and system properties play an important role in determining the dynamics 

and synchronization phenomena exhibited [43].  Thus a deep knowledge 

about the system helps us in choosing the appropriate coupling scheme that 

gives the desirable output. 
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CHAPTER 5 
 
HOPF BIFURCATION IN PARALLEL POLARIZED Nd: YAG 

LASER 
    

In this chapter we investigate analytically and numerically the dynamics of 

Nd: YAG laser with intracavity KTP crystal operating in two parallel 

polarized modes. System equilibrium points were found out and the stability 

of each of them was checked using Routh Hurwitz criteria and also by 

calculating the eigen values of the Jacobian. It is found that the system 

possesses three equilibrium points for (Ij, Gj) where j=1, 2.One of these 

equilibrium points undergoes Hopf bifurcation in output dynamics as the 

control parameter is increased. The other two remain unstable throughout the 

entire region of the parameter space. Our numerical analysis of the Hopf 

bifurcation phenomena is found to be in good agreement with the analytical 

results. Nature of energy transfer between the two modes is also studied 

numerically. 
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5.1 INTRODUCTION 
 

Laser systems have been studied extensively over the last several years 

because of the rich variety of dynamics they exhibit. A lot of research has 

been carried out to study the chaotic fluctuations in the output dynamics of 

laser systems. Among them instabilities in multimode solid state lasers were 

of special interest. Intracavity doubled continuous wave infrared lasers are 

efficient sources of coherent visible light. Nd: YAG lasers can be developed 

as cw visible sources using high power laser diode arrays for pumping and 

also doubling crystals with large nonlinear gain coefficient.  Baer [1] first 

reported large amplitude fluctuations in this laser system. He observed that 

large amplitude fluctuations and longitudinal mode instabilities arise in the 

output of diode pumped Nd: YAG laser in the presence of an intracavity 

doubling crystal. Coupling of various longitudinal modes of the laser by sum 

frequency generation was found to be the origin of these instabilities. He 

developed a deterministic rate equation model to explain these fluctuations. 

Using this model he was able to predict the dependence of these fluctuations 

on the pump level, the nonlinear coupling constant and the number of 

oscillating modes. 

 

A detailed analysis of the periodic and the chaotic fluctuations in the output 

intensity of multimode solid state laser was carried out by Bracikowski and 

Rajarshi Roy [2, 3]. They studied the Nd: YAG laser with intracavity KTP 

crystal and obtained several interesting results. It is possible to eliminate the 

chaotic fluctuations in this laser and also obtain complex periodic waveforms 

such as antiphase states by varying the relative orientation of the YAG and  
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KTP crystals. They have also made a statistical study of these chaotic 

fluctuations.  

 

Studies by Oka and Kubota have shown that the laser dynamics is strongly 

influenced by the polarizations of the cavity modes [4]. This dependence is 

due to the fact that the amount of green light produced by sum frequency 

generation depends on whether the contributing fundamental modes are 

polarized parallel or orthogonal to each other. It has been shown that when 

the laser is operating with two orthogonally polarized modes the chaotic 

fluctuations in the output intensity can be stabilized through a reverse period 

doubling bifurcation by varying a particular control parameter (relative 

orientation of YAG and KTP crystal). The detailed dynamics of such a laser 

system is given in chapter 3 [5]. Recently Czeranowsky et al studied the 

influence of orthogonally polarized modes on the output stability of an 

intracavity doubled Nd:YAG laser [6]. They reported that a high pump 

power or high conversion efficiency causes the laser output to become 

unstable through Hopf bifurcation. In this chapter we study the dynamics of 

Nd: YAG laser with intracavity KTP crystal operating in two parallel 

polarized modes analytically and numerically. It is found that the laser output 

exhibits Hopf bifurcation as the control parameter is varied [7]. A detailed 

stability analysis of the bifurcation phenomena is carried out by using Routh 

-Hurwitz criteria and also by calculating the eigen values of the Jacobian. 

Effect of change in orientation of YAG and KTP crystal on the energy 

transfer between the two laser cavity modes is also studied. 
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5.2 LASER MODEL 

 
For numerical work we consider Nd: YAG laser with intracavity KTP crystal 

operating with two longitudinal modes. The modes chosen are having the 

same polarization states. A detailed description of the laser model is given in 

the previous chapter. The system can be modeled by the rate equations for 

the intensity Ik and gain Gk for the kth longitudinal mode [2]. The parameter 

values are chosen as in table 3.1 given in chapter 3.  

 k
kj

jjkkk
k

c IIIgG
dt

dI
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= ∑

≠

μεεατ 2                (5.1)                                                            

k
kj

jk
k

f GII
dt

dG
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−= ∑

≠

βγτ 1                             (5.2) 

As modes are having same polarization states, we choose µjk = g.  

 

5.3 RESULTS 

 
It was proved earlier that for Nd:YAG laser operating in two orthogonally 

polarized modes the output intensity  fluctuations change from chaotic to 

stable behavior through a reverse period doubling bifurcation sequence as the 

system control parameter (g) is continuously varied. Since there is a strong 

dependence of the output dynamics on the polarizations of the laser cavity 

modes, an entirely different dynamical behavior is expected for a laser 

operating in two parallel polarized modes.  
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The rate equations for intensity and gain (equations 5.1 and 5.2) are solved 

using Matlab to get analytical expressions for the solutions in terms of the  

control parameter g. The system fixed points are obtained by substituting 

different g values in these expressions. Table 5.1 gives the solutions 

corresponding to g=0.4. 

