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Chapter O
INTRODUCTION

L.A. Zadeh [ZAl] defined fuzzy sets for represen-
ting inexact concepts. In 1974 Michio Sugeno [SU]
introduced the concept of fuzzy measures and fuzzy
integrals. He used fuzzy measures to evaluate the
grade of fuzziness of fuzzy subsets of a set X. Since
then, without using a probability distribution, it has
been widely used to represent available information
about an uncertain experiment. Fuzzy set theory finds
application in many fields, for example, automata,
linguistics, algorithm, pattern recognition, etc. [SU].
In the fuzzy set theory the concept of "fuzziness" is
introduced corresponding to randomness in probability
theory. Sugeno started with the concept of '"grade of
fuzziness". He obtained "fuzzy measure' as measuring
grade of fuzziness and he compared it with probability
measure expressing grade of randomness. He constructed
and developed the theory of fuzzy integrals independently
of fuzzy set theory. But the concept of fuzzy sets was
referred frequently. He used fuzzy measures and fuzzy
integrals as a way for expressing human subjectivity
and discussed their applications. Sugeno [sul, Ralescu

and Adams [RA; AD] and Wang [WA;] studied the fuzzy



measures and fuzzy integrals defined on a classical
o-algebra by deleting the o-additivity and replacing

it by monotonicity and continuity. Fuzzy integrals
obtained by Sugeno are analogous to Lebesgue integrals.
Lebesgue measures assume additivity whereas fuzzy
measures assume only monotonicity. Therefore, human
subjective scales can better be approximated by using
the conventional one. Sugeno obtained it as an
optimisation problem of minimizing the error between

the human evaluation and the fuzzy integral output.

His fuzzy integral model was applied to examples such as
subjective evaluation of female faces and grading
similarity of patterns. Sekita and Tabata [SE; TA]

used fuzzy integrals for evaluation of human health
index. The problem of evaluating the properties of a
system was studied by Siegfried Gottwald and Witold
Pedrycz [GO; PE] on the basis of the corresponding fuzzy
model. They have shown that a grade of satisfaction for
a property of the system may be calculated by means of

a fuzzy integral with respect to a fuzzy measure. Here
the fuzzy measure corresponds to a quantitative represen-
tation of the quality of the model constructed. Dubois
and Prade [DU; PR] introduced an axiomatic approach to a
broad class of fuzzy measures in the sense of Sugeno

using the concept of triangular norm (t- norm).



R.R. Yager [YA] and D. Butnario [BU] also studied

fuzzy measures in order to measure fuzziness of

a fuzzy set. Qiao [QI] and Wang [WA}] generalised

them to a fuzzy o-algebra of fuzzy sets. Klement [KL]
defined a fuzzy o-algebra axiomatically. Further he
established the relationship between a classical
o-algebra and a fuzzy o-algebra. Suzuki [SUZl],

[SUZ,] studied some analytical properties of Sugeno's
fuzzy measures especially of atoms of fuzzy measures.
He defined a fuzzy integral of Riemann type througn
atoms. Also he showed that a continuous function is
fuzzy integrable in the sense of Riemann and has the
same integral as that of Sugeno. Wang [WAQ} and KTUSG[KRl]
studied some structural characteristics of fuzzy measures.
Eventhough their discussion was limited to a classical
o-algebra, they proved several convergence theorems for
a sequence of fuzzy integrals. Qiao [Ql] established

a theory of fuzzy measure and fuzzy integral in a fuzzy
o-algebra of fuzzy sets by combining Sugeno's theory
and Zadeh's fuzzy sets. Qiao [QI] introduced real-
valued fuzzy measures and fuzzy integrals for a pseudo
complemented infinitely distributive complete lattice L
and studied several properties of fuzzy integrals on

L-fuzzy sets.



In this thesis we make an attempt to study
the theory of fuzzy Daniell integral analogous to
the crisp theory [RO]. P.J. Daniell in 1918
published his famous paper [DAl] in which he
introduced the idea of an integral without using
the concept of measure. Radon, Young, Riesz and
others [DA;] have extended the idea of integration
to a function of bounded variation, based on the
fundamental properties of sets of points in a space
of finite dimension. E.H. Moore's theory of integra-
tion is similar to that of Daniell's; but Moore
restricts himself to the use of relatively uniform
sequences. Daniell also showed that the Lebesgue
integral and the Radon-Young integral were only
special cases of the general form of the integral he

had obtained.

Frechet in 1915 showed that it is possible
to abandon completely the sets with geometric character
and integrate functions defined in abstract spaces [FR].
He did this in extending the method of Lebesgue to this
general problem., A little later, using the idea of the
extension of linear functionals, Daniell also did the

same. To generate the theory, a vector lattice L of



real-valued functions on a nonempty set X is considered.
Here the role of step functions is given to elements of
this class so as to reproduce the theory of the Lebesgue
integral. Two fundamental facts are needed. If I is a
positive linear functional the two fundamental facts

are (i) I(fn)-——e O when fn(x)i O a.e., and (ii) if
{fn} is an increasing sequence I(fn) remains bounded
implies fn(x) converges a.e to a finite limlt. A triple
(X,L,S) is called a Daniell integral space if the
following conditions are satisfied. The family of
functions LCLRX forms a linear lattice; the functional

J is nonnegative and completely countably additive on

LY = {fé L: f > 0}. We say that a functional  is a
Daniell integral over the space X if its domain LC RX
forms a linear lattice and the triple (X,L,S) is a
Daniell integral space. A Lebesgue integral is a
Daniell integral but the following example given in
[BO] shows that Daniell integrals need not always be

Lebesgue integrals.

Example. Let X = (0,1] and L = { f = re:r€R }, where
the function e is the identity map e(x) = x for x¢ X.
Define /f = r, if f = re. This triple forms a Daniell
integral space but the linear lattice is not closed under

the stone operation i.e., f—>fN1l. The domain of the



integral is one-dimensional.

Daniell showed that it is not necessary to
have a measure in the set X on which the integrands

are defined for the existence of an integral.

P. Lubcznok [LU], Godfrey C. Muganda [MU]
and others have defined a fuzzy vector space., Zadeh
[ZAQ] introduced another very useful concept, viz.,
fuzzy singletons in 1972. Using the notation of fuzzy
singleton, Wong [WO] introduced the concept of fuzzy
points. He defined it in such a way that a crisp
singleton, equivalently, an ordinary point, was not
a special case of a fuzzy point. Pu Pao-Ming and
Liu Ying-Ming [PU; L1) have redefined it as a crisp
singleton, equivalently, an ordinary point, as a

special case,.

We make use of the earlier definitions of fuzzy
vector spaces, fuzzy lattices, fuzzy sets aﬁd fuzzy
points in order to introduce the concept of fuzzy vector
lattices. We use a''fuzzy point approach" throughout

the work. This thesis consists of five chapters.



In the first chapter we have defined a fuzzy
vector lattice s, a vector lattice of fuzzy points §
and introduced some definitions related to sequence
of fuzzy points. We have also defined a fuzzy Daniell
integral as a positive linear functional © from § to R,
where R is the set of fuzzy points in R, and show thatc

can be extended to §u which is the set of the limits

of all increasing sequences of fuzzy points in s.

The second chapter contains the definitions of
upper fuzzy integral, lower fuzzy integral and a study
of Tw-integrable class of fuzzy points represented by
gi. In this chapter we prove that — can be extended
to the class of all fuzzy integrable fuzzy points and
that (< ~integrable class of fuzzy points) El is a

vector lattice.

In the third chapter we have shown that the
monotone convergence theorem, Fatou's lemma and the
Lebesgue convergence theorem are still true in the
fuzzy context under suitable assumptions. The chapter
ends with the establishment of the uniqueness of the

extension of ©T on § to El.



Fourth chapter begins by quqting the definition
of fuzzy o-algebra, fuzzy measure and fuzzy integral. In
this chapter, the definition of measurability of a fuzzy
point, measurability of fuzzy set, and integrability of
a fuzzy set are given. The main result of this chapter
is the fuzzy analogue of Stone's theorem, which says
that the fuzzy Daniell integral — on §l is equivalent

to the fuzzy integral with respect to the fuzzy measure 3 .

The last chapter, viz., chapter five briefly
describes the extension of the abeve theory to fuzzy
vector valued integration. Here, we are considering
two types of fuzzy vector valued integration: (i) the
fuzzy integral of a fuzzy point in the set of all vector
valued functions on X with respect to a real valued fuzzy
measure, and, (ii) the fuzzy integral of a fuzzy point
in the set of all real valued functions on X with respect

to a vector valued fuzzy measure.



