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PREFACE

The dynamics of a complex system can be modelled from a

single measurable quantity of the system using the recently

developed methods in deterministic chaos (Schuster,
Deterministic chaos’, Physik Verlag, Heidelberg 1984). In the
case of experimental signals, the existing t.echniques using
qualitative measures like Fourier transform, autocorrelation
f unct'ion, etc,, do not enable one to classify between

low-dimensional deterministic chaos and broad band stochastic
noise. But. recent studies have shown that time series analysis
can reveal the underlying characteristics of nonlinear dynamical
systems. Moreover, such analyses give quantitative measures which
are the invariants of the system d{Grassberger P and Procaccia 1,
Phys. Rev. Lett. S50A 1983, GP algorithmd. One of the Interesting
properties of the GP technique 1is that, 1t can give significant
insight into the nature of the given system, whose basic equations

are unknown.

In the analysis based on GP algorithm, equally spaced,
digitized temporal or spatial variation of any measurable quantity
of the s;;stem can be used as time series and finite data set is
enough to give wvaluable information ébout, the long—terﬁ\ behaviour
of | the— system. GpP algorithm is mainly used for the
characterization of nonlinear dissipative systems, the basic
assumption being that, time series contains all the information
about. the system (Packard NH, Crutchfield JP, Farmer JD and
Shaw R.S, Phys. Rev. Lett. 45 19803.



Time series analysis is successful in many complex systems
like,, for example, biological systems, climatic systems,
Astronomical systems, Laser - matter interactions, chemical
reactions etc. The complexity of the system is mainly due to the
existence of .nonlinear interactions and this leads to

unpredictability in the frame work of conventional methods of
dynamics.

In the case of nonlinear dissipative systems, which can be
represented by n ordinary differential equations, evolution of
'state function constitutes a flow in phase spacé, and in time.
The flow converges towards a finite ‘dimensional subset of the
phase space known as the attractor, which.is invariant. under the
action of flow. The geométric structure and dimension of the
attractor vax;ies with systems. In the case éf a perio.dic system,
the behaviour of the system 1s predictable and the attractor is
indep'éndent of the set of initial conditions and such attractors
are gal.led _ regular attractors. But, for chaotic systems, two
initially c'l?se trajectories will diverge exponentially, resulting
in loss of resemblance. The attractor 1is said to be sensitive to
initial conditions and this subset has a complicated structure and
is known as strange attractor. We can model the dynamics of a
nonlinear system by estimating different characteristic properties
of attractors, like generalized entropies (Kq), generalized

dimensions (Dq), Lyapunov exponents (A), f(ad spectrum etc.

In the present thesis, we give prime importance for the
Second order dimension Dz, and Second order Koelmogorov entropy Kz'
D2 .and K2 are significant among Dq‘s and Kq's (Caputo J.G and
Atten P Phys. Rev.' 35A, No.3, 198'_7). I)2 and Kz are reported to

be sensitive parameters to characterize dynamical systems.

Dz apd Kz are helpful in understanding whether a system
exhibits regular (D2=integer, K2=0), chaotic (Dznnoninteger, K2>0)
or completely stochastic (Dzﬂmndefined, K2=oo) behaviour. More
than that, these parameters quantify the degree of chaos in a

nonlinear system.

it



The present thesis deals with the following studies we have
carried out on neural system and certain astronomical systems in

terms of D and K .
2 2

i> Human brain under clinically normal condition and under
various pathological conditions ke Epilepsy, Migraine,
Tumour, Head ache and Psychotic, based on the analysis of
Electroencephalogram CEEGD, which is the electrical

activity of brain.
iid> Particle distribution in Asteroidal system.

iiid Matter distribution in Saturn ring structure.

~

The thesis contains eight chapters. The first chapter
glves a genéra.l idea about. different types of dynamical systems
and their phase space behaviour.

The different signal processing techniques like, fast
fourier tf-énsform {FFT)>, autocorrelation function <(ACF), Poincare
method and their ldmitations are described in chapter II. The
chapter also includes certain new concepts in nonlinear analysis,
like generalized dimensions, generalized entropies, correlation
dimension and Kolmogorov entropy. Detailled discussion on GP

algorithm and its advantages are also given.

Usually experimental signals include noise. Hence such
signals should be filtered to eliminate noise before any nonlinear
analysis are done. Chapter III describes a mathematical technique

to filter- - out noise from a time series.

A major portion of the thesis Iis devoted to the
classif i;at,ion of Neural system under various pathological
conditions. Studies on the relation between mental and neural
activities are also attempted. Hence a general idea about the
Neural éystem is unavoidable, and this is the subject matt,ex; of

it



the fourth chapter.

The evaluation of D2 and K2 from EEG pattern is explained
in chapter V. Dz is a static parameter and Kz is a dynamic
parameter, so that Kz is more sensitive than Dz' Kolmogorov
entropy Kz’ which is a measure of information content, is used to
characterize the dynamics of brain during mental activity and the
results obtained are described in this chapter. The generaﬁ'zed
dimensions as well as fd{a) spectrum of a clinically normal person

during rest and mental activity are compared.

Sixth chgpter introduces the idea that Kz can be used to
classify different pathological conditions of the brain. The
variation of Kz at different points of +the brain during an
epileptic seizure is studied. The capacity of the brain to regain
its original state is investigated through the analysis of EEG of
a pe&*son having headache. The variation of Kz’ in the- case of
psychotic, tumour and epilepsy <(<with demylination> are also
studied.

In the case of Astronomical system, the spatial wvariation
of particle density is used as *time series"” to characterize the
system. We study in chapter VII the dynamics of two astronomical
systems - the matter distribution in asteroidal belt and Saturn

ring structure.

In the last chapter, we discuss the results and general
conclusions obtained from the present studies. Future scope of

this work is also included.

In the Appendix, we discuss the algorithm modified from @GP
algorithm to develop Fortran ‘coded used in the evaluation of Dz
and Kz. This appears to be an efficient computer program which

therefore enabled us to carrying out the work successfully.

tv
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CHAPTER 1

INTRODUCTION

Various aspects of nonlinear dynamics in the context of
chaotic phenomena are introduced. Important parameters
which describe nonlinear phenomena are included in this
chapter.



INTRODUCTION

The rapid developments that have taken place in the study
of nonlinear dynamics provide a better understanding of many
physical systems. They have totally changed the way of analysing
the dynamics of a number of iInteresting systems like laser-matter
interactions, hydrodynamical systems, climatic system, the neural
system, and many astronomical systems. In this thesis we shall
be doing the nonlinear analysis of Neural system and certain
Astrophysical systems. Instead of going straight into such
analysis, we shall describe the recent trends and methods of
nonlinear analy;sis in this and the next chapter.

. The rudiments of nonlinear dynamics can be undeirstood on
the ba;sis o»t.‘ the phase space dynamics. To make this chapter self
contained, we shall introduce the concept of phase space and
study the nature of the phase space dynamics of conservative and
dissipative systems. After a brief discussion on the attractors
encountered in the phase space dynamics of dissipative systems,
we shall discuss t,.he dimension of such attractors. Chaos, one of
the most interesting properties exhibited by nonlinear systems,
shall be explained during the end of this chapter.

11 PHASE SPACE

As has already been stated, it 1is easy to describe the
dynamics of nonlinear systems in the phase space. In this

section v;re shall discuss briefly what. a phase space is.

One can define phase space as an n-dimensional Euclidean

space, where a point can describe the state of the system under



consideration at any given time. The dimension of the phase
space, n, is chosen to be the lowest possible integer satisfying
the above condition. This could be formulated mathematically as

follows.

Let the given physical system, whose state is described by
n variables Xi,Xz ...... Xn > be described by the set of equations

= F (X e X, =1, n, a1

where the functions l“,L possess continuous partial derivatives and
time t is the single independent variable. The phase space of
such a system would be n-dimensional, whose coordinates are
X ,X e Xn. Each point in phase space represents a

1" 2"
possible instantaneous state of the system.

i Different. points in the phase space could therefore
represent the state of a given system at different times. Hence
as the system evolves in time, the point representing the state
of the system can trace out a trajectory - called the phase space

trajectory.

Another important term, which needs explanation in this
context is the ‘degrees of freedom’. The degrees of freedom of a
given dynamical system can be defined as the number of initial
conditions that can be chosen independently to define the state
of the system. '

The concept of phase space has been used successfully in
the development. of statistical fneéhanics and in the treatment of
differential equations. The dynamics of nonlinear systems in
phase space has many interesting and peculiar characteristics.
Nonlinear systems cén, in general, be classified into

conservative and dissipative systems. In the next two sections



we shall discuss the general nature of the phase space dynamics

of these two classes of systems.

1.2 CONSERVYATIVE SYSTEMS

In =simple words, a conservative system can be
described as one with an invariant total energy. It is possible
to get a clear idea of a conservative systein with the example of
a free oscillator like the simple pendulum. The equation

governing such a system is

2
d6 _fi_sm 6 =0 a.2>
dt

where g 1is the acceleration due to gravity and t is the length of
the pendulum. In the present example, the phase space 1is two
dimensional and when the amplitude of oscillation |is smap.u, the
phase space 't,raject,ory is a circle with its center at the origin.
A family of circles centered at 6=0 and 6©6=*2an (n=0,1,2,..)
gives the complete phase portrait of the system when executing
small oscillations.

Any conservative system can be described by the

Hamiltonian funct.ion H such that

or H(qi,qz, ....... q_ PP pn) = E = Constant <1.3>

i.e. conservative systems are characterized by the invariance of
energy. Another important property of conservative systems Is

that the volumes C(area in the example of harmonic oscillator) are



conserved 1in phase space. Initially close trajectories remains

so, even at large times.

1.3 DISSIPATIVE SYSTEMS

Damped oscillator is a typical example of a

dissipative system, represented by the equation (1.4)

d'e de 2
2+ya+w8=0 1.4>

where y is the damping coefficient and w2=g/l..

In the equation (1.4, if we try a solution eat, we get an

algebraic equation as

2 2
a +ay +w =0

which results 1'n

o = 1.3

The quantity under the radical sign is always less than p. It
can also be negative, giving a phase factor. Three possibilities
can arise (Minorsky 1969).

1 y > 0. 1In this c;:ase, a will have a. negative real part and a
phase factor. Hence asymptotically, the solution goes over
to zero and the system is said to have a limiting point in
the asymptotic limit. '

2 If =0, then equation 14> characterizes an oscillatory

system and a first integral exists viz,



+ 0 = E <1.6>

In the phase space characterized by e—é, this is an equation for
a circle and we obtain a limiting circle.

3 If » < 0, o will have a positive definite real part besides
a phase factor and the solution goes to infinity as tam.
Thus two trajectories starting from two neighbouring initial
states, will diverge out and separate from each other as t-om

The system is said to be unstable.

The energy changé of the system is governed by 1.7)
S m -y 8 a7

Energy is conserved 1if y=0 , while 1t decreases if » >0, and the
trajectory converges towards the origin. The trajectory diverges

away from the origin if » < 0 .

If » > 0 (¢ < 0> all trajectories are attracted
towards d(repelled- away from> a fixed point known as attractor.
In the present example the attractor 1Is the origin. The dynamical
properties of a dissipative system differ from those of a
conservative system. Dissipative systems can not preserve volume
in phase space. As t-sw, the phase space volume decreases and the
motion is.confined to a certain attractor. In other words, all
trajectories passing through a certain domain of phase space are
attracted towards a geometric hypersurface of an object in the

subspace -called the attractor.

Another interesting example of a dissipative system is the
Van der Pol oscillator. In this case, the attractor is not a

point, but a circle, called as the limit cycle. ‘The equation for



the Van der Pol oscillator could be obtained by substituting

N

e
y = -y 1 - 1.8>
o 2
e
o
in equaticn {1.4>
2 2
ie df-y 1—9—2 g%+w26=0 1.9>
dt ° 6’

Here, if the oscillation amplitude 6 1is greater than eo then »>0.
Hence the oscillation amplitude decreases continuocusly till 6=80,
at which point »=0 and the oscillation is asymptotically stable.
On the ot,her‘»hand if 9(60, then »<0 and the oscillation amplitude
1ncrez}ses with time till 6=60, which is a stable orbit. - Thus,
for the Van der Pol oscillator, any given initial amplitude of
oscillation .would give an asymptotic oscillation amplitude 60.
That is, the system has an attractor - the limit cycle - which is
a circle with radius 60 (measured along the 6-axds in the phase

space).

We can develop an 1idea of the attractor by generalizing
what. we have said about the limit cycle. For this, consider a
set of n ordinary differential equations d{continuous autonomous

flow)

n

dXc> FCXD) , X eR €1.10>

dt.

As time evolves, for a given 1initial condition, equation <1.10
will create an orbit or time series or a flow, which will
converge towards a region of the phase space called attractor,

which has the following properties (Froehling et al 1981).

i> The attractor is invariant under the action of flow.

iid> The dimension of the attractor is less than the dimension



of the phase space.

iiid Attractor 1s contained 1in a domain, of nonzero volume
known as the basin of attraction. The basin of attraction
is defined to be the set of points from which trajectories

are originated and converge towards the attractor.

The geometry of the attractor 1is characteristic of the given
system. The attractor has a dimension D, which will obviously be
less than the phase space dimension. A brief description of the

dmension of attractor is given in the next section.

1.4 DIMENSION

The diniensicn of an attractor 1is a quantitative
parameter which characterizes the property of the system. It can
be interpreted as the number of independent frequencies present
in the system or minimum number of wvariables needed to model the
dynamics of t,‘he system. It can also be defineda as the amount of
inforrﬁation necessary to specify the position of a point-on the
attractor. For example, fixed point has a dimension =zero, li;‘r.jt
cycle has .a dimension one, while an oscillator having two
fundamental frequencies (whose attractor is a +torus) has
dimension two. In all these cases, the dimension is an integer.
But. there can exdst ‘syst,ems having attractor, of noninteger
dimensions. We shall discuss about such systems later. It is
worth pointing out ‘that integer dimension of the attractor
indicates regu;ar system <(Farmer 1982 & 1983, Schuster 1984),
while fractal (non integer) dimension depicts a chaotic system.

1.5 "CHAOTIC SYSTEMS

The phase space trajectories of certain dissipative

systems .behave Iin a strange manner. Two nearby trajectories may

separate exponentially with time. That. 1s, the syst.err’n has
sensitive dependence on initial conditions <¢S.1.C). Such systems
are said to be chaotic. There 1s, in fact, no generally accepted
definition for chaos. It is a bounded steady-state behaviour



(Eckmann and Ruelle 1985, Parker and Chua 1987) which is not an
equilibrium peoint, and neither periodic, ner quasiperiodic.
(Quasiperiodic system is one having large number of independent
frequencies, as explained in section 2.1O. The  frequency
spectrum of a chaotic system is not composed of discrete
frequencies but is a continuous one (Gollub et al 1975, Kiirten et

al 1986, Brandstater et al 1983D.

Now, the question arises about the nature of the attractor
in a chaotic system. It is not a simple geometric object like lé
circle or a torus. It was Landau who, in 1944, first tried to
answer this question. He studied the behaviour of fluid flow,
which makes a transition from laminar to turbulent when the
Reynolds number <(the control parameterd> is increased. He
concluded that tﬁe existence of a continuous Fourier spectrum is
due to the presence of a large number of incommensurate
frequencies, and its attractor is a torus " <T° represents a
torus of dimension r) with r very large . Landau’s idea was that
only If":.hose systems which have a large number of independent
frequencies can display chaotic behaviour, since the dimension of
the phase ;space must be greater than that of the attractor.
However, these 1ideas had to be changed later, with the discovery

of chaos in certain low dimensional systems.

Ruelle and Takens 1in 1971 (Berge et al 1984) introduced

certain attractors which are topologically different. from a

torus. They are
named as strange
attractors due to

their strange beha- s ) )
viour viz., the /\ M/\ /./
N x 0
sensitive . dependence W W
. EX '

-3.0 ) - A : .
initial _, conditions. 0 ¢’ 12 I 2% 30
Two initially close -t

Fig 1.1 Divergence of +two initially c'lose
trajectories in phase space.

of trajectories on

trajectories diverge

exponentially on the

attractor (Figure 1.1).




A periodic <{(or quasiperiodic) signal resembles itself at
later times. However a chaotic system does not display this
behaviour. Also, the predictive power is lost as time increases.
These properties of loosing self resemblance or predictability
can be thought of as the quality which defines chaos. In the
case of periodié system the dynamics become Iinsensitive to
initial conditions when the trajectory is on the attractor. But
in the case of chaotic system, the loss of memory as the system
evolves is due to the sensitivity of the initial conditions. In
other words, different. initial states of a chaotic system évolve

in an unpredictable way to many final states.

Parker and Chua {19871 explained information gain in the
following way. Consider an autonomous system with a contracting
flow ¢'_ (Young 1983). Suppose that the system can be measured to
within a reso{ution of £, that 1is, if the state is observed to be
X, thg actualf/ state lies somewhere in Bg(x), the &£-ball centered
at x. * Assume that there are two observers who measure the state
of the system at two different times. Observer 1 obsex:ves the -

state of t,h'e‘ system at time t1 to be X . Observer 2 measures the

state at time t >t ,

to be xz. Now the. $ii-t,

¢l,-0.| (l( ('.))

question is, which
observer knows more 3, ) B (v)
about. the state of (a)

the system.

Observer 1

knows that. the state $1,-1, (B¢ {2))

at, 1:.1 Hes .—somewhere v

- Be (=)
inside B;’_(xi) and, B((x) ()
therefore, that the

state at“‘tz must le

inside ¢ (B _x))
"2_,'1 £ 1 Flg 1.2 a) Destruction of information in* a
’ contracting flow and b) Creation of {nformation in
(Figure 1.2a). an expanding flow. ’
Observer 2 knows
that the state at t’z lies somewhere inside BEsz) and,



therefore, observer 1 knows the state of the system more
accurately. Since the earlier observer possess more information
about the state of the system, a contracting system may be

thought of as destroying information.

Now consider the opposite case of an expanding flow
(Figure 1.2bD. The later observer, number 2, knows more about

the state of the system because B£<x2) is contained in

¢

Lt (Bs(xi)). The longer one waits to observe the state, the
2 .

1
more one learns. In other words, an expanding flow may be viewed

as creating information.

For a contracting system, it is more accurate to use X, to
predict the state at time t’z than to observe the state at time
t,z. Larger the value of t'z-t'1’ greater 1Iis the accuracy of
prediction. Thus for a contracting dnformation destroyingd
system, the Rredictive value of {jinitial conditions increases with
time. On t,he' other hand, for an expanding Jddnformation creating)
system, the predictive value of initial condition deteriorates
with time.

This argument shows that expanding systems  exhibit
sensitive dependence on initial conditions, but a purely
expanding flow also implies unbounded behaviour. By definition,
a chaotic trajectory is bounded. It follows that a chaotic
system must contract in certain directions and expand in others,
wvith the contraction outweighing the expansion. The rate of
divergence or convergence of trajectories in each direction of
phase space can be measured. Such rates characterize the
dynamics of the system. Lyapunov exponent 1is one such quantity,
much helpful in identifying chaotic and regular systems. |

1.6 LYAPUNOV EXPONENT

Lyapunov exponents (LE> are used to quantify the expansion
and contraction occurring 1in the phase space of a dynamical

system. LE is the average exponential rate of divergence or

10



convergence of nearby trajectories in phase space. Negative LE
indicates exponential convergence of trajectories. On the
contrary, a positive LE expresses the exponential divergence,

indicating a chaotic system.

Consider a dynamical system with n dimensional phase space
and let the system be governed ‘by n initial conditions. We can
represent. the behaviour of the system by the long term evolution
of an infinitesimal n-sphere of initial conditions. The sphere
will become an ellipsoid due to SIC nature of the flow. The ith
one dimensional LE O\i.) is then defined in terms of the length of

the principal axis p,L(t.) of the ellipsoid as

pi(t,)

MoT tew TP p (o> 111

If )\J_ is the largest positive LE, then two initially close points
At
on the attractors grow as e J ¢ Wolf et al 1985, Eckmann et al

1986 , Stoop et al 1988)

1.7 CHAOTIC ATTRACTORS

We have seen that the rate of loss of predictive power is
equal to the rate of information gain. Then the important point
is that, if a dynamical regime is represented by an attractor on
which neighbouring trajectories diverge, then the regime Iis

chaotic.

There was an earlier belief that only those systems, wit,h
large number of degrees of freedom show chaotic behaviour. But.
recently it has been established that certain low-dimensional
systems also exhibit SIC (Lorenz 1963). SIC is not possible on a
two dimensional attractor, due to the topological reason that the
trajectories of a dynamical system in phase space cannot

intersect. Therefore only systems with at least three phase

11



space dimensions can exhibit. chaos. In a three dimensional phase
space, the existence of strange attractor requires two operations
- stretching due to SIC, followed by folding. The stretching and
foldir;g are necessary to ensure that the trajectories will remain

in a bounded space.

Smale horseshoe attractor is a theoretical model of the

strange attractor. As mentioned above, the basic operations

necessary for creating a

A B strange attractor are

st.retchiné, followed by
folding. ABCD is a

D ¢ rectangle (Fig.1.3ad> and
stretch it by a factor of

, two 1in the x-direction,

‘ while contracting it by a

A B factor 2n in the y-dire-

ction. If n >1 we will

:::) get ABCD with less
. 1 4 1 1

D c area than ABCD. Then fo-

Fig 1.3'4> First stretching and ld ABCD back on itse-
folding of the rectangle ABCD. If as shown in Figure
(1.3a> and fit the image
) back in the rectangle
ABCD. Then we will get a

\J

hairpin shaped curve, and

D [ is named as horseshoe.

¢ Repeat this (Fig 1.3b> -

E =) stretching in x-direction
‘ and folding in the y-dir-

ection. After a number

— of iterations we obtain a

) complex layered structu-

re, which has all the

properties of a strange

Fig 1.3 b> Second 1{teration of attractor.
the Smale horseshoe attractor.

Certain physical systems exhibit irregular or chaotic

12



motion whose time dependence is deterministic. Thus the chaotic
behaviour exhibited by systems whose time evolution can be
described from it$ previous behaviour is called deterministic
chaos. Another definition of deterministic chaos is connected
with degrees of freedom. Landau’s idea was that only systems
with large number of degrees of .freedom can exhibit chaos. But
it has been shown that even systems with three degrees of freedom
exhibit chaotic behaviour. The chaos exhibited by systems with
small number of degrees of freedom is also called deterministic

chaos. The motive behind deterministic chaos is the SIC.

Consider a system with three-dimensional flow. The
requirements for SIC is that, the dimension of the attractor D is
greater than two, and the dimension of the attractor is less than
the dimension of the phase space. Then the dimension of the
attractor representing a chaotic regime must be greater than 2,
but. less t,ha)n 3, 1le; the attractor has a fractal dimension
(2<D<3D. In -‘éeneral, for a system with n-dimensional flow, the
strange attractor is characterized by noninteger dimension or

fractal dimension.

Thus a dissipative dynamical system can become chaotic 1if
the phase space dimension is greater than or equal to three.
Chaos with small number of degrees of freedom is due to the SIC

of trajectories on strange attractors.

The behaviour of a strange attractor can be explained in

terms of Lorenz model.
1.8 LORENZ ATTRACTOR

Oné of the first. systematic studies on a chaotic system is
due to Lorenz 1in the context of climatic dynamics <{Lorenz ,
1963). His study was connected with equations governing
convective phenomena in fluids. Temperature differences .in a
thermally expansive fluid placed between two plates, where the
upper plate is at a constant. temperature To and the lower plate

at. temperature To+<5T ST >0D, create convection 1if &T > cSTc,

13



where 6Tc is the critical temperature below which the system is
at. the state of rest. These convections set up tubes with a
hexagonal cross section along the height of the tube and these
are called Benard cells. This was first observed by Benard in
1900 and was satisfactorily interpreted by Lord Rayleigh in 1916,

so that. this convection is called Rayleigh - Benard convection.

The convective phenomena can be explained in terms of
three nondimensionalized equations. The coupled transport of
momentum of the fluid can be described by a set of equations.

The momentum equation is given by

-

-
Pr"[% +3.Vv] = -Yp + O K+ V¥ 1.12ad

We define the Prandtl number Pr-v/DT » where v is the kinetic
viscosity of the fluid and D‘r is the thermal diffusivity, p is
the hydrostatic pressure, X is the unit vector along the vertical
axis in the direction of gravity and 9(?,:;) is the temperature

deviation.

Incompressibility of the fluid is represented by

Vv =0 <1.12b>

and the heat propagation through the temperature deviation ecr,t)

+ Y6 1.42¢d>

>+
<¢

. V86 = Ra

33
+
<

where Ra is the Rayleigh number

14



3
_ [ peod
Ra [ oS /mD_ ] ST €1.13>

g Is acceleration due to gravity

P, is the mean density ,a is expansion coefficient, 7 is dynamic

viscosity and d 1is the thickness of the fluid

When Ra < Rac (critical Rayleigh number) the fluid remains
‘at rest  while, if Ra>Rac, the convection begins. Convective
rolls are created between the two plates, with adjacent rolls

rotating in the opposite directions with velocity v.

Lorenz reduced the dynamical behaviour of the convecting
fluid into the following form °

= Pr Y - Pr X

o]

o)
o]

= - XZ+r X-Y 1.14>

Q.
¢

= XY - b Z

&If

The values of the parameters Pr and b are fixed. Usually Pr=10
and b=8/3 and r is taken as the control parameter. The nature of
the phase space +trajectory varies with »r. For » > 24.74,

trajectories become irregular (Ruelle 1980).

The contraction of volume in phase space can be described
by Lie derivative. It gives the relative rate of change of a

volume V in phase space under the action of the flow.

15



n
1 dv i
vae - L 3 €115
=1 t
. ,th n
where Xi' is the i component. of X and X e R". Lie derivative is

negative for dissipative system, which measures the rate of

contraction. For Lorenz attractor, the Lie derivative is

ax ayY

-41
ax ' oy

= - (Pr+Db + 1) = €1.16D

NN

fe; the volume is reduced by a factor of e **? or 10™° in each

unit of time.

The complex nature of the system can be confirmed to be
chaotic if the dimension of the attractor is fractal. But. if the
system exhibits strong volume contraction in phase space, then
the fractal value can be very close to an integer. In such cases
we have to resort to other methods like, for example, studying

the evolution of separation distance in phase space.

Chaotic nature of the system can be understood by
studying the temporal

o
=
e~

e A A . evolution of initially close
| I trajectories in phase space by
! M - measuring separation between
; Y the two trajectories. Figure
0 ved 1.4 gives the separation
1 )Q,"«"Cfv distance & versus time for
/' Lorenz model. First consider
two points separated by a

distance 6°=10-°. " The

Fig 1.4 Evolutlon of separail.lon distance. distance 6 bet’ween the

two trajectories increases
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exponentially as cS=<S°expO\t,) where A is the largest LE. A is the
average slope of the curve of +the Figure d{1.4). If X is
positive, the system is chaotic.

Usually, in experiments, one records the time variation of
a measurable quantity which characterizes the dynamics of the
system. From such time series, it is difficult to calculate LE.
However, evaluation of dimension which is an important parameter
to quantify chaos is comparatively easier. There are different
classes of dimensions, such as phase space dimension, fract,all
dimension, information dimension and correlation dimension.
‘(.Jeneral description of these classes of dimensions are given

below.

1.9 FRACTAL DIMENSION

The fractal dimension 1s referred 1in different
terms such as Capacity, Hausdorff-Besicovitch dimension, etc.
Consider an attractor A, and cover this set by hypercubes of
linear dimension £. Let N(g> be the number of cubes necessary to
cover this attractor and if D is the dimension of this attractor,

then for small &,

NCed> = ke P 117>

where k is a constant. Then the Fractal dimension D _ is

f

p = L[t InNe> - €1.18>

¥ £=0 InC1/£>

If the set is a singlé point then Nd{(g)=constant=1 and Dfno. Ir

the set is a line N() = Ls-i, and hence D m 41; for a surface

f

Ned) = Se™2 and leading to D_f = 2,

17



Noninteger

of D
f

exhibited

values
are

by eertain phy-
sical systems.

A complicated

structure call-
ed Cantor Set
dishplays this
behaviour. The
Cantor set is

constructed as

follows. Take

N(Ee) €

1}

3

i

/3

s 1/

o7 /21

(a)

(b)

Fig 1.5 a)> The unit interval b)> The middle third

Cantor set

a line segment
between <0,1D.
(1.5bD. Then we will get two pieces in the interval [0,13]and
[2/3,1]. Remove the middle third of each of these intervals, then
we wiu get four units. Repeat this process ad infinitum. The
resulting set is called middle third Cantor set.

