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Chapter 0 

INTRODUCTION 

L.A. Zadeh [ZA l ] defined fuzzy sets for represen­

ting inexact concepts. In 1974 Michio Sugeno [SU] 

introduced the concept of fuzzy measures and fuzzy 

integrals. He used fuzzy measures to evalu"a te the 

grade of fuzziness of fuzzy subsets of a set X. Since 
r 

then, without using a probability distribution, it has 

been widely used to represent available information 

about an uncertain experiment. Fuzzy set theory finds 

application in many fields, for "example, automata, 

linguistics, algorithm, pattern recognition, etc. [SU]. 

In the fuzzy set theory the concept of "fuzziness" is 

introduced corresponding to randomness in probability 

theory. Sugeno started with the concept of "grade of 

fuzziness". He obtained "fuzzy measure" as measuring 

grade of fuzziness and he compared it with probability 

measure expressing grade of randomness. He constructed 

and developed the theory of fuzzy integrals independently 

of fuzzy set theory. But the concept of fuzzy sets was 

referred frequentlyv He used fuzzy measures and fuzzy 

integrals as a way for expressing human subjectivity 

and discussed their applicationso Sugeno [SU], Ralescu 

and Adams [RA; AD] and Wang [WA,~ studied the fuzzy 



measures and fuzzy integrals defined on a classical 

a-algebra by deleting the a-additivity and replacinq 

it by monotonicity and continuity. Fuzzy integrals 

obtained by Sugeno are analogous to Lebesgue integrals. 

Lebesgue measures assume additivity whereas fuzzy 

measures assume only monotonicityo Therefore, human 

subjective scales can better be approximated by using 

the conventional one. Sugeno obtained it as an 

optimisation problem of minimizing the error between 

the human evaluation and the fuzzy integral output. 

His fuzzy integral model was applied to examples such as 

subjective evaluation of female faces and grading 

similarity of patterns. Sekita and Tabata [SE; TA] 

used fuzzy integrals for evaluation of human health 

index. The problem of evaluating the properties of a 

system was studied by Siegfried Gottwald and Witold 

Pedrycz [GO; PE] on the basis of the corresponding fuzzy 

model. They have shown that a grade of satisfaction for 

a property of the system may be calculated by means of 

a fuzzy integral with respect to a fuzzy measure. Here 

the fuzzy measure corresponds to a quantitative represen­

tation of the quality of the model constructed. Dubois 

and Prade [DU; PR] introduced an axiomatic approach to a 

broad class of fuzzy measures in the sense of Sugeno 

using the concept of triangular norm (t- norm). 
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R.R. Yager [YA] and D. Butnario Eau] also studied 

fuzzy measures in order to measure fuzziness of 

a fuzzy set. Qiao [Ql] and Wang [WA~ generalised 

them to a fuzzy a-algebra of fuzzy sets. Klement [KL] 

defined a fuzzy a-algebra axiomatically. Further he 

established the relationship between a classical 

a-algebra and a fuzzy a-algebra. Suzuki [SUZ l ], 

[SUZ2] studied some analytical properties of Sugeno's 

fuzzy measures especially of atoms of fuzzy measures. 

He defined a fuzzy integral of Riemann type through 

atoms. Also he showed that a continuous function is 

fuzzy integrable in the sense of Riemann and has the 

same integral as that of Sugeno. Wang [ WA 2] and Kruse[KR 1 ] 

studied some structural characteristics of fuzzy measures. 

Eventhough their discussion was limited to a clussical 

a-algebra, they proved several convergence theorems for 

a sequence of fuzzy integrals. Qiao [Q1] established 

a theory of fuzzy measure and fuzzy integral in a fuzzy 

a-algebr2 of fuzzy sets by combining Sugeno's theory 

and Zadeh's fuzzy sets. Qiao [Ql] introduced real-

valued fuzzy measures and fuzzy integrals for a pseudo 

complemented infinitely distributive complete lattice L 

and studied several properties of fuzzy integrals on 

L-fuzzy sets. 
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In this thesis we make an attempt to study 

the theory of fuzzy Daniell integral analogous to 

the crisp theory [RO]. P.J. Daniell in 1918 

published his famous paper [DA l ] in which he 

introduced the idea of an integral without using 

the concept of measure. Radon, Young, Riesz and 

others [DA 1] have extended the idea of integration 

to a function of bounded variation, based on the 

fundamental properties of sets of points in a space 

of finite dimensiono E.H. Moore's theory of integra­

tion is similar to that of Daniell's; but Moore 

restricts himself to the use of relatively uniform 

sequences. Daniell also showed that the Lebesgue 

integral and the Radon-Young integral were only 

special cases of the general form of the integral he 

had obtained. 

Frechet in 1915 showed that it is possible 

to abandon completely the sets with geometric character 

and integrate functions defined in abstract spaces [FR]. 

He did this in extending the method of Lebesgue to this 

general problem. A little later, using the idea of the 

extension of linear functionals, Daniell also did the 

same. To generate the theory, a vector lattice L of 



real-valued functions on a nonempty set X is considered. 

Here the role of step functions is given to elements of 

this class so as to reproduce the theory of the Lebesgue 

integral. Two fundamental facts are needed. If I is a 

positive linear functional the two fundamental facts 

are (i) I(fn) ~ 0 when fn(x) ~ 0 a.e., and (ii) if 

{fn ' is an increasing sequence I(fn ) remains bounded 

implies fn(x) converges a.e to a finite limit. A triple 

(X,L,S) is called a Daniell integral space if the 

following conditions are satisfied: The family of 

functions LCRX forms a linear lattice; the functional 

! is nonnegative and completely countably additive on 

L+ = {fE L: f >" OJ. We say that a functional J is a 

Daniell integral over the space X if its domain Le RX 

forms a linear lattice and the triple (X,L,S) is a 

Daniell integral space. A Lebesgue integral is a 

Daniell integral but the following example given in 

[80] shows that Daniell integrals need not always be 

Lebesgue integrals. 

Example. Let X = (0,1] and L = { f = re:r ER}, where 

the function e is the identity map e(x) = x for xE X. 

Define Jf = r, if f = re. This triple forms a Daniell 

integral space but the linear lattice is not closed under 

the s tone opera tion Leo, f -) f {\ 1. The d oma in of the 



6 

integral is one-dimensional. 

Daniell showed that it is not necessary to 

have a measure in the set X on which the integrands 

are defined for the existence of an integral. 

P. Lubcznok [LU], Godfrey C. Muganda [MU] 

and others have defined a fuzzy vector space. Zadeh 

[ZA2] introduced another very useful concept, viz., 

fuzzy singletons in 1972. Using the notation of fuzzy 

singleton, Wong [WO] introduced the concept of fuzzy 

points. He defined it in such a way that a crisp 

singleton, equivalently, an ordinary point, was not 

a special case of a fuzzy point. Pu Pao-Ming and 

Liu Ying-Ming [PU; LIJ have redefined it as a crisp 

singleton, equivalently, an ordinary point, as a 

special case. 

We make use of the earlier definitions of fuzzy 

vector spaces, fuzzy lattices, fuzzy sets and fuzzy 

points in order to introduce the concept of fuzzy vector 

la t tices. We use a "fuzzy poin t approa ch 11 throughou t 

the work. This thesis consists of five chapters. 
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In the first chapter we have defined a fuzzy 

vector lattice s, a vector lattice of fuzzy points s 
and introduced some definitions related to sequence 

of fuzzy points_ We have also defined a fuzzy Daniell 

integral as a positive linear functional ~ from s to R, 
.... 

where R is the set of fuzzy points in R, and show that~ 

can be extended to Su which is the set of the limits 

of all increasing sequences of fuzzy points in s. 

The second chapter, conta ins the defini tions of 

upper fuzzy integral, lower fuzzy integral and a study 

of "C-integrable class of fuzzy points repres0nted by 

51" In this chapter we prove that -c can be extended 

to the class of all fuzzy integrable fuzzy points and 

that (~-integrable class of fuzzy points) sI is a 

vector la ttice 0 

In the third chapter we have shown that the 

monotone convergence theorem, Fatou's lemma and the 

Lebesgue convergence theorem are still true in the 

fuzzy context under suitable assumptions. The chapter 

ends with the establishment of the uniqueness of the 

extension of ~ on 5 to 51-
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Fourth chapter begins by quoting the definition 

of fuzzy a-algebra, fuzzy measure"and fuzzy integral. In 

this chapter, the definition of measurability of a fuzzy 

point, measurability of fuzzy set, and integrability of 

a fuzzy set are given. The main result of this chapter 

is the fuzzy analogue of Stone's theorem, which says 

that the fuzzy Daniell integral ~ on sI is equivalent 

to the fuzzy integral with respect to the fuzzy measure "§ • 

The last chapter, viz., chapter five briefly 

describes the extension of the above theory to fuzzy 

vector valued integration. Here, we are considering 

two types of fuzzy vector valued integration: (i) the 

fuzzy integral of a fuzzy point in the set of all vector 

valued functions on X with respect to a real valued fuzzy 

measure, and, (ii) the fuzzy integral of a fuzzy point 

in the set of all real valued functions on X with respect 

to a vector valued fuzzy measure. 