Chapter 1

FUzzY VECTOR LATTICES AND FUzZY
DANIELL INTEGRAL*

1,0 INTRODUCTION

Daniell P.J. obtained an extension of elementary
Riemann integral to a general form of integral. He starts
with a vector lattice L of bounded real valued functions on
a set X. Then a nonnegative linear functional I which is
continuous under monotone limits, is defined. This funct-
ional I is called a Daniell Integral. Then I is extended
to a larger class of functions retaining all the properties
of L and having additional properties. As per the example
cited in Loomis [LO] taking L to be the class of continuous
functions on [0,1] and I to be the ordinary Riemann integral
the extension of L is then the class of Lebesgue summable
functions and the extended I becomes the ordinary Lebesgue
integral. Taking the class LU of limits of monotone increas-
ing sequences of functions in L, I is extended to L, and
proved that Lu is a vector lattice. The fuzzy form of the
above part of Daniell's procedure is discussed in this
chapter. Here we define a fuzzy vector lattice and fuzzy
Daniell functional. P. Lubczonok [LU], Godfrey C. Muganda [MU]

and others have already given the definition of fuzzy vector

* Some of the results given in this chapter have already
appeared in J. Fuzzy Maths 3(1995).
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space and we make use of this definition in the forth-
coming discussion.
1.1. FUZZY VECTOR LATTICES

Let X be any set and L be a vector lattice of

extended real valued functionson X.

Notation 1l.1.1., A fuzzy set s in L is a map s:L — [0,1].

For f € L, a ¢ (0,1}, a fuzzy set fa is a fuzzy point when

fa(h) a if h = f

O if h#£#Zf »he L.

If s is a fuzzy set and fa a fuzzy point, we say fa is a fuzzy

point of s if f & s i.e., a s(f).

Convention. In this thesis, a fuzzy set s in L is always

taken to be such that s(o) = 1,

Definition 1.1.2 (Def. 2.1 of [LU] ). A fuzzy set s in L

is a fuzzy vector space if

s(af + bg) » s(f)As(g) # f,ge¢Ll and a,b ¢ R.
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Definition 1.1.3. s is a fuzzy vector lattice if

(i) s(af + bg) » s(f) A s(g)
(ii) s(fvag) » s(f) Vv s(qg)

(iii) s(fAagqg) > s(f) N s(g) wf,g¢ L and a,b ¢ R

Notation l.1.4. S denotes the set of all fuzzy points of

s and R the set of all fuzzy points in R.

Definition 1.1.5. f_ ¢ s is said to be non negative and
we write fa > O if f > O.

Definition 1l.1.6. #f , gB € s, f

a < gB if f £ g and

«.) B, where f,g ¢ L and a,B €¢ (0,1]. Note that  is a

partial order in §.

Theorem 1.1.7. ¥ fa’ gB € s,

i

(i) fav gﬁ (fVQ)min(a,ﬁ) and

(i) £, A gg (fAg)

max(a,B)
Proof. (i) Let £, 9 € S. We have f ¢ fvg and

a ) min (a,B) and so f, < (f\/g)min(a,ﬁ); g £ fvg and

B > min (a,B) and so 9 < (fvg) Also if

min(a,B)”

fa’gﬁ £ hY then f L h, g h, a 3>y, B > vy so that
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fvg £ h and min (a,B) > y. Therefore, (f\/g)min(a,ﬁ}éhy.

Thus fa\/gB = (f\/g)min(a,B)’

(ii) Follows similarly.

Remark 1.1.8. From the above theorem we find that when-
ever fa’gﬁ € s, favgB € s and faAgﬁ € s, 1.e., s is
having the lattice structure.

Note 1.1.9. (i) For every fa’gﬁ ¢ s and a,b € R, we have

a f,+b 9 = (af+bg)min(a,ﬁ) from Prop. 3.1 of [mMU],

Thus 5 is a vector space over R.

I

(ii) af (af)a ¥ ac¢R and f_ ¢ s by Prop. 3.1. of [MU]

(1i1) (J£]), = (£ + (£7) -

+ —
Note that f (f )a - (f )a'
Result 1,1,10. If s is a fuzzy vector lattice then s is a
vector lattice.

Definition 1.1.11. A sequence { (@)

2 e in s decreases means

A= S

and «

a
n n+1 7 v-n

(¢n+l)a < (¢n)an ¥on, l.e., ¢n+l < n

n+1l

and (@) in § increases means (@ ) & (g . .) ¥ n.
{ n an} n“a. n+l @1
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Definition 1.1.12. A sequence {(¢n)a } in S increases
n

to ¢a (a > O) means ¢nT @ and a | a.

Definition 1.1.13. lim ((an)a ) = ¢a (¢ > 0) if
n
lim ¢n =@ and lim a = a, i.e., ¢n(x) converges to %(x)

for every x ¢ X and @ — & as n-—r o,

Remark 1.1.14., In the light of the above definition w2
get the following:

(i) A sequence {((25“)(x }EE decreases to zero if
n

¢n(x) L O for every x ¢ X and anT « > 0.

(ii) Let {(QSn)an} and {(’\,'Jm)Bm} be increasing sequences
of fuzzy points in S. Then lim ((An)a K lim (7 )

n T Tm

. . . s
if lim QSn < lim 7 and lim o ) lim B_ > O.

1.2, FUZZY DANIELL INTEGRAL.

~

R is a fuzzy vector space by Proposition 3.1. of
MU] having lattice structure and therefore it is a fuzzy
vector lattice. Let—T be a map from ¢ to R. Then

'C(fa) = 7\5' where A¢R , B € (0,1].

~

Notation 1.2.1. If T:L —> R then the map from s to R

defined by fa——-%(T(f))a for every f_¢ 's is denoted by T
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Definition 1.2.2. A map © from s to R is called linear
map if ’(:(af(x + bgB) = a'C(fa) + b'C(gﬁ) for every a,bé R,
and fa,g[3 € S and for each fo € s, 1:(fa) = r, for some

r € R.

Remark 1.2.3. If T:L—>R is linear then —:T:é‘——fﬁ is

linear. For,

Trlafy v bag) = To((afrba)y;pq )

= (T(af“"bg))min(avf’)

= } {(g)) .
(aT(f) + bT‘g))min(a,ﬁ)

= a(T(f))  + ib(T(@l))ﬁ
= aT;ﬂfa) + bt%(gﬁ)

Also TZT(fa) = (T(f))a. Hence T is linear if T is

linear.

Definition 1.2.4. T:5-—»R is said to be positive if
t(fa) »> O for every f, ) O in s. i.e., TZ(fa) ='RB for

some ) > O.

Proposition 1.2.5. If T is positive and linear then it is

monotone. 1i.e., TZ(fa) 4'C(g5) whenever foﬁ,g;3 € s and 9 -
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Proof: Since f < 9 (i.e., f & g and a > B),
i.e., t:(gB) - T (fa) > O since T is linear.
icedy sg = Ty > O where T:(fa) = ra,t(gﬁ)zsB

i.e., s » r and also we have a > B. Therefore

Sg Y T, i.e., TZ(QB) > Ti(fa)'

Note 1.2.6. Clearly, the converse of Proposition 1.2.%

is not true.

Definition 1.2,7. A linear map T :§—>R is called fuzzy
Daniell functional or fuzzy Daniell integral if for every

sequence {(¢n)a } ¢ s and (¢n)a l/ 0, we have
n n

lim T((# ), ) = 0.
n

Remark 1.2.8, (1) 1f T(g ), ) = (rn)B , where
n n

g €L, r €R,B €(0,1] then lim T ((F ), ) =0

0

implies lim r_ =0 and lim B_ = § > O.

(i1) If T:L—> R is linear then lim(T:T(¢n)a ) =0
n

if and only if lim (T(¢n))a =0 i.e., if and only if
n
lim T(¢n) =0 and lim a = a > O.
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Lemma 1.2.9. Let T be a fuzzy Daniell functional. If

{(fn)an} and {(gm)ﬁé& are increasing sequences from S

and if lim (fn)an £ lim (gm)Bm then

lim ©({(f_ ), ) < lim T ((gm)ﬁ ).
n m

Proof: Since {(fn)an} and {(gm)sm} are both increasing

sequences from s and since lim (fn)a £ lim (g )B ,
n

(fn)an R (gm)Bm & lim (gm)Bm for some a_,B_ € (0,1) and

for sufficiently large n and m. Then T ((fn)a \<‘C((gm)B )
n m

by Proposition 1.2.5. Therefore limT((f ). ) & limT((g ). ).
n‘a. m Bm
Notation. §u denotes the set of limits of all increasing

sequences of fuzzy points in s.