Remove the central third as shown in Figure

The . fractal dimension of the Hldne can be obtained by
covering it with volume element of length ¢ = (1/3)'h (Fig 1.5ad.
Then

n
D = nL:o In 3 1
F -+ In 3"
because NCg> = 37
The fractal dimension for the middle third Cantor set ig 1.5bd
is
n
D nL;_ In 2 = 0.6309
f -+ In 3"
That is, the fractal dimension of the Cantor set is greater than

that of a point but less than that of a line. Hence, it is

18



interesting to note that the dimension of the line is integer but
its convoluted nature is characterized by noninteger dimension

(Lichtenberg and Lieberman 1983).

1.10. INFORMATION DIMENSION

Fractal dimension is only a metric dimension, and it
does not consider the information about the temporal behaviour of
the dynamical system. The attractor volume is partitioned into
cubes of equal size, so that all cubes are equally important even
though the trajectories are visiting the cubes at different
frequencies. The information dimension on the other hand, is
probabilistic in nature, and is related to the information
necessary to specify the position of a point on the attractor.
In most cases the partition do not have equal probability, then

the information needed to specify a point with accuracy ¢ is

N(&)
I<ed = = ¥ p In(p D 1.19>
=1 18 t
where p is the probability associated with the ith box. The
1
information dimension DI is defined as
D = Lt I(s)/ In(1/g) 1.20>

I
£ -0

If all boxes are of equal probability P, ie, p = p = 1/N(),

1

then
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N(eg)
I<ed = - 7 1/NCed In1/NCgd = NeX)(1/NCed In N(£))

i=1

I¢> = InNCe> = D n (1/6)

f I 1.21>

1.11 CHARACTERISATION OF A SYSTEM FROM ITS TIME SERIES

Fractal dimension and Information dimension are very
handy in describing the dynamics of nonlinear systems. But. these
quantities are difficult to extract from an experimental data.
However a third type of dimension, the correlation dimension is
easy ‘to compute from such experimental data. Hentschel et al
(19831 and Pawelzik et al [1987] have introduced the concept of
¢generalized dimension so as to bring the fractal, information and
correlation dimensions under one roof. A detailed explanation of
generalized dimension and correlation dimension shall be given in
the second chapter. The method of calculation of these
quantities from experimental data shall also be discussed there.

We have mentioned that it ' is difficult to compute the
LE’s from experimental data. However it Is comparatively easy
to calculate a quantity, Kolmogorov entropy, which is related to
LE’s (Benettin et al 1976D. The next section gives a
description of this.

1.12 KOLMOGOROV ENTROPY

The exponential rate of divergence of tra Jectories
on a strange_ 6 attractor leads to the creation of information.
This rate of divergence can be identified in terms of Lyapunov

exponents. The Kolmogorov Sinai or Kolmogorov entropy is another

20



parameter which quantifies the divergence of trajectories and is

the mean rate of creation of information.

For the calculation of this entropy, the phase space is

partitioned into n elements, each of which is assigned with a

symbol s, Let us consider a sequence Si.(m) of m successive

measurements made at a time interval At. S_(m)=s,1, S

L L 19

....... S, - The probability of the sSequence of S dm is
L

P(S,L(m)). Hence,

L P(S.(md) = 1 122>

L

The amount of information contained in the sequence of length m

is

m

I = - 7 P(S,‘(m)) In P(St(m)) €1.23>

18

The Kolmogorov entropy 1is the information per unit time in a

sequence of measurements

A.24

At

For regular or predictable systems, the evolution of trajectories
do not give any new information. For .example, in the caée of a
stable fixed point and limit cycle, new measurements would not
glve any _ further information, so that K=0. But, for chaotic
system K > O. (Eckmann and Ruelle 1985). K 1is also expressed

as



K =% ¢ 1.25>
L

where o, is the LE. The generalized entropy and Second order

Kolmogorov entropy are described in detail in the next chapter.
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CHAPTER 2

QUANTIFICATION OF CHAQOS
IN
NONLINEAR DYNAMICS

Detailed description of the method of nonlinear
analysis used in the present work is given. Parameters
which can quantify the degree of chaos are dealt with
in detartl.



QUANTIFICATION OF CHAOS IN NONLINEAR DYNAMICS

Simple linear systems are easy to handle and one can
develop the basic equations of dynamics without much difficult,y.
In case of caomplex systems, it may be difficult to obtain

equations of motion, especially when the interactions are

nonlinear. However, the dynamics will reflect up on the time
dependence of certain easily measurable quantities. The temporal
development. of such quantities is known as the time series. Time

series analysis, which is currently attracting much interest, can
glve immense ,:lnsi_ght. into the dynamics of the system. In this
chapter we describe various methods used in time series analysis.
We shall describe in detail the methods suitable for nonlinear
systems, after gilving a brief description of conventional

techniques usually employed in time series analysis.
214 FOURIER SPECTRA

Discrete fourier transform is one of the usual
methods used to determine the kind of evolution produced by a
dynamical system by studying a time dependent signal x(t:), the
time =series. This will help us to find out various frequencies
present in the system under consideration. This method is used
to identify the general nature of the system and.has recently
been successfully applied to the studies of asteroicial belt
(Pratap 1977> and Neural system dHinrichs 1987, Dumermuth and
Molinari 1987). In this section we study the method of fourier
analysis of a time series. We shall explain the spectra to be
observed for different. classes of signals like sinusocidal,
non-sinusoidal, quasi periodic etc. The limitations of the

method in the analysis of chaotic system shall be discussed.
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We assume that the signal x(t) is a continuous function of
time. This signal is then sampled such that the experimental
results provide a discrete sequence of real numbers x. which are
regularly spaced in time with an interval of At. The»J_ number of
data is finite, containing n values for a total length of time
t.max = (n-1)At. The smallest frequency obtaihable from such a

time series, Af=1/t,max. We can define Fourier transform of a

. . . . ”~
discrete time series x as discrete fourier series X,
J

X = a1 T x. exp (-1 2n jk D 2.1
k ] J n
n j=t
k =1, n,i=J-1

The graph representing |§k|2 as a function of the frequency
f (fak.Af) is called the power spectrum. The nature of the power

-

spectrum is characteristic of the system.

Let ; us consider a periodic signal x> of period T, so
that

x(t) = xCL+TD 2.2>

If the signal is
sinusoidal its power
spectrum contains only
a single frequency at
1/T Hz '(Figure 2.1D.

A nonsinusoidal signal

(Figure ™ 2.2a), gives

0 yr
rise to the spectrum
containing the freque-

Fig 2.4 Fourier spectra of pure sinhusoidal
ncies located at 2/T function.

Hz, 3/T Hz ... etc,.
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(Figure 2.2b> which are the harmonics of the fundamental
N frequency 1/T
lxk’ X Hz. That is,

the presence of

harmonics in the
w spectrum shows
|J V 1 that the system
T t is nonsinusocoid-

al. The Figure

Fig 2.2a Nonsinusoidal function.

2.2b> represe-
nts a system in
which the durat-
ion of measure-
ment is an

multiple

0 YT YT 3T AT T integer
of signal period

Fig ?.Zb Fourier spectra of a periodic T ie; t'mc;x-= PT,
fungtlon (nonsinusoidal). p > 1 (a positi-

ve integer).
If we have @ situation, where t /T is noninteger, then
max
2
Sin (nrt¢k)

|2 ~ n - 23>
(nn¢k)

A
1%,

In this case the behaviour of
the function is like that. of
Sinzz/zz as shown in Figure ,-‘&s%z)’
23. The function has a
maximum  amplitude at. z=0,
with a series of secondary

maxima at ++1./2)0n, whose

2 H
amplitude decreases as 1/z P, \ o~z
. 2z -n [] T 1 "
where L is a positive
int.eger. . Fig 2.3 Plot of the function Sin‘z./z2?
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A dynamical system, whose behaviour is due to the
superposition of oscillations which differ in amplitude, period
and ,ratio of harmonics, will show a totally different frequency
spectrum. This type of system can be represented by a function y
of r independent variables ti, L, e t. , which is said to be

2 r
periodic with period 2n and has the property

j=1,....r 2.4>

The function y is said to have r-periods and it represents a
quasiperiodic éystem with multiple periodicity. An example of a
quasiperiodic system can be given in terms of the astronomical
position of a point on the surface of the earth. In this system,
rotation of the earth about its axis takes 24 hours (T1=24
hours), the rotation of the earth around the sun takes 365.242
days (T2 =: -365.242 days> and the precession of the earth’s axis
of rotation takes 25,800 years <T3 = 25, 800 years). This system
contains three frequencies. Hence it is not possible to describe
the trajectory of this in a phase space in terms of limit cycle
or fixed ©point, used for periodic systems. An alternate

description can be made for such systems in terms of the new mode

of phase space trajectory, wviz.,, ‘“torus’ of dimension < d{.e.
).

There are two types of quasiperiodic systems. If the
quasiperio.dic function b 4 (wit, ......... . ...wrt) is the sum of

periodic functions

2.5

then its power spectrum is the sum of r spectra of each of
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functions xL(th). Then the spectrum contains a set of peaks
located at the fundamental frequencies £, f . . . f and of
1 2

r
their harmonics,

where mi, mz, e e e .. mr are positive integers. But. if the
quasiperiodic function includes term like the product of circular
function (Sin(wtt) Sin(cojt)), then Fourier spectrum has a complex
appearance and contain frequencies If_t-fjl and lfi+fj| and their

harmonics

1

. : _ 1 _ _
Sin (wtt) Sin (wjt.) = —— Cos (|fi' fj|2rtt,) —

> Cos ( lft+fj |2nt)

2.6>

- -

Inorder to study a quasiperiodic system in detail,

consider a  biperiodic
case in which each of l. I
the nonzero component
of the spectrum of
the signal x(wtt,wzt)
is a peak with

abscissa |m f+m f | 1,
11 2 2

»

We can classify the
systems in terms of
the ratio of f /f, [ l

viz.,, whether it |is l

I . 2 WA

rational or irration- ]
Fig 2.4 Fourier speclra of a quasiperiodic function,

al. If fi/fz is fx/rz is rational

rational, < then the

Fourier spectrum is not dense (Fig.2.4).
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= (ni, n, integers > 2.7>

So, we can write

x(wtt, wzt,) = x(wit, + 21‘[1’11, wzt, + Znnz)

«2.8>
ie, x(w t’i w t,)z = x(w (t.1+ n /f1 p) 2 @ (t,2 +n /fz ))2

In this type of system, there is a ‘“frequency locking’ of f1 with
Ly

fz. This means that all the lines of spectrum are always

separated by same amount of 1/T.

But if ft/fz is irrational Cthe system contains

incommensurate frequencies), then the power spectrum has a

complex appearance.

Two peaks are so6 close
PR |

%] ' together with the
. appearance of a
4 continuous function.

However, usually only

for very limited

l l number of frequencies
f

l‘ l L A have significant ampl-

itudes. Higher “order

25 f /f_ is irrational '
Fig 25 [ /1, frequencies have ampl-

itudes too low to be

detected. In this case, the higher amplitude lines are presented
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by the combinations m1f1+m2f2| with m and m_ having small

values; 0,*1,+2 (Figure 2.5).

The Fourier spectrum of an aperiodic signal is continuocus
as shown in Figure (2.6 (Gollub et al 1975, Karten et al 1986,
Brandstater et al 1983). However, we will not be able to

50t
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Fig 2.6 Fourier spectra of an aperiodic function

conclude that a signal is aperiodic from the appearance of
Fourier spectrum alone, since quasiperiodic signals also give a
similar looking Fourier spectrum, when the number of frequencies
are very high. Moreover, random signals also exhibit similar
spectra. Itt is also known that signals arising from a system

exhibiting deterministic chaos have quasi continuous spectra.

2.2 FAST FOURIER TRANSFORM <(FFT)>

FFT is an algorithm to compute .discrete fourier

transform from time series d{developed by Cooley and Turkey in
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19655, and is one of the first techniques wusually employed in
the identification of deterministic chaos. Deterministic chaos
has a fourier spectrum where a few dominant frequencies are
superimposed ‘on a broad band noise floor. FFT technique is
useful when the number of data (nd is very large with small At.
For example, to calculate discrete fourier transform with n=103,
we have to calculate 1000 sums, each of which contains 1000
terms. This means that the number of operation needed is of the
order of nZ. It will take a large time for the computation of
the frequencies using conventional method. However, when n is a
power of two, the FFT algorithm speeds up the calculation of
spectrum. For n=2'° = 1024, the gain of computational time is by
a factor of 100, while it attains 7000 for n=2'% Hence, the
importance of FFT techniques increases as the number of data

increases (Berge et al 1984).
2.3 AUTOCORRELATION FUNCTION <(ACF>

Like the FFT, Autocorrelation function can also be
used to characterize a given system. ACF gives an idea about how
predictable the system is. It is useful to estimate the disorder
by measuring the resemblance of x at time t with itself at a
later time t+r or it is the degree of resemblance of signal with
itself as time passes. It represents the average of the product

of the signal values at a given time and at a time mAt later.

The ACF of a signal x.i can be described in the following

mannernr

n
Y x x w = yw (mAtD 2.9

vhere y is the ACF of the signal x.
J
If we consider the time series (V1’ v, V) {(Babloyantz et

2 n
al 1986>, then,
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_ 1 i= <2.10>
peo = ( n ) 4 N 2
o .z [V(t't)- V]
i=1
— 1
where V = — .}: V(tt)
i=1
According to Wiener-Khintchine theorem,
1 O 2 2rmk
vooo= = :Ei [ |° cos [n—] €2.11>

where; ;k is a fourier component.

Thus the ACF is, up to a factor of proportionality, the fourier
transform of | ;k | Z This means that the periodic or
quasiperiodic signal resembles itself at later times. That is

the behaviour of such systems are predictable.

In the chaotic regime, the power spectrum has a continuous

floor, so that.

y(T) necessarily
tends to =zero
as T increases :
¢ Figure. 2.7 > ( v l"|“}!“‘ﬂ]|“|i]ﬂ] |l|i[|mﬂ'lliﬂmlﬂﬂ'ﬂﬂ’l‘ﬂlﬂﬂ’lmml '
Gollub et  al 0 | | a2
1975, Babloyant=z
et al 1.986 D,
The resemblance

T =)

-2
- *

of the Signal Fig 2.7 Behaviour of autocorrelation func't,ion w(rd> of aperiodic
function

disappears as _

time Increases. In other words the predictability of the signal

looses within finite time. Here also it is difficult to

distinguish between aperiodic and random =signal.
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2.4 POINCARE METHOD

We found in earlier sections that with both FFT and
ACF,” it is difficult to distinguish between quasiperiodic,
aperiodic and random signals. Hence other methods should be
searched for. One such method which gives more information about
the behaviour of the system in the phase space was developed by
Henri Poincare, and is popularly known as the method of ‘Poincare
section’.

In the case of a three dimensional system (xt, xz, xa)
Poincare plane S defined by x3=const,ant, and trajectory I’
intersect the plane S at P,y P> - - - o where the dynamics are
assumed such that X, continually crosses from one side of S to
the other. Thus starting from an initial condition, we
eventually get a number of points on S, which is called the

Poincare section.

The transformation leading from one point on S to the next
is a continuous mapping T of S into itself called the Poincare

map.

P = T(P) = T(T(P_D = TP )

kst (K-1l+1)

212>

Thus, it is clear that Po completely determines P1, which in turn

determines P2 and so on.

Poincare section and map reflects the property of flow of
the system. For example, if the flow is dissipative, its volume

in phase space contracts.

In the Poincare method, there is no restriction on the

dimension n of the phase space. It converts an n-dimensional

32



flow into <(n-1> dimensional difference map. If the flow is three
dimensional, then this method maps the flow on to a plane,
reducing the number of coordinates by one. Secondly, the time is
discretized and time interval between two successive points is
not constant. The differential equations are replaced by
difference equations, by Poincare map P-+T(PD, so that it is easy
to manipulate the equations to get a sequence of points X X

.. +» X by successive iterates of a difference map
n

% = £(x ) €2.13>

N+t

The Poincare sections usually have the following appearance, a
point or a number of points are located along a single curve, or
distributed on a--surface. In the case of a periodic system  the
Poincare Sect.ion is a single point in a plane and this point is

called fixed point. of Poincare map T. This can be represented by

P
o

]
=3
~
s/
\

]
|
~
1
()

]

...... 2.14>

In the case of a truly quasiperiodic system, the Poincare

section has a number

of points which looks

/’ -~ 4 \ like a simple curve
/ (2) CFig. 2.8aD. If the
N A
7 Ry frequencies are comm-
y -

/ “\\ ensurate the curve

— J
will have only a
limited ‘number of
o . points while with

o
,,/;‘ W (b) incommensurate frequ-
RNy 7 encies it  will be
)’/v .

< _/ densely filled. For

aperiodic or chaotic

Fig 2.8 Poincare sections . system the points are
a) quasiperiodic regime b) chaotic regime

distributed on a

33



surface as shown in Figure <{2.8b). But. even with this method, it
may not always be helpful to distinguish between an aperiodic
system which is strongly contracting and a quasiperiodic system.
This. is because the contraction of area for a strongly
contracting aperiodic system may be too rapid so that Poincare
section will loock like a simple curve as in the case of

quasiperiodic systems.

For example in the Lorenz model, the Poincare section in

the X,Y plane with Z=r-1 consists

of only two line segments as in
Figure <2.9). This implies that TV
the tra jectories can be inscribed )
almost on a surface and the » / '

attractor has dimension two. But

(9]

Lorenz attractor has a complex

structure consisting of a large R T o 1 20
number of élosely packed sheets.
Its Hausdorff-Besicovitch dimens- / -
ifon is 2.06. These results prove

that the Lorenz attractor is not a

simple surface. The reason for

the fractal dimension to be very Fig 2.9 Poincare section of
. the Lorenz attractor

close to two is due to the strong

volume contraction.
25 LIMITATIONS OF CONVENTIONAL TECHNIQUES

FFT, ACF and the method of Poincare section are three
signal processing techniques which are useful for classif&ing the
systems 1;'1 a general way. However, these give only qualitative
ideas about the dynamics of the system. They do not quantify any
of the :haracteristic properties of the system. Even though we
are able to say that whether or not the system is chaotic, these
methods do not tell us how much chaotic, the system is. A étudy,

therefore, using these techniques will have its own limitations
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(Froehling et. al 1981).

FFT and ACF are usually valid only for linear systems
which obey Dirichlet’s condition regarding the continuity and
finite number of finite discontinuities. Any Fourier
decomposition of a given dynamical process would imply the
existence of a fundamental frequency and other frequencies could
be commensurate to this fundamental frequency. However, a
nonlinear process can arise from the existence of two or more
incommensurate fundamental frequencies in the system, and this
will not be revealed by a Fourier decomposition or ACF.. Thus for
thermodynamically open nonlinear systems like, for example, the
neural network, principles like superposition and ergodicity are
not valid and hence FFT or ACF methods are inadequate for this
analysis. Furthermore, such systems can also exhibit non
Markovian characteristics giving, thereby, memory effects.
Mathematically speaking, superposability of harmonic functions
which is the basic property used in Fourier analysis, would break

down if the system is nonlinear.

It is in the above context that recently developed
theories of nonlinear dynamical systems exhibiting deterministic
chaos <(Atmanspacher and Scheingraber 1986, Grassberger and
Procaccia 1983a,b,c & 1984, Schuster 1984, Holden 1986, Hao
Bai~Lin 1985, Cvitanovic 1984) gets more attention in the field

of nonlinear physics.

2.6 NONLINEAR ANALYSIS

Dissipative dynamical systems are characterized by the
attraction of all trajectories passing through certain domain of
phase space towards a geometrical object called attractor. The
attractor is a compact set in phase space which is invariant
under the action of the flow or mapping. The set of initial
conditions giving rise to trajectories converging towards the

attractor is called the basin of attraction.
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There are four types of attractors. Let wus briefly
describe them. The simplest among these is the point attractor.
It describes a solution which is independent. of time - that is a
steady state. This is essentially a fixed poeoint in the phase
space. The limit. cycle is the second type of attractor, and is
basically characterized by its amplitude and period. Its fourier
spectrum contains only a single fundamental frequency and
possibly a certain number of harmonics. The socolution to the flow
can always be expressed as a Fourier series and if the state of
the system is known at a given time, one can predict its state at

all later times.

A third type of attractor is the torus T" < = 2> which
corresponds to a quasiperiodic regime with r independent
fundamental frequencies. Here also the Fourier spectrum is
composed of a set of lines, whose frequencies are Jlinear
combinations of fundamental frequencies. While the solution to
the flow cann;)t, generally be put into the form of an ordinary
Fourier series, it 1is still possible to calculate the state of

the system starting from a given initial condition.

The '‘attractor of systems exhibiting chaos are quite
different. They are called strange attractors (Ruelle and Takens
1976). To understand the strange behaviour of such attractors,
it is necessary to discuss some of the general features exhibited
by almost all chaotic systems (Roux et al 1983, Babloyantz et al
1986, Reghunath et al 1987, Nicelis and Nicolis 1986, Albano et
al 1985), (i) its power spectrum is continuous or broad band and
(ii> the autocorrelation function of the time signal has only
finite support, that is, it goes to =zero in finite time. The
strange attractors have the following properties (Schuster 1984,
Atmanspacher et al 1986)

1 phase trajectories are attracted towards it

2 Pairs of neighbouring trajectories diverge on it
K trajectories are sensitive to initial conditions
4) its dimension D is fractal

We have seen that there are two types of systems viz,

Regular systems characterized by simple attractors <d{equilibrium
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point, limit cycle or torus> with integer dimension and chaotic
systems characterized by strange attractors which have noninteger
dimension. How can we classify these systems ? Even though they
can be characterized by Fourier analysis, the method does not
distinguish between chaos involving small number of degrees of
freedom and white noise. Such a distinction can be made with the
help of Poincare section. But this method offers only
qualitative information and also it is not quite practicable for

systems with higher dimensions.

A quantitative characterization can be done using certain
characteristics of attractors in phase space. Two of such
significant. properties of chaotic systems are the Hausdorff

dimension of the attractor and Kolmogorov entropy.

Kolmogorov entropy, as we have already seen (section 1.12),
is connected with the divergence of trajectories in phase space
(Benettin et al 1976> or creation of information. In this
connection we can define a whole set of dimension D (He_ntschel
et al 1983) and entropies Kq (Grassberger and Procacccila 1983 b &
¢), which generalize the concept of Hausdorff dimension and
Kolmogorov “ent,ropy (Pawelzik and Schuster 1987). We  shall
discuss about these in the latter part. of this chapter.

2.7 GENERALIZED DIMENSIONS

Trajectories of certain dissipative dynamical systems
exhibiting chaotic behaviour shrinks towards an attractor whose
dimension -is less than the dimension of phase si.)ace, and is
strange in character <(Lorenz 1963, 1984, Ruelle et al ‘15571, Oott
1981). As indicated earlier, strange attractors can be
characterjzed by their - characteristic dimensions. Some of the
important dimensions among generalized dimensions which are
commonly used to describe nonlinear systems are fractal

dimension, information dimension and correlation dimension.
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We try to understand the generalized dimension in
detail in this section. Let wus describe the given dynamical
system by a differential equation % = FX> , where X is a
d-diniensional vector obtained from a single time series by using

a delay time =,
Xty = { XL, XCLHTD . H(L+Cd-1DTD } 215>

Now consider a d-dimensional phase space which is uniformly
ﬁartit,ioned into boxes of size £, and N points <{Xi.}»}:=1 in a time
sequence which are given by sampling the signal XdtO). One can
estimate the inv;ariant probability measure P, associated with box
i by Ni./N’ where Ni. i=s the number of points falling within the
box i, provided N is large enough. In general, it has been shown
that .generalized dimension Dq » of order q d(Hentschel and
Procaccia 1983, Sato et al 1987) can be defined as

In [ Le’ ]
Lt i 216>
£4+0 CIn (e

= —_—
q (g-1)

The order of parameter q can take all real values between - and
+0. For g=-w, it characterizes the rarer regions, while f or q=w,
describes the denser regions of the set. Thus in <(2.16> an

infinite hierarchy of dimensions are implied.

In - €2.16> pt(s) is the probability that the t;rajectory Xi,

X, .o XN "on the strange attractor visits the box {i. Since

-

T p‘,"‘ can be written in terms of the natural probability measure
X t
1

ux on the attractor as

q-1
rp? = [ duco [ (B_o0)] 247>
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vhere Bs(x) denot.es a ball of radius £ around x and

pj & 2.18D

™
U
0
]
2|
™Mz

where S,(s) is the probability to find a point of the trajectory
within t,Jhe ball of radius &£ around a point XJ_ of the trajectory.
The change q to <(g-1> in the exponents in equation (2.18) is due
£o the fact that we switch from th:) to Sj(.s) (Pawelzik and
Schuster 1987). That. is, we are switching from the probability
to find the trajectory in one of the homogeneously distributed
boxes introduced above, to the probability to find the trajectory
within a ball around one of the inhomogeneously distributed
points of the trajectory.

1

p (£ —_ ©Ce - |X - X 219>
Pl = — F C Ix Jl)

By combining equation (2.16>-<(2.19>

Lt 1 a
Dq - £+0 m ln C (5) (220)
where
1./(q-1)
4 - 1 1 X - X a 2.21
c e = TF[T§®(5 | X, ,-l] 221>
and
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2.22>

Among Dq », the important ones are D, D1 and D2 with
(=)

DoZD1ZDz' It has been shown that D corresponds to D the
(=]

f}

fractal dimension and D1 is identical to DI » the information

dimension {(Hentschel and Procaccia 1983)> and D2 is known as the

correlation dimension. For a homogeneous system, all these
dimensions are equal to fractal dimension, i.e.,
D =D1=D2=.....Dw. The inhomogeneity of the system is reflected
(=}

in the inequalities of Dq for different q’'s (Schuster 1984).

28 BOX-COUNTING ALGORITHM

Fractal dimension Do (Df_) is usually used to describe
the dynamics of the system quantitatively. Consider a set of
points in a d-dimensional space, and 1if N(£> is the smallest
number of cubes necessary to cover this set.,, then Do is defined

as

Lt In N(=d

o = £+0 InC1.,8d €2.23>

Box—counting by Taken’s algorithm <{(Takens 1981) is used to
evaluat.e“t,his fractal dimension, which does not take into account
of the probabilities. This algorithm counts the number of boxes
necessary to cover the set. The time dependence of the system
with finite <capacity <can be described by finite-dimensional

deterministic mathematical model. Nonintegral capacity represent
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a chaotic system. Infinite capacity implies that an infinite
number of degrees of freedom are needed to describe the dynamical
system, which is not possible in terms of both Landau’s theory

and theory of strange attractors.

If the set has volume V, the number of boxes of side =

needed to cover the set is

NCed =V ¢

for small £.

’I"hen,

In NC£d = Do In €42 + In V €2.24>

Equation <(2.24> is more suitable than equation (223> especially
for processing experimental data because it has a slowly
vanishing ¢&érrection to the capacity V/ln(1/s). Do can be

calculated as the asympt,bt,ic slope of the plot In(N(gd) against
InC1/e) for small &£.

Takens (Takens 1981) showed that. it is possible to compute
D from a single time serie‘&, "repres_egted by the infinite
s:quence of real numbers {at}?o:‘. For this purpose, he
constructed a phase space with infinite set of D=n+1 dimensional

vectors,

s, = {( I p— a > } €2.25>
i=1

Capacity calculated using Taken’s method in the case of

2/3 Cantor set, Quadratic return map and Henon map are in good
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agreement. with other methods (Greenside et al 1982).

‘.

2.9 IMPRACTICABILITY OF BOX-COUNTING ALGORITHM

Box counting algorithm is very slowly converging even
for low dimensional attractors (Do < 2. Also, it has severe
computational difficulties in calculation for any set  whose
capacity is greater than two (Mizrachi et al 1984).

Oreenside et al [1982] tested Taken’s box counting
algorithm on several dynamical systems, the capacity of which has
been known by other methods. For low dimensional systems, DOSZ,
the method works and the number of points necessary to determine

the capacity is within the limits.

They have also applied Taken’s algorit,hm in hydrodynamical
models,"' three variable model by Lorenz <(Lorenz 1963) and 14
variable model by Curry <(Curry 1978)D. Taken’s algorithm
converges fciu; large & However, for smaller g, the algorithm
falled to converge for both models even when about a million

points were used.

