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Preface

Einstein's general theory of relativity (GTR) is perhaps the profoundest the-

ory concerning the physical world with regard to its revolutionary content and

highly sophisticated mathematical apparatus necessitated by it. While most

theories of nature evolved as part of experimental and observational encoun-

ters with physical situations by innumerable scientists through generations, this

theory, in its complete form was conceived almost single handedly by this intel-

lectual giant and was much ahead of its time. Prospects of putting it to direct

test may ever remain poor, but the theory assumes a central role in interpreting

astrophysical and cosmological data. In fact, the perspective of mankind on the

cosmos was carried to unforeseen heights in so short a period in this century

mainly due to GTR.
On the other hand, cosmology has never enjoyed the same status as physics

or astronomy till recent times, partly due to its speculative nature and partly

due to the lack of adequate observational data. But during the past decade,

with the launching of `Hubble Space Telescope' and the `Cosmic Background

Explorer' (COBE) satellite, a wealth of information is pouring in from the deep

skies. But since we cannot experiment with the cosmos, one can only resort

to model-making and then to check how far the observational data agree with

the predictions of the model. The most successful cosmological model, with the

least amount of speculatory inputs and maximum consistency with observational

facts is considered to be the `standard' or the `hot big bang' model. The model

predicts an early hot phase for the universe, the relic of which is the cosmic

background radiation. In addition to background radiation, it predicts the

Hubble expansion and also the observed abundance of the light nuclei in the

universe.
However, there are certain problems in this picture, which are identified and

given serious attention in the past few years. Some of these are directly de-

pendent upon the simplifying assumptions taken and some of them arise while

trying to incorporate the ideas of particle physics theories into the standard

model. But there are problems like the singularity, horizon, flatness and cosmo-

logical constant problems which exhibit genuine inconsistencies in the model <<nd

require substantial modifications in it. One of the most widely discussed such

modifications to standard model is the `inflation', which brings in the possibility

of an exponential expansion of the universe in its early evolution. caused by the

potential energy of a scalar field. This scenario can successfully handle many

of the problems, but does not solve the singularity and cosmological constant

problems and also brings in a new `age' problem. Recently, some alternative
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cosmological models have gained considerable attention in the literature under

the title `decaying-A cosmologies'. They have a time-varying cosmological con-

stant, which helps to solve also the cosmological constant problem, in addition

to those ones inflation can solve.
In this thesis, we study the implications of a new cosmological model, which

has features similar to those of decaying-A cosmologies. Apart from the presence

of a tinge-varying cosmological constant, the model has an evolution and thermal

history quite close to that of the standard model. At the same time, it claims the

absence of all outstanding problems in that model and has very good predictions

for several measurable quantities. We arrive at this model by extending the

idea of a possible 'signature change' in the early universe, a widely discussed

speculation which involves some basic issues in the GTR.. This extension leaves

us in an unphysical universe, but we have noticed that a proper interpretation

of the theory will enable us to obtain an excellent cosmological model, with the

essential features as summarised above. For the purpose of comparison, we begin
the thesis by introducing the developments in the field of cosmology, starting

from the fundamentals. In the first two preliminary chapters, we review the
GTR, the standard model in cosmology, its successes, the problems in it and also

the most successful of those attempts to solve these problems, namely, inflation

and decaying-,A models. Following this, we present the new cosmological model

in Ch. 3 and discuss its important features like thermal evolution, avoidance of

cosmological problems, prediction of observable quantities, etc..
The fourth chapter is devoted to quantum cosmology. Quantum cosmology

is the result of attempts to reconcile GTR and quantum mechanics, the other
major breakthrough in physics during this century. This subject, which is still in

its infancy, has a more direct bearing on the conceptual foundations of physics.
One route to this goal is to write the wave equation for the universe (Wheeler-

DeNitt equation). We briefly review the achievements in this direction and

then apply the procedure to the new cosmological model. It is shown that the

programme works exceedingly well in the new context.
The concluding chapter of the thesis presents a discussion of the new model

in comparison with the other cosmological models.
Except in one subsection, we use natural units (in which h = c = ks =

1) throughoi,'; in the derivations. But when explicit calculations are made,

we convert the final results into conventional units with the help of a table.

Notations, sign conventions etc. are adopted mostly the same as that in [1].

Specifically, we use Latin indices i, j, .. = 0, 1, 2, 3 and Greek indices µ, v.. _

1,2,3.
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Chapter 1

Relativistic Cosmology

Opic in 1922 measured the distance to the Andromeda nebula to be nearly

equal to 450 Kpc, which when compared to the measured radius ti 8 Kpc of

our own Milky-way is enormous. This was conclusive proof of the fact that

those observed spiral nebulae like that of Andromeda are in fact island uni-

verses (galaxies), with a size comparable to that of the Milky-way galaxy. Also

it was the first believable evidence that the universe extends to scales well above

that of our galaxy. The emergence of modern observational cosmology, with the

notion of galaxies as basic entities distributed over space, can be traced back to

this event. Around the same time, Slipher has measured the spectral displace-

ment of forty-one nearby galaxies and thirty-six amongst them showed redshift.

In 1929 Hubble, on the basis of Slipher's observations, proposed a linear relation

- Hubble law - between the distances to galaxies and their redshifts. The next

landmark in observational cosmology was the discovery of the cosmic microwave

background radiation (CMBR) by Penzias and Wilson in 1965. Detailed obser-
vations on these three phenomena [2], namely, distribution of galaxies, variation

of galaxy redshifts with distance and CMBR still remain the pillars of observa-

tional cosmology.
Clearly, these observations require interpretations for any progress to be

made. The best thing one can do is to make a model by extrapolating tested

theories to the realm of cosmology and compare the predictions of the model
with more detailed observations. However, this procedure involves certain ju-

dicious choices and assumptions. At the range of scales involved, gravity is the

only known interaction to be counted and the most refined and tested theory

of gravity is Eintein's general theory of relativity (GTR) [1]-[6]. We discuss

only models which use GTR or sonie slight variants of it and hence a very brief

review of this theory is presented in Sec. I.I. Again, the application of GTR
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to cosmology requires some simplifying assumptions for any predictions to be
made. First of all, we assume the cosmological principle to be valid; i.e., at any

given cosmic time, the distribution of galaxies in the universe is assumed to be
homogeneous and isotropic at sufficiently large scales and also that the mean

rest frame of galaxies agrees with this definition of simultaneity. In Sec. 1.2, we

review models of the universe obeying the cosmological principle, with different

models having different matter content. The last section in this chapter is de-

voted to a brief review of the most popular, standard hot big bang model. We

explain how the model accounts for the observed facts at large, for the benefit

of comparison with the new cosmological model to be presented in this thesis.

1.1 General Theory of Relativity

The conventional route to GTR is to start from the observed phenomenon of the

equality of gravitational and inertial masses of objects and then to elevate this

equality to the `principle of equivalence'. But this theory, which is primarily a
geometric theory - in the sense that gravitational field can be represented by the

metric tensor and freely falling bodies move along geodesics - can be deduced

also from an action principle. For our purpose of introducing a new cosmo-

logical model based on a complex metric, it is convenient to adopt the latter

approach. We first derive, by varying an action, the equations of motion and

the field equations in GTR, making explicit the form of the energy-momentum

tensor for various types of matter. Then we make use of the opportunity to

introduce Eintein's famous cosmological constant, as it plays an important part

in our subsequent discussions. Lastly, by using the :3+1 split of spacetime, it

is described how to identify a suitable Lagrangian density in this case, so as to

enable writing the field equations as Euler-Lagrange equations.

1.1.1 Field Equations

GTR is a theory of gravity which follows by requiring that the action [1], [3]-[6]

I = 1 R(g k ) J d4x + A vl---g d'x - IG + IMF (1.l)
16^r CT J
^ thebe stationary under variation of the dynamical variables in it. I is called

Einstein-Hilbert action. The first integral is the gravitational action IG where

R(g k) is the curvature scalar, gik are the covariant components of the metric
tensor of the 4-dimensional spacetime, defined by the expression for the line

element



ds2 = gikdxidxk (1.2)

and g - det(gik). R(gik ) is given by

R = g'kRik, (1.3)

where the gik are the contravariant components of the metric tensor and Rik is

the Ricci tensor

lmR
MR = = M

(1 4)limkik g ilk.i lk'

In the above, Rzlk is the contracted form of the Riemann tensor

.

l
M

l l
Grim l n l narik

r+ r r - r (1 5)
imk

_
imnknm ik

axm Dxk
.

and lastly, the Christoffel symbols F ik , in terms of the metric tensor are defined

as

I 1 lm
Tik = 29

agmi + bgmk Dgik

dxk Dxi Ox'-

In the second integral in Eq. (1.1), which is the matter action IM, A corre-

sponds to the matter fields present. A general expression for A is of the form

A = A(^A, OA, xi), (1.7)

where O (A = 1, 2, 3..) are a series of functions of spacetime coordinates xi and "

,i " refers to differentiation with respect to xi. For example, the electromagnetic

field should have

1 FikFik. F''ik = Ak i - Ai k (1.8)
Aem -

167r

Here, Ai are the scalar and vector potentials. For the scalar field 0 which

appears in particle physics theories,

A = 1 ik 00 V (0),-̂̀ - (1.9)
2g ox'i oxk

where V(0) is the potential of the field. But for matter in the form of particles,

];tij is written in a form different from that in Eq. (1.1). As an example, consider

particles interacting with an electromagnetic field. We write the matter action

for the system as
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IM,particles = - L Ina

a

a - 1: ea J Ai dxi + J Aem -g d4x, (1.10)

a

where ma is the mass, ea the charge and the summation is over all the particles

a. If the action I in (1.1) is minimized by varying only the position of the

worldline of a typical particle, keeping its endpoints fixed, we get the equation
of motion of the particle in the combined gravitational and other fields with

which it interacts. In the above example, the required equations of motion for

the particle are

d2xi dxk dxl ea i dxl
1.11+ = Fl

Fkl dSa dSa mads2 dsa

On the other hand, the equations of motion for the fields. i.e., the field
equations are obtained when we minimize the action I by varying only the
fields. For example, if we minimize the action with I,,1 given by equation (1.10)

by varying Ai, the Maxwell equations for the electromagnetic field are obtained:

F;^k = 47rjk. (1.12)

Here refers to covariant differentiation with respect to xi In fact, the form

(1.8) for Aem was chosen in such a way that we obtain this result.
Lastly, the Einstein field equations, i.e., the equations of motion for the

gravitational field can be obtained by minimising the action I by varying the

metric tensor gik. Note that this is the only variation which will affect IG. It

can be seen that under the variation gik --> gik + 69ik,

SIG = 1 (Rik _ IR gik) bgik d4x. (1.13)
167rG

The variation in the the matter action IM can be written as

(S IM 1 1 T
ik

bgik d4x. (1.14)=- - ^

When A in ( 1.1) is of the general form (1.7), Tik , the energy - momentum tensor

can be seen to be of the form

Tik = 2
1 0A vl---g ) _ OA _ l A

J
ik

09ik,1 l 199ik 2
(1.15)

For A = A,,, as in (1.8), this gives
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7 ik
47r

( I mnl' mngik - I,liF tk ) ( 1.16)CM 4

For A= A,,asin (1.9),(1.15)gives

= gilgkm ao (go ikA^ (1.17)
dxl (9x-

For matter in the form of particles, as in the case of (1.10), with the four-

momentum pi and the energy of the particle E.1

I

i k 6l
( 7. - x 1.18= ^' a)• ( )' krtac l es papaT

a a

For a, perfect fluid, i.e., fluid having at each point a velocity vector v such that

an observer moving with this velocity sees the fluid around him as isotropic, the

above energy-momentum tensor can be cast in the form

Tperfect fluid = (p + n) Ui Uk -
pgik (1.19)

where Ui - dx' / ds.
Combining (1.13) with (1.14) and putting SI = SIG + 61M = 0, we get the

Einstein field equations as

Gik =_ Rik - ^gikR = 87fGTik.

The Einstein equations also imply the energy conservation law

(1.20)

TT ;l = 0. (1.21)

1.1.2 Cosmological Constant

It is now instructive to see how IG is chosen in the form as in (1.1) [1]. As usual

in writing variational principles, the action shall be expressed in terms of a scalar

integral f C g d",r, taken over all space and over the time coordinate x0 = t

between two given values. Since the attempt is to describe the gravitational

field in terms of gik, which are thus the `potentials', we shall require that the

resulting equations of the gravitational fields must contain derivatives of gik no

higher than the second order. For this, G should contain only gik and its first

derivatives. But it is not possible to construct an invariant g (under coordinate

transformations) using Pik and the Christoffel symbols F 1 (which contain only

first derivatives of gik) alone, since both gik and F', can be made equal to zero
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at a given point by appropriate coordinate transformations. Thus we choose

R in place of 9, though R contains second derivatives of gzk. This is sufficient

since the second derivatives in R are linear and the integral f R d4x

can be written as the sum of two terms: (1) an expression not containing the

second derivatives of gik and (2) the integral of an expression in the form of

a four-divergence of a certain quantity. By using Gauss's theorem, the latter

can be transformed into an integral over a hypersurface surrounding the four-

volume over which the integrations are performed. When we vary the action,

the variations of the second term vanish since by the principle of least action,

the variation of the field gik at the limits of the region of integration are zero.

Thus f R d4x can function as the gravitational action Ir.

However, as noted by Einstein himself, one can modify IC as

IG
= 167rG 1(R + 2a) d4x (1.22)

without violating the requirements on the action as described above, where A
is some new constant. Einstein used a very small .\ to obtain a stationary
universe. This constant is known as the `cosmological constant' since when it
is small, it will not significantly affect the solutions, except in a cosmological
context. When Einstein came to know about the observational evidence for the

expansion of the universe, he decided to do away with it and described it as
`the greatest mistake in his life'. But this term .A is one of the most intriguing
factors in current theoretical physics. It was later recognised that A can also be

a function of x' [7].
With the introduction of \(x°), the Einstein equation (1.20) can be written

as

Rik - 2R9ik - A(xi)gik = 8 GTik. (1.23)

In view of its application in cosmology, the a-term is usually taken to the right
hand side of this equation, after making a substitution

Pa 87G'

so that

Rik - 1 R g`k = 87rG(T` ' + gag`k).2
(1.24)

8



Using Eq. (1.19). one can see that the term p,vglk in the above equation is

identical to the energy-momentum tensor for a perfect fluid having density pA

and pressure 7),\ z-- -/q,\.

1.1.3 Lagrangian Density

In the above subsection, we have seen that since the Ricci scalar R contains

second derivatives of gik with respect to spacetime coordinates, the action will

contain second derivatives. But in fact, an alternative expression for R, which

does not contain any second derivatives of gik can be found [4] (and references

therein) using the Arnowitt-Deser-Misner (ADM) 3+1 split of spacetime as

R=K'2 -JJ7v-3R. (1.25)

This differs from the earlier expression (1.3) for R by a possible four-divergence.

