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Preface

Most of the systems in nature are nonlinear. Many of them show irregular
temporal behaviour as the system parameters are varied. The term ‘chaos™ has
been used to denote this irregular behavior in a completely deterministic system
without any external stochastic source. Extreme sensitivity to initial conditions
makes it impossible to predict the longtime behaviour of such a chaotic system.
A great deal of research activity has been centered on the understanding of
chaos in nonlinear dynamical systems. Chaos and Nonlinear dynamics have
applications in many areas of knowledge like turbulence, electronic circuits,
laser systems, astronomy and also in many interdisciplinary fields like biology,

ccology, population dynamics etc.

Chaos is generally studied under two categories: (1) Continuous dynamical
systems represented by differential equations of the form < = (X, 4) and (2)
Discrete dynamical systems described by mappings of the form X;,, = F{X,. )
where X, denotes the state of the system at time ¢, 4 is the set of control pa-
rameters and F is some nonlinear function of X. In this thesis we coafine to
the study of discrete nonlinear systems represented by one dimensional map-
pings. As one dimensional iterative maps represent Poincarré sections of higher
dimensional flows, they offer a convenient means to understand the dynamical

evolution of many physical systems.



The work presented in the thesis iy the result of the investigations made
by the author for studying the dynamics of combination maps, scaling rela-
tious of Lyapunov characteristic exponents and the nature of bifurcations in
discontinwous systems. This was done under the guidance of Prof. Dr. V.
M. Nandakumaran in the International School of Photonics, Cochin Univer-
nity of Science and Technology. The thesis is divided into five chapters. The
chapterwise description of the contents of the thesis is given below.

Chapter 1 is a general introduction to chaos, highlighting the basic ideas
of deterministic chaos. Qualitative and quantitative measures for the detection
and characterization of chaos in nonlinear systems are discussed. Some simple
mathematical models exhibiting chaos are presented. The bifurcation scenario
and the possible routes to chaos are explained, taking the logistic map as a
specific example. The dynamics of one dimensional maps are briefly discussed.
The relevance of the scaling relations of the Lyapunov characteristic exponent
in control of chaos is specified.

Chapter 2 deals with the numerical and analytical investigations on combi-
nation maps. A combination map is obtained by combining two one dimensional
maps. The constituent maps may or may aot belong to the same upiversality
class. The dynamics of combination maps are significantly different from those
of simple maps. We consider two combination maps in detail. The first one is
formed by combining two maps belongiug to the same universality class and the
second is gt by combining two maps from two different universality classes.



In the third chapter, we present the results of the numerical computa-
tions of the Lyapunov exponents (A) of one dimensional maps. The Lyapunov
characteristic exponent acts as a kind of order parameter in the transition from
regular to chaotic state of a nonlinear system. A theoretical relationship for
the scaling of Lyapunov exponents had already been obtained by Huberman
and Rudnick. We have established numerically that the Hubermann- Rudnick
relationship is valid for all ooe dimensional mape of different orders of maxima.
However, the scaling law for the Lyapunov exponent of a combination map is
significantly different from those of the individoal maps.

Chapter 4 deals with the nature of bifurcations in a discoatinuous logistic
map. A different type of bifurcation other than the usual period doubling one
had already been reported for discontinuous maps. Most of the studies in dis-
continuous systems have been numerical. We provide an analytical explanation
for the bifurcations in a discontinuous logistic map. We have observed that the
map possesses multiple attractors. The basins of attraction of the fixed points
are identified and an expression for the basin boundary is deduced. We establish
that whenever the clements of an n—cycle (n > 1) approach the discoatinuitics
of the n* jterate of the map, a bifarcation takes place. The periods of the cycles
are shown to decrease in an arithmetic progression. It is also shown that the
periods depend on the precision with which the computations are done. Direct
and inverse cascades of bifurcativa are possible. Our results are verified by



numerical experiments as well. Bifurcation diagrams, time plots of the iterates,
tables showing the basin boundaries and bifurcation points. parameter space

plots etc. are included.

The last chapter gives a summary of the whole work done. Our main

conclusions are the following:

1. The Hubermann-Rudnick scaling relation for the Lyapunov exponeuts
is valid for simple one dimonsional maps of different orders of maxima

2. The acaling relations of the Lyapunov characteristic exponents of com-
bination maps are entirely different from those of the individual maps.

3. The discontinuous logistic map possesses maultiple attractors; Every
periodic cycle of the system ondergoes a bifurcation whenever a cycle element
coilides with the discontinuity of the map. The periods are precision dependent
and show an arithmetic convergence.

The possibilities for future rescarch are also included.

v
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1. Deterministic chaos

The discovery that cven simple nonlinear systems governed by per-
fectly known equations of motion can evolve into a completely erratic, com-
plex behaviour is of far-reaching comsequences in many areas of knowledge.
It goes against one of the basic tenets of science that deterministic systems
are predictable. The historic obscrvation of H.Poincaré in 1892 that certain
Hamiltoaian systems can display chaotic motion was left unnoticed for a con-
siderably long time. E.N.Lorenz in 1963 made a truncation of the Navier-
Stoke's equation in hydrodynamics and obtained a set of three ordinary, non-
linear differential equations. The Lorenz model shows, for certain parameter
ranges, extreme sensitivity to initial conditions. i.e., it exhibits chaotic be-
haviour for certain ranges of the system parameters{l]. Since then, a lot of
research work have been done in the field of chaos and nonlinear dynamics, At
present, there is hardly any branch of science where the concept of chaos has
not been used. Nonlinearity iz a neccessary (but, aot sufficient) ingredient for
chaos. Generally speaking, the higher the dimensionality of the system, the
leas severe the nonlinearity required to produce chaos. Many natural systems
are replete with nonlinearities. Chaos is thus a rule, rather than an excep-
tion, in the real world. The phenomenon of turbulence, ie., fully devoloped
chaos in space and time, is an unsolved problem of classical physics. The
developments in chantic dynamics during the last few decades have greatly

increased the understanding of the phenomenon of turbulence. The study of

1



deterministic chaos has given new concepts and modes of thought that have
far-reaching repercussions in many different fields, such as Solid state physics,
Plasma physics, Chemistry, Cosmology, Biology etc. Future developments in
the ficld may help to solve the age-old problem of turbulence.

The deterministic aature of the system implies that there exists a law,
either in the form of a differential equation or in terms of a difference equa-
tion, for determining the future state from the given initial conditions. The
observed irregnlar behaviour is neither due to any external noise por due to
any intrinsic uncertainty as in the case of quantum mechanics. The chaotic
behaviour arises from the property of the nonlinear system of exponentially
separating initially close trajectories in phase space. Consequently, the long-
time behaviour of a chaotic system becomes unpredictable. Various routes for
the transition of a nonlinear system from regular to chaotic state have been
identified. This chapter provides a review of the basic mathematical tools
to detect and characterize chaotic motion. Certain model systems and the
possible routes to chaos are discussed.

1.1 Dynamical Systems

A dynamical system is described by an evolution equation that deter-
mines the successive states from a knowledge of the initial state of the system.
They are usually divided into two categuries: (a) Continuous-time dynamical
systemns and (b) Discrete-time dynamical systems.



a) A cuntinuous-time dynamical system is represented by a set of or-
dinary diffcrential equations (ODE) of the form,

X — RX.tp)X(t) = Xo (1)

where, X(1) € R is the state at time ¢, 1 is the set of control parameters and
F: R — R® is called the vector field. The dynamical system is linear if Fis
linear and noalinear if F is noulinear. The system is said to be autonomous
if F does not contain time explicitly. Now, an n** order non-autnaomous ODE
can be converted to an (n + 1)* order autonomous ODE. Purthermore, an
m* order autonomous ODE can be reduced to a system of m first order ODE.
Thus, agy continuous-time dynamical system can be brought to the form given
by equation(1.1). A solution to equation(1.1) with the initial condition X, at
t =0, {Xy(t), Xua(t),.... Xa(t)} is called a trajectory in the n -dimensional phase
space of the system and is denoted by ¢(X;). The mapping ¢, : B* — *
defines a flow of the system.

b) A discrete-time dynamical system is represented by a difference

equation or mapping as
Xios = {Xe 1) (12)

where X; € R*, p is the set of control parameters and f: B* — B* maps the
state X, to the next state X,,,. The sequence of points {X;}2, obtained by
the repeated iterations of the initial state X, defines an orbit of the system in
the n-dimensional phase space. If £ is nonlinear, the system is nonlinear.

3



1.2 Poincaré map.

The flow of a continuous-time dynamical system can be convenicntly
replaced by a discrete mapping by a technique due to Poincaré[2,3|. Caonsider,
for example, a set of three first order differential equations,

dz d dx
5 = ey g = dlzy.2) 5 = ¥lev.2).

Let us plot the points (z..ga) = [#(ta), ¥(ta)] for values of time ¢ = 1, at
which z = 0 and { > 0. Then the mapping (Z., %) —* (Tasi.¥u.1) defines a
Poincaré map. In general, the Poincard section of an n-dimensional system is
the intersection of the trajectories with an (n — 1) dimensional hypersurface,
from one side of the surface. The entire sequence of crossing points taken
without regard for crossing direction defines a two sided Poincaré map. The
Poincaré section gives a stroboscopic picture of the underlying continuous-
time dynamical system. Tbere is & one-to-one correspondence between the
different types of steady state behaviour of the system and the steady state
behaviour in the Poincaré section. Since iterations are much easier to perform
than integration, the Poincaré construction technique will be of immense help

in analyzing the dynamics of continuous-time dynamical systems.
1.3 Detection of chaos.

In an experimental situation involving a noulinear system, one will
be dealing with a set of values of the system variable(s) at various instants of
time. ie., the data consists of a time series. It is therefore neccessary to inspect
whether the time series correspouds to a periodic behaviour or chaotic state

4



of the system. Usually it is not an easy task to differrntiate between moultiply
periodic behaviour and a chaotic state. Various qualitative and quantitative
meawures arc adopted for this. In this section, we shall review some of the
qualitative measures that are usually employed to detect the preseace of chaos

in a system.

Consider, for example, the case of a periodically driven pendulum,
represented by %f +1§ +¢sin § = fsinut where 8 is the angular displacement
attimet.gisthcacceleraﬁondmtowity.1iuhedmpingmnstm,[isthc
mplitndcofd)edriviqﬁxcenndwismemgnhrﬁeqnmcyofthedriving
force. For each set of parameters {v, f.w), the equation can be integrated
nnmerically. A plot of 6 against ¢ will be a smooth curve, if the system is
periodic. When the system enters the chaotic regime, the time dependence
of § shows an irregular pattern. For example, when f exceeds some threshold
value, the pendulum shows a chaotic bebaviour.

Another method to detect chaos is to consider the power spectrum

Plw) = |x(w)|?, where 2(w) is the Fourier transform of the signal z(¢). i.e.,

tw)=jm [ T et (1.3)

For periodic motion, the power spectrum shows only discrete lines at
the corresponding frequencies. But when the system becomes chaotic, the
powor spectrum appears as a broad continmous pattern.

5



A third criterion for chaos is to observe the autocorrelation function.
This function measures the correlation between subsequent siguals. A constant
or an oscillatory behaviour of the correlation function implies that the system
is periodic. Chaotic behaviour manifests itself through a rapidly decaying

correlation function

Another check for the preseace of chaos is to investigate the Poincaré
return map. This map represents the intersection of the orbits in phase space
with a given plane. For chaotic motion, the Poincaré section shows space filling
points. But, periodic motion produces only a finite number of points in the

Poincaré section.
1.4 Quantitative Measures of Chaos.

Lyapunov characteristic exponents, Invariant measure, Aumcorre_la-
tion function, etc. are the major mathematical measures adopted to determine
how chaotic a system is. For completeness, we give a brief definition of each

of these guantities.
1.4.1 Lyapunov characteristic exponent

The Lyapunov characteristic expooent (L.C.E) is a measure of the
senxitivity to initial conditions [4]. It gives the exponential rate of divergence
of the separation between two nearby poiots, as the system cvolves in time. A

formal expression for it can be obtained as follows.



Counsider a one dimensional mapping z,,, = f{z,) on an interval of
the real axis. Let ¢ be a small change iu the initial value £, and ¢, be the
corresponding change in the n®* iterate Thus, £, = f™(%o) and r. + €. =
f*(zo+¢a). A Taylor serics expansion gives, 5. +¢€x = f~(zo)+eof™ (2.)+ O{<}),
where the prime denotes differentiation w.r.t z. Neglecting higher powers of
0. 2. + €, = £, + €& f~ (7.). Using the chain rule of differentiation. we have,

£ () = J'(2a) P (2) ftm2)-nerere F (2ao1)
' n-
ie, [ (z,) = H !,(31)
inl)
n-1
or, len| = |eg| Illf'(ws)l = |eg| ™™,
where,
l n-1 1 n-1 ,
A= ;hsglf(s.)l = o 2 loslf (2)]
The limiting value of ), as n tends to oo gives the Lyapunov Characteristic
Exponent, X i.e.,
n-1
A= lim ~ 3 log|f (=) (14)
=0

Thus, ¢* represcnts the average factor by which the separation between ucarby
points gots stretched after one iteration. Clearly, A measures the rate of expo-
nential separation of nearby orbits iu phase space. If A is negative, the system
is periodic. A positive value of A implies that the system is chaotic. Thus, in
n sense, it acts as an order parameter in the transition of a nonlinear system
from regular to chaotic state. A higher dimensional system has a spectrum of

7



Lyapunov exponents, one for rach dimension. If at least one of the L.C E's is
positive, the system is chaotic. For quasiperiodic motion, all the L.C.E’s are
negative of zero. If the spectrum of Lyapunov exponeuts can be determined.
the Kolmogorov entropy[5] can be computed by summing all of the positive
Lynpunov exponents and the fractal dimension may be estimated using the
Kaplan-Yorke conjecture}6]. The Lyapunov exponent defined above is the first
order Lyapunov exponent. Higher order Lyapunov exponeats can be defined
by generalizing this definition(78)].