Lemma 1,2.10. A fuzzy Daniell functional T can be extended
as a monotone ﬁ valued linear functional on Eu, also EU

is a vector lattice.

Proof: Since ¥ is a monotone R valued linear functional

~

on s, 'C(fa) < ’C(gB) Vfa £ gB and
'C(afa + bgB) = aT:(fa) + b't(gﬁ) for every fa,gBe Eu,

a,b € R by lemma 1.2.9.



17

Let (¢ ), T £, and (Vg T 95 then
n

m
Wnlo N Falg THanog € 5y 2nd
(¢n)an Y (~Pm)ﬁmT £V 95 € s,
For, (¢n)an A (Wum)ﬁm = (¢n/\ﬂ#m)max (an’gm).

Since (), T f, and (“i’m)B T 9g» we get Qn’r f,
n m

a | aand ~» T g, 1 B.

Therefore (¢n A”Wm) T fAg and max(an,Bm) l max(a,B).

ice., (¢n)an/\ (\Vm)em T £, A 9 4 Eu. In the same

way it follows that (@) VvV (¥ )B T £,V 9 ¢ gu'
m

m
n

Hence s is a vector lattice.

Notation 1.2.11.

38

(ﬁpn)a = fa means I ~y = f
1 n n=

and inf a = o

Lemma 1.2.12. A non negative fuzzy point fa belongs to §u
if and only if there is a sequence {(wh)a } of nonnegative
n

fuzzy points in § such that

fa - nfl (ﬂyn)an
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Proof: If faé §u there exists an increasing seqguenca

of nonnegative fuzzy points {(<¢P)b} in § whose limit
' Pn
is fa’ and take

(¥))g = @) 0 (Pde = B - B, ),

n n-1

= (¢n— ¢n—l)min(5nlﬁn-l) = (¢n"¢n_l)p’n
Therefore I (ﬁ#h)a = I (C’fn-@n_l)B = lim(QSn)ﬁ
n=1 n n=1 n n
iceo, fq = nil(w//n)an.

Conversely, let f = I (~ ) we have to show

that f € s, . Suppose (QSm}ﬁ =

(~ )a » where -~y 3 0.
m n )

Then (¢m)B

¢ $ and (¢m)ﬁ i £,- But § consists of the
m

m

limit of all increasing sequences of fuzzy points in § so

e

that fa € Syu*

Result 1.2.13, 1If {(fn)a } is a sequence of nonnegative
n

fuzzy points in Eu such that inf a = a > O, then

f ).
JERL inf an

h
"
N8

t(fn)a .

1 n

. is in s . Also 'C(fa) = i

n

Proof: For each (fn)a of nonnegative fuzzy points in Eu
n

there exists an increasing sequance {(gnz)ﬁ X in s such that
ne

(£, = (I

g ). -, , where « = inr ¢ .
@ 1=1 nL’int B3

- .
i nL
ni
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Therefore

r (£) = ¢ ( ¢

n=1 g‘ “n n=1 L=
i.e. f =( ¥ g, )

’ a n,t= nt in{ Bnl
Thus fa € su.
n
Let (g) = L (f) .
nﬁn m=1 mam

so that T (g ), T T(f,

n
icee, limT( X (f)_ )
m=1 M am

n
'C(fa) = lim milt (fm)

t(fa)'

Hence



Chapter II

UPPER FUZZY INTEGRAL, LOWER FUZZY INTEGRAL AND
INTEGRABILITY OF A FUZZY POINT#*

2.0. INTRODUCTION

In the previous chapter we have seen how a fuzzy
vector lattice s, vector lattice § of fuzzy points, fuzzy
Daniell integral T are defined and obtained the extension
of s to §u. Here we continue our development of the fuzzy
analogue of Daniell theory. In the crisp case lower and
upper integral of an arbitrary function f on X with the
assumption that the infimum of the empty set is + « are
defined and further the integrability of f with respect to I
is obtained. The class of all I-integrable functions is
denoted by Ll' This class L; is a vector latfice of
functions containing L and also proves that I is & positive
linear functional on Ll also. In this chapter we are
presenting fuzzy analogue of the crisp theory as mentioned

above,
2.1, UPPER FUZZY INTEGRAL AND LOWER FUZZY INTEGRAL

Definition 2.1.1. Let fa be a fuzzy point of the set of all

real valued functions on X. Then the upper fuzzy integral

f(fa) is defined by :E(fa) = inf‘c(gﬁ)
95 € 3,

*Some of the results of this chapter have already appeared
in Fuzzy Sets and Systems (l995§.



Example 2.1.2. Consider remark 1.2.3. Let _T':Lu-—a» R

then Tt5T:§u——>ﬁ where L is the class of all extended
real valued functions on X each of which is a limit of

a monotone increasing sequence of functions in L. Then

%T(fa) = inf —CT(gﬁ)
fa K¢ 95
gB 3 su

Definition 2.1.3. The lower fuzzy integral T is defined

by T(f,) = =T (-£,).

Example 2.1.4., Similar to example 2.1.2, the lower fuzzy

integral ’E.r is given by

_g-r(fa) = - iT(-fa)
= - inf _C'T(;gﬁ)
f gB

a
gB su

m in

- inf(T(-g))ﬁ
£f<g

a B

g €L,
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It

-(T(-1)),

( 1(£)),

Lemma 2.1,5, Let fa,gs,hY € ’s“u such that hY = fa+gﬁ

then ‘E(hY) \<:é(fa) +E(gﬁ) where right hand side is
defined. If ¢ ) O}‘—C(cfa) = C’E(fa)o If f,¢ 9g then

'E(fa) K :E.(gB) and T (f ) ’g(gﬁ).

Proof: Let (kl)sl,(kz)gzé s, such that f_ (k) s,

and g6\< (k2) 5, Then fa'*‘gﬁ < (kl)gl+ (k2) 52. Let

- 3 T
kS = (kl)gl + (k2)é-2. Then hY R P Therefore

’i(hY) = infT(ey)
hY\< e,
e, € Su

K¢ ’C(ké)

= t((kl)gl) +T((ky) 55)

This is true for all (kl) 51 and (k2)82 such that
£, < .(.kl) Sl and 9g < (k2)52. Therefore

T (hy) < inf(T(k)) 5, +T(k,) 32)

inf T((k,) Sl)+ inf T ((k,) 52)

T(f,) +f(gB)



S
(53]

If ¢ >0, T(c fa) = inf t(c gﬁ)

= C inf'c(gﬁ)
fa<gﬁ

= cf(fa).

Let f, ¢ g5+ If k ¢ § such that 95 < kg then £ ¢ x .

Therefore
inf t(k_.)  inf =< (% )
3 gk 5
fd$ké g s
i.e., T (fa) £ -E(gﬁ). Now _Q.(fa) \(—Q.(gﬁ)

follows easily from the definition.

Notation 2.1.6., The set of all real valued functions on X

is denoted by F.

Lemma 2.1.7. If fa is a fuzzy point of F then

T(f,) & T(f,). If f € s, then T(f ) =7T(f,) =T(f).
Proof: For every 9g ¢ Eu, 1:(gﬁ~gﬁ) =HC(oﬁ) > 0

i,e., T (gﬁ) -'C(gB) > 0, i.e., ’C(gﬁ) by ~t(~gﬁ);

i.e., }nf = (gg) » - sup T (-g5); C(£,) >T(f).
a\gga a‘<gﬁ
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If f, € 5, by definition of T, T(f ) L ©(f, ). If

9g € Eu and f < 90 then 'C(fa) < t(gB) and

‘C(fa) £ inf t:(gB) =:E(fa). Therefore ?:(fa)= t(fa).

«$9g
Also’c(-fa) =t(-fa) = -'C(fa). Then -t(-fa):?_:(fa):t(fa).
Thus 'g(fa) = 'C(fa) =’c(fa).
Lemma 2,1.8. If {(fn)aa} is a sequence of non negative
fuzzy points and if
f =( £ f)) then T(f ) & I T((f ) )
@ n=l " inf @, a = n=1 noay
néeN
Proof: If’E((fn)a ) = o for some n, then the result
n
follows immediately. If for every n, ?:((fn)a ) £ oo
~ n —~
then given Et € R we can find a fuzzy point (gn)‘3 in 5

such that (f ), « (gn)‘3 and ©((g,)g ) ¢ T(F ) ) + 270 €y
n n n n

by Definition 2.1.1. (Here B, may be taken as sup «_ and

t equal to 1). Now {(gn)B } is a sequence of non negative
" Fn
fuzzy points and therefore by result 1.2.13, 9= T (g
n=

L3 L3 -~ a d
is 1n Su n

T3((;1‘3) = Elt((gn)ﬁ)
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Now fa.s g‘3 and gﬁe s, gives 'C(fa) £ 7i(gﬁ)
< L T((F) )+ €.
N n=1 n an 19
But $t is arbitrary so that T(f ) ¢ T T((f.) ).
a n=l n‘a

2.2. INTEGRABILITY OF A FUZZY POINT

Definition 2.2.1. A fuzzy point fa is T-integrable if

T(f,) =T(f,) and it is finite.

