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Preface 

Must of the systems in oatUl'f! are oonlioear. Maoy of them show i~ 

temporal behaviour &"' the system parameters are ¥aried. Till' [("rID 'chaoI' hA." 

btrot!b U!Il"d to deoote this irregular behavior ia • completely detftminiJtic system 

without &DJ external stocbastic 8Outa!. Extreme seosiawjty to initial roaditioos 

makes it impossible to pn.-dict the &oo,atime bebmour of such a ch.otic' system. 

A Ift'At deal of reBeaI""Ch attiYitJ has beea oemtered 011 tbe undentaodi", of 

appUcatiOllS iD maay areas of kaowledp lib twbuJeoce, eJectrook circu.it1i, 

laser systems, astrooomy and aIIo iD maoy iaterdisc:iplina fielcU like biology, 

«Xllogy, population dyoamia etc. 

Cbaos is generally studied under two categories: (1) ContiDuous dynamiC&! 

systems represented by difIeteotial equatioos of the bm ~ = ~X .. p.) and (2) 

Discrete dylUUDical systems described by ID'IPP" of the Corm X, •• = ilXr• p) 

where X, deDOtes the state of the BJBtem at time t, JJ is the _ o( control pa­

I"IIIIII!t.els aud F is some DODliaear fuDd:ioa of X. In this tbtsi. we coofibl' to 

the study of discme ooaliDeat syRe.mII reprtBI!IIlted by ODe di.mrmiooal ma~ 

pinp. As ODe d.imeImoaaI iterative maps rqreseut Poincarre sect~ or higMr 

dilDelUlioaal Sows. they o8"er • coaftDieot JDMDS to uocIftost.aod tlx- dynamjaa) 

no1utioo of many physical systems. 



The work presented in the' tht~KjH ill the remlt of the invest.igatjons made 

by (hP author for studying thp dynanU('.1I of r.ombinatiou maps. scaUng rela­

tiOD!l of LyapUDOV charactcrhttk r.xpt1OODtS and the DAture of bifurcalioD.41 in 

disroatiauous systems. Thit W88 dolK' under the guidance of Pro£. Dr. V -

M. N ....... kumaraa iD tbe l.oterwd.iuoal SchooJ of Pbotooic:s, Cocbin Uuivt'r­

Qty of Srieoor &ad Tec:bDoloo. 11M' thesis is divided iar;o 6w chapters. Ta.. 

chapterwile description of the coaIeoI.S of t~ t:bMis is giwn below. 

Cbapc.u 1 iB • FQl!tal iuLrodurtioG to chaos, biPliptiDl tbe basic iiku 

or detenaioistic cbaoa. QuaUtatiw aod qUlllltitatne measures for the dec«t.ioD 

and daancuriza&ioa of cbaoI iD ooalioear systems are diaclll8ed.. Some simple 

matbematical models exhibitiJJg chaos are ~ The bilun:atioD lCelUlrio 

and the possible routes to chaos are explainM) taking the lopItie map III a 

specific example. The dylWDics of one dirneWliooal maps am brie8y dilCWllM!d. 

The relevance of the scaling relations of the Lyapunov chacad.eriatic expoDem 

in control of chaos is specified. 

Chapter 2 deals with the nU1Drzical and analytical iDvestiptioDl 011 rombi· 

oatioo maps. A mrqhjutioa map is obtaiocd by combini"l two ODe diDumsional 

maps. The coostittleld. maps mayor may Dot belong to the SIIIDe IQIiwnrality 

class. The dyoamic:s of mmbioatioa maps are signifieant1y difl'Cft:Dl from tbafk. 

of simple map:5- We coD!lider two CDCDbinatiou map! iD detail- Thr lint OQll! is 

bIDed by cnmbjgio,g two maps bduogi~ tu the same uniw.rsality claa and the 

seoood is got by C'OIIIbiDing two map. &om two differeDt uni¥P.rSality d~. 

It 



In the tbird <:bapter, WH Jln'.sent the re&ults of the numerical computa­

tiODR of too Lyapuouv exponent,8 (~) of one dJmeosiooai maps. The Lyapunnv 

dJar~ristic P.xpooent artM U ft kiDd of order parametf'r in too U&I.lMitjob fmm 

reguW to chaotic state of a OOWillP.M system. A theoretical reJatiooship for 

the saWag of LyapuDOY expoDt"ots had already been obtaioed by HUbennaD 

aad Rudaick. We haw eslablliliktd alUDPricalJy that the HuJxo.rmum-RudnidL 

However. the ... ,;. law for tbP. Lyapuraov expoIIld of a combiuatioo map is 

Rpificagtl, differeot from tJ..r of tile iDdiYidual maps. 

Chaptt-r 4 deals .nth the oature of ~ in a diKoatiDuou. logistic 

map. A diJfereDt type of bifureatioo other than tbe usual pedod doubling ODe 

had alre.dy been reported fOr cliBcoatiauOUB maps. Most of tbl! studies iD d.is­

coDtiauoWl systems have been numerical. We pfOYide an aaalyt.if"'.aI explanation 

for the bIfurcations in a discontinuous logistic map. We have ob8crvcd that tbe 

map poB8eSSM multiple attrac:.torB. The basins of attractiou of tbP fixed points 

are ideotified and anexpressioa f()r tbP. basiD boundary is dedOOl.'d. We establisb 

that wbeaever the clCfUPnu of All n-cycle (n > 1) approKh t.l.! dilC.'OOtiDUities 

of tJllt! n tl iterate of the map, • bifurcatioo takes piKe. The periods or ~ ~J.-s 

are shown to decrease in an arithmetic progreaioo. It is also .bowu tbar till" 

periods depend on the precision witb .hida the computlllioos ~ daDt-. Direr1 

aDd i.owerse cascades of bi.furau.iuu am possible. Oar results are ~ by 
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IJIUIIericai ~riments as well. BifurratioD. WagrUl8. time pots or the iterates, 

table. sbcJMn« l~ b.lsia botmdaries and bifun::aaioo points. par8IDtC~r space 

plots etc. ... iocludoi 

Tbe last chaptf'f gives a summary of t.be .bol~ work dooeo. Our main 

condusioDJI are the following: 

1. 'Ill! HobermaoJl..Rudnick S<'aliug tf'.latioa b tbe LyapaDO¥ expooeolS 

15 ..tiel b ailDpie OIl£! dirnonsiooaJ mall' of ditfenont Olden or maxima 

2. TIle acaIiDg reIatioas of the Lyapuaov c::haracteristic expoocals of c0m­

bination maps are entimly different from those of the individual mapl. 

3. 1'be discoDliDuoUl logistic maJ' PC_SIIeS multiple attractant EVC!I')' 

periodic qcle of the sysUoJU aod.e~ a bifun:a&ioD W"IIanv • ~Ie eIemeat 

mIIida witla tile dUIcoatiDuity of the map. Tbe periods an! pRriNon tlepcadear 

MId &bow aD arit.hmetk coavegmce. 

The p<aibilities Cor future rnscarch are also iDcluded. 
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1. Deterministic chaos 

The discovery tbat cvc.n limple DOolinear systems gowtrDOO by per­

kt11 Imowu equations of motion can C'VOl~ into a completdy erratiC", rour 

pies behaviour is of far-naadaiug C1JD8equeaas in many area of kDowkod£t.". 

It sues apiDSt ODe of the bask teoet. 01 !ldeoce that deterministic sylite!Wi 

~ predictable. The historic ~D of H.PoiDari iD. 1892 tbat cntaiD 

Hamiltoniaa systems r'aD display chaotic motion was left UIIDOtked for a coo­

sidenhIy loa« time.. E.N.Loreoz iD 1963 ID8de a t:ru.acatioD of the NaviPr­

StaR'. equatioa iD hydrodynamics aDd obtaioed a set of three ordinary. DOO­

IiDUl' d.ifI'ereotial equatioas. T'be Lonmz model shows, fOr oertaiD parameter 

raqes. extreme seasitivity to initial coDditioWl. Le., it exhibits ebaotic ~ 

haviour Cor certain ranges of the system parametezs[lJ. Sioat lbea t 8 tot of 

research work have been done in the field of chaos and ooolinMl' dynamkH. At 

preseat, there is hardly any branch of scieuoo where the coocept of chaos has 

DOt been used. NonUneatity is a oeccessary (but, DOt suf6dent) ingredient (or 

chaos. Generally speakq, tbe weber the dimeosioaality of the system, tbr 

lea Bt!Vtft the nonlincarity required to produce cbNlS Maay aataralll)'1ltems 

art' replete with DODlinearitjf.l!§. Chaos bI thus a rule.. rather than an cxc(>p­

~ iD the real wurkt The pbeoomeDOD of r~ i.t!., fully dt-volopro 

l"baos iD space &Dd timt!, i8 an wwolwd problem of dassical ph)'llir.s. Tbr 

de~ iD dl"otk dynamics during tht.- last tftr deaads baVlo Kftoarly 

iocreased the understfUldih8 of the pheoomenon of turbuleac:e. The study or 

1 



detcrmiuistic chaos has giW!o DCW concepts and modes of thought that haw 

far.rea.cbing repercussiou iD many different fields, such as Solid state physics, 

Plasma physia, Chemistry, Coemology, Oiology «u. Futnre dewlopments in 

the fiL.Jd may help to solw tbe ~ problem of turbuJeoce. 

Tbr deterministic oatore of the system implies that t~ f!xiIts a law, 

either iD the form of. ditfereatial equatioa or iD tenDs of • ~ eq .... 

tioo, fOr cIetermiaiq tile futUft' state &om tbe given initial cooditioos. ThII! 

ob.ned irrep1ar bebaYioar is Deitber due to any estemal 00_ ... due to 

any iDtrimsic uoc.ertaiDty u iD the cue of quautam mecbeoia. TIle m.otic 

behaviour arises from tile pmperiy of tbP aonlin~ system of expooeatiaU,. 

fM!parating initially doae trajectories iD phase space.. Cow;equeally, the loog­

time behaviour of a chaotic system becomes unpredictable. Various routes for 

the traDBition of a noDliDear .ystem from regular to chaotic state baw bOOD 

idcutified. This chapter pIO"Iidel a review of the basic mathematical tools 

to detect and cbaracterize chaotic motion. Certain model B)'stems aDd the 

possibl~ routes to ca.. are dixuaIed. 

1.1 Dynamical Systems 

A dynamical SJSleIII is described by an e""llutioo equatioG that cl.!ter­

mioes the mcxessiw staleS &om a Imowledp of tbe- imtial state of la systc!UL 

Tbt~y are usually dmded into two~: (a> Cootinuous-~ dynanDca1 

,)"5tCIWJ eod (b) Di~ dyaamical &y!Item. •. 

2 



8) A cootiuuow;..Wnc dynamical system is represented by a Het. of or-

dinary clifl't".rentiaJ equatiOlUi (ODE) of lobe form, 

dX dt = Jl~t.p);X(to) = X" ( 1.1) 

-bere, X(t) E R" is the st.ate at time '. p is the set of root.rol paraIDlVn aDd 

F: Jr'I - R- is aIled the ¥OCtor 6eId.. The dynamical system is 1iDea1- if F is 

liDeu- ADd oonlinear if Fill aooIiDMl'. T'be SJSleID is said to ~ aldOftOt'rU)U 

if Fdnes DOt cuutaia time explicitly. Now, 88 ntl& order ooo-autoaomoal ODE 

caa be c:ollWl'ted to lID (n + 1)" order autoaomous ODE. ~ aD 

m'" order autOllOlJlOUS ODE caD be n.lucai to a system of m fint on:Ier ODE. 

Thus. aoy amtiDUOUS-time d)'llallliall system C&D be bro~ to tbe b1Il pvea 

by equatioD(l.l). A aolutioa to equation(l.l) with the illitial condition Xc. at 

t = 0, {X.(t), X:.{t), •.. f X.(I)} il called a trajectory in the n -dimeusioaal phase 

space of the system aad is denoted by ;'CXo). The mapping t/J, : Ir' ~ R' 

de6ues a Bow of the &)'lItem. 

b) A ~time dynemjral syatem is represented by a di&reace 

equation or mappiDg as 

x •• I - /f.Xl • p) (1.2) 

.u.te X It 10 the DeXt state X'+lo The.eqUeDCe of poimts {Xi}::" obtainrd by 

the ~ted iteratioas of tile initial ItMe X. de&oes an orbit of the system iD 

3 



1.2 Poincare map. 

The Bow of 8 cootinuolJ5.time dYDAmical system CAD bto conveniently 

~placal by a discrete mapping by a tedmique due to Poinc.are[2.31. Consider, 

for eXAlDpI~ a set of t bree first • .-der difft..rential equations, 

dx dy dz 
dt = f(x. 1/, z}; tit = ~x .. y. z); dt = tP(z.!lt z). 

Let .. plot the points (~ ... ) := 1~t.).JI(t.») b- uiue!l of time , = '- at 

.bida z ~ 0 and : > O. Then tbt- mappiag (% ..... ) - (~ .. h,..a) defiorJI a 

Poiacare map. ID ~. the Poi~ sectioD of aD n-dimpgsimal system is 

the i.aI.enectioa of the trajectories with aD (n - 1) di".,winnal ~~ 

from ODe aide of the surfaoe. Tbe eotire aequeace of ~ points t..Um 

without reprd for croasiDl direction ddiDes • two sided Poioari map. The 

~ section gives a Btrobosropic picture of tbe underlying continuous-

time dynamical system. Then! is a one-to-one correspoadence between the 

diflerent types of steady state behaviour of the system aDd the steady state 

behaviour in the Poincare sectiOD. Since iterations are much easier to perform 

iD aoaI)'ZinI: the dyoamiat 01 coutinuous-time d)"VUDical syItemB. 

1.3 Detection of chaos. 

tiuw. ie., tbe data ~ of a time~. It is therefore neccesary to insptrt 

whether the time series CC>r1"eSpOods to a periodic behaviour or cbaotk stat., 

4 



of the SYHeID. Usually it is not aD easy task to diffP.l'f!Dtiate b@twftn multiply 

periodic brbaviour and a cbanti~ 1IIae. Vario .. qualitatiW' and qWllllitai.iw 

1DP...uan!5 ~ adopted "r tbis- In tbis section, 1ft! shall ",vj~w 1iUIDP of tt ... 

qualitati",-~ 1D('"4Surt'ti tbat are usually employed to det«t ~ p~nN" rI cbaul'li 

in 88)'stem. 

Consider, for example, the ~ of a periodically driven rx-odulum. 

represeat.rd. by ~ + ..,: + 'l sin 9 =- / SD. c.Il wbiere IJ is the a.n&UIar dbplacemeat 

at time t. 9 is the acmeratioo due to pait".., is t.be damping c~oDStant, lis tbr 

amplitude of the driYias &x.:e aDd. III is the aqular fftqlH'llCy of the driviD& 

£One. For each set of parametenl t7t /. w), tbe equation ("An be iJW!gratfld 

D1lIIltUically. A plut of 9 agaiDa't t will be a IIDlOOtb CurvP., if tht! tlystR.m is 

periodic. When tt.. system enters the chaotic regime, the time dependeoce 

of , ma.s aD itlt!lular pattern. For .".",pIe, wbea I t!'J[cads JOI!It" tbresboId 

valoe, tbe> pendulum shows a daaotic bebaviour 

Another method to deLed chAOS is to coosider the powr.f spectrum 

p(w) ~ 1:r(w)I:!, whpt'P ;I:{w) is the Faurier traosform of the signal .2l(t). i.e., 

J:(w) = ~~ JT ~eM.AdI. (1.3) 

For pcrioclir. wotiOD. the p"JWt'"r Rpectrllm shows only disc ret .. , lines at 

the r.ulTCS)onding CrequI'ncies. But when the system bernmc~ dU~l')tic, •. lll' 

~ qwort,rum Af'Il'-Anl A.~ a btuad coatin:oous pattern.. 

5 



A thin! criterion for cbaol is 10 observe the 8uturorrelation functioD. 

This function meuufes the correlation betwc..'Cn subsequent !l:iguals. A coostant 

ur 8D oscillatory behaviour of the rorrolation fnortioD implies, bat t.ht- system 

ifi pMindic. Chaotic behaviour manifests iu.-lf through a rapidly dccayiq 

rorrelatioo fuoction.. 

Another check _ cbe pI"C8I!~ of chaos is 10 inwstJpte the Pojocar+ 

ft"lum map_ This map tepI'e8t'!Ob tbe iDl.C'nedion of the orbits iD pbae ~ 

with a liwa plane. FOr chaotic motioa. the Poinr'.-e section sllows space filliag 

poiau. BUl, periodic IDDhoa produca ooly a finite Dumber of poiDts iD the 

Poiocare gertion. 

1.4 Quantitative Measures of Chaos. 

Lyapunov chara.cteristic expoueDts, InVfLl'iant measure. Autocorrela~ 

tioa function, etc. are the major mathematical measures adopted to determine 

l10w chaotic a system B. Jlbr completeness. we giw a brief definition of each 

of t bP.M qnaalities. 