1.4.2 Invariant measure

The invariant measure, p{z), associated with a one-dimensional map,
88y, 2.,y = (Za), . € (0,1). n =0,1,2,.., is the probability distribution of
the iterates over the interval of mapping. Thus, p(x)dz is the fraction of the
iterates in the interval (z, z + dz) and as such, p(r) can be defined as

N N
plz) = Jim %,’z_:.«x-» z) = fim },g bz - f(za)] (1.5)

This quantity represents the density of the iterates of the map f{z). The time
average of a function ¢(z) can be converted to an average over the invariant

Imcasure as,

o1& =
lim &S ol @)l =_ [ drolz)é(z)

o1&
M—ﬁgﬂﬂ) =22
The iuvariant density p{x) satisfies the Frobenius-Perron integral equation,

oy} = [dzp(z}oly - fz)]- (1.6)

8



This equation can be used to find the value of p(x) for various values of , if
the map function f(z) is known|2|. It can be solved exactly only for certain

special cases.
1.4.3 Autocorrelation function

Consider the mapping, ., = f(z,), =, € (0.1). Starting with a sced
value xg, the map generates a sequence of iterates,
{zo. 21 = Azo), 22 = f(z)) = [0}, =3 = f2(20), ... Tn = f"(z0). ...}. The

mean or average value of the iterates is given by

Om) = im %);z,z.,_- @y (1.7)

Thas, C(m) gives a measure of the extent to which the iterates m steps apart
(i.e., 2, and z,,..) are correiated. The correlation function can be expressed

in terms of the invariant density p(z) of the map a5

Clm) = [ deptz)ef(z)~ | [ dzpia)z T (1.8)



1.5 Mathematical models exhibiting chaos

In this section, we discuss some of the typical one dimensional maps
that display chaotic behaviour.

1.5.1 Bernoulli shift map

The map is expressed by 1,,, = o(x,) = 22,modl, i =0,1.2,3. ... (1.9)

Figure 1.1 is a plot of o(z) versus z.

T
|

0.8

1

0.6

o (x)

04

I

!
2

0.2

007 ‘ . ‘ .

Fig. 1.1 A plot of the Bernoulli shift map, given by equation (1.9)
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Repeated iterations of an initial value £, gencrates the sequence,
{z; = o(za), T2 = o¥(%p). 23 = 0°(2g), .... T, = 0"(2g). ...}. The muxlular
arithmetic involved will confine all the iterates into the unit interval. Therefore
we nced consider only ¢ < 1. Many important features of one dimensional
chaotic maps can be deduced from the properties of this map. Some of them

are given below :
(1). Stretching and back folding property.

Any point z¢ < 1/2 becomes stretched by a factor 2 after each iters-
tion. i.e., o{xe) = 225. Now for r > k where 2%z, > 1, the iterate z, is folded
back to (0,1). (since, o{z) = 2z — I for z > 1/2). This stretching and back-
folding property gives rise to a double valued inverse for points on the map.
The complex behaviour of the iterates is a consequence of this property.

(2). Sensitive dependence on initial conditions.

The Bernoulli shift map can be used to illustrate the sensitive depen-
dence of a chactic system on the initial conditions. Let us use the bisary
representation for points z in (0,1). Thus, z = 0.¢ 444y ..... where each a, = 0
or 1. Then o{z) = 2z if a; = 0 and o{z) = 22 — 1 if aj = 1. Therelors,
o(z) =0.aza3ay..... Thus the action of ¢ on the binary number x is to delete
the first digit and shift the sequence to the left. The map is therefore known

as Bernoulli shift map.



Consider two points x and = very cluse to each other so that they
differ only in the n** and higher digits in their binary representation. Let
z=0.a,a20;........ay, ... where each digit «, is cither zero or unity. Then, £' =
0.2,2;05......q,... Alsv a, # a_. During each iteration, the first digit is deleted
and the sequence is shifted to the left by one digit. Repeating the process n
times, we get, 0*(z) = 0.6, 0n.1 Gay3......aA0d 0*(z) = O.a_ a,,q_,,...... Thus,
the n** iterate differs in the first digit itself. Hence, the longtime behaviour of
the iterates depend very sensitively on the initial value. A very small error in
specifying the initial value can lead to an entirely different final state. This
extreme sensitivity of chantic systems to initial conditions leads to a completely

(3). Ergodic behaviour

Any point z in (0,1) can be approximated arbitrarily well by a finite
sequence of binary digits 0 and 1 as (0.4, a;4;....a,) upto a difference of ¢ =
(1/2)". Now, the action of ¢ on x is to delete the first digit and shift the
‘decimal’ point to the right by ooe digit. Thus it follows that o'(xo) { for
i =1,2,3....} of an arbitrary irrational onmber o € (0, 1) approach = upto an
accuracy ¢ infinitely many times. i.c., the iterates are distributed ergodically in
(0.1). This resembles the ergodic theorem in statistical mechanics; ie., given
enough time, any point in the phase space is visited by infinitely many phase
points in course of time. The ergodic theory says that time averages can be

replaced by space averages, when the motion is ergodic [9).
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1.5.2 Triangular map
This is a one dimensional map defined by
TNz)=a{l -21/2-7|}; 0<z < L. (1.10)

The map function is sketched in figure 1.2,

1 .o 1 1 v L] N 1 7

08- ”
. P

T(x)

0.4

0.2

0.0

Fig. 1.2 The map defined in equation (1.10), for a = 0.75

The control parameter a can be varied from 0 to | so as to keep the iterates
within(0.1). For a < 1/2, the iterates will eventually settle down at the
origin; i.c., the origin is a stable fixed point of the map. For a > 1/2, the map

generates a chaotic sequence of iterates.
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1.56.3 Logistic map.

A coe dimensional quadratic map that bas been studied extensively is

the logistic map(1,10,11}:

Zuot = flFa) = (1 - 2o)i za € (0.1 0 < p < 4. (1.11)

The map function is plotted in figure 1.3.

1.0}

Xn+l

Fig. 1.3 The logistic map defined in equation (1.11). The control parameter p
iy taken as 3.
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In the investigations of the qualitative properties of dynamical systems, whether
they are mechanical devices, electrical circuits, chetical reactions or any other
kind, the asymptotic behaviour plays a central role. By asymptotic behaviour,
we mean the properties that prevail when time t — o, or, fur all practical
pwrposes, when t is sufficiently large. Asymptotically, the system may con-
verge tn an equilibrinm point, a periodic motion, a guasi-periodic motion, or
it may have a completely erratic behaviour, commonly designated by the term
chaotic motion. The asymptotic behaviour of the iterates of the map depcads
crucially on the value of the control parameter g. For small values of p, the
iterates show a periodic behaviour. When u exceeds a threshold value, the
system exhibits a chaotic behaviour. At g = 4, the map shows fully chaatic

behaviour. The logistic map can be written in another form as
vi=1-af; ya€(-11);0<a <2 (1.12)

These two representations are equivalent and one can switch over from one

form to the other by means of the following transformation:
E, = (”’/4 - ljz)yn 1 1/2i a = y(p/" -_ 1/2) (1.13)

The reverse transformation is:

1-k& k
Iy +

@ 2a

1
Un = ;ﬂ=l'—k,k=:t\f1+4a (1.14)

Throughout this thesis, we shall adhere to tbe representation of the logis-
tic map oo the unit interval. If z, somehow falls ontside the interval (0,1).

subsequent iterations diverge towards -aa. Ag is clear from fig 1.3, the map

15



has an extrermun at £ = 1/2 which is a second order of maximum, (Order of
maximum is the arder of the highest non vanishing derivative at the point of
ruaximum. In other words, it is the order of the leading term in the Taylos
senes expansion of the function around the maximum.) The maximum value
of the function = p/4. Hence the maximum permissible value for p is 4 and
the minimum value for g = 0. The map is a unimodal map. An important
feature of the map is thal il is non-invertible. Thus, given z,, the next itcrate
Za.) is uniquely determined by z,. But the reverse is not true. A given point

r can have two pre-images.

In order to illustrate the sensitive dependence of a chaotic system on
initial conditions, let us consider the logistic map at s = 4. The transforma-
tion z. = sin’(x0,) gives an explicit solution 8, = 2*Gymod]l. Let the initial
valuc & be changed by a very small amount e. Then 8, is changed by an
amount 2"¢ = gexp{nlog2). Thus the separation between two initial values
gets amplified by a factor exp(n log 2), after a ‘time’ n. The rate of exponential
separation = log2 (which is the Lyapunov characteristic exponent) is positive.
Thus there is chaos. Let us, for the sake of convenience, express & in binary
notation. Let 6 = 0.10100011.... Then 8, = 0.0100011..., & = 0.100011...,
8y = 0.00011...etc. Thus, the iteration scheme is to delete the first digit and
shift the remaining sequence to the left. Hence, the value of 8, depends on the
n*® and higher digits of 8. When n is very large, 6, depends very sensitively

on the precise value of &
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Now, there are a pumber of situations in which one dimensional itera-
tive maps, such as the logistic map, provide a convenient mode! for the system
bebaviour |12,43]. The simplest example comes from eculogical models. Cou-
sider the case of a seasonally breeding insect population in which generations
do not overlap. The population .., in the (n + 1)™ generation is a function
of the population z, in the n** geueratiou. i.e., z,,, = fz.. ) where u rep-
resents some control parameter (availahility of food, fraction of area available
etc). The logistic map can be used to represent a strongly damped kicked
rotator(l]. Again, such une dimensional pon-invertible maps can also arise as
the Poincaré map of a highly dissipative low. The Poincaré section of a 3-
dimensional flow is in general, a 2-dimensional surface. Now, if the dissipation
is very large, leading to & rapid contraction of areas, then the Poincaré section
can practically be appruximated by n set of points along a curve. Defining a
point X for every point on this curve, the time evolution of X can be reduced
to a one dimensional non-invertible map of the form X,,; = F(X,). The logis-
tic map is only a particular form of this one dimensional difference equation.
It is usually taken as a representative of the quadratic family of maps. The
logistic map serves an example to study the bifurcation phenomenon and the
routes to chaos in one dimensional unimodal maps.

17



1.8 Routes to chaos in one dimensional maps.

One dimensional endomorphisms defined on an interval of the rval
axis have been used in modelling a wide variety of nonlinea: systems(13,14|.
They are usually simple enough for analytical treatment and at the same tune
not very time consuming for numerical studies. They provide a coaveniut
mode! to explore the dynamics of many practical systems like laser cavitics(1],
dectronic circuits, neural networks etc. Many important jeatures like the
scaling behaviour and the universality properties of higher dimensional flows
are shared by these mappiugs as well. Various routes to chace have been
observed in dissipative deterministic systems. These routes differ in the way in
which the signal behaves before becoming chaotic. In this section, we shall give
a brief review of the passible routes w chaos in coe dimensional unimodal maps;
viz., period doubling, intermittency, crises etc. In particular, the Feigenbsum
sosnario and the univwral properties of one dimensional quadratic maps are
discussed in some detail. We choose the logistic map given by equation 1.11
as a ific example.

1.8.1 Period doubling phenomena.

Given the nonlinear dynamical system z,.y = f{z,,). our interest
is in the asymptotic solutions. Starting with an initial value z;, the map
function is iterated a large number of times. The longtime bebaviour of the
system is determined by the iterates z,, after the initial trassients bhave died
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out. These transients, in gencral, depend on the seed value ). The iterates
may cunverge to a fixed point, a periodic cyele or a chaotic attractor, depending
on the value of 2. As the ‘knob’ p is vared, the nature of the solution changes.
The system undergoes a transition from regular, periodic cycles to a state of
erratic behaviour or vice versa. Different routes to chaos have heen identified,
the most prominent among them being the period doubling route. In the
period doubling process, a fixed point undergoes a bifurcation and a 2-cycle
is formed, when the rontrol parameter crosses a particular value, say, u;. The
2-cycle behaviour continues for some raoge of values of ¢ and then it bifurcates
to a 4-cycle at g = uy When p is continuously varied, the 4-cycle bifurcates
to an R-cycle at pu = py; and so on. The period of every cycle gets doubled at
definite values of 1. These period doublings accumulate at a criticsl value of

the system parameter. Beyond this critical value, the system exhibits chaotic

behaviour.

For the mapping #,;) = f(£.), a fixed paint x* is defined by f(z') = ="
A fixed point z* ig stable, if sinall perturbations on it eventually die out. The
neccessary condition for this is | f'(z') |< 1. If | £(2") |> 1, the fixed point
is unstable. If | f'(x*) |= 1, the fixed point ig said to be “marginally stable”.
Fixed points and their stability properties play a vital role in the theory of
mappings, as they contribute a definite structure for the Uajectorics in theis
neighbourhood. The stable fixed points (2, z}, 3,...,7) of the n'* iterate

of f{z) constitute an n-periodic cycle of f(z). The elements of the n-cycle are
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such that z5 = f(z}); = = fl=3); zi = A=k o = flon))i &) = fl)).
Thus every element z; of an n-cycle of [ satisfies f(z;) = z;. An n-cycle ix
stable if the magnitude of the slope of the n'* iterate at the cycle elemcaots is
less than unity. A given cycle {£}} of period 7 is said to be superstable if the
slope of the n®* iterate of the map at the cycle clements vanishes. Thus. by

the chain rule of differentiation, the condition for superstable cycles i
[1f(z)=03i=123,..... n. (1.15)
i

This implies that the cycle contains the critical point, because it is the only

point where f'(z) = 0.

