SOME NEW INTEGRAL GRAPHS

G.Indulal, A. Vijayakumar

The eigenvalue of a graph is the eigenvalue of its adjacency matrix. A graph G is integral if all of its eigenvalues are integers. In this paper some new classes of integral graphs are constructed.

1. INTRODUCTION

Let G be a graph with |V(G)|=n and adjacency matrix A. The eigenvalues of A are called the eigenvalues of G and form the spectrum of G denoted by spec(G) in CVETKOVIĆ [2]. The graph G is integral if spec(G) consists of only integers.

In Balińska [1] constructions and properties of integral graphs are discussed in detail. The graphs K_p and $K_{p,p}$ are examples of integral graphs. Some recent work on these lines pertaining to the class of trees is found in Wang [4]. Moreover, several graph operations such as Cartesian product, Strong sum and Product on integral graphs can be used for constructing infinite families of integral graphs, Balińska [1].

In this paper we provide some new constructions to obtain integral graphs. All graph theoretic terminology is from CVETKOVIĆ [2].

2. MAIN THEOREMS

The characteristic polynomial of G, $|\lambda I - A|$ is denoted by P(G). A graph G, is said to be rooted at u if u is a specified vertex of G. We use the following lemmas in this paper.

Lemma 1 (Schwenk [3]). Let G and H be graphs rooted at u and v respectively. 1. Let F be the graph obtained by making u and v adjacent. Then

$$P(F) = P(G)P(H) - P(G - u)P(H - v).$$

2000 Mathematics Subject Classification. 05C50. Key Words and Phrases. Adjacency matrix, eigenvalue, integral graphs. 2. Let F' be the graph obtained by identifying u and v. Then

$$P(F') = P(G)P(H - v) + P(G - u)P(H) - xP(G - u)P(H - v).$$

Lemma 2 (CVETKOVIĆ [2]). Let M, N, P and Q be matrices with M invertible.

$$Let \; S = \left[\begin{array}{cc} M & N \\ P & Q \end{array} \right]. \;\; Then \; \det S = |M| \left| Q - PM^{-1}N \right|.$$

Lemma 3 (CVETKOVIĆ [2]). Let G be an r-regular connected graph on p vertices with $r = \lambda_1, \ \lambda_2, \dots, \lambda_m$ as the distinct eigenvalues. Then there exists a polynomial Q(x) such that $Q\{A(G)\} = J$, where J is the all one square matrix of order p and Q(x) is given by $Q(x) = p \times \frac{(x - \lambda_2)(x - \lambda_3) \cdots (x - \lambda_m)}{(r - \lambda_2)(r - \lambda_3) \cdots (r - \lambda_m)}$, so that Q(r) = p and $Q(\lambda_i) = 0$, for all $\lambda_i \neq r$.

Definition 1 (CVETKOVIĆ [2]). Let G be an r_1 -regular graph on p_1 vertices and H, an r_2 -regular graph on p_2 vertices. Then the complete product of G and H, denoted by $G\nabla H$ is obtained by joining every vertex of G to every vertex of H.

Note 1. The characteristic polynomial of $G\nabla H$ is given by

$$P(G\nabla H) = \frac{P(G)P(H)}{(x - r_1)(x - r_2)} (x^2 - (r_1 + r_2)x + r_1r_2 - p_1p_2).$$

Notation 1. Let $k *_G H$ denote the graph obtained by joining roots in k copies of H to all vertices of G. This graph can be obtained by first forming the complete product $G \nabla \overline{K_k}$ and then successively identifying the vertices in $\overline{K_k}$ one by one with roots in the k copies of H.

Let F_k^t , $t \leq k$ denote the graph obtained by identifying roots of t copies of H with t vertices of $\overline{K_k}$ in $G \nabla \overline{K_k}$. Then $F_k^0 = G \nabla \overline{K_k}$ and $F_k^k = k *_G H$.

Notation 2. $H_k = k \bullet H$, denote the graph obtained by identifying the root v in k copies of H.

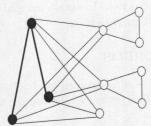


Figure 1. F_3^2 when $G = K_{1,2}$ and $H = K_3$

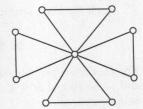


Figure 2. H_4 when $H = K_3$

Theorem 1. Let G be an m-regular graph on p vertices and H be rooted at v. Then with the notations as described above

$$P\left(F_k^t\right) = \frac{P(G)}{(x-m)} \, x^{k-(t+1)} \left(P(H)\right)^{t-1} \Big(P(H) \left(x(x-m)-p(k-t)\right) - tpx P(H-v)\Big).$$

Proof. We shall prove the Theorem by mathematical induction on t. When $t=0,\,F_k^0=G\nabla\,\overline{K_k}$ and in this case

$$P(F_k^0) = \frac{P(G)}{(x-m)} x^{k-1} (x(x-m) - pk),$$

which is true from Note 1.