In the present- case, we have conceived a foliation of spacetime into space-like

11 ypersurfaces Et labelled by t, which is some global time-like variable. 3R is

the scalar curvature of this 3-dimensional surface, Kµ„ are the components of

the extrinsic curvature of Et defined by

1 c^h.µv
N

(1.26)

and

Ii j,v = 2N
( NIM + KIjN - at

K = hµVKµv. (1.27)

Nu is called the shift vector, N, the lapse function and ht,v = nµn.v - gu,v (where

11p is the vector field normal to E2) is the metric induced on this 3-space with

_g = A' h.. " I " denotes covariant differentiation with respect to the spatial

metric 11A,,,. The line element (1.2), in terms of the lapse N and shift Nµ is given

as

ds2 = 9ikdxi(lxk = (N dt)2 - h.w(Nurlt + dx1`)(Nvdt + (xv) (1.23)

so that

N2 - A, pr hµv -Nv
gik -Nj) -12,µv

and

(1.29)

9



1 _N"
9ik_ N2 Nz

- Nµ NF`NU - hµ
N2 N2

(1.30)

Thus the Lagrangian density to be used in the gravitational action IG is

,CG = - R 167fCi = I v/-h N(K2-K
µv

Kµ"_ 3 R). (1.31)
167rG

The changes corresponding to that in the metric tensor are to be imple-

mented in the matter action too. For example, in the case of a scalar field, Eq.

(1.29) and (1.30) are to be used in the matter Lagrangian density

I ik e0 0y
,C - -9n`4 vl,--g

^29 Oxi Oxk
(1.32)

One can write the Euler-Lagrange equations corresponding to variations with

respect to N'', N and other dynamic variables in the total Lagrangian density

tG + Lnr = G. (N' and N are not dynamical variables; their time derivatives

do not appear in L. In fact, these are Lagrange multipliers so that after the

variation one can fix some convenient gauge for them.) The equations obtained

by varying with respect to N and Nµ are `constraint equations' and they contain

only first derivatives. Variation with respect to the other dynamical variables

leads to field equations. The resulting equations can be seen to be the same

as those obtained from the Einstein field equations (1.20). We shall make this

explicit using specific examples in the next section.

1.2 Homogeneous and Isotropic Cosmologies

This section serves two purposes. First, it illustrates the formalism of GTR sum-

marised in the last section by applying it to cosmology. But more importantly, it
introduces the general framework of models which obey the cosmological prin-

ciple [1]-[6]. Friedmann models form the basis of the standard hot big bang
model whereas models with a minimally coupled scalar field paves the way for
the inflationary cosmological models. We obtain the field equations for these
models in the conventional way, but in the last subsection, we demonstrate their

derivation using the Euler-Lagrange equations.
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1.2.1 Friedmann Models

If the distribution of matter in space is homogeneous and isotropic, we can

describe the spacetime by the maximally, spatially symmetric Robertson-Walker

(ENV") metric and obtain an important class of solutions to the Einstein field

equations that are of much significance in cosmology. The RW line element is

given by

r

1

d

-

r2 J
ds2 = dt, 2 - a2(t ) IIL r^(dB2 + sine © d02) (1.33)

k;r2

a(i) is the scale factor of the spatial expansion and k = 0, +1 or -1 which, in
the respective order, corresponds to flat, positively curved or negatively curved

spacelike hypersurfaces of constant I. Let us apply the formalism of GTR. to

this simple case.

Evaluating R and Rik using (1.3) and (1.4), the Einstein equations (1.20)

can be written for the perfect fluid described by (1.19) in a comoving frame

with U ` = (1, 0, 0, 0), which describes a homogeneous and isotropic distribution

of matter as

a2 k S7rG
a2 +

_

a2 3 p'

a a2 k
2- + - + - = -87rGp.
a a2 a2

Differentiating (1.34) and combining with (1.35) gives

d(pa3)
+3p)a3=0

da

or equivalently

(1.34)

(1.35)

(1.36)

P = -3
a
(p+ p), (1.37)

a,

which is the conservation law for energy-momentum (1.21) in this case. Com-

bining (1.:39) and (1.35) in a, different way, we get, another useful result

^i TG'(p
+ 3 I) ). (1.35)

a 3

The solutions of these equations require, however, some additional infornia-
t,ion in the form of an `equation of' state' relating p and p. In most commonly
encountered problems, we can write this relation as

11



p=wp. (1.39)

It can be shown that for extreme relativistic matter, w = 1/3 and for nonrela-

tivistic matter (dust), we have -w = 0. These equations (1.34)-(1,39) were first

obtained and studied by A. Friedmann and models based upon these are usu-

ally called Friedmann models. They predict either an expanding or contracting
universe.

Eq. (1.36) can immediately be solved to obtain

p OC ll-3( 1+U') (1.40)

If there are more than one noninteracting component in p that are separately

conserved, (1.36) and hence (1.40) are applicable to each. For relativistic matter,
the density prn,r a a-4 and for nonrelativistic matter, Pm,nr oc a-3. The variation
of p with a for other values of w can also be deduced from (1.40); for w = -1/3,
p oc a-2 and for w = -1, p is a constant.

To study the variation of a with t, we make a few definitions. The quantity

.H(t)
a

(1.41)

is called the Hubble parameter which measures the rate of expansion of the
universe. The deceleration parameter q(t) is defined through the relation

q(t)H2(t)

a

and the critical density as

2
PC S7rGH

Another important quantity is hie density parameter

S2(t) _ P
Pc

Using these definitions, Eq. (1.34) can be written as

(1.42)

(1.43)

(1.44)

52-1 = --. (1.45)
a2H2

The k = 0 case is a special one where Q = 1 or p = PC. Using (1.40) in (1.34)
gives the solution in this case as

12



a(t) a t2/s (1+w). (1.46)

For the Ic _ +1 case, f1 > 1, q > 1/2 and the universe expands to a maximum

and then recollapses. For k = -1, f1 < 1, q < 1/2 and it expands for ever. The

k = 0 case is critical in the sense that it just manages to expand for ever.

de Sitter Models

Instead of matter , if the RW spacetime contained only a cosmological constant,

Eq. (1.24) (with T^k = 0) leads to

a2 k 87rG
D\ (1.47)a2 a2 3 1

a a2 k
2-+-+-=87rGp,\•
a a2 a'2

(1.48)

The field equations are thus similar to a Friedmann model with equation of

state p,v _ -p,v; i.e., with wo = -1. Thus a positive (negative) pa has a repulsive

(attractive) effect so that we have an accelerating (decelerating) cosmic evolu-

tion with ct, > 0 (^z < 0). It is the repulsive force due to a constant positive pa,

which Einstein ina,de use of in his stationary universe model to prevent it from

collapsing due to other matter distributions present.

Equations (1.47) and (1.48) are particularly simple to solve in the flat case

with k = 0. The solution, with H - (87rGp,v/3)1/2 = constant, is obtained as

a(t) a eHt

If we define

^8 77 GP'\ k
tanhH

87rGpa
3 t ,

(1.49)

(1.50)

a solution can be found also for the k, = +1 cases. For k = +1,

a(t) o H-' cosh Ht (1.51)

and fork=-1,

a(t) rx H-' sinhHt. (1.52

13



The model with positive p,y is called the de Sitter model, after W. de Sitter, who
solved it for the first time. The model with pa negative, is called the anti-de
Sitter model.

1.2.2 Models With a Scalar Field

Another special case of interest is that of a RW spacetime filled with a minimally
coupled scalar field 0, whose energy-momentum tensor is given by (1.17). With
the assumption that ¢ is spatially homogeneous and depends only on time,
Einstein equations can be written in a similar manner as that in (1.34)-(1.35)

a 2 k

alt(L2 =

87rG (^2
3 + 17(0) (1.53)

2 02
2a +a2 +a =-87rG[ -V(q)]. (1.54)

The equation of motion for ^ can be obtained by using the conservation law

for energy-momentum (1.21) as

+3a0+d1d) =0.
(1.55)

It shall be noted that when the field is displaced from the minimum of its po-

tential and when q2 < V(0), Eq. (1.53) and (1.54) are similar to the Einstein

equations (1.47) and (1.48), written for the spacetime containing only a cosmo-

logical constant (where we identify V(¢) = p,a). In this context, pa is usually

called the vacuum energy density. The solutions for spacetimes which contain

a cosmological constant in addition to matter were studied by G. Lemaitre and

such models are generally referred to as Friedmann-Lemaitre-Robertson-Walker

(FLRW) cosmologies.

1.2.3 Field Equations as Euler-Lagrange Equations

Lastly, let us demonstrate how the Einstein equations in different models are
obtained as Euler-Lagrange equations under the variation of the action. For the
RAV spacetime, under the ADM 3+1 split, Nµ = 0, K, = -(1/N)(^/a)h,,,,
31? = Gk/a2,

6 a2 6k
R=---

N2 a2 a2
(1.56)
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and the action , using ( 1.31) and ( 1.32), is

I = 1u + IM f(rc + GAr)d`'x

1 6ja2 6k._ f ,v ^^. - - - - -
167rC N2 cal a2

Integrating the space part, we get

+ - VW ) d4x. (1.57)(2N2 I

1= 272 f1
fLdt.

3
ll1 6 a 2 6k ^ 2

7r ( 2a2 dt[l6G Na2)2N ]
(1.58)

Using the Lagrangian L, we may write the Euler-Lagrange equations for the

variables N, a and 0 and fixing the gauge N = 1 to obtain the same Einstein

equations (1.53)-(1.55).
Similarly, for a de Sitter model which contains only a cosmological constant,

the Lagrangian can be taken to be

2
L = 27r2Na3

6 a - 6k

H
(1.59)H 167rC N2 a2 a2

-

The Einstein equations (1.47) and (1.48) are obtained on writing the Euler-

Lagrange equations corresponding to variations with respect to N and a, in the

gauge ' = 1.

1.3 The Standard Model - Its Successes

'hhe standard model [2]-[6] claims to have the least amount of specula . tory inputs

into cosmology , while having maximum agreement with observations . It is based

upon the following assumptions : (1) At the very large scales of the size greater

than clusters of clusters of galaxies , the universe is homogeneous and isotropic

and hence is describable by the RW metric and (2) It is filled with relativistic/

nonrela.tivistic matter . Then the fundamental equations governing the evolution

of the universe are those obtained earlier (1.:34 )-( 1.39) with w = 0 or 1/3. These

models predict an expanding or contracting universe and belong to Friedmann

cosmologies . We now discuss the three major success stories of the model,

juxtaposing them with the current status of observational cosmology.
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1.3.1 The Hubble Expansion

The 1929 discovery of a linear redshift-distance relation for galaxies by Hubble,
if interpreted as clue to Doppler effect, establishes the case for an expanding

phase for the universe at present and was a primary piece of evidence in support

of the standard model. At present, the expansion rate, characterised by the
Rubble parameter (1.41) is in the range Hp = 100 h Km s-1 Mpc-1 ; h =
0.7 + 0.05. (The subscript p refers to the present epoch.) The Hubble radius

11 ^-1 0.9 x 1028h-1 cin 2.9 x 103h.-i Mpc gives a measure of the size of the
presently observed universe. The deceleration parameter defined by (1.42) is
estimated to be lying in the range -0.5 < qp < 2. Also the density parameter,
as per current estimates is given by 0.1 < S2p < 2. The age of the universe,

measured by direct observational dating techniques is tp 5 x 1017 s. Though
these observations are not precise enough, they however confirm the Hubble

expansion of the universe.

The observed redshift z of galaxies can be related to the scale factor ci as

a(tp)+ z=
a(tl)

(1.60)

where t1 is the time at which the light is emitted. If we assume that the universe
contains both radiation and matter , according to equation ( 1.40), before some
time teq in its history, radiation will dominate over matter . In the standard
cosmology, teq is estimated to be 1.35 x 1011-3/2h-3 s. For a universe
with flat space sections ( i.e., k = 0), (1.46) gives a cx t"2 for the relativistic
era and a oc t2/3 for the nonrelativistic era. Assuming that the changeover is
instantaneous , we can write

a = At2/3, t > teq (1.61)

a = Btl/2, t < teq. (1.62)

Matching the two relations at t = teq, one estimates

B t2/3
= - ti 0.7 x 102SI-1/'h.-1/2s1/6. (1.63)1/2A tCq

This value will be of use in evaluating expressions of the type (1.60) in the

standard flat models. In both the other cases with k = +1, we can regard the
universe as nearly flat when a was smaller than ap by a few orders of magnitude
(See flatness problem: Sec. 2.1).
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1.3.2 Cosmic Microwave Background Radiation

Another important milestone in the development of the standard model was

the discovery of the cosmic microwave background radiation (CMBR) by Pen-

zias and Wilson in 1965. The spectrum of CMBR is consistent with that of a

blackbody at temperature Tp ti 2.73K. It endorses the view that there was a

more contracted state for the universe, which ought to have been denser and
hotter than the present. According to the standard model, the universe cools

as it expands and when the temperature reaches T -_ 4000K, matter ceases to

be ionised, the electrons join the atoms. Radiation is then no more in thermal

equilibrium with matter (matter-radiation decoupling) and the opacity of the

radiation drops sharply. The radiation we see now as CMBR is conceived as

the relic of that last scattered at the time of decoupling. In fact, the CMBR
was predicted by Gamow in 1945 and its discovery, perhaps, is the strongest

observational evidence in support of the standard model.

We can derive an expression for the total relativistic matter (radiation) den-

sity p,, in terns of temperature by the following argument [4]. (We use conven-

tional units in this subsection.) For an ideal gas, there are 1/h3 number of states

located in unit volume of µ-space, where h is the Planck's constant. The num-

ber of states in volume V with momentum less than P will he (4/3)7rP3V/h3.

The occupancy of a single state is

I
c(EA(P)-t&A)IkTA ± 1

+(-) signs correspond to Fermi (Bose) statistics, I1A is the chemical potential

and TA is the temperature of the species A which is assumed to be in equilibrium

and EA(P) = (P2c2 + mn2c`1)1/2, the energy of a particle in the species A. Then

the number of particles of type A with momentum between P and P + dP per

unit volume of space is

gA P2dP
(1.64),2A(p)dp =

),r2h. 3 e(EA(P) - 9A)/k7A + 1

where ga is the number of spin degrees of freedom . In the extreme relativistic

(TA >> " A) and nondegenerate (TA > µA ) limit, the energy density, which

corresponds to species A is

PA = Jo EA(P)nA(P)clP = gAaaTA ( Bosons) ( 1.65)

= (7/8)gAaTA ( Fermions) (1.66)
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where a _ 7r20 /:30h3c3 = :3.782 x 10-is erg m-3 K. The total energy density

contributed by all the relativistic species together can be written as

prn,rC2 = gtoaT4, (1.67)

where

ytot = > gA(T /T)4 + > (7 /8)gA (TA/T)4 (1.68)
(.4=Bosons ) ( A=Fermions)

is the effective number of spin degrees of freedom at temperature T. In the very
early universe , gt,,t is evaluated to be nearly equal to 100.