For the logistic map defined in equation 1.11, the fixed points are
" =2 0aund 3* =1 1/p. Clearly, 2* = 0 in a trivial fixed point whereas the
second fixed point makes sense oaly if p > 1. Since f(z) = u(l - 2x), we
observe that z* = 0 is stable for values of u ranging from 0 to 1. Beyond
g =1,z = 0 becomes unstable. The fixed point x* = (} ~ 1/u) is stable for
1 < p < 3. Thus we sec that the iterates of the logistic map settles down to
the zero fixed point for all values of < 1 and to a non-zero fixed point for
1 < 4 < 3. These fixed points are also known as atiractors, since the sequence
of iterates {z,} generated from any initial point x, € (0, 1) couverges to these
points. Note that the slope of f(z) at the first fixed point is p and that at the
second fixed point is (2 — a). Thus, when the control parameter is varied from
0 to 3, the magnitude of the slope is always less than unity. This casures the
stability of these fixed points. Whea u = 3, the slope becomes equal to -1.
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If 4 is slightly greater than p, = 3, we get a 2-cycle {x}.x3}. The system is said
to undergo the first period doubling. This 2-cycle is independent uf. Zg, hut
depends only on p. In other words, it is an attractor of period 2. The stability
propertics of the 2-cycle are determined by the slope of the secund iterate,
f}(x) at =} and z}. Clearly, z; = f(z;) and =} = f(z3). Thus, f*(=}) = =} and
fi(z3) = =3 Again, f7(£}) = [(z})f (z3), by the chaiu rule of differentiation.
Likewise, f2'(23) = f(=})f (x3). Therefore, the second iterate has equal slopes
at both the cycle elements. (This is true for all n-cycles). The 2-cycle behaviour
continues for some range of values of y. At p = pj. the slope of f3(x) at the
cycle clements also becomes -1. The 2-cycle then bifurcates into a 4-cycle
whose clements are the stable fixed points of f*(z). This process of period
doublings repeats ad infinitum. The parameter values for successive period
doublings accumulate to u,,. Beyond this critical value, the system exhibits
chaotic behaviour. The value of y,, for the logistic map has been found to
be 3.56994555... The mechanism of period doubling bifurcation can easily be
assimilated by a graphical analysis{18]. At this stage, a fandamental feature of
all unimodal maps on an interval may be noted. Guckenheiter et al.,{4] bas
shown explicitly that maps with one critical point can have at most one stable
attractor, to which all initial points in the interval ( excepting a set of measure
zero) are attracted asymptotically. Thus, if there exists a stahle atiractor
of period k for the logistic map, almost all points in (0,1) will cventually be
attracted towards it. The transient time depends, of course. on the initial value

chasen. A plot of the asymptotic values {x,} against the control parameter
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is known as 4 bifureation diagram of the map. Bifurcation diagramns are very

useful in analyzing the dynamics of nonlinear systems. It gives an averall view

of the behaviour of the system, as the control parameter is vaned. One such

diagram 1s given in figure 1.4.
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Fig. 1.4 A bifurcation diagram of the logistic nap. A sevd value of 0.6 was

used for iteration. For each value of y, the first 1000 iterates were left for

transients and the pext 500 points were plotted against ;
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It has been shown by Feigeubaum([15] that certain universality proper-
ties are associated with the period doubling phenomeon. Applying the renor-
malization group analysis, he has shown that this route to chaos via an infinite
mqumofpitchhkbiﬁrutiombcharacteﬁwdbytmumsﬂntsnmdb
which are independent of the particular form of the map function. To under-
stand the universality theory, we note the following facts:

1). There exists discrete values of the parameter, say, fi1. Hz. 3, .- His B 1o oo
at which the periods of the cycles get doubled. For g < p < pias1, there exists

a stable 2*-cycle {z},x},%3,.... 2} } such that
d » '
| £ @) lomy = [T (=) 1< 15 £ =1,2.3,... (1.18)

2). At g = py,y. all points of the 2*-cycle lose stability and a pitchfork
bifurcation takes place leading to an attracting cycle of period 2**!. These
cycle clements are the equilibrium points of f3""(2); ie.,

£ )= o (a) k=0,1,23..... (1.17)

The main ingredient of the theory is that the mechanism by which f2* under-
goes period doubling at piy, is the same as the one that /"' uses to double
the period at uu.2. This observation is of paramount importance in that it
connects the mechanism of subscquent bifurcations to a genersl law of func-
tional composition. The elements of every periodic cycle are the stable fixed
poiots of the corresponding iterate, with identical slopes. At every bifurcativu
point j1g, . the slope of f2' at its cycle elements becomes equal to -1.
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Consider a superstable cycle of period 2*. Clearly, the cycle conlains
x = 1/2 as one clement. Let d, denote the separation between = = 1/2 and
its nearest clement. But the element nearest to z = 1/2 is the (2" ')}* iterate
of z = 1/2 (These two points were coincident, before the n'* period doubling

separated them out), Thus,

d,, — fzn I(1/2) - 1/2 (113)
Applying a co-ordinate translation from # = 1/2 to z = 0, we get.
dn — f‘hrl(o) (1.19)

It can be seen that the distance d,, is reduced by a constant factor during
successive bifurcations. Also the nearest element alternates from one side of
the critical point to the other. (The bifurcation diagrams can be used to verify
these). Thus the distances d,, scales down as,

dy (1.20)

= —a
dnil

Repeated application of this result gives,

dl = Jij&(-ﬁ)“d..'.] (1.21)
Using equation (1.19), we get,
,‘li%(—u)"fr(ﬂ) =d, (122)

This implies that the sequence of rescaled iterates converges to a limiting
function, say, g,(z). i.c.,

r

aifz) = lim (~a)"f*(

B (....n)n

) (1.23).
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Likewise, we can form a whole set of functious g;(z) corresponding to each of

the superstable cycles. These functions obey the recurrence relation,
o.-1(z) = —aglo —)] = Tu(=z) (1.24)

where T is called the doubling transformation. The set of functions g,(r)
converges to a function g(z), as § tends to oc. Clearly, g(z) is a fixed point of

the doubling operator T in the function space. Thus,
o) = Ty(=) = ~agle(—)] (1.25)

It can be seen that this equation bolds equally well for cg{z/c). Thus, the
repormalization theory does not deal with absolut scales. We can, therefore,
arbitrarily fix g(0}) = 1. Thus, g(0) = —ag|g(0)] = 1. There exists a unique
smooth solution for this equation, depending on the nature of the maximum

of g(x) at z = 0, which gives, a = 2.502907875... for all quadratic maps.

We now consider the scaling relations for g. From the bifurcation di-
agram, it is obvious that the parameter values p; for successive bifurcations
converge geametrically to a finite value g, at which the iterates beonme ape-
riodic. The value of 1, for the logistic map works out to 3.56994555.... The
parameter values for successive superstable cycles also converge at the same
rate. Denoting these values by A;, A;, Aj. ..As4. ... the scaling relation can

be written as
Ay - A, 6° (1.26)
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Since = = 1/2 is an element of every superstable cycle,
AY1/2) =1/2; k=1.2.3,... (1.27)
Under a co-ordinate translation to £ = 1/2, one obtains
£Y0) =o. (1.28)
A Taylor expansion of fy(x) around f,_(z) gives

Fale) = fae) + (A - AR, (1.29)

Repeated applications of the operatoe T to this equation show that & is the
only relevant (> 1) eigen value of the lincarised doubling operator T and is
therefore universal. The convergenoce rate § for the quadratic family has been

estimated as 4.6692016.

The main results of the universality theory for the period doubling

route to chaos can be summarised as follows:
1) The distances d,, of a poiot in a 2*-cycle closest to the critical point, scale
dowm in successive bifurcations as

lim -2~ = —a (1.20)

jadineg d-ﬂ

2) Existence of a geometric convergence for the parameter valucs for successive

bifurcations. ie.,

lim B2 ¥at _, (1.30)
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Thus we have,

Pn= o - 8 cOnstant 87" forn > 1. {1.31)

The universality theory developed by Feigenbaum suggests that maps can be
grouped into various universality classes; Each class is characterized by defi-
nite values for @ and 8 (depending on z, the order of the maximum). The high
convergence rate (8 == 4.669) gives serious predictive power to the universality
theory. Thus, if a period doubling system is investigated upto four or five bifur-
cations, its behaviour throughout and even beyond the period doubling region
can be predicted with a high degree of accuracy. The scaling constants associ-
ated with the quadratic maps appear to be observed and measured in relatively
complicated dynamical systems(19,20]. Related scaling constants correspond-
ing to the circle map have also been observed experimentally[21]. Studies
related to phase transitions avd critical pheaomena have given s now meaning
to the concept of universality. Many mathematical models and natural phe-
nomena can be categorized into classes characterized by similar behaviour in
their parameter dependence. The sudden change of the system at a certain
transition point can be characterized by only a fow variables. Each class will

bo characterized by certain set of universality constants.



1.8.2 Intermittency

The phenomenon of Intermittency(16] offers another route to chaos in
nonlinear systems. In this case, the signal alternates randomly between long
periodic phases and relatively short irregular bursts. The oumber of chaotyc
bursts increases with an external parameter, until finally, the system shows
a completely chaotic behaviour. This has been observed, for example, in the
Lorenz model(1], when the control parameter r exceeds some critical value r,.
For r < r., the Poincaré map has got a stable fixed paint. For r > r,, the map
has no fixed points and the iterates wander around erratically. But neur the
original fixed point, the trajectory slows down and a large oumber of iterations
are needed to escape the channel of regular motion. This type of intermittency
is known as Type-1 Intermittency. The mechanism responsible for this is an
fnverse tangent bifurcation in which a stable and an unstable fixed point
collide and disappear at r = r.. Other prominent types of intermittency are
Type-2 and Type-3 intermittencies. Experimental observations of the inter-
mittency route to chaos have been found in a variety of experments including
Rayieigh-Benard convection(23,24)], nonlinear oscillators[25,26], and Belousov-
Zabotinsky reactions[27,28]. As in the case of period doubling bifurcations,
there exists universality relations for the Intermittency route as well. Exact
solutions for the functional renormalization group equation for intermittency

have been obtained(22].



1.6.3 Crises.

The phenomenon of crises arises out of the collisions between a chaotic
attractor and a coexisting unstable fixed point or periodic orbit[17]. These
ocollisions produce sudden changes in the chaotic attractor. For example, it
occurs in the period-3 window of the logistic map, where three stable and
three unstable fixed points are genertated by tangent bifurcations{l]. Almost
all sudden changes in chaotic attractors are due to crises. Similar crises occur

in two and three dimensjonal systems and also for higher dimensional flows.
1.7 Scaling relations and control of chaos

Recently, a lot of interesting research activities are centered arouad
controlling the chaos in a nonlipear system[29-38]. That chaos can be sup-
pressed is of course a highly desirable feature in many practical situations like
lasers, plasma confiuement, particle accelerators and electronic gystems. Var-
jous techniques like adaptive control [33,34], feedback control[38], parametric
perturbations{32,35), addition of external noise{30}, external barmonic pertur-
bation{36] etc. bave been adopted for the control of chaos. Most of these
methods presupposes a detailed knowledge about the dynamics of the system.
A knuwledge of the behaviour of the system pear the transition point to chaos
as well as the scaling behaviour of the characteristic constants near the onset

of chaos are gquite useful in this context. The spectrum of Lyapunov exponents



provides a quantitative measure of the sensitivity to initial conditions and is
the most useful dynamical diagnostic for chaotic systems. As such, the scaling
relations of the Lyapunoy characteristic exponent near the transition point to
chans are very useful in developing suitahle control algorithmns. Huberman and
Rudnick([39] have shown analytically that the Lyapunov characteristic expo-
nent (A) for maps undergoing the Feigenbaum scenario of bifurcations follow
the scaling relation, A = Ag{a - a,)", where ) is a constant of the order of
unity, a., is the value of the cootrol parameter a at the period doubling ac-
cumulation point and ¥ = (In2/In §), § being the Feigenbaum constant. This
relation sugpests that the scaling index » is different for maps belonging to
different universality classes. However, a detailed investigation of the scaling
behaviour of A pear the onset of chaos for one dimensional maps of different
order of maxima has not been made. We have established numerically that the
Huberman-Rudnick relation is true for all onc dimensional maps that exhibit
the Feigenbaum route to chaos. The dynamics of one dimensional maps can
be controlled by changing the value of an extra parameter introduced into the
system{40-42]. In this context, it will be worthwhile to investigate the dynam-
ics of a combination map obtained by combining two one dimensional maps.
Such combination maps possess two cootrol parameters. Heace it would be
pussible to have a desired dyoamics for the system, by proper choice of cae of
the parameters for each value of the other parameter. A study of the bifurca-
tion phenomena and the scaling relations of combination maps can provide



certaln important and interesting results that can be used advantageously for
controlling the dynamics of the system. Again, the preseace of a discottinuity
at the extrermm of a map produces severe changes to the bifurcation phe-
nomenon. Most of the studics reported for discontipuous maps are pumerical
in pature. Ap analytical study of the bifurcation phepomenoa of a discontin-
uous logistic map will therefore be useful in understanding the dynamics of

discontinuous maps.

We present the results of a combined analytical and numerical in-
vestigation on combination mape in chapter 2. The acaling relations of the
Lyapunov exponents of one dimeasional maps as well as those of combination
maps are discussed in chapter 3. The bifurcation phenomena of a discontisu-
ous logistic map is dealt with in chapter 4. Chapter 5 summarizes the major
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2. Combination Map.

In this chapter, we study the dynamics of combination maps. A combina-
tion map is obtained by combining two one-dimensional maps. These maps
have two control parameters that determine the dynamics of the system. This
leads to a possibility of controlling the behaviour of the system by a suitable
choice of the parameters. An analysis of the dynamics of combination maps
will therefore be relevant in the context of control of chaos. Another motiva-
tion for studying the combination map is to see whether the map still has all
the characteristics of the constituent maps. The scaling behaviour of the Lya-
punov characteristic exponent of the combination map is of particular interest,
as we want to check whether the combination map follows the same scaling
behaviour as that of simple one dimensional maps or not. The structure of
the chaotic band and its bifurcations have got a vital role in determining the
scaling relations. A detailed analysis of combination maps can give certain
important informations that are useful for taming the dynamical behaviour of
many nonlinear systems. We have found that the band bifurcations inside the
chaotic regime of the combination map is quite different from that of simple
maps. The behaviour of the Lyapunov characteristic exponent of the system
near the transition point to chaos is significantly different from those of the
constituent maps. The bifurcation phenomenon of a combination map depends

on the parameters of both of the individual maps. By suitably tuning these
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parameters, one can have any desired periodicity for the system. Likewise, it
is possible to have a chaotic behaviour or periodic behaviour by proper choice

of the system parameters.

The combination map can be formed from two maps chosen either
from the same universality class or from different universality classes. These
two types of combination maps show remarkable differences in their bifurca-
tion structure. We consider these two cases separately. Both numerical and
analytical investigations were carried out to analyse the bifurcation phenom-
ena of the combination maps. A linear stability analysis of the fixed points
and the parameter space plot of the system are presented. The variation of
the Lyapunov characteristic exponent of combination maps with the control

parameters is included in the next chapter.

2.1 Combination of two maps belonging to the

same universality class.

The sinusoidal map is combined with the well known logistic map to

get a combination map in the form,
Tpr1 = f(zp, p, A) = px,(1 — z,) — Asin(rz,) (2.1)

This map is a two parameter one-dimensional map. The control parameters

p and A are so chosen as to confine the iterates {z,} within the unit interval

(0,1) of the real line.
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The constituent maps fl(‘:vn,u) = pz,(1 — z,) and fr(z,, A) = Asin(nz,)
belong to the quadratic family (order of maximum, z = 2). Both f; and f,
exhibit the Feigenbaum’s period doubling route to chaos and are characterized
by the same values of a and 8. The chaotic regimes of the individual maps
also look alike. On approaching the period doubling accumulation point ( fe
or A, ) from the fully chaotic limit, the chaotic bands undergo an infinite
sequence of band splittings. The band bifurcations in the chaotic regime looks
like a mirror sequence of the pitch-fork bifurcations in the periodic regime, and
has the same convergence rate é. In short, both the constituent maps have
similar qualitative and quantitaive behaviour. The scaling properties of the
individual maps are also the same. But, it is seen that the structure of the

chaotic bands of the combination map is entirely different from those of the

individual maps.
2.1.1 Analysis of the combination map.