 

I1 G1 I2 G2 

0 0.5×10-1 0 0.5×10-1 

0 -0.142×10-4 -5004.99 -0.999×10-5 

0 0.131×10-1 3.996 0.1×10-1 

-5004.99 -0.999×10-5 0 -0.14×10-4 

3.996 0.1×10-1 0 0.131×10-1 

12491.07 0.784×10-5 -8743.57 0.424×10-1 

-8743.57 0.424×10-1 12491.07 0.784×10-5 

-1669.60 0.176×10-4 -1669.60 -.176×10-4 

2.348 0.1001×10-1 2.348 0.1001×10-1 

 

Table 5.1: Solutions for the laser rate equations (5.1) and (5.2) for g=0.4 

 

 It is found that the laser system has got nine fixed points as there are nine 

sets of solutions for (Ij, Gj) where j=1,2. Out of them only three sets are 

having real valued solutions: 

Set I: Solution with equal values for I1 and I2 

Set II: Solution with I1=0 

Set III: Solution with I2=0 
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5.3.1 ROUTH HURWITZ STABILITY CRITERION  

 
Routh-Hurwitz stability criterion enables [8-11] us to find the existence of 

positive roots in a polynomial equation without solving the equation. This 

criterion can be applied to polynomials with only a finite number of terms. 

By applying the criterion to a control system information about the absolute 

stability can be obtained directly from the coefficients of the characteristic 

equation. However Routh-Hurwitz stability criterion has limited use in linear 

control system analysis as it does not suggest how to improve relative 

stability or how to stabilize an unstable system. But it is possible to 

determine the effects of changing one or two parameters of a system by 

examining the values that cause instability. 

 

Consider a dynamical system in drive response scheme represented by the 

equations 

( )

( ) ( ) ( ) ( )[ ]yhxhycyfy

xfx

−+=

=
.

.

                                       (5.3) 

 

Here x and y are the state variables of the drive and response respectively. c 

is the coupling parameter. h(x) and h(y) are the transmitted signals. The 

coupling parameter is adjusted according to y so that the drive and response 

get synchronized asymptotically. The synchronization manifold (SM) is the 

subspace defined by x=y. To check the stability of the SM, we first construct 

the Jacobian matrix A of the dynamical system. 

 

The characteristic polynomial of an n×n matrix A can be generally written as 
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( ) 0
2

2
1

1 ........ aaa n
n

n
n

n
A ++++=Γ −

−
−

− λλλλ                      (5.4) 

 

One possible form of Hurwitz criterion states that all roots of the 

characteristic equation ( ) 0=Γ λA  have negative real part when all the north-

westerly principal minors D1, D2,….,Dn  of the nn×  matrix D are positive, 

where D is given by 
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For 4×4 matrix D can be written as 
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The Routh Hurwitz stability conditions are 

031 >= aD  
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( ) 0304 >= DaD
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5.3.2 STABILITY ANALYSIS 

 
To determine the stability of fixed points, equations 5.1 and 5.2 are 

linearized around the fixed points. Then we get the equation governing the 

evolution of any small perturbation ( )2211 ,,, GIGI δδδδ  around the 

steady state ( )∗∗∗∗
2211 ,,, GIGI  
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Where 
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Hence the Jacobian of the system at the steady state ( )∗∗∗∗
2211 ,,, GIGI  is 

given by 
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The characteristic equation of the system is given as 
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where λ is the eigen value of J 

Eqn (5.10) can be rewritten as 
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Routh Hurwitz stability conditions for our system becomes 
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                                              (5.12) 

We have checked the stability of all the three sets of solutions based on this 

criterion.  
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1) Solution Set I. 

 The control parameter is increased and the stability conditions are checked 

for each case. It is found that the attractor is a stable fixed point for small g 

values. All the stability conditions are satisfied in this region.  

At g=0.28, ( ) 02
304

2
1321 <−− aaaaaaa  which is a clear indication of the loss 

of stability of the fixed point. Thus the fixed point loses stability at g=0.28 

and becomes a limit cycle which remains stable for higher g values. In Table 

5.2 we give the value of the Routh-Hurwitz coefficients  with increasing g 

value. 

 

g 3a  )( 132 aaa −  
×1016 

2
304

2
1321( aaaaaaa −− )

              ×1032 
0a ×1023 

0.04 65186 3.5265 4.9188 1.2271 
0.08 65176 3.8485 4.6044 1.2264 
0.12 65166 4.1703 4.0791 1.2256 
0.16 65156 4.4918 3.3479 1.2249 
0.20 65146 4.8132 2.4053 1.2241 
0.24 65136 5.1314 1.2547 1.2233 
0.28 65126 5.4550 -0.1052 1.2226 
0.32 65116 5.7754 -1.6730 1.2218 
0.36 65106 6.0956 -3.4498 1.2211 
0.40 65096 6.4155 -5.4341 1.2203 
0.44 65086 6.7352 -7.6271 1.2196 
0.48 65076 7.0547 -10.0272 1.2188 
0.52 65066 7.3738 -12.6350 1.2180 

 
 

Table 5.2: Routh- Hurwitz coefficients for various g values 
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From the table we can see that one of the coefficients, 2
304

2
1321( aaaaaaa −− ) 

changes sign at g=0.28 while all others remain positive for the entire range of 

g values. Figure 5.1 shows the variation of the coefficient 

( 2
304

2
1321 aaaaaaa −− ) with g value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Graph showing the variation of the coefficient 

( 2
304

2
1321 aaaaaaa −− ) with g 

                                

We have also calculated the eigen values for the characteristic polynomial 

for each of the g values. 
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g Real part of eigen value 

0.04 -0.1394 

0.08 -0.1159 

0.12 -0.0924 

0.16 -0.0688 

0.20 -0.0453 

0.24 -0.0218 

0.28 0.0017 

0.32 0.0252 

0.36 0.0487 

0.40 0.0722 

0.44 0.0957 

0.48 0.1192 

0.52 0.1428 

 

Table 5.3: Change in real part of eigen values with increasing g  

 

  At g=0.28 real part of two eigen values become positive which again 

confirms the loss of stability of the fixed point. Variation in the real part 

of eigen value is plotted as a function of g in figure 5.2.  
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Figure 5.2: Graph showing the variation of real part of eigen value with g 

 

This phenomenon where fixed point losses stability at a particular value 

of the control parameter and changes into a limit cycle is called Hopf 

bifurcation. 

 

2) Solution Set II & III 

 

Stability analysis of these fixed points is also carried out as in previous case. 