The expression for prn , r as given by ( 1.67) is a reasonable speculation if
we agree to look upon the CMBR , as the relic of a hot early universe. To
obtain another useful result in the study of the thermal history of an expanding
universe, we apply the second law of thermodynamics, in its familiar form, to a
physical volume V = a3;

AT dS = dE + pdV = d(pc2a3) + pd(a3) (1.69)

and also use (1.36), which is a statement of the first law of thermodynamics. It
is easy to see that

(IS _ 1 d (pC2(l3)
+ p d (a3) J = 0. (1.70)

dl kT dt dt

This implies that the entropy per comoving volume element of unit coordinate
volume V = a3, under thermal equilibrium, is a constant. i.e.,

2

S = (Pck.T p) a3 = constant. (1.71)

Thus in the standard model, the universe expands adiabatically. Eq. (1.67)
implies that for radiation with pm,,r a a-', aT is a constant. In the relativistic
era, for a k = 0 universe, this may be used to write

r2
= 3c2

t 327r - gtot /2T
-2

The times

(1.72)

at which radiation reaches various temperatures can be evaluated
using this expression.
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1.3.3 Primordial Nucleosynthesis

The third important success of the standard model is the prediction of pri-

mordial ntic, leusynthesis [3]-[6]. According to this theory, when the age of the

universe was of the order of 1 s, the temperature was of the order of 1010 K

and the conditions were right for nuclear reactions which ultimately led to the

synthesis of significant amounts off) , 3IIe, 'He and -'Li. The yields of these light

elements, according to the model, depends on the baryon to photon ratio q and
the number of very light particle species, usually quantified as the equivalent

number of light neutrino species N. The predictions of the abundance of the

above four light, elements agree with the observational data provided the free

parameters r/ and N. in the theory have values in the range

2.5 x 10-10 < 71 < 6 x 10-10N. < 3.9 (1.73)

In turn, if we accept the present abundance of light nuclei, the density parameter
for baryons QB may be predicted from the above to be lying in the range

0.01 < Qs < 0.15, (1.74)

which agrees with measured values. Furthermore, the bounds on N„

N„= 3.0f0.0? (1.75)

agree with particle accelerator experiments.
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Chapter 2

Problems and Solutions

2.1 The Standard Model - Problems

The three major observational facts. namely, a linear redshift- distance relation,

a, perfect blackbody distribution for CMBR which corresponds to a more or less

uniform temperature and the observed abundance of light elements have clearly

established a case in favour of the standard, hot big bang model. However, this

is only a, broad brush picture and there are several loose ends to be sorted out

when we go into details. There are issues like the formation of structures etc.,
which call for refinements of the theory. But here we focus attention on another

class of puzzles, usually called `cosmological problems', which deserve special

attention since they indicate the possible existence of some inconsistencies in the

standard model and hence do require substantial modifications in its underlying
postulates. The most serious among them are the following.

Singularity Problem

The assumptions in the standard model (See Sec. 1.3) are in tune with the
validity of the strong energy condition p + 31) > 0 and p + p > 0. This, when
counhiued with some topological assumptions and causality conditions lead to

strong singularity theorems which imply that, a singularity, where the geometry

itself breaks down, is unavoidable. In the cosmological context, this singularity

corresponds to the instant of creation, the big bang, where quantities like matter

density, temperature, etc., take unbounded values. The universe comes into

existence at this instant, violating the law of conservation of energy, which is

one of the most cherished principles of physics [8]. This is called the singularity
problem.
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Flatness Problem

Froin equation (1.45), which may be written in the form

,
Q - 1 = 1 2. 1

87rc Pat
3 k

it is easy to see that for Q being close to unity, IQ - 11 grows as a2 during

the radiation dominated era (p a a-4) and as a in the matter dominated era

(p a a-3). Thus since 52(tp) is still of the order of unity, at early times it was

equal to 1, to a very high precision. For instance

52(10-43 s) = 1 + O( 10-57),

52(1 S) = I ± O(10-16).

This means, for example, that if SZ at the Planck time tpi = 5.4 x 10-44 s was
slightly greater than 1, say 52(10-43) s= 1 + 10-55, the universe would have

collapsed millions of years ago. The standard model cannot explain why the

universe was created with such fine-tuned closeness to Q = 1 [9]. This is the

flatness problem.

Horizon Problem

The CIM4BR is known to be isotropic with a high degree of precision. Two mi-

crowave or infrared antennas pointed in opposite directions in the sky do collect

thermal radiation with ^T/T < 10-5, T being the black body temperature. In

the context of the standard model, this is puzzling since these two regions from

which CMBR of strikingly uniform temperature is emitted cannot have been in

causal contact at any time in the past [10]. The problem can be explicitly stated

as follows. According to the standard model, the proper distance to the horizon

of the presently observed universe is of the order of HP 1. Since distances scale

as a(t), at any time in the past, say tg, the size of the same part of the universe

was [a(ts)/a(tp)]HP 1. But the distance a light signal can travel by the time t,

is equal to the proper distance to the horizon at that time; i.e.,

t, dt
(2.2)d^^^,, (ts) = a(ts) J a(t)

If the presently observed part of the universe was to be in causal contact at ts,

a necessary- (though not sufficient) condition is

99



C^hor (/s) > a(`S) H- 1 (2.3)
a(tp)

The isotropy of the CMBR., which was travelling unobstructed since the time

of decoupling (t1), indicates that the presently observed part of the universe

was in causal contact at least by that time. Hence, one would expect the

above condition to be satisfied for some time is < tdeC. In the standard model,

t,1F 1013 s and the time at which the universe changes from relativistic to

nonrela.tivistic era is teq 1011 s. Using these and also some typical values

S2 = 1, h = 3/4 and tp = 5 x 1017 s, Eqs. (1.61)-(1.63) will help us to evaluate

both sides of condition (2.3). It can be seen that the right hand side of this

condition is greater than the left by a factor of 2.5 x 107/is/2 for is < teq and by

a factor of 0.63 x 10`'/[(te92/40) + 315/3 - 3te93] for is > teq, thus violating the

condition. For is = teq, this ratio is approximately equal to 80 and for is = tdec,

it is 10. This means that the presently observed part of the universe was

not, even in causal contact at the time of decoupling. Yet the surface of last

scattering of radiation appears very much isotropic. This is the horizon problem.

Further, for the successful prediction of the primordial nucleosynthesis, the

universe has to be homogeneous at least as early as ti 1 s. The condition (2.3)

is then violated by a, very wide margin.

Problem of Small Scale Inhomogeneity

The assumption in the standard model that the universe is homogeneous and

isotropic is justifiable at least in the early epochs, before the matter -radiation

equality. The remarkably uniform temperature of CMBR on all angular scales

upto quadrupole, is ample evidence for this. But recent measurements show

anisotropies (of the order of 10-5 or so) in CMBR in a systematic way and
these anisotropies directly sample irregularities in the distribution of matter

at, the time of last scattering. It, is believed that once the universe becomes
matter dominated, small density inhomogeneities grow via the Jeans instability.

Density inhomogeneities are usually expressed in a Fourier expansion

6P(1) 1
J

bk ex ha )d3k, (2.4)
P (2w )3

where p is the mean density of the universe, k is the comnoving wave number

associated with a given mode and Ok is its amplitude. So long as a density

perturbation is of small magnitude(i.e., bp/p < 1), its physical wave num-

ber and wave length scale with a(t) as kphys = k/a(i), Aphys = a(t) x 27r/k.
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Once a perturbation becomes nonlinear, it separates from the general expan-

sion and maintains an approximately constant physical size. The inhomogeneity

at present is: stars (bp/p 103°), galaxies (Sp/p ti 105), clusters of galaxies

(5p/p ti 10 - 103), superclusters or clusters of clusters of galaxies (6p/p 1)

and so on. Based upon this fact that nonlinear structures exist today, and the

fact that in the linear regime fluctuations grow as a(t) in the matter dominated

epoch, we can calculate the amplitude of perturbations that existed on these

scales at the epoch of decoupling. It should be possible to account for the

anisotropies in the CMBR detected by the COBE satellite on this basis. The

problem with this scenario of small scale inhomogeneity is that in the standard

model, last scattering occurred at a redshift of around 1000 with the Hubble

radius at that time subtending an angle of only around 10, while CMBR shows

anisotropies on all angular scales upto the quadrupole [4].

This problem is closely related to the horizon problem in that if one imagines

causal, microphysical processes acting during the earliest moments of the uni-
verse and giving rise to primeval density perturbations, the existence of particle
horizons in the standard cosmology precludes production of inhomogeneities on

the scales of interest.

Problefn of the Size of the Universe

If we follow the standard evolution, the size of the comoving volume corre-

sponding to the present Hubble volume at the Planck time tp( can be evaluated

using (1.61) (1.63) as 10-'' cm. This is much greater than the Planck length
1,,, = 1.616 x 10-33 cun, the only natural length scale available. This is the

problem of the size of the universe [11].

Entropy Problem

Most of the entropy in the universe exists in the form of relativistic matter. The

radiation entropy in the present Hubble volume may be evaluated using (1.67)

in (1.71) as

s 4 H 88 (2.5)_ - (Pn11r )
T 3 P

with gt„t. ti 2 and Tp = 2.73 K. The entropy at tpj, again if we follow the

standard evolution, will be the same as S. Where do such large numbers come

from, is the entropy problem [11].
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Monopole Problem

This is another problem closely related to the horizon problem. The Grand

Unified Theories (GUTS) predict that as the universe cools down and the tem-
perature reaches a value ti 102s K, a spontaneous symmetry breaking occurs
and as a, result, magnetic monopoles are copiously produced. However, no such

monopoles have ,vet been detected . This is the monopole problem [1.2].

The monopoles which are expected to be produced are of mass 2 x 10-8

g. At, the end of the GUT epoch ( t,), we expect at least one monopole per

horizon size sphere to be produced . The horizon radius at t, is given by 2t,

The radius of the same part , of the universe at , present is dhor(to)a(tp)/a(to).

Thus the present number density of monopoles will be of order

nmo,aopolr (tp ) ti 1 t 3 (2.6)

3 [dhor( tc ) a(n)^

With T(G) 1028 K and dho ,.(to) = 2to 10-26cm , we can evaluate (with

(I DC T` and T, = 2.73 X),

?dmonopolr(tp) ti 10 6cmII-3.

With the irionopole mass ti 2 x 10-s g, we get

pmoaopoij(tp) ti 2 x 10-14g cm-3. (2.S)

This is much greater than the closure density ti 10-29 g cm-3 of the present

universe and if it were true, the universe would have collapsed much earlier. If

the horizon problem is solved before t,, the same dynamical mechanism would

solve the monopole problem too. Further, this problem is not related to cosmol-

ogy alone; if particle physics turns out to be discarding the hypothesis regarding

monopole production, this problem will also disappear.

Cosmological Constant Problem

if we assume that the universe contains a, cosmological constant pA - A/8irG

in addition to matter , then by measuring the values of the Hubble parameter

H = a/a and the deceleration parameter q = -a/all' and using the Einstein

equations , one can find the magnitude of pa. Current estimates [ 13, 14] of this

value is of the order of the critical density .. 10-29 g cm-3. If p\ is viewed as

arising from the potential energy of a, scalar field employed in field theoretic
models, then no known symmetry principle in quantum field theory requires
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that its value be so small like this when compared to the Planck density ppI =

0.5 x 10" g cm-3. That is, the measured value of pa is smaller than the expected

value ppl by 122 orders of magnitude. This is the cosmological constant problem

[15].

2.2 Attempts to Modify the Standard Model

Let, us now extrapolate backward in time the standard evolution for a universe

with flat space using 52 = 1 , h = 0.75, tp = 5 x 1017s and accepting the standard

model values Zdec ti 1000, Zeq Pe^ 13500 and T,,,, 1010 K (the subscripts dec

and nuc refers, respectively, to the decoupling and nucleosynthesis epochs).

WVe also normalise a(t) such that a(tp) is equal to unity. Using the relation

1 + = a(tp)/a(t), we get

adet, ti 10-3. (2.9)

Writing a = Ate/3 in the matter domianted era, we can evaluate tdec ti 1.58x 1013

s. Similarly, with a = Bt' /2 in the relativistic era, we get o,,,q = 8.18 X 10'

and teq = 3.18 x 1011 s. Using a a T-' where T is the radiation temperature,

we can evaluate a,,,,,,, = 3 x 10-10 and t,,,,, = 5.2 s. If we extrapolate still

backward with the same expression a = Btl/2 till the Planck era, when the

energy density is ppl = 0.5 x 1091 g cm-3, we get a(p = ppl) = 2.155 X 10-32

and i(p = ppl) = 2.7 x 10-`1`l s -- tpj. As mentioned in Sec. 2.1, this value of a

corresponds to 10-=1 cm for a region of size 1028 cm at present and is very large

when compared to Planck length.
The horizon problem and the problem of generation of density perturbations

above the present Hubble radius can be better understood in this context. We

have already stated that to account for the remarkable isotropy of CMBR, the

condition is (2.3) (with ap = 1): i.e.,

( 2.10 )> CLdecHp
1
, l )

where d/,, ,,,.(tdeC ) is given by equation (2.3). This statement may be extended to

explain the anisotropies which correspond to the aforementioned density per-

turbations, Let us define

12 CIt

dconi.n7.(tiet2) = -t, a.(t
(2.11)
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which is the communication distance light has travelled between times ti and t2,
evaluated at present. Then the condition for generation of density perturbations

above the Hubble radius can be expressed as

dcolnrn.(tpi, tdec) > 11P l
(2.12)

This is identical to the condition (2.3), provided we extend the lower limit of

integration in (2.2) to tpl. In the above scenario of standard evolution, the left

hand side of Eq. (2.12) may be evaluated as equal to 1.1 x 1027 cm whereas the

right hand side is approximately 1.2 x 1028 cm. This is an alternative way of

stating the puzzles in the standard model.