One of the fundamental reasons why enormously long time
series may be needed to calculate the capacity by box-counting
method is the exponent,iél dependence of N{g) on Do . Two other
reasons are, (i) the set Sn often fills out the attractor in a
highly nonuniform way and d(ii> dynamical system may rapidly
contractt the volumes in phase space, making it difficult to
obtain the nonintegral part of the capacity, which arises from

the fractal structure.

Hence the box-counting algorithm is not useful for high
dimensional and rapidly cont,x;acting attractors, like those
encountered in the Lorenz model But. this method gives
successful results in the case of low dimensional systems like

2/3 Cantor set and Henon map which have slow rate of phase space

cont.raction.
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210 CORRELATION DIMENSION

We have seen that fractal dimension Do is difficult
to evaluate for higher dimensional systems. To override this
difficulty a new dimension called correlation dimension Dz is
introduced. It has been suggested that strange attractors can be
characterized by D2 (Grassberger and Procaccia 1983a,b,c,
Mizrachi et al 1984). The Grassberger—-Procaccia algorithm <GP
algorithm> to evaluate Dz are efficiently converging even with
small number of experimental points and even at higher dimensions.
(Atmanspacher et al 1986). For example, this algorithm yields
accurate value of D2 for higher dimensional system, with as small

as 500 data points (Abraham et al 1986).

Correlation dimension Dz is a probabilistic type of

dimension. It can be calculated in terms of correlation integral

N
IN? © (- |X -%|) €2.26>

wvhere 6(x) 1is the Heaviside function and Cd(s) is the standard
correlation function in d dimensional space. 6(xd>=0 for !x<0 and
unity for 300. N? is a normalization factor and |Xt—){j|
represents the Euclidean norm‘ of <xt-xj>. Equation <(2.26> gives
the number of vector difference which are less than &. This can
also be considered as the humber of wvector tips which le in a
hyperbox whose volume Iis sd in the phase space and in this
sense, one can Iinterpret equation (226> as a probability

measure. The Cd(s) behaves as a power of &£ for small g,
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(Brassberger and Procaccia 1983a >

c o> £ €2.27>

In most of the cases D2 is very close to Do, but is never

greater than Do. Now let us find, how Dz’ D1 and Dc> are related.

Let us suppose that the attractor has dimension D and
(o]

cover this by hypercube of side length &. Each cube will have a
D
volume &£ ®© and the number of cubes required to cover the

attractor is

Mled - £ €2.28>

Ve h:'ave to get a measure of M(g) from the correlation -function
(2.26). Since the equation (2.26> gives the number of points on
the attractor, we have to connect M(g> with the number of points.
Following Orassberger and Procaccia [1983al, let. u be the number
of points from the set {Xt} which are in the i' nonempty cube.

We ,then, have

ME) >
L H

1 MCed 2
Nz i=1 Nz

<> 2.29>

Cd(s) A

where we have used the box counting. Using Schwartz inequality,
in the asymptotic state

Lt Mg 2 1 2 1 Do
Cd<€> > 2 < > = [ Z }JL] = W:) ~ £

£+0 N N Mce> €

d =0
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as we take the limit of d-»w, and used the fact that Zu =N
1 1

‘. D <= D 2.31>
2 o

Now, to show that D1£ Do > we consider the following equations

Lt S<ed
P. = ci0 TImGro (232>
vhere
MED
Sed =- 1} pi'lnp.L
i=1

where P, is the probability for a point to fall in the tth cube,

as N+o . We write,

P, = H / N 2.33>
and for uniform coverage
p = 1 2.34>
i MdCed ’
The entropy is defined as
S° &> = In M(e)> = constant - D In e €2.35>

s°¢e) is the maxmum information needed .

In general,

SCed € S 2.36>
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therefore

This*means that

D < D 2.37>

By combining equations 2.31> & €2.37>, and following the

arguments presented by Grassberger and Procaccia (1983a), we get

D < D < D €2.38>

Thus D2 is a significant quantity to characterize the strangeness

of the attractor, it is a lower bound on the Hausdorff dimension

and it is easy to . .
Table 21 Dimensions and entropies of

calculate D, from different systems

time series. It =
Dimension Entropy

has also been

shown that D_ is

2 Regular D = D integer K =K =0
a very prominent 2 ° . 2 1
one among the set Chaotic Dz ~ Do fractal Kz s 0
of Dq’s (Caputo
and Atten 1987). Stochastic DZ -+ d Kz -+

It has also been
established that D2 is integer for regular system, noninteger for

chaotic system and Dz . d for completely stochastic system (see
table 2.1) (Atmanspacher and Scheingraber 1986).

Correlation integral becomes independent of d as d-+o and

for small values of g,
C d(s) Cw e

therefore
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In Cd(s)

Lt
Dz R In & 2.39>
’ £-+0

Cd(s) can be calculated using the equation (2.26).

2.11 GENERALIZED ENTROPY

Unpredictability of chaotic systems due to the exponential

rate of divergence of trajedtories on strange attractars lead to

the creation of information. But in predictable systems
trajectories do not create new information. This is an essential
difference between chaotic and regular systems. Kolmogorov

entropy provides a quantitative measure to classify regular and
chaotic syst.em’, and is defined to be the mean rate of creation of

information (Farmer 1982)

Estimation of Kolmogorov entropy K directly from time
signal enable us to quantify, how chaotic the system 1is, or it
will help us to study the information flow in the system using

isentropy curves.

To evaluate Kolmogorov entropy, consider a dynamical
system with F degrees of freedom. Suppose that the F dimensional

space 1s partitioned into boxes of size £" and that there is an
. <

attractor in the phase space. The trajectory XctL> is assumed to
be in the basin of attraction. The state of the system is now
measured at intervals of time T. Let p(ti,iz,ta,. e e e . id) be

the joint probability that X<t=t)> is in box i %xCt=27> is, in box

'

i, and % Ct=d7rd is in id. The Kolmogorov entropy K is then
2

-

Lt Lt Lt 1 o o
K --5..01-_.0 d+o® T4 _ZP(‘- ----- i) Inm p(G..i)

L €2.40)
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As is well known (Schuster 1984, Grassberger and Procaccia 1983c,
Cohen et al 1985> K=0 for an ordered system, and K=w for
stochastic system and K is a nonzero constant for a chaotic

system.

Calculation of Kolmogorov entropy K is not difficult for
analytically defined models in terms of evolution of the distance
between two initially close points, but it is very difficult to
determine K directly from a measured time signal {(Grassberger and

Procaccia 1983c).

212 KOLMOGOROYV SECOND ENTROPY (Kz)

Grassb»erger and Procaccia <{1983¢> defined a new
quantit,y; viz., Kolmogorov Second entropy Kz, which can be
extracted easily from an experimental signal. Kz is an invariant
measure of the system, and has the following properties see
table 2.1).

D K, o
i Kz < K
iiid Kz is infinite for random system (Completely stochastic
system).
ivo Kz = 0 for chaotic system
v Kz-o for ordered system

For typical cases, Kz is close to K. Kz is a member of

the set of generalized entropies d{(order-q Renyi entropies> which

is defined as

Lt Lt Lt 1 1 a , .
Kq-.= £+0 T+0 d+® 7d g-1 h:zi P c"i""'d)

2.41>

q can take any real values between -o and +w and p(Lt,tz,....Ld)

is the joint probability that the trajectory visit the boxes
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First order entropy,

’

Lt
1 q-+1 q

is the metric entropy which 1is a measure of the internal
information production of the system during its temporé.l

evolution. On putting

in equation (2.41), we obtain

Lt Lt Lt 1

K1 = T£40 T+0 dvw T4 .E.p (Li """ i'd) 1np(L1...td)
Y47t
2.42>
ty
Thus K’.aK, the Kolmogorov entropy. Here K1 is approximately

identical with the sum of positive LE’s of the system. From
equation (220> & <2.21), Kq can be defined in terms of
correlation integral (Pawelzik and Schuster 1987) as

Q
K = Lt Lt - 2 Ing @ €2.43>

q £-+0 d»@ dT

Kz gives the lower bound for the Kolmogorov entropy. It
can be defined in terms of correlation integral as in the case of
Dz' Kz is singled out from Kq due to its ease of calcu}ation
from a time series. We shall establish this as follows, consider

the equation (2.41> for gq=2 and for any value of d, and let &£ be
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fixed. The equation for Cdz(s) (Grassberger et al 1983c) is

. c > = TP, €2.44>

where P, is the probability to visit the i."h box and sum i runs

over all the boxes in phase space which contain a piece of
attractor. This quantity CdZCs) can be easily calculated from a

given time series.

We have already shown (Equation 2.27> that Cd(s) scales like

C (& - £

Hence this equation and (2.41) would yield

D
ce> | = z exp(-dTK ) €2.45>
d-+
£-20
()
Then
L,
Cd+1($) ~ & exp ( —dd+1d7 Kz)
and K (&) is
2,d
. Cd(s)
K, ¢8> = —F In < €2.46>
d+1

If we plot log Cd(s) vs logled we will get a series of lines with

a linear part. of slope D2 and which are separated from each

d,
other by*a factor exp(-d'rK2 d). The second Kolmogorov entropy K2

is
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Lt

K
2~ daw K €2.47>

£-+0

213 EVALUATION OF D2 AND K2 FROM TIME SERIES - GP ALGORITHM

GP algorithm is an efficient method to evaiuate D2

and'l-{2 from an experimental data obtained as a time series.

Consider the time series

X = {xct,1>,x<t,2> ................ X<t )} €2.48>

where XCt'i.> is the voltage or temperature or density distribution
or any fluct,l;at,ions measured at the instant t.i'. We usually take
the time interval between two consecutive readings at constant 7,
and this series is rearranged in the following matrix form

by

x(tD xCt+ TD . e .0 . xCbem—a17TD
xCteTd x(ts2T) . ... . . xCt+ mTd
x(b+d=11) xCt+dTd . . . e e . . . xCt+m+d=-27D

2.492

This forms a matrix of m columns and d rows and is called a
delayed mét.rix (Broomhead & King 1986D. The matrix Q.49> can be
considered as m vectors Jd(columns> defined in a d-dimensional
phase space and m>d. The matrix (2.49> can be represented by the

following,
X&) = {x,ct,), XCt+td . . . . .X<Ct+ E—Tﬂ}
L 18 1% 1 L L 1 L

250>
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where t,i=t, +C(i=12T, + rTunning from 1 +to m. Equation (2.50)
represents the various vectors d(column) and using these vectors,

one can evaluate the correlation integral (equation 2.26>,

’

N
Cle> = ENT e (e - |X-%|),
i,j=1

by counting the number of points whose distance is less than a

pre assigned value £,
LOG(CC e
or where £ varies from small
value ( - 0, say 0.0012),
to large value C 1 D
Cd(e:) is calculated using

2.26) for various &£ and

for each Qarticular
dimension d of t.he

T I rrrrrrr7r17r7¥7vr1v 11717

-18 106 e)-=--- ] constructed phase space.
1]

Fig 2.10 A typical Log-Log plot of Cd(c) The pJ'Ot' of log chE) Vs

log (&> for each d (Figure 2.10> will have a linear region with

a slope v.

in Cd(s)
In <&d

2.14 CALCULATION OF D2

The slope v of the linear part of log Cd(s)-log(f;)
plot for each dimension d is evaluated. The plot of v vs
dimension d <(Figure 2.11), saturates to a finite value as d
increases, and the saturated value of v is the second ‘order
dimension or correlation dimension Dz' If the data set consists

of completely random noise, then the points would lie on the
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Fig 2.12 Kz is the asymptote. of the curve {(d —-» ood.

IS
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straight line with 45° to the d-axis (Babloyantz et al 1986). On
the other hand, if there exists a deterministic component in the
system, the curve 50
would saturate to
D2 and would 12.5 -
become independent
of d The dimens- 110.0 /
ilon d at which the “ 7.5
o,
v curve starts to ] /
“ 5.0 - o
saturate or the //ﬁ
region at which 28
the deterministic L lﬂl e
and random parts O'Oo 2 4 6 B 10 12 14 16 18 20 22 24 26 218 30
completely separ- Dimension —-—---——— 5 J
ate is the Fig 2.11 Slopes of the llnear part of the curves
embedding  dimens- in flgure 2.10, plotted against dimension d.
fon (In figure 2.11 saturation st.art;s at d=12>.
2.15 CALCULATION OF Kz
ty
The second quantity of great interest. is the
Kolmogorov Second

entropy Kz. This can

be measured using the

correlation ‘integral
by evaluating the
ratio of spatial

separation between the

curves in ,

{2.10> for dimension d
and d+1. The

of Cd(s)/cdﬂ(s)

Figure

mean
value
over the linear range
of £ is calculated for
each dimension and we

write



_ Lt 1 G <>
. szd = £0 —:l_— In [ d /cd+1<8)]
T >0

sz is plotted against dimension d, and the curve will saturate

as shown in Figure {2.12). The saturated value of sz as d-»o is

the Second Kolmogorov entropy <(Equation 2.46).

Lt
d+o 2,d 2

We can classify the systems by comparing the values of D2 and Kz

with values in the table (2.1).

The algorithm we shall be using in the thesis is the one
developed by Atmanspacher and Scheingraber [1986]1 which has Leen
modified for smaller data sets by Abraham et al [1986]l.  But,
before any‘ {numerical scheme 1is used for the purpose of analysis
of any unknown system, it should be subjected to certain known
system, so that an evaluation of the efficiency and accuracy of

the numerical code could be done.
2.16 PERIODIC SYSTEM

To test our algorithm, we used the sine series. The
correlation integral was calculated for d varying from 1 to 30
from 512: data extracted from the digit.ized. values of ten
successive periods of the sine function Sin XO. Then log Cd(s)
is plottegd against log e. All the curves are parallel to each
other with equal slopes. Slopes of the curves () were plotted
against dimension d and it is seen that the » curve is pérallel
to d-axis <(Figure 2.13>, and D2=1. The behaviour of entropy also
shows that the system 1s ordered (Kzz 0> (dFigure 2.14D). Sine
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function represents a periodic system with a single frequency, so

4 3B

T T TrTrT

T

T T T T 7171
\

S NN U SN N VA G N (NN U NS NS AN N VNN N Y N D S |
8 DIMENSION---~-- y 1"138]

Filg 2.43 Slope of the ldnear part of log-log curves G (&) of
d

sine series, plotted against dimension.

that. D2=1 is an

expected result. LSZiKIIIIFflIIIIIIIIIIIIIIIIIIFII
Thus the Second » 7
order dimension rep- N -
resent. the number of — ]
frequencies present . A
in the system, or it r _ ]
measures the number G B n
of independent para- B -
meters fequired to [ x :
define the system. _ xx\ . :
Therefore our algo- :+4;p+j_§:f:f_{¥3jﬁfﬁ;m;r_~ggyxx S e
rithm is in good ¢ DHENSION i
agreement. with what Fig 2.14 Kz,d vs d of sine sepies

we are expecting.
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2.17 CALCULATION OF Dz AND Kz FROM SMALL DATA SETS

Box-counting algorithm is not practical for dimension
calculation since it needs large computer memory and time and
also requires large amount of data to obtain satisfactory

results.

The GP algorithm is suitable for D2 and K2 evaluation, but
there 1= a wusual assumption that a large number of data is
required for accurate results. Thié has been first. investigated
by Abraham and his colleagues [1986]. They evaluated the
dimension of ;1ogistic equation using 500, 1200, 5000 data, and in
all these cases D2 was found to be more or less same <Dz, is 0.92
for N=500, D2-0.94 for N=1200, D2=0.93 for N=5000D. In the case
of Henon attractor they got D2=1.28 for N=500, D2=1.20 for
N=1200, D2=(1'.24 for N=4000 and D2=1.24 for N=10,000. These
results show that the GP algorithm leads to successful results in
the case of small data sets. Abraham et al [1986]1 calculated the
slope in a slightly different way. They calculated slope of the
curve log Cd(s) vs logded for each &£ and plotted it against log
C d<8)' For small values of &£, slope fluctuates due to noise, and
for larger values of £ it displays an increase in the slof)es as
the largest interpoint distances on the attractor are reached,

and then saturate to a constant value of log Cd.

We . investigated the data dependence of GP . algoﬁ'ithm in
Neural system also. For this, we used a digitized
Electroencephalogram data. We calculate D2 for 1357 and 227 data
points and obtained the values of D2 as 356 and 350
respectively.
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2.18 ADVANTAGES OF GP ALGORITHM

The correlation dimension Dz as mentioned earlier, is
one of an infinite set of dimensions that characterize the
strange attractor. It is singled out by the ease of the actual
calculation from time series (Caputo and Atten 1987)D. Dz is
defined in terms of correlation integral <{(equation 2.26> using
the power law given in equation <(2.27).

Now the question arises about the role of noise present in
the time series. The basic idea 1s that when we have a
deterministic motion on a strange attractor, the existence of
noise will not ruin the structure of the attractor, but will
cause fuzziness ‘on the length scales that are much smaller or
equal to the noise strength (Shaw 1981, Zardecki 1982). But. the
quantification of strangeness using GP algorithm gives a clear

demarcation between deterministic and random part of the signal.

P

According to Mizrachi et al [1984] {if we embed the
attractor in a d-dimensional space, we expect that the noisy
trajectory "will be space filling on length scales smaller than

the noise strength and scales like

Cled ¢ 2.51

The plot of log Cled> as a function logdled will have a slope of Dz
down to length scales characterized by the noise strength and
then a slope of d

To: find Dz according to GP algorithm, we construct. a phase

space with dimension d and plot log Cded vs log<ed. For each
value of*d we get a curve with a linear part with slope equal to
D d above the length scales characterizing the noise strength.
zl

Al curves will break at that wvalue of &, below which the slope
is equal to d. Mizrachi et al [19841 explalned it in terms of

Mackey-Glass equation, and showed that for a given parameter the
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strange attractor is characterized by D2=1.95. The noise

strength is 1072,

Thus GP algorithm has the following advantages

1O Suitable for small data sets

2 It characterizes attractors

3 It gives information on the noise level of the system,
i.e; the position of break in logZC(s) vs logz(s) plot

4> It separates deterministic and random component. present in

the system.

219 SPECTRA OF SCALING INDICES (f<(a> SPECTRA> FOR FRACTAL
GEOMETRIES

'I,‘he subset. of phase space to which a typical orbit of
a chaotic noncommensurate system asymptotes with time is called
strange attractor and can have fractal geometry. _ Fractal
measures can provide a phenomenological description of strange
attractors. In order to obtain a more complete characterization
we shoulcfl4 consider the structure of scaling indices or
singularities on a fractal measure (Halsey et al 1986bD. We
consider a function fd(ad where a 1is the =scaling 1index of the
measure about a point on the fractal and fd{a) is the dimension of

the set of points on_the fractal with same value of a.

Suppose that we have a time series of N points on a
strange attractor in the phase space of a dynamical system.
Typically, trajectories 1in chaotic dynamics does not fill the
d-dimensional phase space even when N+, because the trajectory

lies on a strange attractor of dimension D, D < d. Dei‘ining

- Lt
Pi ¥ Now Ni./N

where N 1is the number of times the time series visits the
° A
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th
i box, we generate the measure on the attractor. If the system

is divided into pieces of size |, and defining a scaling exponent

8, we can write

‘

P L €2.52>

a can take on a range of values, corresponding to different
regions of the measure (Halsey et al 1986a). The number of times

a takes on a value between o' and o' +da’ will be of the form

da’ p(ao) l"f(a > «2.53>

4

wvhere fda’) is a continuous function (Halsey et al 1986¢c). The
exponent. f(a’') reflects the differing dimensions of the sets with
singularities of strength oa’. Thus we model fractal measures by
interwoven H sets of singularities of strength a, each

charact.erized by its own dimension fdocO.

We can relate fdad to a set of dimensions which have been
introduced by Hentschel and Procaccia 1[1983], the set of D
q

defined by (see section 2.7)

a L+0

D = Lt { q—f; 1—“-—"&} 254>

.where x(q> = } ptq
= i

D is the fractal dimension, Di. is the information dimension and
o .
D2 is the correlation dimension {(Grassberger and Procaccia 1984,

Grebogi et al 1988). Substituting for P,
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, xKqd = Jd o plard (TR jaa 255>

since t is small, the integral will be dominated by wvalue of o
wvhich makes qa’-fd{a’> smallest (Sato et al 1987)

Thus,
4 e - fea> = 0 €2.56>
do’ [q ] , -
o’ =ou
dz
also , [qe - f<a’d] >0
dda’ > a’ =alqd
so that £ [a@> ] =4 (2.572)
t''[aed] <O 2.57b>

It follows that (Halsey et al 1986b>

1)(1l = Y [qa<q> - f[a(q)]] «2.58>

-—t

Thus if we know the <o spectrum, we can find Dq.

Alternatively, knowing Dq we can find adq) since .
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d
algd = i [<q 1>Dq ] €2.59>

and hence fd{ad can be evaluated from equation (2.58>).

If a continuous scaling spectrum fda) exists, then the
above relationships implies that it must be convex. Further
more, fmax(a) will be equal to the dimension Dc> of the attractor.
The minimum scaling exponent o will correspond to the most

mun

concentrated region of measure on the attractor and « will
max
correspond to the most rarefied region of the measure (Halsey et

al 1986c).

f(ad spectrum can be measured experimentally and will
result in new tests of scaling theories of nonlinear systems. We
have evaluated fd{a) spectra from EEG recording, results of which

are included in later chapters.
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CHAPTER 3

NOISE FILTERING IN TIME SERIES
ANALYSIS

A mathematical technique for filtering noise from time
series data is described.



NOISE FILTERING IN TIME SERIES ANALYSIS

In most of the experiments, the output signal is mixed
with noise. It may not be possible to filter out the noise
completely from signal using electronic circuits due to various
reasons such as very small signal to noise ratio (SNR)>, large

frequency band width of noise, etc.

As already discussed in chapter 2, GP algorithm
(Grassberger and Procaccia 1983a, b, c) discriminates between the
deterministic and random bart, of a system using time series. The
noise makes the correlation curve <Fig.210> to deviate from
linearity. The slope vs dimension curve (Fig.2.11> also show the
noise effect at. low values of d, where the curve coincides with
45° line. However, this method does not have any means for
separating noise from raw data (Passamante et al 1989). The
phase space representation of the system shows that the presence
of noise will not ruin fractal structure, but it may change the

view of the attractor (Mizrachi et al 1984).

This chapter describes a mathematical technique for
filtering noise embedded data. The method 1is suitable to enhance
SNR when signal is immersed 1n random noise. This is an
extension of the method described by Broomhead and King (BK
method> (Broomhead and King 1986). We applied a modified version
of the BK method to a sine series and a sine series mixed with

random noise. The technique was also applied to EEG data.
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3.1 DYNAMICAL SYSTEM THEORY

A dynamical system can be represented by a

deterministic equation

where each y=(y1 r Y, s Vg > represents a state of the
‘'system and specifies a point in the phase space S. The

dimensionality of S is associated with the degrees of freedom of
the system. F{(y) represents the vector field, which is a
nonlinear operator acting on a point in S. For initial wvalue of
Y, and at time t, the solution of (3.1) is y, = ¢t y, where it
represents one-parameter family of maps of the phase space into

itself.

For a dissipative system, the trajectories evolve towards
the attractor M whose dimension is less than that of S (Schuster
1984). The search for complete solution of (3.1 is sometimes
not possible. Hence the study of the system in terms of phase
space trajectory is favourable, and an equivalence relation is
suitable for classifying the system. Members of same equivalence
class are said to have same qualitative dynamics.

Consider a compact manifold M of dimension m. For pairs
(F,v), F a smooth vectorfield and v a smooth function on M, it is

a generic property that §F yd : MaR®™* defined by

v

- T
QF'v(y) = (V(y),v(¢1(y)), ....... v(¢2m(y>)) 3.2

is an embedding space, where ¢t is the flow of F and v{(y>
corresponds to the value of measurement made on the system in a

state given by y € M.
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3.2 METHOD OF DELAYS

It is possible to construct a phase space from time
series using above theorems by the technique known as ‘Method of
delays’ <(Broomhead and King 1986, Abarbanel et al 1989). For
convenience, we introduce certain terms. The space which contain
the image of §F,v is called the embedding space and its dimension
is called embedding dimension. Lett us denote the embedding
dimension as d, which is greater than or equal to 2m+i, by
Whitney embedding theorem (Whitney 1936D. The time series is

represented as

Cv) a ( VoV, e VM D (3.3

By method of delays, from time series in single wvariable,
say vo(t), we can construct d variables, which are taken to be
the time delay co-ordinates (Packard et al 1980, Takens 1981).
So that,

V 8 VI, V. B V {+T dyeceeens ve v (ad-0T D 3.4>

1 o 2 o L d o L
where T is the time lag. We introduce the concept of d,J]>
window, which makes visible elements of the time series. Ir J=1,

then the elements are consecutive, and if J»1, there is an
interval of J sample times between each visible elements. d,1>
window 1s referred as d-window. If the sampling time is T, then
lag time TL=J1'8 and window length is T, =d‘z‘L. d,J> window
constitute the components of a vector in the embedding space Rd.

The vector can be represented as
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T
= (v,‘, vi.+j > e meereennens Vi.+(d—1n') 3.5

Thus we can construct N vectors in d-dimensional space as

8 2 N
v v
X = 2 R X = 3 > e e e e x = N+1
1 . 2 . N .
v v v
d d+1 N+d-1

3.6

If d-window is introduced in a time series with M data,

then it will provide N=M-d+#1 vectors and {x e .Rd|i=1,2,....N} in
L

the embedding space. The trajectory matrix with d-window is

defined as

F % 2 v h
1 1 2 d
T v | 2 v
1/2 x2 1/2 2 3 d+1
X N N :
“r .
X v 2
_ N J L N N+1 d+N-1

e a7

T

2 is the normalization factor. The trajectory matrix

where N7
and its transpose may be thought of as linear maps between the
spaces Rd and R (Broomhead and King 1986).

We can extract the tth vect.or xi, from the trajectory
matrix X in RN by using the property that the standard basis

vectors can be used as an indexing system for points on the
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trajectory in R e is the i'"" column of the NxN unit matrix.

Multiplying equation ¢3.7> with N"ze: from the left, we get,

xT = N ' x <3.8>

For calculating the dimensionality of the subspace which
contains the embedded manifold, one needs to know the number of
linearly independent vectors that can be constructed from the

trajectory in the embedding space by forming linear combination

of the .- Consider a set of vectors {s‘,. € RN}, which will give
a set of linearly independent vectors ctin Rd by their action on
X, ie., {ct | i=1,2,.......0 d}. Then the following relationship
holds

sTX =0 c" 3.9>

19 L L
where o are a set. of constants. The orthogonality of the {c}

L

imposes the following condition

s XX s = coo & . (3.10>

where & . 1Is the Kronecker delta. The NxN matrix H=)O(T is a
L)

real symmetric matrix and its eigen vectors form a complete

orthogonal basis for rR" and, equation (3.10> becomes

Hs = af s ¢3.11>

L
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[ x "x X X ... ... X X
1 1 1 2 1 N
1 x Tx x Tx x Tx
where H = N 2 1 2 2 2 °N 3.12>
T I T
| X X X X ... X X
N 1 N "2 N N 4

This H is called the trajectory matrix, {ai.z} are the eigen vales

and c,  are eigen vectors. But. equation (3.9 shows that only d
of the {at} are nonzero, and also the diagonalization of NxN
matrix is tedious. So we can look for an inverse relation of
€3.9.

ie, X c = ¢ s (3.13>

13 t 14

Then by taking the transpdse of (3.9 and operating from the left
with X and using equation (3.11), we will get,

Zc = a,Lz c <3.14>

13

where Z=XTX is a real, symmetric dxd matrix

N
= X X, (3.15>

or Z is the covariance matrix of the components of {xt}, averaged

over entire trajectory.
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Lvv ... L VvV cereee VLV

1 i+d-1

v V. ... Vv, V. . V. v
E i+d-1 L z 1+d-1 i+ E i+d-1 i1+d-1
.......... (3.16)

The nonzero eigen value of structured matrix is equal to nonzero
eigen values of co-variance matrix. This means that rank H =
rank Z = d° < d. Thus rY space can be decomposed into a subspace
of dimension d’ and 1its orthogonal complements. The d’
dimensional subspace i=s spanned by a set {s,L |i=1,2,.....d" }
which is such that each corresponding average over the x, gives
rise uniquely to a basis vector c. < Rd according to equation
(3.9. {ct |t=d' +1,........ N} constitute the complementary
subspace, which is the Kernel of X mapping onto the origin of the
embedding space through equation (3.9). The maximum number of
linearly independent vectors is d’, which is the rank of Z, and
it is the dimensionality of the subspace containing the embedded
manifold.