The combination map is shown in figure 2.1, for different values of
A, keeping p = 4. The map function has an extremum at z = 1/2 which
is a second order maximum for A varying from (u/4 — 1) to (2u/7®) while
it is a minimum for (2p/7?) < A < (p/4). Clearly, z = 1/2 is a point
of inflection when A = 2u/n?. Consequently, the map is one-humped for

(#/4—1) < A < (2p/7*) and two humped for (2u/7?) < A < (p/4).
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Figure 2.1. The combination map defined in eqn.(2.1) for u = 4. The

curves correspond to A = (p/4—1), (u/4—1/2), (2u/7*), (n—1)/m and (u/4)

in that order from top to bottom.
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This map possesses the property that it goes over from single humped to double
humped nature, by continuously varying one of the parameters (A in this case).
Most of the interesting phenomena like universal indices and sequences can
be traced back to the one humped nature of one-dimensional maps[13]. The
dynamics of two humped maps is entirely different from that of one humped
maps. A period doubling bifurcation wi_th a convergence rate different from
the Feigenbaum rate has already been reported for certain one dimensional
transformations with two extrema[57]. The bifurcation scenario and the scaling
behaviour of two humped maps are, in general, quite different from those of
the Feigenbaum maps. Hence, it would be stimulating to investigate what
happens if the combination map has a double hump. Such double humped
maps can arise in the Poincaré sections of higher dimensional flows. For any
chosen value of g, the minimum value for A is (/4 — 1) at which f(z,,p, A)
becomes equal to 1. The maximum possible value for A for a given value of
¢ is p/4 and this occurs when the ordinate of f(z,,pu,A) at x = 1/2 becomes
equal to zero. Thus the parameter A must lie between (/4 — 1) to (1/4) so

as to keep the iterates within the unit interval (0,1).

2.1.2 Fixed points of the map.

*

The fixed points of the map are the solutions of f(z*) = z*. i.e,

pz*(1 — z*) — Asin(mz*) = z*. Obviously, one of the fixed points is ] = 0.
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The second fixed point is given by

Asinmz, _1 (2.2)
5

p(l —x3) —
The slope of the map function is given by f'(z) = u(1—2z)— Arcoswz. Thus,
the zero fixed point will be stable for all values of A ranging from (p — 1)/=
to (0 +1)/7. But, A is vari'ed only upto (u/4). Thus the zero fixed point will
be stable for all values of A > (u — 1)/m. The non-zero fixed point, z; will
be stable or not, according as f'(z3) is numerically less than unity or not. As

the parameter A increases from (x/4 — 1) onwards, the map function f(z) gets

lowered and as a result, z; — ]} = 0. In the limiting case,

lim A = (4 - 1)/ (23)

z3—0
Thus, A = (p — 1) /7 gives the equation of the line representing the zero fixed
point in the (u, A) plane. Hence, the slope of the line representing the zero

fixed point on the parameter space (p, A) should be equal to (1/7).
2.1.3 Numerical investigations.

Numerical analysis of the system were carried out by keeping p at
various fixed values. To start with, u is kept at a value =4, corresponding
to the fully chaotic state of the logistic map. The parameter A is increased
in steps of 0.0Q1 and the bifurcation structure is analyzed. Fig.2.2 shows a
bifurcation diagram of the combination map, in which the asymptotic values
z, of the iterates are plotted against the parameter A, keeping /1 at a value

equal to 4.
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Figure 2.2 Bifurcation diagram of the map in eqn.(2.1). With p = 4

and A = 0, the system is fully chaotic. As A is slowly increasesd, periodic

cycles are traced in the reverse direction.
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The system retraces the entire period doubling route to chaos in the reverse
order, as A slowly increased. Finally, it settles down to a stable fixed point
(1-cycle) for A > 0.2435. This is noﬁ quite surprising, since the effect of the
sinusoidal term is to reduce the height of the extremum at £ = 1/2. However,
this is in contrast with the behaviour in certain continuous systems which are

reported to go back to periodicity only through intermittency(32].

In the one-humped region of the combination map, the Schwarzian
derivative of f(z,, i1, A) is negative throughout the interval (0,1). This implies
that period doubling is generic in the system([1]. The bifurcation diagram gives
the approximate values of the parameter A for successive bifurcations. From
further blow-ups of the bifurcation diagrams near these values, the parameter
values corresponding to successive period halvings can be obtained more ac-
curately. We now compute the periods numerically, near these points. In this
way, the bifurcation points are obtained to a high degree of precision( of the
order of 1076). This procedure is repeated for various fixed values of y ranging
from 3 to 4. The parameter A is varied from (z/4 — 1) to p£/4 in steps of 0.001
in each case, and a series of bifurcation diagrams are drawn. In all these cases,
reverse period doubling is observed, when the parameter A is increased. If u
is kept in the chaotic regime of the logistic map (i.e., 4 > pu), the system can
be brought to a periodic state of any desired periodicity by applying suitable
positive values for A. Likewise, if pu lies already in the periodic regime of the

logistic map, the system can be taken to chaos by applying suitable negative
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values for A. Thus the sinusoidal term offers an opportunity to have a control
over the dynamics of the logistic map. Detailed numerical investigations are
carried out by slowly and carefully varying the parameters A and g and a full
parameter space representation is obtained. Table 2.1 shows the values of A
for successive bifurcations corresponding to various chosen values of u. Fig.2.3
is the parameter space plot for the system. The bifurcations of the various
periodic attractors to the corresponding half periodic ones occur along parallel
lines. (Only, a few of them are shown in the figure). For each value of p, the
Lyapunov characteristic exponent is calculated by increasing A in small steps.

The L.C.E () is given by the formula,
1
A= lim NZ In|f(z;)| (2.4)
This can be used as such for computing A[12]. Since round off errors may
possibly build up in a computer, an upper bound for N is to be fixed. (This
will lead to some truncation error, of course.) In our computations, N is taken
as 10000. The value of A, at which transition from chaos to order occurs
is spotted out as that value of A at which A becomes zero and after which
it remains negative throughout. The transition from chaos to order and vice
versa occurs along a straight line, parallel to the bifurcation lines. The thick
- line shown in fig.2.3 represents A, for different values of u. The chaotic regime

is indicated by the shaded portion.
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Table 2.1 Parameter values for successive bifurcations, for various p values.

p | Amin Ao | AI6 | A8 A4 A2 | Al A0
3.0 -2500| -.1385|-.1380 (-.1370 | -.1315 |-.1075 | .0035 |[.6366
3.1 -2250| -.1150|-.1140 | -.1125 - 1075 |-.0835 | .0275 |.6685
3.2] -2000{ -.0900 | -.0895 | -.0885 | -.0830 [-.0590 | .0515 |.7003
3.3 -.1750| -.0655|-.0650 | -.0640 | -.0590 [-.0350 | .0755 | .7321
3.4 -1500] -.0420 [ -.0410]-.0395 | -.0345 [-.0105 | .0995 | .7639
35| -1250; -.0170 | -.0165 | -.0155 | -.0100 {.0135 | .1235 | .7958
3.6 -.1000] .0075] .0080 | .0090 | .0140 |.0380 | .1475 |.8276
3.7 -0750] .0315| .0320 [ .0335] .0385 |.0620 | .1710 |.8594
3.8] -.0500] .0560( .0565 | .0575 | .0630 |.0865 | .1955 .8913
391 -.0250; .0805| .0810 | .0820 | .0870 [.1105 | .2195 9231
4.0 0 1050 .1055 | .1065] .1115 |.1350 | .2435 9549

Table 2.1 The parameter values (A) for successive reverse bifurcations
of the combination map, for different values of u. At each value A,, a bifurca-

tion takes place from an n + l-cycle to an n-cycle
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Figure 2.3 The parameter space (p,A) of the two parameter map in

eqn.(2.1). The thick line represents the transition from order to chaos while

the lines parallel to it are the bifurcation lines. The shaded region corresponds

to the chaotic regime.
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The lowermost line represents A = (/4 — 1). By extending this line upwards,
one can increase the value of u beyond 4 by taking suitable high values for
A. The sinusoidal term therefore provides an extension in the range of the
control parameter of the logistic map. From the bifurcation diagram for each
value of , the value of A at which the system returns to the zero fixed point is
obtained as Ay. These values are then computed more accurately, by numerical
iterations. The values of A, for different p are also plotted in the parameter
space. These points also lie along a straight line, but its slope is different from
those of the bifurcation lines. The slope of the line representing the zero fixed
point is found to be 0.318. This value agrees well with the theoretical value

(1/x), given by equation 2.3. The bifurcation lines have a slope equal to 0.25.

Since the bifurcation lines in the (u, A) space are parallel to each other,
it is obvious that the Feigenbaum index & defined in terms of the bifurcation

values A, for fixed g must be the same as the é for the logistic map alone.

The chaotic region of the combination map is then compared with
the chaotic regime of the logistic map (or, sine map). To observe the fine
structure of the chaotic region (A < A,), a series of bifurcation diagrams
of z, against A for various fixed values of u are drawn on enlarged scales.
Each time, a portion of the bifurcation diagram is blown up. The periodic
windows are found to be less in number as compared with the logistic map.
The presence of the sine term washes out the fine structure of the chaotic

bands. On approaching the accumulation point A, from the fully chaotic
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state (A = 0), we observe a number of band splittings and mergings. This
is quite contrary to the behaviour of the logistic map. In the latter case, at
p = 4, the chaotic attractor exists as a single band. On approaching g, this
band undergoes an infinite cascade of bifurcations. No recombination of bands
can be seen in that case. The incomplete nature of the cascade of bifurcations
of the combination map indicates that the scaling behaviour of the system
near the onset of chaos can be different from those of simple one-dimensional
maps. This point is explained in the next chapter, while discussing the scaling

law for the Lyapunov exponents.

Investigations on the system were then carried out for certain high
values of u, like u = 32,36,40 etc. Such high values for y are not possible for
the usual logistic map, due to the constraint that the iterates are to be confined
in the unit interval (0,1). As the combination map is a two parameter map,
p can be increased to any high value, by giving suitable high values for A as
well. In this way, the iterates can still be confined to the unit interval. Note
that the combination map in this case is two humped throughout the range
of variation of A. Since A varies from (p/4 — 1) to (¢/4) and since the map
becomes two humped for all A > (2u/7?), the combination map is two humped
from the very begining, if (u/4 — 1) > (2u/7?). [i.e., p > (4n%/n* — 8)].

Fig 2.4 shows the map fupction for 4 = 32, for different values of A. A

bifurcation diagram for the two humped state is given in fig 2.5
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Figure 2.4 The combination map in eqn.(2.1) for 4 = 32. The values

of A are indicated near the curves.
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Fig.2.5 The bifurcation diagram of the map in equation (2.1) corre-
sponding to the two humped state. Here, the value of u = 36. The bubble

structure can be clearly seen, in this case.



The bifurcation structure for the two humped state of the combination map
(i-e., for high values of p) is significantly different from that for the one humped
state (for low values of u). Keeping p constant, as the control parameter A
is increased, the system moves out of chaos and stabilizes to a one cycle for
a certain range of the parameter A and then shifts to another fixed point
which undergoes a series of bifurcations and moves over to chaos. This is
due to the fact that the iterates switch over from one hump to the other
hump. It is to be noted that this transition occurs when the right hump of the
combination map falls below the bisector line. Again, there is a considerable
degree of asymmetry between the two portions of the bifurcation diagram. The
formation of bubble structure in the bifurcation diagram is a distinct feature
of the map, for certain high values of u. See for example, the bifurcation
diagram corresponding to 4 = 36. Such bubble structures have already been
reported for certain two parameter one dimensional maps. Bubble formation
in the bifurcation structure of maps with two extrema has been observed in
certain laser systems, when the cavity losses are sinusoidally modulated[44].
The period ‘bubbling’ phenomenon has been observed in many other systems

and seems characteristic of low dimensional dynamics[45-47].
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2.2 Combination of two maps from different

universality classes.

A combination map can also be formed by combining two maps chosen
from two different universality classes. For this, we combine the Hemmer’s map
(order of maximum, z = 1/2) with the logistic map (z = 2). The Hemmers
map is of the form, ,,; = 1 — a;|z,|'/? defined in the interval (-1, 1) with the
control parameter a; € (0,2). For convenience, we convert this map into one

on the unit interval (0,1) by a nonlinear transformation[48] as,
Tni1 = (a/4) — 2 a|z, — 1/2|Y% 0 < a < 4 (2.5)

The logistic map is taken in the form, z,+; = pz,(1 — z,);0 < z, < 1;

p € (0,4). The combination map is given by,
Tni1 = f(@n, p,a) = pro(1 - x,) — [(a/4) — 27 %a|z, — 1/2|'/?] (2.6)

The logistic map displays the period doubling route to chaos whereas the

dynamics of Hemmer’s map is quite different.
2.2.1 Analysis of Hemmer’s map.

The Hemmer’s map has got a cusp at the centre. The bifurcation structure
of this map is entirely different from that of the quadratic family. Figure 2.6

gives a plot of the Hemmer’s map for different values of a.
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Fig 2.6 A plot of the Hemmers map, defined in eqn. 2.5. The values

of a are indicated near the curves.
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The map function is symmetric about z = 1/2. For any value of a, the
function attains a maximum = a/4 when z = 1/2. The slope of the tangent to
this curve is positive for £ < 1/2 and negative for z > 1/2. The slope increases
continuously from (a/4) to oo as « varies from 0 to 1/2. At x = 1/2, the slope
has got an infinite discontinuity. As z varies from 1/2 to 1, the slope increases
from (—o0) to (—a/4). For a varying from 0 to 2, the map has got only one
fixed point, z* = 0. When a varies from 2 to 4, there are two more fixed points;
z; from the left half and ] from the right half of the interval of mapping. A
linear stability analysis shows that the two fixed points z} and z; are unstable
and the the fixed point z* = 0 is stable for all values of a < 4. When a = 4,
the origin 'becomes marginally stable. The slope at the origin becomes equal
to +1, when a = 4. Thus, when the control parameter a is continuously varied

from 0 to 4, the iterates are attracted to the origin.
2.2.2 Analysis of the combination map.