Based on the behaviour of the scale factor alone , it was recently argued

[16. 17] that some nonstandard evolution is essential for the solution of these

problems. The argument is based upon the understanding that the standard

model gives a reliable and tested accounting of the evolution of the universe, at

least from the time of nucleosynthesis onwards. Hence it was asserted that if

we do not want to jeopardise the successes of the standard model, the evolution

should be standard, as described above, from t 1 s onwards. Then one has to

face the question of how to maximize (2.11), so that (2.12) is satisfied. Those

models which do not violate the condition p+3p > 0 has a < 0. In this scenario,

(2.11) can be maximized by assuming a coasting evolution a = 0 or a or t. More

suecifically, Liddle [ 17] assumes

aTl t,c
a(t) _ t a < ao.

t1luc

(2.13)

In this picture, at the epoch when p = ppj, we have t ti 3.75 x 10-22 s. Be-

tween this epoch and that of nucleosynthesis, the maximum possible commu-

nication distance will be ti 3.55 x 1022 cm, which is only a small fraction of

(jroomi (I7ltic, tdcc) ti 1027 cm. Thus the above problems cannot be solved in this

picture. One has to conceive some nonstandard evolution characterised by a > 0

or p + 3p < 0. But this will necessitate some drastic modification to the stan-

dard model in that the existence of some kind of energy density with equation of

state p = wp, to < 0 should be accepted, at least in the early epochs. One such

case is a, universe filled with the potential energy of a scalar field. The resulting
evolution, which resembles that of de Sitter cosmologies is called `inflation'.
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2.3 Inflation

It is well known how inflation solves the cosmological problems [18]. In all in-

flationary models, the universe which emerges from the Planck epoch, after a

brief period of standard evolution (or sometimes without it) finds itself contain-

ing the potential energy of a scalar field, which is generally called the inflator.

field. This field is initially displaced from the minimum of its potential and it

rolls down slowly to that minimum. All viable inflationary models are of this

slow rollover type or can be recast as such. Then the governing equations are

(1.53)-(1.55) with < 1/(0) so that during this phase, the universe expands

qua.siexponentially as in (1.49) with H remaining a constant. That the inclusion

of a minimally coupled scalar field will lead to such a dynamics was known much

earlier. It was Guth [19] who showed that this phenomenon can possibly lead to

the solution of cosmological problems. He showed that this exponential expan-

sion stretches causally connected regions of size H-1 by an amount exp(HUt)

and consequently regions of size 11-1 ti lpt reach a size .H-1 exp HAt : 10-4

cin by the time inflation ends, provided HAt ti 67. This will help the universe

to evolve as per the standard model for the rest of the time. This also will

resolve the horizon problem. From (2.1), it is seen that during this period when

pw = 1/(0) constant, for a closed universe, Q - 1 decreases as a_2 and by the

end of the inflationary era, S2 can be arbitrarily close to unity. Similar is the

behaviour of an open universe. Thus one need not start with any fine tuned

initial conditions at the Planck epoch to get a nearly flat universe at present.

This solves the flatness problem.
The inflationary stage gives way to the standard evolution when the scalar

field reaches its minimum. During this process, the entropy of the universe

increases enormously. This will solve the entropy problem. The monopole

problem disappears along with the horizon problem.

The above are features generic to all inflationary models. But for the suc-

cessful implementation of the mechanism, one has to decide on what type of

field to constitute the inflaton field, what the potential of the field is and what

initial conditions are to he specified. There are numerous inflationary models

which differ in these matters. Guth [19] proposed his model as a possible so-

lution to horizon, flatness and monopole problems in which the grand unified

models tend to provide phase transitions that lead to an inflationary scenario

of the universe. A grand unified model begins with a simple gauge group G

which is a valid symmetry at the highest energies. As the energy is lowered,

the theory undergoes a, hierarchy of spontaneous symmetry breaking transitions

into successive subgroups. At high temperatures, the Higgs fields of any spon-
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ta.neously broken gauge theory would loose their expectation values, resulting

in a high temperarture phase in which the full gauge symmetry is restored. The

effective potential V(, T) of the scalar field Q has a deep local minimum at

p = 0, even at a very low temperature T. As a result, the universe remains in a

supercooled vacuum state = 0, which is a false vacuum, for a long time. The

energy-momentum tensor of such a state would be the same as that in equations

(1.53)-(1..54) with ^2 > V(0) and the universe expands exponentially until the
false vacuum decays. This phenomenon is termed a first order phase transition,

which occurs at some critical temperature T. As the universe cools through

this temperature, one would expect bubbles of the low temperature phase to

nucleate and grow and these bubbles contain the field 00, which corresponds

to the minimum of the effective potential V(0). The universe will cool as it

expands and it will then supercool in the high temperauture phase. When the

phase transition finally takes place at this low temperature, the latent heat is

released and the universe is reheated to a temperature comparable to T. If the

universe supercools to 28 or more orders of magnitude, sufficient entropy will

he generated due to bubble wall collisions and thermalisation of energy.

As pointed out by Guth himself, the major problem with this scenario is

that if the rate of bubble nucleation is greater than the speed of expansion of

the universe, then the phase transition occurs very rapidly and inflation does

not, take place. On the other hand, if the vacuum decay rate is small, then the
bubbles cannot collide and the universe becomes unacceptably inhomogeneous.

In order to improve this scenario, Linde [20] and, Albrecht and Steinhardt
[21] independently suggested the `new inflationary model'. The crucial difference

between the new and old inflationary models is in the choice of the effective

potential V(0, T) and that the latter is a, second order spontaneous symmetry

breaking phenomenon. The new choice was the Coleman-Weinberg potential

which has a bump near 0 = 0. For the decay from the false vacuum to the true

vacuum, the system has to tunnel across the bump and then it slowly rolls down

the potential. After reaching the minimum of the potential, it executes damped

oscillations, during which energy is thermalised and entropy is increased. In

the new inflation, a, typical size of the bubble at the moment of its creation is

ti 10`0 cm. After the exponential expansion, the bubble will have a size much

greater than the obserable part of the universe, so that we see no inhomogeneities

caused by the wall collisions. The drawback of the new inflatioanry model is

that it. requires fine tuned initial values for the field.

Whereas the `old' and `new' inflationary models are the result of sponta-
neous symmetry breaking, the chaotic inflation [22] proposed by Linde does not
contain any phase transition at all. The scalar field is not part of any unified
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theory and its only purpose is to implement inflation. The potential in chaotic
inflation is assumed to he of the simple form

V (0) = l on. (2.14)
n

The minimi.un of the potential is at 0 = 0 and so it has nothing to do with

spontaneous symmetry breaking. With sufficiently large initial value, the field

9g may roll slowly so that a(t) rapidly approaches the asymptotic regime

a(t) = ao exp
I

47rn (0o
- o2(t)

(2.15)

Linde envisions that the initial distribution of ¢o is `chaotic', with different

values in different regions of the universe. In the n = 4 case, to obtain sufficient

inflation, say 60 e-folds, Oo must be greater than about 4.4 rnPi where m1,l is

the Planck energy. The model in its simplicity is not definite enough to discuss

reheating.

A major drawback of chaotic inflation is the required smoothness of the

initial inflationary patch. For inflation to occur, we see the condition

(,7 0 )2 < l4 (2.16)

If we take the dimension of the region over which ¢ varies by the order of unity

to be L, then

2 l

(o,p)2 ti I L ^ <<
d 6

1 (2.17)

which implies L > (^o/m.7,j)H-1. This means that, for sufficient inflation,

must be smooth on a scale much greater than the Rubble radius, a condition

which does not sound very chaotic.

In addition to these most widely discussed ones, there are many other mod-

els which exhibit inflation, but having a variety of features [18] (and refer-

ences therein). The `natural inflation' model is the one having the potential

V = Vo cos2(0/m). Those models named `power law inflation' have either

a x tP, p > 1 with potential V (O) = Vo exp(-ticb) or a a (t, q > 1

which obeys the induced gravity action, a variant of GR. Other models which

make use of non-Einstein theories of gravity like the latter one are `Starobinski

model' (higher derivative gravity), `Kaluza-Klein inflation' (higher dimensional

Kaluza-Klein theories), `extended inflation' (Brans-Dicke theory), `pre-big bang
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inflation' (superstring theories) etc.. This shows that even after the two decades
since the development of the theory of inflation, it still lacks a unique model.

Age and Other Problems

The most important prediction of the inflationary models is that the universe

is almost spatially flat with the present value of the density parameter Q. very

close to unity. This in turn implies that the combination Hptp Pz^ 2/3. A major

set back to inflationary models was in fact this prediction. Recent observations

[23] put this value to be lying in the range 0.85 < Hptp < 1.91, contrary to the

above prediction. This is the so called `age problem' in the standard flat and

inflationary models.
A way out for these models from the age problem is to postulate that there

is a, nonzero relic cosmological constant in the present universe, whose density

parameter Q,\ is comparable to that of matter. But since a, cosmological constant

is indistinguishable from the vacuum energy which inflates the universe, the

model is bound to explain how the enormous vacuum energy, which was present

in the early universe gave way to such a, small value at present. This of course

will require another extreme fine tuning and is against the spirit of inflationary

models, which were originally conceived to get rid of all sorts of fine tuning in

the standard model.
This problem is further highlighted in the context of some very recent mea-

surements [13] of the deceleration parameter, which indicates that in the present

universe, qp can even be negative. This can be interpreted as occuring due to
the presence of a nonzero cosmological constant, whose density is comparable to
that of the matter density. Thus, along with the age problem, the cosmological
constant problem is aggravated by the inflationary models.

Lastly, the singularity problem is not addressed in the inflationary models.

In most models, the inflationary stage is expected to occur at a time many
orders of magnitude greater than the Planck time. Thus questions like how the

universe came into `existence' etc, are not addressed in the model.

2.4 Decaying-A Cosmologies

The cosmological constant problem has triggered a lot of work in the literature

[25]-[44] aimed at a solution based upon a dynamical A; i.e., A or equivalently
p,\ )/8 rG varying with time. An important motivation for considering a

variable pa can be explained as follows [24]: If p,v corresponds to the vacuum
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energy density, then its value is expected to be of the order of Planck density

ppl = 0.5 x 1091 g cm-3 at least in the Planck epoch. But all observations

at present indicate a. very low value : 10- g cm 3 for this quantity. An

order of magnitude calculation reveals that since the present age of the universe

is 1061 times the Planck time, if py decays with time from this initial value,

then pA,p 0.5 x 10941(1061 )2 10-29 g em-3 as expected; i.e., the cosmological

constant obeys an inverse square law in time.

All decaying-,\ models are not precisely of this type. Here we discuss two

pioneering decaying-\ cosmological models [25, 32] which propose phenomeno-

logical laws for the time-dependence of pA. It is of interest to note that while

analysing the thermodynamic correctness of some decaying-) models using the

Landau-Lifshitz theory for non-equilibrium fluctuations, Pavon [34] has found

that only these two models successfully pass their test. These models are ob-

tainable as special cases of the new cosmological model to be discussed in the

following chapters of this thesis, which is derived at a more fundamental level.

2.4.1 Ozer and Taha Model

In the first of its kind, Ozer and Taha considered a decaying -A model [25] in
which p,n + pa with per, denoting either the relativistic or nonrelativistic
matter. The Einstein equation and the conservation equation in this case are

u2 k 87G
a2 3 (Pm + pa)

a2
+

_

and

(2.18)

(1, (pr„ a3) + da3 + a3d p.a = 0. (2.19)
(it dt (it

They noted that, for the solution of the cosmological problems, there should

be entropy production and this will require dpa/dt < 0. Also they argued that,

since the present, matter density in the universe is close to the critical density

and since these two are time-dependent terms in the fundamental dynamical

equations of GTR, the equality of pm and p, would bestow some special status

to the present epoch t = tp. Thus they assume that this equality is a time-

independent feature and impose the condition p,n = p, in the above equations.

These conditions immediately yield

k = +1 (2.20)

and
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3 1 (2.21)
p"^ - S7rG a2

In the relativistic era in w i nch P7 11 = 3pM, they obtain a nonsingular so lution

a2 = Ci2 + t2, (2.22)

where ao is the minimum value of the scale factor. The relativistic matter

density is

PM,', = PO
ao14 a'4c1 p\ da'
a a4 a0 da'

3 1 a 2o

S7rG a2 a2

3 t2 (2.23)
b7rG( ao+t2)2

The radiation temperature 7' is assumed to be related to p, by the relation

(1.67 )

pm,'• = gtotaT ,

froth which

(2.24)

3 1/4 t2 1/4

_ 2.25
T ^S7rGgt,,to') (a2 + 12)2 ( )

Thus T = 0 at t = 0. The model predicts creation of matter at the expense

of vacuum energy. A maximum temperature Tm,ax is attained at t = ao and is

given by

( 3C4 1 1

y 7/7, (LT
7

I1\ /I

(2.26)
S7rGgt„to, 2ao

1/4

It was observed that 7,Maa. should correspond to the only energy scale present

in the theory, which is the Planck energy and that this will give ao ti 0.03

lt,j (assuming gt„t 100 in the early relativistic era). Also for t > ao, the

values of the energy density and temperature attained by radiation at time

t in the standard model are attained at time 21 in their model. Thus it is

anticipated that the model has the same thermal history as the standard model.

However, there is difference in the behaviour of the scale factor and also there

is entropy production, which will help to solve the main cosmological problems.

In particular, they have shown that causality will be established within a time
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tc(„,,s -- 2.3a0, soon after the Planck epoch. It was also shown that the present

monopole density in their model is much smaller than the critical density, which

solves the monopole problem.
Though solutions are obtained for the pure radiation era with the above

assumptions, they had to impose extra assumptions to determine the model

when nonrelativistic matter is present. It was assumed that the early pure

radiation era soon gave way to a period of matter generation, where al < a < a2.

After that epoch, i.e., when a > a2, p = Pm,r + Pm,nr and Eq. (2.19) can be

written as

Cl(pn,,a3 ) + cl(pm,ra3) + Prn,r da3 = - a3dpA . (2.27)

In this era , it is assumed that

d d (Pna,nra3 1<1 (it

d

so that one obtains the solution

(2.28)

3 pA01,11 = + w
a

(2.29)
B,TG a2 a

where w is a dimensionless constant and ap is the present value of the scale

factor. Here, pm,,ira3, the total rest mass energy remains a constant. The

regions ao < a < al where pn,,r = (1/3)pm,r is separated from the regions a > a2

by the epoch of matter creation, which may be considered as a region of phase

transition. The time corresponding to ai is expected to be tl < 10-34 s; i.e.,

the GUT era. The reversal of sign of a occurs during this time.
Throughout the evolution, the expression for p\ is the same. Some predic-

tions of the model are independent of the dimensionless parameter w. These

include ap > 1.578 x 1030 cm, pa 8.26 x 10-30 g cm-3, tp pz^ (2/3)Hp 1 and

qp ti 1/2. Thus the values of tp and qp are nearly the same as those of the

standard flat model.
It was observed by the authors themselves that the imposition of the con-

dition p„L = P. is unphysical and that it may be worthwhile to seek a dynamic

principle that determines the form of p,v, this being the most, fundamental as-

sumption made in the model.