Now our attempt is to remove the nolse from the signal
than calculation of dimension. So consider the orthogonal dxd
matrix C which has columns consisting of vectors {ct} R

C=(c1,c2, ..... C d), and the diagonal matrix G = di::xg(ori,e:v2 ..... o)

ZC = CG 317>
and by definition of Z

xo)T (x¢) = &2 €3.18>
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XC is a trajectory matrix projected on to basis {c}. To
1
separate the noise part we follow singular value decomposition of

the trajectory matrix
X=SGC (3.19>

vhere S is Nxd matrix of eigen vectors of H, d' of which have
nonzero eigen values. The vectors of C and S will henceforth be
referred to as the singular vectors of X, and elements of G will

be called associated singular values.
Time series with a noise component ¥ ; can be written as

v = v + % <3.20D

Over bar indicates a quantity associated with the deterministic

component., and

Z = Z +<:2>1d

o0 % m B_t + < 5 I, 3.21>

where &tz is the eigen value of Z.

Inorder to partition the embedding space, consider the

(4
k Béi.j 6jk’
projection operators onto the basis function -{c_L}. These can be

matrices P(i'):l’j which are the representation of

used to construct projection operators onto the corresponding

subspaces of the embedding space.
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e = ¢ pV €3.22>

O =noise
i

(L)
r P €3.23>

O >noise
i

v
n

and P+Q =1 .

Inserting the identity in equation (3.193, we get

X = X + AX 3.24>

where

X=SPGC €3.25>

is the deterministic part of the trajectory matrix and

AX =S QG C' (3.26>
is the noise-dominated part. In terms of above relation we can
define X

< (L T
(x)i.j = Si.k PkL Gl.m (c )mj

= &
where Gl.m 0'L tm

70



(@ 5) T

QO = S, L P "o 5 _(hH

4 Lk O >noise tm ™
1
)
since PkL = <‘5,Lk 6kL » we can write
ey T
X = r PR N
Q. >noivse
1
and using equation (3.13), we get,
v T
X = Y (Xc) c. 3.27>
O. > noise v v
L
where ()Cc:t) is a column vector and c.LT is a row vector.

)-(: = JTe': X gives the noise free data. X represents trajectory
matrix, which contains all the information about. the
deterministic trajectory and we can extract i{t from the

experimental signal.

We developed a Fortran code for the extraction of signal
from the noise dominated data. We diagonalize the trajectory
matrix X and get eigen values o, and eigen vectors c., usually
taking 4 as 30. Then C is a 30x30 matrix, and c, is a column
vector and ciT represents a co-ordinate axis of the embedding

space. o©.’s have d’ non-zero values.
1

Inorder to find o'.L‘a above noise floor, plot log [a,L / PN at]
against. i, and identify the o',L’s above the floor level (Fig.3.1)
and allow the corresponding eigen vectors to operate on the
trajectory matrix (Xc,‘), which is a column vector containing a
time series of the i."h component,, in the basis {ct}, of the
vectors in the trajectory, and sum over (Xci’)cLT for a,L'e above
the floor level according to equation 3.27). (Xct) is a Nxt

matrix, which on operation with (ctT) changes to Nxd matrix.
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That is, X is a Nxd

matrix. Howevér, by

—~ construction, it
° consists of a traj-

N - ectory confined to
?" ar ‘5 the deterministic
l:;l L ",ll subspace of Rd hav-
g "\!‘ ing dimer;sion d*<d
% (where d is the

.‘.\\, S | number of the {o't}

i === ) above the noise

Fig 3.1 Plot of Log [ o_‘/ ; o, ] floor). Then the

ve i for Sin(x+nr), where r 1is a noise eliminated
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Fig 3.2 a> The noise embedded sine function,

Sin{x+nr) with 1»=0.1. b)> The filtered output.
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Inorder to study the effectiveness of this method, we
applied it first to the sin(x) series. Noise embedded sine
function was obtained by adding random numbers to the argument

le; sin(x+n x 'S (see fig.3.2a & 3.3ad), where r is a random

function. 7 controls the strength of noise.

Xty | '-_\\

. - .
Xt | ™

t- >

Fig 3.3 Plot of
ad) Sin(x+nr), n=0.5 and b> the filtered output.

Enhancement of SNR after filtering is obvious from Figure
(3.2b> and (3.3b> for two different noise levels.

This analysis shows that the present mathematical
technique can be used to filter noise embedded digitized data and
SNR can be enhanced. We tried this method on all EEG signals
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analysed in the present thesis, and it was observed that these
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Fig 3.4 a) The time series of raw data of EEG
b)Y The noise filtered EEG

signals were almost noise free (Fig 3.4), so that the original
signal can be used without any filtering. This agrees with the
results obtained by Dvorak and Siska [1986].
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CHAPTER 4

NEURAL SYSTEM

A description of neural system is the subject matter of
this chapter. Stress 1is given to physical and
dynamical aspects of human nervous system, relevant
pathological conditions of brain are also included.



NEURAL SYSTEM

A description of human nervous system is given in the
present. chapter to enable a better understanding of the contents

of this thesis.

Nervous system is the prime fundamental unit in a lhving
organism which correlates all the various functions of life.
Nervous system .can, in general, be divided into two parts - the
central nervous system (CNS> and autonomic nervous system C(ANSD.
The CNS consists of the brain, the spinal cord and the peripheral
nerves - nerve fibres or neurons that transmit sensory
information. Afferent <d(or sensory) hneurons carry signals from
receptors (the sense organs) to the CNS and efferent <{or motor)
neurons transmit. signals from CNS to the effectors dmuscles).
The ANS controls various internal organs such as the heart,

intestine, glands etc.

Brain which is the most important part of the CNS is
highly complicated in structure and consists of about 10'® nerve
cells, 10*°-10*° synapses through which interconnections take
place and about 10Km of the fibrous axonic cables along which
electric impulses travel. The brain consists of mainly Cerebrum,
Cerebellum and Medulla and also Thalamus, epithalamus and
pituitary. The most elaborate cognitive processing of the brain
takes place in cerebral cortex, a densely packed assembly of
neural elements. Because of the highly sophisticated nature of
the brain, it needs a special protection . Brain is surrounded
by three membranes within the protective skull and it “floats" in
the shock-absorbing cerebrospinal fluid. The brain is connected
to the spinal cord, which is also surrounded by cerebrospinal
fluid and is protected by the vertebrae of the spinal column.

(Cameron and Skofronick 1978, Domany 1988).
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4.1 NEURON

The basic structural unit of the nervous system is

the neuron (Fig. 41D, a nerve cell specialized for the
reception, interpretation and transmission of electrical
messages. There are many type of neurons, varying greatly in

size and structure. The most complex structure is found in those
of the cerebral cortex and cerebellum apparently because of the
complexity of the functions performed by these parts of the

brain.

Each neuron consis-
ts of a soma, or cell body
and processes, consisting
of a single axon and a
large number of dendrites.

Axons  are long slender

extensions or processes

whose function is to

convey impulses from the

cell body to other cells

or to peripheral organs.

Axon hillock is the place

on the cell body from

vhere axon starts. The
axon is wrapped by what is
called the medullary
sheath. But the axon does
not have these covering
fc. a length of approx-

mately 50 to 100 microns,

near the axon hillock.

This portion is called

the initial segment. This Fig 4.1 Schematic diagram of neuron
R 4. dendrites; 2 cell body; 3 axon
part’ has high excitabi hillock; 4 axon; 5 axon collateral;

hty and its stimulus 6 medullary sheath; 7 Schwann sheath;
>

8 Schwann nucleus; © node of Ranvier;

threshold is about one- 10 nonmyelinated terminal of axon.

-third of that of other
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parts of neuron. The neuron surface is also covered with glial

or Schwann cells. The membrane of Schwann cells form a myelin
sheath which is a multilayer membrane. It protects the axon
membrane from the environment. The sheath is interrupted at

regular intervals, say at every 1-2 mm of the length of the axon.
These constrictions are called the nodes of Ranvier. Axon
membrane comes into contact with environment at the nodes. There

exists unmyelinated axons also (Volkenshtein 1983).

Dendrites are the processes, whose functions are the
reception of impulses arriving from other neurons and their

conduction to the body of the nerve cell.

In view of the presence of the concentration of various
parts of neurons, the GNS is said to have grey matter and white
matter. Grey matter is that portion of CNS that contains
mainly cell bodies and complex synaptic connections involving
axons and dendrites. White matter refers to regions of C.NS
that are composed mainly of the myelin covered processes. It is
composed of long axons and dendrites and contains few or no
synapses. It is white in colour because of the fat-like myelin

sheath surrounding the axons and dendrites.
Both the cerebrum and cerebellum are composed of an outer
covering of grey matter with a core of white matter. In other

areas of the brain the grey matter occurs primarily in clumps

within the main matter of white matter (Stephenson, 1980).

4.2 CELL MEMBRANE

The body and processes of a nerve cell are covered

with cell membrane. The three layered structure of the cell
membrane is shown in Fig.4.2. A Dbiological membrane consists
mainly of protein and lipids. The membrane consists of a double

layer of phospholipids, the circles shown in the figure are the
polar heads of the lipids. The phospholipids are lined on the

inside with a layer of protein molecules and on the outer side
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with a layer of molecules of compound carbohydrates-

mucopolysaccharides.

The molecules of water, lons and other substances pass in

ﬁ - and out of the cell

NN
I
00000000000

Fig 4.2 The model of the cell membrane

There are

various types of ions

O
i
i
O

existing in the

membrane. These ions

give particular elec-

X =~ mucopolysaccharide Y - Protein tric charge to the
Z - Bimolecular lipid layer )
Circles are the polar heads of lpids. walls of the pores,

thereby impeding or
facilitating the passage of other lions. Because of the presence
of carboxyl groups and dissociated phosphate, the membrane of the
nerve fibre is much less permeable to anions than to cations.
Permeability to different cations also varies, according to the
functional conditions of the tissue. For example, at rest, the
permeability of the nerve fibre membrane to potassium ilons is
between 10 and 20 times that to sodium ions, whereas in an
excited state the ratio is reversed (Babsky et al 1989,
Volkenshtein, 1983, Cameron and Skofronick 1978).

4.3 RESTING POTENTIAL

The production of nerve impulses and their
propagation 1is based on electrochemical process. There exists a
potential difference of the order of 60-90 mv between the outer
surface of the cell and its protoplasm, the cell surface being

electrically positive with respect to the protoplasm. This
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potential difference is commonly called the resting membrane
potential. According to
, . Hodgki d H
Table 41 Concentration of ions gan an uxley (19525
(in mmole per Kg H20> inside and potentials are caused by
out.side of neurons. unequal concentration of
Potassium i
Ion inside outside ? Sodium,
Chlorine and Protein ions
+ 0 440
Na S within the cell and
K+ 400 20 outside, and by the wvari-
- able ermeabilit f +th
c1 40-150 560 P y o° €
membrane with respect. to
different types of ions.
The concentration of ions inside and outside the cell
membrane is given in
Table <4.1> and
Outside cell Membran Inside cell
dlagrammatically re- Na® "T",. ¢
g K*
presented in Figure 7//— S % )
St .E ~
43. % a1l 3 é’
1 Tii
% s
/ T v
The protoplasm / 1 5
/ ng. +
inside the cell + N
ns 2 7A
contains potassium I . 1 e
fons  10-20 times g +
A” o 4
higher than the out- g-_E_
side of cell, and the § § 01l
. o s £
concentration of Na 3, 1
ions is in the rever- A"
se order. The rest- E
ing state is charact-
erized by. the ratio Fig 4.3 Ion concentrations inside and
of ion permeabilities; outside the cell.
P :P : P = : 0.04 : 045 4.1
k Na cl ,
The resting potential can be explained by a model, in
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which a cell membrane separates a high concentrated solution <H)
of KC1 from one that is less concentrated dLD. In the solution,
KCl forms K ions and Gl ions. As in the case of cell membrane,
we aésume that the membrane permits K' ions to pass through but
does not permit the passage of the Cl ions. Then the K  ions
diffuse from the high concentrated region H to low concentrated
region L. This results in an excess of positive charges in L and
excess of -ve charges in H. These charges form layers on the

membrane, and retards the

flow of K" ions, and a

(/7\3 condition of equilibrium

exists. Ir electrodes are

now put into the right and
PA Mambrane e left half of the vessel (Fig.

@ Og@ @ @ 4.4D, the measuring
@ I instrument will show the
@ @ l @ @ potential difference such

®@ @ that, L is electrically

@ @GD positive with respect to the
@ @ solution with the greater
concentration H. Then the

Fig 4.4 Membrane transport is potential

b ulated
illustrated by an artificial can e calculate

membrane separating KCl solu- by the Nernst’s formula,
tion of different. concentrat-
ions.
c
RT 1

vhere R is the gas constant, T is the absolute temperature, ¥ i=s

the Faraday’s constant and c, and c, are ion concentrations (see

fig.4.4D.
In the case of cell membrane, the resting potential exists

because the membrane is impermeable to the large A (Protein)

ions as shown in Figure 43. While, due to the diffusion of
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positively charged potassium ions from the protoplasm to the
external fluids lends a positive charge to the outer surface of

the membrane and a negative charge to the inner one.

The resting membrane-potential is developed due to
variable permeability of the cell membrane to different types of
jons. Hodgkin and Katz in 1949 d(Hodgkin 1964> derived a formula
for resting membrane-potential assuming the uniform electric

field throughout. the entire thickness of the membrane as

RT PK c; *+ PNa. c;lo. + clL ZL
by = — In S N - 4.3>
P ¢ + P o] +
K K Na Na cl Ccl

vhere P is the permeability coefficient and ci“ and c© are the
concentrations of ions inside and outside the membrane
respectively. Thus one can conclude that the existence of

resting potential can be attributed to the following facts:

1. At rest, the concentration of K" in protoplasm is about
10-20 times greater than the outside of the cell membrane,

and the membrane is more permeable to K" ions.

2. The principal anions inside the c¢ell such as protein and
nucleic acids are not free to leave and Cl, which is

abundant inside, (Fig.4.3>, crosses only slowly.
3. Permeability of Na' is only one-twentieth that of K .

Thus the distribution of K' determines the transmembrane
electromot.ive potentiial and hence the resting potential is called
K potential (Das 1987).

4.4 ACTION POTENTIAL

If a stimulus is applied to a nerve, or muscle fibre,

the mode of permeability of the membrane gets changed, and a
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variation of membrane potential takes place, as a result of which
an electrical =signal 1is generated, which 1is known as action

potential.

/

Action potential can be measured using extracellular leads
or intracellular leads. With an extracelular lead, it can be
observed that the surface of the excited portion of the fibre
becomes electrically negative 1in relation to the adjacent areas
at rest, for a brief interval of a millisecond duration.
Intracellular Jleads show that action potential exceeds the va.lué
of resting potential by 30 to 50 mv.

From the curve showing the temporal evolution of the
action potential (Fig.4.5),
we can see that there are two
phases for this process - the +30
ascending phase and descend-
ing phase. During the
ascending phase, the Iinitial
polarization of the membrane

(-4
g g g 2 2 4 2 2 | 1 1 1

disappears and is called “108

depolarization phase repres- ’

ented by ‘a’ in Figure 4.5. IR RN R R R RRRRREEE
1 msac

The membrane potential
reverts to the resting Fig 4.5 Appearance of an
membrane potential during action potential.

descending phase which is

called repolarization phase <(represented by ’b’ in Figure 4.5).
This swing occurs over a time of about 1 msec, and usually
repolarization phase is longer than depolarization phase. During
this time the nerve fibre is in refractory state, and it cannét

be excited again.

4.5 ION THEORY OF ACTION POTENTIAL

Difference in concentration of sodium and potassium

ions 1nside and outside the fibre is the  source of the
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electromotive force giving rise to the resting and action
potentials. The action potential is caused by change in the ion
permeability of cell membrane due to passive membrane transport.
In a state of rest, the membrane permeability to potassium
exceeds to that of sodium, and flow of positively charged
potassium ions from the protoplasm to the surrounding fluids
exceeds the contrary flow of sodium cation from the outside into

the cells, which will make the membrane electrically positive

than the inner one.

When an exciting potential is applied to the membrane, it
becomes more permeable to Na' ions. The Na' ions enter the axon
as a result of which inner surface of the membrane changes the

sign of its charge from negative to positive and will create

action potential. The internal fluid will become more
concentrated in Na' ions. The action potential 1is mainly Na®
potential which is opposite to K" potential. During the

depolarization phase the membrane potential swings from -70 mv to
+50mv . This will remain only for a few milliseconds and is
followed by the appearance of restorative processes, that 1is, the
permeability to Na' tons decreases and that to K  ions increases.
The process leading to a fall in the sodium permeability of the
membrane is called “‘nactivation’ by Hodgkin. During the
inactivation process, the K" ions will flow to the outside of the
cell, and again outside becomes more positive than the
protoplasm, and will become ready to receive new impulses.
During these stages the membrane is not actively taking part, and

hence, the transport of 1ions is termed as ‘passive membrane

transport’.

4.6 STIMULATION AND TRANSMISSION OF NERVE IMPULSE

Stimulation of nerve impulse depends on two

important parameters -~ the stimulus threshold and utilization

time.

The action potential does not arise if a certain threshold
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value is not reached by the electrical stimulus. The lowest
strength of stimulation required to give rise to an action
potential in an excitable +tissue is called the f‘threshold of
stimulation’. The nerve fibre acts according to the all-or-none
law generating an action potential. When once the firing takes
place, it attains a constant value irrespective of the intensity
of stimulus. However a stronger stimulus increases the frequency
of firing, and not an increase in the amplitude of the action

potential.

The strength of the stimuus and duration of its
application are inversely proportional When an electric current
is used as a stimulus, certain minimum quantity of electricity is
required. As the duration At of the transmitted impulse is

reduced, the current I must be increased. Figure 4.6 shows such

strength-duration curve.
The minimum strength of the
current required to produce

the excitation is called

Current

rheobase represented by OA
) 3 in Figure 4.6, and the

minimum time that a current
Rheobase A

equal to the rheobase must

N
b e o= e o

act to induce an action
Time potential is called the
utilization time. Utiliza-
tion time implies that

Fig 4.6 A strength - duration
curve. further prolongation of the

effect of current has no
value or 1Is useless iIin generating action potential. A weak
current. is inefficient at any duration. The strength-duration
curve takes the form of an equilateral hyperbola. The threshold
current required to generate impulse can be described by the
empirical formula,

= —— + b 4.4>

84



The quantity b is the rheobase, At is the utilization
time, a is a constant that characterizes the threshold level of

the amount. of electricity.

;

Lapicque in 1909 +40 —_d -
proposed the measurement 0 ﬂ Active membrana petantial
of another parameter,

Resting membrane potential

known as Chronaxie, which

is the least time 8o
required for a current ++’__++++++++++++++
equal to double the - -¢>+ oy T 7 Axon
rheobase <COD in figure i :II;Z:II;:IIII
4.6 to produce the

*a0 ’

excitation in a tissue.

Utilization time and 0
Chronaxie characterize
the rate at, which a L

stimulus causes excit-
ation, OF’ in Figure 4.6 P RPN ) g
correéponds to the  ~~~°-7°°7° @iﬂ LIE 2
chronaxie (Babsky et al e ST é: AT
1989).
*a0

The propagation of 0
impulse is a self _
sustained process. The 6-0
nerve impulse resembles a
burning spark travelling + + + +
along the length of the I Q:g Q'P Ao --

fuse. The depolarization

+|1
+]1
+
+{1
¢
1
|
@
+
+
+
4+
-
!
|
@y
4
+

of the .membrane gives

rise to current, and

becomes a stimulus for Fig 4.7 The propagation of nerve
impulse and corresponding change

adjacent resting part of of axon membrane permeability to

the fibre. The mechanism ions.

by which excitation Iis

conducted from one portion of the fibre to another does not
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differ in principle from that by which an impulse is produced at
the point, of stimulation. In both cases an action potential
arises when depolarization reaches the c¢ritical wvalue. The
propalgat,ion of nerve impulse is portrayed in Figure 4.7. It is
necessary to consider the electrical equivalent. circuit of a
nerve cell to describe the permeability changes. The axon
membrane has a resistance of 1000 ohm cm’ and a capacitance of 1
pF/cmz. During the generation of impulse the conductance of the

membrane increases by about 10EI times.  Figure <4.8> gives the

equivalent circuit
Outside for one element of
the membrane, the
sodium emf (ENQ) is

R A
R By L g directed opposite

—— . . Membrane

to the potassium

+

e, -"'n; -'l’zy. emf (E > and leak-
K

\ age emf (EL). The

o

] : resistance of axo-
Inside

plasm is represent-

Flé 4.8 The equivalent circuit, showing the ed by R E and

Na
elect.rical properties of a membrane. .
prop E determine the

generation of an
impulse and EL depicts the movement of other Iions, whose
permeabilities do not change upon excitation. If Er is the
resting potential, then the potential change V is

V=E-E 4.5

where E stands for E , E or E .
. Na K L

Therefore the relative potential for sodium, potassium and

leakage can be defined as
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Na Na r
v = E - E
K K r
4.6
and
v = E - E
L L r

If I represents the density of the current flowing through the

membrane, then

dE
I = Cu T + I‘,. <4.7>
where I =1 + I +1
L Na K L

with

vhere Cu is the membrane capacitance and ?K, \7 and gL stands

Na
for the conduct.ance of potassium, sodium and leakages

respectively.

Rate of travel of nerve impulse varies with the nature of
axons. The nerve impulse travels in a myelinated fibre faster
than in an unmyelinated fibre. In the myelinated axon, the nerve
impuise Jumps from one node' of Ranvier to another. Potassium and
sodium channels open and close only at the nodes of Ranvier. The
myelin sheath has a low capacitance, which accounts for the high
rate of transmission of the nerve impulse. The travel speed of

the signal, v is 1-100 m- sec. The resistance per unit length of
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the fibre with a diameter of 1um is 109—1010 ochm cm which exceeds
the resistance of a copper wire of the same diameter by 10°
times. In such a conductor, losses and leakages are high, but

the nerve impulse is transmitted by the axon to distances of wup

to several meters without being damped and distorted
(Volkenshtein 1983D).

During the repolarization process, the sodium-potassium
status is destroyed. For example single nerve impulse in the
giant. axon of a squid allows about 20,000 sodium ions to enter
the protoplasm through each square micron of the membrane, and as
many potassium ions pass out of the fibres. An axon of 05
millimeter in diameter losses about one millionth part of its
total potassium content during each impulse. The mechanism by
vhich the membrane actively removes sodium ions from the

protoplasm and supplies it with potassium ions is called the

sodium-potassium pump, which is represented in Figure 4.9. The
membrane actively takes
part in this process,
hence it is called active ! Jerna e
membrane transport. K« i « e Kt
CPNa A cP
| LY ek
The transfer of v
+ + Na® > ™~ Na*
Na and K take place in CPK .
ADP —» CPK
the direction of their han
increased concentration, 7 ehem J-‘ml\
so that a large amount. of ATP —» ex! B ke T Py
energy 1Is required for ‘\J—/K
this process and is cx
A - — »
taking part at the  Membrana
expense of energy of
hydrolysis of ATP Fig 4.9 Sodium pump i - internal side
_ e - external side of the membrane
(Adenosine triphosphate).

In this pump, the

transport 1is accelerated due to the . presende of carriers -
substances which interact. with the transported ions or moleéules
in the membrane. This complex is broken down on the innerside.

The carrier <(C)> and the complex <(CS> always remain inside the
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membrane. The following reaction is taking place inside the

membrane.

S+ C S E— Cs <4.8>

vhere S is the transported substance.

The key role in the operation of the sodium pump is the enzyme -
the K',Na'- activated ATPase. The phosphorylation and
dephosphorylation take place in the various parts of the
membrane. The ATP to ADP conversion takes place only on the

innerside of the membrane.

C + ATP —— > CP + ADP 4.9>

The dephosphorylation is taking place on the outerside of the

membrane (see Figure 4.9).

ce —2 > ¢c+P <€4.10>

C and CP are proteins but there affinities are different. C has
high affinity to K  ions, so that it collects K 1ions from the
environment and releases it to axoplasm using the energy released
in ATP-ADP hydrolysis, and the protein CP has high affinity to
Na'. Thus the sodium pump operates as a system of two cycles.

The first cycle is of the lon-exchange type
CPK + Na® S CPNa + K' C4.11>
——

The second cycle 1s chemical and involves phosphorylation and
dephosphorylation reactions. Thus excess Na' is removed from
axoplasm and transferred to outside of the cell or environment.

Similarly K* ions is transferred from outside to axoplasm and
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thus it regains the resting state.
4,7 ELECTRICAL ACTIVITY OF BRAIN

The electrical activity of Brain was first observed
by Hans Berger in 1929. If two electrodes were placed on the
scalp and the electrical activity is meésured, one will obtain a
very weak complex electrical signal. Traces of these
oscillations are called Electroencephalogram CEEGD. The
technique which deals with the recording of the electrical
aétivity of the brain and their interpretation is called
Electroencephalography. Electrodes for recording the signals are
often small discs of chlorided silver. They are attached to the
head at locations that depend upon the part of the brain to be
studied. Usually, the int,ernat_ional standard 10-20-20-20-20-10
system of electrode location, as shown in Figure {4103, is used

for recording. There are two methods of recording

electrqencephalograms, bipolar and monopolar.

Fig 4.10 International standard 10-20-20-20-20-10 system of
electrode location tfor EEGs.
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In the bipolar method, two recording electrodes are
applied to the cortex or to the corresponding areas of the scalp
and both electrodes are active. The electroencephalograph then
records the potential difference of the cortical areas beneath

the electrodes.

In monopolar t,_echnique only one electrode is active, wviz,
the electrode that 1is applied to the cortical regions and an
indifferent d(grounded) electrode is applied to the ear Ilobe in
the case of man or to the nasal bone in the case of animals.
Then the waves under active electrode are recorded. In the case
of man, amplitude of EEG varies from §5 or 10 to 200 or 300
microvolts and frequency lying between 05 and 70 H=z. Usually
multichannel electroencephalographs are used, to record the
activity at four to more than thirty two points in the brain
simultaneously, and thus to study the relationship and variations
of electrical activity at different areas of the cerebral cortex

(Kool et al, 1978).

EEG signals are produced mainly due to the electrical
activity of the cerebral cortex of the brain. One hypothesis
about EEG 1s that the potentials are produced through an
intermittent synchronization process involving the neurons in the
cortex, with different groups of neurons becoming synchronized at
different. instants of time. According to this hypothesis the
signals consists of consecutive short segments of electrical
activity from groups of neurons located at various places of
cortex <(Cameron and Skofronick 1978). The frequencies of EEd
signals seem to be dependent on the mental state of the subject.
EEG signals of a relaxed person have frequencies ranging from 8
to 13 Hz, but an alert person can have EEG with f requencies well
above 13 Hz.

4.8 EEG RHYTHMS

The Electroencephalograms are classified according

to the frequency, amplitude and physiological characteristics of
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their electrical waves (see Figure 4.11). The EEGs are

represented as the "Hand
Table 4.2 Frequency and amplitudes i .
of EEG rhythms. writing of the brain, which
. are the records of the
rhythms frequency amplitude in
in cycles/sec microvolts different disorders and
activities of the brain
up to .
o 8 to 13 50 (Anmnos. et al 1977). The
3 above 13 20 to 25 EEG is mainly classified into
e between 100 to 150 .
4 and 8 four types, as discussed
& between 250 to 300 below (Table 4.2D.

05 to 35

Alpha Rhythm has a frequency lying between 8 to 13 Hz and

has an amplitude of up to 50 microvolts. This type of wave Iis
usually found in the EEG pattern of a relaxed person. The
amplitude of alpha waves 1s greatest and most stable in the two
cortical regions, one in the occipital lobe, and the other in the
parietal. The occipital alpha rhythm arises in the visual area

of the cortex and is, as a rule, absent or faint in the blind.

2 e gy oo Beta Rhythm is

characterized by wave
b WAMWWNWW#I frequencies above 13 Hz
with an amplitude of 20
or 25 microvolts. It
is most distinct. in the

frontal region and is
less in parietal reg-
ion. Emotional excite-~
ment, mental work and
d { o light stimulation chan-
ges the alpha rhythm of
occipital region into
beta rhythms.
Fig 4.41 Typical EEG rhythms.
a-beta rhythm; b =~ alpha rhythm, Theta Rhythm con-

¢ - theta rhythm; d - delta
rhythm.

sist. of waves with a

frequency lying between
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4 and 8 cycles per second and has an amplitude of 100 to 150
microvolts. This type of wave 1is found during sleep and in

various pathological conditions.