Chapter I 

FUZZY VECTOR LATTICES AND FUZZY 
DANIELL INTEGRAL* 

100 INTRODUCTION 

Daniell P.J. obtained an extens~on of elementary 

Riemann integral to a general form of integral. He starts 

with a vector lattice L of bounded real valued functions on 

a set X. Then a nonnegative linear functional I which is 

continuous under monotone limits, is defined. This funct-

ional I is called a Oaniell Integral. Then I is extended 

to a larger class of functions retaining all the properties 

of L and having additional properties. As per the example 

cited in Loomis [LO] taking L to be the class of continuous 

functions on [0,1] and I to be the ordinary Riemann integral 

the extension of L is then the class of Lebesgue summable 

functions and the extended I becomes the ordinary Lebesgue 

integral. Taking the class Lu of limits of monotone increas­

ing sequences of functions in L~ I is extended to Lu and 

proved that Lu is a vector lattice. The fuzzy form of the 

above part of Oaniell's procedure is discussed in this 

chapter. Here we define a fuzzy vector lattice and fuzzy 

Daniell functional. P. Lubczonok [LU], Godfrey C. Muganda[MUJ 

and others have already given the definition of fuzzy vector 

* Some of the results given in this chapter have already 
appeared in J. Fuzzy Maths 3(1995). 
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space and we make use of this definition in the forth-

coming discussion. 

1.1. fUZZY VECTOR LATTICES 

Let X be any set and L be a vector lattice of 

extended real valued functions on X. 

No ta tion 1.1.1. A fuzzy set 5 in L is a map s:L ---4 [0,1]. 

For fELt a € (0,1], a fuzzy set fa is a fuzzy point when 

= a if h = f 

= 0 if h ~ f ¥ h E L. 

If s is a fuzzy set and fa a fuzzy point, we say fa is a fuzzy 

po in t 0 f s i f f a ~ 5 i. e ., a ~ s ( f) • 

Convention. In this thesis, a fuzzy set s in L is always 

taken to be such that 5(0) = lu 

Definition 1.1.2 (Oef. 2~1 of [LU]). A fuzzy set 5 in L 

is a fuzzy vector space if 

s (a f + bg) ~ s ( f) 1\ 5 (g) -V f, 9 ~ Land a, b ( R. 
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Definition 1.1u3. s is a fuzzy vector lattice if 

(i) 5 (a f + bg) ~ s (f) 1\ s(g) 

( ii) s(f V g) >" s (f) V s(g) 

(iii) s(fl\g) ~ s(f) 1\ s(g) V- f,g E L and a, b E 

Notation 1.104. - denotes the set of all fuzzy points of 5 
,... 

5 and R the set of all fuzzy points in R. 

Definition 101.5. fa ( i is said to be non negative and 

we write fa ~ ° if f ~ 0. 

Definition 1.1.6. -trfa , 9~ E s, fa ~ 9~ if f ~ g and 

a.~·~, where f,9 ELand a,~ f (0,1]. Note that ~ is a 

partial order in s. 

Theorem 1.1 .. 7. 'rf fa' 9~ t 
~ 

s, 

(i) fa V 9fj = (f V g)min(a,~) and 

(ii) fa 1\ g~ = ( f 1\ 9 ) ma x ( a , J3 ) 

Proof. (i) Let fa' g~ ( s. We have f ~ f v 9 and 

a ~ min (a,~) and so fa ~ ( f vg) min ( a, t3 ) ; 9 ~ f Vg and 

~ >" min (a.~) and so g~ .$ (f v g)min(a,t3). Also if 

fa,g~ .$ hy then f ~ h, 9 ~ h, a ~ y, p ~ y so tha t 

R 
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f vg ~ hand min (a,f3) )/ y. Therefore, (fYg) . ( ({).(h· 
nan a,/-, Y 

Thus f V 9a = (f vg) . ( (-l.) • a... m1n a, I-' 

(ii) Follows similarly. 

Remark 1.1.8. From the above theorem we find that wi1en-

ever f a ,gf3 E S, f a vg f3 ( 5 and faf\g~ (, s, Le., s is 

having the lattice structure. 

Note 1.1.9. (i) For every fa,g~ E i and a,b E R, we have 

= (af+bg)min(a,p) from Prop. 3~1 of [MUJ. 

-Thus s is a vector space over R. 

( ii) = -V a €: Rand fa E s by Prop. 3.1. of [MU] 

~ 

Result 1.1.10. If 5 is a fuzzy vector lattice then s is a 

vector lattice. 

Definition 101.11. A sequence {(~n)a) in 5 decreases means 
n 

(~n+l)a ~ (~n)a .., n, i.e., ~n+l ~ ~n and a n+ l >" an v n 
n+l n 

and {(95n )a } in 5 increases means (0n)a ,< (~n+l)a v n. 
n n n+l 



13 

Definition 1.1.12. A sequence {(~n)a 1 in 5 increases 
n 

to ~a (a > 0) means ~n i ~ and an ~ a. 

Definition 1.1.13. lim «~n)an) = ~a (a > 0) if 

lim ~n = ~ and lim an = a, i.e., ~n(x) converges to 0(x) 

for every x ( X and an~ a as n ~ 00. 

Remark 1.1014. In the light of the above definition we 

get the following: 

( i) 

( i i) 

A sequence t (~n)a } E 5 decreases to zero if 
n 

~ n ( x ) ~ 0 for eve ry x ~ X a nd an i a > O. 

Let {(~n) a } and {('""fm) ~ 1 
n m 

be increasing sequ12llc!.:s 

of fuzzy points in s. Then 1irn (0) ~ lim ('Yl') Q n a. n h ~ 

if 1im ~n ~ lim ]Vm and lim an ~ lim ~m > 0. 

1020 FUZZY DANIELL INTEGRAL. 

m 

R is a fuzzy vector space by Proposition 3.1. of 

~U] having lattice structure and therefore it is a fuzzy 

vector lattice. Let~ be a map from s to R. Then 

~ E (0,1]. 

-Notation 1.2.1. If T:L ~ R then the map from s to R 

defined by fa.-4(T(f)a for every faE 5 is denoted by -Cr. 
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Definition 1.2.2. - -A map -c from 5 to R is called linear 

map if -C (afa + b9~) = a -c(fa ) + b"C(g~) for every a,b~ R, 

and fa,g~ E 5 and for each fa f. 5, -C (fa) = ra for some 

r E R. 

Remark 1.2.3. If T:L ---+ R is linear then -CT!S-+R is 

linear. For, 

= 

= (T ( a f+ bg» . ( p. ) mll'l.cx,!-, 

= (aT(f) + bT(g))min(a,~) 

= a(T(f»cx + b(T(g»~ 

= 

Also -CT(fa ):; (T(f»cx. Hence "'C. T is linear if T is 

linear. 

Definition 1.2.4. "C:s--+R is said to be positive if 

"C(fa) ~ 0 for every fcx ~ 0 in s. Le., -C (fcx) = Af3 for 

some A ~ o. 

Proposition 10205. If ~ is positive and linear then it is 

monotone. i.e., -C (fa) ~"C(gj3) whenever f cx ,9p E: s and fa ~ 9j3" 
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Proof: Since fa~ g~P (Le., f~ 9 and a ~ p), 

g~ - fa = ~g-f)min(a,~) >t O. i.e., -c (g~-fa) >/ O. 

ioe., -C (g~) - -C (fa) ~ 0 since -c is linear. 

i. e.'" 

i.e., s ~ r and also we have a ~ p. Therefore 

Note i 0 206. Clearly, the converse of Proposition 102 0 5 

is not true. 

Definition 1.207. A linear map-c::s->R is called fuzzy 

Daniell functional or fuzzy Daniell integral if for every 

sequence {(~) } f sand 
n an 

1 im '"C ( (~ ) Cl ) = O. 
n n 

(~n) a to, we have 
n 

Remark 1.2.8 .. (i) If -C(~) ) = (r)A , wh€!re n a . n ... n n 
Pn f (0,1] then lim -C «~n)CI ) = 0 

n 

implies lim r = 0 and lim i3 = i3 > O. n n 

(ii) If T:L~ R is linear then lim("CT(~) ) = 0 
n an 

if and only if lim (T(~ »a = 0 ioe., if and only if 
n n 

lim T(~n) = 0 and lim an = a > O. 
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Lemma 102.9. Let~ be a fuzzy Daniell functional. If 

{(fn)a 1 and i(gm)~ J are increasing sequences from's 
n m 

and 

lim 

if lim (fn)an ~ lim (gm)~m then 

-C ( ( f n) a ) ~ 1 im -C « gm) ~ ). 
n m 

Proof: Since {(fn)a} and {(gm)~ } are both increasing 
n m 

sequences from 5 and since lim (fn)an ~ lim (gm)~m' 

for sufficiently large n and mu Then -c «fn)a ,< "C«gm)~ ) 
n m 

by Proposition 10205. Therefore lim-C«fn)a).$. lim'C«g)A ). 
n m "'m 

Notation. Su denotes the set of limits of all increasing 

sequences of fuzzy points in s. 