It is found that the two fixed points remain unstable for the  
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entire range of g values. Table 5.4 shows the variation of the Routh Hurwitz 

coefficients with g values. 

 

 

g 3a ×107 )( 132 aaa −  
×1019 

2
304

2
1321( aaaaaaa −− )

×1037 
0a ×1023 

0.04 -1.5746 1.0124 -8.1486 -2.0829 
0.08 -1.5715 1.1147 -9.4168 -2.0794 
0.12 -1.5731 1.2105 -10.7640 -2.0821 
0.16 -1.5724 1.3092 -12.0670 -2.0817 
0.20 -1.5717 2.0813 -13.3650 -2.0813 
0.24 -1.5718 1.5075 -14.6850 -2.0820 
0.28 -1.5703 1.6042 -15.9590 -2.0805 
0.32 -1.5720 1.7074 -17.3300 -2.0833 
0.36 -1.5689 1.8002 -18.5440 -2.0797 
0.40 -1.5681 1.8979 -19.8320 -2.0793 
0.44 -1.5722 2.0077 -21.3150 -2.0852 
0.48 -1.5723 2.1078 -22.6460 -2.0859 
0.52 -1.5660 2.1902 -23.6870 -2.0781 

 

Table 5.4: Routh- Hurwitz coefficients for various g values 

 

From the table it is clear that only one coefficient remains positive while 

the other three remain negative for the entire range of g values which 

indicates the unstable nature of the solutions.  

 

Figure 5.3 is a plot showing the variation of coefficient 

( 2
304

2
1321 aaaaaaa −− ) with g value for these solutions. The coefficient 

remains negative for the entire range of g value. 
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Figure 5.3: Graph showing the variation of the coefficient 

( 2
304

2
1321 aaaaaaa −− ) with g 

                  

Real part of eigen values is plotted as a function of g in Figure 5.4. Real 

part of eigen values are found to be positive for every g value which 

show that the solutions are Routh Hurwitz unstable. 
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     Figure 5.4: Graph showing the variation of real part of eigen value with g           

                  

5.3.3 NUMERICAL ANALYSIS 

 
Equations (5.1) and (5.2) are integrated numerically using Runge Kutta 

fourth order method for different g values. Figure 5.5 shows the intensity 

time series plots for the laser at different g values. For g=0.08 the output 

intensity is found to be stable (5.5a). As the g value is increased to 0.5 we 

can see oscillations of constant amplitude which remains in that state for 

higher g values (5.5b).  
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Figure 5.5: Intensity time series plot for the laser at g=0.08 (a) and at g=0.5 

(b) 
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Figure 5.6 shows the corresponding phase space plots where the total output 

intensity is plotted against total gain for various g values. For g=0.08, the 

phase trajectory is a single spot which implies that the laser is operating in 

the stable mode for this g value. (5.6a). At g=0.5, the phase trajectory 

evolves as a clear limit cycle (5.6b). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. 6: Phase space plots for the laser at g=0.08 (a) and at g=0.5 (b) 
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 The Hopf bifurcation phenomena is evident from the bifurcation diagram 

where the maxima and minima of total output intensity is plotted against the 

control parameter (Fig 5.7) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.7: Bifurcation diagram where the maxima and minima of total 

output intensity is plotted as a function of the control parameter g. 

 
We have also studied the exchange of energy between the two modes. For 

this the intensity in the X polarized mode is plotted against that in the Y 

polarized mode. Figure 5.8 shows the plots for different values of g.  In the 

stable region for g=0.08, it is a single spot indicating that there is no 

exchange of energy between the modes. (5.8a). For g=0.28 and g=0.32 it is a 

straight line which implies that a linear relationship exists between the 

energy of two modes in this region. (5.8b and 5.8c). It also shows that the 

total energy of two modes remain a constant in this region. As the g value is  



 
                                                             
 
 
 
                                                               
                                                                      
                                                                     Hopf Bifurcation in Nd:YAG laser 111 

1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5

I
1

I 2

(a)

2.3492 2.3494 2.3496 2.3498 2.35 2.3502 2.3504 2.3506 2.3508
2.3494

2.3496

2.3498

2.35

2.3502

2.3504

2.3506

2.3508

I
1

I 2

(b)

 

increased it changes into a closed loop (corresponding to the limit cycle 

region) indicating a periodic exchange of energy between the two modes. 

(5.8d and 5.8e) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8: Intensity of X polarized mode plotted against that in the Y 
polarized mode for g=0.08 (a); g=0.28 (b) 

 
 
 



 
 
 
 
 
 
 
Chapter 5 112 

2.33 2.335 2.34 2.345 2.35 2.355 2.36 2.365 2.37 2.375
2.33

2.335

2.34

2.345

2.35

2.355

2.36

2.365

2.37

2.375

I
1

I 2
(c)

1.6 1.8 2 2.2 2.4 2.6 2.8 3
1.6

1.8

2

2.2

2.4

2.6

2.8

3

I
1

I 2

(d)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8: Intensity of X polarized mode plotted against that in the Y 
polarized mode for g=0.32 (c); g=0.4 (d) 
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Figure 5.8: Intensity of X polarized mode plotted against that in the Y 
polarized mode for g=0.5 (e). 

 
 
5.4 CONCLUSIONS 
 
Nonlinear dynamics of Nd: YAG laser with intracavity KTP crystal 

operating with two parallel polarized modes is studied. System equilibrium 

points were found out analytically. It was found that the system possesses 

three equilibrium points. The stability of each of them was investigated using 

Routh Hurwitz criteria and also verified by calculating the eigen values of 

the Jacobian. One of the equilibrium points loses stability at a particular 

value of the control parameter (g=0.28) and evolves as a limit cycle- the 

phenomenon called Hopf bifurcation. The other two equilibrium points 

remain unstable through out the entire region of g value. This is different 

from the case where reverse period doubling route from chaos to stability 

was found for laser oscillating with two orthogonally polarized modes.   
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Occurrence of Hopf bifurcation in the output dynamics is investigated 

numerically also.   