1.4.1 Lyapunov c:baraderistic exponent 

The LyapUDOV cbaracteristic expoorot (LC.E) ~ n rDra.stlJ'e of the 

~itiyjty to initiaJ coaditiool(41. It siws the exponential ratfo Hr di~ 

of lbr ..,.,...,ion between two orarby poiots. as the sy5tem t...·y.,ln.~ iD timP-. A 

formal <-xpl't'SSion fOr it caD be obtaioed as fOUows. 
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Consider a one dimeosional mapping :2: .. , I = f(xn) OD an illwrval uf 

corresponding chanRe· in ~ nil iterate. Thas. x. :: r(:ro) and r. .. + t.. = 

r(re+te). A TayIor9l!l'irs"Xpllusiougnes. %.+~. = r(z.e)+fOr·(~.}+O(~). 

w~ tbe prime dcootes di&reatiatioo _.r.t %. NegILOJCtiD& bi«ber powtors of 

'e. %.. + ~ = r. + eo r' (2:'.). Usilll thr dWo rule of d.iBert"Dtiatioo~ ~ hIlw. 

,,-I 

i.e.,r' (:1:0 ) = n f(2!i) 

11-1 

or,tr .. 1 = Ifell IIIf'(%,)1 = Itole.Mn, 
• ..0 

Expooeut, A. i.e., 

(1.4) 

Tb .. , e.\ mpm;ents the aver .. factor by which the separation between nearby 

points geta Itretcbl'<i aft .. .r onc iteration.. Clearly, l IDeUme5 the rate oC expo-

neatialseparatioo of nearby orbits iu phase space. If'\ Ut o.cgatiVl.', tbn "Y .... am 

Il !ICII5e, it acts as aD ord« p&I'&IDIE!ter iD the trADSitiou of a ooolinear 5JSU'm 

i 



LyapWlOV exponents, one For racb dimension. rr At I('wrt onc of the L.e Et~ ifi 

positivc.', lbl! sysh!m is cbaotk. fbr quasiperiodic motion, all thr L.e.E'R are 

Ly.puoov expooeats &Dd the &ad.al djD)f"!l5iou may hP. estimatftI using thr 

KaplaD-YOI""kP conjecture-(6). Tbo Lyapunov expoOt"lM ,fdincd abaft is tlk- first 

0I'der LyapuDOY erponea&. Ificber orde>.r Lyapunov exponeots can bE' ddia:aed 

by genmWr.iag this de6Ditioa[1,8]. 

1.4.2 Invariant measure 

The invariaat measure, p(z}, a8IOciated with a ooe-ciiu.-Oldoaal map, 

say, z.., = J(~), Z. E (0. I). n = 0.1.2. "f is the probability distributioa. of 

the iterates over the iatenaI of mapping. 1'bus: p(z)4z is the frac:tioo of tbr 

it~aa.e. iD the iatenaI (z~z + cb) &Dd as sucby p(%) Call be de6aed as 

This quaotity ~ tbe density of the iterates of thf' map /(%). The time 

aW-TAge of a fu.octiOD .(2:) can be roD~d to 8.D average oWU' the invariant 

mcasW'C as, 

(1.6) 



This equation can bt> UHC)U to Hnd thp. value of p(x) for various valUA.'II of:t. if 

the map function J(%) LA Imownl21. It can lw !KJIwd exanly only for ~D 

spt"Cw cast'5. 

1.4.3 Autocorrelation function 

Coosider thr mapping, 2;.+-1 = f(z..), %,. E (0.1). Starting with. !k'I'd 

mean or average value of the iterates is given by 

1 N 
~= lim -~%. 

N-aJ N~ • 

Tbeo tbe com!Iation faDCtion C( m) is defined as 

(1.7) 

TbUI, C(m) pves a IDItIISUn! o( the exteut to which the iterates m st.epI,...-t 

(i.e., Z. Bad Sa .... ) are~. The correlatioa fuDctia:a cao be ec&...-ed 

in tel'llUl or tbe bmuiaDt dea!lity p(x) of the map 88 

(1.8) 
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1.5 Mathematical models exhibiting chaos 

In this section, we discuss som" of thr typk..aJ O~ dimcWiiunal maps 

that, di'iJ>lay (".haotic be.haviour. 

1.5.1 Bernoulli shift map 

~mapisexpcessedby% •• l = C1(Z.) ~ 2%'arnOO1. i = 0.1.2.3.... (1.9) 

Fi«tJn! 1.1 is a plot of u(z) wnus %. 

1.0 

0.8 

- 0.6 
;-: .-

0.4 

0.2 

0.0 
~----~----~--~~----~~--~ 
0.0 0.2 0.4 0.6 0.8 1.0 

x 

Fig. 1.1 A plot of the Bernoulli shift map. givcu by P.qUAtion (1.9) 
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Repeated iterat.ioll.tt of 811 ioitial vahw :I!o geuuratp.s the sequence, 

{:l:J = "(%0). %2 = tT~(20). %, = al(%o) •...• %~ = ,,"(1G) •..• }. The .... Jd.w 

aritbmetir involved will confine all t be iterate!! into the unit inlt"naI. Tbertoilre 

1ft! Dl'It"d roasider ooly r < 1. Muy inJporUnf fl"atwt!S of ODe dilPllttivaaJ 

d.C)tic maps c::aa be dedurA'ld from the pt"Opt'rties of this map. Some of lbrm 

are giwn below : 

(I). Strek:Jaing arul 6ad: /o14ing properly. 

AJJ.y point Zo < 1/2 beromcs stretched by A factor 2 after each itera­

tion. i.e., a(so) = 22:0. Now for r > k where 2'3:0 ~ 1. the iterate :rr is folded 

back to (0,1). (~l1{z) -= 2z - 1 fOr z > 1/2). This stretdaiDc and b.dt­

Coldias property giVlW .... tu " doahle valued iovene for points OD the 1IIAp. 

')"b@ ampIex. bebmov of ~ itendeS is a C'OOII!qQl!llt'r of ilia propat,. 

The BemouI1i shift map t-.:1 be used to illUltra1e tbe seuitive depea­

dcoce of a chaotic S)'!Item OD t be initial ooDditLoDS. Let us WII! the biaary 

representation for poiDts :I: iD (0,1). ThtL<;;1 :I: = O. "la, 4:. ..... where each a.,. = 0 

or 1. Then a(z) = 2:1: if Gl = 0 aud a{:z:) = 2:r - 1 ir "1 = 1. Thererom~ 

«1(%) = O.CI:a4s4a •.••• Thus tbe action of Cl OD rbe bUlMy number z b to dftrte 

the first digit and shift the 8equence to the If'ft. The map is therefore IwowD 

as BerDDUlli shift map. 
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Consider two points z and Z' very close to each other so thlit, they 

differ oo1y in the nIA and higher digiti' in their binary reprPSeDtation. Let 

:r: == O. G. at CI] •••••••• ..a., .,. where "..m dlgit a. is either zero or unity. Tlleo, ~' = 

O. BJ "2 43 •••••• a:. .. ~ Abo a. f. a:.. Duria« eac:b i.eratiou~ tlw. fim di3it L .. dfteted 

and the sequence is shifted to tbe k!ft by 0 .... digit. lWpeatiallbr pruoeIII n 

times, wept • .,.-(:e) = 0 .... a...1 a.., ...... .aod o"(r') = o. a:. a:.. ,~+:I ...... nus, 

the nfA iterate differs iD the first dicit itself. Heoce t t" ~ behavicM' of 

~ itentes depead ftr/..atively 00 tbe initial.Jue. A very small error iD 

~ cbe iDitiaI .... ue am lead to UI entirely difl'ereat final state.. This 

extnme IellSitiYity of duIotic systmuI to initial conditioDS te.ls to a completely 

tIIIpIWtictabIe asymptotic date. 

(3). Er-gotlic beMviour 

Any point ~ io (0. 1) CAD be approximated arbitrarily well by & finite 

sequence of biJuuy digiti 0 aad 1 as (0.41 Clt43 .... a,.) upto & diffemnce of & = 

(1/2Y. Now, the actioo of .,. OD z is to delete the first digit and shift the 

6decimal' point to the riPt by ODe digit. Thus it f'oIIows that r(%e) { b 

i = I. 2.3 .... } of ao arbitrary imat.iODa.I ~ r.e E (0, 1) approach % upc.u AD 

accurecy ~ iDfinitely ID&D)' times. i.e., the iterates an! distributed fqodkally iD 

(0.1). This resembles the ~k theorem in statistical mochaoics; i.e., "wo 
eaougb time, any point in the pbaIe space is visited by iDfiaiteJ,. maay pbaBe 

poiJJls in rou.rse of time. The tqOdic theory 5a)'5 that ~ a~ caD. be 

I1!placed by sparn ~ -ben tbe motioD is ergodic (9). 
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1..5.2 Triangular map 

This is Il one dimeDHiona.l map d~fincd by 

T{x) =a{1 - 211/2 - zlL 0 < x < 1. 

1"bc map fuoetion is ~ in figure 1.2. 

-)( -.-

1.0 r----~--~-...,...... __ -....,..... __ ---,-. , , , , , , , , 0.8 , , , , , , 
0.6 , 

0.4 

0.2 

0.0 0.2 0.4 0.6 0.8 1.0 
x 

Fi«. 1.2 The map defined in ~uatiOD (1.10)1 for a = 0.7$ 

(1.10) 

Tht- CODtroI parameter 0 ~an he variM from 0 t.u 1 so as to ~ tbr itt'f'ate9 

withiJl(O.l). For 4 < 1/2. tbto itnat~ will l~vr.ntuaUy settle dowu at the 

oriltin; i.e .• the origill is. stable fixed point of tiN" map. For G > 1/2. (two map 

gt"Oerates a dIaotic sequence of itcrat~. 



1.5.3 Logistic map. 

A 001" dimCDsiooal quadratic map that bas ~n ~udied r.~ruri\I'Cly is 

tbe JuRistic map(I,IO, 1 I ]: 

~.I = /(z .. ) = 1'% .. (1 - Za); %,. E (O.I)~ 0 < p < 4. 

Tbt- map functioo is plott..d iD figure 1.3. 

-+ 
c: 

1 .0 

0.8 

0.6 

I< 0.4 

0.2 

0.0 

0.0 0.2 0.4 0.6 
Xn 

0.8 1.0 

(1.11) 

Fi«. 1.3 The logistic map defi.aOO in equat.ioo (1.11). Tbr "JDtrol J~ p 

ill lakt>n as 3. 
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In the investigations of the qualitative properties of dynrunical sy!';t.CUL~, wh~th~r 

they are mechanical devices, l!lectrical circuits, chem.ical reactions or a.nyother 

kiud. th(~ ~crymptotic behaviour plll)'s a central roic-. By Ilsyrnptotir bp.haviour, 

we mean the proJX~rtips that prevail wben lime I - 00, Of, fur all pnwtical 

purposes, when t is sufficiently large. Asymptotically, t.he systCJll mHJ' COD-

V(l!r~ tn flU equilibrium point, a periodk motion. a quasi-perio,Jic moti[Jo, Of 

it may have a completely erratic bcha~our, commonly desigDllted by the W-IlD 

chaotic motion. The asymptotic beh&\'iour of the itccaJeI or tbe ID4p depends 

crucially on the value of the control parameter p. For small values of p, the 

iterates show a periodic behaviour. When JJ exceeds a threshold value, the 

system exhibits a chaotic behaviour. At I' ~ 4, the m.o.p shows fully chaotic 

behaviour. The logistic map can be written in another form &Ci 

y,. f J = 1 - ay!; 11" E (-1, 1); 0 < a < 2. (1.12) 

These two representations are equivalent and one can switch over from ODe . 
fOrm to the other by means of the following transformatIul1: 

(1.13) 

Tlw TeV(.'rse I:rA~fonnation is: 

l-k k-l 
y" = --:e .. + -2-; I' = 1 - k; k = ±Jl + 4a 

!t a 
(1.14) 

Throughout this thesis, we shalJ adhere to t.he representation of the logis-

tic Iflap on the unit interval. IF Z'n somehow falls outside the int..erval (0,1). 

Imblequt!llt it.eratioru; diverge toward" -00. AR is clear from fig 1.3, the map 
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has aD extremum at z = 1/2 which is a !reCOnd ordp.r ur maximum. (Ord(~ of 

maxirnwn ~ the order of the higbPst non V'IIIU5hiD,t dc-rivativc at thr point. of 

maximum. In other words, it ls lh.· Ofde!' of tiw I ... adi~ U"..rm in I~ Tayu.­

..,;.,; expamioo of thr fuoctioo arou.od Ilk- maximwn..) The maxilDUlD value 

of the fuaction = p/4.. Hmre tbr maximum permiaibka value for p is 4 .Dd 

tbe minimum value for p = O. 11M" map is a unimodaI map. An import.aat 

reature of tbe map is that U is ooo-ioYertible. TIws. given z: •• the oext ik-ratf" 

s. .• 15 uniquely detenDiDed by z". But tM reverse is Dot true. A givea point 

r can have two ~imapR. 

10 order to illustrate tbe sensitive dependence of a chaotic system OD 

initial conditions, let us COOIider the logistic map at " = 4. The traasformA.. 

lion %. = siD2(1rlI.) liws aD explicit soI0ti0D lA = 2"Bomodl. Let lhe iaitial 

.uar ~ be dwnrd b.r • wry smalJ amount~. '11Iea 9. is c:baopd .". aD 

amouDl 2a e; = £ exp(n "'2). Thus the separatioa betweeo two iDitial _Dell 
Il'f.5 .... pli6ed. by a r.ctor exp(n 10& 2), after a 'time' n. Tbr rate of eXJKlOPlIlial 

IeparaOOD = Iog2 (which is the Lyapunov c:haracterUtic expooeat) is pmitiw. 

TbllB there is chaos. Let us. for the sake of conveu..ieoce. express 80 iD binary 

notAtion. Let 60 = 0.10100011 .... Then 8. = 0.0100011..., ~ = 0.100011"'1 

8:J = O.OOOll...etc. Thus, the iteration scheme i8 to delt'te tbe first digit and 

shift tile remaioill&!leqtII!DCC to tbe Iclt. Hence, tbe value of 9. depeuds OD tbe 

n fA and hisber digita oC 90. W1wo n is wxy ~, 6. d@ • .ads wsy ..uitive1y 

00 tbe pn'dse value of ~. 
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Now. there are a number uf Hituat;ionK in which Ube dimcwdonAl it.t.!fH­

live maps. sur.h as the logistir. map. prnvid(-l Jl Maveni(lOnt modpl fur th£" ti~t.eUl 

behaviour 112.(3). The simplest t~XAlDl»lf' romes from oculogir.aJ tnudt~L'C. Cou­

sider the case of a ~..asoDal.ly brw-ding ill1k'Ct population in wbirh geDP.rfttinn." 

do DOt owwlap_ The population Z ... I in ~ (n + l)d' pDPl'alion if' a fundinn 

o( the populatioo z. in the n f. ~ratiull_ i.e., ~.t = /{r.....p) ~ p ret", 

A!RIIts !KJIDe cor&rol panuarter (availability of food, &.rtioa oC &ft"A avai~ 

e£c). The logistic map caD bfo. U9Cd to ~ • stroacfy d""lp'd Jtida.d 

rotator(l]. Again, such ODe dimmtrioDAI DDD-inwrtible maps caD aIIo arise as 

the Poincare map of a highly dissipatiw flow. The Poiucue section of • 3-

dimeosiooal8ow is in gt!DCJ'a1, 8 2-dbnrm~ioD" surface. Now, if the dissipatioD 

is wry large, leading to a rapid contractiOD or areas. then the Poiucue aection 

cao practically be appnlXimated by R set of points along a curve. Df'liDiag It. 

point X for every point 011 tWs c~l1rve, the time evolution of X caD be Mduc~ 

to a ODe dimensional oou·iovert.iblc lll8p of the form X,,+l = F(X.). The logis. 

tic map is only a particular bm of tbi!l ODe dimensional difference equatiuu. 

It is unaIly takea as a represeolat.ivc of the quadratic family oC maps. Tbtt 

IopItir map aerwe5 an examJ* to study ~ bifuratioo pheoomeoon and tlw 

route. to dIaos iD ODe dimeosiotuU unimodal maps. 
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1.6 Routes to chaos in one dimensional maps. 

Que dimeosiooal codomorpbisms defined OD Ul interval of rh.- :rat 

axil haft bePn t:ISI('(f iD modelling a wick! variety of uoa.1i~a: systr.tD!l(IJ.141. 