2.4.2 Chen and Wu Model

Chen and Wu [32], while introducing their widely discussed decaying-A cosmo-
logical model, have made an interesting argument in favour of an a-2 variation
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of the effective cosmological constant on the basis of some dimensional consid-

erations in line with quantum cosmology. Their reasoning runs as follows: Since

there is no other fundamental energy scale available, one can always write pa,

the energy density corresponding to the effective cosmological constant as the

Planck density (p7,t = cs/hG2
= 5.158 x 1014 g cm-3 ) times a dimensionless

product of quantities. Assuming that p,\ varies as a power of the scale factor a,

the natural ansatz is

c5 ()fl
(2.30)

ti,C2

One can now show that n. = 2 is a preferred choice. It. is easy to verify that

o < 2 (or n > 2) will lead to a negative (positive) power of h appearing explicitly

in the right hand side of the above equation. Such an li-dependent, py would

be quite unnatural in the classical Einstein equation for cosmology much later

than the Planck time. But it may be noted that n = 2 is just right to survive

the semiclassical limit h. -+ 0. This choice is further substantiated by noting

that 'n < 1 or n > 3 would lead to a value of pa which violates the observational

hounds Thus Chen and Wu make the ansatz

(2.31)
p.a = 87rGa"

where 7 is a phenomenological constant parameter. Assuming that only the

total energy-momentum is conserved, they obtain, for the relativistic era,

A, + 7 (2.32)
a4 87rGa2

and for the nonrelativistic era,

A2 7 (2.33)
pm,n

a3 + 87rGa

where Ar and A2 are to be positive. The Chen Wu model thus differs from

the standard model in that it has a decaying cosmological constant and that

the matter density has conserving and nonconserving parts [given by the first

and second terms respectively in equations (2.32) and (2.33)]. By choosing 7

appropriately, they hope to arrange p1 and the nonconserving parts in p.m,r

and pm,uT to be insignificant in the early universe, so that the standard model

results like rmcleosynthesis are undisturbed. But, for the late universe, it can

have many positive features like providing the missing energy density in the

flat and inflationary models, etc.. The model predicts creation of matter, but
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the authors argue that the creation rate is small enough to be inaccessible to

observations.
Conversely to the requirement that the nonconserving parts of matter den-

sity should be negligible in the early universe for standard model results to

remain undisturbed, one can deduce that in this model, the standard model

results are applicable to only the conserving part of matter density. The non-

conserving part is, in fact, created in the late universe. Thus for the standard

model results to be applicable to the present universe, the conserving part of

the matter density should be substantial. This in turn will create some problem

with observations. For example, let us assume that at present, the conserved

part of the nonrelativistic matter density is equal to the nonconserved part.

Since the vacuum density is only one-half the nonconserved part [see equations

(2.31 and (2.33)], for a k = 0 universe, the deceleration parameter at present
will be qo = (Q,, /2) - QA = 0.2. This is not compatible with the observations

mentioned earlier [13].
To avoid the problems in the early universe, they have to assume the oc-

currence of inflation, which in turn is driven by the vacuum energy. But they

apply their ansatz to the late-time vacuum energy density (which corresponds

to the cosmological constant) and not to that during inflation. But the stress

energy associated with the vacuum energy is identical to that of a cosmologi-

cal constant and it is not clear how they distinguish them while applying their

a.iisa.tz.
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Chapter 3

The New Model

There are a number of instances of the use of complex numbers or complex ana-

lytic functions in GTR [46]. Many of these applications have a common element,

namely the analytic continuation of a. real analytic manifold (the spacetime) into

the complex, producing a complex spacetime. One such complex coordinate

transformation is the Wick rotation of the time-coordinate t in Minkowski met-

ric to obtain a. Euclidean metric. Similarly the transformation of one solution

of Einstein equation into another by means of a complex switch of coordinates

is well known. For example, open and closed Friedmann models, de Sitter

and antide Sitter spacetimes, Kerr and Schwarschild metrics etc. are related

by complex substitutions [47]. The use of complex variables extends to more

sophisticated ones like spin-coefficient formalism, Ashtekar formalism, Twistor
tlieory etc. We present our model based upon the signature change of the metric

from Lorentzian (+ - - -) to Euclidean (++++). A signature change in the early
universe is a widely discuused idea in current literature. After briefly reviewing

the same, we present, our model, which has a, direct bearing on many cosmolog-

ical observations, a feature unparalleled in most other applications mentioned

above. We discuss the physical model including its predictions and then show

how the model is devoid of cosmological problems.

3.1 Signature Change

The Hartle-Hawking `no boundary' condition [4S] in quantum cosmology allows
a change of signature in the Planck epoch, resulting in the origin of the universe
in a regime where there is no time. (The spacetime metric is Euclidean, so that
spacetime is purely spatial). Ellis et a]. [49] investigated such a possibility in
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the classical solution of the Einstein field equations. They argue that the usual

solutions of this equation with Lorentzian metric are not because it is demanded

by the field equations, but rather because it is a condition we impose on the

metric before we start looking for solutions. They obtain a classical signature

change by replacing the squared lapse function N2(t) appearing in the metric in

the ADM 3+1 split of RW spacetime (See Secs. 1.1, 1.2) with v and allowing it

to be negative. During signature change, v passes through the value zero (which

is a form of singularity) and hence a crucial point is the matching conditions

at the surface of change. Ellis et al. have claimed to obtain RW solutions of

the classical Einstein equations where v changes sign at some time to, with the

condition that the matter density and pressure are finite and the 3-space metric

hP„ is regular, as the change of sign takes place. This condition is equivalent to

requiring that the extrinsic curvature K,a„ is continuous at the surface of change.

In another approach, Hayward [50] obtained signature changing solutions by
requiring that at the surface of change, Kpo should vanish. The issue of these
junction conditions' is a matter of hot debate in the current literature.

Another development in connection with the signature of the metric was that

made by Greensite [51.], who proposed a dynamical origin for the Lorentzian sig-

nature. The idea, is to generalize the concept of Wick rotation in path integral

quantisation. Rather than viewing Wick rotation as a mathematical technique

for the convergence of the path integral, the Wick angle 0 is treated as dy-

namical degree of freedom. He claims to have obtained a relation between the

dimension and signature of spacetime, which favour a, Lorentzian signature for

a 4-dimensional spacetime and explain the presence of the factor i in the path
integral amplitude. As a more general approach to signature change, Hayward

[52] extended the idea of Greensite and allowed the lapse function to be com-

plex. This is claimed to yield a complex action that generates both the usual

Lorentzian theory and its Riemannian analogue and allows a change of signature

between the two.

3.2 Derivation of the New model

We obtain a signature changing RW solution by a different route than those

mentioned above [53, 54]. If we make a substitution a(t) -i fm(t) = a(t)e i3 in
Eq. (1.33), then the spacetime has Lorentzian signature (+ - - -) when /3 = ±n.T,

(aa = 0, 1, 2, ..), and has Riemannian signature (+-F-++) when = ±(292+1)7,-/2,

(n = 0, 1, 2, ..). Let. the solution a(t) be in the form aoec'(t) . Then the above

expression becomes &(t) = a^e`Y(1)+`^ We note that interesting physics appears
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if the tine-dependence of the scale factor is shared also by 3; i.e., 3 = Q(t), an

assumption consistent with the homogeneity and isotropy conditions. Then the

signature of the metric changes when /3 varies from 0 -> 7r/2 etc. Our ansatz is

to replace a(t) in metric (1.33) with

a(t) = a(t)e^a(t) = a0 t)+tia(t) - x(t) + z y(t)• (3.1)

We further assume that this model of the universe with a complex scale factor

is closed (i.e.,k = +1) and has a zero energy-momentum tensor (i.e., IM = 0).

Thus we start with a, system a, system obeying an action principle, where the

action is given by

I 16 G f(-
g)'/2R d4x. (3.2)

Here

26 (& 6R= N2a) -a2,

an expression similar to (1.56). Using this and integrating the space part, we

get Eq. (3.2) as

j _ - 37r
N a3

4G a2
(it (3.4)

Minimising this action with respect, to variations of N and a and fixing the

gauge AT = 1, we get the constraint and the Geld equations

and

2

27 + a + 1 = 0. (3.6)a (a) a2

respectively. With a(t) = x(t) + i y(t) and xo, yo constants, these equations

may be solved to get

a(t) = xo + i (yo + t). (3.7)
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We can choose the origin t = 0 such that d(0) = x0. 11chliwililIg X() =_ (10, We

get,

d(t) = ao +i t. (3.8)

This equation gives the contour of evolution of d(t) which is a straight line

parallel to the imaginary axis. At t = 0, this leaves the signature of space-
time Lorentzian but as t -^ oo it becomes almost Riemannian. This need

not create any conceptual problem since here we are considering only an un-

perceived universe with zero energy-momentum tensor whose existence is our

ansatz. (Simple physical intuition would give a signature `Riemannian at early

times and Lorentzian at late' if it was for the physical universe we live in with

matter contained in it. But in the above, we have a signature change in the

opposite manner for the unphysical universe devoid of matter and this need not

contradict our physical intuition). The connection with a closed real or physical

universe is obtained by noting from the above that

a2(t) = C
1 (t) I2_ a0

+ t2. (3.9)

Y. 's i Lhe same equation (2.22) which governs the evolution of scale factor

in the relativistic era of the Ozer-Taha model [25]. But in that model, a0 is

undetermined; as mentioned in Sec. 2.4, it is only speculated to be of the order

of Planck length. In our case, a quantum cosmological treatment to follow in

Sec. 4.5 reveals that ao = 0G/3T,- ti 1,,l.

3.3 The Real Universe

Separating the real and imaginary parts of (3.5) and (3.6) and combining them,

one easily obtains the following relations:

02 1 2
- + - = 02 + - sin' f3,
a2 a2 a2

(3.10)

Ct a 2 2 2 2

2a -^ ; + a2 = 3 (^
I 3a2 si n ^.^ (3.11)

+23a=0,
a

and

(3.12)

40



Cl 1
sin 2/3.

a a2

Also from (3.1) and (3.8), we get

3(t) = tan-i(±t)
ao

and

+ao + cost /3

N(t) - (22(t) ao

(3.13)

(3.14)

(3.15)

With the help of the last two equations we observe that the real parts of (3.5)

and (3.6) can be rewritten in terms of a = a(t) =1 a(t) I as

Cl'2 1 a2

a2 + a-2 a2 0

a Cl2 1 2 a2
2-+-+-=-+-,
a a2 a2 a2 a4

(3.16)

(3.17)

whose solution is the same as that obtained in (3.9). We see that the real

quantity a(t) may be considered as the scale factor of a nonempty RW universe.

Eqs. (3.16) and (3.17) are appropriate for a closed RW model with real scale

factor a and with total energy density and total pressure given by [See Eqs.

(1.34) and (1.35)],

3 2 a 02

87rG a2 a4

1 2 + ao
-

S7rG a2 a4

respectively, whose breakup can be performed in many ways.

Matter and Vacuum

First let us assume, as done in [25], that

P '-' + P'\'

- Pin. + p.A

W 'e write the equations of state in the form

(3.18)

(3.19)

(3.20)

(3.21)
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Pm = w Pm (3.22)

and

PA _ -PA (3.23)

Solving (3.18) and (3.19) using ( 3.20)-(3.23 ), one gets

4 1 ao
P7n =

S7G (I + to) a2 a4
(3.24)

_ 1 2(1 + 3w) a
°
(1 - 3w)

(3.25)
P^ 87rG (1 + w) y a2 a4

For a relativistic matter dominated universe, the matter density and the vacuum

density are

Pin,7.

3 1 aa/,rG ^ a2 a4 J
_ 3 1

Pa'r S7rG a2 .

(3.26)

(3.27)

From (3.17), the critical density of the real universe is

= - 3 ( I - a,2,

pc = 87rG H
2

8-, a2 a4
( 3.28 )

where H , the value of the Hubble parameter is assumed to coincide with that
predicted by the model. (We can see that this is indeed the case in the present

epoch by evaluating the combination Hptp =- [a] tp for ap > a0, which is found
p

to be nearly equal to unity.) Then the ratios of density to critical density for

matter and vacuum energy in the relativistic era are

Q""'=P7n 7 -1

P C

PA.r

^aT = PC for a(t) >> c°o.

(3.29)

(3.30)

For a universe dominated by nonrelativistic matter, the condition to = 0 may

be used in (3.24 ) and (3.25). In this case,
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ci nz,nr = 4/3, (3.31)

S2a,nr 2/3 for a(t) >> ao (3.32)

It may be noted that (3.26) and (3.27) are the same expressions as those ob-

tained in [25] and (3.29) is their ansatz. But the last two results for the nonrel-

a.tivistic era are outside the scope of that model.

Matter, Vacuum and Negative Energy

In the above, we have assumed p = p,n + pa following the example in [25]. But

this splitup is in no way unique. Equation (3.24) gives p,,,, = 0 at t = 0. In order

to avoid this less probable result, we assume that the term -(3/87rG)(ao/a4) in

is an energy density appropriate for negative energy relativistic particles. The

pressure p_ corresponding to this negative energy density p_ is also negative.

Negative energy densities in the universe were postulated earlier [55]. Such an

assumption has the further advantage of making the expressions for p,,,, and pa

Ear more simple and of conforming to the Chen and Wu [32] prescription of a

pure a_2 variation of vacuum density (though the Chen-Wu arguments, with ao

identified as the Planck length, are not against the form (3.25) for pA since the

term which contains ao/a4 becomes negligibly small when compared to the
a_2

contribution within a few Planck times). Thus we use a modified ansatz in this

regard [instead of (3.20)- (3.23)],

p = P. + PA + P-,
(3.33)

73 = pm^ + P.a + p-,
(3.34)

An = w p,n, (3.35)

PA = -PA,
(3.36)

1 37)(3= 3p_, .

and

3 a2 (3.38)
SG0

and solving (3.18) and (3.19) with these choices, the results are,
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_ 4 1

p"` 87rG( 1 + w) a2

2(1 + 3w) 1
PA =

so that

87r G (1 + w) a2

7 (3.39)

(3.40)

Rmrtil Qa,r.:;I,

lm,nr ti 4/3 Q\ nr ti 2/3 (3.41)

Sl_ - P « 1
PC

for a(t ) » ao. The predictions for Q,7, are marginal , though not ruled out by

observations.