Delta Rhythm is characterized by slow waves with a

frequency between 0.5 to 35 Hz having an amplitude of 250 or 300
microvolts. ‘They are registered during deep sleep, general
anesthesia, hypoxia and various pathological proéesses in the

cortex.

Clinitians use EEG patterns for diagnostic purpose. EEG
pattern is sensitive to different drugs especially anesthesia, so
that EEG is used as a monitor during surgery. EEG is being used
for the study of the different stages of sleep (Babloyantz et al
1985). When a person becomes drowsy, particularly with eye
closed, the frequencies from 8 to 13 Hz <(alpha waves) dominate in
the EEG. As the person moves from the light sleep to deep sleep
the amplitude of EEG increases while the frequency décreases. Ir
a stimulus is applied to a person continuously, the EEGs show
response to the first few pulses and the last few pulses. The
lack of response 1in between is called habituation. EEG can be
mainly used for the diagnosis of pathological conditions like
epilepsy, tumor, head ache and Migraine and are discussed in the

subsequent. sections.

4.9 SIGNAL ANALYSIS OF EEG

The wusual signal analysis employed for EEG are
spectral, frequency, cross-correlation, coherence, pattern
recognition and distribution analysis. Electroencephalographer
does these analysis and éive clinical interpretation of the
electroencephalograms. The accuracy of the interpretation
depends upon the ability of the electroencephalographer to see,
analyze, and interrelate the information contained in the graphic
write-out. of the scalp-derived signal. These analysis could also
be done by computational machinery, but a high speed computer is

necessary.
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Spectral method is one of the usual techniques which gives
certain useful information. Usually, Clinicians are doing
frequency analysis visually by describing various waves of EEG

belonging to different frequency bands.

Inorder to do spectral analysis, one must first sample the
signal properly, - extract. the frequency information, analyze +this
information and then make some decision about the outcome of the
analysis. The spectral analysis can be done in a very limited
time using FFT. The development of algorithms for high speed
calculation of the parameters of the neural system, as well as
the evaluation of suitable sensitive parameters for diagnosis do

still have room in medical physics.

4.10 DISORDERS OF BRAIN

EPILEPSY

Epilepsy 1s considered as the uncontrollable episodes
of abnormal neurological or mental function or both. In the
definition of epilepsy the term disease has been avoided on
purpose, because In the large majority of cases an epilleptic
seizure is essentially a symptom of any one of a number of

diseases.

In the normal brain, neurconal interaction proceeds 1in a
highly integrated and orderly manner with a background random
firing. The factors regulating the level of membrane
polarization and the rate and temporal patterning of cell
discharges are delicately balanced. In contrast,, the epileptic
process is evidenced by sudden, rapid and excessive
depolarization of the membrane potential and prolonged high
frequency discharge of individual neurons. An addi t,‘ional
property of the epileptic process is its capacity to recruit
neural elements that are in functional relationship to those

initially involved, providing a mechanism whereby it can
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replicate itself as it spreads from one area to another.

The epilepsy can generally be divided into two groups.
The existence of seizures without known demonstrable organic
causes 1is classified as idiopathic or cryptogeneic or essential
epilepsy. The symptomatic or secondary epilepsy is the much
frequently encountered group of seizures 'resulting from various

types of underlying disorders.

In addition to these two main types, seizures are
classified in different groups according to other criteria to

achieve some uniformity in the use of diagnostic terms to permit

comparison of cases and better evaluation of therapy. They are
generally classified according t.o criteria such as
symptomatology, anat.omical origin, electroencephalographic

patterns, etiology, chronological patterns and so on. Usual type
of seizures, viz., Grand mal and Petit mal belong to the group
symptomat.ology. The experiences of patients during different
types of epilepsy are entirely different. For example,
circumscribed sensory seizures called somato-sensory selzures are
characterized by numbness or tingling sensations, visual seizures
characterized by moving flashes of light, dark spots, colours and
auditory seizures are characterized by buzzing and roaring

sounds.

The electroencephalogram is an essential aid in the
evaluation of the patient with suspected or known epilepsy. It
provides assistance in determining the correct diagnosis, the
etiology of the disorder, the location of epileptogenic foci, the
presence and absence of associated brain damage, the
effectiveness of therapy, and the suitability of the patient for

surgical management. (Kooi et al 1978D.

The more common type of seizures are grand mal and petit
mal. In our analysis in later chapters, we have applied our
method of analysis mainly in grand mal and petit mal. We shall

describe below these two types very briefly.
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GRAND MAL

. Grand mal is the most prevalent and spectacular form
of elpilept,ic seizure, and occurs 1in 602 of the cases. The
seizure is immediately preceded by an aura or warning, such as an
unpleasant odour, and during an attack the individual losses
conscilousness and breathing is suspended. His muscles become
rigid, jaws clenched, arms extended, and legs outstretched and he
pitches forward or slumps to the ground. With the return of air
to the lungs, his movements iInstead of being rigid, become
jerking. Muscular spasms begin, the head strikes the ground, the
arms repeatedly thrust outward, the legs jerk up and down, the
jaws open and close, and the mouth foams. Usually in about a
minute the convulsive movements decrease, the muscle relax, and
the individual gradually returns to normality - in some cases

after a deep sleep lasting few minutes to several hours d{(Anninos

et al 1977).
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Fig 4.12 EEG of. ad) ‘clinically’ normal brain
b> Grand mal and c> Petit mal

The EEG pattern shows fast and comparatively higher
voltage spikes in all leads from the skull (represented by the
curve ‘b’ in Fig.4.12>, the most common sites are temporal and

frontal areas (these areas are identifiable from Fig.4.10).
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PETIT MAL

In petit mal seizures there is usually a diminution,
rather than a complete loss, of consciousness. The individual
stops whatever he is doing, stares vacantly ahead or toward the
floor and then in a few second resumes his previous activity. In

certain cases, the seizure may occur several times a day.

The EEG of petit mal seizure shows up to 3 rounded waves
per second followed or preceded by fast spikes Jdcurve <<’
Fig.4.12>. In some patients, the discharges may be most prominent
over frontocentral regions or, less frequently, over

parietoccipital regions (Kooi et al 1978).

BRAIN TUMOR

Electrical activity 1is reduced 1in the region of
tumor, and this will show up in EEG. Focal slow activity is the
most frequent electrographic sign of a hemispheric brain tumor,
occurring in about 9024 cases. Slow activity is wusually in the
form of intermittent. single or brief rhythmic theta or delta
discharges. In more pronounced cases, delta activity OS5 to
35Hz) becomes prominent relative to theta activity 4 to 7HzD
and wave form less regular in the primary focal =zone. A

secondary zone showing theta activity may develop.

HEADACHE AND MIGRAINE

Headache 1s a deep form of paln, as opposed to superficial
or cutaneous forms partaking of the aching quality of other deep
pains and distinguished from them chiefly on the baéis of locus
of origin.

Causes of most headaches are the distending forces applied
to intracranial blood vessels. One of the other assumptions is
that the massive patterns of sensation involved in headache are
the free nerve endings embedded in the walls of vascular
structure inside the head. Stretching of these fibres by agents
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producing traction displacement., distension or inflammation
constitutes the stimulus, even as such forces, when exerted on
visceral organs and muscle tendons, evolve deep aching pain and,
vhen acting on superficial cutaneous tissues, arouse prickling or

burning pain.

One of the other causes for headache 1is reduction of
intracranial pressure. Removal of 1% of the total cerebrospinal
fluild Cabout 20 ml> from the spinal canal create headache, due to

variation in pressure.

Among the most intense headaches are those associated with
migraine, severe throbbing pains localized chiefly in the
frontal, occipital and parietal regions of head, and often
accompanied by visual patterns - streaked, striped, or

scintillating ‘‘saw tooth" images of central origin.

Headache 1is also produced by other malfunctioning of
brain, the brain tumors, and also from eye strain and

hypertension.

4.11 DYNAMICAL ASPECTS OF NEURAL SYSTEM

Some of the usual techniques, which are employed
for the diagnosis of brain-disorders using EEG have already been
explained in previous sections. The Clinitians wusually compare
the EEG patterns of the patients with standard EEG recording by
frequency analysis. But iIin some cases, the EEGQG . pattern of
diseased person looks normal Schmidt and Wildexr 1965), and in
such cases the usual EEG pattern analysis fails to give correct

directions.
The Fourier analysis is a linear analysis and hence it

does not give any information about the nonlinear interactions

present in the system. Moreover, pattern analysis and fourier
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analysis give only qualitative information. We approached the
problem with a new mode of analysis which would give quantitative
information, suitable for a highly nonlinear system like the
neural system. The details of this work which takes into account
the collective behaviour of the system form the subject matter of
chapters 5 & 6. I 3/

The new method of analysis is based on the existence of
more than one incommensurate frequencies in the system which
could generate nonlinear pattern as also it can be as a result of
the existence of various nonlinear mechanics in the system. Our
aim is primarily to examine this aspect and get a deeper insight
into the nonlinear dynamics of the system. This is all the more
expected from the system when one realizes the fact that the
phenomenon is a consequence of a co-operative mechanism. Hence
the final point is to determine the <class of plausible time
scales that could exist in the system. This could be determined

as one does in nonequilibrium statistical mechanics.

Certain relevant. parameters which are usually employed in

the theoretical framework of neurophysics are described below.

BIOPOTENTIALS

In the neural firings, a\é\‘«expl—al_ﬁ/ed
potential change is generated due to changes in Na and K ion
conductances across the membrane of an axon. This is highly
nonlinear, which is however a single neuron process. It is known
that there exist a resting potential of -80mv and. a threshold
potential -50mv. If the potential difference across a membrane
is less than 50 mv, there is no firing. But. if this is grater
than the threshold value, a firing takes place, and the peak
potential of this is about 40mv. Thus each firing has an
amplitude of about 120 mv, and one of the most significant
features of this is that the amplitude of this firing Iis
independent of the strength of the simulation. Furthermore, the
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firing as it proceeds along the length of the axon, does not get

attenuat.ed. Again the "transmission is not like a current in a
conduct.or. The firing takes place at the various nodes of
Ranvier in a sequential manner. The electric potential {(e/r> has

dimension C(MLT 2>'72,

REFRACTORY TIME (7>

Each neuron, at a given time, has a potential firing
frequency which could be anything up to 1000 firings per second,
for a given stimulus. The time lapses between two successive
firings, called the refractory time, is therefore of the order of
a millisecond. -Hence at a given instant.,, one can classify
neurons on the basis of this refractory time. The same neuron
can however have different refractory times at different
instants, but they all have a least upper bound. Hence the
number of neurons firing with a specified refractory time is time
dependent. Again the refractory time depends on the strength of
the stimulus.

SIGNAL PROPAGATION SPEED (v)

The electrical signals propagated along the length of
the axon has a finite measurable speed and is about 100 m/sec.
It is worth mentioning that this is much less than the speed of
light, which is taken as the interaction speed in
electrodynamics.

AXON CURRENT (ID

This is the current that flows between . two
consecutive nodes of Ranvier. This consists of two parts : a
displacement. current. component. through the membrane capacity and

an ion current through the membrane. Thus the current that flows
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from the medium 1> to 2> (112) depends on the voltage across

the membrane V nonlinearly, and IL , the 1ion current. These
currents are normally defined as current density per unit area
and is about 1 mA/sq. cm and has dimension C(MLT “>*'% . For a

volume current. this would be (ML"‘T_‘)l/2 .

NEURAL DENSITY

A signal received by one nerve or a group of nerves,
will be communicated to a large number of nerves by a cascading
process, through axonal tree, the branches of which end in
synapses connecting them with other cell bodies and dendrites.
This cascade process however will not connect. all neurons in the
system but. will end up with the distribution of regular tubes and
stripes (Law and Constantine 1981). Hence all neurons are not
involved, and therefore one can define neural density as the
number of involved neurons per unit volume. One can also define
this as a fraction of affected neurons to total neurons n/N in

unit volume (Pratap R, 1988, Parikh and Pratap 1989, 1984).
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CHAPTER 5

CHARACTERISATION OF NEURAL
SYSTEM DURING MENTAL ACTIVITY

An attempt is made to understand the neural system
during mental activity using the technique in nonlinear
dynamics and the results obtained from the studies are
given. Various time scales which may present in neural
dynamics are also described.



CHARACTERISATION OF NEURAL SYSTEM DURING MENTAL ACTIVITY

Even though the basic physiological properties of the
nerve cells in the brain are understood to a certain extent,
little is known about the dynamics of mental activities or higher
functions of the brain such as pattern analysis, learning,
memory, association and abstraction <Clark et al 1985). An
understanding of these requires the knowledge of the general
dynamics of human brain, which has about 10*° neurons
interconnected in a complex manner. A large amount of research
(Cooper 1973, Rapp et al 1985, 1987 Kiarten et al 1986> has gone
towards this end and scientists are trying to explain the complex
dynamical behaviour of the brain in terms of the electrical
activity of individual neurons. However, to explain the higher
functions of the brain, one has to realize the necessity of a new
approach, taking into account, the collective behaviour of a set
of ‘'"connections" which is very  highly dynamical in nature
(Babcock et al 1987). It is in this contéxt that we examine the
dynamics of such networks which can exhibit collective or
cooperative electrical behaviour <Choi & Huberman 1983, Parikh
and Pratap 1984). It should be realized that even if the various
evolution centres are localized, it can still be a consequence of
collective action of a large number of neurons. The process that
we envisage is one in which a small stimulus at a certain point
in the system generates electrical signal which 'cascades" in and
affect a large number of neurons resulting into collective

response.
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We undertake the study of collective modes by studying the
EEG. EEG is a manifestation of electrical activity of the brain
due to the collective behaviour of a large number of neurons
(Laidlaw and Stanton 1966). Collective activity of a large
number of cells may vyield coherence in the neural dynamics
(Parikh and Pratap 1984).

As explained in the previous chapter, a qualitative study
of the EEG traces by counting the average number of peaks per
second is usually undertaken to classify various rhythms in the
so called "brain waves" such as é OS5 to 35 Hzd), 8 (35 to
75Hz), a (8 to 13 Hz) and 3 135 to 30 Hz) (Laidlaw and Stanton
1966). The characteristic time scale T for these waves are of
the order of 01 sec, while the refractory time scale Tr
associated with the electrical activity of a single neuron is
1-2 ms. Thus, there is a factor of 100 between the two time
scales 7_ and T and this implies that an EEG reflects the
cooperative behaviour of neurons (Parikh and Pratap 1989). Thus
the neural networks are very much dynamical 1in nature and
therefore only an analysis from the point of view of nonlinear
dynamics can explain the collective behaviour of the system
(Babcock et al 1987, Dvorak et al 1986, Babloyantz et al 1986).

To study the collective behaviour of any dynamical system
(Nicolis and Nicolis 1986>, it 1is necessary to know the number of
independent variables that are required to characterize the
system and also the information flow in the system <(Parikh and
Pratap 1989 & 1984). Basically there exists two different
approaches in the study of dynamics of a neural system. In the
first approach, general equation of evolution incorporating the
collective nature was formulated for the first time by Parikh and
Pratap [1984] as an integral equation in which the present state
of a given system is connected to an earlier state by a "mapping"
or a ''connection" or a ‘“transition probability™. This equation
has been written by drawing inspiration from nonequilibfium
statistical mechanics of the Brussel School initiated by
Prigogine. The formulation given by Anderson and Cooper in 1973

has been shown as a special case of the above equation. It has
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further been shown that this is capable of explaining the higher
functions of the brain such as learning, recollection and

association.

The second approach is the one initiated by Hopfield
[(1982,19841, wherein, the fact that. there exists a threshold for
neural firing is associated with the dynamics of spin glasses in
which the starting point is a many spin Hamiltonian with a random
distribution of flipping spins. Both methods described above are
based on certain model-equations. However, for a complex
nonlinear system like brain, it is difficult to obtain the
equations of motion which will describe the exact dynamics.
Hence, it will be of much help if one can have a method of
analysis where equations of motion are not needed. Work in this
direction has resulted in novel methods of time series analysis.
A new approach in time series analysis {(Grassberger et al 1983>
using actual EEG records (Babloyantz et al 1986, Dvorak et al
19865, is very useful for analysing such systems whose exact
equations of motion are not known. Being highly nonlinear,
fourier and autocorrelation techniques have only a restricted use
in such systems. The basic assumption is that a time series
contains all the information about the system <(Packard et al
1980, Atmanspacher et al 1986 > even though it describes the
variation of a single qgquantity. Hence time series analysis
should provide valuable information (Nicolis & Nicolis 1986
about. collective neural dyﬁamics. We should also be able to
obtain a gquantitative estimate of the number of independent
variables necessary to characterize the system. A detailed

description of the method has already been given in chapter 2.

It has now been realized that the neural system is highly
nonlinear, dissipative, and non Markovian since it is capable of
retaining a memory. This implies that there should exist in the
system, more than one incommensurate frequencies which manifest
itself in the increased dimensions as seen in a time series
analysis. This fact has already been incorporated in the
evolution equation by Parikh and Prét,ap [19841]. However to get a

clear understanding it is useful to know various time scales
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involved in the neural dynamics.

5.1 TIME SCALES IN NEURAL DYNAMICS

An electrical signal corresponding to an individual
impulse conducted along an axon is called the action potential or
spike potential, represented by ¢, and it 1is of the order of
100 mv and has dimension of MLT % Action potential is the
basic unit of information transmitted along the nerve fibre. The
signal propagation speed is the rate of travel of the nerve
impulse, v and is 1-100 m/sec. If two successive stimuli
separated by a certain time interval are applied to the nerve
fibre, the behaviour of the fibre will depend on this time
interval. Immediately after a nerve impulse has been initiated,
the given part of the fibre is in the absolute refractory state,
ie.,, it cannot be excited again. This is followed by a relative
refractory state in which the threshold potential is somewhat

increased. The duration of the entire refractory time, varies

from one to a few milliseconds.

Axon current is defined as the current that flows between
two consecutive nodes of Ranvier <(Volkenshtein 1983 & Das 1987).
This is also defined as current density per unit area and is
about 1 mA/sq. cm and has dimension CMLT >*'72 For a volume
current this would be <ML ‘T *>*"?

in the transmission of a signal, and therefore one can define

All neurons are not. involved

neural density as the involved neurons per unit volume. This can
also be defined as the fraction of affected neurons to total

neurons n/N in a unit volume.

The parameters, viz., the action potential ¢< = 100mv),
the time duration T, ¢ . 12 ms), the axon' current I ¢ 1 mA./cm>>
and neuron density n are necessary to find the plausible time and

length scales in neural dynamics.
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5.2 DIMENSIONAL ANALYSIS

Following Parikh and Pratap [1984] each of the
parameters described above has a dimension defined in terms of
mass, length and time. By doing a dimensional analysis of the
various quantities we can construct a dimensionless parameter I

First we define

vy 1° ¥ n (5;1)

where x,y,zZ,u,w are parameters. Substituting dimension of ¢ as
-2.1/2 -1 -1,-4.1/2 -3
(MLT , v as LT ', I a=s (ML T D »b, T as T and n as L 7, we

have

x/? y 1/2)z
u, -3aw

r = ¢MLT 7, T H ou™'t™ T™L 5.2>

Sine I' is dimensionless, we set powers of ML and T in

(5.2> to zero. We then get three equations

X z

2+Z =0 5.3>
Xey-1z 3w=0 5.4
2 2 .
-x -y -2z +u =0 55>

There are only three equations for the five wunknowns, so
that we can solve only for three of them, in terms of the other
two. By keeping x and v independent, we will get three equations

as
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y = 3w - x

u = 3w - 2x

Substituting for =z,y,u in equation (5.1>, we get

r = ¢x vSv—x I-—x Iw—-2x W
= (¢x I—x ’v—x T-2x) (vavTav nv)
2. " , a3 3 "
= (¢ fvIT") (vt n)
put ws=sy./3
2. 1,37
r=(¢ /vit?) (vt n ) 5.6
where x and y are two parameters. The dimensionless quantity

consists of two parts, the first one depends on the
electrodynamic variables ¢ and I, besides the dynamic wvariables
such as propagation velocity v and the refractory time =. This
is the resistance per unit length per unit time. The second term
however consists of only mechanical variables and is the ratio of
the distance travelled by the signal during a refractory period

-1/3

to a characteristic length defined by n This clearly shows

that the mechanical and electrical processes can be independent,

but they can also get coupled by the choice of x and y.

A general time scale can be written as

x y
T=( / vI‘rz) (V‘rn‘/a) T = TIT .7

The infinite possibilities are evident from 6.7 by giving
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various values of x and vy. Since time scales are real, x and y
can take only real values, but can be rational or irrational. If
x=0, y=0, equation 6.7) reduces to the refractory time. If
x=y=1, then time scale reduces to T=(¢n1/3/1), the ratio of the
potential gradient. to the axonal current. and is independent of
the refractory time, as well as the velocity of signal
propagation. On the other hand, if x=1/2, y=0, we get a
different time scale as (¢/VI)1/2. The various time scales are

given in Table (5.1).

Table 5.1 Time scales

b4 y r4 Symbol Order of
Magnitude
1. 0 -1 wn'®™ ¢ Mechanical 107°
2. (0] 0 T t Refractory 1072
3. 172 0 C@/vD>'*  t  Electro- 107
em
Mechanical
13 .
4. 1 1 (pn™" " [I> t o Electro 10
Magnetic

It may be seen that the =scales (1>, (3>, and 4> (see

table) are all independent of refractory time. The numerical
values given in the table show a wide range of magnitude. In
this we have taken the density of neurons as 10° per c.c. The

longest. time scale is 10* sec while the shortest is 10°° sec.
Thus with the known parameters of the system, the longest and the
shortest time scale differ by 10 orders of magnitude d<{Pratap
1988).

In the absence of an understanding of mutual neuronal
activities, we cannot stipulate the domain of x and vy. To get a

feel for this, we invert this problem and determine the value of
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x from the equation (Parikh and Pratap 1989),

X
2
T =(r¢ / T vl) T, 5.8>

vhere r is the fraction of neurons that are on an average

electrically active. From the observed value of T b
(=l ed =

(average ~ 0.1 sec) and assuming that r=1, we find that x=1/2, so

that the collective time scale T, = Jr¢/vl is independent of T,
Hence we can identify two distinct wvalues T, and T Clearly
different values of n would lead to different wvalues of x. It is
worth repeating that the time scale for a single neuron
‘l’s . (1—2)x10-3, whereas the time scale 'rc from the EEG records
is 01 sec ie., latter is about 100 times larger and hence the
EEG patterns can justifiably be considered as being cooperative
electrical activity of neuron <(Parikh and Pratap 1989 & 1984).
Considering these time scales present 1in the system we can
develop the Statistical Mechanics of the systems. Also we can
find the number of independent. variables to characterize the
state of the neural system from the EEG analysis and can use it
for the model development of the system <(Babloyantz et al 1986,
Babcock et al 1987).

53 ANALYSIS OF EEG - TIME SERIES APPROACH

Time series analysis of EEG revealed that there does
existt a deterministic component., which could be used to classify
the neural system taking into account of nonlinear, non Markovian
and nonstationary nature. The analysis of EEG records from
single neuron (Rapp et al 19853 and multiple neurons <Karten et
al 19860 have revealed the existence of deterministic component.
Rapp et al [1985] recorded the extracellular action potentials of
single neuron from different regions of squirrel monkey cortex by
glass micro pipette electrodes with a tip diameter of 1
micrometer filled with 3M KCl, and dimensions of corresponding
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attractors are calculated. They also calculated dimensions of a
group of neurons. In all these cases they found that Dz is
fract.al. Karten et. al also have done the analysis wusing single
neuron, a network of 26 neurons and also after giving stimulus,

and found that chaos do exist in the system.

The quantitative analysis of EEG gives more information
than the qualitative analysis where the number of peaks per
second in the EEG is counted. This is further enhanced by the
dichotomy in the statement. it is usually believed that a patient
may have a completely normal EEG and yet have a well documented
epilepsy and also an abnormal EEG may be obtained from patients
with no history of seizures" (Schmidt and Wilder 1965).

We have seen in earlier chapters that any nonlinear
dissipative system will shrink in phase space to a small
dimensional space <(Packard et al 1980, Swinney 1983, Nicolis and
Nicolis 1986D called attractor (Rosseler 1976, Lorenz 1963D
asymptotically in time, and it requires a lesser number of free
parameters to characterize the state. The dimension of this
state is called attractor dimension and the space to which the
system evolve is called embedding space. The information flow in
the system can be measured in terms of Kolmogorov entropy

(Bennettin 1976>.

The present method of analysis gives three significant

quantities viz,,

1. Attractor dimension Dz’ which indicates the smallest number of
variables that are required to characterize the asymptotic
state of the system.

2. Embedding dimension de » Indicating the dimension of the
subspace of the total phase space to which the system shrinks

due to nonlinear dissipation.

3. Kolmogorov entropy Kz, which indicates the information

capacity of the system.
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This method answers the questions: d{i> Does all neural
system evolve to an attractor state and if so, do they have an
integer dimension (regular attractor)> or a fractional or fractal
dimension d{strange attractor), ddi> whether this is an invariant
characteristic of all the systems and can this be used to
classify neural system in a quantitative manner 7 {iii> Does

information flow occur in such a system 7

To answer these questions we analysed the EEG <(eight
channels> of a ’clinically’ normal {without any known
malfunctioning of the brain) person <(age 39). We have undertaken
the analysis at two stages : first 1In the resting state and
second when the subject is given simple numerical problems of
multiplication and division. These EEG records were taken under

‘the same conditions.

54 IMPORTANCE OF D2 AND Kz

A system which |is nonstationéry, nonlinear and
chaotic is not amenable to the usually known analytical
techniques and hence one has to resort to methods to find out as
to whether there are any invariant parameters in the system which
could characterize the system and can be used as an index for
_classification. The two parameters D2 and Kz falls in this
category. It may be realized that Dz - the dimension of the
attractor as well as the dimension of the subspace of the phase
space in which the attractor is embedded can be " obtained by
evaluating C <:‘(é:) in the limit £+0 and d-mw. D2 gives the minimum
number of parameters that one requires to characterize a
dissipative nonequilibrium syst,ém in its asymptotic state. As no
limiting process is involved in time, these are known as static
parameters. However in obtaining Kz, one takes the limit of 740
or the time interval between the consecutive readings is also

subjected to a limiting process. Kz is hence considered as a
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dynamic parameter. The Kolmogorov entropy can be considered as
the rate at. which information about the system is lost in course
of time (Schuster 1984). There is however a basic difference
between the Kolmogorov entropy and thermodynamic entropy, since
while the former is infinite for a completely chaotic system, the
latter attains a maximum stationary value when the system attains
an equilibrium. Thus while thermodynamic entropy defines the
degree of disorder in the system, Kolmogorov entropy determine
how chaotic a dynamical system is. One would appreciate the
difference if one realises the difference between disorder and
chaos. The former is characterized by a completely stochastic
process, while there is determinism in the latter and are

characterized by deterministic equations.

55 DATA ACQUISITION

Figure 5.1 represents the diagram of the electrode

positions as seen from the top.

5 i

8

Fig 5.4 10-20-20-20-20-10 system of electrode
positions used for rest and mental activity. '
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Eight. channels of EEG are taken simultaneocusly according to the
10-20-20-20-20-10 international scheme d.e; EEG records from
electrodes located at. the left and right sides of the skull -

Frontal, Temporal, Parietal and Occipital >. Each ear is
grounded and this is connected to the front posterior at either
side. The electrical fluctuaf.ion with respect to this is
amplified and recorded on a chart recorder. We have taken, in

all cases, data of duration 10 seconds each and digitized at 20
millisecond interval. We thus get a set of 500 data points for
each channel. The record was made when the subject is at rest as
well as when he was given simple arithmetic problems such as
multiplication and division of small numbers. The process was
repeated for three consecutive days at 8 am everyday. The
purpose was basically to find out <(a> whether there is any
difference in the characteristic parameters if the person is
sub jected to mental activity and <(b> having known about the kind
of exercise the person is subjected to, is there any change in
the mental activity on subsequent days 7. This would imply a
direct connection between neural activities and the psychological

conditions of the sub ject.