The)t 8ft usually ~ eouagh for analytical r.m.tmeot aDd a( tbfo saD)(' tllUl' 

DOt wery timfo roostIIDi~ b ounwriea1 studies. Tbey pruvitW a ronwrUt"Ul 

model to explore t~ dyuamic-s of many practk..al aystems ~ laser cavit it!1l (1 I. 

eIect.roaic circWts t DPW'aI oetworb etc. Mao.r importaot ieatures lilw ltw 

scaling behaviour and the universality properties of higher dimeosiomll flows 

are Jban!d by these auappiuga BB wdl. Various routed to d1aoe have ~n 

obRrved iD diBsipatiw. deten:ninistic systems. Tbe8e routes differ in the way in 

.hida the signal belunes be6xe bemmiq cbaotk.. ID tbillII!'Ctioo; we shall pw 

• brief ft!'Iiew of t.be sx-ible routes to ctaa.:. iD. ODe dimealioDal onimodal maps; 

viz., period doubling, intamitteoq~ aiBM etc. ID putiaIIar, the FeW-obaum 

.... -no aDd tbe nni ...... pn ... ...-cies of ODe d~.1 qudnatic maps arr 

diacused iD some detail. We cbomc the logistic map Jiwa by equation 1.11 

as a !Ip«lfic: example. 

1.6.1 Period doubling phenomena.. 

Given the noolinear dylUUlJical system. % •• 1 =: f(r",.p). our inw('fit 

is iD the asymptotic solutioDS. Starting with au iDitiaJ value Zo. the map 

fu.octioa is i~ed & Iarv g.auber of times. Tbr kJapimr behaviour of tbP 

system. is determined by the iterates Za. after tbr lDltial u~~ ba~ dit" 
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out. Tbesf' trAnSients, in genera], d('pend OD the seed value Xu. Th(' iterates 

may eouve.rgc to 4 tixcd point. 8 periorik rydp. or 8 chaotic atf.ractor, u('pending 

on thf' vallU! of Jl+ M the 'knob' JJ is variedl I he nat.U1"C of t.be solution dliiOgt'S. 

The system undergues a t.ransitlon fmm regular, pcnodi(· ("yc1n~ to 8 ,,' al;(o or 

erratic behaviour or vice versa. Diffeccnt rout.es to (~h80S lIave hc('n idcntifi(-rl, 

the DlO!d. prominent among them bcjpg tM period doubling route. In the 

period doubling process, lA fixed point UDdergoeg a bifurration ,wd Ea 2-cydc 

is formed, when the r.ontrol parameter crosses a particular value, saYl Ill' The 

2-cydc behaviour (:ontinuos for ROme raoge of values of Jl aDd then it bifurcatt".c; 

to a 4-cycle at I' = 1'2. When p is continuously varied, too 4-cyde bif\lrcatp_~ 

tn an R-qcle at p = 1'3; ADd so on. The period of every cycle gets doubled at 

definite values of IJ. These period doublings accumwate at 8 critical value of 

tbe sytitcm ]Jarameter. Beyond this critical VJUue. tlw- syRtcm exh.jbit~ chaotic 

behaviour. 

For the mapping Xn+1 = /(2;..), a fixed pUnt x' is defined by f(:r') = :c". 

A fixed point x' is Rt.R.blc, if small perturbatioDS on it eve.a.tually d.i~ out. The 

neccessary condition for this is I {(x» 1< 1. If I/(x") I> 1, tlw fixed poin~ 

Is un.'ttalJle. If I j'(x') 1= ., the fixed point is f;a.id tn be "'mArginA.lly stable". 

Fixed points and thdr stability properti('S ploy a vital role in the theory of 

mappings, as they contribute a definite structure for tbe U-ajecturic:; in their 

neighbourlLOOd. The stahln fixed point..:; (xl' xi. :ri~ ... ,x:) of the nth itc.·rare 

of f(:t:) coostitute an ll-periodic l"ycle of lex). The elements of tl1t~ fl,.Cyd(l are 
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ThUB every eemeDt %; or an n-qde ul J ~ r(z:> - ~:- An ,. ... eye ... ill 

stable if the magoitude of tbe slope of the nIA iter. RI tbt> cyck- ~kmeDt' iti 

_ thaD unity. A tP~ cycle {z;} of period n UI said to ~ ~. if tbr 

slope of the n'" iterate of the map at the cyde eIemeats vanishe. Thus. by 

~ daaia rWr of diffe!"eotiatioD, the coodition for supenttahle cycles is 

nl(.j) = 0; j= 1.2.~'H ....... n. ( 1.15) 
j 

This implies that the cycle cuotaiDS the aitical point. because it i5 the ooly 

.,mat where (:r:) = O. 

For the logistic map detlned in equation 1.11, the fixed p)ints are 

eemad fixed poiDt ma1aw II!D!e oat, if 11 > 1. SiDce (s) = ,.(1 - 2z), ~ 

obaerw that x· = 0 is JtabIe ....... of If. ra ... &om 0 to 1. Beyond 

" = 1.%- = 0 beoomes nmtabh. ne m..I poiDt z· £> (1 - 1/,.) is stable for 

1 < I' < 3. Thus we St'e tbt the iterates of the locistic map settles dOWll to 

t.bP. 7.(1.m fiud point Cor all values of I' < 1 aDd to • DOD-zero fixed point for 

1 < IJ < 3. These fixed. point.! are .180 lmown 88 attractof8, since the tiftClUCIlCC 

or iteratt'S {%.} generated &om any iDitial point Zo E (0. 1) converges to tilcse 

points. NotE that the s10pp of J(s) at the first fixed pOiDt is lA and that at tb.! 

o to 3. the magnitude of the slope is alwa:p Ifs lbaD unit)'. This CU\1n'!S tbt­

stability of these fD.cd pniDts. WbI!Il p = 3. the slopt" becomes equai tu -1. 
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If" is slightly greater tbaa PI = 3t Wtl get a 2-cycle {xi. x;}. Tlu~ system iM Hwd 

to undfU'go the first period doubliag. nu." 2-t.-ycle is imiepeock-ot, or xo, but 

de~nds only OD , •• ID otber worm, ie is an attnctor of period 2. Tbr! stability 

propertit.'5 of the 2-cyde are determiDed by the slopt" of lbe ,ft'ood iterate. 

r(x) at z~ ud ~- C1early~ 2:; = J(zi) aDd :rj = f(~). Thus. r(:ri) = zj .Dd 

P(zi) = 4 Apin., r' (zi) ::: (zi)/ (:ri), by the chaiu rule of differ~lIliatioo. 

I..ibwi&e. r'(~ = f(~)f(%i)· Tberefoft. the geCOod ituate has equat slopes 

at botb ~ qde elemeaI:s. (lbiI is true for all D-qdes). The 2-qde bP.bawJour 

roaliDues for some raap of values of p. At p = P2. the slope or r(z) at tM 

c:ycw elemeots aJ.o becomes -1. Tbe 2-cycIe theD bifurcates iato a k'7de 

wboBP elements are the stable fixed poiot& or r{2!}. This proce!I of period 

doublings repeats ad iofi.aitum. The parameter values tor stX:c:eaive period 

doubliogs accumulate to Pvo. Be,ood this critIcal value, the S)'Item exhibits 

chaotic behaviour. The value of 1'00 (or tbo logistic map bas beeu found to 

be 3.5699455S.u The mechaniltD of period doubling bifurcatiuD can euUy be 

assimilated by a graphical aoalysisI18). At this stage. a fundamental feature of 

all uDimodal maps OD. aD iaterval may be noted. GuckP.aheimet et al •• (4] has 

shown explicitly that maps with ODe aitic-a! point ('.an ba'ft! at most OOP lItabIe 

auraaa. tu which all iDitial point. la tbe iu&ena1 ( ~cepti. a set of ~ 

JIPfn) Me -'~ ¥J1qptoe.ic:aUy. ~. if there nists a It4lW ~ 

of JM'riod le b the logistic map. almost all poiats in (0.]) will neutually be 

altract.cd towards it. Tbe transitU time depeods, of coune. 00 tbe iuitial value 

dau,.-..u. A plot or tbP asymptotic values {%.} against the control poanuoetft' 
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It has been sbawD by Feigeubaum[15] tbat C'flrt.nin univenrallty proper-

lies an' M80ciated witb lbp JK'riod doubling pileoOlJleoD. Applying the I'l"oor· 

maJiwioo group analysis. ~ hAS shown that t.hiJ route 10 chaos via an iDfiBitt> 

8t'qQClK'e of pit.chbk bifuratiOlUl is cba.ractm...d by two a .. aDb n aod IJ 

which 8ft iDdepeDdeDt of tbe pu'ticular tDnn of tbP map fuoctioo- To UDder­

staDd the universality Ibtooryl .. DOte the foUowiD« facts: 

at which the periods of the cycles get doubled. fbr". < P < Ph 1 ~ there existJc 

8 stable ~-cycle {zi,%it:l:;, ...• :I:~} such that 

d z21 IT . I uJ (%) 1._; = . 11 (%;) 1< 1; If = 1.2.3 •... 
• 

( 1.16) 

2). At" = PIt+ J. all poiJIU of the 2' -cycle Ioee stability aod • pitdafork 

bifuration taIrai pIKe leadilll to aD attrac:tiq cycle of period 2···. 1'beIe 

cyclr ftemaCs aft! the equilibrium poi.nts of r"· (~); i.e., 

(1.17) 

The maiD in&redieat of the tboory is that the mec:banism by which r a 
tmder-

goes puiod doubUng at PH I is tbe same as the ODe that r a 
•• uses to double 

I:~ period at 1'11+2- This observation is of pataDlOWlt importance iD that it 

connects the mecbauisID of BUb8cqucnt bifurcations to a pn.erallaw of func. 

tiouaJ composition. The e1emrou of every periodic C)'~ are too stable Iixed 

poiot 14. I. the slope of r- at its (')"Cle demeots henlr.:s equal to -1. 
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ConsidrI a superstnbk' f7yde of period 2'1. Clearly, tbe cycle (,Olllaius 

x = 1/2 as oQe clement. Let d" denote the separation bctwef'D x = 1/2 ilnd 

its ne.an'St clement. But the element. nearest to % = 1/2 is the (21i -I )'h iteratc' 

of:£ = 1/2 (TbLose two points were roillcident , befor~ tbe nlle period doubling 

!roparated lbcm out). Thus. 

(L1H) 

Applying a co--ordinat.c tra.nslation from :r. = 1/2 to % = 0, we get. 

(1.19) 

It C8.D be seen that the distance d" is reduced by a constant factor during 

successive bifurcations. Also the nearest element alternates &om one side of 

the critical point to the other. (The bifurcation diagrams can be used to verify 

these). Thus too di8ta.nCe.o; d n scales down us, 

(1.20) 

Repeated applicat.ion of this result gives, 

(1.21) 

Using equation (1.19), we get, 

(1.22) 

This implies that the scqucn~ of rescaled iterates coow.tgcs to 8 limit.iug 

function, say, gl(X). Le., 

udx) = lim (-(1)" f2"( :r. ) 
r~~oo (-0)" 
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Llkllwi9fl. we can form a whole set of functions g.(:t) oorrp.sp()oding to ('..a~b of 

too BtJpE'Mahle cycles. These functions obey tbe recurreoCf' relatioQ, 

(1.24) 

where T is called tbP. doubling traosformatioo. T~ St't of fuurtinn." 9.(z) 

l"()IIWrgt'S (0 a fundion g(z), u i Lfo.ods to OCr Clearly. g(z) is a JW-d point uf 

tbe doubling operator TU. thr fIIDctioo spKl!- Thus. 

-% 
g(s) = 7i(s) = -og(g(-») 

Q 
(1.25) 

It caD be seen that this eqaatioa Idcb equally well for cg(z/c). Thus. t~ 

,.oormalizatiOD thalry does DOt deal with abmlut scales. We can.. t~Cc:.re. 

arbitrarily fix g(0) = 1. Thus, g(O) = -aglJ(O)J = 1. The-re emts a unique 

SIDDOth 8OIution Ior this equation, dependios OD tbe aature of tbe maximum 

of g(.1:) at :ll == 0, whlcb. gives, Q ~ 2.502907875 ... for all quadratic maps. 

Wf! now consider tbe scaU .. relations for p. From the bifurcation di· 

agraDl, it is obvious that the parameter wlues '" for successive l.JiIun-atiOOl 

COIn"CI'ge goometrically to a fiaite __ Puo at which the iterates ~ ape­

riodic. The _ne of Pvo b the logistic map works out to 3.569!MSS.'i.... Tb.! 

paramet8' YIlloes for successive supentable qdes aI90 roDVUIl" at the 5aIDl' 

rate.. Deooting thest! values by A .. AI. Aa. ...A~ ~_ the scaling rtiatiOb caD 

(1.26) 



Sinc(~ :r. = 1/2 is an element of every .uperstable cycle! 

fA!(l/2) = 1/2; le = 1. 2. 3, ... (1.27) 

Uodt>,l' a CG-OI'diDale traoslacJoD to z = 1/2. oOP. obtains 

f~(o) = o. (1.28) 

(1.29) 

R.epeatod appIic.aboas of the operator T to this L'Quatioo show tbat " is tile 

oaly reJevaat (> 1) eipa value cl the IiDearised doubling operator T aDd is 

~ uniwrsal. The coaverpoc:e rate (, for the quadratk family ball beeo 

mtimaWd 88 4.6692016. 

The main results of the universality tbeory for the period doubling 

route to chaos can be summarised. 88 roUows: 

1) Tbe distances d", oC a poiDt iD a 2"·cycle closest to tbe critic-AI point, scale 

down in successive bi.furcatioDB as 

lim 11. =_Q 

--If •• , 

lim 11. - 1'. I = b 
.. -- 1'.+1 - P. 

(1.20) 

(1.30) 



Thus we hAve, 

( 1.31) 

The uoiwersali.ty theoc)· dewloprd by Feigenhaum suggmta: that DIApI can br 

pouped. ido warious lIIli~ty riawe!'; F.acb class is c:bar.cteNcd by ddi­

nit.- ".hlAl .... 0 aad It (depmdiaa OD z. (he order of the maximum). The bi&h 

COO¥eI'~ rate (6 s::: 4.669) gi¥eS..nolU predictive power to the umwrsal&y 

lheory. Tbas, if a period doubIiq R}'Item is iDvestipted upto four or fiW! bifur· 

catioas. its behaviour tIumJ«bout and even be,ood the period doubUDI ~D 

I:'.U be precUct.ed with • high degree of accuracy. The gcaliDl coaataDtI UIOci­

ated with the quadratic maps appear to be observed aod measured in re1atiwly 

complicated dynamical systemB(19.20). Related IVAJiog mo&taat8 oorrespood­

ing to the circle map baw also bf'Jen ohlferved expE'.rimeDtally[21). Studies 

related to p~ traosit.XJlI3 aud critkAl pb~DOmcllA have p¥CIG a DOW IDNnin8 

to the ooDOOpt of uni-wrsality. Many matbematical models ao.d natural phc­

aomeoa caD be cat.ecorized dO cl.u;ei daaracterized by sjmilar behaviour in 

their parameter depeoclence. ~ sudd~n change of the system at a certain 

tramitioa poiIIl can be daaracterized by only a few Yari.ahIn. EadI dea will 

boo <"~ ~ nnt.m tarl or uni"..~lity aautants. 
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1.6.2 Intermittency 

The phenowt>..uou of IUf.cnnlt.t<'nry[161 offers anotbpI rouf.(' to chaos in 

ooo1ineat systems. In this ("MP, thp. signal alternates randomly bet~n long 

pPJiodic phase!; and relatively short irregular bunts. n.- DI.Imber of daaotJr 

burstll increases with an t'xtCCDAI ~, UDbl tioaI1" the IJIlml shows 

a completely chaotic behaviour. Thit b.u berea obeened.. b "amp~. in riM> 

Lon!m model{l], when the roDtrol paramet.ec,. exoeeds.,.. aitkal v.Juc rr. 

Foe r < "c, the Poincare map has 1Ot.1table 6XI!d poiut. Jibr r > r" tbr map 

has DD fixed points and the iterates waader aroaad erraticaIJy. But DNr eta.­

~ fixed ~ the trajectory slows down aDd a 1arJe munt. or iteratiolUl 

are oeeded to escape the channel or regular motion. This type of iDtermittency 

is kDDWD aa 1')pe-l Intcrmittcocy. The mechanism respoDfriI*t for this i8 no 

inuerse tangent bifurcation in which a stable and an 11D8table fixed point 

mllide aDd disappear at r = re. Other prominent types of Lotennlttency Ilte 

Type-2 aDd Type-3 intcrmittcncics. Experimental observatiolUl of the iott"r­

mltteDcy route to chaos have been fouod in a variety of expermeats iucludilll 

Rayleip-Beaard coovectioD(23t24], DOolinear oscillators[25,26). aud 8eIOlJMJV­

Zabotialky reactioas[27,28). As iD the case of period douhIiDI bifurratiom. 

tha-e ~ ua.iYetSality reJatioM fOr the lntermitteocy route ..... JI. Exarl 

lOIutioas ix the functional I1!DOr1DAlizatiD &roUP eqaaatioo b iatenDittency 

haw bera obtaiaed(22). 