The combination map is a two parameter one dimensional map. Figure 2.7
gives the plot of the combination map for a typical choice of p =4 and a = 3.
The combination map is two humped in nature for all values of a in (0,4). To
begin with, the parameter u is kept fixed at a value = 4 and the parameter
a is varied from 0 to 4 in steps of 0.001. Figure 2.8 represents a bifurcation

diagram for the system.
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Fig. 2.7 The combination map given by eqn. 2.6, corresponding to

p=4anda=3
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Fig 2.8 A bifurcation diagram of the map in eqn 2.6
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The bifurcation diagram reveals the following aspects. The system
undergoes a transition from chaos to order and also from order to chaos. The
transition from chaos to order occurs by reverse period doubling. But the
transition from order to chaos takes place by tangent bifurcations. The system
first switches over from an aperiodic state to a periodic behaviour when the
parameter a is increased beyond 0.546373. With further increase of a, the
periods get halved at subsequent bifurcations until a 2-cycle is attained. The
elements of this two cycle belong to the two humps of the map. When a
increases beyond 0.760476, the system again shows an erratic behaviour. In
this case, both the two cycle elements undergo tangent bifurcations. This can
be easily understood from figure 2.9, where the second iterates are plotted for a
value of a very near the transition point. Periodic behaviour again sets in when
a becomes > 0.916421. Subsequent bifurcations ( reverse period doublings)
take the system to a 1-cycle, which remains stable for a considerably long
interval of the parameter a. When a becomes > 2.629335, the 1-cycle suffers
a tangent bifurcation and the system becomes chaotic. This is evident from
figure 2.10 . Again there is a transition from regular to chaotic nature and vice
versa. When a > 3.974561, the iterates become periodic. The transition from
chaotic to periodic state and vice versa are confirmed by computations of the
L.C.E of the system for various values of a. A plot of X versus a is presented as
figure 2.11. It can be seen that reverse period doublings occur in the periodic
regime. Also, the transition from order to chaos takes place whenever one of

the cycle elements approaches the cusp (at £ = 1/2) of the the map.
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Fig. 2.9 A plot of the second iterate of the map in eqn 2.6. The value
of p = 4 and a = 0.761. Note that the slope of the second iterate becomes

equal to +1 and a tangent bifurcation occurs.
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Fig.2.10 A plot of the map function in eqn 2.6.The
value of B =4 and a=2.6 in this case.

A tangent bifurcation occurs for this (1, a)
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Fig 2.11 A plot of the L.C.E of the map in eqn 2.6, against the control

parameter a.The value of 4 is kept at 4.
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Fig 2.12 The parameter space (1, a) for the system, defined in eqn 2.6
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The bifurcation analysis is then repeated for various fixed values of u
both in the chaotic and in the periodic region of the logistic map. A parame-
ter space plot (y,a) of the system is thus obtained. Figure 2.12 represents the
parameter space of this combination map. Unlike in the case of the combi-
nation map discussed in the previous section, the bifurcation lines are curved
lines. This indicates that the dynamical behaviour of this system is very much

different from that of the previous combination map.

2.3 Conclusion.

We conclude this chapter, with a summary of the main results of the investi-

gations on the dynamics of combination maps:

The bifurcation structure of combination maps are, in general, differ-
ent from those of the individual maps. In the case of a combination map got
by combining the logistic map with the sine map, a transition from chaos to
order by reverse period doubling is observed. For every value p of the logistic
map, a value A for the control parameter of the sine map can be found for any
desired periodicity of the system. The parameter values A for successive period
doublings converge at the Feigenbaum rate §. Although the periodic region
of the combination map is similar to that of the quadratic family, the chaotic
regime behaves in a different way. The periodic windows are less in number
compared with that of the pure logistic map. The chaotic bands undergo a

sequence of band splittings and recombinations. This suggests that the scaling
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behaviour of the characteristic constants in the immediate vicinity of the tran-
sition to chaos can be different from that of the individual maps. That it is so
is established in the next chapter. For very high values of y, the combination
is always two humped in nature. In this case, transition from chaos to order
and vice versa occur as the other parameter is continuously varied. Bubble
structure in the bifurcation diagram is observed for certain high vales of u. In
the case of a combination of maps from two different universality classes, both
the periodic and chaotic regimes are significantly different from those of the
constituent maps. In both the cases, the combination map is a two parameter
one dimensional map. The system can be brought to the desired periodicity or
chaos, by proper choice of the parameters. The parameter space plot will be
quite useful in this context. The bifurcation lines in the parameter space plot
are parallel straight lines in the case of the first combination map. But, these
lines are smooth curves for the second combination. Again, the intermittency
phenomenon is more pronounced for the second combination. The presence
of a sharp cusp at the extremum produces severe changes to the bifurcation
phenomenon of a map. Similarly, the occurence of two humps in a map causes
considerable changes to the behaviour of the system, as compared to that of

simple one dimensional smooth maps.
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3. Scaling Behaviour of the Lyapunov
Characteristic Exponents

A hallmark of ergodic and mixing behaviour of nonlinear systems is
their extreme sensitivity to initial conditions. The separation of two trajecto-
ries in phase space will either remain constant or decrease in course of time, if
the system is periodic or quasiperiodic. But in chaotic systems, the orbits in
phase space diverge out. A very small error in specifying the initial conditions
grows rapidly and after some time it becomes almost impossible to predict the
phase space trajectory. The rate of divergence of the orbits in phase space
is usually measured by the Lyapunov characteristic exponent (A). A positive
value of A implies that the system is chaotic. If A is negative, the system is pe-
riodic or quasiperiodic. Thus A can be considered as an order parameter in the
transition from regular to chaotic state. In this context, the scaling behaviour
of A during the transition from order to chaos is important and interesting in
understanding the onset of chaos in the system. A knowledge of the variation
of A near the onset of chaos is particularly useful in developing suitable al-
gorithms for control of chaos. The nature of this scaling for one dimensional
maps exhibiting the period doubling route to chaos have been theoretically
worked out by Huberman and Rudnick[39]. It has been established that an
infinite cascade of band mergings takes place in the chaotic regime, in a mirror
sequence of the cascading bifurcations in the periodic regime[49]. For such

systems, the envelope of positive Lyapunov exponent A varies in a steep and
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continuous manner. Huberman and Rudnick have shown analytically that the

Lyapunov characteristic exponent behaves as
A= Xo(a— ax)” (3.1)

where ) is a constant of the order of unity, ay, is the value of the control

parameter a at the period doubling accumulation point and

_In2 (3.2)

6 being the Feigenbaum constant. This power law behaviour of the L.C.E for
quadratic maps has been experimentally verified using a sinusoidally driven
diode circuit[50]. Shraiman et al.,[51] has developed a scaling theory for noisy
period doubling route to chaos, in which it is shown that in the limit of the noise
amplitude tending to zero, the Huberman-Rudnick relation (H-R relation) is
recovered. The H-R relation suggests that the scaling index v depends on
the order of maximum z through the value of § which is different for different
universality classes. However, it is not clear whether » depends on z in some
other way. No detailed numerical investigations have been reported for z values
other than 2. We prove numerically the validity of the H-R relation for general
one-dimensional maps. We also extend our studies to a combination map got
by combining the logistic map with the sinusoidal map. This combination
map has the same value of § as the logistic map. Hence one would expect that
the combination map also has the same value for v. But we have found that
the scaling index for the combination map is different. Thus, the Huberman-

Rudnick relationship is not true for combination maps.
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3.1 Scaling Law for General One Dimensional

maps.

Consider the one-dimensional map on the interval (-1,1),
Tpy1 = 1 —ay|z,|* where the control parameter a; varies from 0 to 2. This is a
unimodal map with the critical point x. = 0; Critical points play a fundamen-
tal role in determining and classifying global bifurcations[13]. The so called
critical curves for two dimensional endomorphisms are generalizations of the
critical points of one-dimensional mappings[53], and can be used as a basic an-
alytical tool in characterizing the bifurcations in two dimensional systems[54].
z is the order of the maximum. Using a nonlinear transformation[48], this map
can be converted to one on the unit interval (0,1). The transformed mapping
is Tpy1 = f(z,) = (a/4) — 2 Ha|z, — 1/2|* where a € (0,4) and the critical
point z. = 1/2. These maps exhibit the Feigenbaum scenario of period dou-
blings. The values of o and é are characteristic of the value of z. The Lyapunov

characteristic exponent of the map can be computed by the formula[52],

A= lim lNz_j11n|f’(a:,-)|. (3.3)
N_'ooNi=0

The upper bound for N is kept as 10, for computational purposes. To start
with, the value of z is taken as 1.2. The L.C.E. values are determined by
increasing a in small steps. The period doubling accumulation point, a., is
roughly estimated as that value of @ at which A changes from negative to
positive for the first time. The parameter is then varied by further small steps

around this rough value and the L.C.E’s are computed. Thus, a better estimate
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for a., is obtained. This process is repeated again and again until the value
of a, is found upto an accuracy of 10™® to 1078. The Lyapunov exponents
(A) are then calculated for a number of values of a > a, and very near to
a.. This procedure is repeated for maps of various order of maxima, z. The
presence of a large number of periodic windows in the chaotic regime near the
accumulation point reduces the number of useful values of A, especially for
large values of z. The L.C.E’s in the chaotic side near a,, changes to negative

values at the periodic windows. The variation of a,, with z is shown in fig 3.1

As z.increases, a., approaches (asymptotically) the fully chaotic limit
a = 4. Consequently, the entire chaotic regiIPe shrinks to a narrow region in
the parameter space. Since the chaotic regime has to accommodate all the
periodic windows, the density of periodic windows near a,, will be greater for
higher values of 2. The addition of a small noise term can wash out the fine
structure of the periodic windows and smoothen the curve for A against a[55].
Thus, we ad_ded a Gaussian noise of zero mean and variance 0.2 for values of
z> 2. The amplitude of noise added was of the order of 10~'%. Such a very low
noise can not seriously affect the scaling behaviour of the system. Even with
noise, the difficulty due to periodic windows near a,, can not be completely
overcome. For z-values > 4, we consider only an envelope scaling for A with
the periodic windows avoided. In fact, the Huberman-Rudnick scaling relation

itself has been derived for the envelope of positive Lyapunov exponents.
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Fig 3.1 The variation of a,, with 2, the order of maximum of the map.
Note that as z increases, the chaotic regime, a., < a < 4, shrinks and becomes

very narrow for z > 10.



InCa-ag)

Fig 3.2 A typical log-log plot of A vs (a — ay) for z=1.2. The slope

of this line gives the scaling exponent .
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Table 3.1 The scaling index v for various values of z

Order of maximum, z v (numerical)| v =1In2/Ind, using H-R law
1.2 0.60171 0.605779
1.5 0.52281 0.519209
2.0 0.42117 0.449820
3.0 0.40711 0.383449
4.0 0.30117 0.348928
5.0 0.29953 0.326608

Table 3.1 The scaling index v for different values of z, calculated nu-

merically and using H-R relation.




For each value of z, a plot of In|A| against In |a — a.| is obtained. The
line of best fit is then drawn. The slope of the line gives the value of v . Figure
3.2 gives such a log-log plot. The theoretical values for v are calculated using
the H-R law and also from the known values of § for various z{56]. Table 3.1
gives the scaling indices (v) for the various values of z. Within the possible
computational errors, there is excellent agreement with the H-R relation. Thus
we have established that the Huberman-Rudnick relationship for the scaling
of Lyapunov exponents is true not only for the quadratic maps, but also for
all one dimensional one-extremum maps exhibiting the Feigenbaum'’s route to

chaos.

3.2 Scaling of Lyapunov Characteristic Expo-

nents of a Combination Map.

In order to investigate the scaling behaviour of a combination map,
we consider the first of the combination maps discussed in chapter 2. viz.,
ZTpt1 = f(®p, 1, A) = pza(1 — x,) — Asin(nz,); 0<z, <1, 0< p<4; (u/4—
1) < A < p/4. Keeping the value of p = 4, the parameter A is increased
from 0 to 1 slowly in steps of 0.001. The L.C.E ()) for each value of A is
computed by the same algorithm discussed in the previous section. In this
case, the system moves out of chaos and becomes periodic on increasing A.
The Lyapunov exponent () is positive for almost all values of A in the chaotic
regime, except for certain windows of periodicity. But, in the periodic region, A

is always negative. The value of A, is determined as that value of a at which
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A becomes zero and after which A remains negative throughout. Repeated
computations of A by changing A on finer and finer scales give the value of
A upto an accuracy of the order of 1078. The parameter A is then varied
in steps of 1078 around A, and the corresponding A values are found. As
before, the line of best fit to the plot of In|)| against In|A — Ay| is drawn.
The slope gives the scaling index, v. The computations are then repeated for
other values of 4 namely, 4 = 3.5 and p = 3. We have also extended the
investigations for a very high value of u. ie., p = 32. In the latter case, the
parameter A can vary from 7 to 8. Here, the combination map is two humped
from the very beginning. As is clear from the discussions in chapter 2, the two
humped nature sets in whenever the parameters are so tuned as to make the
value of A > (2u/n%). But, the range of variation of A is from (p/4 — 1) to
(s/4). Thus, if (u/4 —1) > (2u/7?) ie., p > 4n°/(x® — 8), the map will be
two humped throughout the range of variation of A. A typical log-log plot for
the combination map is presented in figure 3.3. The scaling index v and the
accumulation point A, for the combination map for various values of u are
presented in table 3.2. From the log-log plot of the combination map, it can be
noted that a power law behaviour for the Lyapunov exponents is more accurate
for the combination map than for simple maps (For, the points lie more exactly
on a straight line). Moreover, the proximity of the periodic windows does not
hinder the numerical computations in this case. The periodic windows are less

in number or they have been smeared out by the sinusoidal term.



155
<
£ L
—
175 L ' ' ;
-21.5 2205 -19.5 -18.5

In(d - Ae) ——

Fig 3.3 The L.C.E scaling for the combination map. In [A— Ayl is
plotted against In|A|. Here, the value of y = 32. The scaling index v in this

case is found to be ~ 1.
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Table 3.2 The scaling index v for and the accumulation point for various values of p

H Accumulation point A < Scaling index v
3.0 -.1382968 0.9989838
3.5 -.0170178 0.9677731
4.0 0.1046909 0.9936844
32 7.22126758 0.9996790

Table 3.2 The scaling index v and the accumulation point Ay for

various values of u.
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In all the cases considered for the combination map, the scaling index
is entirely different from that of the quadratic family. The value of v for the
combination map is nearly unity. i..e., it is almost double the value for the
quadratic family as predicted by Huberman and Rudnick and also computed
numerically for the logistic map. The combination map has the same value
of § as the quadratic map. This implies that the combination map does not
follow the H-R scaling law. To see why the combination map has a different
scaling behaviour for A, we have carried out a detailed numerical analysis of
the chaotic regime of the map. The parameter u is fixed at 4. With A = 0,
the system is fully chaotic. The parameter A is then slowly varied and a
series of bifurcation diagrams are drawn. Each time, a portion of the previous
bifurcation diagram is taken and a blow-up is formed. By this technique, we
are able to observe the fine structure of the chaotic bands. When A is increased
towards A, the chaotic attractor exhibits a sequence of bifurcations. After
each bifurcation, one of the branches of the bifurcation diagram is taken and
the structure is analyzed on an enlarged scale. By carefully varying A , the
-next bifurcation point of the band is determined. Continuing like this, the
values of A for successive band bifurcations are obtained. We could trace
out the values of A upto the 8t stage of band bifurcation. These values A,
and the convergence rate 6, are provided in table 3.3. When A is increased
further, recombination of bands is observed. The band bifurcation structure
of the combination map is shown in figure 3.4. The merging of bands for the

combination map is evident from this figure.
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Table 3.3 Parameter values for successive band bifurcations and the convergence

rate .