Notation 2.2.2. The class of all T -integrable fuzzy

points is denoted by 3,. For f_ in El’ t:(fa) = T (fa).

The following proposition shows that the eriginal

integral T on s can be extended to all of El'

Proposition 2.2.3. The set ;l is a vector lattice of fuzzy
points containing s and T is a positive linear functional

on 31 which extends the functional © on §S.

Proof: If f ¢ S, and ¢ > O then by lemma 2.1.5,

T (cfa) = c‘c(fa) = c'g(fa) = (c fa)’ Thus
cfae Sy
Let fa’gﬁé S~ By lemma 2.1.5,

T (£a+gﬁ) S ?‘(fa) +E(gﬁ)
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Also -’C(fa+gﬁ) = 1:(_fa+-g5)

XS :&—("fa) +T ‘I“gﬁ)

i

-T(f,) -Tlgp)

icee, T(fy+gy) . T(fg) +T(gg)-
Therefore
T(fgrgg) =  T(fy) +T(gy)

—g:(fa) + E(gp).

Similarly,

T(f+gg) = e(fy) +clgy) follows.
Therefore

=E(fa+g5) = ?;(fa+gﬁ); ice., fa+gB € 5.

Thus © is a linear functional on El.

We have f vg = (f

o - ga)v T

x

Therefore to prove that El is a vector lattice it is

—~

sufficient to show that f Vv 0. ¢ 85 for each f, € Sye
For a given gy in R and t equal to 1 it is possible

to find two fuzzy points 9 and hY in EQ such that

-hY Ly 9 with 'C(gﬁ) @'C(fa) + Ly and

T(hy) <-T(f,) + &,
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where —(g,) and ©(h_} are finite.
p Y

We have 9g = (gﬁv oﬁ) + (gﬁ/\ oB)n Since gg N O ¢ §u,

'C(gﬁ/\oﬁ) is finite and further since
gﬁvoﬁ = gB - (gB/\os).
Therefore

’C(ng 03) < C(gB) +"C(-(gB/\ 05)) by lemma 2.1.5,
=t(gi3) -'C(gB/\oﬁ), which is also
finite since gav oBE Sy Also hyf\ OY is in S, and
-(hY/\oY) < (fav oa) < 9z Vv Og- We have 95 > ~ hY and

therefore ng o[j + hY/\ OY £ gﬁ + hY. This gives

T (ggvog) +T(h Aoy) L Tlgg)rTlh) ¢ 28y (1)
Now,

=(h Ao ) < f,vo, & gyvoy

i.e., -'C(hY/\ oy) $T(f vo,) T(f, Vo,) \<E(gﬁv oﬁ)=t(gﬁvoﬁ)

since 9g Vv OBE Eu. We have ’E(fa\’oa) \<'C(95\/05) and

-‘g(fav oa) \(’C(hY/\ OY) which gives
T £,V 0y) - T(£,V 0,)
£ c(gﬁ\/ OB) +’C(hY/\ oy)

£ 2¢&, from (1).
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Therefore 'C(fa\' oa) = '§_(fav oa) since ey is

arbitrary. Also 'c,(fav Oa) K 'C(gﬁ\/ 0‘3) < oo,

Therefore, fa\/ o4 € Sy



Chapter III

THE MONOTONE CONVERGENCE THEOREM, FATO.U S LEMMA, THE
LEBESGUE CONVERGENCE THEOREM AND UNIQUENESS OF THE
EXTENSION OF THE FUZZY LINEAR FUNCTIONAL

3.0. INTRODUCTION

In the previous chapter we have seen how the
fuzzy linear functional © is extended from s to El which is
the analogous form of the extension of the non negative
linear functional I from L to Ll. In the case of the
crisp theory the next step is to show that the non negative
linear functional I on Ll is a Daniell integral on Ll' This
is established by means of the analogue of the monotone
convergence theorem; then further prove the analogues for
the integral I of Fatou's lemma and the Lebesgue convergence
theorem which are considered to be very useful in the
development of the theory. Here we are establishing that
the fuzzy analogues of the monotone convergence theorsem,
Fatoy's lemma and the Lebesgue convergence theorem are
true under suitable assumptions. Also similar to the unique-
ness of the extension of I to Ll we show that the extension

of T to El is unique.

3.1. THE MONOTONE CONVERGENCE THEOREM, FATOU'S LEMMA
AND LEBESGUE CONVERGENCE THEOREM.

Notation 3.1.1. For a sequence {(fn)a } of fuzzy points
’ n



30

in s, inf (fn)an = fa when f = inf fn and a = sup «

What follows is the analogue of monotone convergence

theorem.

Proposition 3.1.2. Let {(fn)a'}be an increasing sequence
n
of fuzzy points in El such that inf a > o and let

f, = lim (fn)a . Then f_ ¢ ’51 if and only if lim ‘C((fn) )< oo,

a
n n

In this case 'C(fa) = lim © ((fn)an)'

Proof:
Necessity. Let {(fn)a }be an increasing sequence and
n

let f = lim (fn)an. Then f_ > (fn)an. If f e, then

Tgy) =T(eg) »e((f)g ) If Lin ©((£,), ) ==

’

i.e., given kt there exists n, such that ¥ n >, No»

'C((fn)an) > ki with t=l for every n 5 n_ then

'i(fa) =T (f,) = = which implies f, % S, Therefore if

f, € s; then lim 'c:(fn)an { o,

Sufficiency. Let lim'c((fn)an) { », Since {(fn)an} is an
increasing sequence,

il ((fn+l)an+l-(fn)an)

it

Il &3 8
P
~h

n



31

H
e 8

1 (fn+l-fn))inf a;, 1 €N

]

(f=f1)inf a, 1€N

= g, say where «

= inf a.
By lemma 2.1.8,
T(g,) <& L Tf ) - (f) )
a n=1 n+1l @ 1 nta,
= Iz (=(f__,) -T(f ) )
n=l n+1l an+l n an
= T ('C(f ) "'C((f) ))
n=1 n+1 an+l nto
since (fn)ane s, for every n.

lim'C((fn)a ) - T (fl)a )
n

frew, Tlgy) +T(F) ) € LmTUE), )

n
Since

ga+(fl)al = fa’ —_C(fa) =T (ga + (fl)al)

LT(gy) +C(£),)
& lime ((f ), )

a
n
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We have (fn)ap < f, so that 'E((fn)an) &'g(fa)

iee., ©((f ), ) =<l(f ), ) elfy), for (f ), € 5.

n n n
i.e., lim‘c((fn)an) < '_C_(fa). But lim ‘c((fn)an)\<“§(fa)\< 'E(fa).
Since ff(fa) R lim'c((fn)a ),‘E(fa) =g(fa) = lim‘c((fn)a )
n n

i.e., f, ¢ §l and t:(fa) = linrc((fn)a ).
n
Corollary 3.1.3. The functional w is a fuzzy Daniell

tunctional on the vector lattice El.

For, 'C(fa) » O for every f ¢ El,'c is a positive
linear functional on El and satisfies the definition of

fuzzy Daniell functional.

The next proposition is the analogue of Fatou's

lemma.
Proposition 3.1.4. Let {(fn)a } be a sequence of ncnnegative
n

fuzzy points in 5,, where sup . ),%u Then the tuzzy points

inf(fn)an and lim (fn)‘mn are in 3, if Limft((fn)an) { oms
In this case —(lim (fn)a ) &ljm't«fn)a ).
T n n

Proof: Define (g, )g = (fl)alﬁ\(fz)QQf\ eee (FL0
n n

Then -{(gn)B } is a sequence of nonnegative fuzzy pcints
n

- ~ - — - . - — . ‘.-
in sy which decrease to g‘3 = 1nf(fn)an, i.eey, g = 1inf fn
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and B = sup a. - Now BnTﬁ means (l——ﬁn}l(l-——ﬁ) so that

(-gn)l_BnT (—g)l_B. Also T (( -gn)l‘ﬁn) L 0; i.e.,

lim ‘C((-gn)l_B ) < » . Therefore (—g)l—ﬁ ¢ 31 by
n

Proposition 3.1.2.