Lemma 1 0 2.10. A fuzzy Daniell functional ~ can be extended 

--as a monotone R valued linear functional on su' also Su 

is a vector lattice. 

-Proof: Since ~ is a monotone R valued linear functional 
.... 

on s, -c (g~) V' fa ~ g~ and 

= a'"C (fa) + b ""C(g~) for 

a , b ~ R by lemma 1 02" 9 • 

-every fa:,9~E.. su' 



17 

Let (~) i f and ("r ) ~ i g~ then n a a m n m 

(~n) a 1\ ('"'f'm)~ T fa 1\ g~ E 5 and u n m 

(~n) a V ( '"'f' m)p t f aY g~ E s • u n m 

For, (~n)a /\ (ry)~ = 
n m m 

( ~ n 1\ '"'f/ m) ma x (an'~m) • 

Since (~n)a l' fa and ('Ym)~ r gp' we get ~n if, 
n m 

a n ~ a and "P m It g, ~ m t ~. 

E s. In the same u 

way it follows tha t (~n) a V (y rn) ~ i 
n m 

Hence 5 is a vector lattice. 

00 00 

~ 

E 5 • 
U 

Notation 1.2.11. E ("f' n)a = fa means E rv n = f 
n=l n n=l 

and inf an = a. 

Lemma 1.2.12. A non negative fuzzy point fa belongs to Su 

if and only if there is a sequence {('1 .... n )a } of nonnegative 
n 

fuzzy points in 5 such that 
co 
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Proof: 
.-J 

If fa E Su there exists an increasing sequence 

of nonnegative fuzzy points 

is fa' and take 

00 

Therefore = 

00 

{( cp ) /{} ins who s e 1 h: i 1. 
n "'n 

00 

Conversely, let fa = E (fn)a ' we have to sl10w 
n=l n 

m 
Suppose (~mL~ = E ("I-'n)a' where ~Yn >/ 00 

Pm n=1 n 

-limit of all increasing sequences of fuzzy points in s so 

that fa E- su. 

Result 1 0 2.138 If {(fn)a} is a sequence of nonnegative 
n 

fuzzy points in Su such that inf an = a > 0, then 

GO 

Proof: For each (fn)a of nonnegative fuzzy points in su 
n 

there exists increasing {(gnf.)~ 1 in - such an sequ·?nce s 

00 
nt. 

(f n) a = ( E gnL)inf where a = -i r""l"'-: , ~ 

~nt • ...L • ~ ... 
:':1t.~ 

n e=l r: 

that 
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Therefore 

00 

E (-f) E (E ) 11 a = gn l inf A 
n=1 n n=1 (=1 "'nt 

i.e., fa = ( E gnt ) inf 
n,l =1 f n, ~nL 

n 
Let (gn)~ = E (fm)a • 

n m=1 m 
Then (g ) A l' f 

n '" Cl n 

so that 'C (gn)~ i 1:(fa ) , i.e., = -C(f ) 
Cl. n 

n 
1im -C ( E (f )a ) = -C (fa). Hence 

m=l m m 

n 00 

1 im E·C (f ) a = E"'C (f) • 
m=l m m n=1 n an 



Chapter 11 

UPPER FUZZY INTEGRAL, LOWER FUZZY INTEGRAL AND 

INTEGRABILITY OF A FUZZY POINT* 

2.0. INTRODUCTION 

In the previous chapter we have seen how a fuzzy 

vector lattice s, vector lattice s of fuzzy points, fuzzy 

Daniell integral ~ are defined and obtained the extension 

of 5 to Here we continue our development of the fuzzy 

analogue of Daniell theoryQ In the crisp case lowEr and 

upper integral of an arbitrary function f on X with the 

assumption that the infimum of the empty set is + ~ are 

defined and further the integrability of f with respect to I 

is obtained. The class of all I-integrable fUnctions is 
. 

denoted by Ll • This class Ll is a vector lattice of 

functions containing L and also proves that I i~ Cl positive 

linear functional on Ll also. In this chapter we are 

presenting fuzzy analogue of the crisp theory as mentioned 

aboveo 

2.10 UPPER FUZZY INTEGRAL AND LOWER FUZZY INTEGRAL 

Definition 2.1 0 1. Let fa be a fuzzy point of the set of all 

real valued functions on X. Then the upper fuzzy integral 

= inf 1:(913) 

fa ~ 9fj 
913 €. Su 

* . Some of the results of thls chapter have already appeared 
in Fuzzy Sets and Systems (1995). 



Example 20102. Consider remark 1.2 0 3. Let T:L --? R 
u 

then "'C T: Su~ R where Lu is the class of all extended 

real valued functions on X each of which is a limit of 

a monotone increasing sequence of functions in L. Then 

= 

= 

= 

Definition 2.1.3. 

inf -CT(g~) 

f ex ~ g~ 
g~ t Su 

inf (T(g»f3 
f ,< g 
ex ~ f3 
9 E: Lu 

The lower fuzzy integral ~ is defined 

by -C (f ) = - -C (-f ) .. - ex ex 

Example 2.1040 Similar to example 2.1.2, the lower fczzy 

integral -C T is given by 

= 

= 

. 
- in f -c. T ( -g f3 ) 

fex~gf3 
gf3 E Su 

- inf(T(-9»~ 

f ~ 9 
ex ~ f3 
9 f L u 
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= -(fe-f»~ a 

= (T(f» 
- a 

... 
Lemma 2.105. Let f ,9A ,h E s such that h = f +g~ a ... y u y a I" 

then =C(h) ~~(f) +-C(9t:) where right hand side is y a ... 

defined. If c ~ 0 ... ~(cfa) = c -e(faL If fa: '" g~, th2~1 

"t:' ( fa) ,< 1: ( 9 13 ) a nd "S' ( fa) ,,< ~ ( 9 ~) • 

Proof: Let (k1)~ , (k2)~ E s, such that fa ,,< (k 1 ) S 1 
1 2 

and g~ ~ (k2 ) S"2' Then fa+g~ ,< (k1)&1+ (k2 ) S2" Let 

k~ = (k1)~1 + (k2 ).r2 " Then h y "( kd"" Therefore 

~ (h ) = inf 1: (e~) y 
hy ~ e~ 

E -e~ Su 

,,< 1:. (k.5 ) 

= "C«k1)~ ) +1:«(k2 ) S2) 
1 

= in f -C ( ( k 1) 2i ) + in f -c ( ( k2 ) ~ ) 
1 2 

= ~(fa) +:C(g13) 



= 

= 

= 

If k L-­
$" s 

Therefore 

inf "t: (k ) 
~ 

fa~k~ 

23 

inf 1: (c 9~) 

f a ~ 913 

follows easily from the definition. 

Notation 2.106. The set of all real valued functions on X 

is denoted by F. 

Lemma 2.1.7. If fa is a fuzzy point of F then 

£(fa ) .$ -c (fa). If fa E Su then "C (fo;) ==t:{fa ) =-C(fa )· 

Proof: For every 9j3 ( su' -C (913 -9j3) = 1: (op) ~ 0 

i. e. , -c (9j3) - ~ (9j3) ~ 0, i. e., '"C (9p) ~ - -C (-gp) ; 

i.e., inf ~ (g~) 1 - sup ~ (-g(3); -'C(fa ) >---""£(fa ) .. 
fa~9~ fa.(9j3 



If f (5, by definition of::e, ::C(f ) ... < -c(f ). If 
a u a"' a 

g~(Su and fa~ gf.P then "C(fa ) ,< 't:(g~) and 

"C (fa) ~ inf "C (g~) = =C(fa ). Therefore =c (fa )= t:(fa ). 
fa~g~ 

Also .:c(-fa ) ="C (-fa) = - -C(fa ). Then --C(-fa)=-S(fa)=-c(fa ). 