Parameter value A( n)

Convergence rate 6 (n)

0.07909091
0.09954546
0.10360000
0.10440000
0.10463500
0.10467600
0.10468445

0.10468625

5.0449130

4.8267857

4.3076923

4.7560975

4.8235300

4.7222222

Table 3.3 The parameter values for successive bifurcations of the chaotic

band of the combination map and its convergence rate On-
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Fig 3.4 The band structure of the combination map on an enlarged

scale. As A increases towards A, merging of bands take place.
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In the case of the combination map considered, the band bifurca-
tions do not take place ad infinitum. This is not the case with simple one-
dimensional one humped maps. In the case of the logistic map, for example,
the iterates form a single band at u = 4. But, as p is decreased towards p, the
chaotic band undergoes an infinite cascade of bifurcations. On approaching
loo from the periodic region, every periodic cycle of period 2" bifurcates to a
cycle of period 2"*! at a distinct value p,, and the sequence {s,} converges to
a finite value p,, as n — oo. Likewise, in the chaotic regime, the chaotic bands
undergo a mirror sequence of band bifurcations. i.e., a chaotic attractor with
2%+ bands bifurcates to a chaotic attractor with 2* bands, as p is increased.
Thus, when p,, is approached from the periodic region, we get an attractor
with infinite period. But, when pu,, is approached from the chaotic region, we
get a chaotic attractor with infinite bands. The rate of convergence of the
parameter values for the chaotic band bifurcations is the same as the rate of
convergence of the parameter values for period doublings, namely = 4. This
property has been made use of by Huberman and Rudnick for deriving the
scaling law for one dimensional one humped maps. For the combination map,
the chaotic bands merge together after a few bifurcations. This incomplete
nature of the cascade of band bifurcations is the reason for a different scaling

behaviour of the combination map.
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3.3 Conclusion

In conclusion of this chapter, we summarize the main results obtained from
the numerical computations of the Lyapunov characteristic exponents of a
number of one dimensional maps. For all one dimensional one humped maps
following the period doubling route to chaos, the envelope of positive A scales
according to the Huberman-Rudnick law. Thus, A « (a — a,)” where v =
In2/1n 6, 6 being the Feigenbaum convergence rate. The existence of an infinite
cascade of band bifurcations in the chaotic regime is an essential requirement
for the validity of the Huberman-Rudnick scaling law. The Huberman-Rudnick
relation is true for one dimensional one humped maps of different order of
maxima. But it is not true for combination maps. In the latter case, the
cascade of band bifurcations does not take place ad infinitum. After a few
splittings, recombination of chaotic bands is seen. This results in a different

scaling behaviour for the Lyapunov exponents of combination maps.
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4. Discontinuous Logistic Map

One dimensional iterative maps on an interval of the real axis have
been used in modelling a wide variety of nonlinear systems. The most promi-
nent route to chaos in these maps is through the Feigenbaum period doubling
bifurcations. The transition from periodic to chaotic state through an infinite
sequence of pitch fork bifurcations has been found to be a common feature of
all unimodal functions having negative Schwarzian derivative [1]. One of the
most extensively analyzed maps in this context is the logistic map [1,10,15,48].
The evolution of the system from regular to chaotic state has been investigated
not only with the control parameter in its pure form, but also in some or other
modified forms leading to a class of modulated logistic maps [58-64,75]. A re-
markable property of the Feigenbaum scenario of bifurcations is the geometric
convergence of the parameter values for successive bifurcations. This is found
to be a universal property of almost all one dimensional continuous maps with
a single hump. The presence of a discontinuity or asymmetry in the map,
however, produces a considerable change in the bifurcation structure of the
system. A ‘new road to chaos’ has been identified by de Souza Vieira et al.,
based on the numerical investigations on a discontinuous logistic map [65,66)].
The existence of inverse cascades of bifurcations in which the periods change

arithmetically is a novel aspect in these systems. Certain empirical rules for
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the existence of inverse and direct cascades have also been reported [67]. The
number of inverse cascades and the type of route to chaos depend on the
location of the discontinuity as well [68]. The periods of the cycles depend
highly on the precision of the computations [69]. The phenomenon of border-
collision bifurcations and the formation of inverse and direct cascades in one-
dimensional piecewise smooth maps have also been investigated [70-72]. A
possibility for having a discontinuous bifurcation from any selected orbit of
the period-doubling cascade to an orbit of the inverse or direct cascade has
also been reported [72]. A bifurcation phenomenon different from the stan-
dard period-doubling one has been observed for a piecewise cubic map [74]
and also in an experimental situation in a He-Ne laser system [73]. Simi-
lar bifurcations have been observed for other piecewise continuous quadratic
maps like the circle map [76] and the logistic-like sawtooth map [77]. Inverse
cascades of bifurcations together with direct cascades had been reported for
certain Hamiltonian systems [78]. Such Hamiltonian systems exhibit only a
few continuous bifurcations in which the periods change geometrically. But,
the discontinuous logistic map shows a number of discontinuous bifurcations
in which the periods decrease in an arithmetic progression. The whole set of
bifurcations can be viewed as an alternate route to chaos, with scaling laws
different from that of Feigenbaum’s [66]. Most of the studies in these systems
are numerical. We provide an analytical explanation for the bifurcation phe-
nomenon of a discontinuous logistic map. Numerical findings in support of the

results are also included.
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4.1 Analysis of the Discontinuous Logistic Map;
Coexistence of Multiple Attractors and their

Basins of Attraction

We consider the logistic map with a discontinuity at the centre. The
map is defined as,

Tpy1 = 4pz, (1 —x,); for 0 < z,, < 1/2.

(4.1)
Tpp1 = 4pz,(l —z,) + C for1/2 < z, < 1.

where p is the control parameter and C is a constant representing the strength
of the discontinuity. This map corresponds to a special case of the more general
asymmetric map that has been numerically investigated by De Sousa Vieira

et al., [65] given by

Tip1=1—€ —aq|ze|™; x >0.
z —l—l(e +e); =0
t+1 = g\t e2); t = (4.2)

Tl = 1—62—0-2|$t|22; T <0.

The map given by equation 4.1 differs slightly from the one referred to above
in that the value of the function at the point of discontinuity is also included in
the left half of the interval of the mapping. Also, the interval of the mapping is
(0,1) instead of (-1,1) in equation 4.2. Again it differs from the discontinuous
map analyzed by Chia & Tan [67] in that the discontinuity parameter C is

introduced in the right half of the interval in our case instead of in the left
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part as in the case of Chia & Tan. De souza Vieira et al., numerically inves-
tigated the effect of three type of asymmetries:

a)eg=€=0,z1=zn=zaFa;b)ag=6=0a =0 =a, 21 # 2
and ¢) a; = a; = a, 23 = 2, = 2, € # €. They have verified that the
Feigenbaum scenario for one-dimensional one-extremum maps gets strongly
modified if asymmetry is introduced in the extremum. Amplitude asym-
metry (a; # a;) and exponent asymmetry (z; # 2;) have relatively mi-
nor influence on the bifurcation pattern whereas the discontinuity in the ex-
tremum drastically alters the bifurcation phenomenon. With typical choices
of (e1,€) = (0,0.1) and (0.1,0), they have observed various inverse cascades
of bifurcations. The periods of the cycles were foupd to decrease in arithmetic
progressions, as a is increased. In the case of (¢},€) = (0,0.1) for example,
the first cascade of bifurcations occur immediately above a = 1, with periods
like 16 — 14 — 12 — 10 — 8 — 6 — 4. Just above this cascade, some stan-
dard pitch-fork bifurcations are observed. Again inverse cascades with periods
.76 — 58 — 40 — 22; .92 — 70 — 48 — 26; ...134 — 108 — 82 — 56 ...,
etc. are observed. Tan & Chia [67] have given certain empirical rules for the
existence of inverse and direct cascades. Note that in all the cases considered
for the discontinuous logistic map, the common difference of the progressions
are even numbers. This observation is of much significance in our analytical

investigations.
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Fig 4.1 The discontinuous map defined in eqn 4.1. The discontinuity

parameter C = 0.2 and the control parameter p = 0.4. Note that the two fixed

points z; and z} coexist in this case.
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For convenience, we write equation 4.1 in the form, z,,, = I(z,),
where the mapping T is such that T(z) = f(z) = 4uz(l —z) for 0 <z < 1/2
and T(z) = ¢(z) = 4uz(1l — z) + C for 1/2 < £ < 1. The qualitative shape of
the map function is shown in figure 4.1. In the left half of the interval (0,1), the
curve is logistic in nature and the function increases from 0 to x as = increases
from O to 1/2. As z increases from 1/2 to 1, the map function ¢(x) decreases
monotonically from (4 + C) to C. The presence of such discontinuities (i.e.,
different £ — (3)+ and z — (1/2)_ behaviour) in physical systems [10,79]
perturbs the dynamics of them considerably. For every value of C, the control
pa.raméter u is varied from 0 to (1 — C) so as to confine the iterates within the
unit interval. The fixed points of the system are determined by 7(z*) = z*.
Depending on the relative values of u and C, there will be one or more fixed

points. The fixed point of the left part is £* = 0 for values of u ranging from

0 to 1/4. When p > 1/4, the fixed point from the left part is

The fixed point arising from the right part is given by ¢(z*) = z*. i.e., 4

pz*(l — z*) + C = z*. This quadratic equation gives the solution,

o' = {(4p— 1) £ [(4p — 1)* + 16pC]/*} /8 (4.4)

Since the negative root for z* is inadmissible, we have the fixed point to the

right of z =1/2 as
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4p—1)2+16pC—1
o Ly YUrm 1) 160 (4.5)
2 8u

Thus we have simultaneous occurrence of attractors =; and z;. In the limit
of C — 0, we get z; — z; = 1 — (1/4p). This is understandable since the
pure logistic map has only one attractor. The fixed point (x}) and its stability
properties depend on the two parameters g and C so that one can have a
desired dynamics for the system by proper choice of p and C as in the case of
combination maps [80,81]. The asymptotic state of the system is determined
by either z; or z! or both, depending on the values of 4 and C. Keeping
C fixed, let p be varied from 0 to (1 — C). The fixed point of the system
is * = 0 for values of u ranging from 0 to 1/4. When g increases beyond
1/4, the zero fixed point loses its stability and becomes a repellent while the
only attracting fixed point on the left part is ;. As p increases from 1 /4 to
1/2, =; moves from 0 to 1/2. When the control parameter exceeds the value
p = 1/2, the left half of the map lies above the bisector line. Thus the left
attractor (x) ceases to exist beyond p = 1/2. To the right of £ = 1/2, the
map is of the nature of a combination map, obtained by combining the logistic
map with an additive constant. The fixed point (z!) manifests itself whenever
the parameter p is so tuned as to make z; > (1/2). For this we have from
eqn.4.5, [{(4p — 1)® + 16pC}/2 — 1] > 0. This necessitates p + C > 1/2. i.e.,
p > (1/2—C). This criterion for the appearance of z! can also be inferred from

figure 4.1, as the condition for the height of the extremum when approached
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from the right of £ = 1/2 to be greater than 1/2. If u + C < 1/2, then the
right branch ¢(z) of the curve lies wholly below the y = z line. Thus we see
that the z} exists for all p > (1/2 — C) and z; appears for 1/4 < p < 1/2.
Hence the two attractors co-exist in the parameter range (1/2—C) < p < 1/2.
For values of p < (1/2 — C), only z; exists and for u > 1/2 only z; exists.
When the two attractors co-exist, there are two different basins of attraction.
The bifurcation structure will therefore depend on the initial value used for
iteration. Multiple basins of attraction for one dimensional maps of a single
hump are usually uncommon. That it is seen in our case is a consequence of
the fact that the map is represented by two different functions (f and ¢) on

either side of z = 1/2.

The basin of attraction for a fixed point is the set of initial points ()
that converge asymptotically to that fixed point. The basins of attraction of
the attractors of the map can be obtained as follows. The mapping T is such
that the left half f(z) increases monotonically with z , while the right part
¢(x) decreases monotonically with . Let z, be the pre-image of 1/2 on the

right. ie., z, = ¢71(1/2). Or, 4pz.(1 — z,) + C = 1/2. This gives,

\/16/1(/1 +C—-1/2)
8p

z, =1/2 +
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The pre-image of 1/2 on the left is

1 1
=1/2— .- — * 4.7
=1/ 1 3 (4.7)

For the logistic map z,,; = 4pz,(l — z,), the two pre-images of 1/2 are
1/2+ H which are symmetric w.r.t £ = 1/2. But, for the discontinuous
map, the pre-image of 1/2 on the right of £ = 1/2 is shifted further to the right
(for positive C). This asymmetry in the two pre-images play a vital role in the
nature of bifurcations of the map, as the iterates approach the point of discon-
tinuity. For values of z in (1/2, z,), the function ¢(x) decreases from (p+C) to
1/2. For all initial values z, greater than z,, the first iterate T(zo) = ¢(x) is
less than 1/2 so that the second iterate, T'2 (o) = T [¢(z0)] = f [#(z0)]; third
iterate, T3 (zo) = f2 [¢(x0)] and so on. Thus the second and higher iterates
fall on the left branch and the asymptotic state is zj. If we start from an initial
value zo € (0,1/2), the iterates are f (x9), f % (x0), f 3 (2o), f * (x0) - - . which
converge to zj. For z, lying in the interval (1/2,z,), the successive iterates
form the sequence { ¢(zo), ¢ ? (o), ¢ ® (20),...¢ ™ (20), ...} which converges
to z;. Hence, the basin of attraction (R) for the attractor z; is the set of points
R = {zo | o € (1/2,z,)} where z, is given by eqn. 4.6. Obviously, the basin of
attraction (L) for the attractor = is the set of points on the unit interval, com-
plimentary to the set R. i.e., L = (0,1/2) U (z,,1). The ‘width’ of the basin
of attraction (R) is W = z, — 1/2 = 1/8u{[16p(n + C — 1/2)]"/?}. From the
expression for ., it is clear that the basin R will be real only if (u+C) > 1/2.

