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Abstract
We present a compact solid-state laser based on leaky mode propagation
from a dye-doped polymer free-standing film waveguide. The edge emitted
spectrum clearly indicated the existence of periodic resonant modes. The
reflections from the lateral faces of the free-standing film provided the
optical feedback thus giving rise to a Fabry–Perot like optical cavity. This
together with the guidance through the gain medium gave rise to intense
narrow emission lines. For a pump energy of 1.82 mJ/pulse, an intense line
with FWHM ∼0.4 nm was observed at 576.5 nm.
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1. Introduction

The first attempts to develop solid-state dye lasers were
reported in the late 1960s [1, 2]. Ever since, there have
been intensive efforts to achieve the incorporation of organic
dyes in solid matrices that might replace conventional liquid
dye lasers. Most of the recent work has been done using
either polymers [3, 4] or silica gels [5, 6] as the host
media. Polymeric materials in particular offer advantages
such as ease of processing, which permits the fabrication
of devices of virtually any shape and potentially at very
low cost. The combination of the tunability and high
efficiency of laser dyes with the high power density that can
be easily achieved in waveguide structures makes devices
based on dye-doped polymer waveguides and fibres very
promising [7–11]. Wide range tunable laser emission has
been reported from polymer thin films in optically pumped
distributed feedback schemes [7, 12]. Laser emission from
conjugated polymers and dendrimer doped polymers has also
been reported during the past few years [13–17]. There have
been numerous investigations on laser emission from polymer
planar microcavities [18, 19] and polymer microring lasers as
well [20].

In this paper we report the observation of multimode laser
emission from a transversely pumped free-standing polymer
film (of poly methyl methacrylate) doped with the laser dye
rhodamine 6G. Since the film is free standing—surrounded by
air at both sides—the reflections from the lateral faces of the
sample provided the optical feedback for laser action. This was
evident from the lasing mode-spacing dependence on the film
thickness. The leaky mode emission from the film waveguide
showed a planar microcavity-like behaviour due to Fabry–
Perot effects. Selective mode excitation was also observed
with an increase in pump power.

2. Experiment

Experiments were conducted on free-standing thin films of
poly methyl methacrylate (PMMA) doped with Rhodamine
6G. PMMA, which is the most frequently used polymer host
for dye lasers, shows the best optical transparency in the visible
spectral range. Rhodamine 6G (Rh6G), the best known of
all laser dyes, has been frequently investigated in solid-state
dye lasers in a variety of solid hosts, on account of its high
fluorescence quantum yield, low intersystem crossing rate
and low excited state absorption at both pump and lasing
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Figure 1. Excitation and light collecting scheme.

wavelengths. The samples were prepared by dissolving
PMMA and Rh6G in methyl ethyl ketone, with 1.5 mM dye
concentration. Films of 50 µm thickness were tape cast on
glass sheets from this solution. When the solvent was fully
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Figure 2. Emission from 50 µm thick Rh6G-doped PMMA film at pump energy 0.2 mJ/pulse for (a) z = 0, (b) z = 5 mm, (c) z = 10 mm,
(d) z = 15 mm and (e) z = 20 mm.

evaporated, high-quality free-standing films could be peeled
off the glass sheet. The lateral faces of the films obtained
were of good optical finish such that no further polishing was
required. The films were then cut into the size 4 cm × 2 cm.

Figure 1 shows a schematic diagram of the experimental
set up. The samples were transversely pumped using 10 ns
pulses from a frequency doubled Nd:YAG laser (532 nm,
10 Hz). A set of calibrated neutral density filters was used
for varying the pump energy. The pump energy was varied
from 0.02 mJ/pulse to 1.82 mJ/pulse. The beam was focused
into a narrow stripe of length 6 mm and approximately 50 µm
width. The film waveguide was kept on a translator so as
to enable horizontal shifting of the excitation stripe along the
length of the waveguide. The direction of translation of the
excitation stripe is indicated by the arrow in figure 1. The
distance between one end of the pump stripe (shown as point
‘a’ in figure 1) and the edge of the waveguide from where
the emission is collected, is measured as z. The emission
from the sample was collected by a fibre and directed to a
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0.5 m spectrograph (SpectraPro-500i) coupled with a cooled
CCD array. The distance between the collecting fibre and the
waveguide edge was 1 cm. Emission spectra for various values
of z were recorded. Initially the excitation stripe was formed
at the edge of the waveguide (z = 0). The excitation stripe
position was shifted by translating the waveguide horizontally
across the pump beam, thereby varying z.