= =C(f ) =1:(f ). a a 

Lemma 2.1 0 8. If {(fn)a 1 is a sequence of non ne~ative 
n 

fuzzy points and if 

Proof: 

00 00 

fa = ( 1: f) 
1 n. f n= 1n an 

then =t (fa:) ~ L =c «fn)a ) 
n=l n 

nEN 

If~«f )a ) = 00 for some n, then the result 
n n 

follows immediately. If for every n, ~ «fn)an ) f ~ 

then given et E R we can find a fuzzy point (gn)~ in Su 
n 

such that (fn)a ,< (gn)~ and 1:.«gn)~ ) ~ =(:«fn)a ) + 2-n f. t 
n n n n 

by Definition 2 0 101 0 (Here ~n may be taken as sup an and 

t equal to 1). Now {(gn)~ } is a sequence of non negative 
. n 

00 

fuzzy points and therefore by result L2.13, gA= L (g )'J 
I" \ n)J n=J. I • 

..., 
is in Su and 

00 

"C (g~) = n:11: «gn)~n) 

00 

~ 1: =c «fn )(1 ) + ~. 

n=1 n "t 
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Now fa~ g~ and g~E: Su gives =C(fa )-$ 

~ 

-c (g~) 
00 

I: =C«fn)a )+ 
n=l n 

00 

But £ t is arbitrary so tha t "t: (fa) ~ 1: =c « f n) a ). 
n=l n 

2.2. INTEGRABILITY OF A FUZZY POINT 

c • 
t 

Definition 2.2.1. A fuzzy point fa is ~-integrable li 

-C (f ) ="C(f ) and it is finite. a - a 

Notation 2.2.2. The class of all ~ -integrable fuzzy 

pOints is denoted by sl0 For fa in SI' -c(fa ) = 'C (fa). 

The following proposition shows that the original 

integral ~ on 5 can be extended to all of SI. 

Proposition 2.2.3. The set SI is a vector lattice of fuzzy 

points containing s and ~ is a positive linear functional 

on SI which extends the functional ~ on s. 

Proof: If fa ( SI and c ~ 0 then by lew~a 2.1.5, 

-C(cfa ) = c~(fa) = c-S(fa ) =-s:(c fa). Thus 

cf a f; 51· 

Let fa, g ~ ~ sI. By 1 e mma 2. 1. 5 , 

=c (fa+g~) ~ =c.(fa ) +=C(g~) 



= 

Therefore 

= 

= 

Similarly, 

= 

Therefore 

= 
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=c (fa) + -C (9p) 

~(fa) + ~(9~). 

"S (f a) + -~ (9 i,) fol10'lls. 
I 

Thus ~ is a linear functional on i l " 

Therefore to prove that i1 is a vector lattice it is 

sufficient to show that fa v 0a E 51 for each fa E sl0 

For a 9iven et in Rand t equal to 1 it is possible 

-to find two fuzzy points 9p and hy in Su such tha t 
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where "t: (9f:) and -c (hy ~ are fin i te. 

We have 9~ = 

1: (913 1\ O~) is f ini te and further since 

= 913 - (9J3" o~) • 

Therefore 

=""C(9~) -"C(9~I\0J3)' which is also 

finite since 913 v 0J3 E su· Also h 1\ 0 is in Su and y y 

Now, 

-(hyAOy) ~ favoa ~ g~YOjj ; 

ioe., --C(hyI\Oy) ~~(faVoa) ~-C(faVoa) ~""C(gfjVOfj)="C(9~VOfj) 

since 9J3v0J3E Sue We have i:(favoa ) ~"t:(gJ3~OJ3) and 

--C(f Vo ) - a a -$ -C(h 1\ ° ) y y which gives 

-C(f vo) 
a a - -c( f v ° ) - a a 

~ "C ( gfj Y °13 ) +1:(hl\o) y y 

~ 2 t.. t from (i). 
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Therefore :C(f \'0 ) a a = "'C (f v 0 ) since - a a 



Chapter III 

THE MONOTONE CONVERGENCE THEOREM, FATo.(JS LEMMA)' THE 
LEBESGUE CONVERGENCE THEOREM AND UNIQUENESS OF THE 

EXTENSION OF THE FUZZY LINEAR FUNCTIONAL 

30 0. INTRODUCTION 

In the previous chapter we have seen how the 

fuzzy linear functional ~ is extended from s to sI which is 

the analogous form of the extension of the non negative 

linear functional I from L to Ll . In the case of the 

crisp theory the next step is to show that the non negative 

linear functional I on Ll is a Daniell integral on Ll . This 

is established by means of the analogue of the monotone 

convergence theorem; then further prove the analogues for 

the integral I of Fatou's lemma and the Lebesgue convergence 

theorem which are considered to be very useful in the 

development of the theory. Here we are establishing that 

the fuzzy analogues of the monotone convergence theon:m, 

Fatoy's lemma and the Lebesgue convergence theorem are 

true under suitable assumptions. Also similar to the unique-

ness of the extension of I to Ll we show that the extension 
..., 

of "C to s 1 is unique. 

3.1. THE MONOTONE CONVERGENCE THEOREM, FATOU'S LEW,~ 

AND LEBESGUE CONVERGENCE THEOREM. 

Notation 3.1.1. For a sequence {(fn)a} of fuzzy points 
n 
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inf (f) = fa when f = inf f and a = sup a • 
n an n n 

What follows is the analogue of monotone convergence 

theoremo 

Proposition 3.1.2. Let {(fn)aJ be an increasing sequence 

of fuzzy points in 51 such tha t inf an > 0 and let 

fa = lim (f) • 
n an 

Then fa E -sl if and only if lim \:«(f ) n a 

In this case '"C(fa) = lim '"C «fn)a). 
n 

Proof: 

Necessity. Let {(fn)a }be an increasing sequence and 
n 

let fa = lim (fn)a· Then fa )/ (fn)o:· If fa E: Sl then 
n n 

=c (fa) ="C ( fa) )" -c ( ( f n ) a ). I f 1 i m -c ( (f) ) = 00, 
n n an 

i.e., given k t there exists no such that v n ~ no' 

"C ( (f) »/ k t wi th t=l for every n ~ no then 
n an 

'=t: (f ) = 1: (f ) = 00 which implies fa i a a 

fa ~ 51 then lim 1: (f)a < 00. 

n n 

Therefore if 

n 
)< 

Sufficiency. Let lim-c«f )a ) < 00. 

n n 
Since t(fn)a 1 is an 

n 
increasing sequence, 

00 00 

00 

00. 
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00 

= 

= i (" N 

= 9 a say where a = inf ai. 

By lemma 2.1.8, 

Since 

00 

00 

= E (1: ( f n+ 1 ) a - ·c ( ( f n) a )) 
n=1 n+1 n 

= f , a 

since (f) E;1 for every n. n a ~ n 

-c(f) =:c. (g a a 

1im-C «f) ) 
n a 

n 
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W e·· h a v e (f n ) a ,< f a sot hat ~ ( ( f n ) a ) -!- "£ ( fa) 
n n 

i.e., lim-C«(fn)a ) ~ ~(fa)' 
n 

But 1 i m 1: (f) ) ~ "C (f ) ~ i: (f ). n a - a a 
n 

i 0 e. , fa E sI and "C (fa) = lim-c« fn)a ). 
n 

Corollary 3.103. The functional ~ is a fuzzy Daniell 

functional on the vector lattice 51' 

For, -c (fa) ~ 0 for every fa E sI' -c is Cl positive 

linear functional on 51 and satisfies the definition of 

fuzzy Daniell functionalo 

The next proposition is the analogue of Fatou's 

lemma. 

Proposition 3.104. Let (fn)a J be a sequence of r.onnegative 
n 

1 
fuzzy points in i l , where sup an ~ ~v Then the fuzzy points 

inf(f) and lim (f)' are in sI' if li.!!!:-t« fn)a ) < -. n a - n a n n . n 
In this case -c(lim (fn)a ) ~l~Dl-C«fn)a ). 

.. -.. n n 

Proof: Define (gn)~ = (fl)a 1\ (f2 )a 1\ ••• (fn)a 
n 1 2 n 

Then {(gn)~ } is a sequence of nonnegative fuzzy poi.nts 
n 

in 51 which decrease to g~ = inf(fn)an ; Le., 9 = inf fn 
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and ~ = sup an' Now ~n I ~ means (1-f3 ) \ tl-~) so tha t n ..... 

lim "C «-gn) 1-~ ) < 00. Therefore (-g) l-~ E 51 by 
n 

Proposition 3.102. 