Matter, Vacuum Energy, Negative Energy and K-matter

Many authors [56, 57, 58] seriously consider the existence of a, new form of

matter in the universe (called K-matter [56] - perhaps a stable texture [57])

with the equation of state pp _ -3pj- and which decreases as a-2. This leads

to the idea of a low density closed universe [57]. If we accept this as probable,
the prediction for S2„v will be well within the observed range of values. In this

case we include a term s rz to the right hand side of (3.33) so that
S7rG a

2 1 (2-K)

'n 87T G (I + w) a2

and

na =
1 (1+3w)(2-K)

87rG (1 + w) a2

For a typical value K = 1 [56], the predictions for a > ao are

1/2, 1/2,

tiRvn,nr ti 2/3, ^a. rar 1 /3,

Q_ « 1, SZj; l

(3.42)

(3.43)

(3.44)
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The model makes clear cut predictions regarding the total energy density

p and total pressure p as given by (3.18) and (3.19) but the decomposition of

these do not follow from any fundamental principles, except for those heuristic

reasons we put forward. It is easy to see that the conservation law for total

energy

d(a3p) _ da3 (3.45)
dt dt

is obeyed. irrespective of the ansatze regarding the detailed structure of

3.4 Thermal Evolution and Solution of Cos-

mological Problems

One can see that the solution of cosmological problems mentioned in Sec. 2.1

does not significantly depend on the split up of p. Note that in all the above

cases, Q, is time-independent when a > ao. Not. only QV., but also all the

density parameters including the total density parameter (which may be defined

as SZ - p/pj are constants in time. This is not difficult to understand: for

a > ao, p and all other densities vary as a-2. This, when put in (2.1) tells us

that S2 and all other density parameters are time-independent for large t. Thus

there is no flatness problem in this model.
Another notable feature is that in all the above cases, we have p,,,./pa = 2

in the nonrela.tivistic era. Thus the model predicts that the energy density

corresponding to the cosmological constant is comparable with matter density

and this solves the cosmological constant problem too. It can also be seen

that according to the model, the observed universe characterised by the present

Rubble radius has a size equal to the Planck length at the Planck epoch and

this indicates that the problem with the size of the universe does not appear

here.
Next let us consider the horizon problem. A necessary condition for the

solution of this problem before some time is is given by Eq. (2.3). Using our

expression (3.9) for the scale factor with ao ti l,,i, we see that the horizon

problem is solved immediately after the Planck epoch, even if we extend the

lower limit of integration in (2.2) to tpi. For the investigation of other problems,

we have to study the thermal evolution of the universe as envisaged in the

model.
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The relativistic matter density in the present model [using (3.39) or more

generally (3.42)] can be written as

3 rv 3 r.,
Pm,r = - = z - t 287rG a2 87G ao

where rv = 1 - rz is a constant of the order of unity. Using (1.67) we find the

corresponding temperature as

3 ri 1/4 1 1/4

T = l ( (3.47)
87fG gtota/ ct02 -4-t2

which is a maximum at t = 0. (In natural units o- = 7r 2/30. ) If ao = ^26'/37r

as mentioned in Sec . 3.2, then T(0) 0.36 x h: 114G-112, which is comparable

with the Planck energy and as t -> on, T decreases monotonically.

The above expressions ( 3.46) and ( 3.47) may be compared with the corre-

sponding expressions in the standard model:

3 1
8-G (2t)2'

(3.48)

3 1
1/4

1 (3.49)
T$.m. = k7rG gtota (2t)'/2

Assuming that ic1t4 is close to unity, it can be inferred that the values of Pm,r

and T attained at time t in the standard model are attained at time t in the

present model. Thus the thermal history in the present model is expected to be

essentially the same as that in the standard model. But the time-dependence

of the scale factor is different in our model; we have a nearly coasting evolution

and this helps us to solve the cosmological problems.
It can now be shown that density perturbations on scales well above the

present Hubble radius can be generated in this model by evaluating the com-

munication distance light can travel between the Planck time tpt and td,,, the

time of decoupling [17]: 7

tdec d,

dcom?ii(tple tdec) = ap J \
= 0.62 x 106Mpc (3.50)

tp1 a(t)

where we have used tdec ti 1013s, the same as that in the standard model, an

assumption which is justifiable on the basis of our reasoning made before re-

garding thermal history. Thus the evolution in our case has the communication
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distance between tp( and tj much larger than the present Hubble radius and

hence it can generate density perturbations on scales of that order. [See Eq.

(2.12).] It is interestng to note that Liddle [17] has precluded coasting evolution
as a viable means to produce such perturbations and argued that only inflation

(^i > 0) can perform this task, thus "closing the loopholes" in the arguments of

Hu et al. [16]. But it is worthwhile to point out that his observations are true

only in a. model which coasts from tp1 to tnu,, and thereafter evolves according

to the standard model (See Sec. 2.2). In our case, the evolution is coasting

throughout the history of the universe (except during the Planck epoch) and

hence his objection is not valid.
A bonus point of the present approach, when compared to standard and

inflationary models may now be rioted. In these models, the communication

distance between t,,UO and tdec, or for that matter the communication distance

from any time after the production of particles (assuming this to occur at the

erlcl of inflation) to the time tlec will be only around 1027 cm [17]. Thus density

perturbations on scales above the Hubble radius cannot be generated in these

models in the period when matter is present. This is because inflation cannot

enhance the communication distance after it. The only means to generate the

observed density perturbations is then to resort to quantum fluctuations of the

inflaton field. The present model is in a more advantageous position than the

inflationary models in this regard since the communication distance between

tnue and tcj in this case is

d- d,t
dCO71T,, ( t UC, td, eC) = ap = 4.35 x 1029cm (3.51)

ft"' .1 a. (t )

which is again much greater than the present Hubble radius. So we can consider

the generation of the observed density perturbations as a late-time classical

behav iour too.

It can be seen that entropy is produced at the rate

dt^' 2 3h 87T y1Ot(T /
, I

47
t'

+ t2)'/a(it 87rG ( 3 h (a o

which enables the solution of cosmological problems.

(3.52)

Lastly, the present monopole density predicted in this case can be seen to

be [See Eq. (2.6)]

12monopole (tp) .r -3-a-:3(tp) ti 3
X 10-84C,11-3

47r 47r

so that.

(3.53)
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3 x 10-gag cm-3 (3.54)

This is very close to that estimated in [251 , and is negligibly smaller than the

critical density .
Thus the monopole problem is solved also in this case.

Irrespective of the case we are considering , the model is nonsingular and

there is no singularity problem. The solution of the agelpr
oblem

ts
is also

the alneric
to the model . It may be noted that the mod y o

the combination Hpta, ti 1.
This places the present theory in a more advanta-

geous position than the standard flat and the inflationary models with ahi
zero

cosmological constant , where this value is predicted to be equal to 2/3,

is not in the range of recently observed values.
Another interesting feature is that since the expansion process is reversible

and the basic equations are time reversal invariant , we can extrapolate to i < 0.

This yields an earlier contracting phase for the universe . Such a phase was

proposed by Lifshitz and Khalatnil ;ov [591,. If there was such an initial phase,

causality could
have established itself much earlier than the time predicted in

[251.The model predicts creation of matter at present with a rate of creation per

unit volume given by

I d(a3p,,n)
L = pni,p H1,,

(3.55)

a.3 (1, t
e

where p ,n, p is the present matter density . In arriv ing
' lominated universe.l3Note that

use of the assumption of a nonrelativistic ma [r1 nce
the creation rate is only one third of that in orl gyrate cannot beradiation at the required
the possibility of creation of matter or
ruled out at the present level of observation [321, this does not pose any serious

objection.

3.5 Alternative Approach

We present an alternative model to the above without resorting to any com-

plex metric, while preserving all the positive feature so f the th isy ical difyin

iverse

envisaged in it, except the avoidance of singularity. tot ner
the Chen-Wu argument (See Sec. 2.4) to

cuum
include

density and lthis again(b ngs
density p of the universe in place of the .
in some fundamental issues which need serious consideration. If the Chen-Wu
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ansatz is true for py, then it should be true for / too. In fast, this a.nsa.tz is

better suited for p rather than pa since the Planck era is characterised by the

Planck density for the universe, above which quantum gravity effects become

important. Hence one can generalise (2.30) to write

c5 44 11
3.56

tf[C2 (a) ( )

where A is a dimensionless proportionality constant. When p is the sum of

various components and each component is assumed to vary as a power of the

scale factor a, then the Chen-Wu argument can be applied to conclude that

n = 2 is a preferred choice for each component. Violating this will force the

inclusion of h -dependent terms in ^, which would look unnatural in a classical

theory. Not only for the Chen and Wu model, in all of Friedmann cosmologies,

this argument may be used to forbid the inclusion of substantial energy densities

which do not vary as a-2 in the classical epoch.

At first sight, this may appear as a grave negative result. But encouraged

by our results in the previous sections, we proceed to the next logical step of

investigating the implications of an a-2 variation of p. If the total pressure in
the universe is denoted as p, the above result that the conserved quantity

in the Friedmann model varies as a_2 implies p + 3p = 0. This will lead to a

coasting cosmology. Components with such an equation of state are known to be
strings or textures [57]. Though such models are considered in the literature,

it would be unrealistic to consider our present universe as string dominated.

A crucial observation which makes our model with p varying as a-2 realistic

is that this variation leads to string domination only if we assume p to be

unicomporient. Instead, if we assume that p consists of parts corresponding

to relativistic/ nonrelativistic matter and a, time-varying cosmological constant,

i.e., if we assume

p= p771 + pa, 1^ = p7ll +p,v, (3.57)

then the condition p + 3p = 0 will give

PA 1 + 3w
(3.58)

In other words, the modified Chen-Wu ansatz leads to the conclusion that if

the universe contains matter and vacuum energies, then vacuum energy density

should be comparable to matter density. This, of course , will again lead to a
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coasting cosmology, but a realistic one when compared to a string dominated
universe.

Pm or PA, which varies as a-2, may sometimes be mistaken for strings but

it should be noted that the equations of state we assumed for these quantities

are, different from that for strings and are what they ought to be to correspond

to matter density and vacuum energy density respectively. It is true that com-
ponents with equations of state p = w p should obey p or a-3(1+w), but this is
valid when those components are separately conserved. In our case, we have

only assumed that the total energy density is conserved and not the parts cor-

responding to pig, and p,\ separately. Hence there can be creation of matter

from vacuum, but again the present creation rate is too small to make any

observational consequences.

The solution to the Einstein equations in a Friedmann model with p+3p = 0,
for all the three cases k = 0, +1, is the coasting evolution

a(t) = fmt (3.59)

where rn is some proportionality constant. The total energy density is then

(m z -} k)

p 87rG d12
(3.60)

Comparing this with (3.56) (with n=2), we get rnz + k = 87A; 3.

The prediction regarding the age of the universe in the model is obvious from

Eq. (3.59). Irrespective of the value of m, we get the combination H tr as equal

to unity, which is well within the bounds. Thus there is no age problem in this

model. We can legitimately define the critical density as PC =_ (3/87FG) (0/ a'),

so that equation (3.60) gives

(I B^A) (3.61)
PC

As in the standard model, we have f2 = 1 for k = 0 and fl > 1 (< 1) for k = +1
(k = -1). But unlike the standard model, S2 is a constant. Also for A greater

than or approximately equal to 1, we have S2 close to unity for all values of k.

Using equation (3.57) and (3.58), we get

_ P711 '?S2 pA +
^ 3w)S2 (3.62)
A = _ (1

S2^rti = p, = 3(1 + w)' P 3(1 + w)

It is clear that we regain our model in the previous section when m = 1

and k = +1. In that special case, A = 3/47 and the present alternative model
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is precisely the same as the former, except for the initial singularity and the

evolution in the Planck epoch. But even when A is not exactly equal to 3/4wr

and is only of the order of unity, the thermal evolution is almost identical and

the absence of cosmological problems is generic to these models.
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Chapter 4

Quantum Cosmology

Among the fundamental interactions of nature, gravity stands alone; it is linked

to geometry of spacetime by GTR while the other interactions are describable by

quantum fields which propagate in a `background spacetime'. Another reason

is that whereas quantum field theory assumes a preferred time coordinate and a

previla.ged class of observers, GTR demands equivalence among all coordinate

systems. Also in quantum theory, there is the issue of `observation': the quan-

tum system is supposed to interact with an external observer who is described

by classical physics, but such notions are alien to GTR. To sum up, we can

say that till now these two major physical theories remain disunited. Quantum

gravity is an attempt to reconcile them. It is not yet clear what a quantum

theory of gravity is, and there are several directions pursued in this regard.

Perhaps the simplest application of quantum gravity is in cosmology. The most

well studied approach in quantum cosmology is the canonical quantisation in

which one writes a wave equation for the universe, analogous to the Schrodinger

equation. This procedure requires a Hamiltonian formulation of GTR. In this

cli..pter, we present a brief review of quantum cosmology and then apply the

formalism to the cosmological models discussed in the last chapter.

4.1 Hamiltonian Formulation of GTR

In Sec. 1.1, we obtained the gravitational Lagrangian density as a function of

N, NFL and hu„ as

f- (N, NA , hµ„) - - ^N (Ii2 - Kµ„I -3R). (4.1)
167 G
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The extrinsic curvature N involves time derivatives of hµ„ and spatial deriva-

tives of N. The three-curvature 3R involves only spatial derivatives of hµU.

Since the Lagrangian density does not contain time derivatives of N or N, the

momenta conjugate to N and N, vanish:

SN 0, (4.2)

7r fiG =0. (4.:3)
6Nµ

These expressions are called primary constraints. The momenta conjugate to

11pu are

7. {iv
= fiG = vfh-

( K^w - h"K ). (4.4)
167rG

The gravitational canonical Hamiltonian for a closed geometry can now be

formed as

^L = j(V+ 7AtN4 +7rN - L.) d3x. (4.5)

As usual for the Hamiltonian theory, one removes h,,,,, Nµ and N and express

in terms of the coordinates N, N'` and h" and the conjugate momenta 7r,

7-," and S ince the prim ary constraints 7r = 7rr` = 0 hold at all tines, we

have 7r = 7r^ = 0. Writing the Poisson brackets for 7r and 7"', we find

a^tc -
7r = {71c , 7r } = SN 0

,

^1 = {c, 7rµ} _ = 0. (4. 7)

S Nkt

When generalised to include the matter variables and their conjugate momenta,

these expressions give the secondary constraints, which are formally equivalent,

respectively, to the time-time and time-space components of the classical Ein-

steil, field equations.
The arena in which the classical dynamics takes place is called `superspa.ce',

the space of all three-metrics and the matter field configurations on a three-

surface [Li]. This involves an infinite number of degrees of freedom and hence
to make the problem tractable, all but a finite number of degrees of freedom

must be frozen out. The resulting finite dimensional superspace is known as
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a `uiinisuperspace'. In the following, we consider a, minisuperspace model in
which the only degrees of freedom are those of the scale factor a of a closed RW

spacetime and a spatially homogeneous scalar field ^. The Lagrangian for this

problem is given by (1.58) with k _ +1; i.e.,

2

- - )2Na - V (cb) a3 (4.8)L = - 4C N N2
2
- a - 8 3G

from which we find the conjugate momenta Ira and 7,b as

0 L 37r ah

77a 5a 2G N

and

2 a3
7r1, =

vL

= 27r
N .

The canonical Hamiltonian can now be constructed as

xc = 7raa +7l-06- L

G Ira 37r 37r 3 G 702 S7rG
N -- - a + -a + VW

37r a 4G 4G 37r3 a6 3

NI-l.

(4.10)

(4.11)

[lie secondary constraint (4.6) now give

87rGG 7237 37r C; 7T, ,,,
R a + -a`3 0, (4.12)

4G 4G 3^, a6.37r a. 3

which is equivalent to (1.53). For the RW spacetime which contains only a
cosmological constant, (1.59) helps us to write the constraint equation as

G 71.2 37r 37r 87rG

37r a 4G a + 4G a3 3 PA = 0.
(4.13)

This equation is equivalent to (1.47). In all cases, R is independent of the

lapse N and shift No and thus the latter quantities are Lagrange multipliers (as

mentioned towards the end of Sec. 1.1) and not dynamical variables. Stated

in a different, way, the fact that R = 0 is a consequence of a new symmetry of

tlie theory, namely, time reparametrisation invariance. This means that using a

new time variable t' such that ^!' = N 0 will not affect the equations of motion.