This should be so since the condition (4 C) > 1/2 is an essential requirement
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for the existence of the attractor z! itself. Keeping C fixed, as p increases from
(1/2— C) onwards , the width of the basin R increases and that of L decreases.
At p = 1/2, the value of W becomes a maximum = \/—(CW . When p increases
beyond 1/2, there exists only one attractor (z;) for the system and all points
in (0,1) constitute its basin of attraction. Similarly for values of p < (1/2—-C),
there will be z; only and the entire (0,1) interval forms its basin of attraction.
It is also possible for the right attractor = to co-exist with the zero fixed point,
if p<1/4 and p+ C > 1/2. For this, C must be > 1/4. Since the stability
conditions for the zero fixed point and z} are mutually exclusive (4 < 1/4 and
p > 1/4 respectively), the possibility of coexistence of all the three attractors
is ruled out. It is obvious that when z; coexists with the zero fixed point, the
basin of attraction of z! is R = (1/2,z,) and that of the zero fixed point is
(0,1/2) U (z,,1) where z, is the same as the one given by equation 4.6. When

only one attractor exists, the basin of attraction is (0,1).

4.2 Bifurcation Scenario for the Discontinuous
Map

We now consider the stability of the fixed points, as the system pa-
rameters are varied. A fixed point z* will be stable, if the slope of the tangent
to T(z) at £ = z* is less than unity, in magnitude. Keeping C fixed, let the
control parameter p be varied from 0 to (1 — C). For 0 < p < 1/4, the fixed
point z* = 0 is stable. For 1/4 < p < 1/2, we have z} as the fixed point from

the left part. This fixed point remains stable upto p = 1/2 and after that it
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vanishes. For g > 1/2, the asymptotic state of the system is solely determined
by z'. This attractor is not stable throughout the range of variation of .

The slope of the map function =T’ (z) = f' (z) = ¢ ' (x) = 4p(1 — 2z).

Therefore, T'(z!) = 1— \/ (4p — 1)2 + 16uC, where equation 4.5 has been used.
At p = (1/2 — C), this slope = 0. As p increases, the slope becomes negative
and its magnitude increases. When the slope becomes = -1, the first period
doubling occurs and a 2-cycle is formed. The corresponding value of p is given

by,

_ (1-20)+/(20-1)2+3 (48)

H n

Upto this value of u, the system exhibits one cycle behaviour. Thus there
will be two attractors (z; and z}) for p in the region (1/2 — C) < p < 1/2.
Beyond p = 1/2, only z} exists and it remains stable upto the parameter value
p# = p. The attractor z} exhibits period doubling at 4 = p; and then the
system shows a two cycle behaviour. In the limit, C — 0, u; — 0.75, the value

for the logistic map.

In the usual Feigenbaum route to chaos, the 2-cycle bifurcates to a
4-cycle at a parameter value p = py and it remains stable for a range of u and
then the 4-cycle bifurcates to an 8-cycle at u = p3 and so on and these period
doublings take place ad infinitum. The system then enters the chaotic region
at a parameter value u = pu,, the period doubling accumulation point. But in
the case of discontinuous maps, another type of bifurcation (a ‘discontinuous

bifurcation’) takes place, when p is increased. A different route to chaos is
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thus possible. In the 2-cycle region of the map, the slope of ¢ 2 (z) at the
cycle elements = ¢ ' (z})¢ ' (z}) = 64p*(z} — 1/2)(z} — 1/2), where =} and
z} are the elements of the two cycle. It remains positive as long as both the
cycle elements fall to the right of z = 1/2. For g = p,, the slope of ¢(z)
at £ = z' becomes equal to -1, so that the slope of ¢ % (z) = +1 at this
point. With increase of u above p;, we have a two cycle and the slope of
#*(zx) at the cycle elements decreases from 1. Both the cycle elements z} and
z3 lie within the interval R = (1/2,z,). As p increases, the cycle elements
move out. The lower element z; moves towards 1/2 and the upper element z;
approaches z,. Let z} = (1/2 +¢). Then =} = ¢(zx}) = (u+ C — 4uéc?). In
the limit e — 0, z; — (1/2); and =3 — (u + C)-. In this limiting case, the
slope of ¢ ?(z) — 0. Thus the limiting 2-cycle {(1/2),, (1 + C)_} is a stable
one. This 2-cycle behavior continues upto g = u., at which the right element

(#r + C) = z,, the pre-image of 1/2 on the right part. Using equation 4.6,

_4-0+/iva-cp "

e 5

For p1 < p < py, a two cyéle (x},x3) is obtained. ¢(z}) = z; and ¢(x5) =
zj. Thus, z} and z} are solutions of ¢*(z) = z. Now, for u = p,, the right
element z; = «,. The next iterate of z,, say, ; = T(z,) = ¢(z,) = 1/2, falls
on the left branch. Consequently, the second iterate of z, is decided not by
the function ¢(z), but by f(z). ie, 22 = T ? (z,) = T(1/2) = f(1/2) =
.. Now, since p, is greater than 1/2, (for C < 1/2, as is usually the case),

the second iterate of z, comes back to the interval (1/2,z,). The third and
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higher iterates are decided by the function ¢. Thus, we get the sequence of
iterates, { z2,¢ (z2),¢ ? (z3),...,¢ " (x2),...} and the two cycle behaviour
is lost. Clearly, all these iterates lie in the interval (1/2,z,). These iterates
are attracted towards the ‘virtual’ 2-cycle (1/2,z,) [i.e., the two cycle that
the system would have, if the mapping were ¢(z) on both sides of z = 1/2].
Once z, is attained, the sequence is repeated. In this sequence of iterates,
the odd iterates ¢ (x2), ¢ 3 (x2), ¢ 3 (x2),... approach one end of the interval
(1/2,z,) and the even iterates ¢ % (z3),¢ * (x2),4 ° (x2), ... approach the
other boundary. The system thus exhibits a large periodicity n, which is
highly dependent on the precision of the computer. The period n will be even
or odd depending on whether z, > ! or z; < z;, where z; is the fixed point

(unstable) of ¢(z) and z, is the second iterate of z,. We consider the two cases

separately.

Case (1). Second iterate of z, is greater than the unstable fixed point

z,. l.e., T3 > ;.

The function ¢(z) decreases monotonically for all > 1/2. Therefore,
since z, lies to the right of «}, its iterate, ¢ (%) < ¢ (z}). But, ¢ () = =’

r)

as it is a fixed point (though unstable). Hence, ¢ (z;) < z:. Now, since
¢ (z2) < =z}, under the next iteration, ¢ 2 (z2) > ¢(=!). ie., ¢ 2 (z3) > z:.
Continuing like this, after each stage of iteration, the ineqyality gets reversed.

Thus, the odd iterates ¢ (z;), ¢ * (z2),¢ ° (x2),. .. lie to the left of = and the

even iterates ¢ 2 (x2), ¢ * (x2), ¢ ® (x2),... lie to the right of z;.
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Fig 4.2 A plot of ¢*(z) vs z. The value of C is taken as 0.1 and that

of p~pu,.
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Figure 4.3. Schematic representation of the

iterates for L = K r

Case (a). x2> xi

X1 Xr* Xr
X7 X5 X3 . X2 X4 Xg X8 ...

Case (b). xa2< xt
X1 Xf' xr
X6 X4 X2 . X3 X5 X7 X9 ... .

Fig 4.3 Schematic representation of the iterates of the discontinuous

logistic map .
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Since ¢(z) is a decreasing function of z for any = € (1/2,1), it is clear that
¢ ? (z) is an increasing function of z for all z for which ¢(z) is greater than
1/2. Thus ¢ 2 (z) is an increasing function of z for all = in (1/2,z,). The
behavior of ¢ ? (z) on either side of z! is shown in figure 4.2. It is obvious
that, ¢ 2 (z) >z forz > z'; ¢ 2 (z) <z forz < z! and ¢ * (z) = z for z = ;.
Thus since z; > z}, we have ¢ 2 (z3) > ). i.e.,¢*(z2) > z, > ;. Again, since
¢ 2 (xz2) >z, ¢ % (x3) > ¢ 2 (x;). Similarly, ¢ ¢ (z3) > ¢ * (z2) and so on.
Likewise, since ¢(z;) < z?, ¢ 3 (z2) < ¢(z2); 0 5 (x3) < ¢ (z2) and so on.
A schematic representation of the iterates on either side of z; is presented in

figure 4.3. We thus, have an ordering for the iterates as,
T! < T3 < ¢%(x3) < ¢*(x2) < ¢°(x2) < ...and

z; > ¢(z2) > ¢ (z2) > ¢%(22) > ¢'(z2) > ...

Thus it is clear that the even iterates of =, tend to z, and the odd iterates of z,
tend to (1/2),. Thus at some stage of iteration, ¢*"(z,) becomes infinitesimally
close to z,. This iterate will be considered as z, itself by the computer and the
sequence of iterates will be repeated. The value of » depends on the precision

used for the computation. Thus we have a cycle of periodicity n = 2r 4 2.
Case 2. Second iterate of z, is less than the unstable fixed point z}.

Based upon similar reasons as for case (1), we find that the successive
iterates of z, satisfy the inequalities:
z! > 1y > ¢¥(x) > ¢*(x2) > ¢°%(x2) > ...and
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xt < ¢(x2) < P (22) < 8°(x2) < @' (z2) < ...

Thus the odd iterates of x> move towards z, and even iterates approach (1/2);.
Hence, after some stage of iteration, we have ¢?"*!(z,) almost = z,, leading to

a periodicity n = 2r 4 3.

The outward spiralling of the iterates to an n-periodic attractor at the
parameter value g = y, is shown in figures 4.4 and 4.5 for two typical cases
of C = 0.1 and C = 0.2 corresponding to even and odd periods respectively.
It is to be emphasized that the true period at u = g, is infinity. But in
numerical computations, a finite period is obtained; The period in this case
is,in fact, equal to the number of iterations required by z, to come back to
a value ‘almost’ equal to itself; the degree of closeness being pre fixed by the
precision of the computer. The map thus belongs to the class of maps with
precision dependent periods [69]. If the map function were ¢(z) throughout the
interval (0,1), the role of C would be that of an additive constant applied to the
logistic map [82] and the system would still have a stable 2-periodic behavior.
The bifurcation of a 2-cycle to an n-cycle, in the case of the discontinuous
logistic map, as the cycle elements touch the basin boundary is a discontinuous
bifurcation. It is because of the discontinuity in the second iterate T2 () near
t = 1/2 and £ = z,. Note that T ? (z) = ¢ ? (z) for z = (z, — €) and

T? (z) = f{$(x)}, for = = (=, +e).

When u is slightly greater than u,, the ‘virtual’ 2-cycle (z}, z3) falls
outside the interval [1/2,z,]. In this case, the successive iterates of any initial
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Fig 4.4 Graphical representation of the outward spiralling of the it-

erates to an attractor of large periodicity at the parameter value y = p,, for

C=0.1
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Fig 4.5 Graphical representation of the outward spiralling of the it-
erates to an attractor of large periodicity at the parameter value p = p,, for

C=0.2
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value zy € (1/2,z,) form a sequence which shows a tendency to settle down at
the 2-cycle. (Also, any initial value outside (1/2,z,) will come to this interval,
after a few iterations, since the system has no other stable periodic solutions).
In this process, an iterate slightly greater than z, is obtained. This point is
mapped by ¢(z) into the domain of f(z). The next iteration by the mapping
f(z) takes it to the interval [1/2,z,]. This point, under repeated iterations
by ¢(z) comes outside this range and the whole process is continued again
and again. The periodicity (n) will be even or odd depending on whether
zo = f{é(z,)} is > z! or < z!, where z! is the fixed point (unstable) of ¢(z).
The behavior of the iterates of the map for values of u immediately below and
above p, can be understood from figures 4.6 and 4.7, in which the value of the

iterates are plotted against the iteration number.

The mechanism of the bifurcation in which a 2-cycle directly gives
birth to an n-cycle is quite different from the usual period doubling bifurca-
tions and it is a characteristic feature of discontinuous maps. In the period
doubling process, the slope ( that determines the stability of the cycles) at the
bifurcation point becomes equal to -1. But in the case of bifurcation of the
2-cycle to an n-cycle, the slope of ¢ 2 (xz) = 0 at the bifurcation point. The ele-
ments of the n-cycle are {z¢ = «,, ) = 1/2,x; = p,, L3, L4, C5, Tgy -.-Ln-1 = Ly}
These elements are equilibrium points of T%(z), for u = u,. With increase of
4, the cycle elements move out until at some value of u, the interval boundary

z, is reached after (n — 2) iterations. This should be so, since only alternate
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iterates move towards x,. The periodicity of the system is thus lowered by 2.
Note that z, also increases (very slowly) with p and that one set of alternate
iterates are repelled by the unstable fixed point x; towards one side and the
other set of alternate iterates to the other side. With further increase of p,
the outermost element () increases beyond the corresponding value of z, and
the cycle element nearest to z, within (1/2, z,) moves towards x, until at some
stage, the basin boundary z, is attained after (n — 4) iterations. Hence the
period is again decreased by 2. Proceeding like this, we infer that as y increases
beyond p,, there exist different ranges of the parameter p, for which cycles of
periods decreasing by 2 exist. In a numerical computation, the periods decrease
in an arithmetic progression. The common difference of the progression will
be even numbers, since only alternate iterates move towards one boundary of
[1/2,z,). The common difference also depends on the step size with which
p is increased as well as on the precision used for the computation. Again,
the bifurcations within an inverse cascade occur whenever one of the cycle
elements approaches the discontinuity of T{x) at £ = 1/2 and another element
approaches z,. [In this case, all the cycle elements approach the discontinuities
of the ntB iterate of the map where n is the period of the cycle |. A given cycle
of period n can exhibit the usual period-doubling bifurcation, if the slope of
the ntl iterate becomes equal to -1 and the cycle loses stability before any of
its elements gets a chance to collide with the discontinuity. The bifurcation
process continues until the iterates become aperiodic at a parameter value

(#0o) and the system enters the chaotic region.
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Lot

A parameter space plot (C, u) for the system 1s p:'esénted in figure 4.8.
The fixed point z} arising from the right part of the map exists only for points
above the straight line, KLM, that represents p + C = 1/2. The straight line
PQRS, given by the equation u + C = 1, determines the limiting values of
the parameters upto which the iterates are confined in the unit interval. The
straight line NLRN' represents u = 1/4. The left part of the map function has
only zero as the stable attractor for values of p < 1/4. i.e., for all parameter
points inside the trapezium, ONRS. The line KQK’, represents p = 1/2. The
fixed point of the logistic part (z;) exists for the region of parameter space
formed by the trapezium KQRN. The trapezium PKMS represents the region
in which z; exists. Thus the attractors =} and z;} co-exist within the parallel-
ogram KLRQ. Similarly, the attractor <! and the zero fixed point co-exist for
the parameter region represented by the parallelogram LMSR. The triangular
region PKQ represents the set of (C, ) points for which only ! is present and
the triangle KNL denotes the space in which the only attractor for the system
is ;. Within the parameter region bounded by the trapezium ONLM, the
zero attractor alone is present. Obviously, for the co-existence of z! and the
zero attractor, the value of C should be > 1/4. The curves EFN' and GQG’
represent u; and p, respectively, as given by eqns.4.8 and 4.9. All the discon-
tinuous cascades of bifurcations occur within the region PGQ. Note that both
i, and p, are decreasing functions of C. Hence, by taking negative values for
C, one can have a 1-cycle behavior for the map for values of u corresponding

to the 2-cycle region of the logistic map.
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Fig 4.8 A parameter space plot (C,p) for the discontinuous logistic

map. The lines GQG' and EFN’ represent pu, and p respectively.
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From the parameter space plot, one can select suitable (C, u) points
to have a desired dynamics for the system. It is possible to have a control over
the dynamics of the system by proper choice of C for each u, as in the case of

the combination maps [80-82].
4.3 Numerical Results

The analytical studies presented above have been well substantiated by
numerical computations. This section deals with the numerical investigations
carried out to check the validity of the results obtained in the previous section.
The discontinuity parameter C is kept at various fixed values. For each value of
C, the bifurcat_i_on structure of the map is determined, by varying the parameter
p in small steps. A series of bifurcation diagrams are drawn, for different
initial values (xp). Figure 4.9 shows a bifurcation diagram for the system. It
is obvious that the map has got multiple attractors. Initial value dependent
behavior is seen in the bifurcation diagrams. In the case of C = 0.2, for
example, we observe the following facts. For p varying from 0 to 0.25, the
only attracting fixed point is zero and all initial points zy € (0,1) converge
asymptotically to this attractor. When p increases beyond 0.25, the system
stabilizes to a non zero fixed point (x;) which remains stable upto ¢ = 0.5
and after that it vanishes. For values of 4 > 0.3, another fixed point (z}) is
observed. The two fixed points z; and z} co-exist for values of y varying from
0.3 to 0.5. Initial values like 0.1,0.2,0.3, etc. converge to the fixed point z;.