1.6.3 Crises. 

The phenomenon of cri8es ariaes out of the collisioll5 brt1ft.'el1 " dlaotic 

atttactor and a coexisting uutab1e fixed point or periodic orbitl17]. ~ 

coUisioas prodD£e sudden ch.a.aps iD the chaotic attra.clor. For ~xawple, it 

occurs in the period·3 wiDdow of ~ ioptic map, -here thft.e stabit' and 

threr UDJitable bed points aft' ~ by lUJ«eDt bifu.rcatic.-Il J. Almosc 

all &llddeo cbanges iD chaotic attractcn are due to crises.. Similar crises occur 

iD two and three dimeDSiooal S)'8tc!IDB aod..., £or higher di"".asiooal flun. 

1.7 Scaling relatioDS aud control of chaos 

Reamtly, a lot of iDteresti.ac research activities are ceat«ed around 

cootrolUllI the chaos in a oooJiDear lystem[29-38]. That chaos can be sup­

pressed is of course a highly desirable feature in maay practica18ituations like 

lasers~ plasma confinement, particle accelerators and electronic systems. Var­

ious teduliques like adaptive coatrol f33,34}, feedback coatrol(38lr parametric 

perturbat..ions{32,35], additioa of cxtemaJ DDiBe[30}, extema1 harmonic pcrtur­

batioa(36} et.c. have been adopted iJr tbe coatrol of chaos. Mo8t of t her 

methods pna.suppo8CI a detailed kDow", about the dynamia of tbe system. 

A lwuwledge of the behaviour oC the system DMr tile traositioa point to r.baos 

lIS well lIS the scaliag bdaa"iour of the charaaeristic roast-ots arM tb.- OD!Iet 

of chaos are quite usPJuI in this <XXIIext The spectrum of Lyapmav ("XIX)ftl!aIS 
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provid(~M 8. quantitative measure of the seu"~ltiyity to initial (unditioWl and is 

the most useful dynamical diagoostic Cor chaotic ~1:ems. As such, t~ scaliug 

ft'lalioDS of the LyapUIIIW rharaderistic l!XpOoeot near tlil" transitiuo point to 

chaos an' very useful iD dewlopiog suitahlr rootrol aJgorithm.1. Hubermaa aDd 

Rudpick(39) hawe sbowo aoalytically tbat the Lyapunov cbar~ ~ 

Dent (~) b maps ~ the Fei.-,.ulD scenario of bifurcations bUow 

the ...nog reIatioa. l = ~(4 - -.)" •• ~ .\0 Lt; a roostaDt of 1bL- (wd« of 

unity. ~ is the value of the matroI pa.rameter t1 aI tbP period douhliDllfC~ 

("Ilrrnllatioo point aDd 11 = (ln2/ID6). 6 Mng the F~IDD coastaat_ This 

relati(JQ sugests tbat the .... ine iDdex " is different for maps beionginc to 

different universality cl. ea. However,. detailed investigation of the salial 

behaviour of A Dear the oUlet of chaoa for ODe dimensional maps of c:Wfereat 

onler of maxima has DOt been made. We haw eertablisbed oumerir.a1ly that the 

Huberman-Rudoick relation is true Cor all onc dimeosional mape that exhibit 

t.bl! Feigcobaum route to chaos. The dynamics of one dimensional maps caa 

be coot.rolled by clumgiug the Y&1ue of an extra parameter introduced into too 

5}'Stem(40-42]. In this CODtext, it will be worthwhile to inWSlga&e the d~ 

Such combjoatiOD ...... po.ess two c:olllJ'Ol pua.meters. Heooe it would be 

possible to haft a desired dyoamics b the syst~ by proper choice of ~ oC 

tbe parameter.i toT each walue of the other pa.ramet.er_ A !'tud, of the bifurtoa­

Lion phenomena &Dd tbe ecaliD& ....... ioos of oombinatioD maps caD provide 
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l"ertaio important and ioteresting results that can be UHtld advantageously for 

cootrolliDl tbe dYDamks of the s)"-li.tm. Again. tbr ~ of a d.bIcuuWwily 

at the ext.remum of a map prtJduas !'ieVCre cbangt."S to the bifurcatioD plle­

DIlDIfIDOIL Most of tbe st~ rr.pon:c.-d for disrootiDUOUJ maps are III1IIIIeriraJ 

iD DALure. AD analytical lihady of t~ bifun:.atiOll p~ of. diJroali. 

uous 1ogiJtir. map willtheMf'ono be usefnl in undft"StandiDl the dJOUDia o( 

dJtmotiDuoos map'. 

We present the result. of a combined analytlcal and numerical iD­

'ICltftigotioo OD combioatiOQ IDAps iD chapter 2. T~ ..r.a1in& relatioas of &.IJc 

L)'8pUDOY exponent. of ODe dimcosiooal maps as well as t.hoae of combiaatioD 

maps are diKt&ed iD chapter 3. ne bifureatiOQ pbmaomeaa of. a diacootiau-

0lIl Iogistj~ map is dealt with in chapcer 4. ctu.pter 5 S1IIDIDIU"iIDe the major 
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2. Combination Map. 

In this chapter, we study the dynamics of combination maps. A combina­

tion map is obtained by combining two one-dimensional maps. These maps 

have two control parameters that determine the dynamics of the system. This 

leads to a possibility of controlling the behaviour of the system by a suitable 

choice of the parameters. An analysis of the dynamics of combination maps 

will therefore be relevant in the context of control of chaos. Another motiva­

tion for studying the combination map is to see whether the map still has all 

the characteristics of the constituent maps. The scaling behaviour of the Lya­

punov characteristic exponent of the combination map is of particular interest, 

as we want to check whether the combination map follows the same scaling 

behaviour as that of simple one dimensional maps or not. The structure of 

the chaotic band and its bifurcations have got a vital role in determining the 

scaling relations. A detailed analysis of combination maps can give certain 

important informations that are useful for taming the dynamical behaviour of 

many nonlinear systems. We have found that the band bifurcations inside the 

chaotic regime of the combination map is quite different from that of simple 

maps. The behaviour of the Lyapunov characteristic exponent of the system 

nE-AI" the transition point to chaos is significantly different from those of the 

constituent maps. The bifurcation phenomenon of a combination map depends 

on the parameters of both of the individual maps. By suitably tuning these 
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parameters, one can have any desired periodicity for the system. Likewise, it 

is possible to have a chaotic behaviour or periodic behaviour by proper choice 

of the system parameters. 

The combination map can be formed from two maps chosen either 

from the same universality class or from different universality classes. These 

two types of combination maps show remarkable differences in their bifurca­

tion structure. We consider these two cases separately. Both numerical and 

analytical investigations were carried out to analyse the bifurcation phenom­

ena of the combination maps. A linear stability analysis of the fixed points 

and the parameter space plot of the system are presented. The variation of 

the Lyapunov characteristic exponent of combination maps with the control 

parameters is included in the next chapter. 

2.1 Combination of two maps belonging to the 

same universality class. 

The sinusoidal map is combined with the well known logistic map to 

get a combination map in the form, 

(2.1) 

This map is a two parameter one-dimensional map. The control parameters 

I-' and A are so chosen as to confine the iterates {xn} within the unit interval 

(0,1) of the real line. 



The constituent maps Il(xn,/1) = /1Xn(1 - xn) and 12(xn,A) = Asin(7rxn) 

belong to the quadratic family (order of maximum, Z = 2). Both 11 and h 

exhibit the Feigenbaum's period doubling route to chaos and are characterized 

by the same values of a and 6. The chaotic regimes of the individual maps 

also look alike. On approaching the period doubling accumulation point ( /100 

or AXl ) from the fully chaotic limit, the chaotic bands undergo an infinite 

sequence of band splittings. The band bifurcations in the chaotic regime looks 

like a mirror sequence of the pitch-fork bifurcations in the periodic regime, and 

has the same convergence rate 6. In short, both the constituent maps have 

similar qualitative and quantitaive behaviour. The scaling properties of the 

individual maps are also the same. But, it is seen that the structure of the 

chaotic bands of the combination map is entirely different from those of the 

individual maps. 

2.1.1 Analysis of the combination map. 

The combination map is shown in figure 2.1, for different values of 

A, keeping /1 = 4. The map function has an extremum at x = 1/2 which 

is a second order maximum for A varying from (/1/4 - 1) to (2/1/r) while 

it is a minimum for (2J.L/~) < A < (J.L/4). Clearly, x = 1/2 is a point 

of inflection when A = 2J.L/~. Consequently, the map is one-humped for 

(J.L/4 - 1) < A < (2J.L/~) and two humped for (2J.L/'lfl) < A < (J.L/4). 
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Figure 2.1. The combination map defined in eqn.(2.1) for p, = 4. The 

curves correspond to A = (p,/4-1), (p,/4-1/2), (2p,/rr), (p,-1)/1r and (p,/4) 

in that order from top to bottom. 
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This map possesses the property that it goes over from single humped to double 

humped nature, by continuously varying one of the parameters (A in this case). 

Most of the interesting phenomena like universal indices and sequences can 

be traced back to the one humped nature of one-dimensional maps[13]. The 

dynamics of two humped maps is entirely different from that of one humped 

maps. A period doubling bifurcation with a convergence rate different from 

the Feigenbaum rate has already been reported for certain one dimensional 

transformations with two extrema[57]. The bifurcation scenario and the scaling 

behaviour of two humped maps are, in general, quite different from those of 

the Feigenbaum maps. Hence, it would be stimulating to investigate what 

happens if the combination map has a double hump. Such double humped 

maps can arise in the Poincare sections of higher dimensional flows. For any 

chosen value of 1', the minimum value for A is (1'/4 - 1) at which f(xn , 1', A) 

becomes equal to 1. The maximum possible value for A for a given value of 

I' is 1'/4 and this occurs when the ordinate of f(xn , 1', A) at x = 1/2 becomes 

equal to zero. Thus the parameter A must lie between (1'/4 - 1) to (1'/4) so 

as to keep the iterates within the unit interval (0,1). 

2.1.2 Fixed points of the map. 

The fixed points of the map are the solutions of f(x·) = x·. i.e., 

I'x·(l - x·) - Asin{7rx·) = x·. Obviously, one of the fixed points is xi = o. 
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The second fixed point is given by 

/1(1 - x*) - Asimrxi = 1. 
2 X* 

2 

(2.2) 

The slope of the map function is given by f'(x) = Jl(1-2x) - A7rcOS 7rX. Thus, 

the zero fixed point will be stable for all values of A ranging from (/1 - 1) /7r 

to (/1 + 1)/7r. But, A is varied only upto (Jl/4). Thus the zero fixed point will 

be stable for all values of A > (Jl - 1)/7r. The non-zero fixed point, xi will 

be stable or not, according as f'(xi) is numerically less than unity or not. As 

the parameter A increases from (Jl / 4 - 1) onwards, the map function f( x) gets 

lowered and as a result, xi --+ xi = O. In the limiting case, 

(2.3) 

Thus, A = (Jl-l)/7r gives the equation of the line representing the zero fixed 

point in the (/1, A) plane. Hence, the slope of the line representing the zero 

fixed point on the parameter space (/1, A) should be equal to (1/ 7r) . 

2.1.3 Numerical investigations. 

Numerical analysis of the system were carried out by keeping /1 at 

various fixed values. To start with, Jl is kept at a value =4, corresponding 

to the fully chaotic state of the logistic map. The parameter A is increased 

in steps of O.OQl and the bifurcation structure is analyzed. Fig.2.2 shows a 

bifurcation diagram of the combination map, in which the asymptotic values 

Xn of the iterates are plotted against the parameter A, keeping I}, at a value 

equal to 4. 
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Figure 2.2 Bifurcation diagram of t he map in eqn.(2.1). With Jj = 4 

and A = 0, the system is fully chaotic. As A is slowly increasesd , periodic 

cycles are traced in the reverse direction. 
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The system retraces the entire period doubling route to chaos in the reverse 

order, as A slowly increased. Finally, it settles down to a stable fixed point 

(I-cycle) for A > 0.2435. This is not quite surprising, since the effect of the 

sinusoidal term is to reduce the height of the extremum at x = 1/2. However, 

this is in contrast with the behaviour in certain continuous systems which are 

reported to go back to periodicity only through intermittencY[32j. 

In the one-humped region of the combination map, the Schwarzian 

derivative of !(xn,JJ" A) is negative throughout the interval (0,1). This implies 

that period doubling is generic in the system[l]. The bifurcation diagram gives 

the approximate values of the parameter A for successive bifurcations. From 

further blow-ups of the bifurcation diagrams near these values, the parameter 

values corresponding to successive period halvings can be obtained more ac­

curately. We now compute the periods numerically, near these points. In this 

way, the bifurcation points are obtained to a high degree of precision( of the 

order of 10-6). This procedure is repeated for various fixed values of I' ranging 

from 3 to 4. The parameter A is varied from (p)4 -1) to 1'/4 in steps of 0.001 

in each case, and a series of bifurcation diagrams are drawn. In all these cases, 

reverse period doubling is observed, when the parameter A is increased. If I' 

is kept in the chaotic regime of the logistic map (Le., I' > 1'00)' the system can 

be brought to a periodic state of any desired periodicity by applying suitable 

positive values for A. Likewise, if I' lies already in the periodic regime of the 

logistic map, the system can be taken to chaos by applying suitable negative 
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values for A. Thus the sinusoidal term offers an opportunity to have a control 

over the dynamics of the logistic map. Detailed numerical investigations are 

carried out by slowly and carefully varying the parameters A and I-' and a full 

parameter space representation is obtained. Table 2.1 shows the values of A 

for successive bifurcations corresponding to various chosen values of 1-'. Fig.2.3 

is the parameter space plot tor the system. The bifurcations of the various 

periodic at tractors to the corresponding half periodic ones occur along parallel 

lines. (Only, a few of them are shown in the figure). For each value of 1-', th~ 

Lyapunov characteristic exponent is calculated by increasing A in small steps. 

The L.C.E (.\) is given by the formula, 

(2.4) 

This can be used as such for computing ,\[12]. Since round off errors may 

possibly build up in a computer, an upper bound for N is to be fixed. (This 

will lead to some truncation error, of course.) In our computations, N is taken 

as 10000. The value of Aoo at which transition from chaos to order occurs 

is spotted out as that value of A at which .\ becomes zero and after which 

it remains negative throughout. The transition from chaos to order and vice 

versa occurs along a straight line, parallel to the bifurcation lines. The thick 

. line shown in fig.2.3 represents Aoo for different values of 1-'. The chaotic regime 

is indicated by the shaded portion. 
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Table 2.1 Parameter values for successive bifu rcations, for various J.1 values. 

J.1 Amin Act:) A 16 A8 A4 A2 Al AO 

3.0 -.2500 -.1385 -.1380 -.1370 -.1315 -.1075 .0035 .6366 

3.1 -.2250 -.1150 -.1140 -.1125 -.1075 -.0835 .0275 .6685 

3.2 -.2000 -.0900 -.0895 -.0885 -.0830 -.0590 .0515 .7003 

3.3 -.1750 -.0655 -.0650 -.0640 -.0590 -.0350 .0755 .7321 

3.4 -.1500 -.0420 -.0410 -.0395 -.0345 -.0105 .0995 .7639 

3.5 -.1250 -.0170 -.0165 -.0155 -.0100 .0135 .1235 .7958 

3.6 -.1000 .0075 .0080 .0090 .0140 .0380 .1475 .8276 

3.7 -.0750 .0315 .0320 .0335 .0385 .0620 .1710 .8594 

3.8 -.0500 .0560 .0565 .0575 .0630 .0865 .1955 .8913 

3.9 -.0250 .0805 .0810 .0820 .0870 .1105 .2195 .9231 

4.0 0 .1050 .1055 .1065 .1115 .1350 .2435 .9549 

Table 2.1 The parameter values (A) for successive reverse bifurcations 

of the combination map, for different values of 1'. At each value An, a bifurca­

tion takes place from an n + I-cycle to an n-cycle 
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Figure 2.3 The parameter space (1', A) of the two parameter map in 

eqn.(2.1). The thick line represents the transition from order to chaos while 

the lines parallel to it are the bifurcation lines. The shaded region corresponds 

to the chaotic regime. 
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The lowermost line represents A = (tt/4 - 1). By extending this line upwards, 

one can increase the value of tt beyond 4 by taking suitable high values for 

A. The sinusoidal term therefore provides an extension in the range of the 

control parameter of the logistic map. From the bifurcation diagram for each 

value of tt, the value of A at which the system returns to the zero fixed point is 

obtained as Ao. These values are then computed more accurately, by numerical 

iterations. The values of Ao for different tt are also plotted in the parameter 

space. These points also lie along a straight line, but its slope is different from 

those of the bifurcation lines. The slope of the line representing the zero fixed 

point is found to be 0.318. This value agrees well with the theoretical value 

(1/7("), given by equation 2.3. The bifurcation lines have a slop~ equal to 0.25. 