 

Energy sharing between the two longitudinal modes is studied as a function 

of the control parameter. Polarization of the cavity modes is found to have 

great influence on the nature of energy transfer between the modes. 
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CHAPTER 6 
 

DELAY INDUCED MULTISTABILITY IN PARALLEL 
POLARIZED Nd:YAG LASER 

 
In this chapter the effect of a delayed optoelectronic feedback on the 

dynamics of a two mode intracavity doubled Nd:YAG laser operating in the 

limit cycle region is investigated numerically. Both positive and negative 

delay feedbacks are studied separately. Bifurcation diagrams, time series 

plots, phase portraits, power spectra and intensity peak series plots are used 

to study laser dynamics. Periodic, quasiperiodic and chaotic dynamics 

regimes are identified in the output. Existence of chaotic region is confirmed 

with a positive Lyapunov exponent and a fractional correlation dimension. It 

is also found that the laser exhibits   hysteresis and multistability for certain 

delay times. 
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6.1 INTRODUCTION 

Laser chaos and synchronization of chaotic lasers [1-4] have been studied 

extensively as they have found applications in areas like secure 

communication. Privacy and security of communication systems can be 

enhanced utilizing the synchronization property of chaotic semiconductor 

lasers [5]. Recently chaotic multimode Nd:YAG lasers are found to be ideal 

candidates for multichannel communication [6-8]. Influence of a feedback 

has been studied widely in various dynamical systems especially in lasers. 

Introduction of a feedback is found to be the origin of chaos in many laser 

systems. In 1970 Paoli and Ripper studied the effect of an optoelectronic 

feedback on the dynamics of a self-pulsing GaAs junction laser [9]. In 1986, 

Arecchi et. al observed self-pulsing and deterministic chaos in a single-

mode, homogeneous-line CO2 laser under a negative feedback [10]. They 

also made a theoretical model which gave results in good agreement with the 

experimental ones. Later a successive transition from Hopf bifurcation to 

Shilnikov chaos and then to a regular spiking were also observed in CO2 

laser with feedback with increase of the control parameter [11]. Introduction 

of an optoelectronic feedback to a high speed self pulsing semiconductor 

laser was found to be an effective means for generating picosecond optical 

pulses [12]. In 1988, Chang-Hee Lee et al devised a method for generating 

optical pulses with repetition rates of several gigahertz and pulsewidth of the 

order of picoseconds by applying a negative optoelectronic feedback to a 

diode laser [13]. Gregory et.al reported the observation of a quasiperiodic 

route to chaos in coherence collapse of a single mode semiconductor laser 

subjected to an optical feedback [14].  

  

Systems with delayed feedback exhibit a rich variety of dynamical 

phenomena because of their high dimensionality. A lot of studies have been 
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done to investigate delay feedback induced instabilities in various dynamical 

systems. Various instabilities in a semiconductor laser operating with a 

delayed optoelectronic feedback were studied by Giacomelli et.al [15]. Delay 

feedback has found applications such as suppression of relaxation 

oscillations [16], generation of stable oscillations [9], generation of low and 

high dimensional chaos [17, 18] and stabilization of unstable orbits [19].  

Spectral bistability, sub harmonic generation, self-pulsing and chaos have 

been observed in a stable semiconductor laser with a delayed optoelectronic 

feedback [20]. A quasiperiodic route to chaos was achieved in quantum well 

lasers under a delayed optoelectronic feedback [21]. Chaotic pulsing and a 

quasiperiodic route to chaos in a semiconductor laser with delayed positive 

optoelectronic feedback were investigated by Liu et.al [22]. Almost similar 

dynamics was exhibited by the laser under delayed negative optoelectronic 

feedback [23].The effect of positive and negative delayed optoelectronic 

feedback on the dynamics of a directly modulated semiconductor laser 

operating in the optimum range of nonlinear gain reduction factor has been 

studied [24]. It was found that a negative delayed optoelectronic feedback is 

more effective in producing chaotic output keeping the nonlinear gain 

reduction factor in the practical value range.  

 

An important dynamical behavior exhibited by laser systems is 

multistability.  Multistability means coexistence of several attractors for a 

given set of parameters. Multistable systems are highly sensitive to 

perturbations because of the complex relationship between their attractors. 

The asymptotic state of the system is determined by its initial conditions. 

Multistability has been reported in lasers [25-31], electronic circuits [32], 

Duffing oscillators [33] and biological systems [34-39]. An interesting 

phenomenon associated with multistability is hysteresis. Hysteresis 
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represents the history dependence of the system i.e in order to predict the 

state of the system at some instant in time one must be aware of the history 

of the input or the state of the system for a given input. Hysteresis along with 

multistability has been reported in laser systems [40-44]. The coexistence of 

two distinct states is referred to as bistability of the laser. A positive 

optoelectronic feed back along with a strong current modulation is found to 

suppress hystreresis and bistability in directly modulated semiconductor 

lasers [45].  

 

The phenomenon of bistability has some promising technological 

applications too. Materials displaying intrinsic optical bistability are 

technologically important as they have applications related to optical data 

switching and data manipulation [46]. Bistable magnetic behavior of 

amorphous wires is the key factor for the development of magneto-elastic 

sensors, magnetic switches and magnetic field detectors [47].All-optical 

transistor operation is a prominent application of double optical bistability 

observed in CW nonlinear transmission characteristics of chalcogenide fibre 

bragg gratings [48]. Bistable behavior of optically addressed ferro electric 

liquid- crystal spatial light modulators finds applications in neurocomputing 

[49]. 