3. Results and discussion

Figure 2 shows the emission spectra recorded for different
values of z at a pump energy 0.2 mJ/pulse. The spectrum
shown in figure 2(b) clearly indicates the existence of resonant
modes. The average mode spacing is ∼2.3 nm. The strongest
emission lines occurred at 576.5 and 578.8 nm with an FWHM
∼0.6 nm. Such a spectral narrowing can be attributed to laser
emission.

Laser emission requires an external feedback. In our
case, there were no external mirrors to provide the feedback.
Since the pumped polymer film was a free-standing one, the
lateral faces of the film acted as mirrors, thus giving rise to a
Fabry–Perot-type optical cavity whose length corresponds to
the film thickness. Owing to the sample geometry and pumping
scheme, the longitudinal modes of this cavity are analogous
to the transverse modes of the waveguide. In the case of a
thin stripe excitation, the stimulated emission occurs in the
direction along the stripe [14]. Both the stimulated emission
along with the propagation in the guiding gain medium and the
feedback at the lateral faces induce high gain for laser action,
though reflections at the lateral faces are much smaller than
that of conventional cavity mirrors. The fine structure pattern
in the spectra shown in figure 2 can be attributed to the axial
modes of the Fabry–Perot cavity formed by two surfaces of
the planar waveguide. In other words the planar waveguide
can be thought of as being formed by a number of serially
connected Fabry–Perot etalons. This can be verified from the
mode spacing.

The mode spacing at λ can be calculated using the equation
which describes Fabry–Perot cavities, namely,

�λ = λ2

2nL
(1)

where λ is the wavelength of the strongest emission line, n is
the refractive index and L is the length of the resonator cavity.

In the present case, the length of the Fabry–Perot cavity
corresponds to the thickness of the polymer film. Putting the
values for λ, n and L as 576 nm, 1.49 and 50 µm respectively,
we get the mode spacing as 2.226 nm, which is same as the
observed value 2.3 nm.

The emission spectrum for a 130 µm thick film with the
same dye concentration as in the case of 50 µm thick film is
given in figure 3, for z = 10 mm.

The obtained mode spacing (0.9 nm) agrees with the
calculated value (0.86 nm). These observations confirm that
the observed equally spaced fine structures in the emission
spectra are Fabry–Perot-type modes of the optical cavity
formed by the film thickness, which are also the transverse
modes of the film waveguide.

A similar phenomenon was observed by Yokoyama et al
[21] in laser dye-doped dendrimer solution. The observed
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Figure 3. Emission from a 130 µm thick sample at pump energy
0.2 mJ/pulse for z = 10 mm.

results can also be compared with typical emission from Fabry–
Perot microcavity lasers [22]. The Fabry–Perot-like behaviour
of an asymmetric thin-film waveguide was explained to be
quite similar to that of thin-film microcavities [23]. The present
case can be considered as the Fabry–Perot behaviour of a thick
symmetric waveguide. The reflections at the film–air interface
serve the purpose of metallic mirrors or Bragg reflectors used
in microcavity thin film lasers [18].

If we collect light by keeping a narrow slit in between
the fibre and the waveguide edge, these structures vanish. On
placing a narrow slit, we restrict the collection of emission
along the waveguide axis. In the absence of a slit, light emitted
at different angles from the waveguide surface can also be
collected (note that we are using a plastic fibre with 0.98 mm
core diameter and NA 0.5 for collecting the emitted light). So
the observed emission can be considered as the leaky modes
of the film waveguide.