Now we will show_ that gf3 t sI· S~nce(-g) I-f3= -(g) 1-~ E 51 

,., 
we have gl-~ E 51 so that 1: (gl-13) < 00. Since 9 .( g, 

1 
f3 ~ 1-~ and ~ ~ ~ < 1, gf3 ~ 9 I-f3· Therefore ~ (g~) .$. "C (g 1-f3) (.,. 

i. e., gf3 € 51 0 

sequence of" non negative fuzzy points 
,.,. 

in s, which increases 
..L 

to lim (f) as t~ co. Therefore, 
n an 

(he.)y ~ (fn)a 
.t n 

for e ,< n ; 

i.e., 1: «ht.)y ) ~"t:«fn)a) for t ~ n; 
t n 

i.e .. , 1 im 1: ( (h t ) y ) ~ in f "t: ( (f ) a ) 
L t-'n n n 

ioe. , lim1:«(h t )y ) .... < 1l.!!} "C « f n) a ) < 00 

t n 

Thus lim (f n) a ~ --- by Proposition 301.2. sI 
n 
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Since -C«ht)y ) ~ inf -c«fn)a ) for 
1. £~n n 

every l , 

-C (s up inf (f ) a ) ~ sup inf -C«fn)a) 
I.. l~n n n t t~n n 

i 0 e. , "C ( 1 im (fn)a ) ~ lim "C( (f) ) 
- n a n n 

Analogous to Lebesgue convergence theorem we have 

the following proposition. 

Proposition 3.1.5. Let {(f) {be a sequence of fuzzy 
n an} 

points in 51 and let there be a fuzzy point g~ in sl 

such that for all n we have (If~)a ~ g~. Then if 
n 

fa = 1 im (f) , 't: ( fa) = 1 im 1: ( (f ) a ). 
n an n n 

Proof: {(fn)an+g~} is a sequence of non negative fuzzy 

points in i 1 and by Proposition 3.1u4,. 

lim «fn)a + g~) = fa + g~ is in 51' 
n 

Also, 

= "t: (1 im « f) + gA» - n a .... 

= 

n 

lim 1: ( (f) + gr.) 
- n a .... n 

lim-c«fn)a ) +'"C.(g~). 
n 
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Since -c is a linear functional on 

-C(f ) 
a 1 im -c « f) ) • - n a n 

{g~ - (fn)a 1 is also a sequence of non negative 
n 

fuzzy pointso Therefore, 

-c(g~-fa) =-c(lim (9~-(fn)a » 
n 

~ 1 im 1: ( 9 ~ - ( f n) et ) 
n 

i 0 e. , 1 im "t: ( ( f n) et) ,,( 1: ( fa) 
n 

Thus 1:(fet ) = lim-c«fn)a) 
n 

302. UNIQUENESS OF THE EXTENS ION OF -c ON s TO 51 

Let Sut be the class of all fuzzy points fa of F 

which are the limit of a decreasing sequence of fuzzy 

points { (fn)a ~ with 
n 

1 
sup an ~ 2 in Su such that 

-C ( (f) ) < 00 and 1 im "t: ( (f ) a ) > 
n an n n 

- 00 • 

Lemma 3.2.1. If fa is any fuzzy point with ~ (fa) finite 

then there is a g~ ~ Su t such that fa ~ g~ and =C(fa )= "C(g~) 0 
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Proof: If {(fn)a J is a decreasing sequence of 
n 

fuzzy points with sup an >,.~ in Su then {(-fn)l_a ! 
n 

is an increasing sequence of fuzzy points in Su 

with lim «-fn)l_a ) in su. Then by lemma 2.107 
n 

~(lim«-fn)l_a ») = ~ (lim(-fn)1_a ) =1:(lim(-f)l .:'. 
n n n -an 

Since {(-fn)l-a } is an increasing sequence in 
n 

consequently in SI by Proposition 3.1 0 2, 

Therefore 1im (f) E 51 n a 
n 

as in the proof of Proposition 3.1 0 5. Thus Su e. C 51· 

Let fa be any fuzzy point in F with 

"C (f ) < 00. a 

such that 

Then for a given n, there exis ts (h) E 5 n Yn U 

1: (f ) a = 

Define 

= 

= 
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Therefore f a ~ 

decreasing sequence of fuzzy points in Su with 

Therefore lim 't:«gn)~n = -c(fa ); Le., lim-c(gn)Pn 

exists and lim "'t: «gn)~n) = 1: (lim(gn)f)n) = 1: (gf)}. 

Since g~ is the limit of a decreasing sequence {(gn)p J 
n 

of fuzzy points in su' g~ E- su.t. Thus :c (fa) = ""C.(g~). 

Definition 3.2.2. A fuzzy point fa in F is said to be 

fuzzy null point if fa E sI and 1: «If I) a) = 0, where 

a E- (0,1] and 0 means fuzzy singleton O. 

Remark 3.2.3. If fa is a fuzzy null point and (lgl)p~fa 

then 0 ~ ~ « I 9 I ) ~} .$ =c « I 9 I ) ~) ~ 1: (fa) = 0; 

ioe., 1: «lgl)~) :;: =c «lgl)~) = -C «lgl)p) = 0 

i. e. , -g~ E sI and g~ is a fuzzy null point. 

Proposition 3.2.4. A fuzzy point fa in F is in 51 

if and only if fa = 9~-hy' where a = min(~,y), 9pt Su ~ 

and hy is a non negative fuzzy null point. A fuzzy point 

of F, hy is a fuzzy null point if and only if there is a 

fuzzy null point k~ in su~ such that (Ihl)y ~ ka • 
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Proof: 

Necessity. Let fa = g~-hy where a = rnin(~,y), 

g~ c: sUl and hy a non negative fuzzy null point. Since 

,... 
and SULCSl' -g~ E s g~ E 51· Also since h is a non u.(,. y 

negative fuzzy null point, hy f 
~ 

51" Now, 

(9+(-h»rnin(~,y) = f -g~-hy = a € 51" 

Let k~ be a fuzzy null point in 
.... 

and SUA. 

(Ih/)y ~ k~ • Then ~«Ihl)y) = ""C (kS ) = o. From the 

above remark hy ~ 51 and hy is a fuzzy null point. 

Sufficiency" Let fa E sI " Then =c (fa) =""C (f a) is fini te 

and there exis ts a g~ E su.(. wi th f a ~ g~ and 1:.( fa) = "t:.( g~) " 

Therefore, hy = g~-fa is a non negative fuzzy point. 

Also, -c: (hy) = "C(g~-fa) ="C(g~) - -c.(fa) = O. Therefore, 

hy is a fuzzy null point. 

Let hy be a fuzzy null point. Then hi E sl' 

and ~«Ihl)y) = O. Therefore by lemma 3.2.1, there is 

a f~zzy point k.;-E. SUL such that (Ihl)y < kd" and 

"1; ( ( I hi) y) = \: (kS ) = 0 g 

The following proposition ~stablishes the uniqueness 

of the extension of ~ on 51. 
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Proposition 3.2.5. Let ~ be a fuzzy Daniell integral 

on a fuzzy vector lattice 5 and ~ be a fuzzy Daniell 

integral on a fuzzy vector lattice t ~s. 
I f "C (f a ) = ~ ( fa) 'V f a. Eo 5 th e n t 1 ";;) S 1 and""C ( fa) = ~ (f a ) 

for every fa E sI. 

Proof: Suppose that {(f )a } be an increasing sequence 
n n 

of fuzzy points in sI and let fa = lim (fn)an • By 

-Proposition 3.1 0 2, fa€ sI and 1:(f ) = lim-c«f) ) = 
a n an 

lim ~ « f ) a ) = ~ (fa). We have shown tha t the fuzzy 
n n 

Daniell integral ~ ~n 5 can be extended to 51 by 

-Propos i tion :2.2" 3 and in the same way ~ on t can be 
,... 

extended to t l " From above fa E 51 implies fa E t l • 

Using proposi tion 3.1.20 Su L c. sI and from above 

-
SlC.t1 we get SutC sIC t l " Therefore if fa E sI then 



Chapter IV 

STONE-LIKE THEOREM 

4.0. INTRODUCTION 

This chapter deals with the fuzzy analogue of 

following part of the Daniel1 Integration theory, viz., 

measurability of a non negative real valued function on 

X, measurability of a sub set of X and its integrability 

witn respect to I. Daniell established that the measure ~ 

defined over the a-algebra of measurable subsets of X with 

respect to I satisfies the property that the integrable 

sets are the same as the measurable sets of finite measure. 