 

Bistability and hysteresis are found to be the important mechanisms that 

control cell differentiation and cell cycle progression in many biological 

systems. A system that toggles between two discrete and alternate stable 

steady states is known as a bistable system.  Cell cycle regulatory circuits in 

South African clawed frogs Xenopus laevis  and in Saccharomyces 

cerevisiae (a species of budding yeast) , mitogen- activated protein kinase 

cascades in animal cells [50-53] are  biological examples of bistable systems.  
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Works by Jonathan et al revealed that hysteresis is exhibited by the 

molecular control system in Xenopus laevis egg extracts as a result of some 

biological positive feedback loop [50]. This in turn causes the synthesis and 

degradation of cyclin which is an important protein that controls the cell 

cycle progression. It is also found that multistability is the basic mechanism 

for memory storage and pattern recognition in artificial and living neural 

networks [34, 54]. Recently Dubnau and Losick studied heterogeneity in 

bacteria populations emerging from bistability [55].  Thus multistability and 

associated hysteresis effects have numerous applications in biology. While 

studying these biological systems sometimes it seems to be difficult to 

change the parameters and the environmental conditions that control the 

system. Here comes the importance of laser systems. Availability of good 

and fast computational tools and easily accessible control parameters make 

the lasers good candidates as model systems to study these phenomena.  

 

6.2 LASER MODEL 

  
We perform our studies on a diode pumped Nd:YAG laser operating with 

two parallel polarized modes. The Hopf bifurcation phenomenon exhibited 

by this laser is discussed in [56]. The rate equation model and the laser 

dynamics are discussed in detail in chapter 3. The system can be modeled by 

the rate equations for the intensity Ik and gain Gk for the kth longitudinal 

mode [57] 

k
kj

jjkkk
k

c IIIgG
dt

dI
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= ∑

≠

μεεατ 2                       (6.1) 

k
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f GII
dt

dG
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−= ∑

≠

βγτ 1                                     (6.2) 



 
 
 
 
 
 
Chapter 6 122 

  The modes chosen are having parallel polarization. Therefore we take 

jkμ =g. 

The parameter values used in numerical simulation are given in table 3.1 in 

chapter 3. 

We choose the control parameter as g=0.4 such that the laser is operating in 

the limit cycle region. Here the feedback is introduced by modulating the 

term γ which is related to the pumping of semiconductor laser. Output of the 

Nd:YAG laser which is an optical signal is converted into an electronic 

signal using a photodiode. This electronic signal is added to the injection 

current of the semiconductor laser which provides the pumping with an 

appropriate delay to modulate the pumping rate. Then γ will be modified as 

 

                                                (6.3) 

                                                                              

Where K is the feedback strength and τ is the delay time and ∑
k

kI is the total 

output intensity in all modes.   

 

6.3 NUMERICAL RESULTS AND DISCUSSION 

 
In this section we present the results of our numerical studies on the effect of 

positive and negative delayed optoelectronic feedback on the dynamics of 

Nd:YAG laser. We choose the control parameter as g=0.4 such that the laser 

is operating in the limit cycle region.   
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6.3.1 DYNAMICS UNDER DELAYED POSITIVE FEEDBACK 

The feedback fraction is kept at a low value of 0.001 and the delay is 

increased in small steps. Figure 6.1 is the bifurcation diagram showing the 

variation of laser output intensity with delay time.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Bifurcation diagram for the laser under delayed positive 

feedback with a feedback fraction of K=0.001 

 

Output intensity remains periodic for delay upto 20000ns. As the delay is 

increased further there is appearance of chaotic windows. It should be noted 

that the chaotic windows appear in regular intervals of feedback delay time. 

We have also drawn bifurcation diagrams for K=0.002, 0.003 and 0.004. The 

laser is found to exhibit rich dynamical behavior at K=0.002 which we have 

studied in detail. Bifurcation diagram for K=0.002 is shown in figure 6.2. 
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Figure 6.2: Bifurcation diagram for the laser under delayed positive 

feedback with a feedback fraction of K=0.002 

 

We can identify various regions in the output as the delay time is increased. 

Output is a limit cycle for delay up to 3000ns and changes into two 

frequency quasiperiodic state at higher delay times. The output remains in 

the quasiperiodic state from 3000ns-3500ns. As the delay is increased we can 

see period one and period two regions. (3500ns-6375ns). Period doubling 

repeats for delays from 6375ns to 12500 ns. As the delay is increased further 

chaotic windows appear in the output in a regular manner. Corresponding to 

a delay of 30000 ns, there is a region which resembles period doubling route 

to chaos. Chaotic windows appear also for delays above 31100ns but with a 

higher peak intensity value. Figure 6.3 shows the intensity time series plots 

for different delay times. Figure 6.4 show the corresponding phase space 

plots. 
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Figure 6.3: Intensity time series plots for the laser for a delay of a) 2950ns 
(limit cycle) b) 3250 ns (two frequency quasiperiodic) 
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Figure 6.3: Intensity time series plots for the laser for a delay of c) 4000ns 
(period one) d) 5500 ns (period two) 
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Figure 6.3: Intensity time series plots for the laser for a delay of e) 15700 ns 

(chaotic) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4: Phase space plots for the laser for a delay of a) 2950 ns (limit 
cycle) 
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Figure 6.4: Phase space plots for the laser for a delay of b) 3250 ns (two 
frequency quasiperiodic) c) 4000 ns (period one) 
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Figure 6.4: Phase space plots for the laser for a delay of d) 5500 ns (period 

two) e) 15700ns (chaotic) 
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 Power spectra are used to characterize various dynamical regimes. Figure 

6.5 shows the power spectra of different pulsing states.         