Now assume that the Theorem is true when t = r < k. Thus

$$P(F_k^r) = \frac{P(G)}{(x-m)} x^{k-(r+1)} (P(H))^{r-1} (P(H)(x(x-m) - p(k-r)) - rpxP(H-v)).$$

Now F_k^{r+1} is the graph obtained from F_k^r by identifying the $(r+1)^{th}$ vertex of $\overline{K_k}$ in $G\nabla \overline{K_k}$ with the root v in the $(r+1)^{th}$ copy of H. Now by Lemma 1 and by the induction hypothesis

$$P(F_k^{r+1}) = P(F_k^r)P(H-v) + P(F_{k-1}^r)P(H) - xP(F_{k-1}^r)P(H-v)$$

$$= \frac{P(G)}{(x-m)}x^{k-(r+1)}(P(H))^{r-1}(P(H)(x(x-m)) - p(k-r)) - rpxP(H-v)P(H-v)$$

$$+ \frac{P(G)}{(x-m)}x^{k-1-(r+1)}(P(H))^{r-1}(P(H)(x(x-m)) - p(k-1-r)) - rpxP(H-v)P(H)$$

$$-xP(H-v)\frac{P(G)}{(x-m)}x^{k-(r+2)}(P(H))^{r-1}(P(H)(x(x-m)) - p(k-1-r)) - rpxP(H-v)$$

$$= \frac{P(G)}{(x-m)}x^{k-(r+2)}(P(H))^r(P(H)(x(x-m)) - p(k-(r+1))) - (r+1)pxP(H-v)$$

Thus the Theorem is true for t=r+1. Hence by mathematical induction the Theorem follows. \Box

Corollary 1.

$$P(k *_G H) = P(F_k^k) = \frac{P(G)}{(x-m)} (P(H))^{k-1} (P(H)(x-m) - pkP(H-v)).$$

Theorem 2. The characteristic polynomial of H_k is given by

$$P(H_k) = (P(H-v))^{k-1} (kP(H) - (k-1)xP(H-v)).$$

Proof. We shall prove the Theorem by mathematical induction on k and by Lemma 1. The Theorem is trivially true when k = 1. Assume that the result is true for t < k. Thus

$$P(H_t) = (P(H-v))^{t-1} (tP(H) - (t-1)xP(H-v)).$$

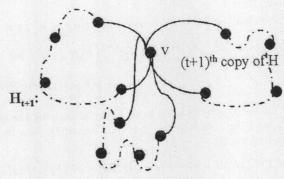


Figure 3.

Now

$$P(H_{t+1}) = P(H)(P(H-v))^{t} + P(H-v)P(H_{t}) - xP(H-v))(P(H-v))^{t}$$

$$= P(H)(P(H-v))^{t} + P(H-v)(P(H-v))^{t-1}(tP(H))$$

$$-(t-1)xP(H-v) - x(P(H-v))^{t+1}$$

$$= (P(H-v))^{t}((t+1)P(H) - txP(H-v)).$$

Hence the Theorem is true for t+1 and by mathematical induction Theorem follows. \square

3. SOME NEW INTEGRAL GRAPHS

In this section we shall give some new constructions of integral graphs.

Construction 1. Let G be any m- regular integral graph and H be K_{m+2} . Then by Theorem 1, the graph $k*_GH$ is integral if and only if the roots of (x-m-1)(x+1)-pk=0 are integers. That happens if and only if $(m+2)^2+4pk$ is a perfect square. Thus for $k=\frac{h^2-(m+2)^2}{4p}$, h>m+2, we get an infinite family of integral graphs.

EXAMPLE 1.

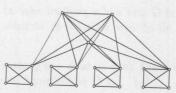


Figure 4. $G = K_3$, m = 2, $H = K_4$, k = 4

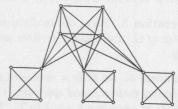


Figure 5. $G = C_4$, m = 2, $H = K_4$, k = 3

Construction 2. Let $G = K_{m,n}$ with any vertex in the n vertex set as root. Then by Theorem 2, G_k is integral if and only if both m(n-1) and m(n-1) + mk are perfect squares. Now m = t; n = t + 1; k = 3t is a feasible solution.

Construction 3. Let $G = K_4 - e$ rooted at any of the two non adjacent vertices. Then by Theorem 2, G_k is integral if and only if 8k + 9 is a perfect square. Then for integer k of the form $k = \frac{t^2 - 9}{8}$, $t \ge 4$, we get an infinite family of integral graphs.

EXAMPLE 2.

EXAMPLE 3.

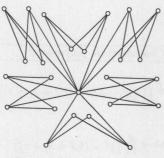


Figure 6. $G = K_{2,3}, k = 6$ $H = K_4, k = 4$

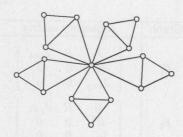


Figure 7. $G = K_4 - e, k = 5$ $H = K_4, k = 3$

4. SOME OPERATIONS ON GRAPHS

In this section we define some operations on a regular graph and thus provide some infinite families of integral graphs. Let G be a connected r- regular graph on p vertices and q edges whose adjacency matrix is A and spectrum $\{\lambda_1=r,\,\lambda_2,\,\lambda_3,\ldots,\lambda_p\}$.