But, seed values like 0.6 converge asymptotically to the other fixed point.
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Fig 4.9 A Bifurcation diagram of the discontinuous logistic map for
various initial points in (0,1). The value of C = 0.1 and p is varied from 0 to

0.8. Note that the 2-cycle suddenly bifurcates to an n-cycle when p = p,
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The fixed point z;} undergoes the standard pitchfork bifurcation to
a 2-cycle at a value p = 0.608222. The two cycle behavior continues upto
the parameter value u = 0.672055. These values of u; and pu, are obtained
accurately, by taking further and further blow ups of the bifurcation diagrams.
When p increases beyond 0.672055, a sudden bifurcation takes place and the
iterates form a cycle of large periodicity. The period depends on the precision of
the computer. The zero fixed point does not co-exist with x; for values of C' <
0.25. The parameter values x4, and p, obtained numerically and analytically for
various values of C are presented in table 4.1. The close agreement between the
numerical and analytical values give a strong support to the theory developed
in the previous section. A check for any evidence of chaos was performed,

based on the criterion of the positivity of the L.C.E () given by [14]:

jim 2500 ) (410)

n—ooon =0

Accordingly, the values of A are computed for various values of g in the
neighborhood of u,. No trace of chaos is seen at these points; We have observed
cycles of periodicities decreasing by 2 for u values greater than u.. Two typical
cases of C = 0.1 and C = 0.2 are analyzed in detail. Figs. 4.10 and 4.11 shows
the bifurcation diagrams for these cases. In the case of C = 0.1, cycles of
even periods (14,12,10,8,6,...) are observed when p is increased beyond u,;
For C = 0.2, we observe cycles of odd periods for values of p greater than u,.
The usual period-doubling process is also observed. For certain values of the

parameters, different initial points converge to cycles of different periods.
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Table 4.1

Parameter values for period doubling and period n-tupling of the discontinu-

ous logistic map for different values of C.

Discontinuity Control parameter (u ) for
parameter period doubling (4,) period n-tupling (u,)

C Analytical Numerical Analytic;a.l Numerical
0.05 0.71298053240 | 0.712945 | 0.77329280499 | 0.7732925
0.10 0.67696960071 | 0.676985 | 0.73851648071 | 0.7385165
0.15 0.64203854231 0.642015 0.70474050251 | 0.7047450
0.20 0.60825756950 | 0.608222 | 0.67201532545 | 0.6720155
0.25 0.57569390943 | 0.575664 | 0.64038820320 | 0.6403885
0.30 0.54440972087 | 0.544410 | 0.60990195136 | 0.6099020
0.35 0.51445989578 | 0.514447 - | 0.58059371040 | 0.5805935
0.40 0.48588989435 | 0.485876 | 0.55249378106 | 0.5524935
0.45 0.45873378932 | 0.458677 | 0.52562460986 | 0.5256245
0.50 0.43301270189 | 0.432997 0.5 —_—
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Keeping the value of C = 0.1 and p at various fixed values in the
interval (1/2 — C), the asymptotic value of the iterate {x,} generated from a
seed value z, is determined. This is repeated for various values of x¢. In this
way, the basin of attraction is determined. This procedure is then repeated for
C = 0.2 as well. The basins of attractions for the two fixed points z; and z; are
presented in figure 4.12 and figure 4.13 corresponding to C = 0.1 and C = 0.2
respectively. Here, we plot the values of the fixed points versus the initial values
zp for all 4 in (0,1). The basin of attraction for z; is the portion of z-axis from
0.5 to z, and that for z; is the set of points on the z-axis in the interval 0 to
0.5 and from z, to 1, where z, is the right basin boundary of z;. The basins of
attraction are well defined and are not intermingled, unlike in the case of the
logistic map under certain parametric perturbations(83,84]. Such well defined
basin structures have already been reported for other discontinuous maps(85].
Within the parameter range for the two attractors to co-exist, it is observed
that the width of the basin of attraction of ; increases with u and reaches its
maximum value at = 0.5. If 4 < (1/2 —C), the fixed point is x; or zero. For
0.5 < p < py, the fixed point is ;. Table 4.2 shows the width of the basin of
attraction (R) at pu = 0.5 for different values of C, obtained numerically and
analytically. There is excellent agreement between the two, which verifies our

theoretical analysis.
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Fig 4.12 The basins of attraction of the discontinuous logistic map

with C = 0.1. The asymptotic state is plotted against the seed values. The

value of u is taken as 0.5
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Fig 4.13 The basins of attraction of the discontinuous logistic map
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value of u is taken as 0.5
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Table 4.2

Width of the basin of attraction of the right fixed point for various values of

C. The control parameter p is kept at 0.5.

Discontinuity Width of the basin of attraction of x;
parameter (C) Analytical Numerical
0.05 0.1581139 0.1581101
0.10 0.2236068 0.2236059
0.15 0.2738613 0.2738593
0.20 0.3162278 0.316227
0.25 0.3535534 0.3535532
0.30 0.3872984 0.3872979
0.35 0.4183300 0.4183283
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4.4 Conclusion

The work presented above gives a theoretical understanding of the
route to chaos in discontinuous systems. A detailed analysis of the dynamics
of a discontinuous logistic map is carried out, both analytically and numeri-
cally, to understand the route it follows to chaos. We have shown analytically
that the discontinuous logistic map has got multiple attractors with different
basins of attraction. We also give expressions for the basin boundaries and a
theory for the bifurcation phenomenon of the map is developed. In contrast
to the standard pitchfork bifurcation in which the slope of a cycle becomes -1,
the border collision bifurcation occurs whenever a cycle element touches the
discontinuity of the map; For the map with a discontinuity at the extremum,
the slope of the cycle becomes 0 at this point. Our results are verified by
numerical investigations of the map. We have presented a parameter space
plot for the map so that one can have a desired dynamics for the system, by
suitable choice of the discontinuity parameter (C) for every value of the control
parameter (1). However, the present analysis deals only with the case of the
discontinuity parameter applied to the right half of the interval of mapping.
A detailed analysis for the n-furcations of various periodicities can be made
and a more general theory for the map with discontinuities applied at different

positions can be formulated on a similar footing.
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5. SUMMARY

This chapter provides a summary of the work presented in the preced-
ing chapters. The thesis focuses on the results obtained by our investigations
on combination maps, scaling behaviour of he Lyapunov characteristic expo-
nents of one dimensional maps and the nature of bifurcations in a discontinuous
logistic map. Chapter 1 gives a general introduction to chaos in determinis-
tic systems. Various qualitative and quantitative measures adopted to detect
and characterize chaotic motion are briefly described. Some simple one di-
mensional maps exhibiting chaotic behavior are also discussed. This chapter
gives a review of the major routes to chaos in dissipative systems, namely,
Period-doubling, Intermittency and Crises. The dynamics of one dimensional
iterative maps are discussed, taking the logistic map as a specific example.
The Feigenbaum’s universality theory for the period doubling route to chaos
are described in some detail. The relevance of the scaling relations of the Lya-
punov characteristic exponents in the context of control of chaos is explained.

This is essential for understanding the contents of the subsequent chapters.

The dynamics of combination maps form the content of chapter 2.
By a combination map, we mean a map obtained by combining two one di-
mensional maps. The constituent maps may or may not belong to the same
universality class. The bifurcation scenario for both these types of combina-

tions are analyzed. In the first case, the logistic map is combined with the
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sinusoidal map, both belonging to the quadratic family. This combination
map is a two parameter one dimensional map possessing an interesting prop-
erty that it goes over from one humped to two humped state by continuously
varying one of the parameters. Keeping the parameter (u) of the logistic part
at various fixed values, the bifurcation structure of the system is analyzed by
varying the parameter (A) of the sine part. It is observed that the system
retraces the entire period doubling route to chaos in the reverse order, as this
parameter is increased. A parameter space plot for the system is also obtained.
The bifurcation lines in the parameter space are parallel straight lines, indi-
cating that the Feigenbaum’s convergence rate (6) computed in terms of A for
fixed values of u is the same as the value of § calculated in terms of u for any
fixed value for A. It is possible to have any desired periodicity or chaos in the
system, by proper choice of the parameters. Again, the parameter u can be
increased beyond p = 4 by taking suitable high values for A. Even though the
periodic region of the system is exactly similar to the periodic regime of the
logistic map, the chaotic regime is very much different in structure. For the
logistic like family, the chaotic band undergoes an infinite sequence of band
bifurcations in a mirror sequence of the cascade of bifurcations in the periodic
region. But in the case of the combination map, these band bifurcations do
not take place ad infinitum. What we observe is a series of band splittings and
recombinations in the chaotic regime of the combination map. This incom-
plete nature of the cascade of band bifurcations results in a different scaling

behaviour for the characteristic constants of the combination map. The studies
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of this combination map for certain high values of u like p = 32, 36 etc., have
revealed some fascinating results. In this case, the combination map is always
two humped in nature. The bifurcation structure for the two humped case is
considerably different from that for the one humped state. With increase of
the parameter A, the iterates switch over from one hump to the other. The
system thus exhibits an inverse period doubling for some range of A and the
a forward period doubling for the remaining range of A. The formation of
a bubble structure is a distinct possibility for certain high values of y. We
then consider the case of a combination of two maps chosen from two different
universality classes. For this, the Hemmer’s map is combined with the logis-
tic map. The bifurcation structure of the system is analyzed by varying the
parameter a of the Hemmer’s part, for various fixed values of the parameter
p of the logistic part. The presence of a cusp at the extremum point of this
combination map produces severe differences to the bifurcation pattern. In
this case, both the chaotic and the periodic region of the combination map
are different from those of the constituent maps. It is observed that the sys-
tem exhibits a transition from chaos to order and then from order to chaos.
The transition from chaos to order occurs by inverse period doubling while
the transition from order to chaos takes place by tangent bifurcations and in-
termittency. We have also obtained a parameter space representation for the
system. The bifurcation lines in this case are smooth curves, in contrast to

the parallel straight lines obtained for the first case.
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The results of the numerical computations of the Lyapunov charac-
teristic exponents of one dimensional maps are presented in chapter 3. The
Lyapunov characteristic exponent (A) serves as an order parameter in the
transition from order to chaos. A scaling law for A for maps undergoing the
Feigenbaum scenario of pitchfork bifurcations have been theoretically worked
out by Huberman and Rudnick. They have shown that the envelope of posi-
tive A follows the relation, A ~ (a — a.,)" where a., is the value of the control
parameter a at the period doubling-accumulation point and v = %, 6 being
the Feigenbaum constant. We have established numerically- that this relation
is valid not only for the quadratic maps, but also for all one dimensional one
humped maps exhibiting the period doubling route to chaos. A necessary re-
quirement for the validity of this law is that the chaotic bands should display
an infinite cascade of band splittings. The Lyapunov exponents of combina-
tion maps follow a different scaling relation. The scaling index v is found to be
almost unity for the combination map formed by combining the logistic map
with the sine map. The incomplete nature of the band bifurcations is the rea-

son for the violation of the Huberman- Rudnick scaling law by the combination

map.

An analytical explanation for the bifurcations of a discontinuous logis-
tic map is given in the fourth chapter. Numerical results in support of theory
are included. We have established that a discontinuous bifurcation takes place

whenever the elements of an n— cycle collides with the discontinuities of the
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ntt iterate of the map. The periods of the cycles are shown to be precision de-
pendent. Also the periods decrease in an arithmetic progression, as the control
parameter is increased. The common difference of the progression will always
be even numbers. A parameter space plot for the system is also obtained. The
usual period doubling phenomenon is also possible, if the slope of the n'* iter-
ate at its cycle elements becomes equal to -1, before any of the cycle elements

gets a chance to collide with a discontinuity.

The work presented in this thesis opens up some possibilities for fu-
ture research. A number of different combination maps can be formed and
the dynamics of such systems can be analyzed by the techniques presented in
this thesis. The idea of combination maps can be used advantageously for the
control of chaos in discrete systems. The scaling relations of the Lyapunov
characteristic exponents are very useful in developing suitable control algo-
rithms. Extension to higher dimensional systems can also be tried out. The
mechanism for bubble formation can be studied in detail by analyzing suit-
able combination maps. The phenomenon of border collision bifurcations for
a number of discontinuous systems can be analyzed by the methods presented
for the discontinuous logistic map. Similar studies can be carried out for con-
tinuous systems as well. Detailed investigations on one dimensional maps can
provide valuable informations in understanding the onset of chaos in many
practical systems. Developments in the field of chaotic dynamics can lead to

a satisfactory explanation for the unsolved problem of turbulence.
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