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5: Power spectra of different pulsing states a) limit cycle at 2950 ns 

b) two frequency quasiperiodic at 3250 ns 
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Figure 6.5: Power spectra of different pulsing states c) period one at 4000 ns 

d) period two at 5500 ns 
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Figure 6.5: Power spectra of different pulsing states e) chaotic at 15700 ns 
 
 
At τ= 2950 ns, where the laser is operating in the limit cycle region, the 

power spectra shows a single peak at the fundamental pulsing frequency f1= 

Hz51038.1 × . When the delay time is increased to 3250ns the laser enters 

two frequency quasiperiodic state where the pulsing intensity is modulated at 

a certain frequency f2= Hz5102.3 × . This frequency is found to be close to 

the inverse of delay time. The appearance of two incommensurate 

frequencies is a clear indication of quasiperiodicity. As the delay is again 

increased we can see period doubling. The power spectrum for the period 

one region shows a peak at frequency Hz51052.1 ×  which is different from 

the peak obtained for the limit cycle region. The difference in amplitude is 

clearly shown in the power spectra also. The laser output becomes chaotic as 

the delay is further increased where the power spectra is found to be 

broadened. Existence of chaotic region is verified with a positive Lyapunov 

exponent of 2105237.2 −× for 5ns and a fractional correlation dimension of 

1.89015. 
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We also define a peak series which is obtained by taking peak values in the 

intensity time series. Figure 6.6 shows the phase portraits of peak intensities 

I (n+1) versus I (n) for various delay times. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6: Phase portrait of peak intensities I(n+1) versus I(n)  at different 
delay times. a) limit cycle at 2950 ns b) two frequency quasiperiodic at 3250 

ns 
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Figure 6.6: Phase portrait of peak intensities I(n+1) versus I(n)  at different 

delay times c) period one at 4000 ns d) period two at 5500 ns 
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Figure 6.6: Phase portrait of peak intensities I(n+1) versus I(n)  at different 

delay times. e) chaotic at 15700 ns 
 

 
When the laser is operating in the limit cycle region the phase portrait is a 

single spot. For quasiperiodic region it appears as a clear circle. For the 

period one region also it is a single spot, but appears in a different region of 

the phase space. There are two dots in the phase portrait corresponding to 

period two region. Finally when the laser is in the chaotic state the phase 

portrait spreads over a wide range.  

 

6.3.1.1 HYSTERESIS AND BISTABILITY 

 
This laser is found to exhibit hysteresis and multistability for certain delay 

times under delayed positive feedback. To study the hysteresis effect clearly 

the bifurcation diagram is drawn by continuous time approach. Initial 
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conditions are given only in the beginning of the simulation. All the 

parameters are fixed and the delay is increased in small steps.  

 

We can identify two regions in the bifurcation diagram where the laser 

shows hysteresis. The first hysteresis loop occurs for delay from 5500ns to 

8000ns. Figure 6.7 shows the bifurcation diagram corresponding to this 

region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Bifurcation diagram showing the first hysteresis exhibited by the 

laser under delayed positive feedback with a feedback fraction of K=0.002 

 

Delay is increased in small steps starting from 5000ns to 10000ns. Path 

followed by the laser output while increasing the delay is shown in red color 

in the diagram. The portion in black denotes the same for decreasing delay 

value. The output laser intensity shows period doubling as the delay is  
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reached 5145ns and remains in the period two region for higher delay times. 

But as the delay is decreased, the output intensity follows a different path as 

seen (in black color) thus forming a hysteresis loop. Formation of hysteresis 

loop indicates that there are two stable solutions for the laser for any value of 

delay between 5500ns and 8000ns. Figure 6.8a and 6.8b show the intensity 

time series of two different optical pulses obtained for the same delay time of 

6500ns. Figure 6.8a corresponds to the output which is obtained while 

increasing the delay from 5500ns to 8000ns. It clearly shows period two 

oscillations. Figure 6.8b is the intensity time series obtained while decreasing 

the delay. It is also periodic with the peak at a lower value. Thus it is evident 

that laser exhibits bistable behavior for a delay ranging from 5500ns to 

8000ns.  Figure 6.9a and 6.9b give the corresponding power spectra. 
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Figure 6.8: Intensity time series plots for the laser for a delay of 6500ns 

corresponding to (a) increasing delay and (b) decreasing delay 

 

 

Figure 6.9: Power spectra for the laser for a delay of 6500ns corresponding 

to (a) increasing delay and (b) decreasing delay 
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The second hysteresis loop occurs for delay between 12000ns to 14500ns. 

The bifurcation diagram is drawn as in the previous case for delay starting 

from 11000ns to 16000ns and is shown in figure 6.10. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Bifurcation diagram showing the second hysteresis exhibited by 

the laser under delayed positive feedback with a feedback fraction of 

K=0.002 

 

The laser exhibits period doubling route to chaos as the delay is increased (as 

shown in red color). But it follows an entirely different path as the delay is 

decreased as is evident from the portion of the bifurcation diagram shown in 

black. We can identify two delay times where the laser shows bistable 

behavior. One at a delay of 13000ns and the other at14000ns. Figure 6.11a 

shows the intensity time series plots for the laser obtained for a delay of 

13000ns while the delay is increased from 12000ns to 14500ns. There are 

period two oscillations in the output. Period one oscillation shown in figure 

6.11b corresponds to the same delay of 13000ns which is obtained while 
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decreasing the delay. The pulses are found to have a lower peak value. 

Corresponding power spectra are given in figure 6.12. Thus there is a clear 

indication of laser bistability for a delay of 13000ns. 

 

 

Figure 6.11: Intensity time series plots for the laser for a delay of 13000ns 

corresponding to (a) increasing delay and (b) decreasing delay 

 

 

Figure 6.12: Power spectra for the laser for a delay of 13000ns 

corresponding to (a) increasing delay and (b) decreasing delay 

 

 For a delay of 14000 ns we find the two coexisting states to be chaotic and 

quasiperiodic. Figure 6.13a shows the chaotic time series corresponding to 
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the delay of 14000ns which is obtained while increasing the delay. As the 

delay is decreased we get a quasiperiodic state corresponding to the same 

delay. Figure 6.13b is the time series for the quasiperiodic state. Figure 6.14 

shows the power spectra for the chaotic (6.14a) and the quasiperiodic (6.14b) 

state. 

 

Figure 6.13: Intensity time series plots for the laser for a delay of 14000ns 

corresponding to (a) increasing delay and (b) decreasing delay. 

 

 

Figure 6.14: Power spectra for the laser for a delay of 14000ns 

corresponding to (a) increasing delay and (b) decreasing delay 
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The laser dynamics at a feedback fraction of K=0.002 can be summarized in 

the following tables. 