Since the bifurcation lines in the (tt, A) space are parallel to each other, 

it is obvious that the Feigenbaum index 6 defined in terms" of the bifurcation 

values An for fixed tt must be the same as the 6 for the logistic map alone. 

The chaotic region of the combination map is then compared with 

the chaotic regime of the logistic map (or, sine map). To observe the fine 

structure of the chaotic region (A < Aoo), a series of bifurcation diagrams 

of Xn against A for various fixed values of tt are drawn on enlarged scales. 

Each time, a portion of the bifurcation diagram is blown up. The periodic 

windows are found to be less in number as compared with the logistic map. 

The presence of the sine term washes out the fine structure of the chaotic 

bands. On approaching the accumulation point Aoo from the fully chaotic 
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state (A = 0), we observe a number of band splittings and mergings. This 

is quite contrary to the behaviour of the logistic map. In the latter case, at 

I' = 4, the chaotic attractor exists as a single band. On approaching 1'00' this 

band undergoes an infinite cascade of bifurcations. No recombination of bands 

can be seen in that case. The incomplete nature of the cascade of bifurcations 

of the combination map indicates that the scaling behaviour of the system 

near the onset of chaos can be different from those of simple one-dimensional 

maps. This point is explained in the next chapter, while discussing the scaling 

law for the Lyapunov exponents. 

Investigations on the system were then carried out for certain high 

values of 1', like I' = 32,36,40 etc. Such high values for I' are not possible for 

the usual logistic map, due to the constraint that the iterates are to be confined 

in the unit interval (0,1). As the combination map is a two parameter map, 

I' can be increased to any high value, by giving suitable high values for A as 

well. In this way, the iterates can still be confined to the unit interval. Note 

that the combination map in this case is two humped throughout the range 

of variation of A. Since A varies from (1'/4 - 1) to (1'/4) and since the map 

becomes two humped for all A> (21'/,,(2), the combination map is two humped 

from the very begioing, if (1'/4 - 1) > (21'/,,(2). [Le., I' > (4,,(2/,,(2- 8)]. 

Fig 2.4 shows the map ~ction for I' = 32, for different values of A. A 

bifurcation diagram for the two humped state is given in fig 2.5 
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Figure 2.4 The combination map in eqn.(2.1) for Il = 32. The values 

of A are indicated near the curves. 
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Fig.2.5 The bifurcation diagram of the map in equation (2.1) corre-

sponding to the two bumped state. Here, the value of Jl = 36. The bubble 

structure can be clearly seen, in this case. 
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The bifurcation structure for the two humped state of the combination map 

(i.e., for high values of p,) is significantly different from that for the one humped 

state (for low values of p,). Keeping p, constant, as the control parameter A 

is increased, the system moves out of chaos and stabilizes to a one cycle for 

a certain range of the parameter A and then shifts to another fixed point 

which undergoes a series of bifurcations and moves over to chaos. This is 

due to the fact that the iterates switch over from one hump to the other 

hump. It is to be noted that this transition occurs when the right hump of the 

combination map falls below the bisector line. Again, there is a considerable 

degree of asymmetry between the two portions of the bifurcation diagram. The 

formation of bubble structure in the bifurcation diagram is a distinct feature 

of the map, for certain high values of p,. See for example, the bifurcation 

diagram corresponding to p, = 36. Such bubble structures have already been 

reported for certain two parameter one dimensional maps. Bubble formation 

in the bifurcation structure of maps with two extrema has been observed in 

certain laser systems, when the cavity losses are sinusoidally modulated[44]. 

The period 'bubbling' phenomenon has been observed in many other systems 

and seems characteristic of low dimensional dynamics[45-47]. 
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2.2 Combination of two maps from different 

universality classes. 

A combination map can also be formed by combining two maps chosen 

from two different universality classes. For this, we combine the Hemmer's map 

(order of maximum, z = 1/2) with the logistic map (z = 2). The Hemmers 

map is of the form, Xn+l = 1- allxnl1/
2 defined in the interval (-1, 1) with the 

control parameter al E (0,2). For convenience, we convert this map into one 

on the unit interval (0,1) by a nonlinear transformation[48] as, 

The logistic map is taken in the form, Xn+l = I'Xn(1- xn); ° < Xn < 1; 

I' E (0,4). The combination map is given by, 

(2.5) 

The logistic map displays the period doubling route to chaos whereas the 

dynamics of Hemmer's map is quite different. 

2.2.1 Analysis of Hemmer's map. 

The Hemmer's map has got a cusp at the centre. The bifurcation structure 

of this map is entirely different from that of the quadratic family. Figure 2.6 

gives a plot of the Hemmer's map for different values of a. 
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Fig 2.6 A plot of the Hemmers map, defined in eqn. 2.5. The values 

of a are indicated near the curves. 
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The map function is symmetric about x = 1/2. For any value of a, the 

function attains a maximum = a/4 when x = 1/2. The slope of the tangent to 

this curve is positive for x < 1/2 and negative for x > 1/2. The slope increases 

continuously from (a/4) to 00 as x varies from 0 to 1/2. At x = 1/2, the slope 

has got an infinite discontinuity. As x varies from 1/2 to 1, the slope increases 

from (-00) to (-a/4). For a varying from 0 to 2, the map has got only one 

fixed point, x· = O. When a varies from 2 to 4, there are two more fixed points; 

xi from the left half and x; from the right half of the interval of mapping. A 

linear stability analysis shows that the two fixed points xi and x; are unstable 

and the the fixed point x· = 0 is stable for all values of a < 4. When a = 4, 

the 'origin becomes marginally stable. The slope at the origin becomes equal 

to +1, when a = 4. Thus, when the control parameter a is continuously varied 

from 0 to 4, the iterates are attracted to the origin. 

2.2.2 Analysis of the combination map. 

The combination map is a two parameter one dimensional map. Figure 2.7 

gives the plot of the combination map for a typical choice of /J = 4 and a = 3. 

The combination map is two humped in nature for all values of a in (0,4). To 

begin with, the parameter /J is kept fixed at a value = 4 and the parameter 

a is varied from 0 to 4 in steps of 0.001. Figure 2.8 represents a bifurcation 

diagram for the system. 
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Fig. 2.7 The combination map given by eqn. 2.6, corresponding to 

I' = 4 and a = 3 
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Fig 2.8 A bifurcation diagram of the map in eqn 2.6 
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The bifurcation diagram reveals the following aspects. The system 

undergoes a transition from chaos to order and also from order to chaos. The 

transition from chaos to order occurs by reverse period doubling. But the 

transition from order to chaos takes place by tangent bifurcations. The system 

first switches over from an aperiodic state to a periodic behaviour when the 

parameter a is increased beyond 0.546373. With further increase of a, the 

periods get halved at subsequent bifurcations until a 2-cycle is attained. The 

elements of this two cycle belong to the two humps of the map. When a 

increases beyond 0.760476, the system again shows an erratic behaviour. In 

this case, both the two cycle elements undergo tangent bifurcations. This can 

be easily understood from figure 2.9, where the second iterates are plotted for a 

value of a very near the transition point. Periodic behaviour again sets in when 

a becomes > 0.91642l. Subsequent bifurcations ( reverse period doublings) 

take the system to a I-cycle, which remains stable for a considerably long 

interval of the parameter a .. When a becomes> 2.629335, the I-cycle suffers 

a tangent bifurcation and the system becomes chaotic. This is evident from 

figure 2.10. Again there is a transition from regular to chaotic nature and vice 

versa. When a > 3.974561, the iterates become periodic. The transition from 

chaotic to periodic state and vice versa are confirmed by computations of the 

L.C.E of the system for various values of a. A plot of A versus a is presented as 

figure 2.11. It can be seen that reverse period doublings occur in the periodic 

regime. Also, the transition from order to chaos takes place whenever one of 

the cycle elements approaches the cusp (at x = 1/2) of the the map. 
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Fig. 2.9 A plot of the second iterate of the map in eqn 2.6. The value 

of J1, = 4 and a = 0.761. Note that the slope of the second iterate becomes 

equal to +1 and a tangent bifurcation occurs. 
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Fig 2.11 A plot of the L.C.E of the map in eqn 2.6, against the control 

parameter a.The value of f.L is kept at 4 . 
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Fig 2.12 The parameter space (JL, a) for the system, defined in eqn 2.6 

57 



The bifurcation analysis is then repeated for various fixed values of I' 

both in the chaotic and in the periodic region of the logistic map. A parame­

ter space plot (1', a) of the system is thus obtained. Figure 2.12 represents the 

parameter space of this combination map. Unlike in the case of the combi­

nation map discussed in the previous section, the bifurcation lines are curved 

lines. This indicates that the dynamical behaviour of this system is very much 

different from that of the previous combination map. 

2.3 Conclusion. 

We conclude this chapter, with a summary of the main results of the investi­

gations on the dynamics of combination maps: 

The bifurcation structure of combination maps are, in general, differ­

ent from those of the individual maps. In the case of a combination map got 

by combining the logistic map with the sine map, a transition from chaos to 

order by reverse period doubling is observed. For every value I' of the logistic 

map, a value A for the control parameter of the sine map can be found for any 

desired periodicity of the system. The parameter values A for successive period 

doublings converge at the Feigenbaum rate 6. Although the periodic region 

of the combination map is similar to that of the quadratic family, the chaotic 

regime behaves in a different way. The periodic windows are less in number 

compared with that of the pure logistic map. The chaotic bands undergo a 

sequence of band splittings and recombinations. This suggests that the scaling 
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behaviour of the characteristic constants in the immediate vicinity of the tran­

sition to chaos can be different from that of the individual maps. That it is so 

is established in the next chapter. For very high values of JL, the combination 

is always two humped in nature. In this case, transition from chaos to order 

and vice versa occur as the other parameter is continuously varied. Bubble 

structure in the bifurcation diagram is observed for certain high vales of JL. In 

the case of a combination of maps from two different universality classes, both 

the periodic and chaotic regimes are significantly different from those of the 

constituent maps. In both the cases, the combination map is a two parameter 

one dimensional map. The system can be brought to the desired periodicity or 

chaos, by proper choice of the parameters. The parameter space plot will be 

quite useful in this context. The bifurcation lines in the parameter space plot 

are parallel straight lines in the case of the first combination map. But, these 

lines are smooth curves for the second combination. Again, the intermittency 

phenomenon is more pronounced for the second combination. The presence 

of a sharp cusp at the extremum produces severe changes to the bifurcation 

phenomenon of a map. Similarly, the occurence of two humps in a map causes 

considerable changes to the behaviour of the system, as compared to that of 

simple one dimensional smooth maps. 
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3. Scaling Behaviour of the Lyapunov 
Characteristic Exponents 

A hallmark of ergodic and mixing behaviour of nonlinear systems is 

their extreme sensitivity to initial conditions. The separation of two trajecto-

ries in phase space will either remain constant or decrease in course of time, if 

the system is periodic or quasiperiodic. But in chaotic systems, the orbits in 

phase space diverge out. A very small error in specifying the initial conditions 

grows rapidly and after some time it becomes almost impossible to predict the 

phase space trajectory. The rate of divergence of the orbits in phase space 

is usually measured by the Lyapunov characteristic exponent (A). A positive 

value of A implies that the system is chaotic. H A is negative, the system is pe-

riodic or quasi periodic. Thus A can be considered as an order parameter in the 

transition from regular to chaotic state. In this context, the scaling behaviour 

of A during the transition from order to chaos is important and interesting in 

understanding the onset of chaos in the system. A knowledge of the variation 

of A near the onset of chaos is particularly useful in developing suitable al-

gorithms for control of chaos. The nature of this scaling for one dimensional 

maps exhibiting the period doubling route to chaos have been theoretically 

worked out by Huberman and Rudnick[39]. It has been established that an 

infinite cascade of band mergings takes place in the chaotic regime, in a mirror 

sequence of the cascading bifurcations in the periodic regime[49]. For such 

systems, the envelope of positive Lyapunov exponent A varies in a steep and 
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continuous manner. Huberman and Rudnick have shown analytically that the 

Lyapunov characteristic exponent behaves as 

(3.1) 

where .Ao is a constant of the order of unity, aoo is the value of the control 

parameter a at the period doubling accumulation point and 

In2 
v = In<5' 

(3.2) 

<5 being the Feigenbaum constant. This power law behaviour of the L.C.E for 

quadratic maps has been experimentally verified using a sinusoidally driven 

diode circuit[50]. Shraiman et al.,[51] has developed a scaling theory for noisy 

period doubling route to chaos, in which it is shown that in the limit of the noise 

amplitude tending to zero, the Huberman-Rudnick relation (H-R relation) is 

recovered. The H-R relation suggests that the scaling index v depends on 

the order of maximum z through the value of <5 which is different for different 

universality classes. However, it is not clear whether v depends on z in some 

other way. No detailed numerical investigations have been reported for z values 

other than 2. We prove numerically the validity of the H-R relation for general 

one-dimensional maps. We also extend our studies to a combination map got 

by combining the logistic map with the sinusoidal map. This combination 

map has the same value of <5 as the logistic map. Hence one would expect that 

the combination map also has the same value for v. But we have found that 

the scaling index for the combination map is different. Thus, the Huberman-

Rudnick relationship is not true for combination maps. 
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3.1 Scaling Law for General One Dimensional 

maps. 

Consider the one-dimensional map on the interval (-1,1), 

Xn+l = 1- allxnl z where the control parameter al varies from 0 to 2. This is a 

unimodal map with the critical point Xc = 0; Critical points play a fundamen-

tal role in determining and classifying global bifurcations[13]. The so called 

critical curves for two dimensional endomorphisms are generalizations of the 

critical points of one-dimensional mappings [53] , and can be used as a basic an-

alytical tool in characterizing the bifurcations in two dimensional systems[54]. 

z is the order ofthe maximum. Using a nonlinear transformation[48]' this map 

can be converted to one on the unit interval (0,1). The transformed mapping 

is Xn+l = f(xn) = (a/4) - 2(z-2)alxn - 1/21z where a E (0,4) and the critical 

point Xc = 1/2. These maps exhibit the Feigenbaum scenario of period dou-

blings. The values of a and 6 are characteristic of the value of z. The Lyapunov 

characteristic exponent of the map can be computed by the formula[52], 

(3.3) 

The upper bound for N is kept as loa, for computational purposes. To start 

with, the value of z is taken as 1.2. The L.C.E. values are determined by 

increasing a in small steps. The period doubling accumulation point, aoo is 

roughly estimated as that value of a at which ). changes from negative to 

positive for the first time. The parameter is then varied by further small steps 

around this rough value and the L.C.E's are computed. Thus, a better estimate 
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for aoo is obtained. This process is repeated again and again until the value 

of aoo is found upto an accuracy of 10-6 to 10-8 . The Lyapunov exponents 

(A) are then calculated for a number of values of a > aoo and very near to 

aoo ' This procedure is repeated for maps of various order of maxima, z. The 

presence of a large number of periodic windows in the chaotic regime near the 

accumulation point reduces the number of useful values of A, especially for 

large values of z. The L.C.E's in the chaotic side near aoo changes to negative 

values at the periodic windows. The variation of aoo with z is shown in fig 3.1 

As z increases, aoo approaches (asymptotically) the fully chaotic limit 

a = 4. Consequently, the entire chaotic regime shrinks to a narrow region in .. 
the parameter space. Since the chaotic regime has to accommodate all the 

periodic windows, the density of periodic windows near aoo will be greater for 

higher values of z. The addition of a small noise term can wash out the fine 

structure of the periodic windows and smoothen the curve for A against a[55]. 

Thus, we added a Gaussian noise of zero mean and variance 0.2 for values of 

z > 2. The amplitude of noise added was of the order of 10-15• Such a very low 

noise can not seriously affect the scaling behaviour of the system. Even with 

noise, the difficulty due to periodic windows near a oo can not be completely 

overcome. For z-values ~ 4, we consider only an envelope scaling for A with 

the periodic windows avoided. In fact, the Huberman-Rudnick scaling relation 

itself has been derived for the envelope of positive Lyapunov exponents. 
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Fig 3.1 The variation of aoo with z, the order of maximum of the map. 

Note that as z increases, the chaotic regime, aoo < a < 4, shrinks and becomes 

very narrow for z > 10. 

64 



-4.0 r----------~------------I 

-4.5 

"" -5.0 
i= 

..J 

-5.5 

-6.0 L---J......---...l.----.....J.....----_
6
;.a....5----_e 

-8.5 -8 -7.5 -7 

l n (0.- <LaJ) 
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of this line gives the scaling exponent v. 
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Table 3.1 The scaling index v for various values of z. 