Now we will show.that gB(- 31. Since(-g)l__s= --(g)l_B 3 El
we have 9)-p (31 so that T (gl~ﬁ) < », Since g £ g,

B > 1- and % £ p <1, 9g £ 918 Therefore 'c(gﬁ) < Tlgy gl

-
i.e., gg € Elo

Let (hy), = inf (f), . Then {(hy) ] isa
L

Yy nd " %n

sequence of non negative fuzzy points in '51 which increases

to lim (fn)a as L— «. Therefore,
n

(hy ). < (f)) for { & n ;
?.YL\ a, N

i.e., T ((hg)Y ) T((f )y, ) for & < n;
L n

iee., T ((hy), ) & inf T ((f ), )

\f} l<n n

icee, limw((h,), ) < infe((f ), )

Yy t<n n

i.e., lim'c((hL)YL) < lim < ( fn)an) < w

Thus lim (f ),

¢ s, by Proposition 3.1.2.
n
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Since 'C((hL) ) < gnf'c((fn)a ) for every ¢ ,

Yo £n n

T(sup inf (f ) _ ) € sup inf T ((f_ ) _ )
L l<n n-a, N £ I&n n oy

i.e., <T(lim (fn)an) N Lli“t((fn)an)

Analogous to Lebesgue convergence theorem we have

the following proposition.

Proposition 3.1.5. Let {(fn)a } be a sequence of fuzzy
n
points in §, and let there be a fuzzy point 9g in s

such that for all n we have (lfJ)a < 9g - Then if
n

fa = lim (fn)an’ c(fa) = lim t((fn)an).

Proof: {(fn)an+g6} is a sequence of non negative fuzzy
points in 51 and by Proposition 3.1.4,

lim ((fn)an+ gﬁ) = f, + 9 is in sy,

since T((f ), +gﬁ) R 2'C(QB)
n

Also,
t(fa+gﬁ) = T (lim ((£ ), + gs))
n
Re lim<((f ), + gﬁ)
n

lim T((f ), ) +‘C(gB)-
n
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Since = is a linear functional on El,

T =
(fa + gB) < (fa) +'c(gB). Therefore,
T(f,) < {im't((fn)an).
{gs - (), } is also a sequence of non negative
n

fuzzy points. Therefore,

T (gg=fy) ==(lim (gg-(£f ), ))
n

< limz(gg=(f ), )
n

=T(gg) - lim = ((£), )3

n

ice., Tlgy) -T(f,) Tlgg) - ffmc((fn)an);

i.e., lim't((fn)an) £ 'c(fa)

Thus T(f) = lim<((f ), )
n

3.2, UNIQUENESS OF THE EXTENSION OF T ON § TO El

Let gue be the class of all fuzzy points f_ of F
which are the limit of a decreasing sequence of fuzzy

. . 1l . =
points { (fn)a;g with sup a > 5 in s, such that

-c((fn)an) < = and lim 'C((fn)an) > = o

Lemma 3.2.1. If f_ is any fuzzy point with T (fa) finite

then there is a gg ¢ guL such that f_ < 9g and 'E(fa);-t(gs)o
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Proof: If {(fn)an} is a decreasing sequence of

. . l . .
fuzzy points with sup a 5 5 in § then { (-f.)1 ¢ }

is an increasing sequence of fuzzy points in Eu

with lim ((-fn)l_an) in Eu. Then by lemma 2.1.7

E(lim((-fn)l_an)) =T (lim(-—fn)l_an) =t(1im(-fn)1_an:.

Since {(-fn)l_a } is an increasing sequence in S,
n

consequently in El by Proposition 3.1.2,

~

lim ((-fn)l_an) € s;. Therefore lim (fn)a € s,

n

as in the proof of Proposition 3.1.5. Thus § < gl'

Let fa be any fuzzy point in F with

T o 3 3
(fa) < », Then for a given n, there exists (hn)Yne S,
such that
T (f,) = inf t((hn)Yn)
fd$(hn)
Yn

i.e., C((hn) ) K T(F) + (i) , where (l) € R with t=1
Yn ¢ Nt Nt

Define

(gn)ﬁn = (hl)YlA (hz)Yg /\(hn)Yn

= h; NhaN oo AN
( 1772 n)max(Yl,YQ,...,yn)
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Therefore £, < (g )g < (h.), = and {(g“)ﬁiisa

decreasing sequence of fuzzy points in §'u with

—

T(fg) £ =g g ) «=elln) );
n n

feer, B (f,) $=lgg ) € B(5) + <-}gt

Therefore lim T ((g))g = T(fy); i.e., limz(g,)g
n

n
exists and lim 'C((gn)B ) =TZ(lim(gn)B ) = 'c:(gB).
n n

Since 9g is the limit of a decreasing sequence {(gn)ﬁ }

of fuzzy points in Sy g € Sy, - Thus 'c:(fa) ='C(gﬁ),

Definition 3.2.2., A fuzzy point fa in F is said to be
fuzzy null point if f_ € ?l and ’C((lfl)a) = 0, where

a ¢ (0,1)] and O means fuzzy singleton O.

Remark 3.2.3. If f_ is a fuzzy null point and (Igi)s(fa
then 0K T ((lgl)ﬁ) T ((lgl)ﬁ) LT (fa) = 0;

ieer, T (gl)g) = T((lgl)g) =T ((lgl)g) =0

i.e., 9 € El and 9 is a fuzzy null point.

Proposition 3.2.4. A fuzzy point f_ in F is in El
if and only if f = gB-hY, where o« = min(8,Y), g€ Sy

and hY is a non negative fuzzy null point. A fuzzy pocint

of F, hY is a fuzzy null point if and only if there is a

fuzzy null point k; in s, such that (Ihl)Y < k

° s’
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Proof:

Necessity. Let f = gB-hY where a = min(B,Y),

gBe guz. and hY a non negative fuzzy null point. Since
gBG suL and suz.c Sy gﬁe Sy Also since h_ is a non

negative fuzzy null point, hY € ‘El' Now,

)}

95"h = (g+(-h))

y aé Sy-

min(B,y) ~

Let ks be a fuzzy null point in 'é'uL and

(lhl)Y\( k, + Then E((lhl)Y) =T(kg) = 0. From the

above remark hy€§l and hY is a fuzzy null point.

Sufficiency. Let fa('gl‘ Then-f:(fa) =t(fa) is finite

and there exists a gﬁEEUL with f_ < 9g and t(fa)zt(gﬁ)'

Therefore, hY = gﬁ"fa is a non negative fuzzy point.

Also, 'C(hY) ='C(gB-fa) ='C(gB) -T(f,) = 0. Therefore,
hY is a fuzzy null point.

Let hY be a fuzzy null point. Then h“re;]_'

and t‘((lhl)Y) = 0. Therefore by lemma 3.2.1, thers is
a fuzzy point k. , such that (]hl)Y < k. and

T((In]),) = T (k) =0,

¢z
Su

The following proposition establishes the uniqueness

of the extension of T on gl'
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Proposition 3.2.5. Let T be a fuzzy Daniell integral
on a fuzzy vector lattice s and ¥ be a fuzzy Daniell
integral on a fuzzy vector lattice 2 >s.

If T(f,) =%(f,) ¥vf, €’s then t;>s) and T(f )= (f )

for every faé Sy

Proof: Suppose that {(fn)a } be an increasing sequence
n

of fuzzy points in s) and let f = lim (fn)an. By

Proposition 3.1.2, faé ) and'c(fa) = llm'c((fn)a ) =

n
lim § ((fn)an) = g (fa). We have shown that the fuzzy

Daniell integral =~ @n s can be extended to s, by
Proposition 2.2.3 and in the same way % on t can be
extended to tl. From above fa € s implies fa € tl.
Hence slc.tl°

Using proposition 3.1.2. s

ut C Sy and from above

sl<:tl we get S,L € S1 ¢ tye Therefore 1if faé $1 then

fy € t, and 11(fa) ='§(fa) for every f_¢€ s).



Chapter IV
STONE-LIKE THEOREM

4.0. INTRODUCTION

This chapter deals with the fuzzy analogue of
following part of the Daniell Integration theory, viz.,
measurability of a non negative real valued function on
X, measurability of a sub set of X and its integrabiiity
with respect to I. Daniell established that the measure u
defined over the o-algebra of measurable subsets of X with
respect to 1 satisfies the property that the integrable
sets are the same as the measurable sets of finite measure.
The important result of this chapter is the Stone's theorem
which says that each function f on X is integrable with
respect to I if and only if it is integrable with respect
to p and that I(f) = St du. This chapter ends with
analogous result tor the establishment of the uniqueness
of the measure p. To establish the parallel theory we
define measurability of a fuzzy point and fuzzy measure of

a fuzzy set with respect to T .