Also this enables one to choose some convenient gauge for N, a procedure we

adopt on several occasions. The constraint equation gives the evolution of the

true dynamical variable (a in the above examples) and can be used in place

of the Hamilton equations.

4.2 Wheeler-DeWitt Equation

Canonical quantisation of a classical system like the one above means introduc-
tion of a wave function kP(h,,,,, 0) [4, 60, 61] and requiring that it satisfies

i^0 t =7h^ = NNW. (4.14)

To ensure that time reparametrisation invariance is not lost at the quantum

level, the conventional practice is to ask that the wave function is annihilated

by the operator version of N; i.e.,

RT = 0. (4.15)

But some other authors [621 argue that by defining a new variable T such that

N di = dT, one can retain the form (4.14); i.e.,

l

^ = Nc' (4.16)

and the resulting quantum theory will still be reparametrisation invariant. How-

ever, in the following we use the more conventional form (4.15), which is called

the Wheeler-DeWitt (\VD) equation.

This equation is analogous to a zero energy Schrodinger equation, in which

the dynamical vari ables It,,,, Cb etc. an d their conjugate momenta if,,,,, 7f,,, etc.

(generally denoted as qa and p", in the respective order) are replaced by the

corresponding operators. 'I'll(, wave function T is defined on the superspace and

we expect it to provide information regarding the evolution of the universe. An

intriguing fact here is that the wave function is independent of tinge; they are

stationary solutions in the superspace. The wave functions commonly arising

in quantum cosmology are of WKB form and may be broadly classified as os-

cillatory, of the form e`S or exponential, of the form e-1. The oscillatory wave

function predicts a strong correlation between qa and pa in the form

Pa = ^IC aa
(4.17)
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S is generally a solution to the Hamilton-Jacobi equations. Thus the wave
function of the form cis is normally thought of as being peaked about a set of
solutions to the classical equations and hence predicts classical behaviour. A
wave function of the form e-1 predicts no correlation between coordinates and

momenta, and so cannot correspond to classical behaviour.
In a minisuperspace, one would expect T to be strongly peaked around the

trajectories identified by the classical solutions. But these solutions are subject

to observational verification, at least. in the late universe so that a subset of
the general solution can be chosen as describing the late universe. Now the

question is whether the solution to the WD equation can discern this subset
too. But it shall be noted that, just like the Schrodinger equation, the WD

equation merely evolves the wave function and there are many solutions to it.

To pick one solution, the normal practice is to specify the initial quantum state
(boundary condition). These boundary conditions, through the wave function,

wequations. Then one
therefore set initial conditions for the

universe
classical

the of e observe today are
may ask whether or not the finer details o
consequences of the chosen theory of initial conditions.

In the simple example of the RW spacetime which contain only a cosmo-

logical constant, T is defined on the minisuperspace with one dimension in the

variable a. We replace 7Ta -> i d/da in (4.13) to write the WD equation as

d2 91r2 Cat

_ 87rG p,\a4)1
- T (a) = 0. (4.18)

[dal 4G2 3

The factor ordering in the operator replacement in (4.13) is ambigous. For many

choices of factor ordering, the effect can be parametrised by a constant r and

the corresponding Hamiltonian operator is obtained by the substitution

-r
7'2 (1

0 a (4.19)
da Oa

The choice in (4.18) corresponds to r = 0. But it will not significantly affect

the semiclassical calculations and hence we choose the form in (4.18) for conve-
nience. In this form the WD equation resembles a one-dimensional Schrodinger

equation written for a particle with zero total energy, moving in a potential

^)7f2
U(a

(a2 - 87rGa4PA) . (4.20)

) = 4G2 3

Let us now define
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FIG, 4 Tunneling wave Cunction for the de Sitter minisuperspace model. The potential U(a)

isshown by a solid line and the wave Function by a dashed line.
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FIG ) Hartle-Hawking (a) and Linde (b) wave functions for de Sitter u-iinisuperspace model.



J (4.21)(ao
S7rG

P^
1-1/2

= 3

In the particle analogy, there is a, forbidden region for the zero energy particle
in the intervel 0 < a < ao and a classically allowed region for a > ao. The WKB

solutions of (4.18) in the classically allowed region a > ao are

j a

(a) = Ta t/2 exp i 7ra,da' ir/4 (4.22)
s

where Ira = [-U(a)]h/2. In the forbidden region the solutions are

t/2 exp ± I a ' I
a, I da '^ . (4.23)

For a > ao, we have

1
d (4.24)

- - ^17^(<I) ^ ^Au. tl^f((l).
da

Thus tI7_ and T+ describe , respectively , an expanding and contracting uni-

verse . It is now that we iinpose boundary conditions and different boundary

conditions lead to different predictions . Some of such well - motivated propos-

als for the boundary conditions are by Hartle-Hawking, Vilenkin and Linde

[48, 63, 64].

4.3 Boundary Condition Proposals

The Hartle-Hawking no boundary' boundary condition [48] is expressed in
terms of a Euclidean path integral. The corresponding wave functon, in the

present case, is specified by requiring that it is given by exp(-Its) in the under

barrier regime, where IE is the Euclidean action. This gives

T t1(a < ao ) = T _(a), (4.25)

xV J1 (a > ao) = T+(a) - T -(a).
(4.26)

This corresponds to a real wave function with equal mixture of expanding

and contracting solutions in the classically allowed region. Linde's wave function
[63] is obtained by reversing the sign of the exponential in the Euclidean regime;

'lL(a. < ('0) = q1+
(4.27)
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kPL(a > au) +(a) + `P-(a)] • (4.28)

Vilenkin's `tunneling boundary condition' [64] gives a purely expanding solution

for the classical regime

kl'T((I, > a0) _ -(a) (4.29)

and the under-barrier wave function is

TT,(a < a0) = T+(a) - T-(a). (4.30)

The growing exponential W_(a) and the decreasing exponential T+(a) have

comparable amplitudes at a = ao, but away from that point the decreasing

exponential dominates. This, he describes as creation of the universe from

`nothing'. The solutions chosen on the basis of various boundary conditions are

plotted.
This quantisation scheme is applied to spacetimes which contain scalar fields.

The attempt is to examine the possibility of emergence of a semiclassical phase
from the quantum cosmological era, which contains a scalar field with the re-
quired initial conditions for inflation to occur. On using the Hartle-Hawking
wave function, the probability for tunneling from a = 0 to a = ao is given by

PH o; e- IE.

Under the Vilenkin tunneling boundary condition,

(4.31)

PL a e-IIEI. (4.32)

If the potential of the scalar field has several extrema, then using the latter

prescription, tunneling favours the maximum with largest value of V(O) (which

is advantageous for inflation) whereas the former prescription favours the mini-

1>>1111i with the sniallest value of the potential. However, all these authors agree

that these proposals may be criticised on the grounds of lack of generality or

lack of precision [60, 61].

4.4 Quantisation of the New Physical Models

Quantisation of the models discussed in Ch. 3 involves a slight paradigm shift:

we do not have inflation and also our models always contain matter along with
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vacuum energy. Though our prototype model is the one with zero energy-
momentum tensor and a complex scale factor, we postpone the discussion on

that to the next section. First we consider our coasting model discussed in Sec.

3.5, with total energy density varying as a-2.
We adopt the approach of Fil'chenkov [65], who has considered the WD

equation for flat, closed and open universes which allow for some kind of matter

other than vacuum. He generalises the potential U(a) given by (4.20) for p,,,=

constant by writing the energy density for the universe in the form

p =PP1
n=0

P,

a
L

(4.33)

Here n = 3(l + tv).This is a superposition of partial energy densities of vari-

ous kinds of matter at Plankian densities, each one of there being separately

conserved. The kinds of matter included are

n = 0 (w = -1) vacuum,

72 = 1 (w = -2/3) domain walls,

n = 2 (w = -1/3) strings,

n = 3 (w = 0) dust,

97. = 4 ('iv = 1/3) relativistic matter,

n = 5 (w = 2/3) bosons and fermions,

n = 6 (w = 1) ultrastiff matter,

(4.34)

The WD equation is now written as

d2 - U(a) All
= 0, (4.35)

[ dal

with the generalised form of the potential (4.20)

U(a) =
2

2 (ka 2 - S
3Ca4p)

(4.36)

We too proceed along similar lines, but first considering only a single con-

served component at a. time. It shall be noted that the constraint (1.34) and

field equations (1.35) for an energy density p = C',,/a" with equation of state

(1.39) (where w = 3 - 1) are obtainable from the Lagrangian
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1
L=27r2a3N

6 a2 6k
- ---- -

Cn
-

167G N2 a2 a2
an

(4.37

by writing the Euler-Lagrange equation corresponding to variation with respect

to A' and ca.. The Hamiltonian is

G 7r2 37 37r 38,, G Cn
=0 ( 4.38 )aka +

n= - 3 an4G37r a 4G

and the WD equation in this case can be written as

c1 2 97r 2 ( ia2 - ?
a'

a'1- 1Cn^ ',^(a) = 0.
dal 4G2

(4.39)

For n1,2, classically there is a forbidden region for a > ao, whereas the allowed
region is for a < ao; ao =- [(87rG/3)C,^]i/(n-2). We see that for the special case

with ni = 2, the WD equation reduces to

[
2 9 2

dh2 4C„2 a2 ^k - 8 3GC2 = 0. (4.40)

With C2 = ( 3/87G )( 77, 2 + k ), this corresponds to the energy density (3.60)

advocated by us. In this case, the WD equation is simply

da2 + G2 a2m2I T = 0. (4.41)
4

It is clear that is oscillatory for all values of a. If we choose the factor ordering

corresponding to r = 1 [instead of r = 0: See Eq. (4.19)] in the above, we have

d2 1 d 97x2 2 21

[dal a cla + 4G2 a ^n
J T = 0,

which has an exact solution

(4.42)

37r (4.43)exp (±iia2).

ti, is of interest. to note that if we define th cis in the above, S satisfies the.

Ilainilton-Jacobi equation

^-
2

- (4.44)
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where U(a) = -(97r2/4G2)a2m2. The classical constraint in this case is -,ra -}-

LT(o) = 0. This invites the identification

(1,5 2 = 97 2
(4.45)_ 2 2.

7 da 4,2
a rn

Using this in our definition 7a OLIN = -(37/2G)aa. [as in (4.9), with

AT = 1], we get a _ +m., from which the coasting evolution is regained. Thus

the oscillatory wave [unction is strongly peaked about the singular coasting

evolution throughout the history of the universe.
Now let us turn to the physical universe with total energy density p given

by (:3.13). Clearly the field equation and constraint (3.17) follow from the

Lagrangian

:3 7, h2a a2,

4G N2 a

The I-Iai-riiltonian is

(4.46)

'H = -
G 7,,2,

+
37r Ca -

ao
= 0, (4.47)

;37, a 4G a

so that the WD equation, with factor ordering r = 0, is

2 2d - 97r 2 (a0- a2)

dal

2

4G
tp = 0. (4.48)

The potential in this case indicates that a < ao is a classically forbidden region.

The classical action f L (It constructed using (4.46) in this under-barrier region

call be seen to be

_.37r 1 a
S o

1.19i T (t{ cosi C ) - sin 2 [cos
( a )]}

a

which is pure imaginary. It can be seen that for a < ao, cis satisfies the WD

equation. Similarly for the region a > ao, the classical action is evaluated as

2G
[(a 2 - ao)1T2 a - ao cosh no^^ (4.50)

which is real. Also in this case. cis is a solution for a > ao. Using a, reasoning
he that in the case of (1.13). we ca.n regain the solution (3.9) in both cases.
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4.5 Quantisation of the Complex, Source-free

Model

Lastly, we quantise the model with complex scale factor and zero energy-momentum
tensor [54] and show that this model has the correct classical correspondence
with the classical trajectory. From (3.4), the Lagrangian for the problem is

obtained as L = -(37/4G) (?L2a - a). The conjugate momentum to a is

8L 37r
--aa._- _-Ira (4.51),.

8a

The Ham iltonian is

G n 37r . (4.52)
37r a IG a.

The constraint equation H = 0 has the corresponding WD equation

('1-f - E)W(a) = 0 (4.53)

where we have made a, modification such that an arbitrary real constant c is
i it.roduced to take account of a possible energy renormalisation in passing from

the classical constraint to its quantum operator form, as done by Hartle and
Hawking in [48]. It shall be noted that this equation is still reparametrisation

invariant. Choosing the operator ordering for the sake of simplicity of the

solution, we get,

d2 ( a ) 97r 2 az + 37r Ea W(a) = 0 (4.54)
dal 4G2 G

Making a , substitution S = ^37r/2G [a + (2G/37r ) €], this becomes,

The wave equation

V:3:

d' f'(S) + (2G€2 - 5'2(S) = 0.
^Cl^2 37

(4.55)

has ground state harmonic oscillator type solution for c _

ip(a) = N exp -
(a + ) 21

V-37'r'4G
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This is nonnormalisa.hle, but. it is not normal in quantum cosmology to require
that the wave function should be normalised [60]. Our choice is further justified

by noting that the probability density

exp (
3 7r2

) exp* _ ^V2

2 1

(4.57)

is sharply peaked about the classical contour given by Eq. (3.8), which is a

straight line parallel to the imaginary axis with x remaining a constant. We

can identify ao with the expectation value of x;

(/ E<x >=-
72 G

37r

(4.58)

the desired result. The exp [(37T/4G) y2j part of
so that i ao I-- 1pi, which is
the wavefunction is characteristic of a. Riemannian space-time with signature
(+ + + + ). This is precisely the feature we should expect to correspond to

the imaginary part in the scale factor.
The classical correspondence can be made more explicit by making an ar-

gumnent similar to that made in Sec. 4.4. The classical Hamiltonian constraint

equation in this case is

(4.59)9T
7r a 4G

Defining the above wave Function (4.56) as '(a) = is we note that S satisfies

the Hamilton-Jacobi equation

cl,^' a 97' (a+ )
2G

= 0 (4.60)

dcr^ + 4C^2 3T

Comparing these two equations, we see that sth e trangl peak d about thele g
classical solution, for large a when compared to

Thus the result obtained on quantisation is that the simplest rninirnuin en-

ergy wave function is sharply peaked about the classical contour of evolution

of a, just like the ground state harmonic oscillator wave function in quantum

mechanics is peaked about, the classical position tli the particle. But weal welcome
mechani

the important difference. with this analogy; quantum
in our case is not localised. In fact, the wave function is not normalisable along

the irrnaginary axis. If it was with real scale factor, the exponential growth of
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the Wave function would correspond to some classically forbidden region, but
in this case, we have the nonnormalisable part, for the wave function along the

Ililaglnarv axis; this result Is just Avhat We should expect Since it corresponds to

our classical system and can not be termed as `classically forbidden,'. The most

significant fact is that the quantum cosmological treatment helps us to predict
the value of a0, the minimum radius in the nonsingular model as comparable to

time Planck length.
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Chapter 5

Reprise

5.1 Comparison of Solutions

For the purpose of comparison with the solution of Einstein equations in the

new cosmological model, we take a closer look at the occurrence of inflation

mentioned in Sec. 2.3. In the scalar field model described by (1.53) -(1.55), we

see that the field equations (1.54) and (1.55) are second order partial differential

equations, whose solution involves initial values of four quantities a, a, 0 and c^.