Order of maximum, z v (numerical) v = In 2 / In B , using H-R law 

1.2 0.60171 0.605779 

1.5 0.52281 0.519209 

2.0 0.42117 0.449820 

3.0 0.40711 0.383449 

4.0 0.30117 0.348928 

5.0 0.29953 0.326608 

Table 3.1 The scaling index 11 for different values of z, calculated nu­

merically and using H-R relation. 
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For each value of z, a plot of In IAI against In la - aool is obtained. The 

line of best fit is then drawn. The slope of the line gives the value of v. Figure 

3.2 gives such a log-log plot. The theoretical values for v are calculated using 

the H-R law and also from the known values of 8 for various z[56]. Table 3.1 

gives the scaling indices (v) for the various values of z. Within the possible 

computational errors, there is excellent agreement with the H-R relation. Thus 

we have established that the Huberman-Rudnick relationship for the scaling 

of Lyapunov exponents is true not only for the quadratic maps, but also for 

all one dimensional one-extremum maps exhibiting the Feigenbaum's route to 

chaos. 

3.2 Scaling of Lyapunov Characteristic Expo­

nents of a Combination Map. 

In order to investigate the scaling behaviour of a combination map, 

we consider the first of the combination maps discussed in chapter 2. viz., 

Xn+l = f(xRl 1', A) = I'xn(l - xn) - A sin(7rxn); 0 < Xn S 1; 0 SI'S 4; (1'/4-

1) < A < 1'/4. Keeping the value of I' = 4, the parameter A is increased 

from 0 to 1 slowly in steps of 0.001. The L.C.E (A) for each value of A is 

computed by the same algorithm discussed in the previous section. In this 

case, the system moves out of chaos and becomes periodic on increasing A. 

The Lyapunov exponent (A) is positive for almost all values of A in the chaotic 

regime, except for certain windows of periodicity. But, in the periodic region, A 

is always negative. The value of Aoo is determined as that value of a at which 
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A becomes zero and after which A remains negative throughout. Repeated 

computations of A by changing A on finer and finer scales give the value of 

Aoo upto an accuracy of the order of 10-8
. The parameter A is then varied 

in steps of 10-8 around Aoo and the corresponding A values are found. As 

before, the line of best fit to the plot of In IAI against In lA - Aoo I is drawn. 

The slope gives the scaling index, v. The computations are then repeated for 

other values of tL namely, tL = 3.5 and tL = 3. We have also extended the 

investigations for a very high value of tL. i.e., tL = 32. In the latter case, the 

parameter A can vary from 7 to 8. Here, the combination map is two humped 

from the very beginning . .As is clear from the discussions in chapter 2, the two 

humped nature sets in whenever the parameters are so tuned as to make the 

value of A > (2tL/~). But, the range of variation of A is from (tL/4 - 1) to 

(tL/4). Thus, if (tL/4 - 1) > (2tL/~) Le., tL > 4~ /(~ - 8), the map will be 

two humped throughout the range of variation of A. A typical log-log plot for 

the combination map is presented in figure 3.3. The scaling index v and the 

accumulation point Aoo for the combination map for various values of tL are 

presented in table 3.2. From the log-log plot of the combination map, it can be 

noted that a power law behaviour for the Lyapunov exponents is more accurate 

for the combination map than for simple maps (For, the points lie more exactly 

on a straight line). Moreover, the proximity of the periodic windows does not 

hinder the numerical computations in this case. The periodic windows are less 

in number or they have been smeared out by the sinusoidal term. 
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Fig 3.3 The L.C.E scaling for the combination map. In lA - Aool is 

plotted against In I.AI· Here, the value of Jl = 32. The scaling index 11 in this 

case is found to be ~ 1. 
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Table 3.2 The scaling index v for and the accumulation point for various values of J.1 

Jl Accumulation point A 00 Scaling index v 

3.0 -.1382968 0.9989838 

3.5 -.0170178 0.9677731 

4.0 0.1046909 0.9936844 

32 7.22126758 0.9996790 

Table 3.2 The scaling index v and the accumulation point Aoo for 

various values of 1'. 
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In all the cases considered for the combination map, the scaling index 

is entirely different from that of the quadratic family. The value of lJ for the 

combination map is nearly unity. Le., it is almost double the value for the 

quadratic family as predicted by Huberman and Rudnick and also computed 

numerically for the logistic map. The combination map has the same value 

of li as the quadratic map. This implies that the combination map does not 

follow the H-R scaling law. To see why the combination map has a different 

scaling behaviour for A, we have carried out a detailed numerical analysis of 

the chaotic regime of the map. The parameter JJ is fixed at 4. With A = 0, 

the system is fully chaotic. The parameter A is then slowly varied and a 

series of bifurcation diagra.m.S are drawn. Each time, a portion of the previous 

bifurcation diagram is taken and a blow-up is formed. By this technique, we 

are able to observe the fine structure of the chaotic bands. When A is increased 

towards Aoo, the chaotic attractor exhibits a sequence of bifurcations. After 

each bifurcation, one of the branches of the bifurcation diagram is taken and 

the structure is analyzed on an enlarged scale. By carefully varying A , the 

·next bifurcation point of the band is determined. Continuing like this, the 

values of A for successive band bifurcations are obtained. We could trace 

out the values of A upto the 8th stage of band bifurcation. These values An 

and the convergence rate lin are provided in table 3.3. When A is increased 

further, recombination of bands is observed. The band bifurcation structure 

of the combination map is shown in figure 3.4. The merging of bands for the 

combination map is evident from this figure. 
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Table 3.3 Parameter values for successive band bifurcations and the convergence 
rate B. 

Parameter value A( n ) Convergence rate B (n) 

0.07909091 -----------

0.09954546 -----------

0.10360000 5.0449130 

0.10440000 4.8267857 

0.10463500 4.3076923 

0.10467600 4.7560975 

0.10468445 4.8235300 

0.10468625 4.7222222 

Table 3.3 The parameter values for successive bifurcations of the chaotic 

band of the combination map and its convergence rate 8n · 
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Fig 3.4 The band structure of the combination map on an enlarged 

scale. As A increases towards Aoo. merging of bands take place. 
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In the case of the combination map considered, the band bifurca­

tions do not take place ad infinitum. This is not the case with simple one­

dimensional one humped maps. In the case of the logistic map, for example, 

the iterates form a single band at I' = 4. But, as I' is decreased towards JLOC)) the 

chaotic band undergoes an infinite cascade of bifurcations. On approaching 

1'00 from the periodic region, every periodic cycle of period 2n bifurcates to a 

cycle of period 2n+1 at a distinct value JLn and the sequence {I'n} converges to 

a finite value 1'00 as n -+ 00. Likewise, in the chaotic regime, the chaotic bands 

undergo a mirror sequence of band bifurcations. i.e., a chaotic attractor with 

2k+1 bands bifurcates to a chaotic attractor with 2k bands, as I' is increased. 

Thus, when 1'00 is approached from the periodic region, we get an attractor 

with infinite period. But, when 1'00 is approached from the chaotic region, we 

get a chaotic attractor with infinite bands. The rate of convergence of the 

parameter values for the chaotic band bifurcations is the same as the rate of 

convergence of the parameter values for period doublings, namely = 6. This 

property has been made use of by Huberman and Rudnick for deriving the 

scaling law for one dimensional one humped maps. For the combination map, 

the chaotic bands merge together after a few bifurcations. This incomplete 

nature of the cascade of band bifurcations is the reason for a different scaling 

behaviour of the combination map. 
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3.3 Conclusion 

In conclusion of this chapter, we summarize the main results obtained from 

the numerical computations of the Lyapunov characteristic exponents of a 

number of one dimensional maps. For all one dimensional one humped maps 

following the period doubling route to chaos, the envelope of positive .A scales 

according to the Huberman-Rudnick law. Thus,.A ex (a - aoo )" where v = 

In 2/ In 6, 6 being the Feigenbaum convergence rate. The existence of an infinite 

cascade of band bifurcations in the chaotic regime is an essential requirement 

for the validity of the Huberman-Rudnick scaling law. The Huberman-Rudnick 

relation is true for one dimensional one humped maps of different order of 

maxima. But it is not true for combination maps. In the latter case, the 

cascade of band bifurcations does not take place ad infinitum. Mer a few 

splittings, recombination of chaotic bands is seen. This results in a different 

scaling behaviour for the Lyapunov exponents of combination maps. 
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4. Discontinuous Logistic Map 

One dimensional iterative maps on an interval of the real axis have 

been used in modelling a wide variety of nonlinear systems. The most promi­

nent route to chaos in these maps is through the Feigenbaum period doubling 

bifurcations. The transition from periodic to chaotic state through an infinite 

sequence of pitch fork bifurcations has been found to be a common feature of 

all unimodal functions having negative Schwarzian derivative [1]. One of the 

most extensively analyzed maps in this context is the logistic map [1,10,15,48]. 

The evolution of the system from regular to chaotic state has been investigated 

not only with the control parameter in its pure form, but also in some or other 

modified forms leading to a class of modulated logistic maps [58-64,75]. A re­

markable property of the Feigenbaum scenario of bifurcations is the geometric 

convergence of the parameter values for successive bifurcations. This is found 

to be a universal property of almost all one dimensional continuous maps with 

a single hump. The presence of a discontinuity or asymmetry in the map, 

however, produces a considerable change in the bifurcation structure of the 

system. A 'new road to chaos' has been identified by de Souza Vieira et al., 

based on the numerical investigations on a discontinuous logistic map [65,66]. 

The existence of inverse cascades of bifurcations in which the periods change 

arithmetically is a novel aspect in these systems. Certain empirical rules for 
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the existence of inverse and direct cascades have also been reported [67]. The 

number of inverse cascades and the type of route to chaos depend on the 

location of the discontinuity as well [68]. The periods of the cycles depend 

highly on the precision of the computations [69]. The phenomenon of border­

collision bifurcations and the formation of inverse and direct cascades in one­

dimensional piecewise smooth maps have also been investigated [70-72]. A 

possibility for having a discontinuous bifurcation from any selected orbit of 

the period-doubling cascade to an orbit of the inverse or direct cascade has 

also been reported [72]. A bifurcation phenomenon different from the stan­

dard period-doubling one has been observed for a piecewise cubic map [74] 

and also in an experimental situation in a He-Ne laser system [73]. Simi­

lar bifurcations have been observed for other piecewise continuous quadratic 

maps like the circle map [76] and the logistic-like sawtooth map [77]. Inverse 

cascades of bifurcations together with direct cascades had been reported for 

certain Hamiltonian systems [78]. Such Hamiltonian systems exhibit only a 

few continuous bifurcations in which the periods change geometrically. But, 

the discontinuous logistic map shows a number of discontinuous bifurcations 

in which the periods decrease in an arithmetic progression. The whole set of 

bifurcations can be viewed as an alternate route to chaos, with scaling laws 

different from that of Feigenbaum's [66]. Most of the studies in these systems 

are numerical. We provide an analytical explanation for the bifurcation phe­

nomenon of a discontinuous logistic map. Numerical findings in support of the 

results are also included. 
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4.1 Analysis of the Discontinuous Logistic Map; 

Coexistence of Multiple Attractors and their 

Basins of Attraction 

We consider the logistic map with a discontinuity at the centre. The 

map is defined as, 

(4.1) 

where tL is the control parameter and C is a. constant representing the strength 

of the discontinuity. This map corresponds to a special case of the more general 

asymmetric map that has been numerically investigated by De Sousa Vieira 

et al., [65] given by 

1 
Xt+! = 1 - 2(€1 + €2)j Xt = 0 

(4.2) 

Xt+! = 1 - €2 - a2lxtlZ2j Xt < O. 

The map given by equation 4.1 differs slightly from the one referred to above 

in that the value of the function at the point of discontinuity is also included in 

the left half of the interval of the mapping. Also, the interval of the mapping is 

(0,1) instead of (-1,1) in equation 4.2. Again it differs from the discontinuous 

map analyzed by Chia & Tan [67] in that the discontinuity parameter C is 

introduced in the right half of the interval in our case instead of in the left 
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part as in the case of Chia & Tan. De souza Vieira et al., numerically inves­

tigated the effect of three type of asymmetries: 

a) €l = €2 = 0, Zl = Z2 == Z, al i= a2; b) €l = €2 = 0, al = a2 = a, Zl i= Z2 

and c) al = a2 - a, Zl = Z2 = Z, €l i= €2. They have verified that the 

Feigenbaum scenario for one-dimensional one-extremum maps gets strongly 

modified if asymmetry is introduced in the extremum. Amplitude asym­

metry (al i= a2) and exponent asymmetry (Zl i= Z2) have relatively mi­

nor influence on the bifurcation pattern whereas the discontinuity in the ex­

tremum drastically alters the bifurcation phenomenon. With typical choices 

of (€b €2) = (0,0.1) and (0.1,0), they have observed various inverse cascades 

of bifurcations. The periods of the cycles were found to decrease in arithmetic 

progressions, as a is increased. In the case of (€b €2) = (0,0.1) for example, 

the first cascade of bifurcations occur immediately above a = 1, with periods 

like 16 -+ 14 -+ 12 -+ 10 -+ 8 -+ 6 -+ 4. Just above this cascade, some stan­

dard pitch-fork bifurcations are observed. Again inverse cascades with periods 

... 76 -+ 58 -+ 40 -+ 22; ... 92 -+ 70 -+ 48 -+ 26; ... 134 -+ 108 -+ 82 -+ 56 ... , 

etc. are observed. Tan & Chia [67] have given certain empirical rules for the 

existence of inverse and direct cascades. Note that in all the cases considered 

for the discontinuous logistic map, the common difference of the progressions 

are even numbers. This observation is of much significance in our analytical 

investigations. 
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Fig 4.1 The discontinuous map defined ineqn 4.1. The discontinuity 

parameter C = 0.2 and the control parameter Jl = 0.4. Note that the two fixed 

points xi and x; coexist in this case. 
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For convenience, we write equation 4.1 in the form, Xn+l = T(xn ), 

where the mapping T is such that T(x) = f(x) = 4J.Lx(1 - x) for 0 < x :::; 1/2 

and 1l:x) = <jJ(x) = 4J.Lx(1 - x) + C for 1/2 < x < 1. The qualitative shape of 

the map function is shown in figure 4.1. In the left half of the interval (0,1), the 

curve is logistic in nature and the function increases from 0 to J.L as x increases 

from 0 to 1/2. As x increases from 1/2 to 1, the map function <jJ(x) decreases 

monotonically from (J.L + C) to C. The presence of such discontinuities (i.e., 

different x --+ (~)+ and x --+ (1/2)_ behaviour) in physical systems [10,79] 

perturbs the dynamics of them considerably. For every value of C, the control 

parameter J.L is varied from 0 to (1- C) so as to confine the iterates within the 

unit interval. The fixed points of the system are determined by T(x') = x'. 

Depending on the relative values of J.L and C, there will be one or more fixed 

points. The fixed point of the left part is x· = 0 for values of J.L ranging from 

o to 1/4. When J.L > 1/4, the fixed point from the left part is 

• 1 x, = 1--
4J.L 

(4.3) 

The fixed point arising from the right part is given by <jJ(x') = x'. Le., 4 

J.Lx·(I- x·) + C = x'. This quadratic equation gives the solution, 

(4.4) 

Since the negative root for x' is inadmissible, we have the fixed point to the 

right of x = 1/2 as 
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(4.5) 

Thus we have simultaneous occurrence of attractors xi and x;. In the limit 

of C ~ 0, we get x; ~ xi = 1 - (1/41')' This is understandable since the 

pure logistic map has only one attractor. The fixed point (x;) and its stability 

properties depend on the two parameters I' and C so that one can have a 

desired dynamics for the system by proper choice of I' and C as in the case of 

combination maps [80,81]. The asymptotic state of the system is determined 

by either xi or x; or both, depending on the values of I' and C. Keeping 

C fixed, let I' be varied from 0 to (1 - C). The fixed point of the system 

is x· = 0 for values of I' ranging from 0 to 1/4. When I' increases beyond 

1/4, the zero fixed point loses its stability and becomes a repellent while the 

only attracting fixed point on the left part is xi. .As I' increases from 1/4 to 

1/2, xi moves from 0 to 1/2. When the control parameter exceeds the value 

I' = 1/2, the left half of the map lies above the bisector line. Thus the left 

attractor (xi) ceases to exist beyond I' = 1/2. To the right of x = 1/2, the 

map is of the nature of a combination map, obtained by combining the logistic 

map with an additive constant. The fixed point (x;) manifests itself whenever 

the parameter I' is so tuned as to make x; > (1/2). For this we have from 

eqnA.5, [{(41' - 1)2 + 161'CP/2 - 1] > O. This necessitates I' + C > 1/2. Le., 

I' > (1/2-C). This criterion for the appearance of x; can also be inferred from 

figure 4.1, as the condition for the height of the extremum when approached 
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from the right of x = 1/2 to be greater than 1/2. If p. + C < 1/2, then the 

right branch c/J(x) of the curve lies wholly below the y = x line. Thus we see 

that the x; exists for all p. > (1/2 - C) and xi appears for 1/4 < P. ~ 1/2. 

Hence the two attractors co-exist in the parameter range (1/2 - C) < p. ~ 1/2. 