 

Delay (ns) Dynamics 

0-3000 Limit cycle 
3000-3500 Two frequency quasiperiodic 
3500-6375 Period one and period two 
6375-12500 Repetition of period doubling 
12500-30000 Appearance of chaotic windows in 

regular fashion 
Above 30000 A region which resembles period 

doubling and again appearance of 
chaotic windows with higher peak 

intensity values. 
 

Table 6.1: Summary of the laser dynamics for K=0.002 
 

 
Range of delay values where the 
system shows hysteresis effect 

(ns) 

States coexisting in the region 

5000-8000 Two, periodic states 
12000-14500 a) Period two and period one 

oscillations at 13000 ns 
b) Chaotic  and quasiperiodic 

states at 14000 ns 
 

Table 6.2: Hysteresis and bistability exhibited by the laser for K=0.002 
 

 

 Figure 6.15 and 6.16 give the bifurcation diagrams for feedback fractions 

K=0.003 and 0.004 respectively. The dynamics becomes more complex at 

higher feedback fractions. As the feedback fraction is increased, chaos 

occurs in the laser output at smaller delay values. Also there is an overall 

increase in the laser output intensity as the feedback fraction is increased. 
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Figure 6.15: Bifurcation diagram for the laser under delayed positive 
feedback with a feedback fraction of K=0.003 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.16: Bifurcation diagram for the laser under delayed positive 
feedback with a feedback fraction of K=0.004 
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6.3.2 DYNAMICS UNDER DELAYED NEGATIVE FEEDBACK 
 
We have also investigated the system dynamics under a negative delay 

feedback. The feedback fraction is kept at a low value of K=0.001 and the 

delay time is increased. Figure 6.17 below is the bifurcation diagram 

showing the variation of laser output intensity with delay time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17: Bifurcation diagram for the laser under delayed negative 

feedback with a feedback fraction of K=0.001 

 

The dynamics is found to be somewhat similar to that with positive 

feedback. We can see periodic regions and then the appearance of chaotic 

windows at higher delays. We have also drawn bifurcation diagrams at 

higher feedback fractions. Figure 6.18 gives the dynamics for a feedback 

fraction of K=0.002. 
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Figure 6.18: Bifurcation diagram for the laser under delayed negative 

feedback with a feedback fraction of K=0.002. 

 

For very small delay times the output is stable. Then there is a sudden jump 

into the chaotic state for delay as low as 400 ns. Portion of the bifurcation 

diagram showing this jump is given in figure 6.19. Periodic and chaotic 

regions are repeated as the delay is increased. The frequency with which the 

chaotic region appears increases as the delay is increased. Also we can see a 

decrease in the peak intensity value of the chaotic region with increase in 

delay. A close examination of the bifurcation diagram reveals that the laser 

exhibits hysteresis and bistability for delay between 7250ns and 8000ns. The 

hysteresis loop corresponding to this region is shown in figure 6.20. 
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Figure 6.19: Bifurcation diagram showing the jump into chaotic state in the 

laser output intensity under delayed negative feedback for K=0.002 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20: Hysteresis exhibited by the laser under delayed negative 

feedback for a feedback fraction of K=0.002. 
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Laser dynamics is studied under higher feedback fractions of K=0.003 and 

K=0.004. At higher feedback fractions not much interesting behavior is 

exhibited by the laser except for a sudden jump into the chaotic state at 

smaller delays. The output remains chaotic at higher delay times. As the 

feedback fraction is increased, the peak intensity value of the initial chaotic 

jump also increases. The bifurcation diagrams are given in figures 6.21 and 

6.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21: Bifurcation diagram for the laser under delayed negative 

feedback with a feedback fraction of K=0.003. 
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Figure 6.22: Bifurcation diagram for the laser under delayed negative 

feedback with a feedback fraction of K=0.004. 

 
6.4 CONCLUSIONS 
  
Dynamics of Nd:YAG laser operating in the limit cycle region under a 

delayed positive and negative optoelectronic feedback is studied numerically. 

The laser is having two modes with parallel polarization. A detailed analysis 

of the laser dynamics is carried out using bifurcation diagrams, time series 

plots, phase space plots, power spectra and intensity peak series plots. It is 

found that under positive feedback and for low values of delay the laser is in 

the limit cycle region with the fundamental pulsing intensity at   1.38×105 

Hz. As the delay is increased laser enters a two frequency quasiperiodic state 

where the fundamental pulsing intensity is modulated at a frequency of 

3.2×105 Hz. This frequency is found to be close to the inverse of the delay 

time. Laser shows period one and period two oscillations following the 

quasiperiodic state. There is a repetition of period doubling as the delay is 
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increased further. At higher delays there is chaos. Existence of chaotic region 

is verified with a positive lyapunov exponent and a fractional correlation 

dimension. The path followed by Nd:YAG laser under a delayed positive 

optoelectronic feedback is found to be different from semiconductor laser  

where a quasiperiodic  route to chaos is seen. We have identified two regions 

in the bifurcation diagram where the laser exhibits hysteresis and bistability. 

For a delay ranging from 5500ns to 8000ns there is a coexistence of two 

different periodic regions with different amplitudes. The most interesting 

finding is the coexistence of chaotic and quasiperiodic states in between the 

delay times from 12000ns to 14500ns. Coexistence of regular pulsing and 

quasiperiodic pulsing states were observed experimentally in a distributed 

feedback semiconductor laser under delayed optoelectronic feedback [58]. 

To the best of our knowledge coexistence of chaotic and quasiperiodic states 

has not yet been reported in any other laser systems.  Chaotic windows 

appear in the output in a regular manner at higher delay times.  As the 

feedback fraction is increased, chaos occurs in the output for smaller delay 

times along with an overall increase in the output intensity.  