The constraint equation (1.53) connects first derivatives and hence the number

of arbitrary parameters in the theory gets reduced to three. The occurence of

inflation in this system is not generic; it depends crucially on several factors

[60]. First of all, the potential V(6) should be of the inflationary type; i.e., that

and dvf^l /V(O) lG< 1. Forfor some ran should be large d(^ge of values of 0, V'(0)
the subset. of k, = +1 solutions, inflation occurs only when the initial value of

Gh ti 0. It, is argued that quantum cosmology provides such initial conditions

favourable for inflation to occur, by the choice of proper boundary conditions.
In this case, the cosmological wave function is peaked around the trajectories

defined by

a lz^ [8G2V()] hI2 » 1, 0. (5.1)

Tlien the number of free parameters are reduced to two. Integrating the above

equations give

a ti exp
- ri

3

GVi/a(t - t0) ti duo = constant
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Here to and Oo are the two arbitrary constants parametrising this set of solutions.

The cousta,tit, to is in fact, irrelevant, because it is the origin of the unobservable

parameter time. However, this solution is inflationary.
Let, us contrast this situation with the solution of the system described by

(3.5) and (3.6). The complex field equation (3.6) is in fact a, set of two second

order partial differential equations and involves four free parameters. But also

the constraint equation contains two first order equations:

.1' =0, ) =±1 (5.3)

This Helps us to obtain the desired solution a = ao±it, which corresponds to the

nonsingular physical model, as a general one and without resorting to quantum

cosmology. Since to is irrelevant, ao is effectively the only free parameter in the

classical theory. Quantum cosmology, in fact, allows us to predict this value

too, as comparable to Planck length. This prediction is not in the way ao is
identified in the conventional quantum cosmological theories mentioned in Sec.

4.3 or in our own models discussed in Sec. 4.4. In these cases, ao can be readoff
from the potential itself and is not obtained as an expectation value using the

wave function.
Another feature that distinguishes our quantum cosmological treatment' is

that we are not imposing any adhoc boundary conditions; we only look for an

exact solution to the WD equation. This procedure is quite similar to the so-

lution of harmonic oscillator problem in ordinary quantum mechanics. In this
sense, introdn.tction of a zero point energy in the AVD equat,ion 01.5:3) is justifi-
ahle. Ho^we:ver we adopt the point of view that the vanishing' of the classical

11wwltonian can be taken care of by restricting the solution to that correspond-
ing to the minimum energy. It is of interest to note that, this mininnurn (zero

point) energy is c = (37r/2)1/2Cp( where cpi is the Planck energy. That is, the

total energy of the universe is not zero; it is the Planck energy - apart from a

numerical factor.
At this point, it is worth while to point out that the total positive energy

(matter, vacuum etc.) contained in the closed real universe at t = 0, evaluated

using (3.18) and (4.58) is also equal to c. The negative energy contributes a
value -c/2 so that the total energy is c/2. (This, of course, does not include

the gravitational energy).
Coming back to the solution of the complex field equation (3.6), we may now

state why we assumed k = +1 and did not consider the k = 0 and k = -1 cases.

It can be seen that if we require the complex spacetime and the corresponding

physical universe to have the same value of 1, then the k = 0, -1 cases are
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unsuitable to describe the universe we livein. For k = 0, the constraint equation

gives i• = 0, y = 0, which leads to a static universe. For k = -1, it is true that

we get a. solution a = ±t + iao from which I a I 2= ao + t2 is obtainable. But in

this case, the physical universe has to obey the equation

a2 - 1 - ° (5.4)
a2 a2 a4

i.e., the physical universe contain only the negative energy density. For these

reasons, we do not consider these two possibilities as viable and set k = +1 at

the outset.

5.2 Coasting Evolution

The physical models we obtain in both approaches (Secs. 3.2, 3.5) have coasting

evolution. In the latter model, it, is coasting throughout the history and in

the former, it coasts when the universe is a few Planck times or more old.

Historically, the first coasting cosmological model is the Milne universe. To

understand this model, first consider a two dimensional flat spacetime given in

coordiantes (t, X) with the metric ds2 = dt2 - dX2. Let the worldline Lo be the

line X = 0. By repeatedly using the Lorentz boost corresponding to some small

velocity Alga, a, family of worldlines which all pass through 0 can be generated.
A model in which these are the worldlines of fundamental observers represents

an expanding universe obeying the cosmological principle. All the fundamental

observers are equivalent to each other and because the worldline Lo is a straight
line representing inertial motion, the same is true for other worldlines too. Since

the Lorentz boost is repeated infinitely often, an infinite number of worldlines

are obtained by this construction. A four dimensional analouge of this model is

usually referred to as Milne universe. This is a flat space cosmological model,

not incorporating the effects of gravitation [66, 67]. Alternatively, it is described

by a flat, empty spacetime having a RW metric with k = -1, a(t) = i and q = 0.

Coasting cosmologies are encountered in many situations including non-

Einstein theories of gravitation ([67] and references therein,). In the Friedmann

models itself, it is easy to see from (1.38) that coasting evolution results when

p + 3p = 0, our models being examples. The quantity p + 3p is sometimes

referred to as gravitational charge. An interesting property of such spacetimes

was. recently pointed out by Dadhich et a]. [68]. They resolve the Riemann

tensor, which characterises the gravitational field into electric and magnetic

parts, in analogy with the resolution of the electromagnetic field. It can be seen
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that the electric part is caused by mass-energy white the ma.gnet.ic part is due

to motion of the source. Hitt unlike other fields, gravitation has two hinds of

charges; one is the usual mass-energy and the other is the gravitational field

energy. Consequently, also the electric part is decomposed into an active part,

which is Coulombic and a passive part, which produces space curvature. An

interchange of active and passive electric parts in the Einstein equation, which

is referred to as electrogravity duality transformation, is shown to be equivalent

to the interchange of Ricci and Eintein curvatures. These authors show that

under this transformation, spacetimes with p + 3p = 0 go over to flat spacetime;

i.e., they are dual to each other.
Absence of a particle horizon, agreement with the predicted age of the

universe etc. in a coasting evolution are well known, but since it is usually
considered as a feature of spa.cetimes containing only some exotic matter like

strings, textures etc., this most simple cosmological scenario is not given serious

attention in the literature. The Ozer-Taha model is coasting, but only upto

the relativistic era and deviates from it after that epoch. Our physical model

demonstrates that a coasting evolution throughtout the history of the universe is

a promising contender to a realistic cosmological model, which resolves all out-

standing problems in the standard cosmology and at, the same time not making

too drastic modifications to it.

5.3 Avoidance of Singularity

The physical model obtained in Sec . 3.3 is a bounce solution from a previous

collapse, rather than an explosion from a big bang singularity. Such a bounce

is sometimes referred to as a "Tolnian wormhole' [69 , 70]. Oscillating universes

have somewhat similar features and were considerd as alternatives to the big

bang cosmologies in the earlier literature , but interest in such cyclical evolutions

declined after the first cosmological singularity theorems . Recently, the quasi-

steady state theory [71 ] revives this scenario . An analysis of bounce solutions

reveals that the absolute minimum requirement for this to occur is the violation

of (only ) the strong energy condition ( SEC). The various energy conditions, in

the context of Friedmann models are the following [69]:

Null energy condition (NEC) < p + p > 0

Weak energy condition (WEC) p > 0 and p+p>0

Strong energy condition (SEC) p -F 3p > 0 andp+p>_0
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Dominant energy condition (DEC) p > 0 and p ± p > 0

It is shown that in a k = +1 universe, only the SEC need to be violated for

obtaining a bounce solution. Since the singularity theorems mentioned above
use the SEC as an.input hypothesis, violating this condition vitiates them [73].

Physically, violating the other energy conditions with (small) quantum effects

is relatively difficult. On the other hand, it is rather easy to violate the SEC

and is therefore often referred to as `the unphysical energy condition'. Using

p and ji given by (3.18) and (3.19) in the above energy conditions, we can see

that our nonsingular model satisfies all the energy conditions except the strong

one and serves as a perfect example for this phenomenon.

When comparing our two physical models, it is clear that the avoidance

of singularity is primarily due to the presence of the negative energy density.

The naturalness of a negative energy density at the classical level may be sus-

pect. But we should note that the nonzero value of ao on which this depends

is obtained on quantisation. However, as mentioned before, negative energy

densities were postulatd much earlier. Currently, there is a revival of interest

in negative energies in connection with speculations on wormholes, time-travel

etc. [72, 73]. Also some speculations are on which consider a Casimir driven

evolution of the universe [74]. That negative energy densities are predicted by

relativistic quantum field theory is known for a long time. Casimir [75], for the

first time, showed that between two parallel perfect plane conductors separated

by a distance 1, there is a, renormalised energy E = -^r2/72013 per unit area

and this is now experimentally confirmed. The energy density corresponding to

this may be evaluated as -7,-2/72014. The Casimir energy density is calculated

for some static universe models. For example, this density for a massless scalar

field in the four-dimensional static Einstein universe is [76]

0.411505
PCasirnit = -

47f2a4

A similar expression for an expanding closed universe is not known to us. How-

ever, we shall compare the above value with our expression for negative energy

density (3.35), with ao given by (4.58): i.e.,

Anyhow, it will be premature to identify p_ with Casimir energy density, just

like identifying p,\ with vacuum energy density.
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5.4 Prospects and Challenges

In this subsection, we discuss some of the possible future developments in con-

nection with the new model, both observational arid conceptual.
1) Consider the physical nonsingular model with real scale factor a(t) _

(a2+L2)h/2. This model is obtainable directly from the assumption that the uni-

verse is closed and has a, total energy density and pressure given by Eqs. (3.! 3)

and (3.19) respectively. The assumption of complex scale factor etc. serves the

purpose of justifying this one. It is shown that globally, the model has very good

predictions and is devoid of all the cosmological problems mentioned in Sec. 2.1.

But to be compatible with modern observational cosmology, it has to go a long

way. Of utmost importance is the fluctuations in CMBR detected by COBE;

any realistic cosmological model should be able to account for this. In Sec.
3.4, it was argued that the present model can generate density perturbations

on scales as large as the present Hubble radius, even after the nucleosynthesis

epoch. Recently, Coble of al. [45] have claimed that while models with a `con-

stant' cosmological constant have too high a COBE normalised amplitude for a

scale invariant spectrum, their decaying-A model has this amplitude matching

with observations. However, a detailed analysis of CMBR anisotropies is not

undertaken here. Another issue of importance which we have not looked into

in any detail is the nucleosynthesis in the present model. It is shown that the
thermal history of the model is not very different from that of the standard
model. Hence it would be reasonable to expect that nucleosynthesis will also

proceed in an identical manner as in that model.
2) If the standard model is to be generalised by including some kind of

energy density other than relativistic/nonrelativistic matter, the resulting model
cannot remain unambitious for long; it invariably has to get connected to field

theory or the `standard model' in particle physics. In that sense, the present

model has only put forward a phenomenological law for the evolution of vacuum

energy which we prudently call A (or p,s). A field theoretic explanation for /),y
will always be welcome. In fact, one can see some resemblance between the

set of equations (3.10)-(3.13) and (1.53) (1.55), which suggests the possibility

of considering 0 as a field. It is easy to see that this is not an ordinary scalar

field; it is more akin to a Brans-Dicke field. This aspect too is not pursued any

further.
3) Another important issue worthy of further exploration is the connection

with `quantum stationary geometries' (QSG's) [77, 78]. As an example, this
theory juxtaposes two situations; one in which a classical system of closed dust

filled universe with constraint equation
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a2 1 A
a2 { a2 = a3 (5.5)

having a singular evolution for the scale factor a = ac (a,ss.(t ) and the other in
which QSG's avoid this singularity in such a way that

,i4.ss.(t) (5.6)< a2(t) >= ao + a2

Also here, a0 is shown to be of the order of Planck length. This is analogous to
the avoidance of singularity in the new model. This and many other aspects of
the quantum behaviour in the model are left untouched.

Lastly, some aspects of aesthetics. It is well known that Einstein considered
the right hand side of his equation, which contain a nongeometric quantity
(the energy-momentum tensor) as spoiling the consistency and integrity of his
geometrical approach. In the present case, we do not hesitate to claim that at
least in a cosmological context, a realistic model is obtained in which such a
voluntary introduction of a nongeometrical quantity is not necessary. In fact,
equations (3.10)-(3.13) are essentially the same equations (3.5) and (3.6) and
hence it can be considered that the right hand sides of (3.10)-(3.11) or that of
(3.16)-(3.17) as emerging from their corresponding left hand sides.

One cannot simply be averse to the philosophical overtones of this theory.

The universe with complex scale factor is the unperceived one, but the same

field equations describe a real, physical universe with real scale factor. Our
intellect can conceive only the measurable, real quantities and in a sense, this

makes the energy-momentum tensor nonzero. If not approached with caution,

this can lead to mysticism. Perhaps it would be better to interpret this, in the

event of being proved to have some truth content, as yet another instance in

physics where, to use N. Bohr's words, "truths being statements in which the

opposite also are truths".
This position can be criticised on two grounds. (1) The observational and

theoretical uncertainties are greatly amplified in cosmology and hence it is sub-

jected to all sorts of ideological and philosophical influences, the present theory

being one example. But it shall be reminded that none of the existing cosmo-

logical models are free from it and at the level of analysis made, the present

model has equally good, if not better, predictions. (2) At a subtler level, it

can be argued that it is our intellect that imposes its laws upon nature. We

quote K. Popper [79], who remarked on this subject In reply to Kant: "Kant

was right that it is our intellect which imposes its laws - its ideas, its values -

upon the inarticulate mass of our "sensations" and thereby brings order into

73



them. Where he was wrong is that he did not see that we rarely succeed with
our imposition, that we try again and again, and that the result - our knowl-
edge of the world - owes as much to the resisting reality as to our self produced
ideas". We note that this makes the task of conforming to any epistemological

systematics difficult for the scientist.
As a closing note, we remark that the model with complex scale factor can be

considered as a model for an underlying objective reality. The theory is clearly

falsifiable; in the predictions Hptp = 1, qp = 0, p„,/p\ = 2 in the nonrelativistic

era,the total energy density p, the negative energy density p_, etc., it leaves no

adjustable parameters. Though it looks a mathematical curiosity, at best a toy

model, it is curious enough how this simple model can account for this much

cosmological observations without creating any problems at a physical level.
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