Leaky mode emission and microcavity-like behaviour due
to the Fabry–Perot effect from asymmetric luminescent film
waveguides have been studied in [23]. The corresponding
emission was tilted towards the substrate side of the sample.
The free-standing polymer film in the present experiment
is a symmetric waveguide, and the higher-order transverse
modes of the waveguide leak into air at different angles. The
dependence of the peak intensity and spectral width of the
leaky mode self-trapped exciton emission on the observation
direction has been studied in anatase thin films [24]. We
also noticed that the intensity of the peaks depends on the
collecting angle. However, a study of the exact dependence
of emission parameters on the observation angle can be done
only by modifying the present experimental set up, which is
currently under progress.

The mode patterns are observed only when there is
a separation between one end of the pump stripe and the
waveguide edge from which emission is collected. As seen
from figure 2, the emission spectra comprises equally spaced
mode structures, superposed over the amplified spontaneous
emission (ASE). For a pump stripe of length 2 mm, the
ASE threshold was observed to be 0.126 mJ/pulse. The
threshold decreased for increased stripe lengths. For z = 0,
i.e., when the pump stripe is placed right up to the edge
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Figure 4. Emission from 50 µm thick film for z = 5 mm at pump energy: (a) E = 0.02 mJ/pulse; (b) E = 0.2 mJ/pulse;
(c) E = 0.63 mJ/pulse and (d) E = 1.82 mJ/pulse. For (c) and (d) the Y -axis values should be multiplied with a factor of 102.

of the film, the mode structures are not prominent, except
for some fine structures superposed over the ASE. When z
is increased from 0, the emitted light is allowed to guide
through the film so that the effect of the Fabry–Perot modes
become predominant. Modes acquire sufficient gain so that
the mode structures become prominent. Now the emission
spectrum gets broader and we get intense mode structures
over the spectral range 560–600 nm (figure 2(b)). Since the
length of the unpumped region increases with increasing z,
eventually the intensity of the whole emission together with the
mode structures diminishes. The collected spectrum contains
both the stimulated emission and ASE. We have noticed that
the observed modes are the higher-order transverse modes
(leaky modes) of the waveguide. For larger z, these modes
are not propagating through the sample; they leak out. The
modes which get propagated through the whole length of
the unpumped region undergo self-absorption and remission.
Hence there is a red-shift for the emitted light and for larger z;
the ASE gets separated out of the laser emission as is clear from
figures 2(d) and (e). The propagation of fluorescence as well
as ASE in a similar sample geometry and pumping scheme has
already been studied by the same authors in [25, 26].

Another important observation was the selective mode
excitation on increasing the pump energy. Figure 4 shows

the emission spectrum at z = 5 mm taken for various pump
powers.

We see that, as the pump power is increased, the centre
lines of the spectrum gain more energy. Though there is an
increase in intensity for the whole emission, it is clear from
the figures that energy from other modes is coupled to the
high gain mode at 576.5 nm as the pump power is increased.
The output intensity is very high for pump energies 0.63 and
1.82 mJ/pulse. To avoid the saturation of the CCD sensor,
we placed a neutral density filter (with optical density = 2)
just in front of the slit of the CCD. The intensity of the mode
at 576.5 nm increases rapidly when the pump power reaches
1.82 mJ/pulse and the line width is reduced to ∼0.4 nm.

4. Conclusion

A compact solid-state laser based on dye-doped polymer is
demonstrated. Leaky mode laser emission was observed from
a transversely pumped free-standing poly methyl methacrylate
film doped with rhodamine 6G. The film was 50 µm thick
with dimensions 4 cm × 2 cm. Reflections from the
lateral faces provided the optical feedback. This together
with the guidance through the gain medium gave rise to
intense narrow emission lines. For a pump energy of
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1.82 mJ/pulse, an intense line with FWHM ∼0.4 nm was
observed at 576.5 nm due to energy transfer from other
modes.
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