For values of p. < (1/2 - C), only xi exists and for p. > 1/2 only x; exists. 

When the two attractors co-exist, there are two different basins of attraction. 

The bifurcation structure will therefore depend on the initial value used for 

iteration. Multiple basins of attraction for one dimensional maps of a single 

hump are usually uncommon. That it is seen in our case is a consequence of 

the fact that the map is represented by two different functions (f and c/J) on 

either side of x = 1/2. 

The basin of attraction for a fixed point is the set of initial points (xo) 

that converge asymptotically to that fixed point. The basins of attraction of 

the attractors of the map can be obtained as follows. The mapping T is such 

that the left half f( x) increases monotonically with x , while the right part 

c/J(x) decreases monotonically with x. Let Xr be the pre-image of 1/2 on the 

right. Le., Xr = c/J-l(1/2). Or, 4p.xr (1 - xr ) + C = 1/2. This gives, 

J16p.(p. + C - 1/2) 
Xr = 1/2 + -'-------­

Bp. 
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The pre-image of 1/2 on the left is 

(4.7) 

For the logistic map Xn+l = 4J-Lxn (1 - xn ), the two pre-images of 1/2 are 

1/2 ± Ji - 8~ which are symmetric w.r.t x = 1/2. But, for the discontinuous 

map, the pre-image of 1/2 on the right of x = 1/2 is shifted further to the right 

(for positive C). This asymmetry in the two pre-images play a vital role in the 

nature of bifurcations of the map, as the iterates approach the point of discon-

tinuity. For values of x in (1/2, X r ), the function </J(x) decreases from (J-L+C) to 

1/2. For all initial values Xo greater than Xn the first iterate 1{zo) = </J(zo) is 

less than 1/2 so that the second iterate, T2 (zo) = T [</J(xo)] = f [t/J(xo)]j third 

iterate, T3 (Xo) = P [t/J(xo)] and so on. Thus the second and higher iterates 

fall on the left branch and the asymptotic state is xi. H we start from an initial 

value Xo E (0,1/2), the iterates are f (xo), f 2 (xo), f 3 (Zo), f 4 (Zo) ... which 

converge to xi. For Xo lying in the interval (1/2, xr ), the successive iterates 

form the sequence { t/J(xo) , t/J 2 (xo), </J 3 (XO), ... </J n (XO), .•. } which converges 

to x;. Hence, the basin of attraction (R) for the attractor z; is the set of points 

R = {xo I Xo E (1/2,xrH where Xr is given by eqn. 4.6. Obviously, the basin of 

attraction (L) for the attractor xi is the set of points on the unit interval, COID-

plimentary to the set R. i.e., L = (0,1/2) U (xr' 1). The 'width' of the basin 

of attraction (R) is W = Xr - 1/2 = 1/8J-L{[16J-L(J-L + C - 1/2)]l/2}. From the 

expression for xr , it is clear that the basin R will be real only if (J-L + C) > 1/2. 

This should be SO since the condition (J-L + C) > 1/2 is an essential requirement 



for the existence of the attractor x; itself. Keeping C fixed, as /1 increases from 

(1/2 - C) onwards , the width of the basin R increases and that of L decreases. 

At /1 = 1/2, the value of Wbecomes a maximum = J(C/2). When /1 increases 

beyond 1/2, there exists only one attractor (x;) for the system and all points 

in (0,1) constitute its basin of attraction. Similarly for values of /1 < (1/2 - C), 

there will be xi only and the entire (0,1) interval forms its basin of attraction. 

It is also possible for the right attractor x; to co-exist with the zero fixed point, 

if /1 < 1/4 and /1 + C > 1/2. For this, C must be > 1/4. Since the stability 

conditions for the zero fixed point and xi are mutually exclusive (/1 < 1/4 and 

/1 > 1/4 respectively), the possibility of coexistence of all the three attractors 

is ruled out. It is obvious that when x; coexists with the zero fixed point, the 

basin of attraction of x; is R = (1/2, xr ) and that of the zero fixed point is 

(0,1/2) U (xr, 1) where Xr is the same as the one given by equation 4.6. When 

only one attractor exists, the basin of attraction is (0,1). 

4.2 Bifurcation Scenario for the Discontinuous 

Map 

We now consider the stability of the fixed points, as the system pa­

rameters are varied. A fixed point x· will be stable, if the slope of the tangent 

to T(x) at x = x· is less than unity, in magnitude. Keeping C fixed, let the 

control parameter /1 be varied from 0 to (1 - C). For 0 < /1 < 1/4, the fixed 

point x· = ° is stable. For 1/4 < /1 < 1/2, we have xi as the fixed point from 

the left part. This fixed point remains stable upto /1 = 1/2 and after that it 
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vanishes. For I' > 1/2, the asymptotic state of the system is solely determined 

by x;. This attractor is not stable throughout the range of variation of 1'. 

The slope of the map function = T' (x) = f' (x) = 4J ' (x) = 41'(1 - 2x). 

Therefore, T(x;) = 1- J( 41' - 1)2 + 161'C, where equation 4.5 has been used. 

At I' = (1/2 - C), this slope = O. As I' increases, the slope becomes negative 

and its magnitude increases. When the slope becomes = -1, the first period 

doubling occurs and a 2-cycle is formed. The corresponding value of I' is given 

by, 

(1- 2C) + J(2C-1)2 + 3 
1'1 = 4 

(4.8) 

Upto this value of 1', the system exhibits one cycle behaviour. Thus there 

will be two at tractors (xi and x;) for I' in the region (1/2 - C) < I' < 1/2. 

Beyond I' = 1/2, only x; exists and it remains stable upto the parameter value 

I' = 1'1' The attractor x; exhibits period doubling at I' = 1'1 and then the 

system shows a two cycle behaviour. In the limit, C --t 0,1'1 --t 0.75, the value 

for the logistic map. 

In the usual Feigenbaum route to chaos, the 2-cycle bifurcates to a 

4-cycle at a parameter value I' = 1'2 and it remains stable for a range of I' and 

then the 4-cycle bifurcates to an 8-cycle at I' = 1'3 and so on and these period 

doublings take place ad infinitum. The system then enters the chaotic region 

at a parameter value J.L = J.Loo, the period doubling accumulation point. But in 

the case of discontinuous maps, another type of bifurcation (a 'discontinuous 

bifurcation') takes place, when I' is increased. A different route to chaos is 



thus possible. In the 2-cycle region of the map, the slope of cP 2 (x) at the 

cycle elements = cP I (xi)cP I (x;) = 641l2(xi - 1/2)(x; - 1/2), where xi and 

x; are the elements of the two cycle. It remains positive as long as both the 

cycle elements fall to the right of x = 1/2. For Il = Ill, the slope of cP(x) 

at x = x; becomes equal to -1, so that the slope of cP 2 (x) = +1 at this 

point. With increase of Il above Ill, we have a two cycle and the slope of 

cP2(x) at the cycle elements decreases from 1. Both the cycle elements xi and 

x; lie within the interval R = (1/2, xr)' As Il increases, the cycle elements 

move out. The lower element xi moves towards 1/2 and the upper element xi 

approaches xr. Let xi = (1/2 + to). Then xi = cP(xi) = (Il + C - 41l~). In 

the limit to --+ 0, xi --+ (1/2)+ and xi --+ (Il + C)_. In this limiting case, the 

slope of cP 2(X) --+ O. Thus the limiting 2-cycle {(1/2)+, (Il + C)-} is a stable 

one. This 2-cycle behavior continues upto Il = Ilr, at which the right element 

(Ilr + C) = xr, the pre-image of 1/2 on the right part. Using equation 4.6, 

(~ - C) + J 1 + (~ - C)2 
Ilr=--------~2--------- (4.9) 

For III < Il < Ilr, a two cycle (xi, xi) is obtained. cP(xn = xi and cP(xi) = 

xi· Thus, xi and xi are solutions of cP2(x) = X. Now, for Il = Ilr, the right 

element xi = xr. The next iterate of xr, say, Xl = T(xr) = cP(xr) = 1/2, falls 

on the left branch. Consequently, the second iterate of Xr is decided not by 

the function cP(x), but by f(x). i.e., X2 = T 2 (xr) = 1'(1/2) = f(1/2) = 

Ilr· Now, since Ilr is greater than 1/2, (for C < 1/2, as is usually the case), 

the second iterate of Xr comes back to the interval (1/2, xr). The third and 
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higher iterates are decided by the function c/J. Thus, we get the sequence of 

iterates, { X2, cP (X2), c/J 2 (X2), ... , c/J r (X2), ... } and the two cycle behaviour 

is lost. Clearly, all these iterates lie in the interval (1/2, xr ). These iterates 

are attracted towards the 'virtual' 2-cycle (1/2, xr ) [i.e., the two cycle that 

the system would have, if the mapping were c/J(x) on both sides of x = 1/2]. 

Once Xr is attained, the sequence is repeated. In this sequence of iterates, 

the odd iterates c/J (X2), c/J 3 (X2), c/J 5 (X2), ... approach one end of the interval 

(1/2, xr ) and the even iterates c/J 2 (X2), c/J 4 (X2), c/J 6 (X2), ... approach the 

other boundary. The system thus exhibits a large periodicity n, which is 

highly dependent on the precision of the computer. The period n will be even 

or odd depending on whether X2 > x; or X2 < x;, where x; is the fixed point 

(unstable) of c/J(x) and X2 is the second iterate of xr • We consider the two cases 

separately. 

Case (1). Second iterate of Xr is greater than the unstable fixed point 

x;. i.e., X2 > x;. 

The function c/J(x) decreases monotonically for all x > 1/2. Therefore, 

since X2 lies to the right of x;, its iterate, c/J (X2) < cP (x;). But, c/J (x;) = x;, 

as it is a fixed point (though unstable). Hence, c/J (X2) < x;. Now, since 

c/J (X2) < x;, under the next iteration, c/J 2 (X2) > c/J(x;). i.e., cP 2 (X2) > x;. 

Continuing like this, after each stage of iteration, the ineq1J,ality gets reversed. 

Thus, the odd iterates c/J (X2), cP 3 (X2), c/J 5 (X2), . .. lie to the left of x; and the 

even iterates c/J 2 (X2), c/J 4 (X2), c/J 6 (X2), . .. lie to the right of x;. 
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Fig 4.2 A plot of 4J2(X) vs x. The value of C is taken as 0.1 and that 
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Figure 4.3. Schematic representation of the 

iterates for ~ = ~ r 

Case (a). x 2 > X r 

X 1 X r * 
X7 X5 X3 X2 X4 X 6 X B 

Case (b). x 2 < X r 

X r * 
X 6 X4 X2 X3 X5 X7 X9 

X r 

X r 

Fig 4.3 Schematic representation of the iterates of the discontinuous 

logistic map . 
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Since 4>( x) is a decreasing function of x for any x E (1/2, 1), it is clear that 

4> 2 (x) is an increasing function of x for all x for which 4>( x) is greater than 

1/2. Thus 4> 2 (x) is an increasing function of x for all x in (1/2, xr). The 

behavior of 4> 2 (x) on either side of x; is shown in figure 4.2. It is obvious 

that, 4> 2 (x) > x for x > x;; 4> 2 (x) < x for x < x; and 4> 2 (x) = x for x = x;. 

Thus since X2 > x;, we have 4> 2 (X2) > X2)' i.e.,4>2(x2) > x2 > x;. Again, since 

4> 2 (X2) > x;, 4> 4 (X2) > 4> 2 (X2)' Similarly, 4> 6 (X2) > 4> 4 (X2) and so on. 

Likewise, since 4>(X2) < x;, 4> 3 (X2) < 4>(X2); 4> 5 (X2) < 4> 3 (X2) and so on. 

A schematic representation of the iterates on either side of x; is presented in 

figure 4.3. We thus, have an ordering for the iterates as, 

x; < X2 < 4>2(X2) < 4>4(X2) < 4>6(X2) < ... and 

x; > 4>(X2) > 4>3(X2) > 4>5(X2) > 4>7(X2) > ... 

Thus it is clear that the even iterates of X2 tend to Xr and the odd iterates of X2 

tend to (1/2)+. Thus at some stage of iteration, 4>2r(X2) becomes infinitesimally 

close to xr. This iterate will be considered as Xr itself by the computer and the 

sequence of iterates will be repeated. The value of r depends on the precision 

used for the computation. Thus we have a cycle of periodicity n = 2r + 2. 

Case 2. Second iterate of X2 is less than the unstable fixed point x;. 

Based upon similar reasons as for case (1), we find that the successive 

iterates of Xr satisfy the inequalities: 

x; > X2 > 4>2(X2) > 4>4(X2) > 4>6(X2) > ... and 
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Thus the odd iterates of X2 move towards Xr and even iterates approach (1/2)+. 

Hence, after some stage of iteration, we have 4>2r+l(X2) almost = Xr, leading to 

a periodicity n = 2r + 3. 

The outward spiralling of the iterates to an n-periodic attractor at the 

parameter value JL = JLr is shown in figures 4.4 and 4.5 for two typical cases 

of C = 0.1 and C = 0.2 corresponding to even and odd periods respectively. 

It is to be emphasized that the true period at JL = JLr is infinity. But in 

numerical computations, a finite period is obtained; The period in this case 

is,in fact, equal to the number of iterations required by Xr to come back to 

a value 'almost' equal to itself; the degree of closeness being pre fixed by the 

precision of the computer. The map thus belongs to the class of maps with 

precision dependent periods [69]: H the map function were 4>( x) throughout the 

interval (0,1), the role pf Cwould be that of an additive constant applied to the 

logistic map [82] and the system would still have a stable 2-periodic behavior. 

The bifurcation of a 2-cycle to an n-cycle, in the case of the discontinuous 

logistic map, as the cycle elements touch the basin boundary is a discontinuous 

bifurcation. It is because of the discontinuity in the second iterate T 2 (x) near 

x = 1/2 and x = xr • Note that T 2 (x) = 4> 2 (x) for x = (Xr - €) and 

T2 (x) = !{4>(x)}, for x = (xr + E). 

When JL is slightly greater than JLr, the 'virtual' 2-cycle (xi, xi) falls 

outside the interval [1/2, xr ]. In this case, the successive iterates of any initial 
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Fig 4.4 Graphical representation of the outward spiralling of the it-

erates to an attractor of large periodicity at the parameter value JL = JLr, for 

c= 0.1. 
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Fig 4.5 Graphical representation of the outward spiralling of the it-

erates to an attractor of large periodicity at the parameter value 11- = I1-n for 

C=0.2 
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value Xo E (1/2, x r ) form a sequence which shows a tendency to settle down at 

the 2-cycle. (Also, any initial value outside (1/2, x r ) will come to this interval, 

after a few iterations, since the system has no other stable periodic solutions). 

In this process, an iterate slightly greater than Xr is obtained. This point is 

mapped by ljJ(x) into the domain of f(x). The next iteration by the mapping 

f(x) takes it to the interval [1/2, xrJ. This point, under repeated iterations 

by ljJ( x) comes outside this range and the whole process is continued again 

and again. The periodicity (n) will be even or odd depending on whether 

X2 = f{ ljJ(xr )} is > x; or < x;, where x; is the fixed point (unstable) of ljJ(x). 

The behavior of the iterates of the map for values of /J immediately below and 

above /Jr can be understood from figures 4.6 and 4.7, in which the value of the 

iterates are plotted against the iteration number. 

The mechanism of the bifurcation in which a 2-cycle directly gives 

birth to an n-cycle is quite different from the usual period doubling bifurca­

tions and it is a characteristic feature of discontinuous maps. In the period 

doubling process, the slope ( that determines the stability of the cycles) at the 

bifurcation point becomes equal to -1. But in the case of bifurcation of the 

2-cycle to an n-cycle, the slope of ljJ 2 (x) = 0 at the bifurcation point. The ele­

ments of the n-cycle are {xo = Xr, Xl = 1/2, X2 = /In X3, X4, X5, X6, ••• Xn-l = xr }. 

These elements are equilibrium points of Tn(x), for /J = /Jr. With increase of 

/J, the cycle elements move out until at some value of /J, the interval boundary 

Xr is reached after (n - 2) iterations. This should be so, since only alternate 
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Fig 4.6 The time plot of the system in eqn 4.1 . The value of C = 0.1 
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Fig 4.7 The time plot of the system in eqn 4.1 . The value of C = 0.1 

and JJ is slightly greater than Ilr · 
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iterates move towards X r • The periodicity of the system is thus lowered by 2. 