5.6 AUTOCORRELATION IN EEG RECORDING

As mentioned in previous chapters, Autocorrelation
analysis is a qualitative analysis, which tells us how system
resembles 1itself as time increases. In the case of periodic
system it shows a repetitive nature, whereas in the case of

chaotic system, autocorrelation- function w(rt) tends to zero as T

increases.
In order to study the possible variation of
autocorrelation in EEG patterns during ment.al activity,

aut.ocorrelograms were constructed from recordings of all the
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eight. channels during rest and mental activity period on all the
three days. Fig.(5.2> give typical autocorrelograms for rest and

mental activity, for three consecutive days.

It has been
Rest
observed that. the nature
of the autocorrelograms
varies from channel to 1402 st
L 1 day

channel (Fig5.3 a &b>
due to differences in
the neural activity at

respective locations.

However, the structure L

of autocorrelograms does T s

not show much variation - {.ap

during mental activity

as compared to, when the " Hnd
person is at rest. In
almost. all cases (7240

as T-»x.

The fact, that

autocorrelation is not
much sensitive to the = rd
state of the neural ;—

system demands alter- i
nate techniques to
analyse EEG recordings.

analyses involving the

T -

|
As described earlier, t

i

|

[

evaluation of Kz and D2 i
thus assume importance

in the field of

neurophysics. continued ..
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i 2 day

T o>

w(Td

52 Comparison of () (‘an. channel) between rest and mental
activity for three consecutive days.
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5.3a Autocorrelation function w(r> in all the eight

channels
of a ‘clinically’ normal person 1’ day) during rest.
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5.3b Autocorrelation function wyw(r> in all the eight channels

of a ‘clinically’ normal person 1 day> during

mental
activity.
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5.7 ANALYSIS (Evaluation of Dz and Kz)

Each data set for eight channels, during the resting

as well as during the mental activity for three consecutive days

(in all 48 sets) were analysed separately. Each data set was
LOG(C(&))
B —
: /// ) /
n z //
- /////f'r////
- ,,, ”/,,/////
| 1 ] | i 1 | | !
-10 LOG(EY-——-- ? 4

Fig 5.4 A plot of log Cd(e) for the 6th channel

of a clinically normal person during rest.

used to calculate the correlation integral Cd(s) as given in
equation 2.26> and a plot of log Gd(a) against. logdle) was made
for d=1 to 30, as shown in figure 5.4). This plot was then used
to calculate the mean slope of each curve and Figure (5> gives
a plot of this =slope against dimension. If the system were
completely stochastic, this plot would be a straight line
inclined at 45° to the d-axis or the relation would be Cd(s)z sd.
In the present case, the curves for all 48 EEG data sets deviate
from this straight llne and saturate for large d. This
saturation value, when it becomes independent of d, gives the
characteristic correlation dimension Dz' The separation from the
asymptote takes place as d attains the embedding dimension. The
results are presented in Table 5.2a, b and c for three

consecutive days. The results are arranged for each channel as
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seen in Figure <5.1). The wvalues in parenthesis give the

correlation dimension during mental activity.

22.74
i
i
'L_ b
IL
g
o,
S
@ a
-
|
i
N N SR N N SN W RN N SR SR N S SR
0 DIMENSION — 30

Fig 5.5 The average slope d(long<s>)/d logded> of the

linear part of the curves of Figure 3.4 plotted as a
function of d.

It may be noted that the dimensions are all fractal,
thereby, representing strange attractors. Again the eighth
channel shows a steady decrease from the first day to the third
day during the resting stage. This feature however is not seen
in the other channels. By and large, for other channels, there
is a slight increase for the second day, but get reduced on the
third day. However in the case of during the mental activity the
eighth channel registers an increase and then seems to get

stabilized.

In Figure 5.6 we have plotted sz for a particular
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channel as a function of d.

113.8

Kz.d T

1 1 1 1 1 ] 1 1 1 . 1 1 1
0 DIMENSION — — —— > 30

Fig 5.6 The spatial separation ‘r—ilog(Cd/Cdﬂ) of the

correlation curves as a function of d.

One remarkable feature to be observed is that for lower dimension
the data 1is noise dominated and hence a larger Kz and the
deterministic component. becomes dominant only when d attains
larger wvalues resulting in the saturation wvalue of Kz' Thus to
obtain tangible results, one has to go for higher dimensions. A
nonzero second entropy indicates the existence of deterministic

chaos.

5.8 GENERALIZED DIMENSIONS AND f{(a) SPECTRUM

As described in chapter 2, strange attractors have
fractal geometry and can be characterized by a set of generalized
dimensions D . Knowihg Dq, we can evaluate sets of singularities

q

of strength o (scaling index)>, and corresponding dimension fd{oO.
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As indicated earlier, f gcit) corresponds to D .
m (o]

We have evaluated Dq and fd{a) spectrum from the 7”‘

channel of EEG recording of a normal person at rest. Fig.<5.7>
shows the variation of Dq with @ and is of standard form reported
by earlier workers d(Halsey et al 1986a & ¢, Grebogi et al 1988,
Broggi et al 1989). -

D 8
q
5 \\\\
]
4

-2 -0 8 -6 -4 -2 0 2 4 6 8 10 12

q_o

Fig 5.7 Dq as a function of q for the EEG ('7Lh channeld

of a ‘clinically’ normal person during rest.

Scaling spectrum fda> has been evaluated using the
equation 259 viz, ’

alqd = —daq [ (a1) Dq ]

th
Fig.5.8 shows f(a) spectrum for the EEG recording of the 7

channel of a normal person at rest. The fmgg) = DC> = £.39,



¢ . 09 .
Doo Fmin~®s ©° and D_m(amo.x'\-a 740 points correspond to the most

concentrated and the most rarefied region of the measure (see
section 2.7). There exists two peaks in the spectrum - one broad

(peak height. 6.39>and the other sharp (peak height 6.65).

12

10

6
flo

1 1 l__ 1 1 | 1

9 10 11 12 13 14 15

0 1 1 ! 1 1 ]
o 1 2 3 4 65 68 7

1

8
a —(
Fig 5.8 f(ad vs a for the EEG (7‘th channel> of a
‘clinically’ normal person during rest.

It should be noted that the fd{ad spectrum evaluated in the
present. case is not symmetrical unlike in the case of other
systems like two-scale cantor set and period-doubling attractor
(Halsey 1986a). Non symmetric f{ad) spectra have been observed
earlier also in the cases of circle map d{Halsey 1986a> and NMR
laser (Broggi et al 1989). Broggi et al observed that structure
of f(ad) spectrum will depend on the state of the nonlinear
system. For example, in NMR laser, fd{a> spectrum shows double
humps when the laser is modulated with certain critical strength.
The double peak of f(a) spectrum characterises the co-existence
of two attractors (Broggl et al 1989).
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Nea Ta2

We have also evaluated D values (Fig 59> and fdo
q

spectrum of the same person under mental activity.

14

12 '\\\
\

-2 -10 -8 -8 -4 -2 0 2 4 6 8 10
q —
Fig 5.9 Dq as a function of q for the EEG ('7th channel>

71' a ‘clinically’ normal person during mental activity.

Results show the variation in fd{ad spectrum in comparison with
that evaluated during the rest (Fig 5.10). The f{x> spectrum in
this case also shows two peaks. The height of both the peaks
increase by a considerable amount <106 for main peak and 11.0%1
for the sharp peak). Also, the width of f{ad spectrum during
mental activity almost doubles (Aa = 6.3) in comparison with that
during rest (Ao = 3.6>. This means that the attractor takes up a
more complex structure during the mental activity. It is to be
noted that during mental activity the f(ad spectrum as a whole
shifts to higher oa-values. Thus the present. observations suggest

that f(a) spectrum depends on the mental state of the person.

125



12

w 6f

0 1 1 1 i 1 1 1 1 i 1 i L | 1

c 1 2 3 4 6 6 7 8 9 10 1N 12 18 14 15

Fig 5.10 f(a) vs a for the EEG (7Lh channel) of a

‘clinically’ normal person during mental activity.

5.9 INFORMATION FLOW IN BRAIN

If PCAD> is the probability of the occurrence of a
certain event A, then PCAD=0.99 would indicate the almost
certainty that the event would occur while PC(A)=0.001 indicate
the almost certainty that the event. will not take place. Hence
in either case, there is very Ilittle uncertainty. However,
maximum uncertainty would be when PCAD=05. Again the
uncertainty that exists before an experiment is performed is
removed when once the quantity A,t becomes known after the
experiment has been performed and we get information of the
system. This information that one obtains iIn a series of

experiments is known as entropy, defined as
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Kq = —s{:i 'rl-:f) dEot;) % E:-i h: Z . p’ (t1"'td)

1 d
and this can also be a measure of unpredictability of the system.
Thus the entropy can be considered as a measure of information as
well as . uncertainty. This quantity however is not a static
parameter, for, if the uncertainty before the input Xn is K(Xn),
then if the channel is noise free, then the output Yh would
reduce the uncertainty and as such K-+0. Thus one can have a
single wvalued mapping between Xn and Yn. However, if the process
is noisy, the uncertainty may be reduced but it will not
be completely removed so much so Xn cannot uniquely defined by
knowing Yn. Thus, if K(Xn/Yn) is the conditional probability
then the quantity

ICX, YD) = KCXD - KOXLYD 5.9

is called information flow <(Parker and Chua 1987). In the
present. analysis, the entropy that is measured after the person
has been subjected to mental activity could be identified as the
conditional probability, since this has happened because of the
input. Thus isentropy curves and their difference would give a
means of the information flow. The numerical values are given in
the Table 5.2, while the numbers in the parenthesis are the

values corresponding to mental activity.

Figures (5.11), (.12> and (5.13> give the isentropy
curves for three consecutive days. Indeed to draw .t,he isentropy
curves, one requires a much closed grid of numbers. Nevertheless
the curves here, indicate the trends. The solid curve represent
the isentropy curves during the resting state while the broken
ones are for the state when the mental activity is on. The space
is the same as indicated in Figure (5.1); the right hand side
indicate the channel 1 to 4 and the leftt 5 to 8. The arrows
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Fig 5.1 The figure indicates the Kolmogorov entropy for the

first day. Numbers on the right hand side indicate the
channels 1-4 and on the left hand side the channels 5-8 as
indicated in Figure 5.3. The numbers in the simple bracket
indicate the Kz values during mental activity. The numbers

in square bracket is the constant value of Kz for the curve.

The solid curve represents the resting state, the dotted ones
for the period of mental activity. The arrow indicates the
downward gradient direction.
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Fig 542 The same kind of curve as in Figure 5.7 for the
second day. It may be noted that the gradient direction
during the mental activity is the same for . all the three
consecutive days.

129



' 8.1 (8.0)

(7.5)8.9
[s]
(14) %1]‘ 279(96)
8.3
[7‘5]r ) EO.Z]
[8.3} ,//
/
/
/7
//
, 71
/
/
l/
!
(1) 71 ¢ / L e s
!
{
{
\
\
\
\
\
\
\
(8.5) 8.3 1 L 7.7 (10.2)

Fig 5.13 The Kolmogorov entropy plot for the third consecutive
day. Here again the gradient direction during the resting
position differs from the earlier days, while the mental
activity component maintains the same direction as on the
previous two days.
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Table 5.2 D, and K, of a "clinically’ normal person during rest
and mental activity, for three consecutive days.

FIRST DAY <(a)
channel D

2
5 1 .22(4.863) 3.50(5.84) 8.41(8.85) $.85(8.54)
8 2 .72(4.83) 4.17(5.21) 7.72(86.14) §.53(8.87)
7 3 .87(5.586) 3.18(6.04) 7.868(8.77) S.15(7.28)
8 4 .17(3.580) 4.50(5.58B) 8.52(6.380) 8.81(7.84)

SECOND DAY (b)
channel

2

5 1 .896(5.46) 5.07(5.38) 89.73(10.04) 8.21(4.35)
8 2 .14(4.74) 5.85(3.37) 9.33(8.31) 10.31(6.38)
7 3 .58(5.486) 4.70(5.18) 10.22(9.02) 8.87(7.79)
8 4 .52¢4.77) 6.46(5.43) 8.55(6.31) 10.38(7.38)

THIRD DAY <(c)
channel

2

5 1 .20(5.32) 3.338(5.08) 8.90(7.50) 8.08(8.01)
) 2 .13(4.31) 3.58(5.32) 9.11(7.41) 7.88(8.62)
7 3 .46(5.08) 4.54(6.53) 7.13(7.687) 8.77(11.41)
8 4 .439(4.45) 4.77(6.17) 8.29(8.54) 7.07(10.15)
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indicate flow from maximum to minimum - 1ie, an outward arrow
indicate the fact that the values inside are higher than the
entropy value of the curve, while an inward arrow indicate a
lower value inside the curve. This is equivalent to an
information gradient. On the first day both the resting as well
as active curves have a flow from the right to left. Thus the
information flow has a structure in which the entire brain takes
part. Here also the person was not let known about the type of
exercise he is going to be subjected to. Again the flow pattern
show a reverse in the parietal and occipital as compared to the
frontal part. This is more obvious on the second day. On this

day, the sub ject knows the kind of exercise, he has to undertake.

Nevertheless, the pattern during the mental activity is
from right. to left. On the third day again the mental activity
curve preserves the same structure, while the resting one have a
different structure as compared to the previous days. The random
firings taking place in the neural system during the resting time
could probably account. for the apparent inconsistency in the
pattern which completely vanishes when the mental activity is on.
Thus flow patterns in the system would indicate the state of
mental activity in a subject. It may also be noticed in Figure
(5.6 that the curves do not go asymptotically parallel to the
d-axds. While the present. method is indeed one which separates
the stochastic part from the deterministic one, some element of
" weak stochasticity may still persist in the data system. Any
major instrumental artifacts may also be filtered out, as we take

|x_-x,| in the evaluation of correlation integral.
o)
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CHAPTER 6

PATHOLOGICAL CONDITIONS OF
THE BRAIN

This chapter describes how Dz and K2 values varies with

respect to vartious pathological

conditions of the
brain.

Analysis shows a trend in which K~z values

depend on the state of neural system and hence can be
used as a diagnostic tool. Spatial mapping of Kz

values at high spatial resolution can be

used for
itmaging purpose.



PATHOLOGICAL CONDITIONS OF THE BRAIN

In the literature there are a large number ©of
references, de=scribing the existence of chaos in Dbiological
systems especially in neural system <(Holden 1982, Chay 1984).
Recent progress in the theory of nonlinear dynamical systems has
provided new methods for the analysis of EEG as a time series
which will reveal the underlying dynamics of the neural system.
Details are given in Chapter 2. By using this technique
Babloyantz and Destexhe {1985, 19861 have shown the existence of
deterministic chaos in the neural system, by evaluating the
attractor dimension. Rapp et al [1987] have shown the existence
of chaotic behaviour by analysing the spontaneocus activity of

cortical neurons of squirrel monkey and EEG of human brain.

The basic assumption of the present analysis is that the
time series contains all the informations regarding the physical
process (Packard et al 1980D. The usual method of using the EEG
by neurologists is to count the average number of peaks per
second and to attribute various rhythms such as &, 6,4 or 3 as
described 1in earlier chapter. The amount of sophistication that
has undergone into the design of an EEG apparatus has therefore

not been adequately exploited.

There is a great deal of information in EEG which has not
been extracted. The present method extracts the deterministic
component. from an apparently random signal, and it is hoped that

this method would result in a more quantitative diagnostic tool
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for understanding the state of the neural system under various

pathological conditions.

In all the previous studies <(Babloyantz et al 1985,
1986, Rapp et al 1985, 1987)> only one of the eight channels of an
EEG were considered and the underlying assumption was that the
system is self similar with all' the channels having similar
characteristics. But in order to test this assumption we
analysed all the eight chan'nels of an EEG of a ‘“clinically"
normal person known to be free from any malfunctioning of the
brain. It was found that at each point in the Head - space,
there is a different strange attractor with different embedding
dimension as well as different dimension and different Kolmogorov
ent.ropy. It is therefore inferred that a normal system should

include a collection of interacting strange attractors.

Previous workers (Babloyantz et al 1985, 1986 Dvorak et al
1986, Destexhe et al 1988> have used second order dimension to
characterize the neural system. But analyses show that <{Caputo
and Atten 1987, Pratap et al 1988, Reghunath et al 1987), Second
Kolmogorov entropy (Kz) is more sensitive than the second order
dimension (Dz) to characterize the state of the brain. {In our
later discussions we use Kz and D2 instead of second Kolmogorov
entropy and second order dimension). In the case of neural
system, the Kz is higher implying that system is more complex.
We extended our studies in order to understand the different
pathological conditions of the brain such as epileptic case
during seizure,‘ tumor affected brain, mild cases of Migraine and
persistent headache, in terms of Kz. We tried to identify the
regions of the brain which are actively taking part under wvarious
pathological conditions. A comparative study of the different
parts of the brain during various conditions has also been made.
We also try to answer the questions like, can one use this
sensitive parameter to classify the different pathological
conditions of the brain 7 Can one use this as a diagnostic

tool 7.
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6.1 EEG MEASUREMENTS - DIFFERENT MODES OF ELECTRODE CONNECTIONS

As explained in the last two chapters EEG
measurement.s are done based on 10-20-20-20-20-10 international
scheme ° (Fig.4.10). Simultaneous measurement of EEG from
different. regions of the brain depends on the number of channels
(8,16,32,64 etc.> available in the EEG equipment. In the most
common type of EEG equipment 8 channels are available, so that
simultaneous measurement of EEG from 8 positions of the brain is
possible. But.,, again the choice of electrode positions depends

on the type of disease and affected regions of the brain.

Various types of electrode configurations commonly used
with an 8 channel EEG equipment are explained in this section.

For convenience, the following notations are used.

Al — left ear lobe
A2 — right ear lobe
F _ frontal

C —_ central

T — temporal

P _ parietal

(0] — occipital

1. EC1 .

This is one of the common types of EEG recording and is
bipolar in nature. This electrode configuration has been used
for recording EEG of a '“clinically” normai person during rest and
mental activity and in certain pathological conditions like,
Grand mal epilepsy, Migraine and epillepsy with demylinated
disease. In this configuration (Fig 6.1ad simultaneous
measurement. of EEG from eight regions of the brain is possible -
i.e, four regions from the right half and four regions from the

left half of the brain. The positions are represented as follows



Right. frontal {channel 1> — F - F

| 2 8
Right. temporal <{(channel 2> — F‘ﬂ > T4
Right parietal {(channel 3> — T4 > To
Right. occipital (channel 4> — TG - O2
Left frontal <{channel 5> — F‘p > F‘7

1

Left temporal (channel 6> — F7 -+ Ta
Left parietal {channel 7> — '1‘3 -+ T5
Left occipital d{channel 8> — T5 - 01

FiG 6.1a EC1

2. EC2

EC2 looks similar to EC1 (Fig 6.1b). In EC2, the central
and parietal regions are also included and connection is mainly “
between second layer like F‘4 - C4, C4 - P4 etc. The positioning

of electrodes are
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Channel 1 — F + F

P, 4
Channel 2 — F o+ C
4 4
Channel 3 — (C + P
4 4
Channel 4 — P + O
4 2
Channel 5 — F + F
P 3
1
Channel 6 — F » C
3 3
Channel 7 — C -+ P
3 3
Channel 8 — P3 -+ 01 Fig 6.1b EC2

3. EC3

EC3 is bipolar in nature but it is entirely different from

EC1 and EC2. Only upper and lower regions are located
(Fig.6.1c). Channels 1,2,3 and 4 are frontal regions and
Channels 5,6,7 and 8 are parietal regions. Central and occipital

regions are excluded

Channel 1 — F + F
] 4
Channel 2 — F + F
4 z
Channel 3 — F + F
z 3
Channel 4 — F + F
3 ?
Channel 5 — T + P
] 4
Channel 6 — P + P
4 z
Channel 7 — P »+ P
z 3
Channel 8 — Pa -+ T5 Flg 6.1c EC3
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4. EC4

EC4 is similar to EC3, but instead of frontal regions,
central regions are monitored (the channels 1,2,3 and 4

Fig.6.1d>. EC4 is represented as

Channel 1 — T _ -+ C_ A ‘ A
‘\ B T~ {
l * N
Channel 2 — C + C N
4 z
! F v
I /
Channel 3 — G+ C_ [ VoR\t Rt \\
A _';"‘I.’_t:,_-C;_-c.._Cz__cg__Q,__Cg 4 Ay
Channel 4 — C_ » T o T
3 3 . /
\
\ p3 Pz p‘ /
\ P, h /
Channel 5 — T_ -+ P N P
S 4 ; \
9, - /02
Channel 6 — P+ P ' ‘
4 z
8 S
Channel 7 — Pz - Pa 7 I
Channel 8 — P + T
3 5 Fig 6.1d EC4

5. ECS5
. _ . th th th
EC5 is also similar to EC3, except in the 5, 6, 7
and 8"h channels. Instead of parietal region, these channels

occupy the central region. Channels are (Fig.6.1e)

Channel 1 — F + F
8 4
Channel 2 — F + F
4 z
Channel 3 — F + F
z 3
Channel 4 — F » F
3 ?
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Channel 5 — T + C

4 4
Channel 6 — C -+ G
4 z
Channel 7 — C + C
z a
Channel 8 — C -+ T
] 3

Fig 6.1e EC5

6. EC6

Monopolar technique is used in EC6. Only one electrode is
active, and other one 1is connected to the ear lobe. It is

represented as (Fig. 6.11D

Channel 1 — F_ -+ A2
Channel 2 — T4 + A2
Channel 3 — G_ -+ A2
Channel 4 — P‘ + A2
Channel 5 — F_ -+ A1
Channel 6 — T, -+ Al
Channel 7 — G -+ A1
Channel 8 — P -+ A1 Fig 6.1f EC6

Occipital region is not included in this configuration.
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7. EC7

EC7 is also monopolar and is similar to EC6, but central
region is not included, instead of that, frontal region is more

concentrated (Fig.6.12).

Channel 1 — F + A2
P
2
Channel 2 — Fa + A2
Channel 3 — Ts + A2
Channel 4 — 0z + A2
Channel 5 — F + At
P
1
Channel 6 — F7 + A1
Channel 7 — T5 + At
Channel 8 — 01 + A1l
Fig 6.1 EC7
8. EC8

EC8 is Dbipolar but, it is different from all other
configurations. Here, the electrodes are concentrated in the

lower part of the brain, i.e, in the parietooccipital region.

Only seven regions are located <Fig.6.1h). Electrode positions
are
Channel 1 — P - P
z 4
Channel 2 — P + T
. S
Channel 3 — T -+ O
6 2
Channel 4 — O2 -+ 01
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Channel 3 — O -+ T

Channel 6 — T + P

Channel 7 — P + P

Fig 6.1h ECS

The different. pathological conditions which we analysed

are as follows.

6.2 EPILEPSY

Epilepsy is defined as a particular state of
the brain as explained in section 4.10. Behavioural treatment. of
epileptic patients or simulation at the appropriate moment
employed as a warning system to the patient or his surroundings,
might have a greater advantage than the ordinary methods of
treatment in epilepsy (Rogowski et al 1981). Rogowski explained
the primary cause of generation of seizures as due to the changes
in the "parameters" of the neural system, causing disproportion
between excitative and inhibitive mechanism, and 'bringing the
system into the verge of instability.

According to Kaczmarek et al [1977], the visual inspection
of micro electrode recordings of cortical neurons, made under
normal conditions in the absence of external stimuli, usually
shows no correlation either between any one unit and the local

gross EEG activity. Under certain conditions, this situation may
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change dramatically. Most of the neuronal cells, picked up by a

micro electrode start to oscillate and fire in phase. This is
the phenomenon of the epileptic seizure. It is accompanied by a
large increase in the amplitude of the EEG which manifest as
extremely regular sharp waves. The firing pattern of the
individual wunit generally progrésses from the tonic pattern in
which neurons fire continually and at very high frequencies over
a slower, small oscillation in membrane potential, to the clonic
pattern in which each neuron repetitively gives a high frequency
burst of action potentials followed by a period of strong
depolarization during which the cell - firing mechanism is

inactivated.

In the absence of seizure activity, the firing patterns of
neurons frequently resemble with the chaotic behaviour of the
sparsely connected networks. A cell may alternate between high
frequency bursts of action potentials and periods of
spike-inactivation without <clear cut rhythmic oscillations in
membrane potential that are characteristic of large stages of
seizure. The seizure itself may start with a few irregular

spikes after which the wave actively becomes very regular.

The frequency of the spikes and its amplitude increase as
the seizure progresses. It can be clearly attributed to the
recruitment. of greater number of neurons into a homogeneous
oscillation. It is tempting to suggest therefore that the
connectivity of the cortex may be transformed during the course
of a seizure from a sparsely connected network, with rather
chaotic behaviour and complex spatio-temporal patterns into a
densely connected network capable of truly homogeneous activity

(Kaczmarek et al, 1977).

There are two types of epilepsy. One is petit mal
(Fig.4.12c) in which EEG patterns show identical spikes, and its
amplitude is very small Babloyantz et al [1986] analysed petit
mal case and obtained a dimension of 2.05*0.09. They have found

that autocorrelation function dies down as time increases and FFT
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is broad banded, and thus established the existence of chaos in
the :neural system during petit mal. However they have not
calculated the value of Kz and have gone only up to d=7. Dvorak
and Siska [1986] obtalned the dimension to fluctuate between 38
and - 5.4, at the occipital region. EEG record of Grand mal
epilepsy shows vigorous patterns (Fig.4.12b> with amplitudes
going occasionally high.

In the present studies EEG signal of grand mal case were
analysed for all eight channels. In order to study the time
evolution of the dynamics , analysis was carried out on EEG taken
for three different time intervals - during, before and after

seizure.

The mode of configuration is EC1 (Fig.6.1ad and the EEQG is

measured from eight points ‘of the brain. One can represent
Log( C(eN
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Fig 6.2 A plot of log Cd(e) for the 6th channel
Cepilepsy).
corresponding sets as frontal (1,53, temporal (2,65, parietal

3,72 and occipital regions (4,8 which are systematically
located on the lobes on either side of the brain. The EEG is



digitized at an interval of 20 msec, and the digitized data is
analyéed using the method (Atmanspacher 1986, Abraham et al 19862
described in chapter 2. A typical plot of log Gd(s) vs logded
for various dimensions d, for the 6th channel of the first 10 sec
data is given in Figure {6.2). The slope v of the linear part of
the curves of Figure (6.2 against dimension is plotted in Figure
(6.3).

1 L1 L 1 1 1

>
T

SLOFE ...

1 lll 1 11 1

~
% N
i X % b s
I~ A =
L _,4-'-""'_'_'—#——" XX % ox
xx BRI VIRV EVIRY)
- c " h
SN S SN T NN N A N S S B A Y AU 2 B A S S S AR S B A
4 DIMENSION----—- ) 30
Fig 6.3 The plot gives three curves: slope vs
dimension d a> for a completely stochastic
case b)> for the curves in Fig.6.2. cO Kz as a

’

function of d (epilepsyD.

For a completely random behaviour, this plot will be a straight
line with slope unity d{curve ad. Curve b gives the dimensions of
the attractor, and curve c gives the Kolmogorov entropy. The
saturated nature of slopes and Kolmogorov entropy shows that the
system is nonlinear and dissipative and also exhibits the
existence of a deterministic component. Values of Dz and K2
evaluated for all eight channels of the EEG are given 1n‘ the
table (6.1). The dist,ribut.ion- of D2 and Kz are also represented
in box diagram (Fig.64 & 6.5). The three groups belong to 3
time segments of EEG during epileptic seizure and time goes from

left. to right. Each group characterizes 10 sec of data.
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Table 6.1 Dz and Kz obtained for Epilepsy before, during and
after attack.