4.1, PRELIMINARIES

We adapt definitions 2.1 and 2.2 of [QI] which are
respectively quoted below as 4.1.1 and 4.1.2. Klement's [KL]
definition requires additionally that every constant belongs

to the fuzzy o~ algebra.
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Definition 4.1.1. Let X be a non empty set and
F(x) ={%; &:x — [0,1]} . Then¥ which is a sub-

class of ¥# (X) is a fuzzy o-algebra if the following

conditions are satisfied: (i) ¢,X€¢¥ (ii) ifA ¢ ¥

y

then A® ¢ J (iii) if {A }c & , then U a ¢ ¥
n=1
Definition 4.1.2. A mapping % : ¥ — [0,»] is said to
be a fuzzy measure on# if and only if (i) % (d) =0,
(1i) for any A,B € ¥ , if AcB then 3 (A) < & (B),

(1ii) whenever {A }cZ , A < A, n=1,2,...,

(U A ) = lim §(Kn) (continuity from below),
n=l n n—y oo

(iv) whenever {;n}cj, KnD Xn+l’ n=1,2,..., and there

exists n_ such that §& (Xno) ¢ =, then

3 (

A ) = lim ¥ (Zn) (continuity from above),
1 Nn—$ oo

ﬁ’Da

4,2, MEASURABILITY AND FUZZY MEASURE OF A FUZZY POINT

Definition 4.2.1. A non negative fuzzy point f_ in F is
said to be measurable with respect to T 1if gB/\ fa is in
S1 for each gB in S)-

Note 4.2.2., If (fl)al and (f2)a2 are two non negative

measurable fuzzy points, then (fl)a + (f2)a is measurable.
1 2
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Proof:

We have for 9 in El,

i

((fl)dl + (f2)a2)/\gs (fl+f2)

min(al,a2)’\gﬁ

= ((fl+f2)_,\g)max(min(al,a?_),B)

= «flA g)+(f2ﬁ\g»max(min(al,a2},ﬂ)

= A 9+ (850 9hnsn(max(ay,p),

max(a,,8))

= (fin g)max(al,p)+(f2/\g)max(aQ,B)

= (fl)af\ g + (f2)a2/\gB € s).

Therefore (fl)al + (‘1“2)052 is measurable.

Lemma 4.2.3. If fa and g‘3 are non negative measurable.
fuzzy points then fa/\gB and fa\/'gﬁ are measurable. If
{(fn)a } is a sequence of non negative measurable fuzzy
points thch converge pointwise to a fuzzy point fa’ then

fa is measurable,

Proof: Let fa,g‘3 be non negative measurable fuzzy points

.

and let hY be in El. Then hY ~ f, and hYP\gﬁ are in 3,.
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Also,

hY A (N gB)

hyNEN S ax(a,p)

= (h/\(f/\g))max(y, maX(‘x’B))

= ((hAD) NG s (max(y,a), max(y,s))

= (hAFf) N (hAg)

max(y,a) max(y,$)

= (hNEIA(h Agy) €5,

To prove h_ A(fa\’gs)é gl we can see that following
relationship is true in all the three cases, (1) a<B<y,
(2) a < Yy < B and (3) y < @ < B and by symmetry the other

three relationshipsconnecting a,B,y are satisfied. We have,

hY/\(fav gB) hY/\(ng)

min(a,B)

"

(hACEVa))nan(y, min(a,B))

((hAf)v (hA 9))min(max(y,a), max(y,B))

= (hAf) v (hAg)

max(y,a) max(y,B)

]

(h AE)v (hy Agg) ¢ s)

Thus fa/\gB and fanB are non negative measurable fuzzy

points.
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Suppose that {(fn)an} is a sequence of non
negative measurable fuzzy points converging to fa anc
9g be a fuzzy point in §;. Then {(fn)a A gﬁ} is a

n
sequence of fuzzy points in §) converging to £ N9

Now (]f Agl) gB. Therefore

max(a,B)
llm'c((fn)an)/\gﬁ) = t(fa/\gﬁ) by Proposition 3.1.5.

Since lim T ((fn)a A gB) ¢ », by Proposition 3.1.2,
n
fa/\ gﬁ is in s,. Hence fa is measurable.

Lemma 4.2.4. A non negative fuzzy point fa in F is

measurable with respect to T if ¢Y AN £, is in Zl for

~

each in s.
c¢Yn

Proof: Let {(gn)B } be an increasing sequence of fuzzy
points in s, whose 11m1t 9g is in su. Then {(g ) /\ f}

is an increasing sequence in S converging to gB/\ fa
s

and lim T ((gn)ﬁn/\ fq ) ¢ =, Therefore gﬁ/\fa € for

1

—

gﬁé s, and 'C(gB) < « by Proposition 3.1,2,

Suppose that {(gn)ﬁ} is a decreasing sequence of
n

fuzzy points in s,» Whose limit gB € S,y with

lim'c((gn)s ) € o, and lim 'C((gn)ﬁ ) > =w. Then
n n
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{(gn)ﬁnﬁ\fa} is a sequence of fuzzy points in s, and

(fgnﬁ\fl) < 9g for every n. Using proposition

max (B ,a)

a

3.1.5, 'C(gB/\fa) = 1im-r:((gn)B A f 1

] ), i.e. gBr\fae S

for every gﬁf s

ue * By proposition 3.2.4, if hY is any

s is a non

negative fuzzy null point and gB6 EuL. Therefore

fuzzy point in $) then hY = gB - ké where k

:

s = gs--hY , 1l.e., gB/\fa - hY/\fa = ksﬁxfa < koo

S

Since kg is a fuzzy null point, gBAfa - hyf\fa is a

fuzzy null point. This shows that gﬁ/\fa - hY A fa is in

Py 3 i s =Y f 1c ni
S But gBA\fa is in s; and therefore hyf“a must o

in §), i.e., f, is measurable.

Definition 4.2.5. A fuzzy set by in X is measurable with
respect to T if p,Agg € s) for every 9g € s). A fuzzy set

Ky is T -integrable if paé S

Remark 4.2.6. (i) p:X —> [0,1], g:X —>R . 1In tne
previous definition f, is measurable if f Agg ¢ s, for
every'gse El. Here f:X—>R. Ip the 1risp case A is
measurable if 3LAﬁ\g is integrable. Therefore here

(7LA)af\ga ¢ s;. This (7§A)a is taken to be p_ . Thus

Pa/\gﬁ = (u/\g)max(a,ﬁ) « In particular take a=l1

then pngg = (pAg) .
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(ii) If a fuzzy set h, is measurable then

(l—'p)t is also measurable for every t > a and u >

b~

For, we have l-u L 4 and t > a so that

(1-p)y < pgy ieee, (1-p)in 9g € BN Jg-
i.e., C‘((l-p)t/\ga) $'c(uaAgB) < » by proposition 3.1.4,

Therefore (l--p.)t is measurable for every t)a and p) % o

Lemma 4.2.7. If Hq is a measurable fuzzy set with p > %
then (l-p.)t is measurable where t ) a . If {(pn)a } is

a sequence of measurable fuzzy sets then sup (pn)a is
ne¢N n

measurable. If 1 and O are measurable, then the class

o of measurable fuzzy sets is a fuzzy o - algebra.

Proof: If p  is a measurable fuzzy set then By 9 ¢ El

for every gg¢ El. Now (1-p)y & oy iece. (l-p)t/\gB$pa/\gB.
i.e., T ((l-_p)t/\ gB) £ T (p.a/\gB) < « by proposition 3.1.4.

Thus (l--p.)t is measurable for every t > a and p > % .

If {(pn)a } is a sequence of measurable fuzzy sets
n

then (pn)anA gﬁ( gl for every gB€ gl and for every (un)an

and sup T ((pn)a A gB) < oo,
n n
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For gBG gl’ -gB,\(sup(pn)an) - sgp (gB/\(pn)an)°

Since {(pn)a } is a sequence of measurable sets,
n

(pn)a N gg € El. Using proposition 3.1.2,
n

gﬁfx(sup (un)an) 631, i.e., Sﬁp (pn)an is measurable.

If 1 and O are measurable, then 1 A 9g € Ei

for every 9g € El and oA gg ¢ El are measurable. Hence

by definition 4.1.1, o will torm a fuzizy o - algebra.