 

 With negative feedback the output intensity undergoes a sudden jump into 

the chaotic state at smaller delays. Laser exhibits hysteresis and bistability 

for a feedback fraction of K=0.002.  Periodic and chaotic regions occur 

alternately at higher delays. It should be noted that as the delay is increased, 

chaotic regions appear more frequently with smaller and smaller intensity 

peak value. As the feedback fraction is increased, the peak intensity value of 

the initial chaotic jump increases and the output remains chaotic at higher 

delays. 
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CHAPTER 7 
 

SUMMARY AND CONCLUSIONS 
 

In this chapter we summarize our work presenting the results we have 

obtained. A brief description of some possible works in this direction is also 

given. 
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7.1 SUMMARY AND CONCLUSIONS 
 

In this thesis we have presented some aspects of the nonlinear dynamics of 

Nd:YAG lasers including synchronization, Hopf bifurcation, chaos control 

and delay induced multistability. We have chosen diode pumped Nd:YAG 

laser with intracavity KTP crystal operating with two mode and three mode 

output as our model system. Different types of orientation for the laser cavity 

modes were considered to carry out the studies. For laser operating with two 

mode output we have chosen the modes as having parallel polarization and 

perpendicular polarization. For laser having three mode output, we have 

chosen them as two modes polarized parallel to each other while the third 

mode polarized orthogonal to them.  

 

The effect of various coupling schemes on the dynamics of two chaotic multi 

mode Nd:YAG lasers was studied. We employed external electronic 

coupling in which the pumping of each laser is modulated according to the 

output intensity of the other. Two chaotic multimode Nd:YAG lasers were 

coupled unidirectionally and bidirectionally using direct  and difference 

coupling schemes. It was found that bidirectional direct coupling can induce 

complete synchronization between the lasers operating in two mode output. 

In addition there is control of chaos and amplification in output intensity for 

both the lasers. The lasers were found to be chaotic for the entire range of 

coupling strength with bidirectional difference coupling. The outputs of the 

lasers were neither amplified nor synchronized under this scheme.  Under 

unidirectional direct coupling, phase synchronization between the lasers were 

observed at higher coupling strength. There was also amplification in the 

output intensity of second laser under this type of coupling. Unidirectional 
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difference coupling can only give amplification without leading to any type 

of synchronization between the lasers.  

 

For lasers operating with three mode output bidirectional difference coupling 

gave better quality synchronization as compared to unidirectional difference 

coupling, but the coupling strength needed for synchronization was higher. 

Chaos control can be obtained with bidirectional direct coupling, while 

unidirectional direct coupling is not effective in controlling chaos or 

synchronizing the lasers. Our studies indicate that there is a strong 

dependence of the system dynamics and type of synchronization exhibited on 

the coupling strategies chosen and on the inherent properties of the system. 

 

Hopf bifurcation phenomenon exhibited by Nd:YAG laser operating with 

two parallel polarized modes was studied analytically and numerically. The 

system fixed points were found out analytically. It was found that although 

the system has nine sets of equilibrium points, only three of them are having 

real valued solutions. The stability analysis of these three fixed points was 

carried out based on two criteria.  First we found out the Routh Hurwitz 

stability conditions for our system and checked the variation of the Routh 

Hurwitz coefficients with increasing control parameter value. It was found 

that one equilibrium point loses stability at a particular value of the control 

parameter and evolves as a limit cycle thereafter. This is the phenomenon 

called Hopf bifurcation. The limit cycle thus formed was found to be stable 

for higher g values. The other two solutions remain unstable for the entire 

range of g values. To confirm the stability analysis we also calculated the 

eigen values of the Jacobian for our model system. For the fixed point which 

exhibited Hopf bifurcation, the real part of the eigen values changed from 

negative to positive at the critical value of the control parameter. Such a 
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change in the eigen value clearly indicates the loss of stability of the fixed 

point. Occurrence of Hopf bifurcation phenomenon was also verified 

numerically using time series plots, phase space plots and bifurcation 

diagram. Influence of the control parameter on the energy exchange between 

the two modes was also studied.  

 

Application of a delayed optoelectronic feedback to the laser operating in the 

limit cycle region was found to generate some interesting dynamics in the 

output. The feedback was introduced by modulating the pump power of the 

semiconductor laser. The output optical signal of the Nd:YAG laser was 

converted into an electronic signal using a photodiode which in turn was 

added to the injection current of the semiconductor laser with appropriate 

delay to modulate the pumping rate. Effect of both positive and negative 

feedback were studied. Bifurcation diagrams, time series plots, phase space 

plots, power spectra and intensity peak series plots were used for a detailed 

analysis of the laser dynamics. Periodic, quasiperiodic and chaotic regions 

were identified in the laser output for various delay times under positive 

feedback and at a smaller feedback fraction. Laser was found to exhibit 

multistability and hysteresis for certain delay times. There was also 

coexistence of chaotic and quasiperiodic regions in the laser output. The 

laser dynamics becomes more complex at higher feedback fractions. Chaos 

appears in the output for smaller delay values. There is an overall increase in 

the output intensity as the feedback fraction is increased. 

 

With negative feedback, a sudden jump into the chaotic region was exhibited 

by the laser output at smaller delays. Periodic and chaotic regions occurred 

alternately at higher delays. At higher feedback fractions also the laser 
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exhibits sudden jump into the chaotic state. The output remained in the 

chaotic state as the delay is increased. 

 

7.2 FUTURE PROSPECTS 
In future we would like to study the effect of delay on the dynamics of 

coupled lasers. Different types of synchronization such as anticipatory, lag, 

phase and complete synchronization have been reported in various dynamical 

systems under the introduction of a delay either in the coupling or in the 

feedback. Similar studies can be done for coupled chaotic multimode 

Nd:YAG lasers. Projective synchronization is another interesting phenomena 

observed in delay coupled systems. The existence of such a phenomenon in 

coupled Nd:YAG lasers can also be checked.  We have observed the 

phenomenon called Hopf bifurcation in parallel polarized Nd:YAG laser. We 

can extend the work to a system of two coupled limit cycle oscillators. 

Coupled limit cycle oscillators are reported to exhibit a transition from 

antiphase oscillations to inphase oscillations in the output laser intensity. 

There is a possibility for such a phenomena to be observed in our system too.  
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