Table for D2 Table for K2
Sheet - 1 2 3 Sheet -+ 1 2 3
Channel Channel
1 2.26 6.43 5.71 1 4 .88 11.42 11.868
5 2.09 5.29 5.22 5 4.51 7.32 10.52
2 3.46 5.48 5.12 2 7.91 11.30 9.78
6 0 3.27 6.23 4.38 6 6.38 12.51 10.18
3 5.36 5.53 4.45 3 10.02 10.58 8.84
7 4.94 5.90 5.68 7 9.70 9.10 g9.05
4 4.98 5.93 5.21 4 10.67 12.11 10.98
8 5.02 7.53 g.28 8 8.76 14 .53 17.35

In the case of Dz plot <(Fig.6.4>, the set 1,5 seems to
be small in the first 10 seconds while the magnitude increases in

before during after

LY

ANNNNNNRNNNANNY

0

Fig 6.4 Distribution of D; values as evaluated from 8 channel EEG

C(epilepsy =~ before, during and after attack) recorded at three
different times.



the 2™ 10 seconds and again shows a reducing tendency in the 3rd
10 seconds. All Dz’s are fractal and this information can be
attributed to the time evolution of strange attractor behaviour
of corresponding points in the neural system. It is also
realized that values corresponding to the set <4,8) seem to be
higher than the others. This pair goes on increasing as we go
from the first set to 3rd set and in this, the eighth point goes
on increasing in time. This implies, that the eighth point or
the left parietooccipital region is more active than the other
points. The same trend is also seen in Kz . One can easily see
that the fractal dimensions are asymmetric from the left and
right halves of the brain, as well as in time. It may be
realized that this gives the time evolution of the dimension of
the attractor and also the information capacity. Thus the eighth
channel <{dark shaded) goes as 502 ,723 and 929, in D2 and
9.76, 1453 and 1753 in Kz while the first channel goes from
226, 643 and 5.71 in D2 and 488, 1142 and 1169 in Kz

(Fig.6.5>.
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Fig 6.5 Distribution of Kz values as evaluated from 8

channel EEG (epilepsy - before, during and after attack)
recorded at three different times.
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Thus the attractor evolves in time in a very complicated manner.
The behaviour of all channels excepting the eighth =show an
increase and then a decrease. These results very well agree with
the result of Kaczmarek et al [1977]. It is suggested that
inhomogeneous pattern may occur in the early stages of the
seizure only, and after that the system tries +to attain the
homogeneocus activity. That is, a transfer from high degree

chaotic behaviour to low degree of chaotic activity.

In the ‘parietooccipital region, the right side shows a
s.low decrease in Kz as time advances while the left side
registers a regular increase in Kz' More pronounced and clear
changes are seen in Kz than in D2 as seen in the 8th channel.
Hence the eighth channel is different from others, and eighth

point is more significant in the case of epilepsy.

The same type of behaviour is observed in the case of
epilept.ic person with demylinated disease. The demylination is a
disease, caused due to the pealing of the myelin sheath of the
nerve cell. The main symptom is the paralysis and loss of sight.
We analysed the EEG of such a person, who has the demylinated
disease as well as a history of epilepsy, but the EEG appeared
normal. Two sheets of EEG is digitized at a sampling interval of

20 msec, each for a period of 10 secs is analysed.

Dz is noninteger and Kz is greater than zero for all eight
channels. The variation of Kz and Dz is much pronounced in the
eighth channel (Parietooccipital regiond (Fig.6.6a &b>. This
again inferred that the parietooccipital region is the seat of
epilepsy.

It should be noted that. EEG recording in this case was
taken not during the seizure and EEG appeared to be normal.
However, the present. analysis show the abnormalities clearly,

which implies the superiority of the method over the conventional
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technique.
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Fig 6.6a) D2 evaluated at at two different time

(Epilepsy with demylinationd. —— first 10 secs
—x— second 10 secs.
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Fig 6.6h Kz values evaluated at. two different time

(Epilepsy with demylination). —— first 10
—&— second 10 secs.

sSecs
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Migraine is a mild type of neurological disorder
EEG recording of a person suffering from migraine was

MIGRAINE

explained in section (4.10).

6.3

w the wvariation of Kz and D2 with respect to
de of connection is EC1). As obvious from the figure, Kz is
re sensitive than D2 with respect to the state of the system.

recording of all the eight channels.

v QO @
aaaaaa

nd almost normal in appearance. D2 and Kz were e

nalysed. The EEG records, which are used for anal
nly small regular sharp spikes with no sign of vig
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h
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Fig 6.7ad D2 as a function

Migraine.
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Fig 6.7b) Kz as a function of channel number for

Migraine.

Analyses were carried out using two continuous sheets
of EEG recordings, each of 10 seconds duration. Results show
that frontal part of the brain are very much sensitive as
compared to parietal and occipital region. The time evolution

of K7 and D7 are given in Fig.(6.8a&b).
7
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Fig 6.8a) D2 evaluated at at two different time

(Migraine>, —+— first 10 secs —%— second 10 secs.
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Fig 6.8b> K, evaluated at at two ‘different time
Migraine)>. -+~ first 10 secs —#— second 10 secs.
6.4 HEADACHE

EEG used for this analysis was of a person suffering
from headache and the pattern according to medical doctors, was
found to be normal. EEG patterns were digitized at sampling
intervals of 20 msec for a total span of 10 seconds(mode of
configuration is EC1). In order, to study the time evolution,
analyses were carried out for EEG taken at different intervals.
The Kz and D2 were calculated for all eight channels and for 4
sheets (each sheet is of 10 sec duration> of EEG, and are given
in the table 6.2 and in Fig.(69a & bD. The variation of Kz
and Dz is much pronounced in the 5th channel, i.e, in the left
frontal region. Kz is found to be more sensit,ive‘ as compared to
Dz' In order to get a clear idea, about the wvariation of Kz’ we
compared it with that of a normal person. It is to be noted that
the distribution of K2 is similar to that of normal in the right
part of the brain <{(channel 1 to 4O. The left part, especially

channel 5 shows considerable variation in Kz value implying that
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the possible seat of abnormality is the frontal area of the
brain. Channel 8 also has similar behaviour as in channel 5 but

with smaller amplitude.
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Fig 6.9ad D2 evaluated at four different time for

headache case and compared with D2 of a ‘clinically’

normal brain. —— first. 10 secs —%— after 110
secs -0- after 240 secs ~4+— after 290 secs
-+ x= normal.
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Fig 6.9b)> K_ evaluated at four different time for
2
headache case and compared with K2 of a ‘clinically’

normal brain. —— first 10 secs -%— after 110
secs -ao- after 240 secs b o after 290 secs

-x-normal. 152



Table 6.2 D2 and Kz(compared with normal) feor Headache

Table for D_,‘7

Channel/ 1 S 2 6 2 7 4 3
sheet
1 4.49 4.31 4.41 5.13 4.36 4.33 4,58 5.22
2 3.40 1.21 3.68 3.47 3.85 2.82 4.41 4 .87
3 4.54 4.89 4.71 5.23 4.77 4.23 5.08- 5.1¢
4 3.867 3.81 4.89 4.33 4.18 4.75 4.39 4.22
' Table for K,
Channel/ 1 5 2 8 3 7 4 8
sheet
1 9.33 8.40 8.83 9.38 8.84 23.:8 8.71 10.4¢
2 8.09 1.865 8.05 5.78 6.79 5.32 g9.06 8.79
3 9.84 12.61 8.18 9.23 8.07 7.13 8.31 9.37
4 9.28 8.67 g.06 5.89 7.82 8.77 8.40 8.4¢
Normal 8.44 8.73 8.01 7.99 6.06 8.48 7.11 8.12
14
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Fig -.6.10 Variation of of Kz in. the left frontal
region with Li%e (Headache).

Fig.(6.10> shows the time dependence of Kz for the 5th channel
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which is almost periodic. The value of Kz quantifies the degree
of chaos in the dynamical system. Higher the K2 value higher is
the degree of complexity in the underlying dynamics. The
periodic variation of Kz in the frontal region shows the presence

of repairing mechanism of the brain.

6.5 ANALYSIS AT HIGHER SPATIAL RESOLUTION

In all the previous cases, EEG has been recorded in
only one mode viz., EC1 <(Fig 6.1ad. This is the most commonly
used configuration for EEG recording. The limitations of the
available EEG equipment was that, only 8 simultanecus recording
is possible. This 8 recording is not sufficient to study the

entropy flow in the system at. sufficient spatial resolution.

In order to study the Kz variation with high spatial
resolution (HSRD, EEG recording was done using various types of
electrode configurations (Fig. 6.1a - 6.1h>. Due to the
constrains in the instrumentation, it was not possible to record
signals from all points simultaneously. Hence, it may not
possible to compare all the results due to possible time
evolution in the system. Such comparison is possible only if we
exclude the time variation. We analysed three pathological cases

in this high spatial resolution, epilepsy, tumour and psychotic.

EPILEPSY

In the EC2 configuration (Fig.6.1b> we analysed two sheets
of EEG separately. In both cases channel 2 show peak in Kz and
D2 values. In the channel 8 (Parietooccipital regiond, Kz is
very high, which is a common behaviour observed in epilepsy.
Enhancement. of Kz values in time was observed in channels 3,6 and

7 (Fig 6.11).
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Fig o6.11 Kz evaluated at two different time in ECZ

mode <(EpilepsyD. —— first 10 secs —x%— second 10
secs.

Analysis of EEG were carried out using the electrode
configuration EC4 (Fig.6.1d). Kz and D2 were evaluated for two
separate times (10 secs separatedd. Initially channel 1 has Kz
value of 118 which has been decreased to 106 in the second
case. The upper part 1ie, channel 1 to 4 shows pronounced
variation in Kz’ as time evolves, as compared to the lower part
i.e, channel 5 to 7. The variation of K2 at. the eighth channel

(left parietotemporal regiond is high (Fig 6.12>.

We have also done the analysis in EC8 mode <(Fig.6.1h). In
this configuration back portion of the brain was scanned at seven
places. This is a localized analysis. The channel 4 <(Occipital
region) shows large fluctuation in K2 value as compared to other
channels. In channel 6 and 7 also, the wvariation of Kz is very

much pronounced (Fig.6.13).
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mode <(EpilepsyD. —— first 10 secs —%— second 10
secs.
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Fig 6.13 Kz evaluated at two different time in ECB

mode <(Epilepsy). —— first 10 secs —%— second 10
secs.
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We compare all the Kz values, evaluated in the epileptic
case, using various
electrode configuration.

Comparatively large Kz

value can be observed in

the central region
~
~5 (T -C -C -C -T > (Fig
- 3 3 z 4 4
6.14)>. This creates in

the central region some

(4 16} c (11.14 | c [11.43] _C_u_i-ia]

-l — -

\ type of K2 barrier
between the frontal and
occipital regions. Low
Kz activity 1is seen in
the right occipital as
D compared to the left

0
Ak 1 occipital.

Fig 6.14 Spatial variation of Kz in

brain CEpilepsy>. () Ecz, [_J EC3
Z\ ECs.

TUMOR

In the case of Tumor, EEG analyses for four electrode
configurations were carried out. wviz.,, EC2, EC5, EC6 and ECT7.
Both monopolar and bipolar techniques are used for this analysis.

Doctors have locat.ed the t.umor in the right
parietooccipital region. The analysis shows that there is a dip
in Kz in the right parietooccipital region as compared to that of
left. Variation of Kz with respect to channel number is
represented in box diagram <6.15). There 1is a depression of K2

in the frontal region also.
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Fig 6.15 K2 as a function of channel number for

Tumour in EGC2 mode, bipolar technique.

The comparison of
Kz at different time
interval using bipolar
technique 1is studied 1in

Fig.(6.16). It should

Fig 6.16 Spatial variation of K_ in 2lso be noticed that a
2

brain <(Tumor), biploar techniqué. “crack" exists in ' the

D Ec2, [ Ecs.

central ‘Kz barrier’.
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Flg 6.17 K2 as a function of channel

number, for
Tumour in EC7 mode, monopolar technique.

we studied the Kz
values obtained from

monopolar technique as

well. It also shows a
dip in K near

N i
=4 Ag%8 parietooccipital region,
/

N (Fig.6.17D> i.e, 8.52 in
the Ta region <(channel
3. There is a
depression of Kz in the
frontal region also i.e,
923 in the F region.

0, H
"2

In all other regions Kz

is very high. The

Fig 6.18 Spatial variation of K, in spatial distribution of

' prain (Tumor), monopolar technique. Kz is shown schemati-
— ] Ecs, () EC7. ) cally in Fig.<6.18>
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PSYCHOTIC

12

10

2
0
Channel number -------——- >
Fig 6.19 .Kz as a function of channel number, for

psychotic in EC2 mode.

In this case
we analysed the EEG
of a psychotic
patient of age 17,
in two electrode
configurations.

viz.,, EC2 and ECS3.

The Kz distr-
ibution is repres-
ented in Fig.(6.19).
Left occipital reg-
ion has low Kz
entropy as compared
to right occipital
region in contrast

to tumour and

epilepsy. Comparat-

Fig 6.20 Spatial wvariation of Kz in

brain (Psychotic case). D EC2
1 Ecs
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ively low Kz values are registered in the central region. In the

vicinities of F -F - F -F -F and T -P -P -P -T regions, large
. 7 3 Z 4 B 5 3 z 4 o

Kz values are observed, thus creating a kind of partitions in KZ

distribution (Fig.6.20).

.In all these ‘ap.alyses, D2 behaviour has been found to be
similar to Kz’ except. that K2 is more sensitive than D2 to the
state of the brain. Hence Kz may be identified as a parameter
which describes the state of brain under different pathological
conditions and possibly may be taken as a diagnostic tool
However, more det,ailed analyses and standardization are necessary

to put this in practical use.
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CHAPTER 7

NONLINEAR DYNAMICS IN CERTAIN
ASTROPHYSICAL SYSTEMS

The studies on certain astronomical systems viz.,
Asteroidal belt and Saturn ring structure using the
technique of nonlinear dynamics are done in this
chapter. Detailed analysis based on D2 and Kz values

is itncluded. To make the thesis self contained some of
the features of Asterotdal belt and Saturn ring are
also described.



NONLINEAR DYNAMICS IN CERTAIN ASTROPHYSICAL SYSTEMS

Time series analysis of the neural system has
revealed the TfTact that a single measurable quantity can
characterize complex nonlinear systems. It was found that under
various pathological conditions, the parameters like D2 and Kz
can adequately represent the deterministic component present. in
the dynamics of the neural system. Since these are invariants of
the system they can be used to characterize the system. This
method, being very general, can be applied to any dynamical

system.

In this chapter, we propose to apply this method to
certain astronomical systems, like the Asteroidal belt and Saturn
rings and determine whether such systems are chaotic or not.
But., before going into details of these, we =shall describe the
physical nature of the Asteroidal belt and the Saturn ring system

in sections 7.2 and 7.6 respectively.

71 GENERAL INTRODUCTION

Matter - ring formation in solar s{zst,em in general
(such as Asteroidal belt> and in planetary environment. <(Galilian
planets)> etc.,, are still not completely understood Various
theorieé, based on Newtonian mechanics of three body dynamics,

have been put. forward to explain the formation of gaps by
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gravitational collisional self focussing (Trulson 1971> and
scavenging of matter by satellites involving resonance theory
(Berry 1978>, but only with limited success. However, there seem
to be only few attempts to analyse the data obtained by the
various space missions, towards an understanding of the dynamics
of these éystems.' Recehtly developed theory of deterministic
chaos (Schuster 1984, Hao Bai-Lin 1985, Berge et al 1984) is
found to be suitable to explain many natural phenomena like
atmospheric studies using climatic data (Nicolis and Nicolis 1984
& 1986, Krishna Mohan et al 1987), Lorenz model for fluid flow
(Lorenz 1963>, EEG analysis for human brain (Bablovantz et al
1985 & 1986), membrane potential analysis of Paramecium dNagai et
al 1988> and ECG analysis of cardiac oscillator <(Glass et al 1983
and Babloyantz et al 1988). Time series analysis of observed
solar radio pulsations suggests that there must be a low
dimensional attractor <Kurths et al 1987) present in the system.
We propose to apply this theory to the data acquired by the
Voyager missions <(Photopolarimeter recordings; Esposito et al
1983D. It may be mentioned that a similar study is relevant in
the case of Astercidal belt and Saturn rings, in view of the
results of Wisdom [1983] wherein he has shown that in asteroidal
belt., 3:1 Kirkwood gap coincides with the outer boundary of a
chaotic zone. The significance of 3:1 resonance out of all
resonances was pointed out for the first time by Pratap [1977],
where a spectral analysis study of matter distribution in the
asteroidal belt has been done. He has fourier analysed this
distribution, obtained the autocorrelation and power spectrum and
has ident,ified\ the ratios from the resonance theory. He has
shown that. Kirkwood gaps are essentially the int.erférence pattern
due to two spatial density waves and not merely due to the three
body resonance phenomena between Jupiter, the sun and the
asteroid. This also shows that this phenomenon is due ¢to
collective effects between the particles of the system together
with gravitational field provided by the sun, all the planets and
probably by the stars as well.
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7.2 ASTEROIDAL BELT

The asterocids are a cluster of solid bodies with
sizes greater than that of an ordinary comet and orbiting around
the Sun in a flat cloud mainly concentrated in the main belt
between the orbits of Mars and Jupiter <(Fig 7.1). Physical
and dynamical
investigations

8 -
of the aste- l ' ‘
|

25
MAAS

roids suggest
that the aste-

45 ———{-
50

o . ok A 4‘:
roids form a 2 2 2

2%
30
3y

population of

Fig 74 A plot of numbenr density of
asteroids >1.6km in diameter against the
bodies which radial distance from the sun in AU.

minor solid

suffered coll-
isions. Asteroids move mostly on low eccentric and low inclined

orbits. Other important dynamical features of the asteroidal

belt, like

1O Orbital and secular resonances due to gravitational forces

mainly exerted by Jupiter.
2> Under populated regions in the asteroidal belt.

3> Planet-crossing orbits <(will help us to understand the
existence of ordered and chaotic regions in asteroidal

belt).

The under populated regions and narrow empty =zones in the
asteroidal belt represent possible chaotic regions where
asteroids have been removed. The populated regions on the other
hand are eventually ordered regions or can even be chaotic
regions but with time scales much larger than the age of the
Solar System for removing asteroids. One of the other
characteristics of the asteroids is that they move mostly on low
eccentric and low inclined orbits interior to Jupiter’s orbit

avoiding a close approach to Jupiter.
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At present we know accurate orbital elements of about 3000
elements in the belt. The main belt can be clearly seen between
2 AU and about 3.3 AU as shown in Fig {7.1). Both edges of the
main belt coincide with the location of resonances. The inner
edge of the main belt coincides clearly with the position of the
Y secular resonances (Williams et al 1981D. At the v secular
resonance, the frequency for an asteroidal orbital precession

rate matches a main frequency for planetary eccentricities.

The outer edge of the main belt coincides with one of the
Kirkwood gaps, namely with 21 resonance. An m/n resonance means
that an asteroid completes m revolutions around the Sun during n
revolutions of | Jupiter. The 2/1 resonance is therefore a
resonance in mean motion with Jupiter while the L secular
resonance is a resonance with respect to a change of planetary

eccentricities.

Resonances do seem to determine also the orbital energy
distribution within the main belt and in the outer region between
the 21 resonance and the orbit of Jupiter. Within the main belt
three narrow gaps ((the Kirkwood gaps) appear at the following
orbital resonances: the 3/1 resonance located at 25 AU, the 352
resonance located at 282 AU and the 7.3 resonance located at

2.95 AU.

Two different types of resonances are known to determine
the dynamical structure of the asteroidal belt, namely secular
resonances and orbital resonances. The dynamical system

established by the planets can be considered as an oscillating

system. The perturbations exerted by the planets on asteroidal
orbits are determined by the frequencies of this system. An
asterocidal orbit can be interpreted as an oscillator. If a very

long-periodic frequency, a so-called secular frequency, of the
asteroidal oscillator is equal to one of the secular main
frequencies of the planetary system, a secular resonance occurs.
At a secular resonance, an asteroidal orbit, for instance,
precesses with about the same velocity as Jupiter’s orbit. As a

result, very strong variations in orbital eccentricity and
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inclination can occur. In particular, secular resonant orbits

may become Mars - and Earth - crossing orbits.

An orbital resonance occurs when the ratio between an

astercoidal and the Jovian mean motion is equal to (p+g>/p, where

p and gq are small integers. For a ratio of 85./2, for instance,
p=2 and qg=3. In this ca'se, an asteroid completes 5 revolutions
while Jupiter completes two revolutions around the Sun. As a

consequence, conjuctions between the asteroid and Jupiter repeat
at almost the same locations of the asteroidal orbit which may
cause particularly strong perturbations in the astercidal orbit.
In a resonant case, perturbations exerted by Jupiter add up for a
comparatively long period in the same way. This means that in
resonance an asteroid is either accelerated or decelerated over
much longer time scales than in a non-resonant case. Since in
the main belt, orbital resonances coincide with the Kirkwood
gaps, it is natural to conjecture that the formation of the

Kirkwood gaps is due to orbital resonances.

Giffen [1973] started to investigate asterocidal motion
under a different aspect. He tried to determine chaotic and
ordered regions at the 271 and 3/2 resonances applying the
surface of section method. Giffen found a small chaotic region
at the 21 resonance, which he did not find at 3.2 resonance. In
an ordered region, the phase space which can be filled by an
asteroidal orbit, is confined to a surface due to the existence
of an additional quasi-integral of motion which cannot be
obtained analytically but numerically. In chaotic region no such
quasi-integral confines the motion to a surface. Froeschle and
Scholl searched more systematically in the 2.1, 3/1 , 5/2 and 7.2
resonances for ordered and chaotic regions by applying the same
surface section method er Giffen. Froeschle and Scholl
concluded that chaotic regions are rare. In addition, they
showed <(Froeschle and Scholl 1976>, that. the chaotic regions seem
to be closed by forbidden regions and a quasi-integral of motion.
This means that an asteroid located in a chaotic region is
trapped and cannot. leave the gap. Since these results were

obtained in a restricted model it cannot be excluded that in a

166



more realistic model, astercids might leave the gap by a
diffusion process on a very long time scale. All these results
were obtained by a numerical integration of the equation of
motion. Wisdom [1982] succeeded to find a new and more rapid
method to calculate orbital revolution at the 3.1 resonance which
allows to cover time span of the order of 107 years on modern
computers within reasonable  computing time. Using Chirikov’s
funct,ion. method <(Chirikov 19793, Wisdom derived a mapping for

calculating orbital evolution.

Wisdom [1983] determined ordered and chaotic regions at
the 3/1 resonance by calculating Lyapunov characteristic numbers,
which was applied by Froeschle and Scholl [1981] for two cases at
271 resonance. Wisdom concluded that the size of the chaotic
region at the 3/1 resonance is about equal to the observed size
of the gap. According to Wisdom an asterocid situated in the
chaotic region of the 3/1 gap increases 1its eccentricity so
strongly that it becomes a Mars-crosser. Hence, the asteroid is
removed from the 31 resonance after a collision with Mars.
Milani and Nobili 19831 tried to determine chaotic regions 1in
the outer belt. Scholl’s aim [1985] was that an asteroid located
in the chaotic regions will suffer a collision with Jupiter. A
collision of an asteroid with a planet implies a sufficiently
close approach to the planet which ejects the asteroid out of the

corresponding region.
7.3 SPECTRAL ANALYSIS

Recent advances in the studies of dynamical systems
(Brassberger and Procaccia 1984,‘ Broomhead and King 1986> have
given deep insight on nonlinear collective modes, as well as,
forces which drive a state from order to turbulence and going
back to order fro‘m chaotic oscillations. This theory has
recently been applied to Astercidal belt dWisdom 1983, Scholl
19851 at 3:1 resonance. This particular resonance is very
significant, since it 'is at +this, that the particle changes from

positive to negative correlations <{(Pratap 1977). Furthermore, it
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is again at this point that maximum power is concentrated in a
power spectrum analysis. It has been further established that
this. resonance is the only significant one and the rest of the
resonances given in literature are not real as revealed in the
power spectrum analysis. Besides these, the following results

are also established (Pratap 1977).

ad The different
vectors plotted in
Fourier space clust-
-ered in two diétinct
domains defined by
the phase angle
50° < ¢ < 200° and
286° < ¢ < 355°,

In Fig 7.2, the

vectors represent

amplitude and the

corresponding phase .
Fig 7.2 Fourier space representation of

of the Fourier comp- ., . 4istribution in Fig.7.1.
onents. The number

against each vector

m_
represents the numb-
er n of the fourier "
component 10or
80
b> Power spectrum analysis
showed that there were five
20
dominant. frequencies involved
I" 1 - 4 —
in the dynamics (Fig.7.3>. %665 016 05 " 020 025 OO 035 0« 045 00
One cannot assert whether Fig 7.3 Power spectrum of Fig71.
The position of masxdmum power
these frequencies are ¢£f=0.02> corresponds to the ratio of
3:1.

commensurate or incommensur-
ate. The crosses on the abscissa in Fig 7.3 depict the frequency
at which maximum power resides and vertical arrows are the

frequencies given by the resonance theory.
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c Particles could be divided into essentially two Z2roups
mutually ’ correlated amongst themselves but, uncorrelated
groupwise, the change of correlation taking place at a lag point

corresponding to 3:1 resonance (Fig.7.4>

0-8
o6
O-4
02+
‘ llll lll ) 20 23 30 35 1 ' I I
R B oﬁll“l H Hl]]ulh 70 a5
Q-2
O-4r-
o6l
[od 2 o
raoll
Fig 7.4 Autocorrelation function of
distribution in Fig.7.1. The change of
correlation takes place at the position of

3:1 ratio.

The above five frequencies, as obtained from the power
spectrum analysis, however, are not explained by the resonance
theory excepting that of 3:1. The method of analysis adopted by
Wisdom was to evaluate the LEs for trajectories near 3:1
resonance. Even though LEs can characterize the nature of
dynamics, evaluation of these values are difficult in most of the
cases. But. the approach described by Atmanspacher and
Scheingraber [1986] is useful for the evaluation of other
quantities which characterize the dynamics of asteroidal belt.
The present. analysis is based on the method developed by Abraham
et al [1986] for small data sets which is especially useful in
astronomical systems, for which sometimes the duration of the
phenomena are very small This method is also found to be
successful in solar time series analysis (Kurths et al 1987),

where the data of radio waves in the Sun’s atmosphere is
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analysed. Usually the duration of solar radio pulsation event in
the frequency range of 480-800 mHz is not longer than a minute.
The duration of the considered pulsations is only 40 sec at a
sampling rate of At=0.0645. A comparison with Lorenz model for
same number of data points revealed that correlation function

agrees the power law.

The data obtained for our analysis is the density
distribution of asterocids as given by Pratap [(19771 We do not
presuppose a Hamiltonian structure for the system or any other
interactions. Hence the problem as to whether a planetoid is
subjected to force due to the Sun and Jupiter as taken at
present,, or whether other planets also plav a role in the
dynamics, does not arise. This problem is significant since from
a nonequilibrium point, it has been shown by Prigogine and
Serverne [1966] that. if the system has only attracting
gravitational force then there does not exist screening as in the

case of electrically charged system and hence the system cannot

have thermodynamic equilibrium. Now, can there be equilibrium in
the information sense 7 This is ascertained by evaluating the
Kz entropy for the system. Furthermore we get a physical

explanation for the five significant frequencies obtained in the

power spectrum analysis.

7.4 ATTRACTOR DIMENSION AND KOLMOGOROV ENTROPY IN ASTEROIDAL
SYSTEM

Analysis

The radial plot of asteroid density distribution as

given in Pratap [1977] was digitized and written as a sequence

XA = XQ D, XA AL e XCL_+NAL> 71>
o

Time series in general is a series of values sampled at
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regular interval as a function of space or time <(Packard et ai
1980, Hence the above sequence can be considered as a "time
series'" and can be rearranged in the form of '"delayed matrix" as

explained in chapter 2.

Xa o X 4 +ALD XA +2A1> . . L0 0 XL fmALD
(o] o o (o4
X(L°+AL > X< +2ALD X(Lo+3AL) e e L XL FOmEE D ALD
o o
X(Lo+dAL) X(L°+(d+1)AL) . e .o XA +dEmOALD
o

7.2>

The matrix (7.2> can be considered as an array of m column
vectors defined in a d-dimensional space and this can be written

as in the case of neural system as

X > = X(Lt), X(LL+AL) e e e e e e X(L,+dAL)}
L 1

7.32

where t = Lt +Al with i1 being an integer running from 0 to m
1 [=4
We shall now define the correlation function Cd'(e:) as <(see

Chapter 2>

) 7.4>
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The plot of log: Cd(s) vs log £ for asteroidal belt is shown in
Fig <(7.5D.

'

T
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.

LOG C(e)
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LOG e

Fig 7.5 Log-log plot of Aseroidal belt

It has been shown in chapter 2, that if we consider the
trajectory of a particle crossing a given plane repeatedly then
if the points at which the trajectory crosses the plane are all
confined in a neighbourhood, then this is called basin of the
attractor. £ in equation (7.4) gives a measure of the basin of
the attractor. One can use the probability p,L(=N_L/N) where N_L
are the number of points at which a trajectory visits a given
neighbourhood in order to define quantities Dq, which are called
the gth order Hausdorff dimension of the attractor dGrassberger
et al 1983 a,b,c>. The most significant of D;S’ however, is D2
(Caputo and Atten 1987> which c¢can be defined in terms of

correlation function. It can be calculated using the power law.
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Cd(g) ) (7.5>

From the plot of log Cd(s) vs logdled (Fig 7.5), we can calculate
v as the slope of the linear part of each curve for d varying
from 1 to 30. It can be shown that if the data set is generated
from a completely stochastic Guassian white noise, then v=d or a
plot of slope against dimension would be a straight line making
an angle 45° with dimension axis (Babloyantz and Destexhe 1986).
Usually we try to explain different phenomena of astronomical
systems by considering it to be stochastic. But the present
analysis indicates the existence of a deterministic component in
the system, indicated by the deviation of v-d curve from the 45°

line (Fig. 7.63.
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Fig 7.6 The slope of the curves in fig.7% as a function

of d. The asymptotic value, D2 is 5.