4,3. STONE-LIKE THEOREM

Let f:X— R and p_: R— [0,1]. Then

£ pg ) (x) =5 if £1(x) = w

= O otherwise

i.e., f-l(pg)(x) =5 if x € £ ()

i

0 otherwise

Let £, be a fuzzy point in F. Then

saa if x € £71(y)
0 otherwise

£ :F —— [0,1] and £ (ng) (x)

i}

it

Let I:‘.%‘3 = {f;l(ué):pg > Ng» }Be‘ﬁ_}. Then E-%B

is a set of fuzzy points in X.
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e s -1 -1
Definition 4.3.1. fq (pge) = (f (“))a/\s‘

Definition 4.3.2, Let.,4 be a fuzzy o-algebra of fuzzy
subsets of X, f  be a measurable fuzzy point in F and

let E be a fuzzy subset of X belonging to A4 then the

fuzzy integral of fa with respect to ¥ is

S f,d§ = sup € (E. N E)
~ R A
g kse R 8
-1 ~
where E)‘;3 ={fa (rs) ho > >\5, )\fﬂ € R}.

Lemma 4.3.3. Let 1 be measurable and define a set

function‘§ on the classv‘? of measurable fuzzy sets by

% (E)

il

T (pg) if p o ¢ s,
E
E ¥ 5
Then § is a fuzzy measure.

Proof: G (5) =T(o) = 0. Let El and EQ be two measurable

fuzzy sets such that ElCEQ so that
§(El) ='C(P.§l) \<'C(ui_:‘2) = § (E,) for any El’EZ ¢ &,

Whenever {En}c? ,EnCE n=1,2,...,

n+l’
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(U En) = T (sup pz ) = T (limpg ) = limT(pz )
n=1 n n n n

it

lim ¥ (En)

If {gn}cj ’ En ) En+l’ n=1,2,..., and if there exists

n, such that §(An) { » , then

g (

T8

En) =T( 1:f B ) =T(lim p_ ) = lim © (p_ )
1 E E E
n n n

= lim % (E )

Hence ‘§ is a fuzzy measure.

Lemma 4.3.4. If fa is a non negative T -integrable fuzzy

point, then for each fuzzy real number 7\5 the set

_J el . :
EA5 —{fa <P‘;)' B >AB} is measurable.

Proof: We have to show that EA is measurable., Define
B
Al if Aa £ 0

( >\"l - ()\-lf)ﬁ,\a Y

Q
il

f)gna

f, if )\B=O.

Since g, is the difference of two fuzzy points in 5, g

u u

is in El and g 1is positive for fa-l(ps_') ¢ E and

i

-1 . ~

g, = O for f, (p.s) 4 EAﬁ. Define ((én)un~ lY/\(n gu).

Then (¢n)u ¢ El and (Q5n)u T’XE w Applying leuma 4.2.3
n

'X- n
E,

is measurable and hence E>\ is measurable.

P p
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Following 1is the fuzzy version of the Stone's

theorem,

Theorem 4.3.5. Let S be a2 vector lattice of fuzzy
points fa in a fuzzy vector lattice s with the properiy
that if f_ ¢ s then 1Y A f, € s and let T be a fuzzy
Daniell integral on s. Then there is a fuzzy o-algebra
3 of measurable fuzzy sets and a fuzzy measure § on 4
such that each f,  is T ~-integrable if and only if it is

T -integrable with respect to § . Also T(f )= f~fa ay .
E

Proof: Let 4 be the class of fuzzy subsets of X which
are measurable with respect to © . By lemma 4.2.4

singleton 1 is measurable. Using lemma 4.207,v4—is a
fuzzy o-algebra. Here we are considering only non
negative T -integrable fuzzy points which are measurable
with respect to A. By lemma 4.3.4, each non negative

T -integrable fuzzy point is measurable with respect to A.
Since each T-integrable fuzzy point is the difference of
two non negative Tf—integrable fuzzy points every

T -integrable fuzzy point must be measurable with respect

to A.
Let § be a fuzzy measure as defined in lemma 4,3.3
and let fa be a non negative fuzzy point which is integrable

’

with respect to © . For each non negative XB ¢ R
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let Ey = {f;l(us):pé > %B}-. Now E ,  is measurable

B B
for each AB ¢ R.
Define (@) = sup _ W ~, where E is any
n“an . ¢R =ap NE’
n B ﬁn

fuzzy subset of X. Then (@ )

0 €s, and (¢n)anT fo

n

Therefore 'C(fa) = lim't((¢n)a ). We have

T((B ), =7T(sup _ p = )
n an xn ¢ R E)nﬁ E

n Bn
= sup Tl(pg A E)

xn ¢ R 7\n

5n 'Bn

But [ fq dg = lim S (¢n)an dg . By monotone convergence

theorem T (fa)=lim’C((¢n)a ) = lim j’(¢n)a dg = Jf_ dg .
n n

This shows that fa is integrable with respect to g o

Suppose fa be any T - integrable fuzzy point. Then it

can be written as the difference of two non negative
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T -integrable fuzzy points and therefore every such fa
must also be integrable with respect to % and hence

T(f) =S fd%.

Let fa be a non negative fuzzy point in F and let

it be integrable with respect to ¥ . Let

— -l . — —_—
E, = { f, (ps ).ps > AB} and (¢n)a = sup _ g . g Where
p n A_ ¢ R "2
n n
O Bn
E is a fuzzy subset of X. Since f, 1s integrable with

respect to § , [ f,d§ < = . Fuzzy measure of each

E -

EA is finite and therefore uEx and ((an)o‘n € S| -

n
Bn th

Now (¢n)a T fa and lim'C((¢n)a ):'C(lim(¢n)a ) =
n n n

'C(fa) = f fad§ { », Therefore by monotone convergence

theorem f ¢ §,. Thus each f, which is integrable with

respect to § is also integrable with respect to T

The following proposition establishes the uniqueness

of the fuzzy measure % .

Proposition 4.3.6. Let s be a vector lattice of fuzzy
points and suppose that lY € 5. Let B be the smallest

fuzzy o-algebra of fuzzy subsets of X and let each
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fuzzy point in § be measurable with respect to & .
Then for each fuzzy Daniell integral © there is a unique
fuzzy measure ¥ on A such that for every f, € s,

T(f) =[] f, dg.

Proof: By theorem 4.3.5 the fuzzy measure P exists and
we have to show that % is unique on@. Let A4 be the fuzzy
o-algebra of measurable fuzzy sets as in lemma 4.2.7.

By lemma 4.2.4, each f_ in S is measurable with respect
to v and therefore ##c 4 . Mg € s, for each fuzzy

set B¢ 4 and hence for each B€# . To prove uniqueness

we have to show that % (B) = 'C(pB) for each B¢ A& .

Let f be the set of fuzzy points in F which are
measurable with respect to 8 and are integrable with
. _ ~
respect to ¥ and let us take T (fa)" ffad'g, for f_ ¢ t.
s

Then by proposition 3.2.5, =©'(f,) =T(f,) for f<5 At.

But if B€ 48 then by < El/\t and so §(B)=T' (ug)=¢(ug).

Hence T determines ¥ uniquely on 4.



Chapter V

FUzZzZY VECTOR VALUED INTEGRATION

5.0 INTRODUCTION

Here we are going to show that the theory of
fuzzy Daniell integrals is true for (i) the fuzzy
integral of a fuzzy point of the set of all vector
valued functions with respect to a scalar valued fuzzy
measure, and (ii) the fuzzy integral of a scalar valued
fuzzy point with respect a vector valued fuzzy measure.
It can be seen that almost all the results of the
preceding chapters are true and in some cases with slight
modifications. Therefore, we are giving only those
definitions and results which differ from the earlier

situation.

5.1, FUZZY INTEGRAL OF A FUZZY POINT OF THE SET OF ALL
VECTOR VALUED FUNCTIONS WITH RESPECT A SCALAR
VALUED MEASURE

5.1.0. Preliminaries. Let X be any set and L be an
extended vector lattice of functions f from X to Rn.
Then L i1s an extended vector lattice of vector valued

functions of X. Let s be a fuzzy set in L such that
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s(o) = 1 and f, be & fuzzy point of s which means
f < s e, ag s(f). Here § represents the set
of all fuzzy points of s and R be the set of fuzzy

points in R.

Definition 5.1.1. A fuzzy point f ¢ s 1s non negative

if £ 0, i.e., f

£ = (£Y, £2, ..., ).

>» O for every i, i=1,2,...,n, where

Definition 5.1.2, For every fa’gﬁ ¢s, £ £ g,

a P
means f £ g and a 3 B, where f,g ¢ L and «,B ¢ (0,1].

f & g means f(x) £ g(x).
iee., (£1(x), £2(x), «vny £200< (gH(x),9%(x), . n g™ x))

i.e., f1(x) € g*(x), for every i, i=1,2,...,n.