Note that Xr also increases (very slowly) with I-' and that one set of alternate 

iterates are repelled by the unstable fixed point x; towards one side and the 

other set of alternate iterates to the other side. With further increase of 1-', 

the outermost element (xo) increases beyond the corresponding value of Xr and 

the cycle element nearest to Xr within (1/2, xr ) moves towards Xr until at some 

stage, the basin boundary Xr is attained after (n - 4) iterations. Hence the 

period is again decreased by 2. Proceeding like this, we infer that as I-' increases 

beyond I'r, there exist different ranges of the parameter 1-', for which cycles of 

periods decreasing by 2 exist. In a numerical computation, the periods decrease 

in an arithmetic progression. The common difference of the progression will 

be even numbers, since only alternate iterates move towards one boundary of 

[1/2, xr]. The common ~erence also depends on the step size with which 

p is increased as well as on the precision used for the computation. Again, 

the bifurcations within an inverse cascade occur whenever one of the cycle 

elements approaches the discontinuity of 1\x) at x = 1/2 and another element 

approaches X r • (In this case, all the cycle elements ~pproach the discontinuities 

of the nth iterate of the map where n is the period ofthe cycle]. A given cycle 

of period n can exhibit the usual period-doubling bifurcation, if the slope of 

the nth iterate becomes equal to -1 and the cycle loses stability before any of 

its elements gets a chance to collide with the discontinuity. The bifurcation 

process continues until the iterates become aperiodic at a parameter value 

(1-'00) and the system enters the chaotic region. 
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A parameter space plot (C,I') for the system is presented in figure 4.8. 

The fixed point x; arising from the right part of the map exists only for points 

above the straight line, KLM, that represents I' + C = 1/2. The straight line 

PQRS, given by the equation I' + C = 1, determines the limiting values of 

the parameters upto which the iterates are confined in the unit interval. The 

straight line NLRN' represents I' = 1/4. The left part of the map function has 

only zero as the stable attractor for values of I' < 1/4. i.e., for all parameter 

points inside the trapezium, ONRS. The line KQK', represents I' = 1/2. The 

fixed point of the logistic part (xi) exists for the region of parameter space 

formed by the trapezium KQRN. The trapezium PKMS represents the region 

in which x; exists. Thus the attractors xi and x; co-exist within the parallel-

ogram KLRQ. Similarly, the attractor x; and the zero fixed point co-exist for 

the parameter region represented by the parallelogram LMSR. The triangular 

region PKQ represents the set of (C, ,,) points for which only x; is present and 

the triangle KNL denotes the space in which the only attractor for the system 

is xi. Within the parameter region bounded by the trapezium ONLM, the 

zero attractor alone is present. Obviously, for the co-existence of x; and the 

zero attractor, the value of C should be > 1/4. The curves EFN' and GQG' 

represent 1'1 and I'r respectively, as given by eqns.4.8 and 4.9. All the discon-

tinuous cascades of bifurcations occur within the region PGQ. Note that both 

1'1 and I'r are decreasing functions of C. Hence, by taking negative values for 

C, one can have a I-cycle behavior for the map for values of I' corresponding 

to the 2-cycle region of the logistic map. 
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Fig 4.8 A parameter space plot (C, 1') for the discontinuous logistic 

map. The lines GQG' and EFN represent J.Lr and 1'1 respectively. 
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From the parameter space plot, one can select suitable (C,J.L) points 

to have a desired dynamics for the system. It is possible to have a control over 

the dynamics of the system by proper choice of C for each J.L, as in the case of 

the combination maps [80-82]. 

4.3 Numerical Results 

The analytical studies presented above have been well substantiated by 

numerical computations. This section deals with the numerical investigations 

carried out to check the validity of the results obtained in the previous section. 

The discontinuity parameter C is kept at various fixed values. For each value of 

C, the bifurcation structure ofthe map is determined, by varying the parameter 

J.L in small steps. A series of bifurcation diagrams are drawn, for different 

initial values (xo). Figure 4.9 shows a bifurcation diagram for the system. It 

is obvious that the map has got multiple attractors. Initial value dependent 

behavior is seen in the bifurcation diagrams. In the case of C = 0.2, for 

example, we observe the following facts. For /J varying from ° to 0.25, the 

only attracting fixed point is zero and all initial points Xo E (0,1) converge 

asymptotically to this attractor. When /J increases beyond 0.25, the system 

stabilizes to a non zero fixed point (xi) which remains stable upto J.L = 0.5 

and after that it vanishes. For values of /J > 0.3, another fixed point (x;) is 

observed. The two fixed points xi and x; co-exist for values of J.L varying from 

0.3 to 0.5. Initial values like 0.1,0.2,0.3, etc. converge to the fixed point xi. 

But, seed values like 0.6 converge asymptotically to the other fixed point. 
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Fig 4.9 A Bifurcation diagram of the discontinuous logistic map for 

various initial points in (0,1). The value of C = 0.1 and p. is varied. from 0 to 

0.8. Note that the 2-cycle suddenly bifurcates to an n-cycle when lA = IJ.r 

102 



The fixed point x; undergoes the standard pitchfork bifurcation to 

a 2-cycle at a value /J = 0.608222. The two cycle behavior continues up to 

the parameter value /J = 0.672055. These values of /JI and /Jr are obtained 

accurately, by taking further and further blow ups of the bifurcation diagrams. 

When /J increases beyond 0.672055, a sudden bifurcation takes place and the 

iterates form a cycle of large periodicity. The period depends on the precision of 

the computer. The zero fixed point does not co-exist with xi for values of C < 

0.25. The parameter values /JI and p..,. obtained numerically and analytically for 

various values of C are presented in table 4.1. The close agreement between the 

numerical and analytical value!, give a strong support to the theory developed 

in the previous section. A check for any evidence of chaos was performed, 

based on the criterion of the positivity of the L.C.E (A) given by [14]: 

A = lim .! ~ In 1 dT(x) 1:1:= 
8-+00 n L...J dx zt 

t={) 

(4.10) 

Accordingly, the values of A are computed for various values of /J in the 

neighborhood of /Jr' No trace of chaos is seen at these points; We have observed 

cycles of periodicities decreasing by 2 for /J values greater than /Jr. Two typical 

cases of C = 0.1 and C = 0.2 are analyzed in detail. Figs. 4.10 and 4.11 shows 

the bifurcation diagrams for these cases. In the case of C = 0.1, cycles of 

even periods (14,12,10,8,6, ... ) are observed when /J is increased beyond /Jr; 

For C = 0.2, we observe cycles of odd periods for values of /J greater than /Jr. 

The usual period-doubling process is also observed. For certain values of the 

parameters, different initial points converge to cycles of different periods. 
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Table 4.1 

Parameter values for period doubling and period n-tupling of the discontinu­

ous logistic map for different values of C. 

Discontinuity Control parameter (I' ) for 

parameter period doubling (1'1) period n-tupling (I'r) 

C Analytical Numerical Analytical Numerical 

0.05 0.71298053240 0.712945 0.77329280499 0.7732925 

0.10 0.67696960071 0.676985 0.73851648071 0.7385165 

0.15 0.64203854231 0.642015 0.70474050251 0.7047450 

0.20 0.60825756950 0.608222 0.67201532545 0.6720155 

0.25 0.57569390943 0.575664 0.64038820320 0.6403885 

0.30 0.54440972087 0.544410 0.60990195136 0.6099020 

0.35 0.51445989578 0.514447 . 0.58059371040 0.5805935 

0.40 0.48588989435 0.485876 0.55249378106 0.5524935 

0.45 0.45873378932 0.458677 0.52562460986 0.5256245 

0.50 0.43301270189 0.432997 0.5 
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Keeping the value of C = 0.1 and I' at various fixed values in the 

interval (1/2 - C), the asymptotic value of the iterate {xn } generated from a 

seed value Xo is determined. This is repeated for various values of Xo. In this 

way, the basin of attraction is determined. This procedure is then repeated for 

C = 0.2 as well. The basins of attractions for the two fixed points xi and x; are 

presented in figure 4.12 and figure 4.13 corresponding to C = 0.1 and C = 0.2 

respectively. Here, we plot the values of the fixed points versus the initial values 

Xo for all Xo in (0,1). The basin of attraction for x; is the portion of x-axis from 

0.5 to Xr and that for xi is the set of points on the x-axis in the interval 0 to 

0.5 and from Xr to 1, where Xr is the right basin boundary of x;. The basins of 

attraction are well defined and are not intermingled, unlike in the case of the 

logistic map under certain parametric perturbations[83,84]. Such well defined 

basin structures have already been reported for other discontinuous maps [85]. 

Within the parameter range for the two attractors to co-exist, it is observed 

that the width of the basin of attraction of x; increases with I' and reaches its 

maximum value at I' = 0.5. HI' < (1/2 - C), the fixed point is xi or zero. For 

0.5 < I' < I'b the fixed point is x;. Table 4.2 shows the width of the basin of 

attraction (R) at I' = 0.5 for different values of C, obtained numerically and 

analytically. There is excellent agreement between the two, which verifies our 

theoretical analysis. 
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Table 4.2 

Width of the basin of attraction of the right fixed point for various values of 

C. The control parameter J1. is kept at 0.5. 

Discontinuity Width of the basin of attraction of x; 

parameter (C) Analytical Numerical 

0.05 0.1581139 0.1581101 

0.10 0.2236068 0.2236059 

0.15 0.2738613 0.2738593 

0.20 0.3162278 0.316227 

0.25 0.3535534 0.3535532 

0.30 0.3872984 0.3872979 

0.35 0.4183300 0.4183283 
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4.4 Conclusion 

The work presented above gives a theoretical understanding of the 

route to chaos in discontinuous systems. A detailed analysis of the dynamics 

of a discontinuous logistic map is carried out, both analytically and numeri­

cally, to understand the route it follows to chaos. We have shown analytically 

that the discontinuous logistic map has got multiple at tractors with different 

basins of attraction. We also give expressions for the basin boundaries and a 

theory for the bifurcation phenomenon of the map is developed. In contrast 

to the standard pitchfork bifurcation in which the slope of a cycle becomes -1, 

the border collision bifurcation occurs whenever a cycle element touches the 

discontinuity of the map; For the map with a discontinuity at the extremum, 

the slope of the cycle becomes 0 at this point. Our results are verified by 

numerical investigations of the map. We have presented a parameter space 

plot for the map so that one can have a desired dynamics for the system, by 

suitable choice of the discontinuity parameter (C) for every value of the control 

parameter (JL). However, the present analysis deals only with the case of the 

discontinuity parameter applied to the right half of the interval of mapping. 

A detailed analysis for the n-furcations of various periodicities can be made 

and a more general theory for the map with discontinuities applied at different 

positions can be formulated on a similar footing. 
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5. SUMMARY 

This chapter provides a summary of the work presented in the preced­

ing chapters. The thesis focuses on the results obtained by our investigations 

on combination maps, scaling behaviour of he Lyapunov characteristic expo­

nents of one dimensional maps and the nature of bifurcations in a discontinuous 

logistic map. Chapter 1 gives a general introduction to chaos in determinis­

tic systems. Various qualitative and quantitative measures adopted to detect 

and characterize chaotic motion are briefly described. Some simple one di­

mensional maps exhibiting chaotic behavior are also discussed. This chapter 

gives a review of the major routes to chaos in dissipative systems, namely, 

Period-doubling, Intermittency and Crises. The dynamics of one dimensional 

iterative maps are discussed, taking the logistic map as a specific example. 

The Feigenba~'s universality theory for the period doubling route to chaos 

are described in some detail. The relevance of the scaling relations of the Lya­

punov characteristic exponents in the context of control of chaos is explained. 

This is essential for understanding the contents of the subsequent chapters. 

The dynamics of combination maps form the content of chapter 2. 

By a combination map, we mean a map obtained by combining two one di­

mensional maps. The constituent maps mayor may not belong to the same 

universality class. The bifurcation scenario for both these types of combina­

tions are analyzed. In the first case, the logistic map is combined with the 
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sinusoidal map, both belonging to the quadratic family. This combination 

map is a two parameter one dimensional map possessing an interesting prop­

erty that it goes over from one humped to two humped state by continuously 

varying one of the parameters. Keeping the parameter (I') of the logistic part 

at various fixed values, the bifurcation structure of the system is analyzed by 

varying the parameter (A) of the sine part. It is observed that the system 

retraces the entire period doubling route to chaos in the reverse order, as this 

parameter is increased. A parameter space plot for the system is also obtained. 

The bifurcation lines in the parameter space are parallel straight lines, indi­

cating that the Feigenbaum's convergence rate (6) computed. in terms of A for 

fixed values of I' is the same as the value of 6 calculated. in terms of I' for any 

fixed value for A. It is possible to have any desired. periodicity or chaos in the 

system, by proper choice of the parameters. Again, the parameter I' can be 

increased beyond I' = 4 by taking suitable high valueS for A. Even though the 

periodic region of the system is exactly similar to the periodic regime of the 

logistic map, the chaotic regime is very much different in structure. For the 

logistic like family, the chaotic band undergoes an infinite sequence of band 

bifurcations in a mirror sequence of the cascade of bifurcations in the periodic 

region. But in the case of the combination map, these band bifurcations do 

not take place ad infinitum. \Vhat we observe is a series of band splittings and 

recombinations in the chaotic regime of the combination map. This incom­

plete nature of the cascade of band bifurcations results in a different scaling 

behaviour for the characteristic constants of the combination map. The studies 
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of this combination map for certain high values of I' like I' = 32, 36 etc., have 

revealed some fascinating results. In this case, the combination map is always 

two humped in nature. The bifurcation structure for the two humped case is 

considerably different from that for the one humped state. With increase of 

the parameter A, the iterates switch over from one hump to the other. The 

system thus exhibits an inverse period doubling for some range of A and the 

a forward period doubling for the remaining range of A. The formation of 

a bubble structure is a distinct possibility for certain high values of 1'. We 

then consider the case of a combination of two maps chosen from two different 

universality classes. For this, the Hemmer's map is combined with the logis­

tic map. The bifurcation structure of the system is analyzed by varying the 

parameter a of the Hemmer's part, for various fixed values of the parameter 

I' of the logistic part. The presence of a cusp at the extremum point of this 

combination map produces severe differences to the bifurcation pattern. In 

this case, both the chaotic and the periodic region of the combination map 

are different from those of the constituent maps. It is observed that the sys­

tem exhibits a transition from chaos to order and then from order to chaos. 

The transition from chaos to order occurs by inverse period doubling while 

the transition from order to chaos takes place by tangent bifurcations and in­

termittency. We have also obtained a parameter space representation for the 

system. The bifurcation lines in this case are smooth curves, in contrast to 

the parallel straight lines obtained for the first case. 
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The results of the numerical computations of the Lyapunov charac­

teristic exponents of one dimensional maps are presented in chapter 3. The 

Lyapunov characteristic exponent (,X) serves as an order parameter in the 

transition from order to chaos. A scaling law for ,X for maps undergoing the 

Feigenbaum scenario of pitchfork bifurcations have been theoretically worked 

out by Huberman and Rudnick. They have shown that the envelope of posi­

tive ,X follows the relation, ,X IV (a - aooY where a oo is the value of the control 

parameter a at the period doubling -accumulation point and 11 = :~, 6 being 

the Feigenbaum constant. We have established numerically that this relation 

is valid not only for the quadratic maps, but also for all one dimensional one 

humped maps exhibiting the period doubling route to chaos. A necessary re­

quirement for the validity of this law is that the chaotic bands should display 

an infinite cascade of band splittings. The Lyapunov exponents of combina­

tion maps follow a different scaling relation. The scaling index 11 is found to be 

almost unity for the combination map formed by combining the logistic map 

with the sine map. The incomplete nature of the band bifurcations is the rea­

son for the violation of the Huberman- Rudnick scaling law by the combination 

map. 

An analytical explanation for the bifurcations of a discontinuous logis­

tic map is given in the fourth chapter. Numerical results in support of theory 

are included. We have established that a discontinuous bifurcation takes place 

whenever the elements of an n- cycle collides with the discontinuities of the 
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nth iterate of the map. The periods of the cycles are shown to be precision de­

pendent. Also the periods decrease in an arithmetic progression, as the control 

parameter is increased. The common difference of the progression will always 

be even numbers. A parameter space plot for the system is also obtained. The 

usual period doubling phenomenon is also possible, if the slope of the nth iter­

ate at its cycle elements becomes equal to -1, before any of the cycle elements 

gets a chance to collide with a discontinuity. 

The work presented in this thesis opens up some possibilities for fu­

ture research. A number of different combination maps can be formed and 

the dynamics of such systems can be analyzed by the techniques presented in 

this thesis. The idea of combination maps can be used advantageously for the 

control of chaos in discrete systems. The scaling relations of the Lyapunov 

characteristic exponents are very useful in developing suitable control algo­

rithms. Extension to higher dimensional systems can also be tried out. The 

mechanism for bubble formation can be studied in detail by analyzing suit­

able combination maps. The phenomenon of border collisjon bifurcations for 

a number of discontinuous systems can be analyzed by the methods presented 

for the discontinuous logistic map. Similar studies can be carried out for con­

tinuous systems as well. Detailed investigations on one dimensional maps can 

provide valuable informations in understanding the onset of chaos in many 

practical systems. Developments in the field of chaotic dynamics can lead to 

a satisfactory explanation for the unsolved problem of turbulence. 
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