Operation 1. Corresponding to each edge of G introduce a vertex and make it adjacent to vertices incident with it. Now introduce k isolated vertices and make all of them adjacent to vertices of G only.

Operation 2. Form the subdivision graph of G. Introduce k vertices and make all of them adjacent to vertices of G only.

Operation 3. Form the subdivision graph of G and add a pendant edge at each vertex of G. Introduce k vertices and make all of them adjacent to vertices of G only.

Theorem 3. Let G be a connected r-regular graph on p vertices and q edges with adjacency matrix A and spectrum $\{r, \lambda_2, \lambda_3, \ldots, \lambda_p\}$. Let F_i be the graph obtained from G by operation i, i = 1 to 3. Then

$$spec(F_1) = \begin{pmatrix} 0 & \frac{r \pm \sqrt{r^2 + 4(pk + 2r)}}{2} & \frac{\lambda_2 \pm \sqrt{\lambda_2^2 + 4(\lambda_2 + r)}}{2} & \cdots & \frac{\lambda_p \pm \sqrt{\lambda_p^2 + 4(\lambda_p + r)}}{2} \\ k + q - p & each once & each once & \cdots & each once \end{pmatrix}$$

$$spec(F_2) = \begin{pmatrix} 0 & \pm \sqrt{(pk + 2r)} & \pm \sqrt{(\lambda_2 + r)} & \cdots & \pm \sqrt{(\lambda_p + r)} \\ k + q - p & each once & each once & \cdots & each once \end{pmatrix}$$

$$spec(F_3) = \begin{pmatrix} 0 & \pm \sqrt{(pk + 2r + 1)} & \pm \sqrt{(\lambda_2 + r + 1)} & \cdots & \pm \sqrt{(\lambda_p + r + 1)} \\ k + q & each once & each once & \cdots & each once \end{pmatrix}$$

Proof. The proof follows from the Table 1 which gives the adjacency matrix and characteristic polynomial of F_i , i = 1, 2, 3.

Table 1

Graph	Adjacency matrix	Characteristic polynomial
F_1	$\left[\begin{array}{ccc}A&R&J_{p\times k}\\R^T&0&0\\J_{k\times p}&0&0\end{array}\right]$	$x^{q+k-p} \prod_{i=1}^{p} (x^2 - \lambda_i x - (kJ + \lambda_i + r))$
F_2	$\left[\begin{array}{ccc} 0 & R & J_{p\times k} \\ R^T & 0 & 0 \\ J_{k\times p} & 0 & 0 \end{array}\right]$	$x^{q+k-p} \prod_{i=1}^{p} (x^2 - (kJ + \lambda_i + r))$
F_3	$\begin{bmatrix} 0 & R & I & J_{p \times k} \\ R^T & 0 & 0 & 0 \\ I & 0 & 0 & 0 \\ J_{k \times p} & 0 & 0 & 0 \end{bmatrix}$	$x^{q+k} \prod_{i=1}^{p} (x^2 - (kJ + \lambda_i + r + 1))$

where R is the incidence matrix with $RR^T = A + rI$ and J is the the all one matrix as in Lemma 3.

EXAMPLES:

1. $G=K_{p,p}.$ F_1 is integral if and only if $p=t^2,$ and $k=2\ell^2\pm\ell t-1,\ \ell\geqslant t,\ t\geq 1.$

- 2. $G=K_{p,p}.$ F_2 is integral if and only if $p=t^2$, and $k=2h^2-1,\ t\geq 1,\ h\geq 1.$
- 3. $G=K_p$. F_3 is integral when $p=t^2$, and $k=t^2h^2\pm 2h-2,\ t\geq 1, h\geq 1.$
- 4. $G=K_{p,p}$. F_3 is integral when $p=t^2-1$, and $k=2(t^2-1)h^2\pm 2h-1, t\geq 1$

Acknowledgments. We thank the referee for some suggestions. The first author thanks the University Grants Commission (India) for providing fellowship under the Faculty Improvement Programme.

REFERENCES

- 1. K. BALIŃSKA, D. CVETKOVIĆ, Z. RADOSAVLJEVIĆ, S. SIMIĆ, D. STEVANOVIĆ: A Survey On Integral Graphs. Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat., 13 (2002), 42-65.
- 2. D. M. CVETKOVIĆ, M. DOOB, H. SACHS: Spectra of Graphs-Theory and Applications. Academic Press, New York, 1980.
- 3. A. J. Schwenk: On the eigenvalue of a graph. In: L. W. Beineke, R. J. Wilson (Eds.): Selected Topics in Graph Theory. Academic Press, London, 1978, 307-336.
- 4. L. WANG: Integral Graphs and Integral Trees. Ph.D.Thesis. University of Twente,

Department of Mathematics, Cochin University of Science and Technology Cochin-682 022, India.

 $E-mails: \ indulal gopal@cusat.ac.in, \ vijay@cusat.ac.in\\$

(Received October 11, 2006)