The important result of this chapter is the Stone's theorem 

which says that each function f on X is integrable with 

respect to I if and only if it is integrable with respect 

to ~ and that I(f) = If d~. This chapter ends with 

analogous result for the establishment of the uniqueness 

of the measure~. To establish the parallel theory we 

define measurability of a fuzzy point ahd fuzzy measure of 

a fuzzy set with respect to ~ Q 

401. PRELIMINARIES 

We adapt definitions 2ul and 2,,2 of [QI] which are 

respectively quoted below as 401.1 and 4.1.2. Klement's [KL] 

definition requires additionally that every constant belongs 

to the fuzzy a- algebra. 
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Definition 4.1ul. Let X be a non empty set and 

1 (X) = {A; A:X -> [0, I]}. Then ~ which is a sub­

class of 1 (X) is a fuzzy a-algebra if the following 

conditions are satisfied: (i) i,x ~ Si (ii) if A ~ 1 1 

~ 00 ~ ,...-

then A Co ~ 1 (i 11) if {An} C 7 , then U An t Sf. 
n=l 

,.... 
Definition 4.102. A mapping ~ : J. -> [0,00] is said to 

be a fuzzy mea sure on 1 if and only if (i) ~ «(6) = 0, 
.-

(ii) for any A ,B E :I , if A Co B then ~ (A) "' ~ (B), 
(iii) whenever {An}C.;, AnC. An+l , n=1,2, .•• , 

00 

~ ( U An) = lim ~ (An) (continuity from below), 
n=1 n-'t-

(iv) whenever {An}cl, An'::> An+l' n=1,2, ••• , and there 

exists no such that '§ (An) < 00, then 
o 

oe ... 

f) A ) = 
n=1 n 

(continuity from above~ 

402. MEASURABILITY AND FUZZY MEASURE OF A FUZZY POINT 

Definition 4.2.10 A non negative fuzzy point fa in F is 

said to be measurable wi th respe ct to "t: if g(3 1\ fa is in 

51 for each g~ in 51. 

Note 4.2.2. If (fl)a and (f2 ) are two non negative 
1 a2 

measurable fuzzy points, then (f l ) + (f2 )a ls measurable. 
a l 2 
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Proof: 

We have for g~ in 51' 

= 

= 

= 

= 

= 

= 

«(f 1 1\ g) + ( f 21\ g»m in ( ma x ( Cl l' ~ ) , 

max(a2 ,f3» 

Lemma 4.2.3. If fa and gp are non negative measurable. 

fuzzy points then fa 1\ gp and fa Y g~ are measurable. If 

t (fn)a} is a sequence of non negative measurable fuzzy 
n 

points which converge pointwise to a fuzzy point fa' then 

fa is measurable. 

Proof: Let fa,g~ be non negative measurable fuzzy points 

and let hy be in 51. 
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Also, 

= (h " ( fAg) ) ma X ( y, ma X ( a , ~ ) ) 

= « hAf)I\(hl\g» '. max(max(y,a), max(y,p» 

= (hl\f) 1\ (hAg) 
max(y,a) max(y,~) 

= 

To prove hy I\(favg~)~ sI we can see that following 

relationship is true in all the three cases, (1) a<~<y, 

(2) a < y < ~ and (3) y < a < ~ and by symmetry the other 

three relationships connecting a,~,y are satisfied. We have, 

hy 1\ (fa V 9~) = hy 1\ ( f v 9) min (a , ~ ) 

= (h 1\ (f v 9) ) ma x ( y, mi n ( a, p ) ) 

= ( (h A f) v (h 1\ g) ) m in (ma x ( y , a), ma X ( Y , P ) ) 

= (hAr) V (hAg) max(y,a) max(y,~) 

= (hy"fa) v (hy I\9,,) ~ SI 

Thus fa" gf' and fa v g~ are non negative' measurable fuzzy 

points. 
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Suppose that {(fn)a] is a sequence of non 
n 

negative measurable fuzzy points converging to fa a~j 

g~ be a fuzzy point in 51. 

-sequence of fuzzy points in sI converging to fal\g~. 

Now (Ifnl\gl)max(a,~) ~ g~. Therefore 

lim1:«f) )l\gA) = -C(f I\gA) by Proposition 3.105. 
n an '"' a '"' 

Since lim -c: «fn)a 1\ 9i3) ( 00, by Proposition 3.L2, 
n 

fal\9~ is in 51. Hence fa is measurable. 

Lemma 4.2.4. A non negative fuzzy point fa in F is 

measurable with respect to ~ if 0y A fa is in Sl for 

each 0y in 'S. 

Proof: Let f (gn)~n} be an increasing sequence of fuzzy 

points in s, whose limit g~ is in Sue Then {(gn)~nA fal 

is an increasing sequence in 5 converging to 9~A fa 

and lim "C «gn)~ 1\ fa ) < 
n 

00. Therefore g~ 1\ fa E sI for 

g~ E Su and 1: (g~) < 00 by Propos i tion 3.1020 

Suppose tha t l(g )A } is a decreasing sequence of 
n '"'n 

fuzzy points in Su' whose limi t g~ E Su t with 

lim-c«g )A ) ( -, and lim ""C «g )A ) ) -. Then 
n t'n n '"'n 
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[(gn)f3 n 1\ fa} is a sequence of fuzz.y points in sI and 

(Ignl\fl)max(~n,a) < g~ for every n. Using proposition 

3.105, "'C(g~1\ fa) = 1 im "C ( (g ) A 1\ f ), i. e. 9 A " f a ~ S 1 
n I-'n a I-' 

for every g~ E Su to • By proposition 3.2u4, if h is any y 

fuzzy point in sI then hy = g~ - kJ" where k ~ is a non 

negative fuzzy null point and 9~E sUL. Therefore 

k (" = gA -hv ' i • e ., gA 1\ f - h 1\ f = k 1\ f ~ k .. 
., 1-', I-' a Y a ~ a ~ 

Since kc5" is a fuzzy null point, gf3"fa - hy 1\ fa is a 

fuzzy null point. This shows that gpl\fa - hy" fa is in 

is in 51 and therefore h 1\ f must b~.: y a 

in 51' i.e., fa is measurable. 

Definition 402.5. A fuzzy set ~a in X is measurable with 

respect to "'C if lJ.a " g~ € 51 for every g~ E 51. A fuzzy set 

lJ.a is "t: -in tegra ble if lJ.a ~ s 1 .. 

R ema r k 4. 2 • 6 • ( i) IJ. : X -) [ 0 , 1], g: X -~ R. In tne 

-previous defini tion fa is measurable if fa 1\ g~ ~ sl for 
.... 

every g~ E sI. Here f:X-~ Ro In the risp case A is 

measurable if %A 1\ 9 is integrable. Therefore here 

( 'X..A ) a.A gp E 51. This ("X.A) a is taken to be lJ. a • Thus 

lJ.a " g~ = (IJ." g)max(a,~). In particular take a=1 

then IJ.l\g~ = (IJ./\ g)1 • 
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(ii) If a fuzzy set ~a is measurable then 

(l~ ~)t is also measurable for every t ~ a and ~ ~ ~ 0 

For, we have l-~ ~ ~ and t ~ a so that 

(1-~)t ,< ~a' i.e., (l-~)tl\ g~ ~ ~al\ g~. 

i.e., "C «l-~)tl\g~) ~ 'C (~a"g~) < 00 by proposition 3.1040 

1 Therefore (l-~)t is measurable for every t~a and ~~ 2 0 

Lemma 4.2.7. 1 If ~a is a measurable fuzzy set with ~ ~ 2 

then (l-~)t 1s measurable where t ~ a. If {(~n)an1 is 

a sequence of measurable fuzzy sets then sup (~n)a is 
n ~ N n 

measurable. If 1 and 0 are measur~ble, then the class 

a Df m~asurable fuzzy sets is a fuzzy a - algeb~a. 

Proof: If ~a is a measurable fuzzy set then ~a/\ g~ E 51 

for every g~( 51. Now (l-~)t'< ~a' Le. (l-~)tl\g~~v.a"g~· 

i.e., "C «l-.~)tl\gf3) ~ -c: (~al\gf3) < 00 by proposition 3.104. 

1 
Thus (1-~)t is measurable for every t ~ a and ~ ~ 2 • 

If {(~) 1 is a sequence of measurable fuzzy sets 
n ans 

then (~n)a A g~ ~ 51 for every g~ f 51 and for every (~ln)a 
n n 

and sup 'C «~n)a 1\ g~) < -. 
n n 
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For g~ ( 51' .g~ A (sup(J.1n ) a ) - sup 
n n 

Since { (J.1n ) an} is a sequence of measurable sets, 

(J.1n )a A g~ E sl0 Using proposition 3.1 0 2, 
n 

If 1 and 0 are measurable, then 1 A g~ E 51 

for every g~ f 51 and 0/\ g~ C 51 are measurable 0 Hence 

by definition 4 v l.l, a will form a fuz~y a - algebra. 

4.3. STONE-LIKE THEOREM 

Let f:X~ Rand J.1 : R~ [0,1]. Then 
& 

f-l(J.1~)(X) = & if f(x) = J.1 

= 0 otherwise 

i.e., f- l (J.1$)(X) = d if x E f-l(~) 
= 0 otherwi5 e 

Let fa be a fuzzy point in F. Then 

= 0 otherwise 

-1 -] 
Let E" = {fa (J.1J ):J.1 $ > A~' AI3 ~ R • 

13 

Then E A 

is a set of fuzzy points in XO 
13 
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Definition 4.3.1. 