Theorem 5.1.3. For every fa’gB € s,

(fvag)

]

(1) fa\’gﬂ min(a,B)

(f AQq)

(11) fon o max(a,p)

(rl, £

H

1
Here, favgB ,..,fn)av (g=,en.,a™)

B

1 1 2 2
(f vag, f V3 yeaey anga)

I

min(a,f)

. B 1 1 2 2 n n
f4 N 9g= (£7A 97, £7AG,evs £7AG ) ay(a,p)
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Note 5.1.4. (i) For every fa,gse s and a,b ¢ R we have
af  + bgB = (af+bg)min(a,6)
(ii) af, = (af)a for every a¢ R and f €53

(111) (J£)), = (£7), + (£7),

We have f(x) = (£1(x), £2(x),..., £(x))

£](x) = (£, TE21(x),.vny [£7](x))

= (CEHTO + (EHT00, L MO (D))

= (EHTG), 5D, (EM () +
G, e, (EMY7(0)

Therefore,

(lf])a = (f+)a +(f")a where
(£5), = (eHY, (F)7F, 6™,
and  (£7), = (DT ()T (M),

Definition 5.1.5. A sequence {(¢m)a }(§ decreases m2ans
m

< ¢ and

(¢m+l)a R4 (¢m)am for every m, i:e., ¢m+l N

m+ 1

a > o for every m.

m+ 1



. i i
ice., @ < @

mt 1 o for every i, i=1,2,...,m and

a > a . Similarly for increasing case.

m+1l

Definition 5.1.6. A sequence {(¢m)a }e s increases
m
to g, (a > 0) means ¢mT¢ and «_ | a.

iee., (85, 2, o 8 1 (0h, 6%, ..., ¢") and o) .

Definition 5.1.7. 1lim (((Am)am) = ¢a

if lim (¢;, ¢i.---, ¢;) = (¢l, ¢2,..., #™) and lim a =a.

Remark 5.1.8. {(¢m)am}-€§ decreases to zero if Gm(x)L o

for every x ¢ X and a« T a> 0. ¢m(x)l O means

(BL(x), #2(x) 82(x)) | (0,0,...,0) i gi(x) ] o
a0x)y Bo(x), e, B (x L ,0, e, iee., #.(x}]

for every i=1,2,...,n.

Let ©:5-—R. Then t(fa') =?\B, where A¢R
and B € (0,1]. For this © , definition of linearity,
positive linear functional, fuzzy Daniell integral and

almost all propositions hold.

Theorem 5.1.9. fa is measurable with respect to «© if

and only if each of its coordinate points are measurable.



58

, S 2 n
Proof: Let f = (fa y £ veeey £ )
1 2 n
1 2 .
= (f ,f", .,fn)a, where a=m1n(al,a2,...,an)

and fa be a fuzzy point in F. If fa is measurable with

respect to T then there exists 9 ¢ gl such that

1 2 1 2
(£1,6%, ..M A (ghgt ")

fa/\gﬁ 8

]

1 1 2 2 n NH
(f"Ang™, f°Ag ,...,f Ag Ja v

1 1 2 2 n n
(f"Ag )alv By’ (f°Ag )aQVBQ""’(f Ag )an\/ﬁn)’

where g; = ((gl)ﬁl.v (92)62-""’ (gn)ﬁn)

flix—RY, glix — RY so that frAod is the ith

2 2

coordinate of (fl,f ,...,fn)ﬁ\(gl,g yeeesgt),i=1,2,..,n0

Therefore if fa is measurable with respect tot)(fl)a
i
is measurable with respect to T for each i. Also

1 2

2 -_ ~
,o,...,o)al,(f )a2~_ (o,f ,o,...,o)a2 etc.

@y = (f

Conversely, if (fl)a is measurable with respect to—<
i

then there exists (gl)B such that
i
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i

(96 Ny = (£nah), g €5

Since (gl)ﬁ = (o,o,...,gl,...,o)s’ and
i

i.e., fa/\gﬁ ¢ El for every 9g 4 El.

Hence if each coordinate of fa is measurable with

respect to T then fa is measurable.

Theorem 5.1.10. fa is integrable with respect to «— if

and only if each of its coordinate points are integrable.

Proof: Similar to the above.

Lemma 5.1.11, If fa is a non-negative T-integrable
fuzzy point of the set of all vector valued functions
then for each fuzzy point kﬁélﬁn, the set

EAB = {f;l(ﬁg) : \k > 7\3} is measurable.

Proof: Let 9, be a fuzzy point in F which is of the form

1 2 1 2
gU = (g !g "")gn)u = ((g )Ui (g )u2,o-~,(gn)u ), wihers

n
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U = min (ul,u?,..,,u ). f_is a fuzzy point in s

n a 1

and it is of the form £ = ((£f%) ,..., (f") )
fed al (ln
where a = min (al,...,an). RB ¢ R" so that

AB = (()})Bl, e | An)ﬁn), where B = min(Bl,BQ,...,B

n

Now define

s, = (DTN g - DTN A
i i

ir af zo.
Bi

= (£Y)  if (Ah) =0, i=1,2,...,n

We see that gt is the difference of two fuzzy points
i

in El so that g, is in §,. Also g is positive for

-1 _ -1 . -
£y (V5) € E %B and g =0 for f_ (“%)/( E.%B. Suppose

that (¢m)um = lY/\(m gu). Then (QSm)ume 5,

Also (czsf;)u T1 if £27(v) € E

and (¢r;)Ll l o if
m m

g

f-l(ﬁ ) £ E . Therefore E is measurable.
x 3 >\B

Mg

).

Theorem 5.1.12 (Stone;Like). Let § be a vector lattice

fuzzy points fa in a fuzzy vector space s satisfying

of
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the property that if f ¢ s then lY/\faé 3 and let © be

a fuzzy Daniell integral on s. Then there is a fuzzy
o-algebra A of measurable fuzzy sets and a fuzzy
measure § on~f¢such that fa is T -integrable if and
only if it is T -integrable with respect to % o
Also 'C(fa) =£ f, 48

E

Proof: By replacing R by R" in the proof described

in the previous chapter the result is established easily.

Remark 5.1.13. Uniqueness of the fuzzy measure § follows

in this situation also.

5.2. FUZZY INTEGRAL OF A SCALAR VALUED FUZZY POINT
WITH RESPECT TO A VECTOR VALUED FUZZY MEASURE

Preliminaries 5.2.1. Let X be any set and L be a vector
lattice of extended real valued functions f on X. Let

s be a fuzzy set in L such that s{o)=1 and fa be a fuzzy
point of s which means a £ s{f). Suppose S represent

the set of fuzzy points of s and R™ be the set of fuzzy

points in R". Let T:5 —R"

Replacing R by R and R by R™ almost all the

results of the preceding chapters will follow. For example

we give below the following definitions and results.
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Definition 5.2.2. A map © from S to R" is called linear
map if t(afa+bgs) = at(fa)+bt(g3) va,b ¢ R, and

- . - _ n
fa,gaé § and for each f ¢ s,'c(fa) = r, for some r ¢ R .

Definition 5.2.3. A linear map ©:5—R" is called fuzzy
Daniell functional or fuzzy Daniell integral if for e'very

sequence {(¢n)a 1 €5 and (¢n)a } O, we have
n n

1imT@@ ), ) = O.
n

—~

Definition 5.2.4. A mapping %:¥ —>[o0,=]" is said to be
a fuzzy measure on 5’ if and only if (i) |4 (¢) =0, (ii) for
any A,B¢ ¥ , ‘§(7\') R4 ;(5) if ACB,

(iii) § nkil An) = lim?;(Kn) whenever {Kn}c?, A ca

n+1l?
n— o

n
n=1,2,... (continuity from below), (iv) if {Txn}c? , An’.) P:\n .

+1

n=1,2,..., and if 3 n, such that ’c}(?\‘nc) { =, then

(N A) =1im E(A).
n=l n I'l—--)oo‘§ n
We conclude this chapter by stating the Stone-like

theorem when '§ is a vector valued fuzzy measure.

Theorem 5.2.5. Let S be a vector lattice of fuzzy points f,
in a fuzzy vector space s satisfying the property that if

f, € § then lYA f, €5 and let T be a fuzzy Daniell integral
ons. Then there is a fuzzy o-algebra «/Q'Of measurable fuzzy
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sets and a vector valued fuzzy measure ‘§ on A such that
fa is T -integrable if and only if it is — -integrabie

with respect to % . Also T(f ) =/ f, d%.
E
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