This means that as dimension increases, the effect of noise is

reduced and the deterministic part becomes dominant. As one can
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see in the Fig (7.6, the slope » attains an asymptotic value (as
d-»o0d. Hence d should be chosen so as to obtain this asymptote.
The asymptotic value is defined as Dz' This is an invariant of
the system and is a static parameter, as it 1is independent of
length scales. D2 is the minimum number of initial conditions
which are necessary to characterize the system, in the asymptotic
limit, or this gives the dimension of the subspace to which the
system get.s embedded in the phase space. The remarkable feature
in this is that the curve saturates to a slope 5, showing that
the characteristic attractor dimension is integer, indicating
_t,hat, the attractor is a regular one. This also means that the
Asteroid-dynamics is described by five independent. initial

conditions.

A second point to be observed is the dimension d at which
the curve meets the asymptotic line. The part of the curve
defined for lower dimension. goes almost with the stochasticity
line d{.e., the wv»=d line>, while that at the asymptotic region
represents order. Hence the dimension at which the curve meets
the asymptote could denote the boundary between chaos and order.
This 1s what has been observed by Wisdom [1983] in Asteroidal
belt and it has been verified by us using a time series analysis.
In this case, saturation takes place at about d=15 and this
implies that the system 1s an attractor of characteristic
dimension 5 which is embedded in a subspace of dimension 15, as
it evolves arsympt,ot,icauy, thereby giving the 3:1 Kirkwood gap.
This probably could be a significant point. which has not been
realized earlier, as no importance is attached to the dimension
at. which the asymptote meets the curve. Since saturation starts
at d=15, we are not going to get any additional information by
increasing the dimension beyond 30. In terms of time scales,
using Kepler’s law aa/T2 = constant , the system can be
completely characterized by five incommensurate frequencies and
it 1is these five frequencies that has appeared in the power
spectrum analysis of Pratap [19771 This would further imply
thatt the Fourier space is basically divided into five sections
instead of -two as has been visually realized by Pratap [19771.
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The second invariant quantity of

interest. is

order Kolmogorov entropy Kz’

where T =0.02 AU,
which is the
sampling inter-

val. The Kolmog-
orov entropy is
the most dominant
term in the gene-
ral set of infor-
mation

It is

entropies.
a dynamic
parameter and
very sensitive to
the length scales

of the system.

The curve
log [C d(s)/C d+§.s)]
for asteroidal
belt is plot.ted

against. dimension
in Fig <(7.7> and

two significant

features are to be noted.

Cd(e)
d+1
K Lt K Ced <7.7>
2 ~ d-owm 2,d
£ 40
2839
*
o\
<
£ L ]
- ‘... _ e _
° .
1 1 1 1
0

DIMENSION ——

Fig 7.7 Kz,d

against dimension d.

The asymptotic value Kz is 0.074

with d, and in the present. case again at about d=15.

the second

30

The function saturates asymptotically
This also

shows that the attractor has a saturation in a subspace of
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dimension 15. The phase space however in the present. case is the
correlation space and Kz is information entropy as against the
usual Boltzman entropy which is defined in canonical space and

which indicates thermodynamic equilibrium.

Secondly, the saturation value of Kz is about 0.04 which
is indeed a very small quantity and indicates that the system is
mc;re or less completely ordered in the information sense and has
very low stochasticity. Nevertheless it does iﬁdicate the

existence of a deterministic chaos component.

7.5 DISCUSSION

The method of analysis adopted here discriminate
three cases - regular, chaotic and completely stochastic. An
integral value of the dimension of an attractor implies that the
deterministic component. of £he system is regular. In the present
case of the asteroidal belt, the dynamics is that of a regular
attractor, as the dimension is 5. This would further imply that
the Fourier space would actually be divided into five domains,
each having a distinct fundamental frequency. Thus the curve can
be represented by a summation of five distinct fourier series
each having a fundamental frequency, and that these are
incommensurate. This kind of resolution however is not possible
in the wusual fourier expansion. These five frequencies, when
expressed Iin the phase space variables, would be interpreted as
the five Poincare’s Summational invariants. In the gravitational

case, the five known summational invariants are

the semi major axis a +r/[ Z—rvz],
angular momentum, £ = £ x ¥

’”
. . > - e d r
Perihelion vector B=(XxvIxv -

d

These constitute seven variables, but as can be seen, they are
not completely independent. Two constraints can be obtained

viz,,
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PL=o0
L? a [1-p2 ] 7.8

With these conditions, we are left with only five independent
variables which could be identified as the invariants
corresponding to five frequencies. The saturation of Kz,d
beginning at d=15 can therefore be identified as an attractor of
dimension 5 embedded in a subspace of dimension 15 in an infinite
-dimensional spaée and the ratio of which show up in more than one
situation wviz., as a resonance, (b)) as a distance at. which
correlation changes its sign and {(c¢> as the outer boundary of the
chaotic =zone which separates chaos from order. One could
probably infer from the present analysis that the role of the

Jovian resonance is to introduce the separation of order from

chaos in the asteroidal belt.

7.6 RING STRUCTURE OF SATURN

Saturn is the second largest planet in the solar
system and it is
surrounded by a
large flat ring.
Saturn appears as
an elliptical di-
sk in telescopic
observations (Fig
78> and has a
diameter of about

121,505 Km. Main

constituents of

its atmoéphere

are hydrogen and

Fig 7.8 Saturn

helium and has

the atmospheric temperature of about 120°K.
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The presence of rings is one of the most remarkable
features of the Saturn’s system. The ring system is divided into

four main regions, viz.,, A, B, C and D ring.

A 1s the outermost ring with moderate brightness, its
outer diameter is 278,417 Km and inner diameter is 241,402 Km.
A-ring and B ring are separated by the dark Cassini divisions, of
4023 Km wide. B ring is the brightest ring, with outer diameter
of 233,355 Km and inner diameter of 180,247 Km. C is the
innermost ring and is much fainter, and is separated from B ring
by narrow dark division, known as French division, of 966 Km
wide. C ring has an outer diameter of 178,637 Km and inner edge
is at 11,265 Km above the planet surface. D ring is the fourth
zone, and exists between the C ring and the globe. In the
following sections, analyses of the Saturn ring structure carried

out. using nonlinear techniques are described in detail.

The data set obtained from Saturn rings consists of
the extinction data as recorded by the photopolarimeter 1in the
Voyager mission (Esposito et. al 1983).

Fig 7.9 Matter distribution as a function of radial distance from the
inner edge of the C ring to the outer edge including F ring.

’

The density distribution of matter in the Saturn rings as a

function of distance is given in Fig 7.9. It is recorded at an
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interval of 65 Km (0.00ZRs) for a distance ranging from the inner
edge of the innermost ring (0 ring> to the outer edge of A ring.
The F ring and the gap between A and F are not included in the
present analysis, and also the D ring, which is supposed to exist
between the planet and the C ring. The distance is about. 1.03 RS
and the division of the domain is given in Table <7.13. These

readings are given by the sequence

XAd> = XA D, XA +ALD .. XA +NAL
(o] o (=]

where Al is the distance ({(gap> between two consecutive readings.
In the present case it is 65 Km, and I.o is the innermost edge of
the C ring. The data so obtained is subjected to “time series”
analysis as was done in the case of asteroidal belt. We have
evaluated D2 and K2 for the various parts of ring and gap
systems. The results are presented in two different sets - of
the rings as well as gaps. In order to check whether the
behaviour of the whole system is influenced by some particular
regions like gaps or rings, analyses were carried out for whole
data set also. But. it shows that the behaviour is independent
and the system consists of a spatial distribution of a large
number of strange attractors which can be inferred from the
existence of plateaus in the slope vs dimension curve. The
evaluated values of Dz and Kz of each ring and gap is given in

Table (7.1), along with the inner and outer edges in unit of R
=1
Table 7.1 Summary of Saturn ring system analysis

Ring /Gap In units of R, width D, K2x103

Inner edge Outer edge

C 1.24 1.45 0.21 1.65 1.00
Gap 1.45 1.53 0.08 2.81 0.83
B 1.53 1.95 0.42 4.26 258
Gap 1.95 2.03 0.08 2.55 3.20
A 2.03 2.27 0.24 1.71 1.23
Total System 1.24 2.27 1.03 1.78 0.87

7.7 BEHAVIOUR OF AUTOCORRELATION FUNCTION IN SATURN RING SYSTEM

In order to study the behaviour of particle

distribution in Saturn ring, autocorrelation has been evaluated
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using the method described in chapter 2. Analyses have been
carried out taking the ring as a whole as well as treating the
gaps and rings separately.

Analysis of the ring as a whole (RS=1.24 to 2.03> reveals
the switching of
correlation from
positive to nega-
tive beyond the
lag point 192
(Fig. 7.10D. The

wld

negative corre-

lation dies out.
L beyond the lag
Ve

o point 720. Bey-
TR ond 720 lag

Fig 7.10 Autocorrelogram of Saturn <(Total Peoints the dist-

system, from C ring to A ring <1.03 RS)) ribution becomes

completely uncorrelated.

Autocorrelation studies of A ring has also revealed
negative aut.o-
correlation bey-

ond a lag point

of 80 (Fig.
7.11aD. However
the correlation

does not go to
" Zzero within the

1 - range of obser-

vation.
- 1.988

Fig 7.11a> Autocorrelogram of A ring

Autocorrelation patterns of B and C rings show different
behaviour as compared to A ring. Results show (Fig.711b & ¢> an
oscillatory behaviour in the autocorrelation which is well

manifested in the case of C ring.
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Fig 7.11 Autocorrelogram of (b> B ring {(c> C ring

The distribution in B and C gaps show similar behaviour as
in the case of B and C ring. The oscillatory behaviour in the

gap structure has been observed more clearly (Fig. 7.12a & b>D.

Vhen we take the ring as a whole, the oscillatory nature
of autocorrelation function observed in the cases of B ring, C
ring, B gap and C gap is overshadowed by resultant convergence

of the function at high lag points.

Autocorrelation studies will give only a qualitative idea
about the system. For deeper understanding we have to look of
alternate treatments which takes into account of nonlinear

interactions present in the system. Results obtained from such
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analysis are described in the following section.
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Fig 7.12 Autocorrelogram of <{a> B gap or
Cassini division b C gap or French
division.

7.8 ATTRACTOR DIMENSION AND KOLMOGOROV ENTROPY IN SATURN RING
SYSTEM

C Ring

This ring is the one closest. to the planet that we
are considering, and it experiences strong gravitatioconal effect.

The inner edge of the C ring is at a radial distance of 02 R_
from the planet’s surface and has a width of 021 R 1.3x10*

=1

Km). Fig (713> gives the plot of log Cd(s) vs log(e> for the
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various dimensions d the left hand =side outermost is of

dimension 1> and we evaluated up to 30 dimensions. In the Fig we
have given only 20 curves to aveid overcrowding. The curve d=t
has some structure. But as d increases, these structures

disappear even though some small wobbles do persist.

2 1)
LOG(EC )

-10 ' T — >

s}

Fig 7.13 Plot of log Cd(e) against log £ for C ring.

Such wobbles do not appear in other dynamical systems such as

neural networks and Astercidal belt, and hence, does not seem to

be an artifact due to smaller data set. Plot of slope against
dimension is given in Fig 7.14, curve ‘a’. The curve attains a
saturation value of 1.65. In this figure we have drawn a lined(b>

at 45° to the x-axis along which all the points would lie if the
process is totally stochastic. Hence the deviation from this
line indicates the existence of a deterministic part. The
initial points for small dimension indicate the noise component,
while the asymptotic value gives the characteristic dimension of
the attractor. The noninteger characteristic dimension indicates
the existence of strange attractor. The points plotted in Fig
(714> gives the Second Kolmogorov entropies - the most important
component. in the family of Kolmogorov entropies. The line ‘¢’
drawn in Fig (714> is the asymptotic wvalue KZ. It is mentioned
that. Kz is a sensitive parameter and Dz is a static parameter.

Hence, the presence of multiple frequencies and length =scales in
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the system would get reflected in Kz and Dz’ as given in the

table <(7.1>.

>

SLOPE
Ka =777 >

Fig 7.14 The plot gives three curves:(a> slope vs dimension

d for the curves in Fig.713 (bd> the same for completely

stochastic case and <(c) the plot k6 of Kz against dimension
b4

d. The asymptote give the value of Kz.

B Ring

It may be noted that the log Cd(e) vs logde> (Fig
745> do not show much of wobbles for the initial dimensions, but
starts appearing in the higher dimensions. We have evaluated
correlations only up to r=1, and hence the curves do not converge

to log Cd(£)=0. But. the curve do converge to Cd(£)=1 if we take

184



LOG(C{EY)
8 —

-19 ' 1.03(& V-—~—- > B

Fig 7.5 Curves giving log Cd(e) against log &£ for B

ring - the largest in the system.
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Fig 7.16 For the curves given in 7.15, (a)> the slope
vs d (cd> the sz against d.
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higher values of £. However we did not go for the same, since we
need only the slopes of the linear part of the curve and these do
not change as ¢ is increased beyond 1. It may be mentioned that

<

Fig 7.16, curve ‘a’, does show plateaus indicating the presence
of more than one basin of attractors and if we take the mean
value of this, we get the characteristic dimension as 4.26. The

<

asymptotic value Kz given by Fig 7.16, curve ‘c’, however is well

defined and gives the value 2.58 Km ™.
A Ring

A-ring is the outermost one and it experiences
comparatively less gravitational force. The Vovager, however,
observed knots and kinks in the ring system as well as concentric
ring structures within the system. In the curves log Cd(s) Vs
log r, structures start appearing from the smaller dimensions
onwards as is evident in Fig {7.17). These structures are indeed

real and shows that. there are more than one strange attractor in

LOg( Cee D)

f,. ’/ d r -~

- [ S
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Fig 7.17 The graph depicting log Cd(s) vs log &£ for

A ring - the outermost one considered here.
the system. To separate the various components, however, would
be difficult. This also became obvious in the slope vs dimension
plot. As d increases, the attainment of the asymptotic wvalue is
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slow. This is given in Fig (718, curve ‘a’>, and which implies
that the deviation from the stochastic line b)) is slow. This is

also . apparent in the K2 entropy plot ‘¢’ in Fig <(7.18> wherein

there exists oscillatory character, which dies down as o
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T
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-
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e
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Loy b
------ ) 38
Fig 7.18 The plot of <(a) the slope from 7.17 against
d and (c> sz against d.
increases. Probably one can get an asymptotic value D for
larger dimensions. The existence of more than one attractor

(regular or strange) in the system is quite apparent. It has a
D, value of about 171 and K__ 123 Km .

Gaps

We shall carry out a similar analysis for the two
gaps viz. C gap - between C and B rings <(French division> and B
gap - between B and A rings (Cassini division).
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The curve log Cd(e:) vs log (&> for this regions

given in Fig (7.19>. A regular structure in the curve starts

LOG(Cc&n

-
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Fig 7.19 log Cd(e) ve log <> for the French
Division or C gap.
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Fig 7.20 ad Slope derived from 7.19 against. d and
cd k’? s against d.
2,
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appearing right from +the 1**  dimension onwards. and as d

increases, the step like structure also become more and

more
dominant. This manifests itself in a peculiar manner in the
curve of slope vs dimension <(Fig 7.20, curve ‘a’d. There does

not. exist a clear-cut asymptote, nor are the points along the
stochastic line <(bD. The curve could be considered as a
combination of large number of step curves, which shows the
presence of more than one attractor. This is also evident from
the Kz points distribution where these points exhibit a

complicated oscillatory structure Fig (7.20, curve ‘c’).

B gap

Unlike the C gap, B gap or Cassini division is better
structurewise. Structures start appearing as dimension increases
and, here again, the curves converge to unit correlation for

large r». This is given in Fig (7.21).

LOGEC(ED)
B —

1 |
-1@ LOGt g )-——--- b} . 8

Fig 7.21 log Cd(s) is plotted against logCed for the

Cassini Division or B gap.

The curve in Fig (7.22, curve ‘a’> however do not show any sign
of convergence 1in the asymptotic limit for the number of
dimensions we have taken here. One does require a large number

of dimensicons which implies a large number of closer data. The
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curve shows horizontal portions for dimension around 10, but
takes off as dimensions go beyond 20. The curve (7.22. curve
‘c’> - depicting the Kolmogorov entropy also exhibit a peculiar
behaviour. It does show a saturation beyond dimension 20.
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Fig 7.22 a) Slope derived from 7.21

)

against d and

The stochastic line

cd) K
2,d

>

against d.

is given by

the line b.

Ring system as a whole

Figure (7.23> gives the correlation curve for the

entire ring system, for a range of 1.03 Rs or about 62,000 Km.

As one can easily realise, the curve is not a sum of the previous

ones, but has a different structure. There are pronounced
wobbles in the diagram, implying distinct domains having
different slopes. This manifests itself in the formation of
plateaus in the various dimension ranges. Fig «7.24, curve
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Fig 7.23 The entire ring system from the inner edge
of G to the outer edge of A is taken as a single

unit. and

the log CdCe) vs log £ is plotted.
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7.24 a> The slope of the curves of Fig723 is
plotted against dimension <cd Kz 4 against

dimension d.
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‘a’» clearly implies the presence of various attractors having
different characteristic dimensions. This is also quite evident
from the fact that the deviation from the stochastic curve Fig
(7.24, curve ‘D’> is also clearly pronounced. In the plot for Kz
Fig (7.24, curve ‘”, the ratio log [ Cd(r)/Cd+1(8)] oscillates
for lower dimensions but steadies itself as d increases. It is
however evident. that one would not. be able to get details of the
earlier curves from this one. It has a characteristic dimension

of 1.78 and a low Kz value of 0.87><10_3 Km—i.
7.9 DISCUSSIONS

The results of the analysis is given in Table (7.1
and also in Fig <7.25 D. Some of the Interesting features are
that the characteristic dimension Increases radially, and comes
to a maximum around the B ri-ng and then shows a steady decrease,
while Kz strikes a peak value around the Cassini gap and then
decreases. This shows a phase lag between the dimension and the
Kolmogorov entropy. An inspection of the dimensions reveal that
all the attractors are strange and if we consider the total ring
system, we get again a strange attractor. This is quite contrary
to the results one obtained in the asteroidal belt wherein we get
a regular attractor of dimension 5 for the system. We may
conclude that the strange attractor for the total system is a
consequence of a large number of interacting strange attractors,
while if we extend this to the asteroidal system we may have a
similar conclusion wviz.,, a system of strange attractors resulting
in the formation of a regular attractor. This implies that the
Saturn ring system is chaotic piecewise as well as in total,
while in the asteroidal belt, the total system is a regular
attractor, and is an example of chaos - inducing order. Saturn
ring system form an open, dissipative, and non Markovian system
consisting of more than one characteristic scale, manifesting
itself as a collection of spatially distributed strange
attractors (Schuster [19841.
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Fig 7.25 The results given in the table
is plotted against distance from the
surface of the planet. This reveals_the

relation d{f any> between D2 and 10° Kz"

Here solid line is for Kz and dashed
line is for Dz'
Hence in developing a Statistical Mechanics of the
could be more realistic to consider a collection

attractors mutually interacting, giving rise to

strange attractor or a regular one.
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CHAPTER 8

RESULTS AND DISCUSSIONS

The general conclusions derived from the present
studies. Future scope of the work is highlighted.



RESULTS AND DISCUSSIONS

Time series analysis, as described in previous chapters,
can be used to study nonlinear systems and is an effective method
from experimental point of view. We described certain
applications of the technique to different systems like human

brain, Asteroidal distribution and Saturn rings.

The analysis does not demand any equation of the state of
the system and hence is an efficient tool to study complex
nonlinear systems. As described at length, a pseudo phase space
is constructed from the discrete time series using the method of
delayed matrix. The matrix consists of m vectors in a
d-dimensional phase space with m2d. From the set of m vectors, a
qth order correlation integral in d-dimensional phase space,
qu(r) can be constructed. By varying q from -w to o, Cd(r) has
been calculated from which generalized attractor dimension D and
generalized Kolmogorov entropy Kq are evaluated. Do, D1 agd D2
are fractal dimension, information dimension and correlation or
second order dimension respectively of the attractor which

characterizes the nonlinear dynamics. Kz is known as second

order Kolmogorov entropy.

For a homogeneous system, Dc> = D1 = Dz and for a
nonhomogeneous system, D°>D1>D2 (Schuster 1984). D2 is the lower
bound of the Hausdorff dimension. Of all the generalized

quantities D and K, Dz and Kz are the most important parameters
q qQ

(Caputo and Atten 1987> which depend sensitively on the state of

the nonlinear system. Moreover, these quantities can be derived

easily from a time series and it is independent of the number of



data. Integer D2 value corresponds to K2=0 and will represent
regular dynamics, while a noninteger wvalue of D2 corresponds to
K2 > 0 will quantify the degree of chaos. For a completely
stochastic system K2 = o and D2 is not. defined. In this case the

plot slope - dimension will have slope unity.

The programme we used to evaluate D2 and Kz is given in
the appendix and was tested using a sinusoidal signal as the

data. Result yielded the values D2 = 1 and Kz = 0.

It has been found that the present algorithm is more
efficient than other methods like the box counting algorithm.
The technique has inbuilt mechanism to remove noise, and it also
‘differentiates between deterministic and nondeterministic

component.s of the signal.

If the SNR is very low, we should search for alternate
methods to remove noise from time series signals before applying
the algorithm. In chapter 3 we described such a method to filter
out noise from experimental data. This is an extension of the
method described by Broomhead and King [19861. The method has
been demonstrated by filtering a noise - embedded sinusoidal
signal. It has been found that the EEG is more or less free of
noise and hence filtering technique 1is not necessary for time

series analysis of EEG data.

In the thesis, various types of rhythms present in the
electrical activity have been described along with the dynamical
aspects of the neural system. A brief description of wvarious
types of time =scales present in the neural system is also

presented.

Our analyses show that D2 and Kz are sensitive to the
state of the neural system, of which K2 is more sensitive as
compared to Dz. In comparison with other systems like certain
astronomical systems, Raman attractor etc., the neural dynamics
has attractor with high D2 & Kz values. This explains the
complexity of the system.
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All previous works <(Babloyantz et al 1985, 1986) deal with
the analysis of only one of the channels of EEG and described the
dynamics only in terms of Dz' We have analysed all the eight
channels of EEG of a ‘“clinically” normal brain during rest and
meptal activity. It was found that in all eight channels, D2 is
fractal and Kz is positive. Analyses suggest the existence of a
collection of strange attractors in the system and Kz is very
high compared to other systems. Left and right lobes are not
symmetric with respect to the neural activity. In other words,

brain has asymmetric activities in left and right lobes.

The study of information flow in the system in terms of Kz
variation shows that, the information flow is unidirectional when
the person is immersed in some mental exercise. That is, the

random firings are suppressed when the person is undergoing a

mental exercise. Whereas, during the rest time, the random
firings become prominent, and unidirectional nature of
information flow disappears. The generalized dimension was also
calculated for both mental activity and rest condition. From
this the f{(a) spectrum was deduced. The fd{ad spectrum shows a

well defined double peak during both at rest and mental activity,

which suggests the existence of two attractors.

The present method of analysis gives the quantitative
measures D2 and Kz’ which can be used to quantify chaos. Hence,
D2 and K2 can be used as diagnostic tools since the degree of
chaos depends on the state of the neural system under various
pathological conditions like, epilepsy, migraine, tumour and

psychotic.

We analysed the EEG of an epileptic d{(grand mal> patient
during, before and after attack. The eighth channel ddeft
parietooccipital region> shows a steady variation in KZ. It can
be suggested that seizure 1s a defensive mechanism of the brain

against any alteration of the neural dynamics.
The other epileptic case, which we have analysed is that
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of a patient having both demylinated disease and epilepsy. In
this case also we found that 1eft parietooccipital region is more
sensitive. The EEG in this case has been recorded while the
patient had no seizure and the record indicated normal brain
activity. However, our analysis shows the abnormality in the
neural activity. This suggests the superiority of the present

technique over the conventional method of EEG analysis.

The analysis of EEG of a patient having headache (EEG
looks normal)> revealed the fact that the left frontal region is
the seat of abnormality. The Kz shows periodic activity in the
left frontal region as time evolves. In the case of Migraine
also, frontal region is found to be sensitive, and Kz shows large

variation in this region as time evolves.

The analysis of epilepsy, tumour and psychotic cases at
higher spatial resolution have also been carried out, by taking
EEG at different electrode configurations. The pattern of Kz
distribution varies for different pathological conditions.

The Kz value has been found to be low in the right
parietooccipital region, where the tumour is growing, which is in
the primary stage. Studies wusing both bipolar and monopolar

techniques show the same behaviour.

The K2 distribution in the psychotic case, shows a low Kz
value in the central region and high Kz in the frontal and
parietal regions, and thus creating certain segments in brain

activity. The K2 value is low in the left occipital region.

We have applied our analysis to two astronomical systems

viz., asteroidal belt and saturn rings.

The studies by Wisdom [1983] showed that there exists an
ordered and chaotic regions .in the asteroidal belt and 3:1
resonance is the boundary between these two. Power spectrum
analysis by Pratap [1977] showed that there are five dominant

frequencies present in the system, and there is a change of
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correlation from positive to negative at 311 resonance. This

result agrees with our studies in Asteroidal belt.

We have analysed the density distribution of asteroids,
and found that D2 is 5 and embedding dimension is 15. The Kz
value is close to zero. This shows that the system is more or
less completely ordered in the information sense and has very low

stochasticity.

In the case of Saturn ring system, we have analysed the
density distribution of matter <das a function of the distance
from the planet saturn), for a total span of 1.03 Rs, ie.,, from
C ring d{innermost ring) to the outer edge of A ring. We have
calculat.ed D2 and Kz for various ring and gap systems, as well as

for the entire ring system.

For all rings and gaps Dz is noninteger, and Kz is
positive but very low. For the Saturn ring system as a whole
also, the D2 is noninteger and K2 is positive. That is, the
system is chaotic both piecewise as well as, as a whole. The

chaotic behaviour of the total system as a whole is a consequence

of large number of interacting strange attractors, ie.,
chaos - inducing chaos, whereas in Asteroidal belt it may be the
case of chaos - inducing order.

FUTURE SCOPE OF THE WORK

The second order Kolmogorov entropy is identified as a
sensitive parameter to characterize the neural éystem. By
analysing the EEG of large number of patients with same type of
abnormality or disease, we can standardize Kz, for each
particular disease and can be used as a diagnostic tool. With
this analysis, we can identify different stages of a disease.
Also, we can develop the information flow pattern for

“clinically" normal brain as well as for affected brain. The
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change in the normal flow pattern can be used as a symbol of
abnormality. The flow pattern also enables us to identify the
mechanism of thought-processes in brain. If EEG is obtained with
higher spatial resolution such as 32 channel or 64 channel, we
can identify the localized effect of the brain, or detect which
part of +the brain is more involved in a particular activity.

This will amount to certain type of imaging of the brain.

Simulation of complete signal from a part of the data is
an interesting part of this analysis. By taking a part of the
signal one can develop the whole signal by following the method
by Parikh and Pratap [1990].

The neural system does not have an ideal equation. D2
gives the number of independent parameters required to describe
the state of the system. Thus by knowing K2 and Dz, we can
construct. certain model equations of the system by the method

suggested by Broomhead and King [1986]1.

We are now applying this analysis in Interplanetary
scintillations (PS>, and also in Raman system. The spatial
behaviour of stimulated Raman scattering in a medium can be
studied by analysing the spatial wvariation of amplitude of

stokes, antistokes and pump mode.

Developing the statistical mechanics of Neural system is a
very exciting work, which will be carried out in the near future.
Work in this direction has already been initiated by Parikh and
Pratap [1984]1 and Pratap [1988]. This can also be carried out in
the frame work of nonequilibrium statistical mechanics, as
employed by Pratap and Sreekumar [1989] in the study of a many

electron system.
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