Definition 4.3.2. LetJ1 be a fuzzy a-algebra of fuzzy 

subsets of X, fa be a measurable fuzzy point in F and 

-let E be a fuzzy subset of X belonging to A then the 

fuzzy integral of fa with respect to ~ is 

Lemma 4.3.3. Let 1 be measurable and define a set 

function ~ on the class.lt of measurable fuzzy sets by 

~ (E) = "'C. (~E) if ~ - ( sI 
E 

if , -= 00 IJ._ sI' 
E 

Then ~ is a fuzzy measure. 

.... .... -
Proof: ~ (yj) = -e(o) = o. Let El and E2 be two measurable - .-
fuzzy sets such that El C E2 so that 

~ (El) ="C (\lE' ) ~ -c: (IJ.E ) = ~ (£2) for any El ,E2 ( 1. 
1 2 

Whenever {En} c J ' En C En+l' n = 1,2, ... , 
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00 

~ ( U En) = -C (sup ~E ) = -c: (lim ~E ) = 1 im 1:. ( l.lr:;' ) 
n=1 n n n 4- n 

= lim ~ (En) 

If {En}c.7 , En) En+ l , n=1,2, ••• , and if there exists 

no such tha t ~ (An) < 00 , then 

00 

inf 
~ ( nE) ="C ( ) = -c (1 im IJ._ ) lim "C (IJ._ ) ~- = 

n=1 n n 
En En En 

= lim ~ (E~J 
AI 

Hence ~ is a fuzzy measure. 

Lemma 4.304. If fa is a non negative ~-integrable fuzzy 

point, then for each fuzzy real number A~ the set 

EA~ = {f;1(~J): ~ cS > A~] is measurableo 

Proof: We have to show that E~ is measurable. Define 
~ 

1 ( -If) 1\ 1 if I\~ f; 0 
g. = (A-f) - A fj " a Y t-

U fj"a 

= 

Since gu is the difference of two fuzzy points in sl' gu 

is in 51 and gu is positive for fa-l(~~) E EA and 
. 13 

gu = 0 for f~l(~d) r EA· Define (~n)u = 1)' I\(n gu)· 
~ n 

Then (f6n) (51 and (0) i 'X. E • Applying le.wna 4:2.3 
un n un A 

~EA is measurable and hence EA~ is measurableu 
~ ~ 
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Following is the fuzzy version of the Stone's 

theorem. 

Theorem 4.3.5. Let 5 be a vector lattice of fuzzy 

points f in a fuzzy vector lattice s with the property a .' 

that if fa E 5 then ly A fa E s and let ~ be a fuzzy 

Daniell integral on s. Then there is a fuzzy a-algebra 

A of measurable fuzzy sets and a fuzzy ::aeasure ~ on ...,.q 

such that each fa is ~ -integrable if and only if it is 

"C -integrable with respect to S. • Also "C.(fa )= !-fa d~ • 
E 

Proof: Let v4 be the class of fuzzy subsets of X whicl"l 
are measurable with respect to ~. By lemma 4.2.4 

singleton 1 is measurable. Using lemma 4.2 0 7, A is a 

fuzzy a-algebra. Here we are considering only non 

negative ~-integrable fuzzy points which are measurable 

with respect toA. By lemma 4.3.4, each non negative 

~-integrable fuzzy point is measurable with respect to~4. 

Since each 1: -integrable fuzzy point is the difference of 

two norl nega tive "C -integrable fuzzy points every 

~-integrable fuzzy point must be measurable with respect 

toA. 

Let ~ be a fuzzy measure as defined in lemma 4.3 0 3 

and let fa be a non negative fuzzy point which is integrable 

with respect to ~. For each non negative ~p E R, 
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-sup 
An ~ R 

~n 

~EA rl E' where E is any 
n~ 

n 

fuzzy subset of X. Then (0n )a E 51 and (0n )a i fa. 
n n 

Therefore \: (f ) = lim"C «0) ). We have 
a n an 

T: ( (0 n) a = -c (s up - ~E f\ E ) 
n "n (R ).n 

~n ~n 

= 

= sup ~ (E" (\ - ) 
"n t R E 

n~ 
~n n 

= ! (0n )a d~ 
- n E 

But f fa d~ = lim! (0n )a d~. By monotone convergence 
n 

theorem "C (fa )=lim-C«0 )a ) = lim /(0 )a d~ = Jfa d~ 0 

n n n n 

This shows that fa is integrable with respect to ~ 0 

Suppose fa be any ~ - integrable fuzzy point. Then it 

can be written as the difference of two non negative 
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~ -integrable fuzzy points and therefore every such f 
a: 

must also be integrable with respect to ~ and hence 

"C(fa ) =! fad~ u 

Let fa be a non negative fuzzy point in F and let 

it be integrable with respect to ~ • Let 

E~ = {f~l(ll$ ):Il~ > A~} and (~n)a = sup IlE n E' -~ n "n ~ R ).n 
13 n 13 n 

.... 
E is a fuzzy subset of X. Since fa is integrable with 

Fuzzy measure of each respect to ~ ,{ fad~ < -. 
E 

is finite and therefore IlE 
A n 13 . 

n 

and ( 0 ) a ( 5 1 • 
n n 

and lim1:«~) )="C(lim(0) ) = 
n an n an 

where 

"'t: (fa) = ! fad ~ < 00 0 Therefore by monotone convergence 

theorem fa€ slo Thus each fa which is integrable with 

respect to ~ is also integrable with respect to ~ • 

The following proposition establishes the uniqueness 

of the fuzzy measure ~ • 

Proposition 4.306. Let 5 be a vector lattice of fuzzy 

points and suppose that ly ( So Let ~ be the smallest 

fuzzy a-algebra of fuzzy subsets of X and let each 



53 

fuzzy point in s be measurable with respect to ~ 

Then for each fuzzy Daniell integral -c there is a un1que 

fuzzy measure S on 13 such tha t. for every fa t 5, 

-C (fa) = f fa d~ 0 

Proof: By theorem 4.3.5 the fuzzy measure ~ exists and 

we have to show tha t "fj is unique on /j. Let v4 be the fuzzy 

a-algebra of measurable fuzzy sets as in lemma 4.2v 7 • 

By lemma 4 0 2.4, each fa in - is measurable with respect s 

to ..A and therefore d3 c fi . ~B E sI for each fuzzy 

set B cA and hence for each B { cC • To prove uniqueness 

we have to show that ~ (8) = -C (~B) for each BE oS 0 

-Let t be the set of fuzzy points in F wh~ch are 

measurable with respect to ~ and are integrable with 

respect to J and let us take -e' (fa )= !fad~ -for f ~ t. a 

Then by proposition 3.2.5, \:' (fa) = -C(fa ) for fa~sll\ t" 

But if Bf la then ~B ,< slAt and so~(B)="C.'(j.lB)=C(\l8)' 

Hence ""t:' determines ~ uniquely on J3 • 



Chapter V 

FUZZY VECTOR VALUED INTEGRATION 

000 INTRODUCTION 

Here we are going to show that the theory of 

fuzzy Daniell integrals is true for (i) the fuzzy 

integral of a fuzzy point of the set of all vector 

valued functions with respect to a scalar valued fuzzy 

measure, and (ii) the fuzzy integral of a scalar valued 

fuzzy point with respect a vector valued fuzzy measure. 

It can be seen that almost all the results of the 

preceding chapters are true and in some cases with slight 

modificationsu Therefore, we are giving only those 

definitions and results which differ from the earlier 

situation. 

001. FUZZY INTEGRAL OF" A FUZZY POINT OF THE SET OF A.lL 
VECTOR VALUED FUNCTIONS WITH RESPECT A SCALAR 
VALUED MEASURE 

5.1.00 Preliminaries. Let X be any set and L be an 

extended vector lattice of functions f from X to Rn. 

Then L is an extended vector lattice of vector valued 

functions of X. Let s be a fuzzy set in L such that 
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5(0) = 1 and fa be a fuzzy point of 5 which means 

f ~ 5 i. e, a ~ 5 (f). Here 5 represents the set a 
--of all fuzzy points of sand R be the set of fuzzy 

points in R. 

Definition 5.1.1. A fuzzy point fa f S is non negative 

if f ~ 0, i.e., fi ~ ° for every i, 1=1,2, •.• ,n, where 
1 2 n f = (f , f , ... , f ). 

..... 
Definition 5.1020 For every fa,g~ E s, fa ~ 9p 

means f ,< 9 and Cl ~ p, where f ,g ( Land Cl,p E (0,1]. 

f ~ 9 me an 5 f ( x) ~ 9 ( x) • 

i.e., (f1(x), f 2 {x), ••• , fn(x»)~ (gl(x),g2(x), ... ,gn(x)) 

Theorem 50103. For every fCl,g~ ( S, 

(i) = 

= 

( f vg) mi n (Cl, ~ ) 

( f 1\ g) ma x ( a , p ) 

( 1 2 n) (1 n) Here, f Cl V gp = f, f , .• , f Cl vg, •.. ,g ~ 

= 
1 1 2 2 n 8) 

(f vg, f vg, •.. , f vg min (Cl, p) 

( f l A gl, f2 2 fn n) 
1\ 1\ 9 ,.., 1\ 9 ma x ( Cl , ~ ) 
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Note 5.104. (1) For every fa,gp € 5' and a,b f R we have 

= (af+bg)min(a,p) 

(ii) afa = (af)a for every a~ R and fa E S 

I f I ( x) = ( I fll ( x), I f21 ( x) , ••• , I fn I ( x») 

= 

= 

Therefore, 

(f1)-() (fn)+() (f\-r .. ,) + x ' ••. 1 X 1- ~./' .. A I 

( ( fl) + ( x) , ( f2) + ( x) , •• ( fn) + ( x») + 

«f1 )-(x), ... , (fn)- ,(x» 

( f+) a = « fl) +, (f2) + , ••• ( fn) + ) a 

Definition 5.1.5. A sequence {(0rn)a }{S decreases 1l123!\$ 

III 

(~) ~ (~) for every rn, ~m+l a ~ ~m a 
m+l rn 

i. e. , 
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Definition 

to 0 a (a > 
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~i 2 ,< 'P for every i, i=1, , .•• ,m and m 

a . m 

5.106. 

0) means 

Similarly for increasing case. 

A sequence {(0m) a } E 5 increases 
m 

~m i ~ and a la. m 
1 2 0 n) i (~l, 02, 0n ) i.e., (~m' 0m, . . . , ... , and alllt a 0 m 

Definition 5.1. 7. lim «0) ) == ~ m a a m 

if lim (~!, ~~, ... , ~~) = (01,02 , ••. , ~n) and lirn a ={l. 
I" I. 

Remark 5.1080 {(0m)a} E 5 decreases to zero if 0m(x) t 0 
m 

for every x E X and am i a > 0. 0m(x)L 0 means 

(~!(x), 0~(x), ... , 0~(x»1 (0,0, ... ,0) i.e., ~!(x)JO 

for every i=1,2, •.. ,n. 

Let "C.:s~R. Then "t:(fa) = ,,~, where A~R 

and ~ f (0,1]. For this ~ , definition of linearity, 

positive linear functional, fuzzy Daniell integral and 

almost all propositions hold. 

Theorem 5.1.9. fa is measurable with respect to ~ if 

and only if each of its coordinate points are measurable. 



58 

Proof: 2 
fa' • •• , 

2 

and fa be a fuzzy point in F. If fa is measurable with 

respect to ~ then there exists gp ~ sI such that 

( 1 2 n) (1 2 n) fal\g~ = f,f , •.• ,f a 1\ 9 ,g , ... ,g ~ 

= (f 11\ 9 l, f2 2 fn n \ I\g , ••• , I\g )avp 

where 

is the i th 

coo rd i n a te 0 f (fl, f2 , ••• , fn) 1\ (g 1 , g2 , • • . , 9 n) , i = 1 , 2 , •• , n 0 

Therefore if fa is measurable with respect to~ (fi) 
" a. 

]. 

is measurable with respect to C for each i. Also 

1 2 2 
= (f , 0 , • • • ,0) aI' (f ) a2 . = (0, f , 0 , • • . , 0 ) (12 e te. 

Conversely, if (fi) is measurable with respect to-c a i 

then there exists (gi)~. such that 
]. 
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( i i) -
f I\g a..v~. E 51· 

~ ~ 

(O,O, ••• ,gi, •.• ,o)l3. and 
~ 

= (o,o, •.• ,fi, ••. ,o) , a. i 

2 2 
fa. !\gA , ••• 

2 t-'2 

Hence if each coordinate of fa. is measurable with 

respect to e then fa is measurable. 

Theorem 5.1.10. fa is integrable with respect to ~ if 

and only if each of its coordinate points are integrable. 

Proof: Similar to the above. 

Lenuna 5.10110 If fa. is a non-negative "C-integrable 

fuzzy point of the set of all vector valued functions 

then for each fuzzy point AI3 f Rn, the set 

EAI3 = {f;l(~d) : vcS> AI3} is measurable .. 

Proof: Let 9 be a fuzzy point in F which is of the form 
u 
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u = min (u l ,u2 ' ... ,un). fa is a fuzzy point in sI 

and it.iS of the form fa = «(f 1 )a l '···' (fn)an ) 

h . ( )"1. Q r Rn so tha t were a = mln a 1 , •.. ,an • A~ ~ 

A ~ = ( ( ,,1) ~ l' .•• ( An) ~ n)' whe re ~ = min ( ~ 1 ' ~2 ' •.. , ~ n) • 

Now define 

9 i = « )-..1)-l f i) _ ( ( A i)-l f i) 1\ 1 u. ~. 1\ a. 
~ 11\ a i 

y, 
1 1. 1. 

if i\i 1= o. 
~ . 

1. 

= (fi) if ( ,,1) = 0, i=l ,2, ... , n a. ~i 1 

We see that i is the difference of two fuzzy points 9u . 
1. 

in 51 so that 9u is in 51" Also 9u is positive for 

f;l (vs)E EA~ and 9u = 0 for fa-1(-\)a>/ E,,~. 'Suppose 

tha t ( 0) = 1 ,,( m 9 ). 
m urn Y u 

f;l( -vcS') , EA' Therefore E A is measurable. 
~ ~ 

Theorem 5.1.12 (Stone~Like). Let i be a vector lattice of 

fuzzy points fa in a fuzzy vector space s satisfying 
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the property that if f ( s then 1 t\ f E '3 and let "t be a y a 

a fuzzy Daniell integral on i. Then there is a fuzzy 

a-algebra J4 of measurable fuzzy sets and a fuzzy 

measure ~onJl.such that fa is "C-integrable if and 

only if it is 1: -integrable wi th respect to ~ g 

Also -C(fa ) =! fa d~· 
E 

Proof: By replacing R by Rn in the proof described 

in the previous chapter the result is established easily. 

Remark 5.1013. Uniqueness of the fuzzy measure ~ follows 

in this situation also. 

5.2. FUZZY INTEGRAL OF A SCALAR VALUt:D FUZZY POINT 

WITH RESPECT TO A VECTOR VALUED FUZZY MEASURE 

Preliminaries 5.2.1. Let X be any set and L be a vector 

lattice of extended real valued functions f on X. Let 

s be a fuzzy set in L such that 5(0)=1 and fa be a fuzzy 

point of s which means a ~ s(f). Suppose s represent 

the set of fuzzy points of s and An be' the set of fuzzy 

points in Rn. Let -c: S -7 R.'" 

n - -n Replacing R by Rand R by R almost all the 

resul ts of the preceding chapters will fo llow·. For eXample 

we give below the following. defini tions and results. 
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Definition 5.2.2. A map c from s to Rn is called linear 

map if 'C (afa+bg~) = a"C (fa)+b-c (g~) -va,b E R, and 

fa,g~ f s and for each fa E 5" "C(fa ) = ra for some rE-Rn. 

Definition 5.2.3. A linear map -c:s-+Rn is called fuzzy 

Daniell functional or fuzzy Daniell integral if for every 

sequence {(~n)a} f s and (~n)a 1 0, we have 
n n 

1 im "C «((Ij n ) a ) = O. 
n 

...... 
Definition 5~204. A mapping -- r( ~[ Jn i "dt b '1: :r --, 0 ,co S s a ~ vO e 

a fuzzy measure on 1 if and only if (i) ~ (0) = 0, (ii) for 

- -a ny A, B f 7 , ~ (A) ~ 1 (B) if A c: 8, 

00 

(iii) ~ ( U An) = lim ~ (An) whenever tAn}c.7:', An c. An+l' 
n=l n-+ co 

n=1,2, ••• (continuity from below), (iv) if f An1c.1 , A :; A l' 1. n n;- ~ 

n=1,2, ••• , and if 3 no such that ~ (Ano) < 00, then 
co 

n A ) = lim ~ (A ). 
n=1 n n-+oo n 

We conclude this chapter by stating the Stone-like 

theorem when ~ is a vector valued fuzzy measure. 

Theorem 5.2.5. Let s be a vector lattice of fuzzy points fa 

in a fuzzy vector space 5 satisfying the property that if 

fa E 5 then lyl\faf 5 and let"t: be a fuzzy Daniell integral 

on s. Then there is a fuzzy a-algebra v4 of "measurable fuzzy 
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sets and a vec tor valued fuzzy measure 1 on .Ji. such tha t 

fa is ~-integrable if and only if it is ~ -integrabLe 

with re s pe c t to ~ • Al S 0 -c ( fa) = £ fad ~ • 

E 
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